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Abstract

We introduce dynamic agency into the neoclassical q theory of investment. Costly exter-
nal financing arises endogenously from dynamic agency, and influences firm value and invest-
ment. Agency conflicts drive a history-dependent wedge between average q and marginal q,
and make the firm’s investment policy dependent on realized profits. A larger realized profit
induces higher investment, and hence a larger firm. Investment is relatively insensitive to av-
erage q when the firm is “financially constrained ”(i.e. has low financial slack). Conversely,
investment is sensitive to average q when the firm is relatively “financially unconstrained,”
(i.e. has high financial slack). Moreover, the agent’s optimal compensation is in the form
of future claims on the firm’s cash flows when the firm’s past profits are relatively low and
the firm has less financial slack, whereas cash compensation is preferred when the firm has
been profitable, agency concerns are less severe, and the firm is growing rapidly. To study
the effect of serial correlation of productivity shocks on investment and firm dynamics, we
extend our model to allow the firm’s output price to be stochastic. We show that, in con-
trast to static agency models, the agent’s compensation in the optimal dynamic contract
will depend not only on the firm’s past performance, but also on output prices, even though
they are beyond the agent’s control. This dependence of the agent’s compensation on ex-
ogenous output prices (for incentive reasons) further feeds back on the firm’s investment,
and provides a channel to amplify and propagate the response of investment to output price
shocks via dynamic agency.
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1 Introduction

This paper integrates dynamic agency theory into the neoclassical q theory of investment.

The objective is to examine the effects of financing frictions (costly external financing) on

the relation between firms’ investment decisions and Tobin’s q, where the cost of external

financing endogenously arises from agency problems. We consider a dynamic setting with

optimal contracts.

We choose the modeling ingredients so that the predictions on investment and firm value un-

der the first-best setting (with no agency conflicts) are intuitive and analytically tractable. Fol-

lowing the classic investment literature, e.g. Hayashi (1982), we endow the firm with constant-

returns-to-scale production technology, so that output is proportional to the firm’s capital stock

but is subject to independently and identically distributed productivity shocks. The firm can

invest/disinvest to alter its capital stock, but this investment entails a quadratic adjustment

cost which is homogenous of degree one in investment and capital stock. Under these condi-

tions, with no agency problem, we have the standard predictions that the investment-capital

ratio is linear in average q, and that average q equals marginal q (Hayashi (1982)).1

Our model differs from the neoclassical setting due to a dynamic agency problem. At each

point in time, the agent chooses an action and this action together with the (unobservable)

productivity shock determines output. Our agency model can be interpreted as a standard

principal-agent setting in which the agent’s action is unobserved costly effort, and this effort

affects the mean rate of production. Alternatively, we can also interpret the agency problem

to be one in which the agent can divert output for his private benefit. The agency side of

our model builds on the discrete-time models of DeMarzo and Fishman (2007a, b) and the

continuous-time formulation of DeMarzo and Sannikov (2006).
1Abel and Eberly (1994) extend neoclassical investment theory to allow for various other forms of adjustment

costs such as a wedge between the purchase and sale prices of capital, and fixed lumpy costs.
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The optimal contract in this setting specifies, as a function of the history of the firm’s

profits, the agent’s compensation and the level of investment in the firm. We solve for the

optimal contract using a recursive, dynamic programming approach. Under this approach,

the firm’s history of past profitability determines (i) the agent’s current discounted expected

payoff, which we refer to as the agent’s ”continuation payoff,” W ; and (ii) current investment

which in turn determines the current capital stock, K. These two state variables, W and K,

completely summarize the contract-relevant history of the firm. Moreover, because of the size-

homogeneity of our model, the analysis simplifies even further as the contract need only specify

the agent’s compensation and the level of investment per unit of capital. Consequently the

agent’s continuation payoff per unit of capital, w = W/K, becomes sufficient for the contract-

relevant history of the firm.2

Because of the agency problem, investment is below the first-best level. The degree of

underinvestment depends on the firm’s realized past profitability, or equivalently, the agent’s

continuation payoff (per unit of capital), w. Specifically, investment is increasing in w, which

in turn is increasing in the firm’s past profitability as the agent is rewarded (penalized) for

delivering high (low) profits. A higher continuation payoff for the agent relaxes the agent’s

incentive-compatibility constraints since the agent now has a greater stake in the firm (in the

extreme, if the agent owned the entire firm there would be no agency problem). Relaxing the

incentive-compatibility constraints raises the value of investing in more capital. If profitability

is poor and w falls to a lower threshold, the firm is liquidated. Alternatively, if profitability is

high and w attains an upper threshold, the firm makes cash payments to the agent. Importantly,

as in DeMarzo and Fishman (2007a, b) and DeMarzo and Sannikov (2006), we can interpret the

state variable w as a measure of the firm’s financial slack.3 More precisely, w is proportional
2The early contributions that developed recursive formulations of the contracting problem include Green

(1987), Spear and Srivastava (1987), Phelan and Townsend (1991), and Atkeson (1991), among others. Ljungqvist
and Sargent (2004) provide in-depth coverage of these models in discrete-time settings.

3See the aforementioned papers for specific capital structure implementations of the optimal contract in
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to the size of the current cash flow shock that the firm can sustain without liquidating, and so

can be interpreted as a measure of the firm’s liquid reserves.

Our characterization of the optimal agency contract leads to important departures from

standard q theory. Because the agent and investors share in the firm’s profits, the appropriate

measure of the market value of the firm should include the rents to each. That is, if for a given

agent continuation payoff per unit of capital, w, we let p(w) denote the value per unit of capital

to outside investors, then average q is represented as p(w) + w.

A general property of agency problems, ours included, is that increasing the agent’s continu-

ation payoff by $1 costs investors less than $1; that is p(w)+w is (weakly) increasing in w. This

property also follows from the fact that as w increases, the agent’s incentive-compatibility con-

straints are relaxed. This relaxation of the incentive-compatibility constraints leads to greater

firm value. So average q is increasing in the agent’s stake in the firm. Moreover, combining

this result with the fact that the agent’s continuation payoff w will, for incentive reasons, be

increasing in the firm’s past profitability, average q, i.e., p(w) + w, increases with the firm’s

past profitability. This property of agency problems introduces a wedge between average q and

marginal q, as increasing the firm’s capital stock reduces the agent’s effective share of the firm.

The magnitude of this wedge varies depending on the firm’s realized past profitability, which as

we stated above is summarized by the agent’s continuation payoff with our optimal contracting

framework. Average q and marginal q coincide when either the agent’s continuation payoff hits

zero and the firm is liquidated or when the agent’s continuation payoff is maximized, in which

case investment is also maximized. For intermediate levels of the agent’s continuation payoff,

marginal q lies below average q.

Our model delivers the same linear relation between the investment-capital ratio and marginal

q as in Hayashi (1982). But because of the divergence between average q and marginal q, invest-

related settings.

3



ment is no longer linearly related to average q. Investment is relatively insensitive to average

q when average q is low, i.e., when the past profitability has been low and the firm has little

financial slack. Conversely, when past profitability and financial slack are high, average q better

approximates marginal q, and the sensitivity of investment to average q is high. These results

imply that standard linear models of investment on average q are misspecified, and that vari-

ables such as financial slack, past profitability, and past investment will be useful predictors of

current investment.

To understand the importance of output price fluctuations (an example of observable pro-

ductivity shocks) on firm value and investment dynamics in the presence of agency conflicts,

we extend the model by introducing a serially correlated stochastic output price (our baseline

model has a constant output price). In this case, we show that in an optimal contract the

agent’s payoff will depend on the output price even though the output price is beyond the

agent’s control. When the output price increases the contract gives the agent a higher continu-

ation payoff. This dependence is optimal because the convex nature of agency costs implies that

expected agency costs are minimized by reducing the volatility of the agent’s share of future

profits.

This result may help to explain the empirical importance of absolute, rather than relative,

performance measures for executive compensation. This result also implies that the agency

problem generates an amplification of output price shocks. An increase in output price has

a direct effect on investment since the higher output price makes investment more profitable.

There is also an indirect effect. With a higher output price, it is optimal to offer the agent a

higher continuation payoff which, as discussed above, leads to further investment.4

Our paper is most closely related to DeMarzo and Fishman (2007a). In the current paper, we
4Note that a reduced-form model in which agency costs are simply specified as some function of output price

and the other state variables will not generate this amplification result. This is one advantage of fully specifying
the agency problem in an investment model.
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provide a closer link to the theoretical and empirical macro investment literature. Our analysis

is also directly related to other analyses of agency, dynamic contracting and investment, e.g.,

Albuquerque and Hopenhayn (2004), Quadrini (2004) and Clementi and Hopenhayn (2005). We

use the continuous-time recursive contracting methodology developed in DeMarzo and Sannikov

(2006) to derive the optimal contract. Philippon and Sannikov (2007) analyze the impact of

growth option exercising in a continuous-time dynamic agency environment. The continuous-

time methodology allows us to derive a closed-form characterization of the investment Euler

equation, optimal investment dynamics, and compensation policies.5

Lorenzoni and Walentin (2007) provide a discrete-time industry equilibrium analysis of the

relation between investment, average q, and marginal q in the presence of agency problems.

Both of our papers build on Hayashi (1982) but differ on the agency side. In Lorenzoni and

Walentin (2007), the agent must be given the incentive not to default and abscond with the

assets, and it is directly observable whether he complies. Our analysis involves a standard

principal-agent problem and whether the agent takes appropriate action is unobservable.

A growing literature in macro and finance introduces more realistic characterizations for

firm’s investment and financing decisions. These papers often integrate financing frictions such

as transaction costs of raising funds, financial distress costs, and tax benefits of debt, with

a more realistic specification for physical production technology such as decreasing returns to

scale. See Gomes (2001), Cooper and Ejarque (2003), Cooper and Haltiwanger (2006), Abel and

Eberly (2005), and Hennessy and Whited (2006), among others, for more recent contributions.

For a survey of earlier contributions, see Caballero (2001).

In Section 2, we specify our continuous-time model of investment in the presence of agency

costs. In Section 3, we solve for the optimal contract using dynamic programming. In Section
5In addition, our analysis owes much to the dynamic contracting models that do not involve the determination

of optimal investment, e.g., Biais, Mariotti, Plantin and Rochet (2007), DeMarzo and Fishman (2007b), Tchistyi
(2005), Sannikov (2006), He (2007), and Piskorski and Tchistyi (2007).
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4, we analyze the implications of this optimal contract for investment and firm value. In Section

5, we consider the impact of output price variability on investment, firm value, and the agent’s

compensation. Section 6 contains concluding remarks. All proofs appear in the Appendix.

2 The Model

We formulate an optimal dynamic investment problem when the firm suffers from an agency

issue. First, we present the firm’s production technology. Second, we introduce the agency

problem between investors and the agent. Finally, we formulate the optimal contracting prob-

lem.

2.1 Firm’s Production Technology

Our model is based on a neoclassical investment setting. The firm employs capital to produce

output, whose price is normalized to 1 (in Section 5 we consider an extension where the output

price is stochastic). Let K and I denote the level of capital stock and gross investment rate,

respectively. As in the standard capital accumulation models, we assume that the firm’s capital

stock K evolves according to

dKt = (It − δKt) dt, t ≥ 0, (1)

where δ is the rate of depreciation. We further assume that the incremental gross output over

time interval dt is given by KtdAt, where A is the cumulative productivity process. We will

model the instantaneous productivity dAt in the next subsection, where we introduce the agency

problem.

Investment entails physical adjustment costs. Following the neoclassical investment/adjustment

costs literature, we assume that the physical adjustment cost is homogeneous of degree one in

investment I and capital stock K. In the main body of this paper, we assume that the adjust-
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ment cost takes the following widely used quadratic form (Hayashi (1982)):

G (I,K) =
θ

2
I2

K
, (2)

where the parameter θ measures the degree of adjustment costs. The firm has an “AK”

production technology; that is, gross output is proportional to the capital stock K. Accounting

for investment and adjustment costs, we may write the dynamics for the firm’s cumulative

(gross of agent compensation) cash flow process Y as follows:

dYt = KtdAt − Itdt−G(It,Kt)dt, t ≥ 0, (3)

where KtdAt is the incremental gross output. An important focus of our paper is the impact

of agency conflicts on optimal investment dynamics.

The homogeneity assumption embedded in the adjustment cost and the “AK” production

technology allows us to deliver our key results in a parsimonious and analytically tractable

way. We acknowledge that adjustment costs may not be convex and may take other forms,

such as fixed costs, and that the production technology may have decreasing returns to scale

in capital. While more sophisticated specifications of the adjustment cost and production

technology are likely to enrich our analysis, the key intuition on the relation between agency

conflicts and investment and firm value, the focus of our analysis, is likely robust to more general

specifications of adjustment costs and production technology. We leave extensions incorporating

these extensions for future research.

2.2 Agency Conflicts between Investors and the Agent

We now introduce a form of agency conflicts induced by separation of ownership and control.

Investment is observable and contractible. But the firm’s investors hire an agent to operate the

firm. In contrast to the neoclassical model where the productivity process A is exogenously

specified, the productivity process in our model is affected by the agent’s unobservable action.
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Specifically, the agent’s action at ∈ [0, 1] determines the expected changes of the cumulative

productivity process A, in that

dAt = atμdt+ σdZt, t ≥ 0, (4)

where Z = {Zt,Ft; 0 ≤ t <∞} is a standard Brownian motion on a complete probability space

(Ω,F ,P), and σ > 0 is the constant volatility of the cumulative productivity process A. The

agent controls the drift, but not the volatility of the process A. We assume that the output

(per unit capital) dAt is observable and contractible.

When the agent takes the action at over dt time increment, she enjoys a private benefit

(1 − at)λμdt per unit of the capital stock, where λ is a positive constant. The action can

be interpreted as the agent’s effort choice; due to the linear cost structure, our framework

is equivalent to the binary effort setup where the agent can shirk, a = 0, or work, a = 1.

Alternatively, as in DeMarzo and Fishman (2007) and DeMarzo and Sannikov (2006), we can

interpret 1− at as the fraction of the cash flow that the agent diverts for his own consumption,

with λ equal to the agent’s net consumption per dollar diverted from the firm. As we show

later, λ captures the minimum level of incentives required to motivate the agent.

The firm can be liquidated at a value lKt, where l ≥ 0 is a constant. We assume that

liquidation is sufficiently inefficient and generates deadweight losses. We may endogenize the

liquidation paramter l via specifications such as costly replacement of the incumbent agent, as

in DeMarzo and Fishman (2007) and DeMarzo and Sannikov (2006).

Following DeMarzo and Fishman (2007), we assume that investors are risk-neutral with

discount rate r > 0, and the agent is also risk-neutral, but with a higher discount rate γ > r.

That is, the agent is impatient relative to investors. This assumption avoids the scenario where

the investors postpone payments to the agent indefinitely. In practice, the agent may be more

impatient than investors for reasons such as liquidity constraint. The agent has no initial
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wealth and agent has limited liability. The agent’s reservation value, associated with his next

best employment opportunity, is normalized to zero.

2.3 Formulating the Optimal Contracting Problem

To maximize firm value, investors specify a dynamic investment policy I and offer an employ-

ment contract Π, which contains both the cumulative agent compensation (right-continuous

with left-limit) process {Ut : 0 ≤ t ≤ τ}, and the endogenous liquidation time τ . Agent limited

liability requires the cumulative compensation process U to be non-decreasing. Each element

in the contract Π depends on the history generated by the process A (which reflects the agent’s

performance). We leave regularity conditions on investment and contracting polices to the

appendix.

The agent faces the contract Π, follows the investment policy I, and chooses an action. A

contract Π combined with an action process {at : 0 ≤ t ≤ τ} is incentive-compatible if the

action process solves the agent’s problem:

W0 (Π) = max
a={at∈[0,1]:0≤t<τ}

E
a

[∫ τ

0
e−γt (dUt + (1 − at)λμKtdt)

]
, (5)

where E
a ( · ) is the expectation operator under the probability measure that is induced by any

action process a = {at ∈ [0, 1] : 0 ≤ t < τ}. Note that the agent’s objective function includes

both the present discounted value of compensation (the first term in (5)) and also the potential

private benefits from taking action at < 1 (the second term in (5)).

We focus on the case where it is optimal for investors to implement at = 1 all the time

and provide a sufficient condition for the optimality of implementing this upper-bound action

in the appendix. For the remainder of this paper, the expectation operator E ( · ) is under the

measure induced by {at = 1 : 0 ≤ t < τ}, unless otherwise stated.

At the time the agent is hired, investors have K0 in capital. The investors’ optimization
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problem is

max
Π is incentive-compatible, I

E

[∫ τ

0
e−rtdYt + e−rτ lKτ −

∫ τ

0
e−rtdUt

]
(6)

s.t. W0 (Π) ≥ 0.

The objective is the expected present value of the firm’s gross cash flow plus liquidation value

less the agent’s compensation. The constraint is the agent’s participation constraint. In our

model, as the agent enjoys a positive rent, the participation constraint will not bind in non-

trivial solutions.

3 Model Solution

In this section we solve for the optimal contract and optimal investment policy. As standard in

the dynamic agency literature, e.g., Spear and Srivastava (1987), we use dynamic programming

to derive the optimal contract. The key state variable in the optimal contract is the agent’s

continuation payoff. We then utilize the model’s scale invariance to solve the investors’ problem

stated in the previous section.

3.1 The Agent’s Continuation Payoff and Incentive Compatibility

First, we introduce the agent’s continuation payoff, and provide a key result for any incentive-

compatible contract Π. Fix the action process a = {at = 1 : 0 ≤ t < τ}. For any contract Π,

define the agent’s time-t continuation payoff, which equals the discounted expected value of

future compensation:

Wt (Π) ≡ Et

[∫ τ

t
e−γ(s−t)dUs

]
, (7)

where τ is the (stochastic) liquidation time.

The following proposition provides the dynamic evolution of the agent’s continuation pay-

off W in terms of the observable incremental productivity performance dA, and supplies the

necessary and sufficient condition for any contract Π to be incentive compatible.
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Proposition 1 For any contract Π = {U, τ}, there exists a progressively measurable process

{βt : 0 ≤ t < τ} such that the agent’s continuation value Wt evolves according to

dWt = γWtdt− dUt + βtKt (dAt − μdt) (8)

under at = 1 always. The contract Π is incentive-compatible, if and only if βt ≥ λ for t ∈ [0, τ).

Proposition 1 gives a “differential” version of the dynamics for the agent’s continuation

payoff. Equation (8) is analogous to the equilibrium valuation equation in asset pricing, with

the “asset” to be valued being the agent’s continuation payoff. To be specific, (8) states that

the total (instantaneous) payoff, which includes both the agent’s compensation dUt and the

change of the agent’s continuation payoff dWt, is equal to the sum of the predetermined drift

part γWtdt, and the diffusion part

βtKt (dAt − μdt) = βtKtσdZt. (9)

First, the drift component γWtdt in (8) reflects that the expected (instantaneous) return on the

agent’s continuation payoff W equals the agent’s subjective discount rate γ; this respects the so-

called promise-keeping condition. Second, the diffusion component of the agent’s continuation

payoff βtKt (dAt − μdt) links to the action choice, and provides incentives for the agent. Take

the interpretation of “shirking-working.” Suppose the agent shirks, a = 0. On the one hand,

she gains a private benefit λμKtdt per time increment dt. On the other hand, she loses μKtβtdt

in W because the productivity process A becomes driftless under shirking. Therefore, she will

work, a = 1, if and only if the benefit of working exceeds the cost, that is, βt ≥ λ. As a result,

for the optimal contract to have provide sufficient incentives, (9) implies that the volatility of

the agent’s continuation payoff must be sufficiently large and exceed the threshold λσKt.

We will verify later that in the optimal contract βt = λ. The economics behind this bind-

ing result is as follows. The volatility (diffusion) term in the dynamics for the continuation
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payoff W implies a positive probability of future inefficient liquidation, which will be triggered

once the continuation payoff W hits zero. In the absence of agency conflicts, investors prefer

avoiding inefficient liquidation, thus zero volatility in W . However, the presence of agency

conflicts requires necessary incentive provision, or large enough volatility in (8). To minimize

the probability of future liquidation, while still meet the agent’s incentive constraint required

by Proposition 1, the optimal contract sets βt = λ. Intuitively, incentive provisions are costly,

and investors should provide just enough incentives to motivate the agent.

Next, we exploit the scale invariance feature of our model to derive the ordinary differential

equation (ODE) and associated boundary conditions; they jointly characterize the investors’

value function in terms of the agent’s continuation payoff.

3.2 Deriving the Optimal Contract using Dynamic Programming

We have two state variables in this problem: the capital stock K and the agent’s continua-

tion payoff W . Write the investors’ value function as P (K,W ), where capital accumulation

dynamics are given by (1), and the evolution of the continuation payoff W is

dWt = γWtdt− dUt + λσKtdZt (10)

(note that we have set βt = λ in (8) as we discussed at the end of Section 3.1). Our analysis

will heavily rely on the scale invariance property of the investors’ value function P (K,W )

(homogenous of degree one in K). DeMarzo and Fishman (2007a) and He (2007) have also

exploited these features in contracting settings. In the macro literature, the scale invariance

property has played an important role. For example, in a seminal contribution, Hayashi (1982)

provides conditions under which Tobin’s q is equal to the marginal q.
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3.2.1 Value Function P (K,W ) and the Hamilton-Jacobi-Bellman Equation

We characterize some properties for the investors’ value function P (K,W ), which is the in-

vestors’ highest expected future payoff given these two state variables. Note that for any given

K and W , it is optimal to maximize the investors’ continuation payoff (this would not neces-

sarily be the case if investors were also subject to a moral hazard problem).

First we show that PW (K,W ) ≥ −1. The intuition is as follows. Investors always can fulfill

the agent’s continuation payoff by paying the agent with cash. Given P (K,W ), paying the

agent ε > 0 in cash leaves investors with P (K,W − ε)− ε. Therefore, investors’ value function

P (K,W ) must satisfy

P (K,W ) ≥ P (K,W − ε) − ε,

where the inequality describes the implication of the optimality condition. Assuming differen-

tiability, we have PW (K,W ) ≥ −1. In other words, the marginal cost of compensating the

agent must be less than unity, which is the marginal cost of an immediate cash transfer.

Let W (K) denote the continuation payoff level that solves

PW

(
K,W (K)

)
= −1. (11)

The above argument implies that it is optimal to pay the agent with cash in the amount of

dU = max
(
W −W (K), 0

)
, (12)

where W (K) is the optimal cash payment boundary. This standard “bang-bang” control stems

from the risk-neutrality of both parties. We call the region where W > W (K) as the cash-

payment region.

We now turn to the interior “continuation-payoff region” without cash payment, i.e., dUt = 0

when PW (K,W ) > −1. Using Ito’s lemma,

rP (K,W ) = sup
I

(μK − I −G(I,K)) + (I − δK)PK + γWPW +
λ2σ2K2

2
PWW . (13)
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Intuitively, the right side is given by the sum of instantaneous expected profit (the first term into

the bracket), plus the expected change of the instantaneous profit due to capital accumulation

(the second term), and the expected change of the instantaneous profit due to the drift and

volatility terms in the dynamics for the agent’s continuation payoffW . Investment I is optimally

chosen to set the right side to equal rP (K,W ).

3.2.2 Scale Invariance and Scaled Value Function p ( · )

The scale invariance property implies that both the optimal investment policy I and the in-

vestors’ value function P (K,W ) are homogeneous of degree one in capital stock K. Based on

this fact, we reduce our optimal contracting problem from a two-dimensional free-boundary

problem to a one-dimensional problem. Specifically, we conjecture that the investors’ value

function P (K,W ) may be written as

P (K,W ) = K · p (w) , (14)

where w = W/K is the agent’s scaled continuation payoff, which is the only relevant state

variable in our problem. We call the smooth uni-variate function p ( · ) the investors’ scaled value

function. Note that PK (K,W ) = p (w) − wp′ (w), PW (K,W ) = p′ (w), and KPWW = p′′ (w).

Let i ≡ I/K denote the investment capital ratio.

It remains to characterize the scaled investor’s value function p(w) and the investment-

capital ratio i(w). The first-order condition (FOC) for (13) with respect to I gives I∗ = i(w)K,

where

i(w) =
PK(K,W ) − 1

θ
=
p(w) − wp′(w) − 1

θ
. (15)

The above equation states that the marginal cost of investing equals the marginal value of

investing from the investors’ perspective. Substituting the investment-capital ratio i given in

(15) into (13), and utilizing the scale invariance, we obtain the following second-order ODE for
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p(w) in the continuation-payoff region (where p′ (w) > −1):

(r + δ) p(w) = μ+
(p(w) − wp′(w) − 1)2

2θ
+ p′(w) (γ + δ)w +

λ2σ2

2
p′′(w), 0 ≤ w ≤ w. (16)

To solve for the scaled investors’ value function p( · ), we need certain boundary conditions to

which we next turn.

Due to scale invariance, the optimal cash payment boundary W (K) is linear in capital stock

K, that is W (K) = wK, where w > 0 is to be determined shortly. We have seen the smooth

pasting condition PW (K,wK) = −1 in (11). Because paying cash to reduce W involves a linear

cost, we have the standard super contact condition PWW (K,wK) = 0 for the optimality of the

boundary control (A. Dixit (1993)). Applying these two conditions to the scaled investors’

value function p(w), we obtain

p′ (w) = −1, (17)

p′′ (w) = 0. (18)

And, when W > wK so that we are in the cash-payment region, the optimal cash payment

policy in (12) states that investors simply pay cash dU = W − wK > 0 to the agent, i.e.,

P (W,K) = P (wK,K) − (W − wK) if W > wK.

This implies that

p(w) = p(w) − (w − w) if w > w.

Now consider the lower boundary of the agent’s continuation payoff. When W = 0, the

employment relationship terminates, and the firm is liquidated. Therefore, we have P (K, 0) =

lK, which implies

p (0) = l. (19)

We now summarize our main results on the optimal contract and optimal investment policy

in the following proposition.
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Proposition 2 The investors’ value function P (K,W ) is proportional to capital stock K, in

that P (K,W ) = K · p(w), where p (w) is the scaled investor’s value function. For 0 ≤ w ≤ w

(the continuation-payoff region), p (w) and the optimal payment threshold w solve the ODE

(16), with boundary conditions (17), (18), and (19). For w > w (the cash-payment region),

p(w) = p(w) − (w − w).

Under the optimal contract, the agent’s scaled continuation payoff w evolves according to

dwt = (γ + δ − i (wt))wtdt+ λ (dAt − μdt) − dut, (20)

where the optimal investment policy i (w) is defined in (15), the optimal scaled wage payment

dut = dUt/Kt reflects wt back to w, and the endogenous liquidation time τ = inf {t ≥ 0 : wt = 0}.

The capital stock Kt follows dKt = (i(wt) − δ)Ktdt, where the optimal investment rate is given

by It = i (wt)Kt and i(w) is given in (15).

We provide necessary technical conditions and present a formal verification argument for

the optimal policy in the appendix.

4 Model Implications and Analysis

Having characterized the solution, we next analyze the implications of our model. Before

analyzing the agency effect, we first provide the solution to the neoclassical investment problem

without agency conflicts. We use this neoclassical model as the benchmark to highlight the

effects of agency conflicts on optimal investment and firm value.

4.1 Neoclassical Benchmark

In the absence of agency conflicts, i.e., when λσ = 0, our model specializes to the continuous-

time counterpart of Hayashi (1982). This neoclassical investment setting is a widely used

benchmark in the literature. The following proposition summarizes the main results on invest-

ment and Tobin’s q in the neoclassical setting. To ensure that the first-best investment policy
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is well defined, we assume the following parametric condition

(r + δ)2 − 2
μ− (r + δ)

θ
> 0.

Proposition 3 In the neoclassical setting without agency conflicts, the firm’s first-best invest-

ment policy is given by IFB = iFBK, where

iFB = r + δ −
√

(r + δ)2 − 2
μ− (r + δ)

θ
.

Firm’s value function is qFBK, where qFB is Tobin’s q and is given by

qFB = 1 + θiFB.

First, the neoclassical model has the certainty equivalence result, in that the volatility

of the output process has no impact on the firm’s investment decision and firm value under

the assumption of risk neutrality. As we will show, agency conflicts invalidate the certainty

equivalence result. Second, because of the homogeneity of the production technology (“AK”

technology specification and the homogeneity of the adjustment cost function G(I,K) in I and

K), marginal q is equal to average (Tobin’s) q, satisfying the Hayashi (1982) condition. Third,

gross investment I is positive if and only if the marginal productivity μ is higher than r + δ,

the marginal cost of investing, in that μ > r+ δ. Whenever investment is positive, Tobin’s q is

greater than unity in the benchmark model. Intuitively, when the firm is sufficiently productive

(μ > r+ δ), the installed capital is more valuable than newly purchased capital. As is standard

in the literature, the wedge between installed capital and the newly purchased capital is driven

by the adjustment cost.

Now consider the situation in which the firm is run by an agent, but without agency conflicts.

Suppose investors have promised the agent a payoff W in present value,6 which is equivalent
6When the agent has the same discount rate as investors, the payment timing to deliver W is irrelevant.

When the agent is (strictly) more impatient than investors, the optimal way to deliver W is to pay the agent
immediately.
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to w per unit of capital stock (W = wK). Then, the investors’ scaled value function is simply

given by pFB (w) = qFB − w. That is, average q under the first-best benchmark equals the

sum of the investors’ scaled value function pFB (w) and the agent’s scaled continuation payoff

w. To be consistent with Hayashi (1982) and our Proposition 3, we include the agent’s scaled

continuation payoff w in the calculation of average q. Figure 1 plots pFB (w) as the linear

decreasing function of the agent’s scaled continuation payoff w.

Next, we next analyze the effects of agency conflicts on firm value and investment.

4.2 Investors’ Scaled Value Function p(w), Average q, and Marginal q

Financial Slack w The agent’s scaled continuation payoff w, the key state variable in our

model, reflects the severity of agency conflicts. Intuitively, the higher the value of w, the greater

the agent’s stake in the firm, and the less severe the incentive misalignment between investors

and the agent.

By appealing to DeMarzo and Fishman (2007b) and DeMarzo and Sannikov (2006), we may

interpret the agent’s scaled continuation payoff w as the firm’s financial slack per unit of capital

stock, because it reflects the firm’s distance to liquidation. That is, as implied by the evolution

equation (20) for the agent’s scaled continuation payoff w, the firm is more likely to survive a

sequence of negative shocks and to avoid eventual liquidation if the current value w is higher,

ceteris paribus. Therefore, we can view w as the firm’s financial slack or liquid reserves (per

unit of capital stock), which may be used to buffer a sequence of adverse productivity shocks.

For an empirical proxy, financial slack may include the firm’s cash balance, line of credit, and

other liquid holdings.

Intuitively, the agent receives compensation via cash payments when his (scaled) contin-

uation payoff w, or equivalently interpreted, the firm’s (scaled) financial slack, is sufficiently

high (greater than the upper-payment boundary w). On the other hand, when the firm has
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less financial slack, the agent’s optimal compensation takes the form of deferred payment (via

promises to pay in the future).

Investors’ Scaled Value Function p(w) Next, we establish the concavity of the scaled

investors’ value function p(w).

Proposition 4 The scaled investors’ value function p(w) is concave on [0, w].

Figure 1 plots p (w) as a function of the agent’s scaled continuation payoff (financial slack)

w. The gap between p(w) and pFB(w) = qFB −w reflects the impact of agency conflicts on the

loss of investors’ value. From Figure 1, we see that the loss of investors’ value pFB(w) − p(w)

is greater when financial slack w is lower.

[Insert Figure 1 Here]

The concavity of p(w) confirms the intuition that providing incentives is costly, and in the

optimal contract the agent has a binding incentive constraint. Interestingly, although investors

are risk neutral, they behave effectively in a risk-averse manner even towards idiosyncratic risks

due to the agency friction. This property fundamentally differentiates our agency model from

the neoclassical (certainty equivalence) result. The dependence of investment and firm value

on idiosyncratic volatility in the presence of agency conflicts arise from the investors’ inability

to fully separate out the agent’s action from luck.

While p(w) is concave, it is not monotonic in w, as seen from Figure 1. The intuition is

as follows. There are two effects that drive the shape of p(w). First, as illustrated in Section

4.1 where the first-best case is discussed, by holding the total surplus fixed, the higher the

agent’s claim w, the lower the investors’ value p (w). We dub this the wealth transfer effect.

Second, incentive alignments from optimal contracting create wealth and hence raise the total

surplus available for distribution to both the agent and the investors. Let ŵ = arg max p (w)
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for 0 ≤ w ≤ w. When the agent’s continuation payoff w is sufficiently high (w > ŵ), p (w) is

decreasing in w. This corresponds to the situation where the wealth transfer effect dominates

the wealth creation effect. However, when the agent’s continuation payoff w is sufficiently low

(w < ŵ), the investors’ scaled value function p(w) is increasing in w. This maps to the case

where the wealth creation effect is stronger than the wealth transfer effect. When the prospect of

liquidation is more likely (a lower w), the incremental benefit from incentive alignment becomes

larger.

The above wealth creation effect also indicates that liquidation at w = 0 serves as an ex post

inefficient “money burning” mechanism for the purpose of providing better incentives ex ante.

However, ex post inefficient liquidation provides room for renegotiation, as both parties will

have incentives to renegotiate to achieve an ex post Pareto-improving allocation. This suggests

that the optimal contract depicted in Figure 1 is not renegotiation-proof. Later in the Section

4.5, we extend our model to allow for the contract to be renegotiation-proof and discuss the

corresponding economic implications.

Average q and Marginal q Firm value, including the claim held by the agent, is P (K,W )+

W (recall the discussion in Section 4.1). Therefore, average q, defined as the ratio between firm

value and capital stock, is given by

qa (w) =
P (K,W ) +W

K
= p (w) + w.

An alternative definition for average q is p(w), excluding the agent’s scaled continuation payoff

w. However, this definition does not give the prediction that Tobin’s q equals average q even in

the neoclassical benchmark (Hayashi (1982)) setting. For this reason, we do not use the latter

definition.

It is worth pointing out that the above two definitions raise an important implication on

the empirical measurement of Tobin’s q. Typically, Tobin’s q is calculated based on the market
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value of the firm, which may partially include the agent’s future rent. For instance, firm value

includes the manager’s equity holding, but excludes the manager’s salaries and bonuses, and

possibly even executive stock options. Therefore, empirical measures of Tobin’s q may typically

lie between p (w)+w and p(w). As we will see, even though the relation between the investment-

capital ratio i(w) and p(w)+w is increasing, the one between i(w) and p(w) is not. This suggests

that different empirical measures of Tobin’s q may have a significant impact on the results.

In determining the firm’s investment level, the key concept is marginal q, which is the

marginal impact of additional capital on firm value:

qm (w) =
∂ (P (K,W ) +W )

∂K
= PK(K,W ) = p(w) − wp′(w). (21)

Naturally, both average q and marginal q are functions of financial slack w. In Figure 2 we plot

average qa, marginal qm, and the first-best average (also marginal) qFB. Clearly, the average q

is always above the marginal q.

[Insert Figure 2 Here]

One of the most well-known results in Hayashi (1982) is that marginal q is equal to average

q under a set of conditions (most importantly, the homogeneity assumptions). While our model

features homogeneity properties on the production side as in Hayashi (1982), the marginal value

of investing differs from the average value of capital stock for investors in our model. To be

more precise, using the concavity of p(w), we have

qm (w) = p(w) − wp′(w) ≤ p(w) + w = qa (w) .

Note that marginal qm is no greater than average qa. They coincide only at liquidation (w = 0)

and at the upper payment boundary w = w. The intuition for qm ≤ qa is as follows. An

increase of capital stock K lowers the scaled agent’s continuation payoff w for a given level of

W . In other words, installing an additional unit of capital reduces the agent’s effective share of
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the firm, which leads to a more severe agency problem. This creates a negative wedge between

marginal qm and average qa. Lorenzoni and Walentin (2007) derive similar results.

Next, we analyze the effects of agency conflicts on investment-capital ratio i(w) = I/K, and

highlight the relationship of i(w) with marginal q, average q, and financial slack w. We also

provide some linkage of our model’s prediction to the empirical literature.

4.3 Investment, Average q, Marginal q, and Financial Slack w

First, note that the investment-capital ratio i(w) under agency depends on financial slack w.

We may rewrite (15), the FOC with respect to investment, as follows:

1 + θi(w) = qm(w) = p(w) − wp′(w), (22)

where the left side is the marginal cost of investing—capital price and adjustment cost—for

investors, and the right side is qm, marginal q defined in (21). The optimal investment policy

equates the marginal cost with marginal benefit.

More interestingly, in our model, the investment-capital ratio i(w) increases with financial

slack w. This follows from the concavity of p(w) and the FOC (15), in that

i′(w) = −1
θ
wp′′(w) ≥ 0.

When financial slack is lower, future inefficient liquidation becomes more likely. Hence, in-

vestors optimally adjust the level of investment downward. In one limiting case (w → 0) where

liquidation is immediate, the marginal benefit of investing is just p (0) = l. Suppose that l < 1,

i.e., the liquidation is sufficiently costly. Because the marginal cost of investing when i = 0 is

1 (see equation (22)), to balance the marginal benefit with marginal cost, investors will choose

to disinvest, i.e., i(0) = (l − 1)/θ < 0.

Now consider the other limiting case, when the financial slack w reaches its upper endoge-
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nous payout boundary w. We have

i(w) =
p(w) − wp′(w) − 1

θ
=
p(w) + w − 1

θ
.

Even at this upper boundary, we can show that i(w) < iFB, which is the first-best investment-

capital ratio in the neoclassical setting.7 The reason is that the strict relative impatience of

the agent creates a strictly positive wedge between our solution and the first-best result. In the

limit, when γ is sufficiently close to r, the difference between i(w) and iFB approaches zero.

Therefore, in addition to costly liquidation as a form of underinvestment, the investment/capital

ratio is always lower than iFB. That is, our model features underinvestment at all times. Figure

3 shows the monotonically increasing relationship between investment-capital ratio i(w) and

financial slack w, with i(w) staying below the first-best level iFB always.

[Insert Figure 3 here]

Our model’s prediction that investment increases with financial slack w is consistent with

the prediction based on static models with exogenously specified financing constraints, such as

the one proposed in FHP (1988), and summarized by Hubbard (1998) and Stein (2003). It

is worth pointing out that our dynamic agency model does not yield sharp prediction on the

sensitivity of di/dw with respect to financial slack w. That is, it is very difficult to sign d2i/dw2

and other higher-order sensitivity measures, consistent with predictions based on static models

with exogenously specified financing constraints (Kaplan and Zingales (1997)).

As in the standard q theory of investment, in our model the marginal cost of investing

is equated to the marginal benefit of investing, marginal q; and as in models with quadratic
7At the boundary w, we may write (16) as follows:

(r + δ) q = μ +
(q − 1)2

2θ
− (γ − r) w,

where we denote q = p(w) + w. Comparing with the quadratic equation for qFB , the first-best Tobin’s q,

(r + δ) qFB = μ +
(qF B−1)2

2θ
, and γ > r and w > 0, we conclude q < qFB , and hence i(w) < iFB .
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adjustment costs, the marginal cost of investing is linear in i(w) here (see equation (22)). In

other words, by invoking the definition of marginal q in (21), we can rewrite equation (22) as

follows:

i(w) =
qm(w) − 1

θ
. (23)

Therefore, as in Hayashi (1982), our model predicts a linear relationship between investment

and marginal q. The top panel in Figure 4 plots this linear relationship.

Because marginal q is hardly measurable in practice, empiricists often use average q as a

proxy for marginal q. In the second panel of Figure 4, we plot the investment-capital ratio

as a function of average q. Recall that both investment-capital ratio i(w) and average q,

defined as qa = p (w) + w, increase with financial slack w. Hence, investment-capital ratio is

also monotonically increasing in average q. However, even though the relationship between

investment-capital ratio and marginal q is linear, due to the state-contingent wedge between

average q and marginal q illustrated in Figure 2, the relationship between investment-capital

ratio and average q is no longer linear. Moreover, investment is much less sensitive to average

q, when financial slack is low and the firm is “financially constrained.” Conversely, when the

firm has a high level of financial slack and is relatively “financially unconstrained,” investment

is more sensitive to average q.

In the empirical literature, researchers often regress investment-capital ratio on average q

and empirical proxies for financial slack, such as cash flow or cash holdings. Next, we study

our model’s implication on the impact of financial slack w on investment-capital ratio after

controlling for average q. Our control for average q is based on the neoclassical analysis of

Hayashi (1982). That is, under the neoclassical setting, the part of investment not explained

by average q, is

î (w) = i (w) − qa (w) − 1
θ

. (24)
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In our model, this residual part î (w) is correlated with financial slack w, since average q serves

as a potentially poor proxy for marginal q in our model. In the bottom panel of Figure 4, we

plot î (w) defined in (24) as a function of financial slack w. Interestingly, we find that the rela-

tionship between î (w)—the part of investment unexplained by average q—and financial slack

w is not even monotonic. When financial slack is high, investment-capital ratio increases with

financial slack, after controlling for average q. In contrast, investment-capital ratio decreases

with financial slack when financial slack is low, after controlling for average q. This result

suggests that it is very difficult, if not impossible, to interpret regression coefficients for various

proxies of financial slack in the investment-cash flow sensitivity analysis. Interestingly, in Table

X in Kaplan and Zingales (1997), the authors report that after controlling for average q, the

coefficient for cash holdings is negative for “financially constrained” firms, and is positive for

“likely not financially constrained” firms. These results are in line with our model’s predictions.

[Insert Figure 4 here]

Next, we perform some comparative static analysis of p(w) and i(w) with respect to volatility

and agency parameters in the model.

4.4 Comparative Static Analysis

We focus on the comparative static results with respect to two key parameters regarding agency

frictions: λ and σ. A higher value of λ implies more private benefits for the agent to misbehave

(a < 1), which suggests a more severe agency problem. A more volatile project makes the

agent’s performance less informative, and the incentive provision becomes more difficult, which

in turn leads to lower value for more volatile projects. That is, both λ and σ have implications

on the severity of agency conflicts.8 The top left and top right graphs in Figure 2 confirm
8In fact, the agent’s incentive loadings are λσ in the ODE (16), which immediately implies that the compar-

ative static analyses with respect to λ and σ have the same directional results.
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the intuition that the investors’ scaled value p(w) decreases with both volatility σ and agency

parameter λ.

The lower left and lower right graphs show that the underinvestment problem is more

severe when λ is higher or σ is larger. This is consistent with the intuition that the incentive

to underinvest is greater when agency frictions are larger (i.e. when λ or σ is larger), because

the marginal benefit of investing is lower.

[Insert Figure 5 Here]

4.5 Renegotiation-proof Contract

In this section, we analyze the impact of renegotiation in our model. As we have indicated in Sec-

tion 4.2, our contract is not renegotiation-proof. Intuitively, whenever p′ (w) > 0, both parties

may achieve an ex post Pareto-improving allocation by renegotiating the contract. Therefore,

the value function p(w) that is renegotiation-proof must be weakly decreasing in the agent’s

scaled continuation payoff w.9

We construct the renegotiation-proof contract using some insights similar to those from De-

Marzo and Fishman (2007b) and DeMarzo and Sannikov (2006). The investors’ renegotiation-

proof scaled value function pRP (w) is non-increasing and concave. Moreover, pRP (w) has an

(endogenous) renegotiation boundary wRP , where the scaled investors’ value function pRP (w)

has the following boundary conditions:

pRP
(
wRP

)
= l, (25)

pRP ′ (wRP
)

= 0. (26)

Specifically, wRP (rather than w = 0 in the baseline dynamic agency model) becomes the lower

bound for the agent’s scaled continuation payoff w during the equilibrium employment path.
9Note that the renegotiation-proofness requires PW (W, K) ≤ 0; but due to the scale invariance p′ (w) =

PW (W, K), it is equivalent to require p(w) ≤ 0.
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The scaled investors’ value function pRP (w) solves the ODE (16) for w ∈ [
wRP , wRP

]
, with two

sets of free-boundary conditions: one is the boundary conditions (17) and (18) at the payout

boundary wRP , and the other is the boundary conditions (25) and (26) at the renegotiation

boundary wRP .

The dynamics of the scaled agent’s payoff w takes the following form:

dwt = (γ + δ − i (wt))wtdt+ λσdZt − dut +
(
dvt − wRPdMt

)
, (27)

where the first (drift) term implies that the expected rate of change for the agent’s scaled con-

tinuation payoff w is (γ + δ − i (w)), the second (diffusion) term captures incentive provisions

in the continuation-payoff region (away from the boundaries), and the (third) nondecreasing

process u captures the reflection of the process w at the upper payment boundary wRP . Un-

like the dynamics (20) for the agent’s scaled payoff process w without renegotiation, the last

term dvt − wRPdMt in dynamics (27) captures the effect at the renegotiation boundary. The

nondecreasing process v reflects w at the renegotiation boundary wRP . The intensity of the

counting process dM is dvt/w
RP ; and once dM = 1, w becomes 0, and the firm is liquidated.10

Note that the additional term dvt − wRPdMt is a compensated Poisson process, and hence a

martingale increment.

We illustrate the contracting behavior at the renegotiation boundary through the following

intuitive way. When the agent’s poor performance drives w down to wRP , the two parties run a

lottery. With a probability of dvt/w
RP , the firm is liquidated. If the firm is not liquidated, the

agent stays at the renegotiation boundary wRP . Here, the stochastic liquidation is to achieve the

“promise-keeping” constraint so that w is indeed the scaled continuation payoff with expected

growth rate γ + δ − i (w) as specified in Proposition 2. To see this, by running this lottery, the

agent could potentially lose
(
dvt/w

RP
) ·wRP = dvt, which just compensates the reflection gain

10Technically speaking, the counting process has a survival probability Pr (Mt = 0) = exp
(−vt/wRP

)
.
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dvt if the firm is not liquidated.

Compared with the value function p(w) where investors can commit not to renegotiate, the

renegotiation-proof contract delivers a lower value, as Figure 6 shows. This is the standard result

that the investors’ inability to commit not to renegotiate lowers their value. Since renegotiation

further worsens the agency conflict, intuitively we expect not only a greater value reduction for

investors, but also a stronger underinvestment distortion. The right panel in Figure 6 shows

the impact of renegotiation on underinvestment is greater, consistent with our intuition.

[Insert Figure 6 Here]

Next, we extend our baseline model of Section 2 to a setting where output price is stochastic.

This generalization allows us to analyze the interaction effect of incentive provision and the

firm’s investment opportunities.

5 A Generalized Model with Stochastic Output Price

5.1 Model Setup

For analytical tractability reasons, we choose a two-state regime-switching process to model the

output price Vt.11 Let St ∈ {1, 2} denote the regime at time t. In each regime, the corresponding

output price Vt can be either high or low, in that Vt ∈ {v1, v2} with v2 > v1. Let ξn denote

the transition intensity out of regime n = 1, 2. For example, the conditional probability that

the price changes from v1 to v2 over a small time interval dt, is ξ1dt. Let P (K,W,n) denote

the investors’ value function, given the capital stock K and the agent’s continuation payoff W ,

when the output price Vt is vn with n = 1, 2.

The firm’s operating profit is given by the following dynamics:

dYt = VtKtdAt − Itdt−G(It,Kt)dt, t ≥ 0, (28)
11Hamilton (1989) uses regime switching models to model business cycle effects, an early application of regime

switching models in economics. Piskorski and Tchistyi (2007) use this process to model the discount rate in
studying mortgage design.
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Let Nt denote the cumulative number of regime changes up to time t. For expositional purpose,

suppose that the current output price is v1. Based on a martingale representation argument,

the dynamics for the agent’s continuation payoff W in regime 1 is then given by

dWt = γWtdt− dUt + λKt (dAt − μdt) + Ψ(Kt,Wt, 1) (dNt − ξ1dt) , (29)

where Ψ(Kt,Wt, 1) will be endogenously determined in the optimal contract. As in the baseline

model, the diffusion martingale term λKt (dAt − μdt) describes the agent’s binding incentive

constraint, implied by the concavity of investors’ scaled value functions in both regimes (see

the Appendix).12

Unlike our baseline dynamic agency model, the compensated Poisson martingale process

Ψ(Kt,Wt, 1) (dNt − ξ1dt) captures the impact of exogenous price shocks on the agent’s con-

tinuation payoff W . Recall that we are in in regime 1 with output price v1. When the price

exogenously switches to v2 > v1, the agent’s continuation payoff W also changes by a discrete

amount Ψ(Kt,Wt, 1). Naturally, we may write down a dynamic evolution equation similar to

(29) for the agent’s continuation payoff W in regime 2.

Importantly, the optimal contract assigns non-zero value to Ψ(K,W, 1) in general (and

similar mechanisms hold for regime 2). In our model, the marginal impact of compensating

the agent on the investors’ value—which is ∂P/∂W—will depend on the output price. In

the appendix, we show that, via the discrete changes Ψ’s, it is optimal to adjust the agent’s

continuation payoff in such a way that, when the price regime switches, the marginal impacts

( ∂P
∂W ’s) across two regimes are equated (if possible). That is, in the “interior” region, investors

choose the discrete change Ψ(K,W, 1) so that the marginal impacts of compensating the agent—
12The incentive provision λKt (dAt − μdt) does not scale with output price Vt. This treatment is consistent

with our current interpretation of moral hazard, as the agent’s shirking benefit is assumed to be independent of
the output price.
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before and after the regime changes—are equalized:

PW (K,W, 1) = PW (K,W + Ψ(K,W, 1), 2).

This implies that in the optimal contract, the agent’s compensation will depend on the exoge-

nous price shocks, indicating that absolute, rather than relative, performance evaluation might

be optimal. In the next section we will come back to this point under a more concrete example

after Figure 7.

The solution technique is similar to the one for the baseline dynamic agency model. The scale

invariance remains here: with w = W/K, we let pn(w) = P (K,W,n)/K, in(w) = I(K,W,n)/K,

ψn (w) = Ψ(K,W,n)/K, and upper payment boundary wn = W (K,n)/K. That is, pn(w) is

the scaled investors’ value function in regime n, in(w) is the investment-capital ratio in regime

n, ψn (w) is the scaled “additional” compensation (per unit of capital stock) when the output

price switches out of regime n, and wn is the scaled upper payment boundary. In the appendix,

we provide a formal characterization of the optimal contract.

5.2 Model Implications

We now illustrate our model’s economic implications. For expositional purposes, we set the

conditional transition probability from one regime to the other to be equal (i.e., ξ1 = ξ2 = 0.1);

and the liquidation value in both regimes to be the same (i.e., l1 = l2 = 0).

Investors’ value function The upper panel of Figure 7 plots the investors’ scaled value

functions pn(w) in both regimes. As the liquidation values are the same in these two regimes

(by assumption l1 = l2), the scaled investors’ value functions are equal at liquidation, i.e.,

p1(0) = p2(0). Second, the investors’ scaled value function is higher when output price is higher

(regime 2), for all levels of w, in that p2(w) ≥ p1(w). This result holds in general, provided that

l2 ≥ l1. The firm is at least as productive in regime 2 as in regime 1 at all times (including the
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liquidation scenario); and therefore investors’ value will be higher in regime 2, all else equal.

Third, both p1(w) and p2(w) are concave in w, as in our baseline model. The intuition for the

concavity of pn(w) is essentially the same as in our baseline dynamic agency model.

[Insert Figure 7 Here]

Discrete change of the agent’s continuation payoff upon regime switch The lower

panel of Figure 7 plots ψ1(w) and ψ2(w), the discrete changes of the agent’s continuation

payoff upon regime switching. We find that the discrete change ψ1(w) of the scaled agent’s

continuation payoff is positive for all levels of w. That is, the agent will be rewarded when the

output price increases from low to high. Note that the output price change is exogenous and

beyond the agent’s control.

The intuition behind this property of the compensation policy is as follows. In designing the

optimal contract, investors have the discretion to make the agent’s continuation payoff regime

dependent, if doing so is cheaper for investors. Then we may ask the following question: Given

that investors have to deliver one dollar of continuation payoff, what is their marginal cost to

do so? Up to a minus sign, this marginal cost is exactly captured by the marginal impact of W

to the investors’ value function; or, it is −∂P (K,W,n)/∂W = −p′n(w) due to scale invariance.

This quantity might be positive, as investors can actually gain by rasing w for small w (recall

the wealth-creation effect discussed in Section 4.2).

Under this interpretation, intuitively, it is cheaper to compensate the agent in regime 2

(−p′2(w) ≤ −p′1(w)), as a higher output price implies a higher productivity. As a result, if

output price increases (switching into regime 2), investors adjust upward the agent’s scaled

continuation payoff to the level at which the marginal cost of delivering compensation are

equated before and after the regime switch, in that p′1(w) = p′2(w+ψ1(w)). Based on a similar

reason, ψ2(w), i.e., the discrete change of w when the output price decreases from high to low,
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is negative. Finally, when w is low and the output price is high, the output price drop might

trigger an immediate liquidation. In the figure, we see this result at the left end of ψ2(w). 13

That the agent’s optimal compensation may depend on the exogenous output price is oppo-

site to the conventional wisdom about relative performance evaluation for executive compensa-

tion. In our model, it is cheaper to compensate the agent in the high-price state; therefore the

optimal contract gives more compensation to the agent when the output price increases. As a

result, a certain degree of absolute performance evaluation becomes optimal, which might help

explain the empirical observation that absolute performance measures are sometimes used in

executive compensation.

Interaction between Compensation and Investment upon Regime Switch Now we

explore the interesting interaction between compensation and investment policy at the moment

when the output price changes. The left and right graphs in Figure 8 plot the corresponding

changes of investment-capital ratio when output price increases from v1 to v2 and decreases

from v2 to v1, respectively.

[Insert Figure 8 Here]

First, consider the left panel. The solid line corresponds to the total change of investment-

capital ratio when output price drops, i.e., i2(w + ψ1(w)) − i1(w). To understand the impact

of regime change on investment, we decompose the total change i2(w + ψ1(w)) − i1(w) into

two components: the direct and the indirect effects. Holding w fixed when the regime changes,

i2(w) − i1(w) measures the direct effect of regime switch on the investment-capital ratio. The
13That the liquidation values in the two regimes are equal (l1 = l2) plays a role in this result. If the liquidation

value is much higher in the high output price state than the low output price state, i.e., l2 = p2(0) � l1 = p1(0),
liquidation in the high output state recovers much greater value than in the low output state. Therefore, it is
possible to have p′

2 (0) < p′
1 (0). In this case, when w is close to zero, an immediate liquidation may occur when

the output price switches from low to high. To understand this, when liquidation in the high output price state
is less costly (high l2), investors are less averse to liquidating the firm in the high price state.
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dashed line depicts this direct effect. However, the optimal compensation policy specifies that

the agent’s scaled continuation payoff will change by a discrete amount ψ1(w) when the output

price increases from v1 to v2. Therefore, i2(w + ψ1(w)) − i2(w) measures the indirect effect of

output price change on the investment-capital ratio due to the upward adjustment of the agent’s

continuation payoff. Adding these two components gives the total effect of regime change on

investment.

Interestingly, when the output price jumps up, the “direct effect” understates the impact

of regime switch on investment-capital ratio, because the additional upward adjustment of

compensation (ψ1(w) > 0) further enlarges the size of incremental investment. Put differently,

the indirect effect of changes in the agent’s continuation payoff (for incentive reasons due to

regime change) further enhances investment, in that i2(w + ψ1(w)) > i2(w). Note that we use

the positive relation between investment-capital ratio i2(w) and w.

Similarly, a drop in output price has both the direct and indirect effects on the investment-

capital ratio. The investment-capital ratio decreases when the output price decreases from v2

to v1, as the solid line in the right graph shows. Again, here the “indirect” effect magnifies the

negative impact on investment, as investors reduce investment even further when they optimally

lower the agent’s continuation payoff after the output price drops (i.e. ψ2(w) < 0) again for

incentive reasons. The indirect effect vanishes when the agent’s continuation payoff is high, as

we see from these two panels. Intuitively, the impact of financial slack on investment decreases

when financial slack is high.

This graph shows that dynamic agency amplifies the response of investment to output price

fluctuations. Intuitively, when the output price increases, agency conflicts become less severe,

and hence the agent’s compensation is increased, which lowers the cost of external financing.

As a result, investment increases for both enhanced productivity and also reduced agency con-

flicts. This additional agency channel may potentially play an important role in amplifying and
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propagating output price shocks and contributing to the business cycle fluctuations. Bernanke

and Gertler (1989), and Kiyotaki and Moore (1997) have used different agency frictions in their

study of equilibrium propagation and amplification mechanisms.

Investment and financial slack for a given average q In Section 4.3, we have studied

the relation among investment, Tobin’s q, and financial slack. In the baseline model, the only

heterogeneity across firms is caused by agency issues, which is summarized by the firm’s financial

slack w. However, another potentially important dimension of heterogeneity comes from the

firm’s profitabilities. Our extension captures this feature by allowing for stochastic output

prices. In fact, this two-factor setup allows us to investigate the relation between investment

and financial slack, after controlling for firm value (recall that in the baseline model without

output price heterogeneity, once q is fixed, investment and financial slack are determined.)

Consider two firms with the same average q, but facing different (high and low) output prices

and with different degrees of financial slack. To have the same values of q for the two firms, the

firm facing the higher output price will necessarily has less financial slack. Let δw denote the

corresponding difference of financial slack between the two firms given the value of average q.

We calculate δi, the implied difference between the investment-capital ratios for the two firms.

In Figure 9, we plot both δi and δw for a given value of average q. Our model predicts that

the firm with more financial slack will have a higher investment-capital ratio, holding average

q fixed.

6 Conclusions

This paper integrates the impact of dynamic agency into a neoclassical model of investment

(Hayashi (1982)). Using continuous-time recursive contracting methodology, we characterize

the impact of dynamic agency on firm value and the optimal investment dynamics. Agency
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costs introduce a history-dependent wedge between marginal q and average q. Even under the

assumptions which imply homogeneity (e.g. constant returns to scale and quadratic adjustment

costs of Hayashi (1982)), investment is no longer linearly related to average q. Investment

is relatively insensitive to average q when the firm is “financially constrained.” Conversely,

investment is sensitive to average q when the firm is relatively “financially unconstrained.”

Moreover, the agent’s optimal compensation takes the form of future claims on the firm’s cash

flows when the firm has less financial slack, whereas cash compensation is preferred when the

firm has been profitable and the firm is growing rapidly.

To understand the potential importance of output price fluctuations on firm value and

investment dynamics in the presence of agency conflicts, we further extend our model to allow

for the output price to vary stochastically over time. We find that investment increases with

financial slack after controlling for average q. The agent’s compensation will depend not only

on the firm’s realized productivity, but also on realized output prices, even though output

prices are beyond the agent’s control. This result may help to explain the empirical relevance

of absolute performance evaluation. Moreover, this result on compensation also suggests that

the agency problem provides a channel through which the response of investment to output

price shocks is amplified and propagated. A higher output price encourages investment for

two reasons. First, investment becomes more profitable. Second, the optimal compensation

contract rewards the agent with a higher continuation payoff, which in turn relaxes the agent’s

incentive constraints and hence further raises investment.
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Appendices

A Proof of Proposition 1

We impose the usual regularity condition on the payment policy

E

(∫ τ

0
e−γsdUs

)2

<∞. (A.1)

Then, given any contract Π = {U, τ}, define the process Vt ≡ Et

[∫ τ
0 e

−γsdUs

]
for t ∈ [0, τ) as

the agent’s value process. Under (A.1), {Vt : 0 ≤ t < τ} forms a square-integrable martingale

until τ . According to the Martingale Representation Theorem, there exists a progressively

measurable process {βt : 0 ≤ t < τ} s.t. Vt = V0 +
∫ t
0 e

−γsKsβsσdZs for ∀t ∈ [0, τ). Hence

under the presumption {at = μ : 0 ≤ t < τ} we have

Vt = V0 +
∫ t

0
e−γsKsβs (dAt − μdt) for ∀t ∈ [0, τ) ,

by replacing the Brownian increment dZs with 1
σ (dAt − μdt). Now due to the definition of W ,

Vt =
∫ t
0 e

−γsdUs + e−γtWt. By taking derivative on both sides, we obtain W ’s evolution.

We show that Π is incentive-compatible if and only if βt ≥ λ a.e.. Consider any action

policy a = {at ∈ {0, μ} : 0 ≤ t < τ}. For t < τ her associated value process is

Vt (a) = V0 +
∫ t

0
e−γsKsβs (dAs (a) − μds) +

∫ t

0
e−γsλKs (μ− as) ds.

We have,

dVt (a) = e−γtKtβt ((at − μ) dt+ σdZt) + e−γtλKt (μ− at) dt

= e−γtKt (βt − λ) (at − μ) dt+ e−γtKtβtσdZt.

If βt ≥ λ, then it has a non-positive drift, and is a martingale if {at = μ : 0 ≤ t < τ}. If there

is a positive probability event that βt ≥ λ during [0, τ), the agent will deviate to at = 0, and

{at = μ : 0 ≤ t < τ} is suboptimal. Therefore Π is incentive-compatible if and only if βt ≥ λ

a.e. Q.E.D.
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B Proof of Proposition 2

The evolution of w = W
K follows easily from the evolutions of W and K. Here we verify that

the contract and the associated investment policy derived from the Hamilton-Jacobi-Bellman

equation are indeed optimal. Similar to technical conditions in dynamic portfolio theory, certain

conditions are placed for the well-behavedness of the problem. In addition to (A.1), we require

that

E

[∫ T

0

(
e−rtKt

)2
dt

]
<∞ for all T > 0. (B.1)

and

lim
T→∞

E
(
e−rTKT

)
= 0. (B.2)

Both regularity conditions place certain restrictions on the investment policies.14 Since the

project is terminated at τ , throughout we take the convention that MT1{T>τ} = Mτ for any

random process M .

Take any incentive-compatible contract Π = {U, τ} and some investment policy. For any

t ≤ τ , define its auxiliary gain process {G} as

Gt (Π) =
∫ t

0
e−rs (dYs − dUs) + e−rtP (Kt,Wt) (B.3)

=
∫ t

0
e−rs

(
KsdAs − Isds− θI2

s

2Ks
− dUs

)
+ e−rtP (Kt,Wt) ,

where the agent’s continuation payoff Wt evolves according to (8). Under the optimal contract

Π∗, the associated optimal continuation payoff W ∗
t has a volatility λσKt, and {U∗} reflects W ∗

t

at W ∗
t = wKt.

14Note that under our optimal policy,

dK

K
= (i (w) − δ) dt <

(
iFB − δ

)
dt

and KT < K0e(
iF B−δ)T for T < τ . But since iFB < r + δ, the above two conditions hold.
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Recall that wt = Wt/Kt and P (Kt,Wt) = Ktp (wt). Ito’s lemma implies that, for t < τ ,

ertdGt = Kt

⎧⎪⎨⎪⎩
[

−rp (wt) + μ− It/Kt − θ
2 (It/Kt)

2 + (It/Kt − δ) (p (wt) − wtp
′ (wt))

+γwtp
′ (wt) + β2

t σ2

2 p′′ (wt)

]
dt

+ [−1 − p′ (wt)] dUt/Kt + σ [1 + βtp
′ (wt)] dZt

⎫⎪⎬⎪⎭ .

Now, let us verify that, under any incentive-compatible contract Π, ertdGt (Π) has a non-positive

drift, and zero drift for the optimal contract and its associated optimal investment policy. Focus

on the first piece. Optimization with respect to It/Kt gives the investment policy stated in (15);

and because p′′ (wt) ≤ 0, setting βt = λ maximizes the objective given the restriction that Π

is incentive-compatible. Under these two optimal policies, the first piece—which is just our

(16)—stays at zero always; and other investment policies and incentives provision will make

this term nonpositive. The second piece captures the optimality of the cash payment policy. It

is nonpositive since p′ (wt) ≥ −1, but equals zero under the optimal contract.

Therefore, for the auxiliary gain process we have

dGt (Π) = μG (t) dt+ e−rtKtσ
[
1 + βtp

′ (wt)
]
dZt,

where μG (t) ≤ 0. Let ϕt ≡ e−rtKtσ [1 + βtp
′ (wt)]. The condition (A.1) and the related argu-

ment in the proof for Proposition 1—combining with the condition B.1—imply that E

[∫ T
0 ϕtdZt

]
=

0 for ∀T > 0 (note that p′ is bounded). And, under Π the investors’ expected payoff is

G̃ (Π) ≡ E

[∫ τ

0
e−rsdYs −

∫ τ

0
e−rsdUs + e−rτ lKτ

]
.

Then, given any t <∞,

G̃ (Π) = E [Gτ (Π)]

= E

[
Gt∧τ

(
Π̃

)
+ 1t≤τ

[∫ τ

t
e−rsdYs − e−rsdUs

]
+ e−rτ lKτ − e−rtP (Kt,Wt)

]
= E

[
Gt∧τ

(
Π̃

)]
+ e−rt

E

{[∫ τ

t
e−r(s−t) (dYs − dUs) + e−r(τ−t)lKτ − P (Kt,Wt)

]
1t≤τ

}
≤ G0 +

(
qFB − l

)
E

[
e−rtKt

]
.
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The first term of third inequality follows from the negative drift of dGt (Π) and martingale

property of
∫ t∧τ
0 ϕsdZs. The second term is due to the fact that

Et

[∫ τ

t
e−r(s−t) (dYs − dUs) + e−r(τ−t)lKτ

]
≤ qFBKt − wtKt

which is the first-best result, and

qFBKt − wtKt − P (Kt,Wt) <
(
qFB − l

)
Kt

as w + p (w) is increasing (p′ ≥ −1). But due to (B.2), we have G̃ ≤ G0 for all incentive-

compatible contract. On the other hand, under the optimal contract Π∗ the investors’ payoff

G̃ (Π∗) achieves G0 because the above weak inequality holds in equality when t→ ∞. Q.E.D.

Finally, we require that the agent’s shirking benefit φ ≡ λμ be sufficiently small to ensure

the optimality of a = 1 (working) all the time. Similar to DeMarzo and Sannikov (2007) and

He (2007), there is a sufficient condition for the optimality of a = {μ} against at = 0 for some

t (shirking sometimes). Let ŵ = arg
w

max p (w), and we require that

(p (w) − wp′ (w) − 1)2

2θ
≤ (r + δ) p (w) − p′ (w) [(γ + δ)w − φ] for all w

Since the left side is increasing in w, and right side dominates p
(

φ
γ+δ

)
− γ−r

r+δ

(
p (ŵ) − p

(
φ

γ+δ

))
(see the proof in DeMarzo and Sannikov (2006)), a sufficient condition is

(p (w) + w − 1)2

2θ
≤ p

(
φ

γ + δ

)
− γ − r

r + δ

(
p (ŵ) − p

(
φ

γ + δ

))
.

C Proof of Proposition 4

First of all, by differentiating (16) we obtain

(r + δ) p′ = −(p− wp′ − 1)wp′′

θ
+ p′′(w) (γ + δ)w + p′ (γ + δ) +

λ2σ2

2
p′′′. (C.1)

Evaluating (C.1) at the upper-boundary w, and using p′ (w) = −1 and p′′ (w) = 0, we find

λ2σ2

2
p′′′(w) = γ − r > 0;
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therefore p′′(w − ε) < 0.

Now let q (w) = p (w) − wp′ (w), and we have

(r + δ) q(w) = μ+
(q(w) − 1)2

2θ
+ (γ − r)wp′ (w) +

λ2σ2

2
p′′.

Suppose that there exists some w̃ < w such that p′′ (w̃) = 0; then without loss of generality

assume that p′′(w) < 0 for w ∈ (w̃, w). Evaluating the above equation at w̃, we have

(r + δ) q(w̃) = μ+
(q(w̃) − 1)2

2θ
+ (γ − r) w̃p′ (w̃) .

Since q(w̃) < qFB, and (r + δ) qFB = μ+ (qFB−1)2

2θ , it implies p′ (w̃) < 0. Therefore evaluating

(C.1) at point w̃, we obtain

(r + δ) p′(w̃) = p′(w̃) (γ + δ) +
λ2σ2

2
p′′′(w̃),

which implies that p′′′(w̃) = 2(r−γ)
λ2σ2 p

′(w̃) > 0. It is inconsistent with the choice of w̃ where

p′′ (w̃) = 0 but p′′(w̃ + ε) < 0. Therefore p (·) is strictly concave over the whole domain [0, w].

D Appendix for Section 5

Fix regime 1 as the current regime (similar results hold for regime 2 upon necessary relabelling.)

Based on (28) and (29) in Section 5, the following Bellman equation holds for P (K,W, 1):

rP (K,W, 1) = sup
I, Ψ

(μv1K − I −G(I,K)) + (I − δK)PK + (γW − Ψ(K,W, 1)ξ1)PW

+
λ2σ2K2

2
PWW + ξ1 (P (K,W + Ψ(K,W, 1), 2) − P (K,W, 1)) , (D.1)

where I (K,W, 1) and Ψ(K,W, 1) are state-dependent controls.

The first-order condition (FOC) for optimal Ψ(K,W, 1), given that the solution takes an

interior solution, yields that

PW (K,W, 1) = PW (K,W + Ψ(K,W, 1), 2), (D.2)
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As discussed in the main text, to provide compensation effectively, the optimal contract equates

the marginal cost of delivering compensation, i.e., −PW , across different Markov states at any

time. However, in general, the solution of Ψ(K,W,n) might be binding (corner solution), as

the agent’s continuation payoff after the regime change has to be positive. Therefore, along

the equilibrium path the optimal Ψ(K,W,n)’s might bind, i.e., Ψ(K,W,n)+W ≥ 0 holds with

equality.

Investment policy I (K,W,n), by taking a FOC condition, is similar to the baseline case. We

will solve Ψ(K,W,n) and I (K,W,n) jointly with the investors’ value functions P (K,W,n)’s..

We now exploit scale invariance feature of the problem. As discussed in the text, denote the

scaled (by K) version of P (K,W,n), Ψ(K,W,n), and I (K,W,n) as pn(w), ψn (w) and in (w),

where w = W/K is the agent’s scaled continuation payoff. Similar to equation (15),

in(w) =
PK(K,W,n) − 1

θ
=
pn(w) − wp′n(w) − 1

θ
. (D.3)

Combining this result with the above analysis regarding ψn (w)’s (notice that PW (K,W,n) =

p′n(w)), the following proposition characterizes the ODE system {pn} when the output price is

stochastic.

Proposition 5 For 0 ≤ w ≤ wn (the continuation-payoff region for regime n), the scaled in-

vestor’s value function pn (w) and the optimal payment threshold wn solve the following coupled

ODEs:

(r + δ) p1(w) = μ1 +
(p1(w) − wp′1(w) − 1)2

2θ
+ p′1(w) [(γ + δ)w − ξ1ψ1 (w)] +

λ2σ2

2
p′′1(w)

+ ξ1 (p2(w + ψ1 (w)) − p1(w)) , 0 ≤ w ≤ w1, (D.4)

(r + δ) p2(w) = μ2 +
(p2(w) − wp′2(w) − 1)2

2θ
+ p′2(w) [(γ + δ)w − ξ2ψ2 (w)] +

λ2σ2

2
p′′2(w)

+ ξ2 (p1(w + ψ2 (w)) − p2(w)) , 0 ≤ w ≤ w2, (D.5)
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subject to the following boundary conditions at the upper boundary wn:

p′n(wn) = −1, (D.6)

p′′n(wn) = 0, (D.7)

and the left boundary conditions at liquidation:

pn(0) = ln, n = 1, 2.

The scaled endogenous jump-size functions ψn (w) satisfy:

p′1(w) = p′2(w + ψ1 (w))

p′2(w) = p′1(w + ψ2 (w))

if w + ψn (w) > 0 (interior solution); otherwise ψn (w) = −w. For w > wn (cash-payment

regions), pn(w) = pn(wn) − (w − wn).

Now we show that pn’s are concave functions. Denote two states as n,m (here qm is not

the marginal q as used in the main text.) By differentiating (D.5) we obtain

(r + δ) p′n = −(pn − wp′n − 1)wp′′n
θ

+ p′′n · [(γ + δ)w − ξnψn (w)] + p′n
(
γ + δ − ξnψ

′
n (w)

)
+
λ2σ2

2
p′′′n

+ ξn
(
p′m(w + ψn (w))

(
1 + ψ′

n (w)
) − p′n

)
.

Notice that when ψn (w) takes an interior solution, p′m(w + ψn (w)) = p′n(w); and otherwise

ψ′
n (w) = −1. Either condition implies that

(r + δ) p′n = −(pn − wp′n − 1)wp′′n
θ

+ p′′n · (γ + δ)w + p′n (γ + δ) +
λ2σ2

2
p′′′n , (D.8)

which takes the exact same form as in (C.1).

Now let qn (w) = pn (w)−wp′n (w), i.e., the marginal q that captures the investment benefit.
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We have

(r + δ + ξn) qn(w) = μn +
(qn(w) − 1)2

2θ
+ ξmqm (w + ψn (w)) + (γ − r)wp′n (w) +

λ2σ2

2
p′′n

(r + δ + ξm) qm(w + ψn (w)) = μm +
(qm(w + ψn (w)) − 1)2

2θ
+ ξnqn (w) +

(γ − r) (w + ψn (w)) p′m (w + ψn (w)) +
λ2σ2

2
p′′m (w + ψn (w))

Recall that the first-best pair
(
qFB
n , qFB

m

)
solves the system⎧⎨⎩ (r + δ + ξn) qFB

n = μn + (qFB
n −1)2

2θ + ξnq
FB
m

(r + δ + ξm) qFB
m = μm + (qFB

m −1)2

2θ + ξmq
FB
n

.

Suppose that there exists some points so that pn is convex. Pick the largest w̃ such that

p′′n (w̃) = 0 but p′′n (w̃−) < 0, and p′′(w) ≤ 0 for w ∈ (w̃, w). If ψn (w̃) is interior, then

k = p′n (w̃) = p′m (w̃ + ψn (w̃)) , p′′n (w̃) = p′′m (w + ψn (w))
(
1 + ψ′

n (w̃)
)

= 0,

Clearly, if p′′m (w + ψn (w)) = 0, then

(r + δ + ξn) qn(w̃) = μn +
(qn(w̃) − 1)2

2θ
+ ξmqm (w̃ + ψn (w̃)) + (γ − r) w̃k

(r + δ + ξm) qm(w̃ + ψn (w̃)) = μm +
(qm(w̃ + ψn (w̃)) − 1)2

2θ
+ ξnqn (w̃) + (γ − r) (w̃ + ψn (w̃)) k

Since a positive k will imply that qn > qFB
n and qm > qFB

m , we must have k < 0. Then

evaluating (C.1) at the point w̃, we obtain

λ2σ2

2
p′′′n (w̃) = (r − γ) p′n (w̃) = (r − γ) k > 0.

This is inconsistent with the choice of w̃ where p′′ (w̃) = 0 but p′′(w̃ + ε) < 0. Notice that the

above argument applies to the case p′′m (w + ψn (w)) > 0.

Now we consider the case 1+ψ′
n (w̃) = 0 but p′′m (w + ψn (w)) < 0. We first rule out the case

of p′n (w̃) = 0. Otherwise, given p′n (w̃) = 0 and p′′n (w̃) = 0, qn(w) admits a constant solution

qn which solves the quadratic equation

(r + δ + ξn) qn = μn +
(qn − 1)2

2θ
+ ξmqm (w̃ + ψn (w̃)) ;
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notice that for all w at state n, the constant solution implies that after the regime switching

qm takes the constant value qm (w̃ + ψn (w̃)). This is inconsistent with our upper boundary

conditions.

Therefore we must have p′n (w̃) > 0 and p′′′n (w̃) < 0 according to the above argument. In

the neighborhood of w̃ find two points w̃ − ε < w̃ < w̃ + ηε where ε, η are positive, such that

p′′n (w̃ − ε) > p′′n (w̃) = 0 > p′′n (w̃ + ηε), but (w̃ − ε) p′n (w̃ − ε) = (w̃ + ηε) p′n (w̃ + ηε) = k > 0.

Therefore,

(r + δ + ξn) qn(w̃ − ε) = μn +
(qn(w̃ − ε) − 1)2

2θ
+

ξnqm (w̃ − ε+ ψn (w̃ − ε)) + (γ − r) k +
λ2σ2

2
p′′n (w̃ − ε) , and

(r + δ + ξn) qn(w̃ + ηε) = μn +
(qn(w̃ + ηε) − 1)2

2θ
+

ξnqm (w̃ + ηε+ ψn (w̃ + ηε)) + (γ − r) k +
λ2σ2

2
p′′n (w̃ + ηε) .

Because 1 + ψ′
n (w̃) = 0, the difference in qm will be dominated (since it is in a lower order) by

the difference in p′′n’s. Now since p′′n (w̃ − ε) > p′′n (w̃ + ηε), it implies that qn(w̃−ε) > qn(w̃+ηε).

But because qn(w̃ − ε) − qn(w̃ + ηε) = pn (w̃ − ε) − pn(w̃ + ηε) < 0, contradiction.

Now consider the case where ψn (w̃) is binding at −w. Take the same approach; notice

that in this case the points after regime switching are exactly 0. Therefore the same argument

applies, and pn (·) is strictly concave over the whole domain [0, wn]. Q.E.D.
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Figure 1: The investors’ scaled value function p (w). The solid line is the concave investors’
scaled value function p(w). The dotted line corresponds to the first-best neoclassical setting:
pFB (w) = qFB −w, where the corresponding Tobin’s q is qFB = 2.27. The baseline parameters
are r = 0.1, γ = 0.101, μ = 0.4, σ = 0.6, λ = 0.8, l = 0.5, and θ = 15. The payment boundary
is w = 3.46. and p(w) is maximized at ŵ = arg max p (w) = 0.72.
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Figure 2: Marginal q versus Average q.The solid line corresponds to the average qa(w) =
p (w) + w. The dashed line gives the marginal qm(w) = p (w) − wp′ (w). Note that average
q is greater or equal to marginal q. The dotted line gives the benchmark (Hayashi) result,
where average q and marginal q are equal and independent of financial slack w. The baseline
parameters are r = 0.1, γ = 0.101, μ = 0.4, σ = 0.6, λ = 0.8, l = 0.5, and θ = 15.
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Figure 3: Investment-capital ratio. The solid line plots the investment-capital ratio i(w) as
a function of financial slack w. The dotted line is the first-best investment-capital ratio iFB.
Investment-capital ratio is lower than iFB at all levels of w. The degree of underinvestment is
lower for higher level of w. The baseline parameters are r = 0.1, γ = 0.101, μ = 0.4, σ = 0.6,
λ = 0.8, l = 0.5, and θ = 15.

51



0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−0.05

0

0.05

0.1

0.15

Marginal q
m

=p(w)−w×p’(w)

Investment/Capital Ratio

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−0.05

0

0.05

0.1

0.15

Average q
a
=p(w)+w

Investment/Capital Ratio

0 0.5 1 1.5 2 2.5 3 3.5
−0.05

−0.04

−0.03

−0.02

−0.01

0

Financial Slack w

Investment/Capital Ratio after Controling q
a

Figure 4: Investment-capital ratio, marginal q, average q, and financial slack w. The
top panel shows the linear relationship between i(w) and marginal q. The mid panel shows the
monotonically increasing relationship between i(w) and average q. Investment is more sensitive
to average q when financial slack is higher. The bottom panel plots the relationship between
î(w), investment-capital ratio after controlling for average q, and financial slack w. Investment
responds negatively with increase in financial slack when financial slack is low, and responds
positively with increase in financial slack when financial slack is high. The baseline parameters
are r = 0.1, γ = 0.101, μ = 0.4, σ = 0.6, λ = 0.8, l = 0.5, and θ = 15.
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Figure 5: Comparative statics. The left column gives the comparative static results with
respect to λ, and the right column provides the comparative static results with respect to the
volatility parameter σ. Within each column, the first and the second row correspond to the
analysis for the investors’ scaled value function p (w) and the optimal investment-capital ratio
i (w), respectively. The baseline parameters are r = 0.1, γ = 0.101, μ = 0.4, σ = 0.6, λ = 0.8,
l = 0.5, and θ = 15.
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Figure 6: Renegotiation proofness. The baseline parameters are r = 0.1, γ = 0.101,
μ = 0.4, σ = 0.6, λ = 0.8, l = 0.5, and θ = 15. The original scaled value function p (w)
is not renegotiation-proof, because p′ (0) > 0. For the renegotiation-proof contract, wRP is
the lower bound for the agent’s scaled continuation payoff w, with the following properties:
p

(
wRP

)
= p (0) = l, and p′

(
wRP

)
= 0. The value function pRP (w) solves the ODE (16)

subject to the boundary conditions (17)-(18) and the above stated conditions at wRP .
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Figure 7: Scaled investors’ value functions pn(w) and change of the agent’s scaled
continuation payoff upon regime switching (l1 = l2). The upper panel plots scaled
investors’ value function p1(w) and p2(w) when the output price is low and high, respectively.
The lower panel plots ψ1(w) and ψ2(w), the discrete changes of the agent’s scaled continuation
payoff when output prices changes. The parameters are r = 0.1, γ = 0.101, θ = 15, μ1 = 1,
μ2 = 1.1, σ = 0.6, λ = 0.8, l1 = l2 = 0, ξ1 = ξ2 = .1. In the first-best case (with the same output
price process), qFB

1 = 2.39 and qFB
2 = 2.52. The upper payment boundaries are w1 = 3.62,

and w2 = 3.68, in the low and high output price state, respectively. When w is sufficiently low
(w ≤ .0532 in this example) and output price is high, a drop in output price from v2 to v1 leads
to immediate liquidation. This corresponds to ψ2(w) = −w for w ≤ .0532.
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Figure 8: Change of the investment-capital ratio when output price switches. The left
and the right panel plot the change of the investment-capital ratio, when output price increases
from low to high, and decreases from high to low, respectively. The solid lines give the total
change due to change of output price. The dashed lines plot the change holding w fixed. The
dash-dotted lines are the changes of investment-capital ratio when output price changes in the
neoclassical benchmark (without agency). The parameters are r = 0.1, γ = 0.101, θ = 15,
μ1 = 1, μ2 = 1.1, σ = 0.6, λ = 0.8, l1 = l2 = 0, ξ1 = ξ2 = .1.
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