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Individual Productivity Differences in Scientific Research:

An Econometric Exploration of Publications by French Physicists

Laure Turner and Jacques Mairesse

ABSTRACT

An empirical regularity has often been observed in economics of science: productivity
differences among researchers are extremely large and persistent, and a prolific minority of
scientists produces most of the publications and accounts for most of citations in almost all
research fields. In this study, we investigate to what extent such dispersion and persistence
can be accounted by three types of factors in so far as we can measure them: individual
variables, mainly age and gender, career stage variables, and laboratory variables. Does
individual scientific productivity significantly drop off as scientists become older and more or
less advanced in their careers? Is it strongly related or not to career promotions and to the
productivity and quality of the laboratories in which scientists work? Even if these factors
prove quite significant, is it nonetheless the case that individual productivity differences
remain largely unaccounted by them, and that they have to be mostly imputed to unobserved
individual circumstances and characteristics, or so called “individual effects”? To answer
such questions, we have put together a twelve year panel database for 465 condensed matter
physicists working in the French public research organization CNRS, and we have specified
and estimated a simple econometric model for both “productivity” and “quality”, respectively
measured by the number of publications per scientist per year and by the corresponding

average citation impact of these publications.



Introduction

In the sociology of science, and more recently in economics of science, an empirical
regularity has been found in numerous studies: research productivity is highly variable among
scientists and productivity differences persist over the life cycle of given cohorts. Since
Lotka’s seminal article (Lotka, 1926), it has been repeatedly observed in almost all scientific
fields that the distribution of publication counts is very dispersed, persistent and left-skewed,
and that, consequently, a prolific minority of scientists produces most of the publications. In
the data collected on French physicists presented below, the 25% more productive of them in
a given year publish four or more articles, contributing to about 77% of the total number of
publications, while the 25% less productive in that year publish no articles: see the frequency
and cumulative frequency histograms and the concentration curve of the productivity
distribution in Figure 1. Moreover, as can been seen in Table 1, about two third of the group
of the 25% more productive researchers over the first six years 1986-1991 stay in this same
group over the six following years 1992-1997, only less than 3% dropping down in the group
of the 25% less productive, and likewise the same ranking stability is observed for the group
of the 25% less productive researchers in the first six years period. (Insert here a Footnote
on cumulative advantage: Laure?% of publications of the 66% we remaining top

quartile and low quartile in the two subperiods : do we see anything ??)

Very dispersed and persistent distributions of productivity can be an issue for science
policy and for the allocation of resources to research. The efficiency of knowledge production
in public research has been challenged because up to half of the papers in a research field are
published by a much smaller proportion of scientists (20% in our case-see concentration curve
in Figure). Does the reason lie in an unequal distribution of talent among researchers? Are
there some cumulative phenomena at play so that initial success (failure) leads to permanent
high (low) productivity? Do research incentives influence the propensity to publish or are
scientists pushed forward by some innate and unobservable aptitude for creativeness? A better

understanding of the processes explaining scientific productivity is needed.

In order to gain this understanding, we built a longitudinal database containing the
publications of French physicists for a 12 year period from 1980 to 1997. Our goal was to
empirically explore hypotheses formulated in Economics of Science about the determinants of

research productivity. A first hypothesis is that individual scientific productivity is related to



the research incentives in science. Incentives in research are specific in that they are to a
large extent non monetary and reputation based. Zuckerman(1992) identified the recipients of
about 3000 North American science awards in the beginning of the 1990s. They received their
prizes because they had been the first to discover and the first to publish, according to the
“priority rule” in science(Merton 1957). Successful researchers are more likely to obtain
further grants, be given more free time for their research and work in better laboratories than
scientists who had not received a reward. In this approach, non monetary incentives explain
the distribution of scientific outcomes by creating the conditions of a cumulative advantage
(David 1994). Empirically assessing the role of these cumulative advantages is beyond the
scope of this study, however, we will consider that promotions and laboratory affiliations
“reward” past productivity and are likely to have a lasting impact on future publication. Our
hypothesis is that promotion and membership in a dynamic laboratory with numerous
research collaborations will fuel the process of cumulative advantage and thereby increase a

researcher’s propensity to publish.

A second approach uses laboratory variables to capture contextual effects on
individual productivity. Long (1978) and Allison and Long (1990) underline the role of
prestigious academic affiliation in encouraging individual scientific productivity. Carayol and
Matt (2004) studied 80 laboratories belonging to a large French University and found a
correlation between individual productivity and the way in which work within those
laboratories was organized as measured by the ratio of permanent, teaching, doctoral and
post-doctoral researchers. Mairesse and Turner (2002) showed that geographical proximity,
size and the general productivity of laboratories positively influences co-publications in
laboratory networks. In this paper we will look at the influence of a laboratory’s global output
on individual performance, as well as the effect of its size and of its share of international

collaborations.

A third approach concerns the influence of individual variables on productivity such as
age (Diamond (1984), Levin and Stephan (1991)), gender (Stephan, 1998), and training in
prestigious university departments (Crane, 1965, Long, Alison and McGinnis, 1979).
Diamond (1984) and Levin and Stephan (1991) built life cycle models of the quadratic
relationship between age and productivity in order to explain why the number of publications
tends to decrease towards the end of a career. These authors wanted to know if the aging of

the United States scientific community was going to impact negatively on national scientific



output. In addition to these observable differences between individuals, we will also attempt
to account for “non measurables”, that is, the innate ability, intuition or motivation which has
been referred to as the “sacred spark™ (Cole et Cole (1973)) or a taste for “puzzle-solving”
(Levin and Stephan (1991)). Our model contains individual random effects in an attempt to
test for this idea that the real drive for doing research lies inherently in a person’s own

creativeness.

This paper simultaneously analyzes the influence of individual, laboratory and career
specific variables on scientific productivity. In the next section, we will describe the
longitudinal database built for that purpose, specify our model and estimation methodology.
In Section III we will present our results. The model shows that career incentives and
laboratory dynamism explain variations in research productivity to the same extent as
individual factors and that, consequently, science policy will make a difference to the

competitivity of a research system. Section IV draws the conclusions of our work.

I. Specification and Estimation Methodology

To our knowledge, few panel databases have been built to study scientific productivity. One
was built for the period 19912002 by C. Gonzalez-Brambila. It contains information on the age,
gender, year of PhD and the research field of members of the Mexican National System of
Researchers (SNI). Another was built by Levin and Stephan (1991) to study the North American
age/productivity relationship for the period 1973-1979. Our database contains the publications and
citations of 497 French physicists for the period 1986-1997 with information on laboratory affiliation,
job status, age, gender, pre-doctoral formation and career promotions. These combined features make
the data set relatively rich and original for studying scientific productivity. The data was obtained from
the Science Citation Index (SCI) an internationally recognized source for bibliometric studies

produced by the Institute for Scientific Information (ISI).

A. The Data

Productivity was measured using publication counts and two measures of publication quality
averaged per year and per researcher. The first is the impact factor of the journal in which an article is
published. A journal’s impact factor is obtained by calculating the number of citations received during

years T and T-1 by articles published during years T-1 and T-2, divided by the total number of articles



in the sample. The second is the number of citations given to an article'. This number is traditionally
considered in bibliometric studies as an indicator of an article’s impact. These measures are related as
follows: For individual i at date ¢, for journal j € J(it) and for the set of journals publishing papers

from i at t, let art be the number of articles and imp be the journal impact factor. The quantitative

Ait = Z artitj
je 7 (it)

measure of productivity in terms of article counts is The qualitative measure of

I; = Za”itj *imp i | Ay
productivity in terms of impact factors is JeJ i) . And finally the qualitative
measure of productivity in terms of citations is C; = the sum of citations in year t, t+1 and t+2 received
by the articles published by I at date t) / A;. We surprisingly found that the citation and journal impact
measures only correlated at 0.37 for our sample despite the fact that they are often viewed as
substitutes for one another when assessing publication quality. Also, the correlation of the quantitative
measure (article counts) with the impact factor quality measure is 0.36 and with the citation count
quality measure is 0.26. We consequently decided not to use a weighted measure of article counts by

quality because quantity and quality are clearly two distinct dimensions of scientific productivity.

The group of 497 physicists studied here represents almost all the CNRS? researchers working
in condensed matter physics (654 in 1996). This field was chosen for two reasons. First, it is a field of
pure basic science; journals with a strong reputation are clearly identifiable; the size of the field is
clearly defined; and there is very little mobility among researchers from public research to teaching or
to the private sector. Second, condensed matter research is growing quickly in France, was honoured
by the award of the Nobel Prize for Physics to Pierre-Gilles de Gennes in 1991, and currently accounts
for close to half of all French academic physics’. With respect to the scientists selected for inclusion in
our sample, they were all born between 1936-1960, however, they entered the CNRS at different
dates. 433 entered the CNRS before 1986, so we expected them to publish over the whole period of
our study between 1986-1997. 32 entered the CNRS after 1986 but had started to publish before that

date which meant that they too published articles over the entire period of our study. Between the

! We considered the citations received per article within two years. The period covered in the citation set is
therefore 1986-1994. On average, an article receives approximately 40% of its citations within two years
according to our data.

For the citations only, the sample is not made of 497 scientists but is a sub-sample of 352 researchers who were
born between 1936 and 1955 instead of 1936 and 1960. This is due to the timing of the data collection.

* The Centre National de la Recherche Scientifique (CNRS) is a public organization with 25,000 employees
(11,000 researchers and 14,000 engineers, technicians and administrative staff) Its mission is to carry out
fundamental research in all areas of knowledge. University researchers often belong to CNRS labs, however,
university research and CNRS research are institutionally two distinct areas of activity. therefore called “mixed
units”.

3 Condensed matter includes all states of matter, on various scales (atom, molecules, colloids, particles or cells),
between liquids and solids, in which molecules are relatively close. Its study is anchored in several experimental
traditions (crystallography, diffusion of neutrons and electrons, magnetic resonance imagery, microscopy, etc.)



year of their first publication and their entry at the CNRS, they were assigned the job status
that they received when hired. A final group of 32 researchers entered the CNRS too late to have
published over the entire period and were consequently eliminated from the sample. So in the end our
balanced sample contained 465 scientists for modeling publication count productivity. But for
modeling citation count productivity, we were only able to find data for 352 scientists. The range of
birth dates for these researchers was smaller than in the full sample, from 1936 to 1955 for the former

and from 1936 to 1960 for the latter.

B. Explaining Scientific Productivity

Individual research productivity was measured by the mean number of publications per year
per scientist, by the impact factor of journals averaged on the articles per year and per scientist, and by
the number of citations per article averaged per scientist and per year, which correspond to three sets

of regressions.

Table 1.1 indicates the main statistics for these variables as well as for the explanatory
variables used in the models. The 465 physicists in our sample published approximately 8000 articles
over the period 1986-1997, which corresponds to a mean number of 2.7 papers per researcher and per
year, with a standard error of 3. The annual number of articles published varies greatly among the
scientists, between 0 and 62, the maximum over the period. The mean proportion of researchers with
no publication in a year is 27%. The mean number of authors per article is 3.2, and the mean number
of pages is 5.5. The scientists are published in journals whose articles receive an average of 2.7
citations over two years. However, the quality of some journals is low — they receive almost no
citations — whereas others receive up to 21.5 citations for an average two year period. Approximately
32 000 citations (within two years) were received by the publications of the scientists studied, which
amounts to 3.5 citations per article, per researcher and per year on average over the period, with a

standard error of 6.
Sections 1, 2 and 3 which follow discuss the relative impact on scientific productivity of
individual factors, career incentives and context variables. Several methodological problems are

identified which are then examined in detail in section 4.

1. Individual variables

and theories (static physics). It also has close ties with industry around materials used in electronics, plastics,



Age

The age-productivity relationship is a major issue for sociologists and economists of science.
A negative relationship has been observed suggesting that young researchers are more productive than
older ones. According to L.ehman (1953), productivity is highest for scientists in their late thirties or
early forties, a little sooner in Mathematics and Theoretical Physics, a little later in Biology and
Geology (see also Cole, 1979). Life cycle models have been used by Diamond (1984), and Levin and
Stephan (1991) to look both at how research effort is allocated over time and at productivity levels at
the end of careers. Their conclusions confirm the decline of productivity over the life cycle. One
reason lies in the fact that scientists engage in research because of the financial rewards associated
with research activities. Retirement, of course, puts an end to that type of incentive. Finally, the
negative age/productivity relationship was verified in six sub-fields of physics and earth science
including solid state and condensed matter physics using panel data from the SCI and the Survey of
Doctorate Recipients for the period 1973-1979*. Bonaccorsi and Daraio (2003) studied how the age
structure of a research Institute affected its overall productivity. Evidence was once again found to
show that when the average age of a research population increases the Institute’s scientific
productivity declines.

In our study, the age dispersion of the sample is high, with an average age of 44.6 years and a
standard deviation of 8.0. The age/productivity relationship was studied for individual scientists and
our results were compared to those obtained by Levin and Stephan (1991). The age variable used in

our model is described in section 4.

Gender

Are rewards in science gender biased? It is appropriate to ask this question in our study
because men represent 82% of our sample. Several studies have concluded that women publish less
than men and that they earn less as well (see Stephan 1998). Zuckerman, Cole and Bruer (1991) show
that a process of cumulative advantages might explain why women constantly appear in the “outer
circle of science” because it amplifies an initial situation where women published less than men. But
in empirical studies, the relationship between gender and outcome is often biased because estimations
depend upon cross-sectional data which do not account for unmeasurable individual effects reflecting
personal motivation, talent or some other similar individual variable. Moreover, the samples are
generally not random but consist of successful scientists thereby introducing a selection bias as well.
Using panel data allows us to avoid these biases. For example, when Levin and Stephan (1998) used

panel data, they found that gender was not a significant determinant of salary changes in US academe

food or cosmetic gels, etc.
* This effect was not properly identified on previous cross-sectional studies, since they did not control for cohort
effects.



during the 1970°s. Gender is introduced as a dummy variable in our model, and is equal to 1 when the

scientist is a woman.

“Grande Ecole” dummy

A second dummy variable equal to 1 was used when a researcher had studied in a “Grande
Ecole” in addition to graduating with a PhD’. 16% of our sample did so. Among them, over 60%
belonged to the Ecole Normale Supéricure, 6% to the Ecole Polytechnique, 10% to the Institut
Supérieur d’Electronique du Nord, 6% to the Ecole Supéricure d’Electricité de Paris, and the
remainder to other Grandes Ecoles. We expect this dummy variable to have an effect on our measures
of individual productivity since different studies have shown the importance of pre-doctoral training in
explaining productivity differences in research (see for instance Long, Allison and McGinnis, 1979).
We assume that the knowledge, values, and scientific performance criteria learned during that period

will have a lasting positive impact on their work.

Individual heterogeneity

As mentioned above, a frequent hypothesis concerning scientific productivity is that it depends
upon some individual quality such as a “sacred spark” or a specific aptitude to be creative. We’ve
introduced random effects specific to individuals in order to test for what is often called in the
literature the “individual heterogeneity effect”. The estimation method we chose was determined by

the existence of a correlation between the random individual effects and the explanatory variables.
2. Career incentives

The researchers were distributed according to the evolution of their career so that we could
study the link between publication and promotion and more generally account for the role of
incentives in producing science. A researcher with a typical career profile enters the CNRS as a
“Chargé de Recherche” (CR), is then promoted to become a class 2 research director, (DR2) before
becoming a class 1 research director, (DR1). However, many researchers in our sample were never
promoted and remained in the same status during the observed period (respectively for the status CR :
46.7% of the sample, DR2 : 10.4%, DR1 : 3%). Almost 30% of the sample got promoted DR2. The

most difficult promotion to obtain is DR1: only 10% of the sample succeeded in obtaining it.

> In the French educational system, after students graduate from high school, they can either go directly to
University, or, if they have the grades, they can decide to write competitive exams for admission to France’s elite
schooling system, “les Grandes Ecoles”. Students admitted to a “Grande Ecole” have therefore gotten over two
hurdles: one concerning the quality of their high school grades which, if they are good enough, allow them to
take part in a two year training program in order to prepare their competitive exams; the other the exam itself. .



A descriptive study (Turner, 2003) of our sample has shown, for each year, a positive
relationship between publication and job status, however, there was no evidence of a linear
relationship between past publication and current position.. This is surprising because the CNRS tends
to reward publication with promotion®. Looking at the inverse relationship to see if promotion
constitutes an incentive to publish more did not produce any conclusive results. On average
researchers are just as productive after their promotion as they were before it. However, their
individual productivity varies as a function of status, age and time with older scientists publishing less

after promotion and younger scientists publishing more after a DR2 promotion.

Explanatory variables relating to career paths and promotion profiles were introduced into our
econometric model in order to determine the influence on publishing behaviour of being or not being
promoted. The variables were chosen to capture observed changes: The productivity of scientists who
were never promoted and who remained CR over the entire period of our study first increased with
time and then decreased as a result of possible discouragement. DR2 productivity remained constant
over time and was neither influenced by promotion incentives nor by their position in the job
organization of the CNRS. Finally, DR1 productivity decreased with tenure in the grade.
Consequently, we retained tenure in each grade as the career path variables and used dummies for the

grades DR2 and DR1". These decisions will be explained in more detail in section 4.

3. Context variables: laboratory and peer group effects

A second descriptive study of our data was carried out on collaboration among scientists
(Mairesse and Turner, 2002). We found that the dynamism of a laboratory as measured by its size,
overall productivity, quality of publications and intensity of international collaborations, influenced
the laboratory’s co-publication level. In this study, the impact of these same laboratory variables was
studied but, this time, our focus was on individual productivity. We assumed that belonging to a
dynamic laboratory will stimulate a researcher’s individual propensity to publish and consequently be
a factor of cumulative advantage. Because scientists will more easily gain peer recognition by working

in this type of laboratory, they will likely receive as well more resources for publishing.

The laboratories where researchers were working during 1997, the last year of our study, were

used to define their working context. The laboratory variables defined below were therefore time

® Traiter la 1q du referee suivante : The paper would benefit from contrasting the French
system with the U.S. system that is often studied. For example, it is my understanding that
there is less of a relationship between salary and productivity in France than in the U.S

7 Several tests of our data were carried out in order to control for the total number of years a scientist had been
working at the CNRS and for the impact of ending one’s career. Both factors were of less importance in
explaining productivity than the effect of tenure in a grade.
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invariant and some aggregated over the entire 12 year period of our study. More precisely, the

laboratory variables are the following:

v Size: the size of the laboratory is the total number of researchers in that laboratory in 1997
including University scientists affiliated to the lab. The size variable is also centered and squared
in order to measure quadratic effects.

»  Productivity of the laboratory : this was determined by taking the total number of publications

published by a laboratory for the whole period 1986-1997 and then subtracting from that sum the
number of publications over the period which were produced by each researcher considered
individually. We took the logarithm of this variable which we then used as a proxy measure for
defining the dynamism of the researcher context.

»  Quality of the laboratory: this was determined by taking the average impact factor obtained by all

the articles published by a laboratory over the whole period 1986-1997 and then subtracting from
that number the average impact factor obtained for the articles published individually by each
researcher for the period 1986-1997. Once again, we took the logarithm of this variable and used it
as a proxy measure for defining the quality of a researcher environment.

» Intensity of international cooperation: it is the proportion of articles written by the laboratory for
the whole period which are co-published with at least one foreign co-author (see Mairesse and
Turner, 2002).

» Region dummies: a dummy for the Grenoble region and the Paris region were introduced to
qualify the laboratories in 1997 because most of the physicists in our sample reside in those two
regions and most of the publications over the period were produced there. The Grenoble and Paris
regions include all the towns containing CNRS laboratories which are geographically situated less

than 100 km from these two cities.

The mobility of researchers is obviously important in correctly evaluating a “laboratory effect” and,
consequently, using only the 1997 laboratory affiliation of a researcher might seem inappropriate.
However, three reasons justify our decision. First, the mobility of researchers is in fact very low: over
the period of 18 years between 1980 and 1997, 55% of the researchers never changed laboratories,
33% changed only once, 11% changed twice, and 2% changed three times. Secondly, we analysed the
sub-set of all those scientists who never changed laboratories (55% of the total sample) and obtained
the same results as those obtained on the full sample. Finally, our model was confirmed by calculating
the average productivity, quality and international collaboration intensity of a laboratory for 6 years
and comparing the results with those obtained for 12 years. The results were the same in both cases.

We nevertheless added a dummy equal to one when the number of changes is more than one.

4 Data limitations : identification and endogeneity issues

11



Time, Age and Tenure effects: the well-known identification problem

Our statistics show a steady, yearly increase in the number of publications to the end of the
period which is age independent. We introduced time dummies in our regressions in order to account
for work environment or state of the art changes in condensed matter physics which might explain this

observation.

Levin and Stephan (1991) have argued that vintage effects should also be taken into account
when estimating the influence of age on productivity. In a model which did not account for individual
heterogeneity, they included vintage dummies that correspond to PhD cohorts. A cohort was
composed of all the researchers who received their PhD in a given year in order to capture the
influence of changes in research interests and employment opportunities on cohort productivity. For
our study, no such data was available so we replaced PhD cohorts with birth cohorts on the assumption
that individuals finish their doctoral training at approximately the same age in France. We then
estimated simultaneously the effect of age, time and birth on productivity but the three variables are
collinear and the identification is spurious. This well-known identification problem is hard to resolve
especially when using fixed effects, which is our case in this study. Consequently, we decided not to
control for the cohort effect in this paper. However, in another paper, Hall, Mairesse and Turner

(2005) have dealt specifically with this issue and have produced a solution using the same data.

Another identification problem arises when using age, tenure and career path variables.
Colinearity exists between age and tenure when researchers enter the CNRS at the same age. It also
exists between time and tenure in status because a significant number of researchers were never
promoted. This colinearity was particularly evident when the two variables were considered in
deviation from the means. Moreover, when fixed effects are considered, we can’t simultaneously
estimate correctly time dummies with age. We dealt with this identification problem by forming
groups of age and groups of tenure within job status. Taking the DR1 status as an example, the three
groups of tenure were 0-1, 2-5 and more than 5 years as DR1, the first group serving as the reference”
(see table I.1). In this way we were able to estimate the impact on productivity of long appointments as
CR, DR2 or DRI. The age groups were: group 1 (reference group), 26<=age<=38; group 2,
38<age<=45; group 3, 45<age<S1; group 4, Sl<=age<=61. These groupings went a long way in
breaking the colinearity between age and time and between tenure and time and we were consequently
able to estimate the influence of these two variables over time. However, in order to address the

specific issue of productivity peaks as a function of age we adopted another model’. This model uses

¥ For instance we estimate the effect on productivity of the dummy “spend 2-5 years as DR1” and “spend more
than 5 years as DR1” when the reference is “is a newly promoted DR1 (0-1 year as DR1)”.

® When we use age and age squared instead of age groups, the tenure estimates are similar and the tenure effects
are the same.

12



age and age squared variables as continuous variables and tests individually the impact of career path

variables and time dummies.

The endogeneity issue

Career stage variables and laboratory variables are likely endogenous. We have made
several econometric attempts to address this issue that are detailed in the next section of the
paper. However, the magnitude of the endogeneity bias is hard to determine. We will show
that when using regressions without laboratory variables the model’s estimates are robust.
Similarly, career stage variables appear to interact with age and time variables (likely because
of the identification problem mentioned above), but other estimates are robust to alternative
models with or without career stage effects (Tables 1.4 and IL5). Although our results are
non-conclusive, their discussion helps to shed light on the endogeneity issue thereby

illustrating the usefulness of our econometric model.

The next section presents the methodology used to estimate the model.

C. Methodology

To estimate the first equation in which the dependant variable is the number of articles, a
count variable, we need to estimate a Poisson model of productivity. We ran the estimations on the

hypothesis that the explanatory variables are strictly exogenous with respect to errors.

The model is the following, with i={1,..., N}, N=465, and t={1,...,T}, T=12:

E(yy|Xi. Z)=exp(u+Ziy+ X 5+ ;)
with y; ~ Poisson

(1

E(e |Xi) 70, E(05 1Z;) =0 (HI)

The variables in Z are stable across time but not across individuals and the variables in X vary
in both dimensions. The random individual effects are oy. We assume that the errors are not serially

correlated. But Hausman tests show that we cannot assume that individual effects are uncorrelated

13



with the explanatory variables. To solve this problem of the correlated unobserved individual effects
with the explanatory variables, we treat them as fixed effects in our estimation. Moreover, in order to
be able to estimate the coefficients of the time-invariant variables of the model, we assume that all the
correlation with the individual effects is due to the time-varying variables in X, and that the time-
invariant variables in Z are not correlated with the individual effects'. By doing so, we do not
estimate the raw effect of the time invariant variables. For instance, the estimation does not separate
the effect of gender from some unmeasured effects that might exist and be correlated to gender: the
number of children or maternity leaves, marital status, etc. The woman variable embodies the fact of
being a woman plus all the unmeasured correlated facts absent in the regression. Yet we believe that

the descriptive power of the variable remains high.

A consistent two step estimation was therefore used (TS in what follows). We estimate P in
(1) by the Conditional Maximum Likelihood Estimation (CMLE) used by Hausman, Hall and
Griliches (1984). In a second step, to estimate the coefficients of Z, we replace P by its CMLE

estimate and estimate equation (2) using the non linear least squares method :

Vie lexp(X 'y By=exp(u+ 7' ) + & )

We obtain consistent estimates of ¥ and |I. We ran the Two Step estimation (TS) as well as the
level estimation - the basic Poisson model (named TOTAL in what follows) — in order to assess the
size of the unobservables effect. Only the TS regressions take the individual effects into account. The

results are in table I1.1.
When the dependent variable is the average quality of the papers per researchers and per year —

measured by the impact factor or by the number of citations, the Poisson model is replaced by the log

linear model, since the dependant variables are continuous:

log (y;)=dum(y;; =0)+u +Z; 7+ X', B+, +uy, 3)

' We would not have been obliged to make (H1) hypothesis had our data provided satisfactory instrumental
variables - which it did not. Hausman and Taylor (1981) and Breusch, Mizon and Schmidt (1989) show that a
model like ours with individual effects exogenous but correlated with the regressors and time-invariant variables
can be estimated by the IV method using as intruments : [W;X1, W X2, BX1, Z1], where X1 is a subset of
variables X exogenous and uncorrelated with the individual effects, Wy is the « within » operator and By is the
« between » operator, X2 are exogenous but correlated with the individual effects, and Z1 is a subset of variables
7. exogenous and uncorrelated with the individual effects ; and with the number of X1 variables greater than the
number of Z2 (exogenous but correlated with the individual effects) variables.

14



The same Two Step method is used to estimate the time-invariant variables. We estimate P by the
WITHIN estimator. In a second step, to estimate the coefficients of Z, we estimate equation (4) using

the linear least squares method :
log ()~ X';, B=dum(y;, =0)+u + 7, 7+, +u,, )

The results are in table I1.2 for the impact factor and in fable 1.3 for the citations.

As mentioned, the career stage variables as well as the laboratory variables are likely endogenous
and we consequently made several attempts to address this issue. In particular we assumed that our
regressors were predetermined. During the first step in our estimation, we estimated the coefficients of
the time-varying variables X by the GMM on model (1) previously quasi-differentiated (Crépon and
Duguet 1997, Blundell et al. 2000). The estimates of the time-invariant variables 7 should then also
take into account the correlation with the individual effects. Yet the only instruments available are
transformations (lags) of our variables, and age and tenure are not informative. In any case, it is likely
that the dependent variable is sufficiently persistent to produce the weakness of our instruments. For
these reasons no other results are presented in this paper to control for endogeneity, only those which
concern regressions without carrier stage and laboratory variables. These results serve specifically for

discussing individual variable coefficients and age estimates (Table I1.4 and I1.5).

The next section presents the results of the three series of estimations, measuring the determinants

of publication, impact factor and citation respectively.

I1. Results

A.  The determinants of publication

This section describes successively the impact of individual, career stage and laboratory
variables on individual productivity assessed by the mean number of articles per year and per
researcher. We first describe the results obtained with the full model where age and career stage
variables are used as group dummies. We then focus on the coefficients of individual variables and

age estimates to discuss regression results which use neither career stage nor laboratory variables.
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1. Results for the full model

When looking at the age groups, the estimation suggests a quadratic relationship between the
age of the scientists and the average number of their publications per year. According to the
estimation, a researcher’s productivity increases between the first and the third age group, that is
before 50, and then declines after 51. More precisely, compared to the group of young researchers
aged 26 to 38, the group of researchers aged 39 to 45 publish an average of 0.26 papers more per year,
the group aged 46 to 50 publish 0.36 papers more, while the oldest group of researchers, aged 51 to
61, publish only 0.13 papers more per year.

The age effect is reinforced by a time effect according to which productivity increases with
time for all researchers. The scientists publish 0.9 paper more on average in 1991 than in 1986, and 1.6
papers more in 1996 than in 1986. This might suggest that the scientists are under increasing pressure
to publish or that they have more opportunities to do so because of an increase in the number of

scientific journals.

We also found a strong influence of the other individual variables on productivity.

The gender effect is important. All other variables being equal, a woman publishes almost 0.9
papers less than a man on average per year according to our estimate. This result needs to be examined
in more detail by doing a specific study on gender. If the estimates suggest that men are more
productive than women, they tell us nothing about why this might be the case nor about the true
abilities of women. And our estimation method does not allow us to distinguish the pure effect of
being a woman from all the related unmeasured “sociological” facts (number of children, marital

status, etc.) which impact as well on the value of the estimated coefticient.

The result of pre-doctoral training is puzzling. The scientists who were educated in a Grande
Ecole publish 0.7 papers more than the others per year on average, according to the TS regression. But
this figure amounts to 0.3 in the TOTAL estimation. In other words, if all other observable effects are
held equal, and all unmeasured effects are held equal as well, scientists who have been to a “Grande
Ecole” will publish 0.7 articles more each year than the other scientists. However, when unmeasured
effects are not held equal, a negative correlation is found between them and “Grande Ecole” and only
0.3 more papers are produced per year. We postulate that the “prestige” of the “Grande Ecole” system
in France is an important element in explaining this finding. Members of this system benefit from
Alumni networks which facilitate collaboration, promotion and mobility and probably make it easier

for them to publish. Of course, this hypothesis needs further investigation.
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The TOTAL and TS estimations give a different picture of the career stage variables
influence on productivity. In the TOTAL estimation, DR1 publish 1.5 papers more on average per year
than CR researchers and a DR2 scientist 0.5 papers more. Whereas in the TS estimation, the DR2
coefficient is not statistically significant (-0.1), and the DR1 coefficient is negative, the DR1 publishes
on average 0.8 papers less than a CR. Reaching the DR1 grade has a negative impact on productivity
according to the TS regression which suggests that all other effects being equal, if “talent” was equally
distributed a DR would be less likely to publish than a CR (TS estimates); but if we take into account
the positive correlation of “talent” with the grade variable, a DR publishes more on average per year

than a CR scientist (TOTAL estimates).

The tenure estimates give more details on career influence on productivity. According to the
TS regression, a scientist who has been DR1 for more than 5 years publishes 1.3 papers less on
average than a newly promoted DR1 researcher. This means that the impact on productivity of being
DR1 diminishes as the number of years spent in the grade increases. Consequently, the incentives to
publish appear to be lower with time for those researchers who have reached the higher status.
Although one reason is no doubt an increased number of administrative tasks, this result holds all
other variables being equal, in particular the talent among the DR1. The higher TOTAL estimates
suggest that talent is positively correlated with tenure among DR1, which is what one would expect
given that time in the grade obviously means early promotion, all other things being equal. Taking this
correlation into account reduces the effect of tenure by almost two times: according to the TOTAL
estimates, a scientist who has been DR1 for more than 5 years publishes 0.8 papers less on average

than a newly promoted DR1 researcher.

Similar effects can be observed for the DR2. A scientist who has been in that grade for 4 to 8
years publishes 0.3 papers less on average than a newly promoted DR2, and a DR2 of the third tenure
group (>8 years as DR2) publishes 0.5 papers less on average than a newly promoted DR2 (TS
estimates). Again, it appears that the incentive to publish becomes lower as time spent in a grade
increases. But if we take into account the positive correlation of “talent” with tenure within the DR2
status, the effect of tenure as a DR2 on productivity is greatly reduced and becomes statistically non

significant.

Finally, according to the TS estimation, tenure has no effect on the productivity of the CR
researchers, but it has a negative impact according to the TOTAL estimation. This suggests that the
individual heterogeneity effects are negatively correlated to tenure as a CR. A discouragement effect

could be at play, small hope for promotion decreases propensity to publish.
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Concerning the laboratory effects, the results are the following. An individual is likely to be
more productive when the level of his colleagues’ productivity in the laboratory is high. We found
that in the case of a 10% rise in peer productivity, a scientist publishes an average of .27 papers more
than the number he would have published otherwise (+10% on average). Collaboration with foreign
laboratories also has a strong positive impact on individual productivity. When a laboratory has a 10%
rise in the proportion of papers co-published with foreign scientists, members of that laboratory
individually publish an average of 0.8 articles more per year (+30% on average). This result suggests
that forming centers of excellence in public research is likely to induce a better productivity of the

member scientists.

The size of a laboratory does not compensate for the peer effect. If a laboratory’s size
increases by 10%, a member of that laboratory will publish on average 0.09 papers less than the
number he would have published otherwise (-3% approximately on average). Nevertheless, our
estimates suggest that “talented” researchers are more likely to be affiliated with larger laboratories.
When we look at the dummy for small labs (DUMEF13), the TOTAL and TS estimates show a

negative correlation between unobserved individual effects and this variable.

The influence of the quality of a laboratory variable (or colleague’s productivity in terms of
quality) is open to question. The peer effect in terms of quality is almost non-existent and not
statistically significant in the TS regression. But the TOTAL estimate is strong, negative and
significant (-0.254), that is in the case of a 10% rise in the quality of a laboratory, a scientist could be
expected to publish on average 0.25 papers [ess than the number he would have published otherwise (-
10% approximately on average). Perhaps this finding suggests a substitution effect between quantity
and quality, in the specific sense that if a laboratory stresses the importance of quality, a member of
that laboratroy is more likely to publish less but his papers will have greater impact. As we will see in
the next two sections, the quality of an individual’s production is positively influenced by the overall

quality of the laboratory’s production.

2, Further results on the individual and age effects

As we explained above, different regressions were run in order to check for identification and
endogeneity biases when using career stage and laboratory variables on the one hand, and in order to
attempt to precisely locate at what age productivity peaks on the other hand. In these regressions,
continuous age and age-squared variables were used instead of age groups, and estimates of age,
gender and education were made without career and laboratory variables. In such a model, the time
dummies can no longer be correctly estimated, however, our interest was in the age estimates as we

said previously. The results are in Table I1.4 and I1.5.
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The first result is that the estimates of gender and education are robust to any changes in the
specification. As a matter of fact, dropping the career stage and lab variables has no significant effects

on the other coefficients. The lab variables also have no effects on the age estimates.

Now if we look at the productivity peak issue, both career stage variables and the way we
enter time dummies matter. The full model and the model without career stage, time and lab variables
(age only model) predicts quite precisely the peak location: the age-productivity relation is quadratic
and peaks at 54. The regression without the career stage variables results in a lower estimation of this
peak that occurs at 50. The regression without the time dummies estimates the location of the peak at
58. The curves illustrating the age/publication relation according to the TS estimation and
conditionally on the other variables are represented on graph I1.1. It includes the mean point of 2.7
papers at 44.6 years old. The “age only” model gives age estimates for which the closest are the
estimates given by the model without time dummies. All in all, we would conclude that the full model
is the more satisfactory for predicting the age period around the productivity peak but likely under-
estimates a little the age effect at the beginning of the career. For this reason, dropping the career stage
variables doesn’t help to improve the estimate, whereas the way time dummies are entered into the

model has an impact (see graph I1.1).

We compared our TS results to the ones obtained by Levin and Stephan (1991) for 182
scientists in solid state and condensed matter physics over 1973-1979 using a Tobit model with
correlated fixed effects and time dummies (model B in the paper). The mean number of papers is 3.8
over two years, which is slightly smaller than the average productivity in our sample but is still
comparable. The quadratic relation between age and publication is contirmed with a coefficient on age
of 2.41 and on age squared of -0.027 (publications are counted over two years). Yet, the life cycle
effect is stronger in their model, in the sense that their results imply a relation more quadratic then
ours. According to their model, the solid state and condensed matter physicists are productive between
33 and 57 years old, publishing 0.71 paper per year at 35 years old, a peak of 2 papers per year at 45,
and 0.72 paper at 55. The differences in the findings could in part be explained by the fact that the
specification of our model takes into account the career state of scientists and the count nature of the

data which contain a high proportion of zeros.

Finally, in all specifications it appears that the estimates in the TOTAL are lower than in the
TS. The correlation between unmeasured effects and age is positive. If unmeasured effects reflect
ability, then our estimates do not confirm the more or less common belief that ability to do innovative

work decrease with age.
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B.  The determinants of the average quality of journal publications

This section describes successively the impact of individual, career stage and laboratory
variables on individual productivity assessed by the mean impact factors averaged per year and per

researcher.

The results are presented in table 11.2. The most significant impact on the average quality of
journal publications is produced by the quality of the laboratory variable. In particular, individual
characteristics and career stage effects appear to be less important then previously observed when the

dependant variable was the mean number of articles.

The average quality of journal publications is negatively influenced by age and no obvious
quadratic relation emerges from the estimates of the age groups. The oldest researchers aged 51 to 61
publish in journals that receive an average of 0.3 citations less than journals used by the youngest
researchers. As previously, in an effort to better qualify this finding, we present the results of the
regressions in which the continuous age and age squared variables replaced the age groups, with and
without the carrier stage and laboratory variables, focusing on the coefficients of individual variables
and the age estimates. The TS regression for the full model shows a negligible increase in the impact
factor between 26 and 37, from 2.52 to 2.66. After 37, the average impact factor declines slightly and
is equal to 1.90 at 61. When the career stage variables are dropped, it has almost no effect on the age-
productivity relation, except that the peak occurs earlier at 35. Dropping the lab variables has no
significant impact. Dropping the time dummies changes the age-productivity relationship in a way
similar to the “age only” model and sets the productivity peak at 41 (the peak is at 39 with the “age
only” model). The curves illustrating the age/publication relationship according to the TS estimations

and conditionally on the other variables are represented on graph I1.2.

The gender and “Grande Ecole” variables are statistically significant and both influence in
the same way the quality of the papers published, but with a much smaller order of magnitude than the
one found in the previous regression on the number of articles. Women publish in journals that receive
on average (.10 citations less over two years than the journals in which men publish. Interestingly,
however, a positive correlation exists between the gender variable “woman” and “the individual
heterogeneity effects” that could possibly be interpreted as “personal motivation for accessing

recognized journals”.

The status and tenure variables have no statistically significant influence on the average

impact factor of the journals. Nevertheless, the TOTAL estimation shows as previously that “talent” is
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positively related both to status (whereby DR1 publishes 0.36 papers more on average than CR and
DR2 0.15 more) and to tenure among DR2.

The dominant effect here is the one of the quality of the laboratory. A 10% increase in the
quality of the laboratory increases the average journal impact factor of the members of that laboratory
by 0.58 within two years. The other laboratory effects are comparatively weak. A 10% increase in the
productivity of the laboratory decreases the impact factor by 0.05, suggesting a substitution effect
which is symmetrical to the one identified in the previous section. A productive environment may

stimulate individual productivity to the detriment of individual quality.

Finally, the size of the laboratory has a small negative impact on the quality of the
publications of its members, but at a decreasing rate, as shown by the positive size squared estimate.
Interestingly, the dummy for small laboratories has a high positive coefficient, which suggests that
being in small laboratories might favour the production of higher quality publications. This could be
related to the fact that small laboratories are often not equipped to do experimental work and therefore
produce more theoretical papers, however, this interpretation needs additional study because the
dummy for the Grenoble region is also positive and in this region, the infrastructure for

experimentation is highly developed.

The effect of time is not linear as previously. The estimates of the time dummies are negative
but show that the impact factor decreased until 1988, then increased afterwards until 1997 when it
approached the level of 1986, except for 1991 and 19%4.

C. The determinants of citations

The results of the estimation are shown in table 1.3 1.

It appears that age has a negative impact on the average number of citations per article, per
scientist and per year (received within two years), but this effect is not statistically significant,
according to the within estimates. The life cycle effect is therefore not robust in a model where

productivity is defined in terms of the annual number of citations received.

' As mentionned, the citations data have been available for a reduced sample. To compare what is comparable,
we ran the regression of the three productivity measures on the reduced sample. The results for the measure in
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Being a woman has a negative effect on citations, almost four times higher than on the impact
factor measure but almost two times smaller than the effect on publications. A woman gets 0.4
citations per article less than a man on average, all else being equal, according to the TS estimates.
Again, we find a positive correlation between the individual heterogeneity effects and the dummy
“woman”, suggesting that something like “personal motivation for quality” is related to gender (or to

its correlated unmeasured “sociological” variables).

The “Grande Ecole” effect is almost five times higher than in the impact factor model and
similar to the effect on publications (0.536). We also find again the positive effects on productivity

that we previously interpreted as being due to “personal network”™ or “prestige”.

The effect of status is the same as in the model estimated on the number of articles. All other
effects being equal, if “talent” was equally distributed a DR would be less likely to be cited than a CR
(TS estimates — note that they are not statistically significant); but if we take into account the positive
correlation of “talent” with the status variable, a DR1 receives 1.0 citations more on average per paper

per year than a CR scientist and a DR2 (.35 citations more (TOTAL estimates).

Concerning the tenure variables, the number of citations is negatively influenced by the time
spent in the DR1 grade. The number of citations over a two year period for a paper by a DR1 in the
tenure group 2 will be on average 0.6 citations less than the number of citations received by a paper
from a newly promoted DR1 (tenure group 1), and as high as 1.2 for a DR1 in group 3. Yet “talent” is

positively correlated to longer tenure in DR status.

Among the laboratory variables, we find a positive effect of the quality of the laboratory’s
publications on individual productivity. An increase of 10% in the quality of a laboratory’s
publications means that members of that laboratory will receive 0.3 citations more per article per year.
The peer effect in terms of quantitative productivity has no statistically significant effect on the
annual number of citations received in the TS regression and a negative effect in the TOTAL
regression. As was the case for the impact factor measure, we might be observing a substitution of
quantity for quality because the laboratories that are publishing the most are not the ones getting the
highest number of citations. A strong impact of international openness can be noted: when the
proportion of co-published work with foreign countries increases by 10%, laboratory members receive
0.8 citations more per article per year. Finally, the size effect is slightly positive and at an increasing

rate (resp. marginal impacts: 0.053 and 0.018).

terms of articles and for the measure in terms of impact factor are the same than those which have been
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ITII. Conclusion

This article has explored the differences in productivity among scientists in public research,
both in terms of the number of articles and the quality of publications. We use a unique longitudinal
data base, concerning French condensed-matter physicists between 1986 and 1997. Three sets of
factors have been considered as determinants of research productivity: individual variables such as
age, gender and education; variables such as status and tenure describing the incentive mechanisms at
work in a scientific institution; and, finally, laboratory variables for assessing context and work

environment.

Individual variables have a strong impact on productivity. The mean number of publications
tends to decrease with age at the end of a career, however, this “life cycle effect” does not seem to
have a negative impact on the average number of citations received per year. Gender also has an
impact — women publish less than men and get cited less as well — so does the fact of being admitted
to a highly selective pre-doctoral education program. That said, institutional factors can be just as
important as individual factors. Being a member of a highly productive laboratory which co-publishes
frequently in international networks clearly stimulates an individual’s propensity to publish. Finally,
our results suggest that promotion might be an incentive to publish whereas long tenure in a grade, and
especially in high grades, has a negative impact on productivity. Yet we must take into account the

endogeneity of that variable to assess the causality.

The work presented here is currently being developed in several directions. One is to account
for the fact that career stage and laboratory variables may be endogenous. discuss further the
econometric issues of identification and of endogeneity biases, and the limits of the present
exercise Another is to focus more precisely on certain variables. In Hall, Mairesse and Turner (2005)
we concentrate on age, cohorts and period effects addressing the identification problem. The gender
issue needs a closer examination as well, in order to better isolate what is specifically feminine in
scientific practice and to better understand how women become a part of a citation network, how they
build a reputation for themselves and the extent to which their past performance impacts upon their
promotion and institutional affiliations. Finally, our last direction of research is aimed at building an
econometric model for assessing the influence of peer and laboratory context on individual scientific

productivity.

described.
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o The graphs for the other cohorts are not reproduced since they show the same results.

e Cohorts of scientists are in this study “age cohorts” and not “PhD cohorts” as in most studies. For

more details see section LA.

Figure 2
1992/1997 | First quartile of | Second quartile of | Third quartile of | Last quartile of | Total
researchers’ researchers’ researchers’ researchers’
productivity : the productivity productivity productivity : the
1986/1991 | most productive less productive
researchers researchers
Quartile 1 65.5% 23.3% 8.6% 2.6% 100%
Quartile 2 22.3% 44.7 % 22.3% 10.7% 100%
Quartile 3 8.2% 28.1% 40.5 % 23.1% 100%
Quartile 4 2.6% 9.5% 21.6% 66.4% 100%
Total 100% 100% 100% 100% 100%

e Similarly persistence is found when we cross periods 198071985 and 1986/1992, and also periods

198071985 and 1992/1997.




Table L.1

Standard 3rd
Mean | Error [Median|lst Qrt| Qrt | Min | Max
Dependent variables
[Number of articles per year 2.69 | 3.21 2 0 4 0 62
}/lvaf;rage impact factor per article per researcher and per 266 | 230 | 254 0 33 0 12148
Average number of citations (within 2 years) per article 350 | 6.10 5 0 48 0 161
per researcher and per year
|Extensions
Average number of authors per article (harmonic) 393 | 257 333 0 490
1 25
Average number of pages per article 548 | 463 54 0 783
0 58
Individual variables + Time Dummies
AGE 44.65| 8.03 45 38 51 26 61
fge group 1 025| 044 | 0 | 0 | 1
26<=age<=38 0 1
Age group 2
025 043 0 0 0
38<age<=45 0 1
Age group 3
023 | 042 0 0 0
M S<age<51 0 1
AAge group 4 027 | 044 | 0 0o | 1
51<=age<=61 0 1
L 0.17 | 0.38 0 0 0
|Education in a “Grande Ecole” 0 1
0.18 | 0.39 0 0 0
Gender 0 1
. 0.13 | 034 0 0 0
[More than one mobility 0 1
Career stage variables
Status (CR_0) 0.59 | 049 0 1 1 0 1
Status (DR2_0) 0.08 | 0.28 0 0 0 0 1
Status (DR1_0) 033 | 047 0 0 1 0 1
[Tenure in status CR group (0-10 years) 021 ] 041 0 0 0 0 1
[Tenure in status CR group 2 (11-18 years) 0.19 | 0.39 0 0 0 0 1
[Tenure in status CR group 3 (>18 years) 0.18 | 0.39 0 0 0 0 1
[Tenure in status DR2 group 1 (0-3 years) 0.13 | 0.33 0 0 0 0 1
[Tenure in status DR2 group 2 (4-8 years) 0.10 03 0 0 0 0 1
[Tenure in status DR2 group 3 (>8 years) 0.10 0.3 0 0 0 0 1
[Tenure in status DR1 group 1 (0-1 year) 0.03 | 0.18 0 0 0 0 1
[Tenure in status DR1 group 2 (2-5 years) 0.02 [ 0.15 0 0 0 0 1
[Tenure in status DR1 group 3 (>5 years) 0.03 | 0.16 0 0 0 0 1
Laboratory variables
Size of the laboratory (number of researchers) 4644 26.34 26 43 60 3 98
|Productivity of the laboratory in logarithm 072 042 | 079 | 044 | 099 | -1,1 | 1.69
Quality of the laboratory in logarithm 1.09 | 045 1.27 1 1.09 | 1.33 0 1.67
Proportion of the laboratory articles with foreign co- 004 | 003 | 004 1002|006l 011! 759
authors
IDummy for the Grenoble region 026 | 044 0 0 1 0 1
IDummy for the Paris region 036 | 048 0 0 1 0 1
|Dummy for laboratory with less than 3 researchers 0.14 | 0.34 0 0 0 0 1

= Number of individuals = 465, Number of years = 12, Number of Observation = 5550



Table I1.1
= Number of individuals = 465, Number of years = 12, Number of Observation = 5550
= Dependant variable: Number of articles per year per researcher

POISSON ON
Number of articles per year per|
scientist (ART) MARGINAL IMPACTS
Variables TOTAL Two Step TOTAL Two Step
skokesk koo
égfai:gs% 0(89(?25) 0(8.90829) 0.553 0.263
skokesk koo
/?giaggiusﬁf 0(8.3()3)25) 0((1).3)()732) 0.628 0.368
skokesk koo
oot | “00y | oo | 0193 | 023
WOMAN '(152)322?* '?(fg:g)* 10736 10.89
Educatio}izlcion1 ; "‘Grande 0(.(1).1082*1";* (2028:;: 0317 0701
G o R
Status (DR1_0) 0('8%034*5* '0('02_ %792* 1.463 -0.772
Status (DR2_0) 0(' (1).7(;13*1*)* '(%'.%‘g 0.47 -0.121
e | 009 | osy | 022 | 007
. _ koksk
s ety | omn | oo | 000 | 034
i - i koo
o oy | 0030 | oey | 00 | 0
e oy | @osn | oop | 013 | 008
4 _ koo _ koksk
o oy | 00sy | oon | 074 | 133
labggtlz)(;;ﬁaorltliglfe;h\j/ith 29427 | 301 7.928 8.112
foreign co-authors (0.432) (1.07)
s e
Mhgiomsgured | 0o | @oip | 0016 | 0016
. sokok skokesk
oot | 003 | (00sn | 023 | 027
. _ koo
skokesk koo
Rl Nl e R
. _ ko
e g | |88 | o | o
D o s | -066%xx | -0.109 1178 10293
researchers (0.099) (0.202)
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Dummy 1987 0('(1).107 4*5* % (1)32; 0.315 0.307
Dummy 1988 0(%9034*5* 0('61()9:5* 0.548 0.589
Dummy 1989 0('(3).3064*5* 0('(3).602: 4*)* 0.905 0.974
Dummy 1990 0('(1).9014*5* 0(%.56‘:5* 0.514 0.684
Dummy 1991 0(%.207 Lf)* 0('(3).209:5* 0.612 0.885
Dummy 1992 0(%.60242* 0('(3).903:5* 0.707 1.06
Dummy 1993 0('3507 4*;)* 0('8.909:5* 1232 1.615
Dummy 1994 0('(3)?0%1*5* (25 8:2; 1.046 1.481
Dummy 1995 0('8.907 4?;* 0('3?02:5* 0.8 1.298
Dummy 1996 0('(3).9034*5* 0('8?03:;;* 1.059 1572
Dummy 1997 0('(3).7034*5* 0('8.75:8*)* 1.005 1.55
e o
C %? ? 05) 0('(3)7129) 2,561 1.003
TR | s | T

Number of individuals = 465, Number of years = 12, Number of Observation = 5580
Standard Errors computed from analytic second derivatives (Newton) for the TOTAL and
First Step and from quadratic form of analytic first derivatives (Gauss) for the Second
Step.
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Table I1.2
= Number of individuals = 465, Number of years = 12, Number of Observation = 5550
= Dependant variable: Average impact factor per article per researcher and per year

LOGLINEAR ON
Average impact factor per
article per researcher and per
year (NOT_I) MARGINAL IMPACTS
Variables Total Within Total Within
- * -
Crenpoenis | ooy | oy | U1 | oo
_ Fokok g
B e |
- okk _ *k
Slmoetn | 00y | oosy | 0 | 0295
WOMAN ('8 '(())1262) '(%%‘;g 0058 0.106
Educatio}izlcion1 ; "‘Grande %95127"; (zé)g%gk 0.085 0111
G I O R
Status (DR1_0) 0('(1)_305 4*;)* ('8 '(())75;1) 0.36 -0.143
Status (DR2_0) %9822; ('8 '(())j 61) 0.155 -0.109
Tenur;: (iIllls_t?;u}sle(;rRS)group -((())(())(;4)1 (—(())(())42) 0,01 0,054
Tenure311(1>sltgtl}1lz a(rlg group (8852) (—(())(())5161) 0.041 -0.029
sty | 000 | oo | O | 005
i "k
S osweay | 000 | oowy | 016 | 0109
2 sy | 0021 | oo | 009 | 00
e hoaeee | w05 | oo | 006 | 0184
labgigtlz)(;;ﬁaorltliglfe;h\i/ith 0.031 0.121 0.082 0.322
foreign co-authors (0.326) (0.327)
S e e I
Metmsganed | 0000 | (oooy | 0021 | 00
. _ ¥ _ ok
ooy gsrtem | 002 | (000 | 0¥ | 009
. o ¥k
sy | BT 0 o
oK
e |G | o | o
D on (8:8(1)3) (8:8%;;) 0.023 0.067
i ety | 0501k 0SSTere | 1.467
researchers (0.074) (0.073)
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-0.051*

-0.051*

Dummy 1987 005 00o%) 0.135 10.135
Dummy 1988 '0'(33;)** O(é%)zzg* 0327 0.325
Dummy 1989 '0'(%)98;)** '0('&%3;6* 20.29 0274
Dummy 1990 '?('f;;)* '0'((())?8;)** L0.265 0227
Dummy 1991 '0'(33;)** '0('&%‘;;* 0328 0277
Dummy 1992 '0(82)63’;* '(%'.%53‘5 20203 0.143
Dummy 1993 '0('&%1;;’;* '0('&%73;* 20.509 L0.444
Dummy 1994 '0(8%7;;’;* '(%'.%632;6 0232 0172
Dummy 1995 '(%'.%5371’; (69(3%?) 0.151 20.08
Dummy 1996 ('8'(());’26) ('88277) 20.095 20.019
Dummy 1997 _?(5(.)(?3%;)* ('885’5) L0.166 20.093
1o T T 003
A N A T R
T e
C 0('8.60677) 0('310671) 1.506 1.373
Tog likelihood 348277 | 2941.03
R2-Adj 0.557 0.602

33

Number of individuals = 465, Number of years = 12, Number of Observation = 5580




Table 11.3

»  Number of individuals = 352, Number of years = 9, Number of Observation = 3168

= Dependant variable: Average number of citations (within 2 years) per article per

researcher and per year

LOGLINEAR ON
Average number of citations (within
2 years) per article per researcher and

per year (MCIT2) MARGINAL IMPACTS
. TOTAL [TWO STEP TOTAL [TWO STEP
Variables
-0.022 0.006
AGE group 2 (38<age<=43) (0.036) (0.05) 0.077 0.023
-0.103** -0.028
AGE group 3 (45<age<3D) (0.043) (0.073) 0357 0.097
-0.172%%* -0.019
AGE group 4 (S1<=age<=61) (0.049) (0.096) 0597 0.066
-0.049%* 0,117 %%
WOMAN (0.029) (0.03) -0.172 -0.385
Education in a “Grande Ecole” ?(5906323*) 0&55(;13*3?* 0215 0.536
Dummy More than one mobility (200822; (200322; 027 029
0.306%** -0.164
Status (DR10) (0.084) (0.134) 1.065 0.571
0.101** -0.057
Status (DR2.0) (0.045) (0.067) 0.352 0.197
Tenure in status CR group 2 (11-18 -0.054 0.015
years) (0.038) (0.052) -0.187 0.052
Tenure in status CR group 3 (>18 -0.011 0.016
years) (0.05) (0.078) -0.038 0.054
Tenure in status DR2 group 2 (4-8 -0.022 -0.13%%
years) (0.044) (0.053) -0.077 -0.451
Tenure in status DR2 group 3 (>8 0.023 -0.072
years) (0.048) (0.083) 0.081 -0.251
Tenure in status DR1 group 2 (2-5 -0.051 -0.183**
years) (0.096) (0.093) -0.177 -0.638
Tenure in status DR1 group 3 (>5 -0.01 -0.355%*
years) (0.097) (0.148) -0.034 -1.234
Proportion of the laboratory articles 1.756%** 1.944**
with foreign co-authors (0.597) (0.62) 6.109 6.766
Size of the laboratory in logarithm (88; }) (200832; 0011 0.053
Size of the laboratory in logarithm 0.015%* 0.018%*
squarred (0.007) (0.007) 0.015 0.018
Productivity of the laboratory in -0.104** -0.056
logarithm (0.043) (0.044) -0.104 -0.056
0.28%** 0.301 ***
Quality of the laboratory in logarithm (0.09) (0.093) 0.28 0.301
0.128%** 0.14 1%
Dummy for the Grenoble region (0.035) (0.037) 0.446 0.489
0.031 0.082%*
Dummy for the Paris region (0.033) (0.035) 0.107 0.284
Dummy for laboratory with less than (.29%* 0.544%**
3 researchers (0.13) (0.133) 1.009 1.894
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0.042 0.046
Dummy 1987 (0.046) (0.043) 0.147 0.16
0.0001 0.008
Dummy 1988 (0.046) (0.044) 0.0002 0.028
0.01 0.022
Dummy 1989 (0.046) (0.046) 0.036 0.077
0.006 0.027
Dummy 1990 (0.047) (0.05) 0.019 0.095
0.0004 0.032
Dummy 1991 (0.047) (0.053) -0.001 0.11
0.01 0.056
Dummy 1992 (0.048) (0.057) 0.034 0.195
-0.349%%* -0.309%**
Dummy 1993 (0.048) (0.061) -1.215 -1.073
-0.200% %% 0. 17%%
Dummy 1994 (0.049) (0.065) -0.729 -0.593
DUMMY -1.233% -1.005 %
(MCIT2=0) (0.024) (0.027) 429 -3.808
o 0.835% %% 0.549%**
(0.135) (0.133) 2.904 1.909
Log likelihood -3223.11 272845
R2-Adj 0.50 0.58 (stepl)
: 0.46 (step?)
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Table 11.4

»  Number of individuals = 465. Number of years = 12. Number of Observation = 5580
»  Dependant variable: Number of articles per year per researcher

Full model
POISSON ON
Number of articles per year per|
scientist (ART) MARGINAL IMPACTS
Variables TOTAL Two Step TOTAL Two Step
AGE -0.019%** 0.028*** -0.051 0.075
AGE? -0.0021%** | -0.0015%** -0.006 -0.004
WOMAN -0.280*** -0.307*** -0.753 -0.826
“Grande Ecole” 0.081*** 0.376*** 0.218 1.011
Without the stage variables
POISSON ON
Number of articles per year per|
scientist (ART) MARGINAL IMPACTS
Variables TOTAL Two Step TOTAL Two Step
AGE -0.0012 0.020%** -0.003 0.054
AGE? -0.0019%** | -0.0018*** -0.005 -0.005
WOMAN -0.331%** -0.317%%* -0.890 -0.853
“Grande Ecole” 0.180*** 0.206*** 0.484 0.796
Without the time variables
POISSON ON
Number of articles per year per|
scientist (ART) MARGINAL IMPACTS
Variables TOTAL Two Step TOTAL Two Step
AGE -0.0046* 0.045%** -0.012 0.121
AGE? -0.002%** | -0.0018*** -0.005 -0.005
WOMAN -0.268*** -(0.283%** -0.721 -0.761
“Grande Ecole” 0.109%** 0.445%** 0.293 1.197
Without the lab variables
POISSON ON
Number of articles per year per|
scientist (ART) MARGINAL IMPACTS
Variables TOTAL Two Step TOTAL Two Step
AGE -0.019%** 0.028*** -0.051 0.075
AGE? -0.0021%** | -0.0015%** -0.006 -0.004
WOMAN -(0.249%** -(0.323%%* -0.670 -0.869
“Grande Ecole” -0.099%** (0.386*** -0.266 1.038
Without the career stage, time, and lab variables (age only)
POISSON ON
Number of articles per year per|
scientist (ART) MARGINAL IMPACTS
Variables TOTAL Two Step TOTAL Two Step
AGE 0.006%** 0.037*** 0.016 0.100
AGE? -0.0017%** | -0.0019*** -0.005 -0.005
WOMAN -0.205%** -0.276%** -0.794 -0.742
“Grande Ecole” (.225%** 0.368%** 0.605 0.990
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Table 11.5

»  Number of individuals = 465. Number of years = 12. Number of Observation = 5580
»  Dependant variable: Average impact factor per article per researcher and per year

Full model
LOGLINEAR ON
Average impact factor per
article per researcher and per
year (NOT_I) MARGINAL IMPACTS
Variables TOTAL Two Step TOTAL Two Step
AGE -0.008*** -0.008*** -0.021 -0.021
AGE? -0.00029%** | -0.0005%** -0.001 -0.001
WOMAN -0.022 -0.042* -0.059 -0.112
“Grande Ecole” 0.031%* 0.032%* 0.082 0.085
Without the stage variables
LOGLINEAR ON
Average impact factor per
article per researcher and per
year (NOT_I) MARGINAL IMPACTS
Variables TOTAL Two Step TOTAL Two Step
AGE -0.003*** -0.008*** -0.008 -0.021
AGE? -0.00019** | -0.0004*** -0.001 -0.001
WOMAN -0.031* -0.040* -0.082 -0.106
“Grande Ecole” 0.050%** 0.035%* 0.133 0.093
Without the time variables
LOGLINEAR ON
Average impact factor per
article per researcher and per
year (NOT_I) MARGINAL IMPACTS
Variables TOTAL Two Step TOTAL Two Step
AGE -0.007*** -0.002 % ** -0.019 -0.005
AGE? -0.00018* | -0.0003*** 0.000 -0.001
WOMAN -0.022 -0.038* -0.059 -0.101
“Grande Ecole” 0.032%* 0.053*** 0.085 0.141
Without the lab variables
LOGLINEAR ON
Average impact factor per
article per researcher and per
year (NOT_I) MARGINAL IMPACTS
Variables TOTAL Two Step TOTAL Two Step
AGE -0.008*** -0.008*** -0.021 -0.021
AGE? -0.0003*** | -0.0005%** -0.001 -0.001
WOMAN -0.043%** -0.066*** -0.114 -0.176
“Grande Ecole” 0.037%* 0.042* 0.098 0.112
Without the career stage, time and lab variables (age only)
LOGLINEAR ON
Average impact factor per
article per researcher and per
year (NOT_I) MARGINAL IMPACTS
Variables TOTAL Two Step TOTAL Two Step
AGE -0.003*** -0.003* -0.008 -0.008
AGE? -0.0001 -0.00025%* 0.000 -0.001
WOMAN -0.054*** -0.058*** -0.144 -0.154
“Grande Ecole” 0.058*** 0.060*** 0.154 0.160
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Graph II.1

TS estimation of the age effect on the mean number of publications
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