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1 Introduction

This paper estimates capital adjustment costs using an Euler-equation methodology. As

in the recent literature, our model incorporates various forms of capital adjustment costs

intended to capture the rich nature of capital adjustment at the plant-level. Our goal here

is to characterize these adjustment costs, which are important for understanding both the

dynamics of aggregate investment and the impact of various policies on capital accumulation.

Our estimation strategy searches for parameters which minimize ex post errors in an

Euler equation. This strategy is quite common in models for which adjustment occurs in

consecutive periods. Here, following Pakes (1994) and Aguirregabiria (1997), we extend

that logic to the estimation of parameters of dynamic optimization problems in which non-

convexities lead to extended periods of investment inactivity. We do so in the context of the

capital adjustment problem.

This paper thus makes two contributions. First, we obtain parameter estimates for capital

adjustment costs. Second, we obtain these estimates using a new methodology.

The paper begins by specifying the dynamic optimization problem at the plant-level. This

problem is used to generate the Euler equation that underlies our empirical analysis. The

empirical strategy is then laid-out in some detail. We provide some results using simulated

data to guide us in terms of the choice of instruments and also in dealing with problems of

censored observations.

Finally, estimates of adjustment costs using plant-level data for two sectors (transporta-

tion and steel) from the LRD are reported. Like other methodologies for estimating adjust-

ment costs, the Euler equation based approach used here finds evidence of both quadratic

and non-convex adjustment costs. As in the simulated method of moments estimated re-

ported in Cooper and Haltiwanger (2006), the estimated profit function exhibits significant

curvature, reflecting market power, and quadratic adjustment costs are relatively small. The

Euler-equation approach finds less irreversibility and larger disruption costs than Cooper
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and Haltiwanger (2006) for the two sectors we study.

2 Model

The dynamic optimization model draws upon the results reported in Cooper and Haltiwanger

(2006). The dynamic programming problem is specified as:

V (A,K) = max{V i(A,K), V a(A,K)}, ∀(A,K) (1)

where K represents the beginning of period capital stock and A is the profitability shock.

The superscripts refer to active investment “a,” where the plant undertakes investment to

obtain capital stock K ′ in the next period, and inactivity “i,” where no investment occurs.

These options, in turn, are defined by:

V i(A,K) = Π(A,K) + βEA′|AV (A′, K(1 − δ)) (2)

and

V a(A,K) = max
K ′

Π(A,K)λ− pb(I > 0)(K ′ − (1 − δ)K)

+ ps(I < 0)((1 − δ)K −K ′) −
ν

2

(

K ′ − (1 − δ)K

K

)2

K + βEA′|AV (A′, K ′)

(3)

The model includes three types of adjustment costs which, as reported in Cooper and

Haltiwanger (2006), are the leading types of estimated adjustment costs. The first is a

disruption cost parameterized by λ. If λ < 1, then any level of gross investment implies that

a fraction of revenues is lost. The second is the quadratic adjustment cost parameterized by

ν. The third is a form of irreversibility in which there is a gap between the buying, pb, and
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selling, ps, prices of capital. These are included in (3) by the use of the indicator function

for the buying (I > 0) and selling of capital (I < 0).

Assume the profit function has the following form

Π(A,K) = AKα. (4)

This is a reduced-form profit function which can be derived from an optimization problem

over flexible factors of production (labor, materials). The parameter α will reflect factor

shares as well as the elasticity of demand for the plant’s output. Here A is a plant-specific

profitability shock.1

The first-order condition for the investment decision is

p(I) + ν

(

K ′ − (1 − δ)K

K

)

= βEA′|AV2(A
′, K ′) (5)

where p(I) = pb if I > 0 and capital is purchased and p(I) = ps if I < 0 and capital is sold.

Here the expectation is with respect to A′. The uncertainty is thus over the future marginal

profitability of capital as well as the likelihood of adjustment.

The left side of (5) is the marginal cost of adjustment. The right side is the expected

marginal gain and includes the effects on both the intensive (the amount of capital) and

extensive (to adjust or not) margins. Yet, the right side of (5) appears to ignore the effects

of the choice of K ′ on the probability of adjustment. This is correct since the effect of

capital adjustment on the probability of adjustment is evaluated just at point of indifference

between adjusting and not adjusting. That is, for each K ′, there are critical values of A which

characterize the boundaries between adjustment and non-adjustment. Though variations

in K ′ influence these boundaries, since the boundaries are points of indifference between

1In the actual empirical implementation, A will have both a plant-specific and a common component.
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adjustment and no-adjustment, there is no effect on the value of the objective function.2

In models without non-convex adjustment costs, investment activity occurs each period.

Estimation of adjustment cost and profit function parameters then follows the procedure

introduced by Hansen and Singleton (1982). Ex post errors are calculated using observations

on capital and profit flows. Then parameters are estimated using orthogonality conditions.

The challenge is to use that approach when investment activity does not occur each

period. It is not possible to use (5) directly since the marginal value of capital is not

observable.

To evaluate (5) ex post, we expand the EA′|AV2(A
′, K ′) term until the plant’s next episode

of capital adjustment is observed. With non-convex adjustment costs, λ < 1, adjustment will

generally not occur each period. We then replace expectations with realizations to calculate

the ex post errors from the Euler equation.

To see how this works, suppose the plant adjusts in two consecutive periods, t and t+ 1.

Then the ex post error, denoted εt,t+1, from (5) is

εt,t+1 = ν
It

Kt

+ p(It) − β

[

λΠ2(At+1, Kt+1) + p(It+1)(1 − δ) + ν(1 − δ)
It+1

Kt+1
+
ν

2

(

It+1

Kt+1

)2
]

(6)

where It = Kt+1 − Kt(1 − δ). The first two terms here are the period t marginal costs of

capital and the remaining terms are the marginal gains for the next period, including the

marginal profitability and the marginal effects on adjustment costs next period.

Of course, not all plants adjust every period. It is not appropriate due to selection bias

to estimate parameters based solely on plants that choose to adjust in consecutive periods.3

2We thank Borghan Nezami Narajabad, Jean-Michel Grandmont and Guy Laroque for questions which
lead to this explanation of (5). While the policy function, K ′(A, K) is not continuously differentiable at a
point of indifference between activity and inactivity, the right side of (5) is a conditional expectation of the
marginal value of capital and thus these points of non-differentiability are of measure zero. Put differently,
EA′|AV (A′, K ′) =

∫

adjust
V a(A′, K ′) +

∫

inactive
V i(A′, K ′). The effect of changes in K ′ on the boundaries of

the sets of action and inaction disappear as the values of action and inaction are equal at these boundary
points.
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Thus we need a more general condition which allows estimation of the structural parameters.

In general, if the plant adjusts in period t and subsequently in period t+ τ , then the ex

post error, denoted εt,t+τ , from the first-order condition is

εt,t+τ = ν
It

Kt

+ p(It) −

τ−1
∑

i=1

βiΠ2(At+i, Kt+i)(1 − δ)i−1 − βτλΠ2(At+τ , Kt+τ )(1 − δ)τ−1

−βτ

[

p(It+τ )(1 − δ)τ + ν(1 − δ)τ It+τ

Kt+τ

+
ν

2

(

It+τ

Kt+τ

)2

(1 − δ)τ−1

]

.

(7)

From this general expression, the first term on the right is the marginal cost of adjust-

ment and the second term is the gain in profitability in the period of adjustment. During

the periods between adjustment, there is an effect of capital accumulation on marginal prof-

itability. Finally, in the period of the next adjustment, i.e. when the spell of inactivity ends,

there is a final term reflecting the effects of Kt+1 on the marginal adjustment cost in period

t + τ . Note that the non-convex adjustment cost, λ, appears in (7), at the end of the spell

of inaction. In addition, both the price of capital in the period of the initial adjustment and

in the next adjustment are included as well.

As in the estimation of quadratic adjustment cost models, the ex post errors should

not be predictable. In the next section we discuss estimation of all parameters, including

the non-convex adjustment cost parameter using the orthogonality restrictions generated by

optimization.

2.1 Extension

One extension worth considering is enriching the structure of non-convex adjustment costs

so that they apply to only a subset of investment choices. So in this section we assume that

3We later characterize this bias.
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the non-convex adjustment cost is incurred iff K ′ ∈ Σ(A,K) where Σ(A,K) is a subset of

the capital state space. So, for example, if we assume that the non-convex adjustment costs

apply iff the investment rate, I
K

, exceeds a critical level, ῑ, then Σ(A,K) is the set of K ′

such that K ′ ≥ ῑK + (1 − δ)K.

In the previous discussion, we set ῑ = 0. With ῑ > 0, the optimization problem becomes

V (A,K) = max{V i(A,K), V o(A,K)} (8)

The superscripts refer to active investment “i”, for in, where the plant choosesK ′ ∈ Σ(A,K),

and “o”, for out, where K ′ ∋ Σ(A,K) . These options, in turn, are defined by:

V i(A,K) = max
K ′∈Σ(A,K)

Π(A,K)λ− Ci(K,K ′) + βEA′|AV (A′, K ′) (9)

and

V o(A,K) = max
K ′∋Σ(A,K)

Π(A,K) − Co(K,K ′) + βEA′|AV (A′, K ′) (10)

All of the differentiable adjustment costs are captured in Cj(K,K ′) for j = i, o. They

are indexed by i, o so that we can model them as we wish. In one case, we might assume

that the costs are the same regardless of whether K ′ ∈ Σ(A,K) or we may assume these

costs apply only if K ′ ∈ Σ(A,K) so that Co(K,K ′) ≡ 0.

In deriving the first-order condition, which we need for the Euler equation, it is necessary

to know if the constraint binds in the current and next periods.

Suppose the constraint K ′ ∈ Σ(A,K) does not bind in the current period. The first order

condition is then
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C
j
2(K,K

′) = βEA′|AV2(A
′, K ′) (11)

for j = i, o indexing the two cases in the current period.

As in the development of (5), the key is to first expand the right side of (11) by substi-

tuting for V (·) to create an Euler equation. Then we calculate the ex post error.

As long as the constraint does not bind in the next period, βEA′|AV2(A
′, K ′) can be

separated into its two components and the derivative calculated using(8). Assuming we

know ex post that the constraint did not bind and also know whether K ′ ∈ Σ(A,K), we

have two ex post errors to consider, j′ = i, o.

In this first case, there is adjustment in the current period of type i or o followed by

adjustment in the second period with K ′ ∈ Σ(A,K). This leads to the following ex post

error.

εt,t+1 = C
j
2(Kt, Kt+1) − β[λΠ2(At+1, Kt+1) + Ci

1(Kt+1, Kt+2)]. (12)

In the second case, there is adjustment in the current period of type i or o followed by

adjustment in the second period with K ′ ∋ Σ(A,K). This leads to the following ex post

error.

εt,t+1 = C
j
2(Kt, Kt+1) − β[Π2(At+1, Kt+1) + Co

1(Kt+1, Kt+2)]. (13)

Again, for both of these cases, the constraint does not bind in either period. This allows us

to construct these conditions without a multiplier.

If there is unconstrained investment in period t but period t+1 is constrained, then these

conditions cannot be used. Instead, we search forward for period t+ τ where investment is

not constrained and then we compute εt,t+τ depending on whether the period t+τ investment

is for j = i, o.

To implement this in a sample, we need to classify the investment rate along two dimen-

sions:
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• is Kt+1 ∈ Σ(At, Kt) or Kt+1 ∋ Σ(At, Kt)

• is the Kt+1 ∈ Σ(At, Kt) constraint binding or not

We only use observations where the constraint does not bind. This is the value of the second

classification. The first classification is relevant for determining which {disruption,differentiable}

adjustment costs to use: {λ, Ci(Kt, Kt+1)} or {1, Co(Kt, Kt+1)}.

There are again three key requirements for the estimation. First, the ex post errors

must be composed of either data or parameters. Second, we must be able to determine

Kt+1 ∈ Σ(At, Kt). Third, we need to know if the constraint Kt+1 ∈ Σ(At, Kt) binds.

The Monte Carlo and estimation discussion which follows assumes ῑ. We return to this

extension in our concluding comments.

3 Euler Equation Estimation

Pakes (1994) argues that the logic of Hansen and Singleton (1982) can be applied to the esti-

mation of the structural parameters in a dynamic discrete choice problems. The application

in Pakes (1994) is investment coupled with an exit decision. Aguirregabiria (1997) considers

a dynamic labor demand model. Here we discuss the estimation of the capital accumulation

problem drawing on those contributions.

Using (7), we can compute the ex post errors between adjustment periods. The optimiza-

tion condition of the firm from (5) imposes structure on these errors. Optimality implies

that the period t expectation of the ex post errors should be zero:

Eτ |t[εt,t+τ ] = 0 (14)

for all t.4

4To construct (5) from (14) to requires the use of (7) for all τ along with the associated probabilities that
adjustment occurs in period t + τ .
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Here the expectation is conditional on all variables known in period t. The variable τ

indicates the period of the first active capital adjustment after period t. Of course, in period

t, τ is not known since the adjustment decision following period t is state dependent.

The estimation of the structural parameters comes from the condition that εt,t+τ ought to

be uncorrelated with period t and prior variables. This orthogonality comes from expanding

the right side of (5) which incorporates the uncertainty over the future realizations of the

shocks and thus the future choices of whether to adjust and, if so, by how much.

Using a vector of N variables predetermined in period t, zt, the following orthogonality

condition can be used in a GMM estimation procedure.

Eτ [ztεt,t+τ ] = 0. (15)

The sample analog of this condition is

m =
1

n
Z ′ε(X, θ) = m(θ) (16)

where n is the number of observations (investment spells), Z is the matrix of N variables

over T periods, and ε(X, θ) are the ex post errors calculated using the sample data, X, and

the parameter vector of interest, θ.

The minimum distance estimator is the θ̂ that minimizes

s = m(θ̂)′W−1m(θ̂)

=
1

n2
[ε(X, θ̂)′Z]W−1[Z ′ε(X, θ̂)]. (17)

Hansen (1982) showed that for this estimator, the optimal choice for W is
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WGMM = Var (Z ′ε(X, θ))

=
1

n2
Z ′ΩZ (18)

where Ω = E[εε′]. If the errors are uncorrelated, W can be estimated as shown by White

(1980) using the following equation.5

(

1

n

)

S0 =
1

n

[

1

n

T
∑

t=1

ztz
′
tε(xt, θ̂)

2

]

. (19)

Finally, the estimated asymptotic covariance matrix of the GMM estimator is

V (θ̂) =



G(θ̂)

(

Z ′Ω̂Z

n2

)−1

G(θ̂)′





−1

(20)

where G(θ̂) = ∂m(θ̂)

∂θ̂
is numerically computed.

4 Monte Carlo

Before estimating this model, we construct a simulation-based exercise. There are a number

of goals of this experiment. First, there is the issue of checking the methodology to be sure

that we can consistently estimate the parameters of interest.6 Second, there is the issue of

instruments. One can solve (17) for any instruments and, at least in theory, obtain consistent

parameter estimates. In practice, it is useful to find instruments that are effective across a

broad range of parameterizations. This can be achieved by simulating different models of

adjustment costs and evaluating alternative instrument sets.

5There is an unresolved issue concerning a correction in the case where the errors are correlated. Because
the “observations” in this estimation are spells of different length it is not immediately apparent how to
apply a correction similar to that of Newey and West (1987).

6This is partly a test of our programs and partly an evaluation of the logic associated with this extension
of the method of Euler-equation estimation.
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Third, the estimation strategy outlined above assumes that all investment spells are

complete: for all plants adjusting in period t, there is a τ such that adjustment is observed

in period t+τ . In practice, spells may not all be complete. In that case, there are two issues.

The first concerns the extent of the bias associated with estimation from completed spells

only. The second is the development of a correction which is consistent with the dynamic

optimization approach.

4.1 Creation of simulated dataset

A data set is simulated in the following steps. First, the structural parameters of the model

are chosen and the investment policy functions of the dynamic programming problem are

obtained through value function iteration. The parameters of interest in this exercise are

those that can be estimated with GMM: Θ = {α, ν, λ, ps}.
7

We consider three different parameterizations of Θ in order to assess the properties of

the estimation procedure. The first case, Θa = {0.6, 2, 1, 1}, includes only a quadratic cost

of adjustment. The second case, Θb = {0.6, 0.2, 0.95, 0.98}, adds asymmetry between the

buying and selling prices of capital and disruption costs. This parameterization results in

a much higher rate of inactivity due to the introduction of the non-convex costs associated

with adjustment. The final case, Θc = {0.6, 0.2, 0.8, 0.98}, has a much larger disruption

cost and therefore leads to more inactivity. This parameterization most closely matches the

estimates of Cooper and Haltiwanger.

The other structural parameters of the model are chosen to be similar to those used by

Cooper and Haltiwanger.8 The frequency of the model is annual, so the discount rate, β, is

set at 0.95. The profitability shock, A, consists of an aggregate shock and an idiosyncratic

shock. Each of these shocks follows a log-normal autoregressive process. The aggregate

7In this exercise, we normalize pb = 1 and we have chosen not to focus on estimating the discount rate, β,
at this point. In the estimation on manufacturing data, we may include an interest rate to allow for variation
in the discount rate.

8These estimates are discussed in Cooper and Haltiwanger (2006).
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shock process has a persistence of 0.75 and the innovation to this process has a standard

deviation of 0.05. The idiosyncratic shock process has a persistence of 0.88 and the standard

deviation of the innovation is 0.3. The depreciation rate, δ, is 0.07.

The simulated panel data set is created by using the investment policy functions in

conjunction with the randomly drawn innovations to the two profitability shock processes.

The data consists of observations on the shocks, investment, capital and profits. This allows

us to construct the ex post errors in (7).

For these exercises, each data set contains 200 plants, the size of an average manufacturing

sector. To explore the small sample properties of this estimation method, results are reported

for 3 sample lengths: 19 periods, 50 periods, 100 periods.9

4.2 Parameter estimation

The parameter vector Θ is estimated by minimizing the weighted sum of squared moments

statistic in (17). Two different sets of instruments are used to examine the impact of alterna-

tive instruments on the precision of the estimates. The first set of instruments is composed

of current and once-lagged values of the state variables of the dynamic programming prob-

lem along with a constant; Z1,t = {1, At, At−1, Kt, Kt−1}. The second set of instruments

consists of current and once-lagged variables that are observed in the actual data. The

variables include the investment rate ( I
K

), the profit rate ( π
K

), and the capital stock (K);

Z2,t = {1, It

Kt

,
It−1

Kt−1
, πt

Kt

,
πt−1

Kt−1
, Kt, Kt−1}.

The estimates are obtained using a two-stage procedure. In the first stage, an identity

matrix is used to weigh the moments, and the simplex algorithm is used to obtain the

parameter estimates. These first stage estimates are used to estimate a weighting matrix,

W , based on the White specification. This weighting matrix is then used in the second stage

estimation.

9The actual data set that is used for estimation in Section 5 contains 19 periods.
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An important issue in the estimation is accounting for incomplete spells in the data set.

Non-convex adjustment costs in the form of disruption costs and asymmetry between the

prices of buying and selling capital result in periods of inaction for plants. The moment

condition underlying this GMM estimation is based upon the expectation taken across ex

post errors for all plants that adjusted in a given period. Therefore, if there is a plant that

adjusted in a given period but did not adjust again before the end of the sample, then the

ex post error expressed in (7) cannot be computed.

For the first set of estimates, we control for incomplete spells by only using observations,

dated by the beginning of an investment spell, from periods prior to the first period in which

there is an observed incomplete spell for any of the plants. This is an ex ante selection

criteria. Since (14) holds for all the adjusting plants and all have complete spells, the data

reproduces this ex ante condition. In the next section, we explore different ways of adding

in observations with incomplete spells to create more data points.

The first set of results are shown in Tables 1, 2, and 3, corresponding to the three param-

eterizations being considered. For each estimation exercise, 1000 data sets were simulated.

The parameter estimates reported in the tables represent the mean of the estimates from

the 1000 data sets. The standard deviation of the estimates is reported in parentheses.

The results in Table 1 show that the GMM estimation procedure performs well in the

case with only quadratic adjustment costs, Θa, even in the smallest sample exercise. In this

case, the true value of the production function parameter, α, is 0.6, and the scalar on the

quadratic adjustment cost, ν, is set at 0.2. Using the first instrument set, Z1, the means of the

parameter estimates across the 1000 samples of 200 plants and 19 periods are {ᾱ1,19, ν̄1,19} =

{0.600, 1.971}. The respective standard deviations across the 1000 parameter estimates are

{0.025, 0.136}. Due to the discrete nature of the value function iteration solution, there are

some situations where firms choose to remain inactive. The average number of periods before

the first incomplete spell is initiated is 13.6 (listed in the “uncensored periods” column). The
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average number of complete investment spells (observations) across datasets is 2615. All

complete spells starting on or after the date on which the first incomplete spell in initiated

are dropped.

Increasing the number of periods in the sample from 19 to 100 leads to a slight improve-

ment in the estimates. The estimate of α is essentially unchanged while the mean estimate

of ν is now 1.991. The standard deviations across both parameter estimates decreases by

more than two-thirds in comparison to those from the smaller samples. The average number

of observations in a sample is 18214.

The lower portion of Table 1 shows estimation results obtained using the second instru-

ment set. The results here are almost identical to those in the upper panel. The mean

estimate of ν in the largest data set, 1.978, is slightly further away from the the true value

than that reported in the upper panel, but the difference is less than one standard deviation.

Table 2 shows results for the case where the true parameter vector is Θb = {0.6, 0.2, 0.95, 0.98},

which includes both a non-convex adjustment cost and irreversibility through a capital price

asymmetry. Here we see evidence that the size of the sample strongly affects the average

and the precision of the estimates. In the smallest sample exercise, the mean parameter

estimates using instrument set Z1 are {ᾱ1,19, ν̄1,19, λ̄1,19, p̄s1,19} = {0.63, 0.24, 0.89, 1.02} with

respective standard deviations of {0.11, 0.26, 0.32, 0.26}.

The imprecision of the estimates is due in large part to the length of investment inactivity

induced by the non-convex adjustment costs. After omitting all periods beginning with the

earliest observed incomplete spell, the average number of periods used in the estimation

is only 4.4 and the average number of observations is 320. In the largest sample exercise,

the mean parameter estimates are {ᾱ1,100, ν̄1,100, λ̄1,100, p̄s1,100} = {0.602, 0.198, 0.946, 0.978},

which are very close to the true value of Θb = {0.6, 0.2, 0.95, 0.98}. The precision of these

estimates is also much improved as the average number of uncensored periods increases to

84 and the average number of observations is not 6207. The respective standard deviations
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Table 1: GMM Estimates of Θa from Monte Carlo Exercise
uncensored

α ν T periods obs.
Θa 0.6 2.0

GMM estimates using 0.600 1.971 19 13.6 2615.2
instrument set Z1 (0.025) (0.136)

0.601 1.988 50 44.6 8584.1
(0.014) (0.074)

0.601 1.991 100 94.6 18214.2
(0.009) (0.047)

GMM estimates using 0.600 1.964 19 13.6 2615.2
instrument set Z2 (0.025) (0.129)

0.600 1.977 50 44.6 8584.1
(0.014) (0.072)

0.601 1.978 100 94.6 18214.2
(0.009) (0.044)

Reported estimates are the mean value across estimates from 1000 simulated datasets. Stan-
dard deviations of the estimates are reported in parentheses. Each sample contains 200
plants. T denotes the length of the sample period. The last two columns report the mean
number of periods in the sample before the first incomplete spell begins and the mean num-
ber of observations (completed spells) in the GMM estimation. Denoting T̄ as the period in
which the first incomplete spell is initiated, all completed spells initiated in periods t ≥ T̄

have been excluded from the estimation.
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are {0.019, 0.050, 0.054, 0.046}.

The mean parameter estimates obtained using instrument set Z2, shown in the lower

portion of Table 2, are very similar to those based on Z1. The precision of these estimates,

however, is much improved. The respective standard deviations of the estimates using the

smallest sample are one-third to two-thirds the size of those based on Z1. In the largest sam-

ple, the standard deviations for the four parameter estimates are {0.014, 0.019, 0.044, 0.016},

representing a reduction of over 50 percent for the estimates of ν and ps.

Table 3 shows results based on the parameterization that most closely matches the esti-

mates of Cooper and Haltiwanger, Θc = {0.6, 0.2, 0.80, 0.98}. This parameterization has a

much larger disruption cost, λ = 0.8, than in the previous case. The larger disruption cost

leads to more inactivity and longer observed incomplete spells, which translates into greater

imprecision of the estimates due to the number of periods that must be excluded from the

estimation. The mean parameter estimates in the smallest sample exercise when using in-

strument set Z1 are {ᾱ1,19, ν̄1,19, λ̄1,19, p̄s1,19} = {0.61, 0.10, 0.1.17, 0.89}. The high degree of

impression is reflected in the respective standard deviations of {0.28, 0.42, 1.33, 0.57}. After

controlling for incomplete spells, the average number of periods in the sample is now only

1.8 periods and the average number of observations is 63. In the largest sample exercise,

the mean parameter estimates are {ᾱ1,100, ν̄1,100, λ̄1,100, p̄s1,100} = {0.595, 0.189, 0.827, 0.967}.

These mean estimates are not as close to the true values as the comparable estimates in

Table 2, which is a reflection in part of the of greater impression of the estimates. The

average number of uncensored periods is 76.6 and the average number of observations is

2841, approximately 30 percent fewer observations than in Table 2. The respective standard

deviations are {0.034, 0.059, 0.127, 0.074}.
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Table 2: GMM Estimates of Θb from Monte Carlo Exercise
uncensored

α ν λ ps T periods obs.
Θb 0.6 0.2 0.95 0.98

GMM estimates using 0.627 0.239 0.894 1.019 19 4.4 320.5
instrument set Z1 (0.108) (0.260) (0.321) (0.257)

0.603 0.197 0.943 0.979 50 35.2 2583.6
(0.030) (0.081) (0.090) (0.075)

0.602 0.198 0.946 0.978 100 84.5 6207.7
(0.019) (0.050) (0.054) (0.046)

GMM estimates using 0.621 0.180 0.877 0.968 19 4.4 320.5
instrument set Z2 (0.071) (0.103) (0.231) (0.085)

0.604 0.194 0.938 0.978 50 35.2 2583.6
(0.020) (0.031) (0.070) (0.026)

0.602 0.197 0.945 0.978 100 84.5 6207.7
(0.014) (0.019) (0.044) (0.016)

Reported estimates are the mean value across estimates from 1000 simulated datasets. Stan-
dard deviations of the estimates are reported in parentheses. Each sample contains 200
plants. T denotes the length of the sample period. The last two columns report the mean
number of periods in the sample before the first incomplete spell begins and the mean num-
ber of observations (completed spells) in the GMM estimation. Denoting T̄ as the period in
which the first incomplete spell is initiated, all completed spells initiated in periods t ≥ T̄

have been excluded from the estimation.
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Table 3: GMM Estimates of Θc from Monte Carlo Exercise

uncensored
α ν λ ps T periods obs.

Θc 0.6 0.2 0.80 0.98

GMM estimates using 0.610 0.099 1.170 0.894 19 1.8 63.2
instrument set Z1 (0.275) (0.422) (1.332) (0.572)

0.598 0.195 0.823 0.979 50 25.7 953.6
(0.067) (0.125) (0.253) (0.159)

0.595 0.189 0.827 0.967 100 76.6 2841.6
(0.034) (0.059) (0.127) (0.074)

GMM estimates using 0.622 0.095 0.700 0.904 19 1.8 63.2
instrument set Z2 (0.120) (0.148) (0.434) (0.167)

0.595 0.185 0.808 0.966 50 25.7 953.6
(0.029) (0.044) (0.125) (0.047)

0.599 0.195 0.808 0.975 100 76.6 2841.6
(0.017) (0.027) (0.072) (0.030)

Reported estimates are the mean value across estimates from 1000 simulated datasets. Stan-
dard deviations of the estimates are reported in parentheses. Each sample contains 200
plants. T denotes the length of the sample period. The last two columns report the mean
number of periods in the sample before the first incomplete spell begins and the mean num-
ber of observations (completed spells) in the GMM estimation. Denoting T̄ as the period in
which the first incomplete spell is initiated, all completed spells initiated in periods t ≥ T̄

have been excluded from the estimation.

The estimates obtain using instrument set Z2, shown in the lower portion of Table 3, are

much more precisely estimated and the mean estimate is much closer to the true value in the

largest sample. The standard deviations of the four parameter estimates are less that half

the size obtained using Z1 in the smallest sample. In the largest sample exercise, the mean

parameter estimates are {ᾱ2,100, ν̄2,100, λ̄2,100, p̄s2,100} = {0.600, 0.196, 0.806, 0.976}, which are

very close to the true values of Θc = {0.6, 0.2, 0.8, 0.98}. The standard deviations are roughly

half the size of those obtained with Z1. One potential explanation for the improved results

using Z2 is that Z2 contains two more variables than Z1. With the additional variables,
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Z2 may provide more explanatory power than Z1. However, instrument set Z1 contains the

current and once-lagged values of the state variables of the dynamic programming problem,

which should be the only pieces of information needed to summarize the information set of

the plant.

4.3 Summary of Findings

The simulation exercise leads to two conclusions. First, the methodology works: for large

enough samples, the minimization of (17) reproduces the structural parameters underlying

the simulated data. This is true for all three of the parameterizations. Second, instrument

set Z2 produces more precise estimates. This is good news in that most data sets will not

have the realized values of shocks as in instrument set Z1. The variables in instrument set

Z2 are more likely to be available.

However, there is one issue highlighted in this exercise: the dependence of the results on

large samples. For the cases of non-convex adjustment costs and irreversibility, the point

estimates were quite far from the true values when we used only 19 periods and the standard

errors were quite large. This is an issue for empirical application since the plant level data

we use for the estimation of the model has only 19 years.

In order to use this method for short data samples, we will need to incorporate the

incomplete spells into the empirical analysis. We turn to this point next before describing

empirical results.

5 Sample Selection and Incomplete Spells

The estimation procedure for the previous exercises employed a particular procedure for

selecting the sample. The data used for the estimation was T̄ periods long. This critical

period, T̄ had the property that all plants who invested up to and including period T̄ invested

again in the sample. All periods beginning with the earliest observed incomplete spell (period
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T̄ + 1) were omitted from the estimation. This is an ex ante selection device and, with a

large enough sample, does not lead to any bias.

This criteria, however, often leads to several periods being omitted in which all investment

spells initiated in those period are completed by the end of the sample. It also excludes

observations in which plants invested in two consecutive periods. Further, this exercise

excluded all incomplete spells.

In this section we discuss alternatives. The first are other sample selection procedures.

As we shall see, they do not produce unbiased estimates for the small sample.

Then we propose a methodology for dealing with incomplete spells within our estimation

procedure. The idea is to use the parameter estimates to characterize the marginal value of

capital and thus calculate an ex post error for all plants.

5.1 Alternative Sample Selection Criteria

We could have implemented other ways to create a sample based on complete spells. We

discuss two approaches.

One procedure selects plant-year observations in which investment occurs in two consec-

utive periods. This selection has an advantage of allowing the researcher to use conventional

Euler-equation estimation techniques since, by construction, the data set does not include

any inaction. The drawback is that this is an ex post selection procedure and leads to bias.

The row labeled “Consecutive” in Table 4 shows the results of this selection procedure

when there are 19 periods. The second row of the table, labeled “Complete” are the re-

sults reported in Table 3 for the 19 period sample. Compared to the “Complete” case, the

“Consecutive” selection has almost twice as many observations. In this sense, this procedure

uses more of the data. Yet, clearly the selection of observations of consecutive adjustment

generates parameter estimates quite far from truth, Θc.

The row labeled “All” in Table 4 goes a step further and includes all complete spells. So,
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relative to the sample selection used in the “Complete” case, all would include investment

spells which started after T̄ and were concluded within the 19 periods. The sample size

increases to about 417 on average. Yet, once again, because of the ex post nature of the

sample selection, the results still show considerable bias.

5.2 Controlling for incomplete spells

We propose a methodology for controlling for incomplete spells in the estimation procedure.

The difficulty introduced by incomplete spells is that the ex post error expressed in (7)

cannot be fully evaluated. However, the structure of the dynamic programming problem

can potentially be used to approximate the unobserved portion of the incomplete spell by

estimating the marginal value of capital.

We consider a multi-stage method for estimating the structural parameters, retaining

the assumption that A is observed. We then turn to version of the procedure to deal with

unobserved shocks.

In the first stage of this methodology, parameter estimates are obtained from (17) by

including all complete spells as observations in the estimation. This first stage is the same

as the “All” treatment in Table 4. We denote these first stage estimates as Θ1. Assuming

that we have obtained all of the other structural parameters of the model from other sources,

we then solve the dynamic programming using Θ1. From this solution, we can compute the

expected derivative of the value function that appears in the first-order condition of the

investment decision expressed in (5). This expected derivative is a function of the current

profitability shock and the capital stock resulting from the investment decision in the current

period, conditional on the parameterization Θ1.

ψ(A,K ′; Θ1) = EA′|AV2(A
′, K ′; Θ1) (21)

This function can then be evaluated using observations of A and K ′ = (1 − δ)K + I from

22



the final period of the sample, and ex post errors for all incomplete spells can be computed

using the following specification.

εt,incomplete = ν
It

Kt

+ p(It) −
T−t
∑

i=1

βiΠ2(At+i, Kt+i)(1 − δ)i−1 (22)

−βT−t+1(1 − δ)T−tψ(AT , KT+1,Θ).

A second stage estimation including all complete and incomplete spells results in param-

eter estimates Θ2. This process can be repeated by computing ψ(A,K ′; Θ2) and obtaining

a third stage estimate, Θ3. Additional repetitions can be computed until estimates of Θ

converge.

Table 4: Dealing with a Small Sample
α ν λ ps T obs.

Θc 0.6 0.2 0.8 0.98
Complete 0.610 0.099 1.170 0.894 19 63.2

(0.275) (0.422) (1.332) (0.572)

Consecutive 0.532 0.003 0.902 0.141 19 137.5
(0.335) (0.125) (0.633) (0.664)

All 0.646 0.143 0.609 0.939 19 417.1
(0.128) (0.219) (0.355) (0.293)

Incomplete 0.5809 0.1769 0.8228 0.9594 19
(0.0355) (0.0474) (0.1028) (0.0531)

The results are shown in row “Incomplete” of Table 4. Though the sample is only

19 periods long, the parameter estimates are quite close to truth and are estimated fairly

precisely. This procedure clearly dominates the other for this sample.

6 Estimation

The estimation takes the procedures outlined above to plant-level manufacturing data. The

LRD data set is described in some detail in Cooper and Haltiwanger (2006). Some pertinent
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aspects of the data are summarized Table 5, taken from that paper.

The approach in Cooper and Haltiwanger (2006) is to use these moments in a minimum

distance estimation exercise. In doing so, for each vector of structural parameters, the

dynamic programming problem was solved through value function iteration, a data set was

simulated and moments were calculated. In addition, a fixed discount factor was assumed

through the analysis.

Table 5: Moments from the LRD
Variable LRD

Average Investment Rate 12.2% (0.10)

Inaction Rate: Investment 8.1% (0.08)

Fraction of Observations with Negative Investment 10.4% (0.09)

Spike Rate: Positive Investment 18.6% (0.12)

Spike Rate: Negative Investment 1.8% (0.04)

Serial correlation of Investment Rates 0.058 (0.003)

Correlation of Profit Shocks and Investment 0.143 (0.003)

The approach taken here is much faster as it does not require repeated solution of the

dynamic programming problem. There is a considerable increase in the speed of the estima-

tion exercise, though, in contrast to the approach of matching the moments in Table 5, the

estimation requires access to the actual data rather than summary moments.

The estimation uses (17). As discussed in Cooper and Haltiwanger (2006), the LRD

provides enough information to measure all the components of the second instrument set.

There are two difficulties posed by estimating the parameters of the model from the LRD.

First, there is the relatively short sample length of 19 periods. This is again why we focused

on the behavior of the estimates for short samples. Consequently, extending the approach

to deal with incomplete spell is quite important to increase the number of data points.

Second, the analysis thus far assumes that Ait is observed. This is relevant for our ability

to estimate λ from (7). Since measured profits would include λ, it is necessary to construct

marginal profitability directly from observations on (Ait, Kit). Thus we need to measure
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Table 6: 371 Results
parameter GMM estimate SMM estimate

λ 0.64 (0.11) 0.68
α 0.80 (0.02) 0.78
ν 0.0016 (0.02) 0.051
ps 0.93 (0.06) 0.81

stat 135.3

profitability at plant-level.

The estimation procedure has multiple stages to deal with the fact that Ait is not ob-

served. The procedure is as follows:

• guess α, λ and infer Ait from observed revenues at the plant-level

• estimate ρa, σa, ρε, σε from Ait

• fill in for incomplete spells using the procedure outlined in section 5.2

• use (Kit, Ait, Iit) as data to calculate ex post errors in (7).

• estimate parameters using (17) and the Z2 instrument set

• use new parameter estimates in revenue function to extract new Ait

• iterate

6.1 Transportation (371)

Our initial results for this sector are reported in Table 6. These results were obtained

using the procedure outlined above for complete spells only. Estimation of the model

incorporating incomplete spells is in process.

The first column of the table shows the results the GMM estimation of the Euler equa-

tion. We find evidence of curvature in the profit function and a substantial disruption cost
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associated with changes in the capital stock. The estimated quadratic adjustment cost is

quite small and there is some irreversibility.

The second column shows the results reported in Cooper and Haltiwanger (2006) using

a SMM approach. For this sector, the results are fairly similar qualitatively across the two

approaches. The parameter estimates of α and λ are quite close. One big difference in results

is the larger estimate of irreversibility in the SMM approach.

6.2 Steel (331)

Following the procedures described in section 6.1, we estimated the parameters for Steel,

sector 331. The results are reported in Table 7. As with the results for sector 371, we

curvature in the profit function, relatively low quadratic adjustment costs, and substantial

disruption costs. Once again, the Euler-equation approach does not find the substantial

irreversibility detected in the SMM approach.

Table 7: 331 Results
parameter GMM estimate SMM estimate

λ 0.48 (0.05) 0.7
α 0.89 (0.01) 0.66
ν 0.000 (0.06) 0.015
ps 0.9911 (0.07) 0.76

stat 36.0

7 Conclusions

This paper had two purposes. The first was to analyze a methodology for using the logic

of Euler-equation estimation, as in Hansen and Singleton (1982), to settings in which ad-

justment is infrequent. Our analysis indicates how these procedures can estimate underlying

adjustment costs, including those that create the inaction. We have used a simulation en-

vironment to identify powerful instruments and to guide us in the analysis of incomplete
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spells.

The second part of the paper takes this approach to plant-level data for U.S. manu-

facturers. There we are successful in estimating the parameters of the model for complete

spells.10 The parameter estimates are qualitatively similar to those reported in Cooper and

Haltiwanger (2006). One important difference is in the estimates of the irreversibility, which

are much smaller in the Euler-equation-based approach.

As this research proceeds, we plant to supplement the estimation in two dimensions.

First, as developed in Section 2.1, it is possible to analyze a model in which the non-convex

adjustment costs are incurred for investment rates above a critical value, ῑ. Thus far, we

have set that value at 0. One way to proceed is to estimate the model for different values of

ῑ and compare the specifications by how well they match the moments.

Second, the empirical analysis has focused on the ex post Euler-equation errors. But we

have ignored additional information contained in the fact that in some states, the optimizing

plant chooses inaction over action, V i(A,K) > V a(A,K). There are two ways to use the

information contained in this inequality. One is to see how well the estimated model matches

the data along this dimension. The second is to formally incorporate these inequalities into

the estimation.11

Finally, there are numerous other applications of this methodology. One in particular

arises in dynamic choice problems with occasionally binding constraints, such as borrowing

restrictions. The Euler equation does not hold in periods where the borrowing constraint

binds. By the logic of the approach taken in this paper, the parameters of the optimization

problem can be estimated by looking over periods in which the constraint does not bind.

10Extending the estimation to incomplete spells is in process.
11This is related to the procedures described in Pakes, Porter, Ho, and Ishii (2006).
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