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Abstract. We study a pure limit-order market in which strategic risk-neutral
traders can post bids and offers at various prices, although they run the risk of
being picked off by informed traders. We show that, in equilibrium, limit-order
traders post offers at random prices and for random quantities. In equilibrium,
a trader can increase his/her chance of making the market by submitting price-
aggressive offers. The payoff associated with an aggressive offer is skewed to the left
(i.e., there are small chances of large losses to informed traders) while the payoff
associated with a non-aggressive offer is skewed to the right (i.e., there are small
chances of large gains from uninformed traders). However, in equilibrium, expected
payoffs are the same, so it is optimal to choose the offering price randomly. We also
show that a trader who exposes his/her offer expects to lose, even though rational
traders don’t “penny jump” exposed offers.

Limit-orders are the source of liquidity in pure limit-order markets.1 To understand
liquidity in these markets, we have to understand the risks that limit-order traders
bear. In the market microstructure literature, three risks have been studied exten-
sively in the context of stylized models: 1) the execution risk, 2) the fundamental risk,
and 3) the adverse selection risk. In this paper, we study the risk of being “pennied”
and its implications.

A limit-order trader who desires immediacy faces an execution risk: it may take a long
time for a matching order to hit the book. A trader who needs immediacy weighs the
benefits of “making the market” against the execution risk, and accordingly chooses
how aggressively to price the limit-order. Foucault (1999), Parlour (1998), Foucault,
Kadan, and Kandel (2005), Goettler, Parlour, and Rajan (2005), and Rosu (2004)
model the execution risk in dynamic environments.

A limit-order trader is also subject to a fundamental risk: the risk that market prices
will move away from or through the limit price. In the former, the order will not be
executed and in the latter it will be picked off by news traders. Copeland and Galai
(1983) show that, because of the fundamental risk, limit-orders are equivalent to free
options: buy limit-orders are put options while sell limit-orders are call options. To
mitigate the fundamental risk, traders should monitor news and price their orders in
a regret-free fashion.2
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1In this paper, a limit-order is an outstanding limit-order; i.e., a non-marketable limit-order.
2See also Brown and Holden (2005) who discuss pegged limit-orders.
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The counter party’s motive for trade is the adverse selection risk. Most of the lit-
erature in theoretical market microstructure focuses on the risk of being matched
with insiders, although news traders also impose adverse selection risk on limit-order
traders.3 In the context of limit-order markets, Rock (1990) and Glosten (1994) are
important papers. To mitigate the adverse selection risk, limit-order traders should
post regret-free limit-orders.

Limit-orders are outstanding orders that, when matched, are executed at their limit-
price. Based on precedence rules, limit-orders are placed in a queue that determines
the order of execution. All else being equal, low precedence naturally increases the
execution risk. To the extent that insiders and news trades are more likely to submit
large orders, low precedence also increases the adverse selection risks.

Because (i) price priority is the primary precedence rule, and (ii) the minimum price
variation (tick size) in most markets is now negligible, it is virtually costless for traders
to undercut outstanding offers. This means that a limit-order that was placed at a
price reflecting risks and benefits, once being pennied, most likely has to be repriced
or cancelled.

We study the risk of being pennied using a stylized static model with n strategic
value traders who can post multiple offers (limit-orders). Value traders are traders
who trade only when there is a discrepancy between market prices and the perceived
intrinsic value. Value traders are subject to adverse selection risk but, because they
don’t need immediacy, they only offer at prices that reflect the adverse selection risk
(i.e., value traders “earn the spread”). In our model, the limit-orders are matched
with either uninformed orders (submitted by liquidity traders) or informed orders
(submitted by news traders). Because uninformed orders have finite sizes while news
traders pick off all stale limit-orders, high precedence is a virtue. Thus each value
trader likes to outguess the offering prices of the others.

Consider a simplified version of the value traders’ problem in which only two value
traders can post a single offer. Since the order size is correlated with information,
there is a “capacity constraint” on the total number of shares that can be offered
at aggressive prices without incurring losses. If one value trader posts an aggressive
offer, the best response of the second value trader is to post an uncompetitive offer
(i.e., to become a residual supplier of liquidity). On the other hand, if the second
value trader posts an uncompetitive offer, the best response of the first value trader is
then to offer a marginal price improvement (rather than to post an aggressive offer).
This intuition suggests a non-existence of equilibrium when offers are forecastable
(see Section 3). We then show that there is an equilibrium in which value traders
use random limit-orders; i.e., no value trader can outguess the prices and quantities
other traders offer (Sections 4 and 5).

To check that our results are not artifacts of the assumption that uninformed demand
is inelastic, we extend the basic model and assume that each uninformed trader limits
the price he/she is willing to pay for immediacy. We show (in Section 6) an equilibrium

3In this paper we use interchangeably the terms informed traders and news traders. See also
Footnote (6).
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in which (i) value traders use random offers and (ii) conditional on execution (that
is, the uninformed trader’s order is marketable), the order transacts at the same price
it would in the model with inelastic liquidity demand.

In Section 7, we quantify the exposure risk discussed in Harris (1996). We introduce
into the model a trader who posts a forcastable offer. We can interpret this offer as
if it were an uninformed non-marketable order that is now simply exposed. Three
things emerge in equilibrium: (i) the exposed order is not pennied. This is natural
because to “penny jump” an exposed offer is a forecastable strategy, (ii) there is a
hole behind the exposed offer in which no one posts offers, and (iii) the exposed offer
has a negative expected payoff.

How relevant is our equilibrium to actual markets? If the risk of being pennied is
a real concern to limit-order traders, what shall we then expect to see in markets?
The static model predicts that traders mitigate the risk by using random limit-orders.
Assuming that the necessity of unforecastable limit-orders is carried over to dynamic
environments, then in an open, pure limit-order book, one can keep other traders
guessing by using short-lived orders, and replacing cancelled orders with new ones
that are (from the market point of view) drawn randomly.

Interestingly, Hasbrouck and Saar (2004) examine the INET ECN and find that one
third of the limit-orders are canceled within 2 seconds. However, they do not report
whether those “fleeting orders” are replaced by new unforecastable ones. Mitigating
the exposure risk should be simpler if the trading platform allows hidden orders.
Bessembinder, Panayides, and Venkataraman (2006) find that on Euronext, partially
hidden orders represent about 44% of the volume (on Euronext one must reveal a
portion of the quantity offered). Boehmer, Saar, and Yu (2005) find that after the
NYSE introduced OpenBook, the cancellation rate of limit-orders increased. Those
empirical findings are consistent with strategies aimed at reducing the risk of being
undercut, although those empirical papers did not really test whether limit-orders are
unforecastable.

Finally, consider a dealers market. This type of market is different from a pure limit-
order market: for example dealers can quote better prices for larger orders, which is
impossible in a pure limit-order market. Nevertheless, both markets still share many
similarities. Dealers markets are sometimes opaque, as was traditionally the case for
corporate bonds (see Bessembinder, Maxwell, and Venkataraman (2006)). In opaque
dealers markets there is no continuous public dissemination of quotes, rather, dealers
provide quotes to specific customers on request. But why don’t they advertise their
quotes? If exposure risk is relevant to dealers, then public quote dissemination would
invite underbidding.

1. Motivation

Consider a trading platform organized as a pure limit-order book without a minimum
price variation, so that bids and offers can be posted arbitrarily close to each other.
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At any point in time, traders can post new bids/offers and cancel existing ones.4 A
marketable order is any order that can be executed immediately. The limit-order
market is discriminatory because a large marketable order is executed at multiple
prices; i.e., the marketable order “walks” the book until it is filled.

There is no minimum price variation, so it is meaningful to ask whether the expected
payoff associated with a single offer is a continuous function of its offering price. The
answer is negative because of the price priority rule: orders are first matched with
the best offers, hence the expected payoff depends on whether the offer is marginally
below an existing offer or marginally above it. The standard proof of existence of
equilibrium requires the continuity of payoffs in the set of feasible actions, and indeed
in many economic models with discontinuous payoffs an equilibrium fails to exist.5

Note that the lack of proof of existence does not imply that equilibrium fails to exist
(though in Section 3 we show a non-existence result relevant to our model). Still,
if equilibrium does fail to exist, we may successfully circumvent the problem if we
proceed in the following way. We extend the set of feasible strategies so that when
traders use the “new” strategies, the expected payoff function of each value trader is
continuous in the set of all feasible strategies. We then try to find an equilibrium in
which each value trader uses a strategy from the new set of feasible strategies. In the
market microstructure literature, two such extensions were successfully utilized, both
in models of dealers markets.

Biais, Martimort, and Rochet (2000) notice that they can define a strategy in terms of
cumulative offers and bids. A feasible strategy is then any step function with the in-
terpretation that an offer is a point of discontinuity of the cumulative function. Next,
they extend the set of feasible strategies by allowing differentiable cumulative func-
tions, effectively permitting each dealer to post a continuum of bids and offers, each
good for only an infinitesimal number of shares. When traders only offer infinitesi-
mal quantities, undercutting those offers does not introduce a discontinuity into the
payoff function. In the information environment they considered, Biais, Martimort,
and Rochet (2000) construct an equilibrium in the class of smooth strategies.

Dennert (1993) and this paper follow the literature on games with discontinuous
payoffs by allowing traders to chose a strategy at random (see Dasgupta and Maskin
(1986)). This approach is useful because if the randomization scheme is atomless (i.e.,
at any price, the probability that an offer or bid is posted is zero), then undercutting
occurs with probability zero, so the expected payoff functions are continuous at any
price.

In Dennert (1993), the liquidity providers are dealers, and each dealer makes his/her
own market. The equilibrium was found in two special cases. In one case, a regulator
does not allow dealers to post more than one quote, and in the other case, dealers

4An offer is a pair of quantity and price with the interpretation that the trader offers to buy the
stock at the offered price and up to the offered quantity. In a pure limit-order market, an offer is
any non-marketable sell limit-order. A bid is defined analogously.

5Two important examples of models with discontinuous payoffs are the Bertrand-Edgeworth
duopoly model and the Hotelling model of price competition.
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can post multiple quotes for different sizes and in equilibrium larger orders get better
prices. These results are not relevant to pure limit-order markets because (i) traders
can post multiple bids and offers, and (ii) regardless of their size, marketable orders
are first matched with the best offers (thanks to the price priority rule), so value
traders cannot implement a strategy where larger marketable orders get better prices.

2. The Model

We consider a pure-limit order market for a single risky asset in which n risk-neutral
traders, hereafter value traders, post bids and offers at various prices. Liquidity
traders arrive at the market at random times and submit buy or sell orders. Events
relevant to the value of the asset occur at random times and the information generated
by those events is conveyed to the market instantaneously by an unspecified number
of news traders who pick off all stale offers and bids.6

As in Copeland and Galai (1983) and Glosten (1994), we postulate that we can study
the problem of the value traders by looking at a single point in time. We further
assume that with equal probability liquidity traders submit market orders for one
or two shares (or round lots) and ṽ, the value of the asset if an information event
has taken place, is either 1 or -1 (with equal probability). Under those simplifying
assumptions, the only statistic relevant to the value traders is the probability that
the next order is informed. We denote this probability by µ.7 In the following, we
look only at the offer side of the book, as the analysis of the bid is analogous.

Let Qi(x) be the cumulative number of shares offered by the i-th value trader up to
the price x. A feasible strategy is any step function Q(x) with finitely many jumps,
with the interpretation that a jump at x, ∆Q(x), is the number of shares offered at
the price x (∆Q(x) can be any non-negative real number). Let y(x) =

∑n
i=1Qi(x) be

the aggregate number of shares offered up to the price x. We call y(x) the book. An
allocation rule is used when more than one offer is posted at the same price and the
incoming market order is not large enough to fill up all offers at that price. All we
assume is that the allocation rule is such that with a positive probability each offer
gets a partial filling (e.g. a pro rata allocation rule). A competitive equilibrium is a
book y(x) such that the expected payoff of y(x) equals zero for all x. This definition
implies that the payoff of every single offer is in fact zero. It is immediate that the
following book is a competitive equilibrium.

y(x) =


0 x < µ

1 µ ≤ x < 2µ
µ+1

2 2µ
µ+1
≤ x

In the competitive equilibrium, one share is offered for sale at µ and an additional
share is offered at 2µ

µ+1
.

6Alternatively, we could think of multiple insiders who compete aggressively, as in Holden and
Subrahmanyam (1992), so that effectively they trade as if their information is short-lived.

7If the time of the next event is exponentially distributed with parameter r, and the liquidity
traders arrive at the market according to a Poisson process with intensity β, then µ = r/(r + β).
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3. No Equilibrium in Pure Strategies

We present a sketch of a proof that here is no equilibrium in pure (i.e., forecastable)
strategies.8 Suppose, to the contrary, that there is an equilibrium in pure strategies,
and let x1 < x2 < · · · < xm be the prices at which offers are posted in the equilibrium.
Also, let y(x) denote the book. The proof has two steps. We first show that all
offers must have zero expected payoffs and the allocation rule is applied with zero
probability. We then show a profitable deviation for the trader who posts the best
offer.

Say the i-th trader offers at xm (we don’t rule out the possibility that several value
traders offer at xm). The payoff associated with that offer cannot be negative be-
cause it is at the end of the queue (i.e., cancellation of this offer has no impact on
the probability of execution and hence the payoff associated with the more aggres-
sive offers). In fact, the expected payoff must be zero, since otherwise a profitable
deviation for the j-th value trader would be to add a new offer for ∆y(xm) shares at
a price marginally below xm. If the j-th trader also has an outstanding offer at xm,
that offer should be cancelled. This deviation is profitable because it does not affect
the payoff associated with all other offers at x1, x2, . . . , xm−1. Thus, we conclude the
payoff of the offer at xm is zero.

We can say even more about the offer at xm. Not only is the expected payoff of each
offer at xm zero, also the allocation rule should never be applied at xm. Indeed, the
allocation rule is applied only if the limit-orders are matched with uninformed orders
(because informed traders pick off all stale offers). This means that if traders i and j
post offers at xm, and the allocation rule is applied with a positive probability, then
the deviation suggested above is profitable even though the expected gain of the i-th
trader’s offer at xm is zero. This is because the higher precedence of the deviation
strategy increases the chances of trading with uninformed traders.

Next, we argue that the offer at xm−1 has a zero expected payoff. Say, to the contrary,
that the expected payoff is positive and that the i-th trader posts an offer at xm−1.
The j-th trader could profitably deviate by placing an offer of size ∆y(xm−1), while
canceling all his/her existing offers at prices xm−1 and above (if there are any). Having
shown that offers at xm−1 have zero expected profits, we repeat the argument that
shows that the allocation rule is never applied also at xm−1. In a similar way, we
show that all offers have zero expected profits and that the allocation rule is never
applied in the conjectured equilibrium.

So far we have shown that if there is an equilibrium in pure strategies, then the
expected payoff of every offer must be zero and the allocation rule is never applied.
We now show a profitable deviation, and we focus on the beginning of the queue.
The trader who posts the offer at x1 (say for q1 shares) must find it profitable to
replace his/her strategy (“cancel” all his/her offers) with a single offer of size q1 at
a price marginally below x2. This will not change the probability of execution, but

8We call it a sketch because we did not yet define an equilibrium.
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will increase the payoff because of the higher price. We conclude that there is no
equilibrium in pure strategies, and we thus turn our attention to mixed strategies.

A mixed strategy is a distribution over a set of feasible strategies, with the interpre-
tation that the strategy employed is a draw from the distribution. An equilibrium in
mixed strategies is an n-tuple of mixed strategies, where we associate the i-th strategy
with the i-th value trader, such that if any n − 1 value traders follow their mixed
strategy, then the following two conditions regarding the mixed strategy of the n-th
trader are satisfied: (i) any pure strategy in the support of the mixed strategy has
the same expected payoff, and (ii) any feasible pure strategy in the complement of
the support of the mixed strategy has a payoff that is not greater than the payoff
of the strategies in the support. A symmetric equilibrium in mixed strategies is an
equilibrium in which all traders use the same mixed strategy.

4. Two Value Traders

In this section we construct an equilibrium in mixed strategies when the number of
value traders is 2. In this equilibrium, each value trader posts offers at random prices
(up to the price of 1) and integer-valued random quantities. When constructing the
equilibrium, it is convenient to treat each share offered as a separate offer. Let τi be
the order statistic of the random prices at which the value trader posts offers; i.e.
τ̃1 ≤ τ̃2. If a value trader offers two shares at the same price, the choice of which one
is the realization of τ1 is arbitrary. In the equilibrium we are looking for, τ̃2 ≤ 1, the
distribution of τ̃1 is continuous, and that of τ̃2 has a single atom at 1. In particular,
with a strictly positive probability, both traders post offers at 1. However, because
liquidity traders submit at most two units, the expected payoff of an offer posted at
1 is zero, and thus in this equilibrium the allocation rule is irrelevant. Also, we note
that in this equilibrium, offers at prices greater than 1 will never be executed.

We define the survival functions

H1(x) = P (τ̃1 ≥ x)

H2(x) = P (τ̃2 ≥ x)

G(x) = P (τ̃1 ≤ x, τ̃2 > x)

= 1− P (τ̃1 ≤ x, τ̃2 ≤ x)− P (τ̃1 ≥ x, τ̃2 ≥ x)− P (τ̃1 ≥ x, τ̃2 ≤ x)

= 1− P (τ̃2 ≤ x)− P (τ̃1 ≥ x)− 0 = H2(x)−H1(x)

We associate a feasible strategy Q(x) with a curve in the xy-plane. This curve, which
we denote by CQ, has a direction corresponding to increasing values of x (See figure
(1)). When one trader places offers consistent with the distributions of τ1 and τ2,
the expected payoff to the other value trader who uses an arbitrary feasible strategy
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Figure 1. [A Feasible Strategy and its Corresponding Plane Curve.] This
figure shows a typical feasible strategy (in the left panel) and the oriented
plane curve associated with it (in the right panel).

Q(x) is the line integral9 ∫
CQ

u(x, y)dy

of the function

(1) u(x, y) =


µ(x− 1) + (1− µ)x

[
H1(x) +G(x)1

2

]
y < 1

µ(x− 1) + (1− µ)x
[
H1(x)1

2

]
1 ≤ y < 2

µ(x− 1) 2 ≤ y

Theorem 1. Let x∗ = 2µ/(1 + µ), and for x ∈ [x∗, 1] define

H1(x) =


1 x < x∗

2µ(1−x)
(1−µ)x

x ∈ [x∗, 1]

0 1 < x

H2(x) = H1(x)

(
1− 2µ

1 + µ

)
+

2µ

1 + µ

Then, a mixed strategy consistent with (H1, H2) forms a symmetric equilibrium in
which [x∗, 1] is the support of τ1 and τ2.

Before we prove the theorem, notice that H1(x) and H2(x) are decreasing (so they are
feasible survival functions), H1(x) ≤ H2(x), and H1(x

∗) = H2(x
∗) = 1 (so offers are

never posted below x∗). Also, H1(1) = 0 while H2(1) = 2µ
1+µ

> 0. The latter implies

that, with a strictly positive probability, shares are offered at the price one.

Consider the problem of one value trader, when the other trader follows the conjec-
tured equilibrium strategy. We plug H1(x) and G(x) = H2(x)−H1(x) into (1), and

9This line integral, sometimes referred to as a line integral of the second kind, is calculated in
the following way. We divide the curve CQ into segments of vertical and horizontals parts. The
line integral along CQ is the sum of line integrals along its segments. On each vertical segment,
the integral is zero, and on each horizontal segment at x, the line integral is

∫ Q(x)

Q(x−)
u(x, y)dy where

Q(x−) denotes the left limit of the Q(·) at x.
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find that u(x, y) is piecewise linear. Figure (2) is a graphical representation of u(x, y).
The following properties are important: (i) u(x, u) attains its maximum value in the
rectangle region {(x, y)|x∗ ≤ x < 1, 0 ≤ y < 1}, (ii) u(x, y) vanishes on the rectangu-
lar region {(x, y)|x∗ ≤ x < 1, 1 ≤ y < 2}, and (iii) for y > 2, u(x, y) = µ(x− 1) ≤ 0.
The conclusion is that any strategy in which Q(x∗) = 0 and 1 ≤ Q(1) ≤ 2 is optimal.
In particular, a randomization scheme that is consistent with the survival functions
H1(x) and H2(x) is optimal. Thus, we have proved the theorem.

2µ
(1+µ)

1
x

z

−µ

µ(1−µ)
1+µ
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1
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z
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z = u(x, y)
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1
x

z y1
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1
x

1

2
z

y

−µ

µ(1−µ)
1+µ

z = u(x, y)

Figure 2. [The Function u(x, y).] The equilibrium expected gain associ-
ated with a single offer of an infinitesimal size at a price x is proportional
to u(x, y), where y is the cumulative number of shares the trader offers at
prices not greater than x. The lower left panel shows u(x, y) for y ∈ [0, 1]
and the upper left panel shows the projections onto the y-plane. Similarly,
the lower right panel shows u(x, y) for y ∈ [1, 2] and the upper right panel
shows the projection onto the y-plane. To clarify the differences between the
figures in the lower panels, an identical dashed box is drawn in both panels.

Corollary 1. Let H1(x) and H2(x) be as in Theorem 1. Consider the following mixed
strategy. Its support is the set of feasible strategies such that (i) Q(1) = 2 (i.e. a total
quantity of 2 is offered up to the price 1); (ii) one and only one offer is posted at
x̃ ∈ (x∗, 1) and the quantity offered is either 1 or 2. The randomization scheme is as
follows: The distribution function of x̃ is 1−H1(x), and the probability that only one
share is offered at x is (2µ)/(1 + µ) (in particular, the decision of how many shares
to offer is independent of the offering price). This mixed strategy defines a symmetric
equilibrium.

Treating an offer of size two as two separate offers of size one, the two prices at which
offers are posted are random. Let τ1 and τ2 be the order statistics of those two prices.
To prove the corollary, we only need to show that the survival functions of τ ’s are as
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Figure 3. [Density of Random Offering Prices.] In equilibrium with two
value traders, each trader offers one or two shares (the choice is random) at
a random offering price. The density of the offering price is shown for two
different values of µ, the probability that the next buy order is an informed
order. In the lower curve µ = 1/5 and in the upper it is 1/2.

stated in Theorem 1. By construction, the survival function of τ1 is H1, and

Prob(τ2 > x) = Prob(τ1 > x) +
2µ

1 + µ
Prob(τ1 ≤ x)

= H1(x) +
2µ

1 + µ
(1−H1(x)) = H1(x)

(
1− 2µ

1 + µ

)
+

2µ

1 + µ

= H2(x)

where the last equality is from the definition of H2(x) given in Theorem 1. This
proves the corollary.

Figure (3) shows the density of τ1 for two different values of µ. The figure shows that
the larger the probability of trading with news traders, the less likely value traders
are to post aggressive offers.

5. A Large Number of Value Traders

We now assume that n, the number of value traders, is strictly greater than two.
We will show that there is a symmetric mixed strategy equilibrium in which each
value trader offers one share at a random price. Again, in equilibrium, undercutting
must not be profitable, so the randomization scheme traders use in equilibrium is
atomless.10

10Note that unlike the case with two value traders, here the quantities value traders offer are
fixed and the equilibrium expected gains of the value traders are zero. If we assume liquidity traders
submit orders for a random number of shares up to m, then we conjecture that whenever 1 < n ≤ m,
value traders will offer random quantities and will expect to make positive gains. In this paper, we
verified the conjecture only for m = 2.
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Let H(x), with H(1) = 0, be the equilibrium survival function we are looking for;
i.e., it is the probability that the price (at which a value trader offers a single share)
is greater than x. In this equilibrium, offers at prices greater than one can be ignored
because they are never executed. The probability that n − 1 traders do not post a
single offer below x is Hn−1(x), and the probability that n− 1 traders post one and
only one offer below x is (n − 1)Hn−2(x)(1 −H(x)). Thus, the expected payoff of a
feasible strategy Q(x) is the line integral

∫
CQ
u(x, y)dy, where

u(x, y) =


µ(x− 1) + (1− µ)x

[
Hn−1(x) + 1

2
(n− 1)Hn−2(x)(1−H(x))

]
y < 1

µ(x− 1) + (1− µ)x
[

1
2
Hn−1(x)

]
1 ≤ y < 2

µ(x− 1) 2 ≤ y

To construct the equilibrium, we define the survival function in the following way.
First, in the unit interval the function

x(h) =
1

2
hn−1(3− n) +

1

2
hn−2(n− 1)

= hn−1 +
1

2
(n− 1)hn−2(1− h)(2)

is strictly increasing, and therefore has an inverse h(x) that is strictly increasing in
the unit interval. The inverse function also satisfies h(0) = 0 and h(1) = 1. We then
define the survival function

(3) H(x) =


1 x < µ

h
(

(1−x)µ
x(1−µ)

)
µ ≤ x < 1

0 1 ≤ x

Because H(µ) = 1, H(1) = 0 and H(x) is strictly decreasing on [µ, 1], H(x) defines
an atomless survival function.

Theorem 2. Assume n ≥ 3, and consider the family of feasible strategies comprised
of a single offer of size one, parametrized by the offering price x. A mixing distribu-
tion over this family, consistent with the survival function H(x), forms a symmetric
equilibrium in mixed strategies.

From (2), it follows that for all x ∈ [µ, 1] we have Hn−1(x) + 1
2
(n − 1)Hn−2(x)(1 −

H(x)) = (1−x)µ
x(1−µ)

, which implies that u(x, y) = 0 on the rectangular region {(x, y)|µ ≤
x < 1, 0 ≤ y < 1}. Also, elsewhere in the positive quadrant u(x, y) is strictly negative
(x < µ or y > 1) or zero (x ≥ 1). It follows that when n− 1 value traders follow the
conjectured equilibrium strategy, it is optimal for the n-th trader to use any monotone
increasing Q(x) such that (i) Q(µ) = 0 and (ii) Q(1) ≤ 1. In particular, it is optimal
to offer 1 share at any price [µ, 1]. This ends the proof.

Figure (4) shows the density of the random offering price for different values of µ,
the probability of trading with informed traders. The figure is consistent with the
intuition that offering prices are likely to be higher when the adverse selection is
severe.
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In a symmetric equilibrium, the value traders’ offering prices are independently and
identically distributed. Therefore, it is straightforward to find the density of the
ordered prices; i.e., the best offer, the next best offer, etc. The density of the k-th
best offer is

−n!

(k − 1)!(n− 1)!
(1−H(x))k−1Hn−k(x)H ′(x).

Figure (5) depicts an example.
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Figure 4. [Density of Random Offering Prices.] The figure shows the
density of the random price when n = 3 and µ is either 0.1(the low curve),
0.2 (the middle curve), or 0.4 (the upper curve).

6. Price Elastic Liquidity Demand

The analysis thus far has relied on the assumption that uninformed traders’ demand
was irrespective of market liquidity. We would like now to relax this assumption.
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Figure 5. [Order Statistics.] The figure shows the densities of the best,
second best, and third best offers in the book. The curves are ordered by
their values at low prices: the density of the best offer gets the highest values
at low prices. The parameters in this example are n = 3 and µ = 0.2.
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More specifically, we assume that liquidity traders attach to their order a limit price
x∗ (for simplicity, all liquidity traders use the same limit-price). The order is executed
only if it is marketable; i.e., if there are offers at prices below x∗. We maintain the
assumption that the size of a liquidity trader’s order is equally likely to be 1 or 2.
Clearly, if the limit-price is too low, the order will not execute. Also, we don’t expect
to see offers at prices above x∗, because those can be matched only with news traders.

We assume n ≥ 3 and we define the survival function

(4) He(x) =


H(x) x < x∗

H(x∗) x∗ ≤ x < 1

1 1 ≤ x

where H(x) (defined in (3)) is the equilibrium survival function when the liquidity
demand is inelastic. If x∗ > 1, then the two survival functions are identical. We state
without proof the following simple corollary.

Corollary 2. Assume n ≥ 3, and consider the family of pure strategies (each consists
of a single offer of size 1) parameterized by the offering price x. A mixing distribu-
tion over this family, consistent with the survival function He(x), forms a symmetric
equilibrium in mixed strategies.

Interestingly, the equilibrium is very similar to the one with inelastic demand. Each
value trader draws a single offering price from an identical distribution, and if the
price falls below x∗, the trader posts the offer, otherwise the value trader posts the
offer at 1.

7. Exposure Risk

In the previous section we saw that if the liquidity traders have a reservation price,
then with a positive probability an incoming buy order is non-marketable. In real
markets, if an aggressive limit-order is not executed it “makes the markets,” i.e.,
it becomes the best quote in the book. It motivates us to consider the following
question. How will the value traders react when an outstanding offer is exposed at
x∗? We have the following result:

Corollary 3. Assume there is an outstanding offer at x∗, and the number of value
traders is at least 3. If the size of the exposed offer at x∗ is two, then the mixed
strategy stated in Corollary 2 forms a symmetric equilibrium in mixed strategies. If
the size of the exposed offer is one, then the symmetric equilibrium is defined using
the survival function

(5) Ho(x) =


H(x) x < x∗

min

{
H(x∗),

(
2µ(1−x)
(1−µ)x

) 1
n−1

}
x∗ ≤ x < 1

1 1 ≤ x
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When the size of the exposed limit order is two, the mixed strategy played in this
equilibrium is identical to the model with elastic demand. In particular, value traders
don’t place offers above a large exposed offer. The situation is slightly different when
the size of the exposed offer is small: value traders may offer at prices above the
offering price of the exposed limit-order; however, there is a hole in the book. Figure
(6) shows the survival function when the exposed order is small and n = 3. The
interval of prices where Ho is flat is not in the support of the mixed strategy; i.e.,
offers are posted there with probability zero. It is also interesting to note that nobody
penny jumps the exposed offer; i.e. the function H0 is continuous at x∗. This makes
sense because a strategy that penny jumps an exposed offer is a forecastable strategy
and thus cannot be present in equilibrium.

We only prove the corollary in the case that the exposed offer is small. Assume the
first n− 1 value traders play the equilibrium mixed strategy. We need to show that
it is optimal for the n-th trader to post an offer of size 1 at all those prices where
Ho is strictly decreasing. The n-th trader’s expected payoff when he/she uses an
arbitrary feasible strategy Q(x) is the line integral

∫
CQ
u(x, y)dy, where for y ∈ [0, 1)

and x ∈ [0, 1) the function u(x, y) is given by
(6)

u(x, y) =

{
µ(x− 1) + (1− µ)x

[
Hn−1(x) + 1

2
(n− 1)Hn−2(x)(1−H(x))

]
x < x∗

µ(x− 1) + (1− µ)x
[

1
2
Hn−1
o (x)

]
x∗ ≤ x

Let xo be such that H(x∗) =
(

2µ(1−xo)
(1−µ)xo

) 1
n−1

, then

(7) u(x, y) =


x− µ x < µ

0 µ ≤ x < x∗

µ(x− 1) + (1− µ)x1
2
Hn−1(x∗) x∗ ≤ x < xo

0 x0 ≤ x

So, u(x, y) is negative whenever x < µ or x∗ < x < x0 and zero elsewhere. Next,
when y > 1, we have

(8) u(x, y) =

{
µ(x− 1) + (1− µ)x

[
1
2
Hn−1(x)

]
x < x∗

µ(x− 1) x∗ ≤ x

and therefore u(x, y) is negative when y > 1. We conclude that any strategy in
which the trader offers at most a total of one share is optimal if all the offers are in
[µ, x∗) ∪ [xo, 1]. In particular, it is optimal to post a single offer of size 1 at any of
those prices. This ends the proof.

Figure (7) shows the expected losses associated with an exposed offer. The figure
illustrates that the losses of the exposed offer increase with the size of the exposed
offer.
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x

Ho(x)

µ x∗ xo 1

1

H(x∗)

Figure 6. [A Limit-Order Book with a Hole.] Consider an equilibrium
with an exposed offer of size 1 at x∗. This figure shows the survival function
of the offering price of a value trader. In intervals where the survival function
is flat, there is a zero probability that an offer will be posted. In particular,
just behind the exposed offer there is a hole in the book. In this figure, n = 3
and the probability of informed trading is µ = 0.2.
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Figure 7. [Negative Expected Payoff of an Exposed Offer] The figure
shows the expected payoff of an exposed offer as a function of its limit price.
In the lower curve, the size of the exposed offer is 2 and in the upper curve
only one share is offered. The number of value traders in this example is 3
and µ = 0.2.

8. Conclusion

We have found an equilibrium in which n strategic value traders use random limit-
orders. In this equilibrium, limit-orders that are “at the market” (i.e., the best offer
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and the best bid) are profitable (because the orders have a better chance of being
matched with uninformed orders), while orders that are behind the market are not
(because they are more likely to be matched with informed orders).

In equilibrium, a trader is never sure where his/her offer is in the queue. Posting
an aggressive offer (i) increases the chance that the offer will have high precedence
and hence increases the chance that the offer will be matched with an uninformed
order, (ii) decreases the potential gains from trading with uninformed traders, and
(iii) increases the potential losses to informed orders. Thus, the aggressive offer has
a random payoff, skewed to the left (i.e., there are small chances of large losses to
informed traders). On the other hand, an uncompetitive offer has a random payoff
that is skewed to the right (i.e., there are small chances of high gains from uninformed
traders). In equilibrium with random limit-orders, the skewed distributions have the
same expected value.

We have also introduced into the model a trader who exposes his/her offer. In equi-
librium, this trader expects to lose. Thus, we have demonstrated the importance of
using unforecastable limit-orders.
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