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1 Introduction

One remarkable feature of the twentieth century in the United States is the
substantial increase in educational attainment of the population. Figure 1 il-
lustrates this point. In 1940, about 8 percent of the white males, aged 25 to
29, had completed a college education, 31 percent of them had a high school
degree but did not finish college, and, 61 percent did not even complete high
school.! The picture is remarkably different in 2000 when 28 percent completed
college, 58 percent completed high school but not college, and 13 percent did
not complete high school. Although our focus is on white males, Figure 2 shows
that the trends of Figure 1 are shared across gender and races. The question
we address in this paper is: What caused this substantial and systematic rise
in educational attainment in the United States? Understanding the evolution
of educational attainment is relevant given the importance of human capital on
the growth experience of the United States as well as nearly all other developed
and developing countries.

Our approach is to build a model of educational attainment which empha-
sizes the importance of skill-biased technical change to generate trends in ed-
ucational attainment. This focus is motivated by data. Using the TPUMS
samples for the 1940 to 2000 U.S. Census, we compute weekly earnings across
three educational groups for white males of a given age cohort: less than high
school, high school, and college.? Relative earnings among educational groups
exhibit noticeable changes since 1940 (see Figure 3). For instance, earnings of
college relative to high school increased by 22 percent (from 1.58 in 1940 to
1.94 in 2000), while the relative earnings of high school to less than high school
increased by 30 percent (from 1.47 in 1940 to 1.92 in 2000).3

Can an increase in relative earnings of 20 to 30 percent account for the rise in
educational attainment? To provide a ball-park number, consider an elasticity
of college attainment with respect to relative earnings of 8 as suggested by
some empirical micro evidence. Then, a 20 percent increase in the earnings of
college relative to high school can increase college attainment by a factor of 4.3,
which compares with 3.7 in the data. This calculation suggests that observed
changes in relative earnings are quantitatively important to account for the rise
in educational attainment between 1940 and 2000. However, relative earnings
and the implied elasticity of educational attainment are endogenous to education

n what follows we refer to the detailed educational categories simply as less than high
school, high school, and college. See the appendix for details of data sources and definitions.

2Weekly earnings refers to pre-tax wage and salary income divided by the number of weeks
worked. See the appendix for a detailed description of data sources and definitions. In what
follows, we refer to weakly earnings, earnings, and income interchangeably.

3Figure 3 illustrates patterns that have been emphasized in the wage-structure literature.
Both the returns to college and high school exhibit increasing trends. The return to college
decreased during the 1940s and the 1970s, and rose sharply during the 1980s and 1990s.
Acemoglu (2002), for example, reports a similar pattern for the returns to college. The
compression observed in the 1940s was documented and discussed by Goldin and Margo
(1992).



decisions. As a result, a quantitative model is needed in order to discipline and
disentangle the relevant forces and to provide a quantitative assessment. The
model would also need to be able to capture the changes in returns to schooling
across educational categories.

Our model builds on the human capital literature, most notably Becker
(1975), Ben-Porath (1967), Mincer (1974), and Heckman (1975). For the pur-
pose of our specific question, the model has several key features. First, the
schooling choice is discrete. This is relevant because the distribution of people
across years of schooling in the data is concentrated around completion years.
Also, the discrete choice allows the model to match distribution statistics such
as those presented in Figure 1, as opposed to just averages for a representative
agent. Second, there are two inputs in the production of human capital: time
and goods. The first input, time, is measured in years of schooling. Again, this
is a discrete choice so that a high school diploma requires the same years of
schooling in 2000 as in 1940. The introduction of goods in the human capital
technology, however, allows an agent to get more human capital from a given
number of years of schooling. Thus, the efficiency units of labor of a high school
person in 1940 may differ from the efficiency units of labor of a high school per-
son in 2000. This quality effect can be found for instance in Ben-Porath (1967)
and more recently in Manuelli and Seshadri (2006) and Erosa, Koreshkova, and
Restuccia (2007). Third, agents are heterogeneous in the marginal utility from
schooling time. This assumption allows an equilibrium distribution of people
across schooling categories. This sort of utility cost/benefit from schooling is
common in both the macro literature (e.g. Bils and Klenow (2000)) as well
as the empirical labor literature (e.g., Heckman, Lochner, and Taber (1998)).
Moreover, given the discreteness of schooling levels the model with heterogene-
ity implies that changes in exogenous factors have smooth effects on aggregate
variables such as educational attainment and income. An additional source of
heterogeneity may be through “learning ability.” Navarro (2007) finds, how-
ever, that individual heterogeneity affects college attendance mostly through
the preference channel. Fourth, the model is deterministic so that agents can
perfectly forecast the returns to various schooling choices. This assumption
is justified by our focus on aggregate trends. In addition, Cunha, Heckman,
and Navarro (2004) find that a sizeable share of the variability in returns to
schooling is forecastable. Finally, at the aggregate level, a production function
requires human capital from the three schooling groups, and the productivity
of each group is driven by an exogenous, group-specific, technical parameter.
The (potentially) uneven growth of these skill-biased technical variables is what
drives the evolution of educational attainment in the model.

In the context of these key assumptions, our model is close to Heckman,
Lochner, and Taber (1998). However, their emphasis is different from ours.
Heckman, Lochner, and Taber (1998) focus on explaining the increase in U.S.
wage inequality in the recent past. Our focus is on the role of technological
progress in explaining the historical rise in educational attainment. Our paper is
close in spirit to a recent literature in macroeconomics assessing the role of tech-



nological progress on a variety of trends in the U.S. and other developed coun-
tries such as women’s labor supply (e.g., Greenwood, Seshadri, and Yorukoglu
(2005)), fertility and the baby boom (e.g., Greenwood, Seshadri, and Vanden-
broucke (2005)), the structural transformation across countries and regions (e.g.,
Gollin, Parente, and Rogerson (2002) and Caselli and Coleman (2001)), the tran-
sition from stagnation to modern economic growth (e.g., Hansen and Prescott
(2002)), among others.* In emphasizing the connection between technology and
education our paper is also related to a labor literature, see for instance Goldin
and Katz (2007) and the references therein.® Finally, in emphasizing skill-biased
technical change our paper is broadly related to the literature on wage inequal-
ity, for instance see Juhn, Murphy, and Pierce (1993) and the survey by Katz
and Author (1999).

In terms of the quantitative exercise we conduct, we discipline our measure
of skill-biased technical change by using data on relative earnings among workers
of different schooling groups. In other words, our exercise amounts to generate
earnings dispersion across schooling levels through skill-biased technical change
and, then, to assess how much of a change in educational attainment this mech-
anism generates. More specifically, the nature of the computational experiment
is as follows. The parameters of the model are chosen to match a set of key
statistics, including earnings differentials across schooling levels from 1940 to
2000, educational attainment in 2000 and the overall growth rate of the econ-
omy between 1940 and 2000. The changes in educational attainment between
1940 and 2000 are left unconstrained in this procedure, that is: they are not
used to calibrate the model. Instead, the model’s performance can be assessed
by comparing the predicted to actual trends in educational attainment.

The main findings are as follows. First, the baseline results show that skill-
biased technical change — as measured by the changes in relative earnings across
schooling groups — generate a substantial increase in educational attainment, an
increase that is actually larger than the one observed in U.S. data (a 48 percent
increase in average years of schooling between 1940 to 2000 in the model vs.
27 percent in the data). The bulk of the increase in educational attainment
in the model is due to the high-school skill bias and relatively less to the col-
lege skill bias. Overall growth in TFP plays almost no role in the increase in
educational attainment although it explains more than 2/3 of the increase in
labor productivity. The effect of skill-biased technical change on educational
attainment is sensitive to the changes in relative earnings that we feed in from
the data. Under conservative scenarios on the change in relative earnings across
schooling groups after 2000, the model is closer to replicating the change in ed-
ucational attainment in the time series data — it implies a 39 percent increase in
educational attainment versus 48 in the baseline calibration. Second, although
changes in life expectancy have been substantial during the period of analysis,

4See Greenwood and Seshadri (2005) for an excellent survey of this broad literature.

5Technological progress may not be the only force behind the increase in educational at-
tainment. For instance, Glomm and Ravikumar (2001) emphasize the importance of the rise
in public-sector provision of education.



we find that these changes explain almost none of the increase in educational
attainment in our model. Returns to human capital are higher in the early part
of the life cycle relative to the later part so changes in life expectancy accrue
low returns for schooling investment. Third, when the model is extended to in-
clude on-the-job human capital accumulation, substantial returns to experience
mitigate the quantitative increase in educational attainment. This version the
model replicates the change in educational attainment in the time-series data.
But there is evidence that the returns to experience have been falling for re-
cent cohorts in the United States — see for instance Manovskii and Kambourov
(2005). When we allow for the decline in returns to experience, we find that
the increase in educational attainment is closer in magnitude to the baseline
experiment. We conclude that skill-biased technical change is a quantitative
important source in explaining the evolution of education in the United States
between 1940 and 2000.

We note that our theory abstracts from labor supply margins. The reason for
abstracting from labor supply is that there has been little or no trends in male
labor supply during the period 1940-2000. McGrattan and Rogerson (2004,
Table 2) show that weekly hours of work for male workers declined between
1950 and 1970 and, then, increased from 1970 to 2000. Overall, male hours
per worker are less than 2 percent lower in 2000 than in 1940. Along the same
lines, Hazan (2007, Figure 18) shows that, despite a significant increase in life
expectancy, the expected lifetime labor supply of a cohort born in 1970 is only
about five percent below that of a cohort born in 1920.

The paper proceeds as follows. In the next section we describe the model. In
Section 3 we conduct the main quantitative experiments. Section 4 we extend
the model to allow for changes in life expectancy and for returns to experience.
In Section 5 we discuss our results by performing a series of sensitivity analysis
and by placing the results in the context of the related literature. We conclude
in Section 6.

2 Model

In this section we develop a model of schooling decisions in order to assess the
quantitative contribution of technological progress to the rise of educational
attainment in the United States.

2.1 Environment

The economy is populated by overlapping-generations of constant size normal-
ized to one. Time is discrete and indexed by t = 0,1,...,00. Agents are alive
for T periods and are ex-ante heterogeneous. Specifically, they are indexed by
a € R, which represents the intensity of their (dis)taste for schooling time, and
is distributed according to the time-invariant cumulative distribution function



A. We assume that the utility cost is observed before any schooling and con-
sumption decisions are made. We also assume that there is no uncertainty in
the model.

An individual’s human capital is denoted by h(s,e) where s represents the
number of periods spent in school and e represents expenses affecting the quality
of schooling. Both s and e are choice variables. There are three levels of
schooling labeled 1, 2 and 3. To complete level i an agent must spend s €
{s1, 82, s3} periods in school and, therefore, is not able to work before reaching
age s; + 1. The restriction 0 < 51 < s9 < s3 < T is imposed so that level 1 is
the model’s counterpart to the less-than-high-school level discussed previously.
Similarly, level 2 corresponds to high-school and level 3 to college. Aggregate
human capital results from the proper aggregation of individual’s human capital
across generations and educational attainment. It is the only input into the
production of the consumption good. The wage rate per unit of human capital
is denoted by w(s) for an agent with s years of schooling. This is to allow
for the possibility that technological progress affects the relative returns across
schooling groups. Credit markets are perfect and r denotes the gross rate of
interest.

2.2 Technology

At each date, there is one good produced with a constant returns to scale tech-
nology. This technology is linear in the aggregate human capital input,

Y = 2 Hy,

where z; total factor productivity. The stock of aggregate human capital, Hy,
is also linear
Hy = 210 Hyy + z2¢Hop + 230 Hae, (1)

where H;; is the stock of human capital supplied by agents with schooling s;,
and z;; is a skill-specific productivity parameter. These linearity assumptions
are not essential for the main quantitative results of the paper but simplify
the exposition and computation of the model. We illustrate the implications of
different elasticities of substitutions across schooling groups in Section 5.

The technical parameters z; and z;; are the only exogenous variables in the
economy. Since our focus is on long-run trends, we assume constant growth
rates:

Zi41 = G2t vt
Zig+1 = Gizig, fori=1,2,3; vt.

Equation (1) implies that the following normalization is innocuous: z1; = 1 at
all t — thus g = 1. Regarding the level of z;, we set it to one at an arbitrary
date. As it will transpire shortly, this normalization is innocuous too. The
determination of the levels of zo; and z3; is discussed in Section 3.



We consider a market arrangement where there is a large number of competi-
tive firms in both product and factor markets that have access to the production
technology. Taking the output good as the numeraire, the wage rate per unit of
human capital is given by

we(s;) = ze2;.

The youngest worker of type i at date t is of age s; + 1 and thus, was “born”
in period t — s;, i.e., of age 1 at date ¢t — s;. The oldest worker is T-period old
and was born in period t — T + 1. Thus,

t—s;

Hy= Y pirh(si,e-(s:)),

T=t—T+1

where p;, is the fraction of cohort 7 that has attained the ith level of education,
and e,(s;) is the optimal schooling quality of this cohort. The discussions of
er(s;) and p;; are postponed to Sections 2.3 and 2.4.

2.3 Households

Preferences are defined over consumption sequences and time spent in school.
They are represented by the following utility function, for an agent of cohort 7:

T+T—-1
Z 87" 1n (ci_ﬂ'l) —as,
t=1
where 3 € (0,1) is the subjective discount factor, i~ " is date-t consumption

when the agent is t — 7 + 1-period old and, finally, s € {s1, s2,s3} represents
years of schooling. Note that a can be positive or negative, so that schooling
provides either a utility benefit or a cost. The distribution of a is normal with
mean p and standard deviation o :

where ® is the cumulative distribution function of the standard normal distri-
bution. The production function for human capital is

h(s,e) = s"e!™" 5 € (0,1).

The optimization problem of a cohort-7 individual with ability a, conditional
on going to school for s periods, is

T+T-1

V,(a,s) = max{ Z BT n (ci_ﬂ'l) — as} ,
t=1



subject to

T+T—-1 1 t—T1
Z <) AT = h(s,en)Wi(s, T) — e,
r

e - > e (N

t=7+s

where the maximization is with respect to sequences of consumption and the
quality of education e,. The budget constraint equates the date-r value of con-
sumption to the date-7 value of labor earnings, h(s,e,;)W,(s,T), net of invest-
ment in quality, e;. The function W, (s,T) indicates the date-7 value of labor
earnings per unit of human capital. Observe that the time cost of schooling is
summarized in W, (s,T). Hence, the model features a time cost of schooling
(foregone wages), a resource cost e,, and a utility cost a. At date 7 the agent
chooses s once and for all to solve

max  Vi(a,s). (2)
s€{s1,82,53}

This problem can be solved in three steps. First, given s, it simplifies to a utility
maximization problem which can, in itself, be divided into two parts. Specifi-
cally, the optimal investment in the quality of education, that is e, maximizes
net lifetime earnings. Then, given net lifetime earnings, the agent optimally al-
locates consumption through time using the credit markets. Hence, conditional
on s, the optimal investment in quality, for an agent of cohort 7 is

er(s) = argmax{h(s,e)W.(s,T) — e},
which yields
er(s) = s[Wy(s, T)(1 —m)]"/".
The optimal amount of human capital is
h(s, ex(s)) = s[Wr (s, T)(1 — )]0/, (3)

For later reference, we define the period ¢ labor income of an agent of cohort 7
with education s; as L; r, = h(s;, e-(si)) wi(s;) for t > 74 s;. The net lifetime
income of an agent of cohort 7 is I, (s) = h(s,e,(s))W-(s,T) — e,(s) or

I.(s) = ksWy (s, T)Y/", (4)
where x = (1 —n)1=m/7 — (1 — )/, The optimal allocation of consumption
through time, given I, (s), is dictated by the Euler equation, CZ_IJ'_Q = ﬂrcﬁ_ﬂ'l,

and the lifetime budget constraint. At this stage, it is convenient to define
Vi, (s) = Vi (a, s) +as. In words, the function V;(s) is the lifetime utility derived
from consumption only, for an agent of cohort 7 with s periods of schooling.
Note that V- (s) is not a function of a. The optimal schooling choice described
in (2) can then be written as

max {V;(s) — as}. (5)

s€{s1,52,53}



2.4 Equilibrium

An equilibrium is a sequence of prices {w(s;)} and an allocation of households
across schooling levels such that, at all ¢, w;(s;) = z:2;; and households of any
cohort 7 solve problem (2) given prices.

At an equilibrium, a cohort is partitioned between the three levels of school-
ing: Agents with low enough utility costs choose level three, while agents with
high enough costs choose level one. The rest of the cohort chooses level two.
To better understand the determination of this partition, consider the function
V;(s) — as. Note that it is linear decreasing in a with a slope given by s and an
intercept increasing in I (s). The ranking of I-(s) with respect to s depends on
opposing effects, as equation (4) suggests. First, higher values of s correspond
to higher human capital and, therefore, higher lifetime income. Second, higher
values of s tend reduce the work life of the agent and, therefore, lifetime income.
This forgone-earnings effect transpires through W, (s, T'). Finally, W, (s, T) also
depends on s through the sequence of future wages. When I, (s) is finite, how-
ever, the assumption that s3 > s > s; implies that, in each generation, there
exists an agent with a low enough value of a, let us denote it by a,, such that

Vr(s3) —a,s3 > Vi(s2) —a,s2 > V(s1) — a,s1.

Zr

Thus, for a > a,, there exists a single intersection between each pair of value
functions. This implies that they can be represented as in Figure 4. There
are two cases. First, consider panel A of Figure 4. Here, an agent of cohort 7
chooses s3 when a < asz » where agg ~ is the marginal agent characterized by

Vi(s3) — ase rs3 = Vi (s2) — ase rS2.
Similarly, an agent chooses s; when a > a2+ where
Vr(Sz) —ag1,752 = VT(SI) — a21,751-
Thus,
Vi(s2) — Vi(s1) Vi (s3) — Vi (s2)

a1,y = ———= and aszy; = ——F—, (6)
S2 — 81 83 — S2

and the educational attainment rates of cohort 7 in level i, denoted by p;,, are

pir = 1-— A(GQI,T)v (7)
Pbor = A(a21,r) - A(a32,'r)7 (8)
p3r = Alaszr). 9)

In the case of panel B of Figure 4, there exists only one critical agent:

Vi(s3) — V(s
s, = M7 (10)
S3 — 81
and the educational attainment rates are p1, = 1 — A(as1,+), p2r = 0 and
psr = A(asi,r). Figure 5 represents, graphically, the determination of educa-

tional attainment rates in each case.



It is possible to characterize a critical agent in cohort 7 as a function of the
fundamentals. First, we can show that

T
Qij.r = 1 ﬂ X ! x In (IT(SZ)) .
1—6 S — 85 [T(Sj)

Thus, the critical level is proportional to the semi-elasticity of lifetime income
with respect to years of schooling. This observation is helpful to understand the
difference between the two cases represented in Figure 4. Observe that in the
case described in panel A, ag; ; is not critical, i.e., V(s2) — azi,-s2 > V(s1) —
a31,751 O ag2 » < as1,r < ag1 . This means that, for an agent contemplating
choosing a different level of schooling than sp, the largest reward comes from
choosing sg, not s3. The case depicted in panel B is one where V; (s2) —as1 r82 <
Vr(s1) — ag1,781, Or ag1,r < asz1,r < asar. In such case, the largest reward for
an agent considering choosing a different level than s; comes from choosing s3.
The smallest elasticity is that of a move from s; to sp. This is the reason why
enrollment in s is zero in this case.

The assumption that z;, 214, 204 and z3; grow at constant rates imply

T+T—-1 1 t—T /T Si /T T
We(si,T) = Y U)t(si)( ) s (gg/l)ggfif/ |

t=7+s;

r

)

so that

I(s) _ s < (99:/7)* = (99:/7)" )” ! (11)
In(s;) 85 \zjr (995/7)% — (99;/7)" )

At this stage, there are a few points worth mentioning. First, the level of total
factor productivity, z, is absent in the determination of the critical agents. The
reason for this result is that the model abstracts from any potential asymmetry
between the changes in benefits and costs of schooling. A change in z affects the
lifetime income of agents in the same proportion, regardless of their education,
as well as the opportunity cost of education. Note that the growth rate of total
factor productivity, g, appears in Equation (11). So while g affects educational
attainment in general —a higher growth rate of income increases the optimal
amount of schooling— it does not affect the evolution of educational attainment
in our baseline experiment since we keep this growth rate constant. Second,
skill-biased technology affects educational attainment rates. Remember that, in
the model, skill-biased technology takes place only when the z;;’s are growing
at uneven rates, implying that z;;/z;, is a function of time. Not surprisingly,
holding everything else constant, an increase in z;,/z;, raises schooling enroll-
ment ¢ and reduces j. Third, life expectancy, T, affects the critical agent too.
The lifetime returns on human capital, as measured by W, (s, T'), increases with
T, inducing agents to accumulate more human capital. This can be accom-
plished by attaining higher levels of schooling, or by an increase in the quality
of schooling. An increase in T also has an income effect. An agent can main-
tain educational investment constant and, yet, have his lifetime income increase.
Hence, theoretically, the effect of T on educational investment is ambiguous and
needs to be sorted out quantitatively.

10



3 Quantitative Analysis

This section proceeds as follows. In Section 3.1 we discuss the calibration which
consists of two stages. First, some parameters are assigned numerical values
using a-priori information. Second, the remaining parameters are calibrated to
match key statistics of the U.S. economy for the year 2000, as well as overall
growth in GDP per worker and relative earnings across schooling groups dur-
ing the period 1940 to 2000. Unlike the business cycle literature, where the
evolution of productivity is calibrated independently to Solow residuals, we do
not have independent measurement of our main driving forces. These measures
are derived in the second stage of the calibration. It is important to emphasize
that the actual evolution of educational attainment between 1940 and 2000 is
not used for calibration. Thus, the quantitative importance of the mechanisms
built into the model can be assessed by their ability to generate trends in educa-
tional attainment as displayed in Figure 1. In Section 3.2, we use our measures
of technical change to assess their quantitative contribution in explaining the
rise in educational attainment in the U.S. economy. In Section 3.3 we propose
a series of experiments to decompose the role of each components of technical
change. Finally, in Section 3.4 we consider alternative assumptions about what
happens to skill-biased technical progress after 2000.

3.1 Calibration

The first stage of our calibration strategy is to assign values to some parameters
using a-priori information. We let a period represent one year, and consider that
agents are born at age 6. The length of model life is set to T" = 60, the gross
interest rate to r = 1.05 and the subjective discount factor to 8 = 1/r. The
length of schooling, s1, so and s3, are set to the average time spent in school at
each educational category, for the 25-29 year-old, white males in the 2000 U.S.
Census. This restriction dictates s1 =9, so = 13 and s3 = 18 — see appendix.

At this stage, the list of remaining parameters is

0= (M, 0,1,9, 92, 93, 22,2000, Z3,2000)

which consists of the distribution parameters for the utility cost of schooling,
the human capital technology, and growth rates and levels for productivity
variables. We build a measure of the distance between the model and the U.S.
data for: (i) the time path of relative earnings from 1940 to 2000; (ii) the growth
rate of gross domestic product per worker from 1940 to 2000; (iii) the share of
time in the total cost of education in 2000; and (iv) the educational attainment
of the 25-29 years old in the 2000 census. We then choose each element of 6
simultaneously to minimize this function.

Our objective function is motivated by the model. More specifically, the
fact that only the relative z;’s drive the changes in relative earnings motivates
their presence in the objective function. Note that each element of 8, except u

11



and o, matters for the determination of the levels of relative earnings at date ¢.
However, only g2 and g3 matter in the determination of their evolution through
time. We use the growth rate of the gross domestic product per worker to help
pinning down g. The reason is that, as mentioned earlier, g does not affect the
evolution of educational attainment or relative earnings. However, it determines,
among other things, the growth rate of output per worker. Observe now that p
and o matter in the determination of the evolution of educational attainment.®
This, however, is the object of our study. Thus, we restrict ourselves to use only
one year of data, namely 2000, to help pinning down these variables. Since this
choice is arbitrary we discuss our results in light of an alternative calibration
year, such as 1940, and show that the fundamental quantitative forces in the
model are not affected. Finally, the elasticity n determines, among other things,
the relative importance of time and goods in the production of human capital.
This is the reason for the presence of the share of time in the total cost of
education in our objective function.”

Formally, given a value for § we compute an equilibrium and define the

following objects. First, .
- i,t—s;,t

Eij 6) Ljt—s;t
is the period-t labor earning of an agent of generation t—s; and education level 4,
relative to that of an agent of generation ¢ — s;, with education level j. Observe
that at date ¢ both agents are entering the labor force for the first time of their
lives. This calculation is justified by the importance of age in determining human
capital and, therefore, labor earnings. The empirical counterpart of E32,t(9) is
the relative earnings between the College and High-school groups, described in
Figure 3, and denoted by Es,. Similarly, E217t(9) is the model counterpart of
E»1.¢+, the relative earnings of the High-school and Less-than-high-school groups.
Then, we define

p1,1981 — 0.134

P2,1981 — 0.588

2000 — 0.90

Ya000/ Y1940 — 1.02%°

M(9) =

where x; is the average share of time in the total cost of education.® Finally, to
assign a value to 6 we solve the following minimization problem

mein; (Egg,t(ﬁ) — E327t)2 + (E21,t(0) - E21,t)2 +M(6)T M(0)

SMore precisely, different values of p and ¢ imply different paths for p;;, given paths for
igt-

"It turns out that because the model abstracts from level TFP effects, the shares of time
and goods in the production of human capital is irrelevant for the main quantitative properties
of the model. It does affect the earnings of a given schooling group across cohorts.

8Formally, it is defined as

21:1,2,3 pi,tLit s
> i=1,2,3 Pit(Lit—s; 85 + et(si))

Tt =
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where 7 = {1940, 1950, ...,2000}. The first part of the objective function im-
plies that the model’s predicted relative earnings are set to match their empirical
counterpart, in a least-square sense. The second part includes four additional
restrictions on the parameters. The first two impose that the educational attain-
ment rates for the generation born in 1981 match their empirical counterparts.
The 1981 generation in the model is 20 years old in 2000, which corresponds
to age 25 in the U.S. data. The data displayed in Figure 1 show that, in 2000,
13.4% of the 25-29 year-old group did not finish high school, and 58.8% did
or attended some college. The third restriction imposes that the time cost of
education, as measured by x; in 2000, is 90% — see for instance Bils and Klenow
(2000). Finally, the last restriction imposes that the average annual growth rate
of labor productivity between 1940 and 2000 is two percent

The second column of Table 1 indicates the value of the calibrated parame-
ters. The model is able to match the calibration targets quite well in terms of
the moments summarized in M (0). Specifically, the model’s rates of educational
attainment in 2000 are 58.8 and 27.8 for high school and college, respectively.
The corresponding rates in the data are 58.8 and 27.8. The share of time in
the cost of schooling is 90 percent and the growth rate of output per worker
between 1940 and 2000, in the model, is 2 percent per year. Notice in Figure 6
that the model implies a smooth path of relative earnings. The reason for this
is that our specification of skill bias has only two parameters per relative skill
level, as a result, the best the calibration can do is to fit a trend line through
the data points. As we will discuss below, skill bias produces a substantial effect
in educational attainment so the parameterizations matters for the quantitative
results. In Section 3.3 we discuss the results in light of different assumptions
regarding skill-biased technology.

3.2 Baseline Experiment

Given the calibration of parameters to 2000 data, and the calibration of the
technology growth factors, we feed in technology levels and compute educational
attainment for individuals 25 to 29 years of age between 1940 and 2000 which
we then compare to data in Figure 1.

The main quantitative implications of the model are with respect to the
time path of educational attainment. In particular, the model implies time
paths for the distribution of educational attainment for the three categories
considered: less than high-school, high-school, and college. Figure 7 reports
these implications of the model. The model implies a much sharper increase
in educational attainment than what is observed in the data. In particular,
the fraction of 25 to 29 year-old with college degree or more increases in the
model by 28 percentage points from 1940 to 2000, while in the data the increase
is 20 percentage points. For high-school, the model implies an increase from
10 to 60 percent between 1940 and 2000 whereas, in the data, the increase is
from 30 to 60 percent. A summary statistic of these implications in educational
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attainment is the average years of schooling of the 25 to 29 year-old population.
We compute the average years of schooling implied by the model as >, sip;
at each year. We do the same for the data, i.e., we use the attainment data
together with s}s. By construction of our calibration strategy, the model implies
an average years of schooling of 13.9 as in the data for 2000. In 1940, the model
implies an average years of schooling of 9.4 whereas, in the data, this average
is 10.9 years. The model implies a roughly constant share of expenditures in
education over GDP around 4 percent which is in the ball park of estimates in
Haveman and Wolfe (1995).

We chose the year 2000 for our calibration targets. Given how different the
educational attainments are in 1940, the question arises whether the results
depend on this choice. We investigate this issue by calibrating the economy
to data for 1940 instead. The calibrated parameters are presented in the last
column of Table 1. Note that the parameters are reasonably close in each
calibration, except for y and ¢, which should not be a surprise.” Given this
alternative calibration, the quantitative results are fairly similar, for instance,
the increase in average years of schooling from 1940 to 2000 is around 50 percent,
close to the 48 percent increase in the baseline model calibrated to data in 2000.
One interesting aspect of the results of the calibration to 1940 data is that,
while the underlined quantitative force of technological progress on educational
attainment is the same, the results presented in this way emphasize one aspect
of the data that the baseline experiment is not able to capture —namely the
slowdown in educational attainment starting in the mid 1970’s (see Figure 1
and Figure 8). We come back to this issue in Section 3.4 where we compute an
experiment where skill-biased technical change flattens out after 2000 and show
that this can rationalize the observed slowdown in educational attainment.

3.3 Decomposing the Forces

In our model, the increase in educational attainment is the result of skill-biased
technical change. Total factor productivity alone does not affect the evolution
of education. Other models such, as in Manuelli and Seshadri (2006) and Erosa,
Koreshkova, and Restuccia (2007), have a nonzero elasticity of schooling to TFP
changes. As mentioned in the introduction, the motivation for our approach is
to exploit the observed earnings heterogeneity in a parsimonious environment
to isolate its contribution on the evolution of educational attainment.

In light of this feature of our model, we decompose the importance of skill-
biased technical change by running counterfactual experiments. Remember that
skill-biased technical change means that 1 # go # gs. For example, the fact that
g2 > 1 in the baseline experiment means that there is a technical bias toward the
high-school people, relative to the less-than-high-school group. How important

9Table 1 reports the level of 22 1940 and 23,1940 which are the calibrated level parameters
in this exercise. The paths z2+ and z3+ are remarkably close, however, in the two exercises.
For example, the implied value of 22,2000 and 23,2000 in the 1940 calibration are 1.37 and 1.78,
respectively.
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is this bias? To answer this question we set go = 1 in our first experiment.
We adjust g3 such that g3/g2 remains the same as in the baseline case and we
let the rest of the parameters at their baseline values, such as described in the
second column of Table 1. The first experiment, therefore, is designed to assess
the importance of the high-school technical bias. In a second experiment we
ask: how important is the college vs. high-school technical bias? To answer this
question, we shut this bias down by assuming gs = g2 = 1.0045, where 1.0045
is the growth rate of go in the baseline calibration. Thus, in this experiment,
the college bias (relative to high-school) is shut down, while maintaining the
high-school bias (relative to primary schooling). In a third experiment, we shut
down skill bias completely by imposing go = g1 = 1. Table 2 displays some
model statistics for each experiment.

Observe that in experiments one through three, the increase in educational
attainment, as measured by average years of schooling, is less than in the base-
line case. The source of this result is different in each experiment. In the first,
the relative earnings of the high-school and less-than-high-school groups are not
changing through time because go = 1. As a result, the elasticity of lifetime
income with respect to an increase in s from s; to ss is constant and, therefore,
the less-than-high school group remains a constant fraction of the population —
see Equation (6). Under this calibration, the model predicts an increase in the
proportion of College educated, at the expense of the size of the High-school
group. The magnitude by which the proportion of College educated increases is
quite similar to the baseline case —21 percentage points versus 25 in the baseline—
while the number of High-School educated falls. Less human capital is accumu-
lated overall, thus the growth rate of the economy falls noticeably relative to
the baseline case.

We now turn to the second experiment, where the technical bias of college
versus high school is shut down. The high-school and college groups retain a
technical advantage, relative to the less-than-high-school group, though. Table
2 suggests that the departures from the baseline case, under this experiment,
are less than in the previous experiment. The reason is that the College group
now is almost constant: college earnings, relative to high-school earnings do not
change. The high-school bias attracts agents into high-school hence, unlike the
previous case, the High-school group increases and the Less-than-high-school
group decreases — a movement similar, in direction, to what is observed in the
baseline experiment. Since the College group represents a “small” fraction of
the population, the movements of groups one and two are enough to make this
experiment closer to the baseline case than the first. In fact, observe that the
growth rate of the economy is less than in the baseline case, because the College
group does not increase, but that this difference is small, suggesting that the
change in the College group did not contribute much to economic growth.

When we shut down skill bias at both levels, as in experiment three, the
model does not generate any change in educational attainment. Income growth
is 1.18% in this experiment which is only slightly above the assumed TFP growth
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(around 1%). The additional growth comes from changes in educational quality.

Given these results, we conclude that, in terms of skill-biased technical
change, the high-school bias is the most important force behind the changes
in educational attainment. More precisely, shutting down the high-school bias
implies the largest departure from the baseline at the aggregate level (average
years of schooling and the growth rate of the economy). At a more disaggre-
gated level (the distribution of schooling attainment) high-school and college
bias play similar, but different, roles and are of similar quantitative importance.

We emphasize that the educational attainment implications of the model
are sensitive to the calibration of skill-biased technical change. The baseline
calibration captures the overall trend in relative earnings over the 1940 to 2000
period. Not only the information captured by these trends is contained in 7
Census years (conducted every 10 years), but also there is substantial decade-
to-decade variation in relative earnings. We illustrate the importance of these
relative earnings trends by conducting a fourth experiment were we reduce by
half the growth rate of relative earnings between 1940 and 2000. We accomplish
this by adjusting the growth rates g» and g3 so that the growth in relative
technical progress of the two groups is reduced by half relative to the baseline
calibration. We leave all other parameters the same. In this experiment, average
years of schooling between 1940 to 2000 increase by 24 percent (27 percent in
the data), while average growth in GDP per worker is 1.84 percent (2 percent
in the data). (See Table 2.)

Table 2 contains a fifth experiment where TFP growth is shut down, leaving
all other parameters the same as in the baseline calibration. As discussed earlier,
TFP growth does not affect educational attainment much (notice that without
TFP growth the model generates almost the same educational attainment as
in the baseline experiment). Notice however that the model would imply much
lower aggregate income growth, 0.6% compared to 2% in the baseline. So while
in the model the effect of TFP growth on educational attainment is limited, it
plays a crucial role in income growth over time.

3.4 Alternative Paths for Relative Earnings

The baseline experiment provides a parsimonious representation of the increase
in relative returns across schooling groups and its impact on educational at-
tainment. More specifically, the baseline experiment assumes a constant growth
rate in skill-biased technology that continues into the future. However, rela-
tive earnings since the 1990’s show a considerable slowdown. Given that the
schooling decisions are forward looking we can ask whether a slowdown in skill-
biased technology can potentially explain the observed slowdown in educational
attainment. We make the extreme assumption that there is no skill bias after
the year 2000, i.e., we set go = g3 = 1 from 2000 onwards, leaving all other
aspects of the baseline experiment the same. We find that the implied time
path for educational attainment features considerably slowdown relative to the
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baseline calibration. (See Figure 9.) Intuitively, the model without skill-biased
technology and constant TFP growth implies a constant path for educational
attainment. As a result, the educational decisions of the cohorts that dominate
the measure of educational attainment in the last part of the time series are
highly influenced by the constant profile of relative earnings starting in 2000.
Under this calibration, average years of schooling increase by 39 percent vis a
vis 48 percent in the baseline.

4 Extensions

We evaluate the implications of the model to two extensions. First, we study
a simulation of the model that allows for life-expectancy to change according
to data. Since there has been a substantial change in life expectancy for the
relevant cohorts in the sample period we ask whether this can provide an im-
portant source of changes in educational attainment. Second, we incorporate
on-the-job human capital accumulation into the model. Substantial returns to
experience can potentially mitigate the impact of skill-biased technical change
on educational attainment.

4.1 Life Expectancy

There has been a substantial increase in life-expectancy in the United States.
For males, life expectancy at age 5 increased from around 50 years in 1850 to
around 70 years in 2000. Because the return to schooling investment accrues
with the working life, this increase can generate an incentive for higher amounts
of schooling investment. However, human capital theory also indicates that the
returns to human capital investment are higher early in the life cycle rather
than later (see for instance Ben-Porath (1967)) and as a result, increases in
life expectancy may command a low return given that they extend the latest
part of the life cycle of individuals. Whereas the increase in life expectancy is
substantial, this life cycle aspect of the increase in life expectancy may dampen
the overall contribution of this factor. It is also possible, as mentioned earlier,
that the increase in life expectancy reduces the incentive to go to school: an
income effect. Since our baseline model predicts an increase in educational
attainment larger than observed, we ask whether increasing life expectancy may,
through its income effect, dampen the skill-biased technology effect. Hence, we
simulate the implications of the model by changing life expectancy as it does in
the data.'® We recalibrate the economy in 2000 to the same targets but taking
into account the changes in life expectancy. The main changes in the calibration
relative to the baseline involve parameters pertaining to the distribution of
utility cost of schooling and the growth rates of technology.

108pecifically, the life expectancy of the period-t generation is T: = g7T;_1 given an initial
condition Tig50. The pair (Tiss50, g7 ) is chosen as to minimize the distance between the U.S.
data and [T%], in a least square sense. (The notation [-] denotes the nearest integer function.)
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We find that the increase in life-expectancy does not change the implica-
tions of the model substantially, in fact, life-expectancy has only modest effects
in educational attainment during this period. This can be assessed by comparing
the implications for educational attainment of the baseline simulation to the one
where life expectancy changes. Overall, the life expectancy experiment gener-
ates an increase of 50 percent in the average years of schooling while the baseline
experiment generates a 48 percent increase. We conclude that while changes in
life expectancy increase educational attainment the effect is not quantitatively
substantial.

4.2 On-the-job Human Capital Accumulation

Human capital can be accumulated on the job. Whereas in our baseline model
earnings increase only moderately during the life-cycle of an individual (due to
TFP and skill-biased technical change), the data shows considerable returns to
experience. A substantial return to experience may in fact affect educational de-
cisions. First, if returns to experience increase with education, as we will show
it is the case in the data, then this provides an additional return to school-
ing, reinforcing the effects of skill-biased technical change. Second, substantial
returns to experience implies that, other things equal, individuals would have
an incentive to enter the labor market sooner. Because of these opposing ef-
fects, it is a quantitative question to assess the role of on-the-job human capital
accumulation on the evolution of educational attainment over time.

We extend the model to incorporate on-the-job human capital accumulation.
In particular we consider the following human capital accumulation equation:

h(s,e) = s"e' "Mz,

where x is years of experience and v(s) € (0,1) is the human capital elasticity
of experience for a worker who has completed s years of schooling. Note that
we allow this elasticity to differ across schooling groups. Again, this feature
is motivated by data. Using IPUMS Census data we find that the return to
experience is systematically higher for higher education groups. Specifically, we
construct the age profile of earnings in 2000 as follows. For each educational
level, the data point at age a is the average weekly earnings of the (a—5)—(a+5)
age group. The resulting age profile is displayed in Figure 10.

Relative to the baseline, this economy has three additional parameters, v(s;)
for i = 1,2,3. We calibrate this economy by, in addition to the baseline targets,
targeting the age profile of earnings from 25 to 55 years of age in 2000. Specifi-
cally, we ask the model to match the earnings growth from 25 to 55 years of age.
The calibration procedure is detailed in Appendix B. The calibrated parameters
g, g2 and g3 are 1.011, 1.005 and 1.010, respectively. They are comparable to
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the baseline values displayed in Table 1. The values for v(s;) are

0.36 fori=1,
v(s;)) =< 0.39 fori=2,
0.28 for i = 3.

Although we have mentioned that the returns to experience are higher for higher
education groups, the values of v(s;) are not monotonic in 4. This is due to the
fact that the returns to experience are measured, in the spirit of Mincer (1974),
by dlog L/dx where L is labor income, whereas ~v(s) measures dlog L/dlog x,
which is also # x dlog L/dx. Thus, high Mincerian returns for the college group
are mitigated, in y(s3), by a relatively low level of experience. In fact, when
we run the following regression in the model: log L; = a;g + a1 + asax? where
T = age — s; measures experience we find a;; = 0.03, a2; = 0.04 and a3; = 0.06,
which are close to the experience returns in the data. Not surprisingly, the
model matches the curvature of the age-earnings profiles well — see Figure 10.

In terms of educational attainment, the model with on-the-job human capital
accumulation reduces the incentives to remain in school created by skill-biased
technical progress. The average number of years of schooling increase from
10.9 in 1940 to 13.9 in 2000 — a factor of 1.27, which compares with the 1.27
factor in the U.S. data and 1.48 in the baseline. The calibrated returns to
experience in this extension of the model dampen the incentives for schooling
investment. However, there is strong evidence that the returns to experience
have been falling for recent cohorts in the U.S. data — see Manovskii and Kam-
bourov (2005). For instance, comparing the life-profile of a 25 year old in 1940
versus a 25 year old in 1970, the increase in relative earnings (from 25 to 55
years of age) has fallen from 3.5 to 2.2 for less than high school, from 3.1 to 1.5
for high school, and from 2.7 to 1.2 for college. When we allow for this decrease
in relative earnings, we find that the implied increase in educational attainment
is much closer to the baseline experiment that abstracts from returns to expe-
rience. Hence, skill-biased technical change generates a substantial increase in
educational attainment and this effect is robust to the incorporation of reason-
able returns to experience in the data. We conclude that skill-biased technical
change is a quantitative importance source of changes in educational attainment
in the United States between 1940 and 2000.

5 Discussion

5.1 Substitution across Schooling Groups

We emphasize that the technology for aggregate human capital allows perfect
substitutions between skill groups. We view this assumption less problematic
as it may first appear. The reason is that our results do not emphasize a
particular quantitative elasticity of skill-biased technical change to educational
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attainment nor it emphasizes a tight measurement of skill-biased technical pa-
rameters. Clearly those applications would necessitate tight measurements for
the elasticities in the technology for aggregate human capital as well as other
sources of labor productivity growth. Instead our emphasis is on the role of
skill-biased technical change — as measured by the change in relative earnings
— on educational attainment without explicit decomposition of the quantitative
source. For instance, an alternative substitution elasticity in aggregate human
capital would require a different quantitative source of skill-biased technology
to match the same relative earnings paths. The discipline imposed on the quan-
titative results of the paper hinge on relative earnings paths.

The following exercise illustrates this point. Consider, a general constant-
elasticity-of-substitution technology for aggregate human capital:

Hy = [(20Hy) + (220H)” + (23:Hze)?]'”

where p < 1. Output is Y; = z;H;. This specification implies an elasticity of
substitution of 1/(1 — p) between skill groups. For values of p strictly below one
different skill groups are more complementary than in the baseline specification,
and an increase in any given z;; affects the wage rate of all skill groups.

For simplicity, we consider a steady-state situation in levels, that is a situ-
ation where z; and the z;’s are constant through time.!! An equilibrium, is a
set of prices, w(s;), and an allocation of households across schooling levels such
that:

w(sy) = 2 [(:H)’ + (zaHo)’ + (2 Hy)) 7™ (2 H) " 2,

and
H; = (T — si)h(si, e(s:)),

for ¢ € {1,2,3}, and households solve problem (2) given prices. The first con-
dition above equates the marginal product of human capital for skill group ¢ to
its wage rate. The second equation is the labor market clearing condition for
skill group 1.

The nature of the exercise is similar to that of Section 3.1. We set s1, sa, s3,
T, r and ( to their values in Table 1, and we fix z; to one. Then we proceed in
two steps. First, we calibrate the steady state of the model to match the U.S.
economy in 2000. Specifically, we have two targets for educational attainment
rates, two for relative earnings and one for the share of time in the total cost of
education. We impose z = 1 and we pick five parameters to match these targets:
(1, 0,m, 22, 23). In a second step, we re-calibrate z, zo and z3. We choose them
to match three targets: the relative earnings in 1940 and the ratio of GDP per
capita between 1940 and 2000. Hence, as in the baseline calibration, this exercise
uses the evolution of relative earnings to measure skill-specific technical change.
We then ask by how much educational attainment is changing. We repeat this
exercise for different values of p. This procedure delivers the equivalent of the

110ur model does not have a balanced growth path.
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baseline experiment described earlier. We also reproduce experiments 1 and 2
of section 3.3 in order to isolate the contribution of high school and college bias.

Table 3 reports the results. For selected values for p, the table shows ed-
ucational attainment in 1940 and relative earnings in 2000 and 1940, for the
baseline exercise and experiments 1 and 2. First, we note that there are differ-
ences between the steady-state version of the model with p = 1 and the dynamic
version presented earlier. The steady-state version of the model implies a lower
increase in educational attainment because of the absence of exogenous growth
in earnings throughout the lifetime of individuals. Second, by comparing across
steady-state economies with different values for p, Table 3 shows that the elas-
ticity of substitution does not affect the main conclusions — once skill-biased
technical parameters are calibrated to match the evolution of relative earnings,
changes in educational attainment across different calibrations for p are almost
identical. This is true for the baseline exercise and the counterfactuals. In ad-
dition, it is interesting to note that the calibrated parameters for the human
capital technology and the distribution of utility cost of schooling are hardly
changing across these calibrations. Thus, the main effect of p is to impose
different values for the skill-biased technical parameters in levels and rates of
change.

We recognize that these results only apply to a steady-state version of the
model. However, we expect that the same quantitative effects will carry through
in the dynamic version of the model with different elasticities of substitution
across skill groups. Data limitations prevent us from carrying through these
experiments. When p < 1, the dynamic version of the model requires much
more data than presently available. The reason for this is that in the model with
p < 1, the wage rate at a point in time depends on the educational attainment
of all cohorts working. Thus, this will require data on relative earnings going as
far back as 1900 or before. And wages are necessary to solve for human capital
and earnings in 1940. When p = 1, wages are only a function of technical
parameters at each date. Assuming perfect substitution across skill groups in
the human capital technology not only allows us to assess the role of technical
change in educational attainment in a simple and tractable framework, but also
gives us a reasonable characterization since the quantitative implications of the
model turn out to be insensitive to alternative substitution elasticities after the
model is calibrated to match the same relative earnings targets.

5.2 Distribution of Marginal Utility of Schooling

The model assumes a normal distribution to represent heterogeneity in prefer-
ences. Are the results robust to this choice? Intuitively, alternative distribu-
tional assumptions may deliver different implications for the evolution of edu-
cational attainment. In fact, changes in educational attainment depend on the
distribution of the marginal cost of schooling time, as can be seen from Equa-
tions (7)-(9). To address this issue, we consider a more general distribution
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function: the Beta distribution. This distribution is defined on the unit interval
and characterized by two parameters, u and o. Depending on the parameters,
its density can be uniform, bell-shaped or u-shaped and it is not necessarily
symmetric. Our question is whether the calibration described in Section 3.1 im-
poses enough discipline on the distribution of schooling utility so as to identify
the elasticity of educational attainment to relative earnings.

We chose the Beta distribution because it has two parameters and, therefore,
we can keep our calibration strategy while allowing the distribution of schooling
utility to be potentially different from a normal. To make comparisons with the
baseline case, where a can take any value on the real line, we write the utility
function of an agent born at 7 as

T+T—1
Z 87" 1n (CE_T+1) — <Ma — Aj) s,
t=71

where a is distributed according to a Beta distribution with parameters p and
o, and M is a positive number. The role of M is to map the domain of a into
the interval [-M /2, M /2], therefore allowing an arbitrarily large range for the
marginal utility of schooling time.

We calibrate the model and compute the path of educational attainment
in the model with a Beta distribution, and for a range of values for M. We
compare the results of this model to the baseline by computing the sum of
squared differences between the paths of educational attainment. That is, we

compute
2000

€ = Z Z (pzr_xtormal _ p;pteta)?

t=19404=1,2,3

We also compute the mean and standard deviation of the marginal utility of
schooling. In the baseline case they are, as indicated in Table 1, y = 2.16 and
o = 0.62, respectively. When M = 50 we find € = 7.13 x 1072 and the mean
and standard deviation of the marginal utility of schooling are 2.10 and 0.63,
respectively. When M = 100, we find € = 1.95 x 1076, Finally, for M = 500
we find € = 7.35 x 1078 and the mean and standard deviation of the marginal
utility of schooling are essentially the same as in the baseline case.

We emphasize that, in these exercises, the calibration strategy is the same as
the one described in Section 3.1 — only the 2000 educational attainment data are
used to identify the distribution of schooling utility. Our results indicate that the
calibrated parametrization of the Beta distribution is quite close to the Normal
used in the baseline and, consequently, the paths of educational attainment are
nearly identical. Hence, our results are robust to potential departures from a
normal distribution for schooling utility. We conclude that the calibration of
the distribution of schooling utility to educational attainment at a point in time
imposes enough discipline to pin down the elasticity of educational attainment
to relative earnings.
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5.3 The Elasticity of Educational Attainment

The model delivers an elasticity of educational attainment to changes in tech-
nical progress (lifetime income). In the previous section we argued that the
main discipline of that elasticity comes from the calibration to the distribution
of educational attainment at a point in time. Next we would like to discuss the
magnitude of the implied elasticity.

There is a large empirical literature assessing the impact of educational pol-
icy on schooling. Some studies focus on finding the response of college attain-
ment to changes in subsidies (short-run elasticities) while other focus on factors
that alter lifetime behavior (long-run elasticities). Examples of this literature
include Dynarski (2002, 2003), van der Klaauw (2002), and Keane and Wolpin
(1997). While there is no complete agreement on the exact magnitude of these
elasticities, the evidence suggests that they are large and we use this evidence
to provide a benchmark against which to assess the magnitude implied by our
quantitative results. For instance, Keane and Wolpin (1997) estimate a life-
cycle model of schooling and career choices. Their structural estimates imply
that subsidizing college costs by about 50 percent increases college completion
from 28.3 to 36.7 percent. To construct an elasticity, we calculate that the
subsidy represents between 0.5 to 2 percent of lifetime income. This implies an
elasticity of college completion between 52 and 13. To summarize the elasticity
of educational attainment across cohorts in our model, note that the relative
lifetime income of a college educated agent increases approximately by a factor
(g3/92)%° = 1.32 between the 1921 and the 1981 generation, while their respec-
tive educational attainment increases from 2.5 to 27.8 percent.'? This yields an
elasticity in the model of 8.7.

Studies that focus on short-term elasticities estimate even larger elasticities
than the one in Keane and Wolpin (1997). Dynarski (2003) studies an exoge-
nous change in education policy — namely the elimination of the Social Security
Student Benefit program in the United States in 1981 — that affected some stu-
dents but not others. Dynarski found that $1000 ($ of 2000) in college subsidy
generates an increase in college enrollment of 3.6 percentage points. This can
be translated into an elasticity if we assume that the amount of subsidy is the
equivalent of 0.2 percent of lifetime income, implying an elasticity of college
enrollment of 61. The elasticity of college completion would be around 31.'3
Alternatively, we can try to represent the finding in Dynarski doing the same
policy experiment in our model. To get an increase in college enrollment of 3.6
percentage points for the 1981 generation in the model, a subsidy to college that
is close to 2 percent of lifetime income is needed. We think this is a much larger
number than $1000 in college subsidies. We conclude that the strong effect of

12We focus on the 1921-1981 generations because, in the model, we assume that agents are
born at age 6. A 25-year old in 1940 was 6 years old in 1921. Similarly, a 25-year old in 2000
was 6 years old in 1981.

13Similar elasticities are found by other empirical studies with different experiments, see for
instance Dynarski (2002) and van der Klaauw (2002). Perhaps the larger elasticity implied
by these studies is related to credit constraints that affect college enrollment.

23



skill-biased technical change on educational attainment in the baseline model
comes from strong changes in relative earnings and not from an implausibly
large elasticity of educational attainment.

5.4 Further Implications

Our theory emphasizes skill-biased technical change as an important source of
movements in educational attainment over time. In Figure 2 we emphasized
that the evolution of educational attainment was similar for men and women.
For our model to be consistent with these trends, skill-biased technical change
would have to be about the same magnitude for men and women. Using data
from the U.S. Census we decompose relative earnings across schooling groups
for men and women. We find that the trend behavior of relative earnings across
schooling groups are remarkably similar between men and women — see Figure
11. This process would imply a similar evolution of educational attainment
across genders in the model, which is consistent with the data. Whereas the
data for relative earnings indicates similar skill-biased technical change for men
and women — with comparable evolution of education across genders — there
is also a substantial and declining gender wage gap during this period. Hence,
it appears that the gender wage gap has not played a major role for schooling
investments across genders.

6 Conclusion

We developed a model of schooling decisions to address the role of technological
progress on the rise of educational attainment in the United States between
1940 and 2000. The model features discrete schooling choices and individual
heterogeneity so that people sort themselves into the different schooling groups.
Technological progress takes two forms: neutral and skill-biased. Skill-biased
technical change increases the returns of schooling thereby creating an incentive
for more people to attain higher levels of schooling. We find that this source of
technological progress can account for all of the increase in educational attain-
ment in the United States between 1940 and 2000. More specifically, we found
that the high-school bias is quantitatively more important in accounting for the
educational trends than the the college bias. The substantial changes in life
expectancy turns out to account for almost none of the change in educational
attainment in our model.

We have focused on the long-run trend of educational attainment in the
United States. Two issues would be worth exploring further. First, while the
model with skill-biased technical change can account for the overall trend in
educational attainment, the model would need a flattening of the skill-biased
profile somewhere after the 90’s or before in order to account for the slowdown in
educational attainment since the late 70’s. Second, in assessing the role of skill-
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biased technical change in other contexts, it would be relevant to investigate the
changes in relative earnings in other countries. For instance, institutions that
compress wages may reduce the incentives for schooling investment and it would
be interesting to see (holding other institutional aspects constant) whether this
wage compression can explain the lower educational attainment in European
and other countries compared to the United States. We leave these relevant
explorations for future research.
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A Data

Educational Attainment The source of data for Figures 1 and 2 is the
Current Population Survey. The “Less-than-high-school” category corresponds
to the percentage of the 25-29 year-old population who has completed less than
four years of high school. The “High-school-and-some-college” category is the
percentage of the 25-29 year-old population who has completed four years of
high school or more, but less than four years of college. Finally, the “College”
category corresponds to those who have completed four years of college or more.

Weekly Earnings The source of data is the U.S. Census (1 percent samples
from ITPUMS, 1940-2000). The income variable is INCWAGE, which reports the
respondent’s total pre-tax wage and salary income. This variable is available
at each census date from 1940 to 2000, and is intended to capture all monetary
compensations received for work as an employee. Earnings are divided by the
number of weeks worked. This is computed from WKSWORK2, which reports the
number of weeks worked, by intervals. (We use the mid-point of the interval).
This variable is available at each Census from 1940 to 2000. A variable reporting
the exact number of weeks worked exists at some, but not all, Census dates.
The education variable is EDUCREC which indicates the highest grade or year of
college completed. The categories for EDUCREC are: 1 for N/A or No schooling;
2 for Grades 1 through 4; 3 for Grades 5 through 8; 4 for Grade 9; 5 for Grade 10;
6 for Grade 11; 7 for Grade 12; 8 for 1, 2, or 3 years of college; and 8 for 4 years
of college or more. There are no differences between the educational attainment
figures implied by these categories and the Current Population Survey numbers
displayed in Figure 1 and 2. For each educational level, we focus on a different
age group, in order to compare the earnings of agents with similar levels of
experience. Furthermore, since our model is about the returns to schooling and
not those to experience, we focus on the youngest age groups. More specifically,
the Less-than-high-school group is represented by 15-to-21-year-old reporting
EDUCREC between 1 and 6, the High-school-or-more group is represented by
18-to-24-year-old reporting 7 or 8. Finally, the College group corresponds to
by 21-to-27-year-old reporting 9. We restrict our analysis to white (RACED)
males (SEX) working (EMPSTAT) for a wage or salary in the private or public
sector (CLASSWKR). For each group, the bottom and top one percent of the
distribution is ignored.

Length of Schooling The source of data, to calibrate s, so and s3 is the
U.S. Census (1 percent samples from IPUMS, 1940-2000). The first table below
shows the proportion of white males, 25-29, at each educational level available
in the data set. The second column indicates the number of years spent at each
level (on average). The last four lines of the table use the data to compute the
average years spent at school overall, and at each of the three levels relevant for
the model.
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1940 1950 1960 1970 1980 1990 2000

»v» None or preschool 0 years 0.7 0.8 0.6 0.8 0.5 0.6 0.7
Eg Grade 1, 2, 3, or 4 4 years 3.3 2.9 2.0 0.7 0.6 0.3 0.3
E Grade 5, 6, 7, or 8 8 years  34.3 18.5 14.9 7.4 3.7 2.1 2.7
- Grade 9 9 years 7.4 6.1 6.2 4.3 2.6 2.0 2.0
% Grade 10 10 years 9.4 8.7 7.1 5.7 3.1 3.1 2.4
= Grade 11 11 years 5.7 6.9 6.2 4.7 3.6 3.2 2.7
v Grade 12 12 years  23.8  30.3 33.5 38.2 364  35.3 30.4
T 1 to 3 years of college 14 years 7.4 13.6 13.7 17.3 24.3 29.4 31.1
4+ years of college 18 years 7.8 12.1 15.7  20.8 25.1 24.0 27.6
Avg Years 104 11.5 12.0 12.9 13.6 13.7 13.9
Avg Years before HS 8.5 8.8 8.9 9.2 9.3 9.6 9.4
Avg Years HS 12.5 12.6 12.6 12.6 12.8 129 13.0
Avg Year Coll. 18.0 18.0 18.0 18.0 18.0 18.0 18.0

B On-the-job Human Capital Accumulation

This section describes how the model with on-the-job human capital accumu-
lation is calibrated. The list of parameters to calibrate is the same as for the
baseline model, with the addition of v(s;) for i = 1,2,3. Using the notations of
Section 3.1, we have

0= (M,Uﬂ?,g,g%gs,Z2,2000,23,200077(51),7(82),’7(53))-

Others parameters, calibrated a priori, have the same values as in the baseline
case. The determination of 6 requires an additional set of conditions. Let

Ai,m,t (0) = Li,t7m+1,t

denote the date ¢ earnings of an age-m agent with education level 3. Let A; ., ¢
denote its empirical counterpart, measured from IPUMS Census data. The
parameters are the solution to:

. . 2 . 2
Hlelnz (E32,t(9) - E32,t> + (E21,t(9) - E21,t>
teT
N 2

4 - 50,2000 (0) _ £,55,2000 } M(G)TM(G)
2735 \Ai20.2000(0)  Ai25,2000

where 7 = {1940, 1950, ...,2000} and M () is defined in Section 3.1. Observe
that only the changes along the age profile of earnings are used in the objective
function. The relative levels of these profiles are pinned down by the first set of
restrictions on relative earnings.
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Table 1: Calibrated Parameters

Interpretation

Parameters

2000 Calibration

Parameters

1940 Calibration

length of schooling
length of life

81:9,82:13,83:18
T =60

Subjective discount factor 6 =0.95
Interest rate r=1/8=1.05
Human capital technology n = 0.88 n = 0.89

Distribution of abilities
Growth rates

1= 2.16, o = 0.62

1 =1.45, 0 = 0.69

Neutral technology g =1.0104 g = 1.0070
HS biased technology go = 1.0045 g2 = 1.0046
College biased technology g3 = 1.0092 gs = 1.0094

Level conditions
HS biased technology
College biased technology

22,2000 = 1.37
23,2000 = 1.78

22,1940 = 1.05
23,1940 = 1.02

Table 2: Decomposing the Role of Skill-Biased Technology and TFP

Baseline FExp. 1 Exp.2 Exp.3 Exp.4 Exp.5
Years of Schooling
2000 13.85 13.16 13.14 12.55 13.16 12.97
1940 9.38 12.01 10.03 12.55 10.61 9.18
Ratio 1.48 1.10 1.31 1.00 1.24 1.41
Ratio of Relative
Earnings 2000/1940
College/HS (*) 1.38 1.38 1.00 1.00 1.17 1.38
HS/Less HS (**) 1.36 1.00 1.36 1.00 1.16 1.36
Average Growth (%)
GDP per Worker 2.00 1.26 1.96 1.18 1.84 0.64

Note — Exp. 1: No High-School bias i.e., g2 = 1.0 and g3 is adjusted such that g3 /g2 remains as
in the baseline case. Exp. 2: No College bias i.e., g3 = g2 = 1.0045. Exp. 3: No technical bias
e.g., g2 = g3 = 1.0. Exp. 4: Half the High-School bias i.e., the growth rate of z3 is divided by
two and g3 adjusted. Exp. 5: No TFP i.e.,, g = 1.0. (¥*) the ratio is E3272000(9)/E32,1940(9);
(**) the ratio is E‘Ql’gooo(e)/EAnggzm(e).
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Table 3: Sensitivity Analysis — Elasticity of Substitution across Education
Groups (p)

. E21,2000  E32,2000 Ha

Exercise  p21940  P3,1940 By B Oq

21,1940 32,1940 n

Baseline 0.0863 0.0042 2.0 1.8 2.165

S 1.5 1.3 0.624

= g Exp. 1 0.7472  0.0028 2.0 1.8 0877
= 2.0 1.3
A Exp. 2 0.0000 0.1141 2.0 1.8
1.5 1.8

o Baseline  0.1459  0.0058 2.0 1.8 1.635

o & 1.5 1.3 0.669

= & Exp. 1 0.8602 0.0058 2.0 1.8 0.851
(= 2.0 1.3

QX

2 Exp. 2 0.0000 0.2164 2.0 1.8
1.5 1.8

® Baseline 0.1459 0.0058 2.0 1.8 1.635

w & L5 1.3 0.669

S?  Exp.1 08602 0.0058 2.0 1.8 0.851
1< 2.0 1.3
2 Exp. 2 0.0000 0.2164 2.0 1.8
1.5 1.8

o Baseline  0.1459  0.0058 2.0 1.8 1.635

© & 1.5 1.3 0.669

S?  Exp.1 08602 0.0058 2.0 1.8 0.851
1 2.0 1.3
£ Exp. 2 0.0000 0.2164 2.0 1.8
1.5 1.8

o Baseline  0.1459  0.0058 2.0 1.8 1.635

- & 1.5 1.3 0.669

S A Exp. 1 0.8602 0.0058 2.0 1.8 0.851
I 2.0 1.3

QX

2 Exp. 2 0.0000 0.2164 2.0 1.8
1.5 1.8
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Figure 1: The Evolution of Educational Attainment for White Males, 25-29
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Note — See the appendix for the source of data and definitions.

Figure 2: The Evolution of Educational Attainment
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Note — See the appendix for the source of data and definitions. Women are represented with
markers and men with solid lines.
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Figure 3: Ratio of Weekly Earnings for Educational Groups — White Males
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Note — See the appendix for the source of data and definitions.
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Figure 4: Individual Decision Problem
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Figure 6: Relative Weekly Earnings — Model vs. Data
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Figure 7: Educational Attainment — Model vs. Data
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Figure 8: Average Years of Schooling — Model Calibrated 1940 vs. Data
17 -
16 -

154

14

Years

13 4

124

114

T T T T T T T
1940 1950 1960 1970 1980 1990 2000

Figure 9: Educational Attainment — Model with Constant Relative Earnings
after 2000 vs. Baseline
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Note — The baseline calibration is represented with solid lines. The calibration with constant

relative earnings after 2000 is represented with markers.
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Figure 10: Age Profile of Earnings — Model vs. Data
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Note — The U.S. data are represented with markers. The model data are represented by solid
lines. For each education group the model is normalized to equal the age-25 data point. See

appendix B for details.

Figure 11: Ratio of Weekly Earnings for Educational Groups — White Women
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Note — The source of data is the U.S. Census. We use the exact same approach as the one

described in Appendix A to build the series of relative earnings.
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