
Price Impact and Spread: Application of Bias-Free
Estimation Methodology to Portfolio Transitions

Anna Obizhaeva∗

First Draft: February 24, 2008
This Draft: September 25, 2008

Abstract

The analysis of price impact and spread is a challenging task due to endogeneity
issues and data limitations. To get around these problems, I develop a bias-
free methodology for estimating the parameters of trading costs and apply it
to a unique data set of portfolio transition trades. I provide the estimates of
price impact and effective spread in traditional markets as well as in crossing
networks for a period 2001 through 2005. These estimates vary across securities.
I find that price impact increases with the stocks’ overall trading volume and
volatility; in contrast, effective spread decreases with these characteristics. For
thinly traded securities, trading costs are almost invariant with respect to a
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might underly these patterns.
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1 Introduction

Price impact and spread are important variables that are of interest to both researchers

and practitioners. Researchers are interested in learning about these variables because they

reflect a complicated and not fully understood interplay between main blocks of market

microstructure: trades, prices, and information. Practitioners are keen to know about these

variables because they account for the largest part of their trading costs. Yet, the estimation

of price impact and effective spread is a challenging task. The key question is how to account

for endogeneity in trading strategies, i.e. price-dependent strategies or canceled orders, which

may induce biases in conventional estimates. In this paper, I develop a bias-free estimation

methodology and apply it to a unique data set of portfolio transition trades to get the

unbiased estimates of trading costs. Then, I study how these estimates vary across securities

with different characteristics.

In a conventional approach, the price impact and the effective spread are estimated using

ex post trading costs of executed trades (e.g. Almgren et al. (2005), Breen, Glosten and

Harris (1988), Glosten and Harris (1988), and Keim and Madhavan (1997)). This approach

disregards the opportunity cost of unexecuted trades. Since trading strategies of market

participants usually depend on the recent price dynamics and, consequently, the ex ante

expected opportunity cost of unexecuted trades is not equal to zero, ignoring unexecuted

trades may lead to biased estimates. This endogeneity problem is relevant in the following

cases: (1) if only parts of entire ex ante orders rather than total ex ante orders are considered,

e.g., when canceled trades are ignored or when the trading costs of a given day in multi-day

trading packages are evaluated, (2) if the trading strategy is price contingent, e.g., when

market participants use limit orders. For instance, if traders slow down their trading when

security prices run away from them, then conventional estimates of the price impact are

biased downwards. In contrast, if traders speed up their trading during unfavorable market

conditions, then these estimates are biased upwards.

I develop a bias-free estimation procedure. It is based on the mark-to-market implemen-

tation shortfall that includes not only ex post trading costs of executed trades but also the

opportunity costs of unexecuted trades (Perold (1988)). The main idea behind this method

is that expected mark-to-market implementation shortfall is represented as the difference

between expected execution costs of a total ex ante orders and the expected execution costs

of unexecuted part. This representation allows me to separate price impact from opportu-

nity cost and to obtain unbiased estimates of trading costs parameters. Comparing these

estimates to the conventional ones, I show that biases of conventional estimates might be

substantial.
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The key input variable into my estimation procedure is a total ex ante orders. Initial

intentions of market participants are usually unavailable for researchers, who focus on a

sample of realized trades, e.g. TAQ data. However, I employ a data set that contains

information on the size and direction of ex ante orders. My analysis is based on the execution

data for orders that have been carried out by a leading provider of portfolio transition

services during a period 2001 through 2005. Portfolio transitions are sizable and expensive

transfers of funds from legacy portfolio to target portfolios, which are often undertaken by

institutional investors, e.g. pension plans, insurance funds, endowments, and foundations.

The composition of securities in legacy and target portfolios is fixed prior to the beginning of

portfolio transition, and the ex post transition orders coincide with ex ante ones. Effectively,

I know ex ante transition orders and can apply a bias-free estimation methodology.

I distinguish between trading costs at various trading platforms. Liquidity pools are

known to be fragmented, and market participants, including portfolio transition managers,

usually split their orders over different trading platforms such as conventional markets, ex-

ternal and internal crossing networks. I provide separate estimates of the effective spread

for those trading platforms, however my methodology does not allow me to provide separate

estimates of the price impact for these trading venues.

I define the price impact as the percentage change in the security prices (in percents of

the daily return standard deviation) in response to a trade equivalent to 1% of the average

daily volume. My unconditional estimates of this variable can be summarized as follows. On

average, 1% of the average daily trading volume induces the price impact equal to 0.33% of

the daily returns standard deviation. The price impact of purchases tends to be slightly larger

than that of sales. The price impact does not significantly differs for the NYSE/Amex-listed

and the Nasdaq-listed securities.

I define the effective spread as the doubled fixed trading costs (in percents of the daily

return standard deviation) of establishing either a long or a short $1-position. Its uncondi-

tional estimates can be summarized as follows. For both open markets and external crossing

networks, the effective spread correspond to a fixed cost of roughly 13% of the daily re-

turns standard deviation. The existence of the effective spread on the crossing networks

contradicts a claim that these networks help avoid the bid-ask spread. I also find that trad-

ing against internal pools of liquidity does not involve statistically significant spread-related

costs. Moreover, the effective spread tends to be larger for the Nasdaq-listed securities rather

than for the NYSE/Amex-listed ones. This finding is consistent with the overall conclusion

of the literature that trading costs for Nasdaq issues are historically higher than those for

NYSE issues (e.g. Christie and Schultz (1994), Huang and Stoll (1996), Keim and Madhavan

(1997)). Although these differences in bid-ask spread have declined in a post-reform period,
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according to the NYSE Market Quality report (2006), they still exist during the period under

consideration.

I also study how the parameters of trading costs vary across securities. First, I document

a relation between the trading costs and the average daily volume: transactions in more

actively traded stocks are associated with lower effective spread and with higher price impact.

The effective spread on both open markets and external crossing networks (in percents

of the return standard deviation) drops from roughly 30% for the thinly traded stocks to

about 6% for the actively traded ones. In contrast, the price impact increases with average

daily volume as much as tenfold. For example, 1% of the average daily volume triggers

a percentage price change of 0.27% of a daily return standard deviation for thinly traded

stocks and 2.99% for actively traded ones. For the former, trading costs are almost invariant

with respect to a trade size and spread-related payments account for their largest fraction.

For the latter, trading costs are very sensitive to a trade size and spread-related payments

are less significant. Positive association between price impact and trading volume is in a

sharp contrast to a conventional intuition that trading in larger stocks involves less risk

of information asymmetry and, consequently, requires slighter price concessions. I discuss

further potential explanations for these patterns.

Second, I analyze the relation between the trading costs and the volatility. I find that

transactions in more volatile stocks are associated with larger effective spread, when control-

ling for the differences in trading volume. For instance, if I consider open markets for the

securities with the largest trading volume, the most volatile stocks (the least volatile stocks)

have the effective spread of about 2× 15% (2× 2%) of the daily return standard deviation.

The relation between the price impact and volatility is less unambiguous. However, the

cross-sectional regression analysis suggests that it is weakly positive.

Third, I document how the price impact and the effective spread depend on the conven-

tional proxies of information asymmetry. For instance, there is an inverse relation between

the price impact and the effective spread. As the average daily volume goes up, the former

increases whereas the latter decreases. These findings call for a deeper understanding of the

connection between various aspects of liquidity and furthermore their association with the

asset prices.

Fourth, the market microstructure literature has recognized the fact that the trading costs

might asymmetrically depend on the past price dynamics (e.g., Saar(2001), Chiyachantana

et al. (2006)). I do not observe a statistically significant relation between the pre-transition

stock returns and the price impact. At the same time, I find that the effective spread on

purchases decreases and the effective spread on sales increases during transactions in stocks

with high pre-transition returns. I discuss potential explanations for these patterns later
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in the paper; for instance, pre-transition returns might indicate the novelty of information

contained in transition orders.

I outline several mechanisms that could explain a counterintuitive positive relation be-

tween the dollar trading volume and the price impact. The first explanation is a different

degree of competition among market participants. For actively traded securities, the total

trading volume is large but its substantial part is two-sided, buys alternates with sells; thus,

the resulting order imbalances are small. For these stocks, a one-sided trade equivalent to

1% of the average daily volume represents a distinctive and informative event. In contrast,

for thinly traded securities, the order flow is small but it tends to be one-sided, and so the

resulting order imbalance are large. For these stocks, a 1%-trade does not correspond to a

particularly informative event. The second explanation is a potential concavity of price im-

pact functions. Trading in more actively traded securities might seem to be more expensive,

since a typical magnitude of portfolio transition orders (as a fraction of order flow) in these

stocks is significantly lower (e.g., Almgren et al. (2005), Hasbrouck (1991a), Hausman, Lo,

and MacKinlay (1992), and Barra (1997)). Obizhaeva (2008b) shows that even after adjust-

ing for non-linearity, price impact still increases with trading volume. Alternatively, it might

be misleading to compare the price impact of securities with different trading volume and

volatility as measured over the same time horizon; instead, the proper scaling adjustment

has to be used. This line of research is further developed in Kyle and Obizhaeva (2008).

This paper is related to the strand of literature that examines the estimates of the trading

costs and their cross-sectional properties. The examples include Almgren et al. (2005),

Breen, Hodrick and Korajczyk (2002), Chan and Lakonishok (1993, 1995), Chen, Stanzl and

Watanabe (2001), Dufour and Engle (2000), Glosten and Harris(1988), Hasbrouck (1991

a,b), Holthausen, Leftwich and Mayers (1987, 1990), Lillo, Farmer and Mantegna (2003),

Madhavan, Richardson, and Roomans (1997). Aforementioned papers rely on ex post trading

data and, consequently, report potentially biased estimates. The comparison of estimates

across various studies is difficult due to diverse estimation designs and different time periods.

However, my estimates of trading costs seem to slightly lower than those of earlier studies.

For instance, Breen, Glosten and Harris (2002), Hasbrouck (1991 a,b), Glosten and Harris

(1988) find that the average price impact of a 1000-share trade ranges from 30 bps to 18

bps, whereas in my study, the average price impact of this trade is 28 bps for thinly traded

stocks and 8 bps for actively traded stocks.1

The paper is structured as follows. Section 2 introduces the parameters of interest,

1These numbers are derived from my estimates of price impact and a typical half spread for small stocks
(0.27% and 14%) and for large stocks (2.99% and 1%) given that, in the sample of portfolio transitions,
1000 shares roughly corresponds to 2% of the average daily trading volume and the average daily standard
deviation is about 2%.
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the price impact and the effective spread. Section 3 presents a bias-free methodology for

estimation of these parameters. Section 4 describes the data of portfolio transitions and

econometric specifics of empirical tests. Section 5 reports the unconditional estimates of

trading costs. Section 6 focuses on the cross-sectional properties of these estimates. Section

7 concludes.

2 Variables of Interest

I start with defining the price impact and the effective spread and showing how they relate

to the price dynamics around portfolio transition trades. The portfolio transition manager

has to sell securities from a legacy portfolio and to acquire securities into a target portfolio.

His goal is to design a cost-efficient execution scheme. Disregarding the issues involved into

portfolio trading, I consider his trading strategy in a particular security.2 To fix the ideas, I

assume that transition manager has to execute X̄ units of a stock over a fixed time period

[0, T ]. I define a variable IBS that accounts for the trading direction.

IBS =





1, for buy orders,

−1, for sell orders.

The transition manager usually splits his order over [0, T ]. The execution strategy can

be then defined in terms of a variable Xt, which stands for the number of shares executed

by time t. Clearly, X0 = 0 and XT = X̄. For simplicity, I consider only continuous trading

policies.3 The trading rate at time t is defined as X ′
t, and X ′

tdt is the total trading volume

during [t, t + dt). Formally, the set of admissible execution strategies for an order is

{
Xt,t∈[0, T ] : X ′

t ≥ 0,

∫ T

0

X ′
tdt = X̄

}
.

Besides traditional open markets (e.g., the NYSE, the AMEX and the NASDAQ), the

transition manager has an access to alternative sources of liquidity such as various crossing

networks. Internal pools of liquidity encompass either orders generated by other contempo-

raneously executed portfolio transitions, if a transition company has succeeded in capturing

a large fraction of the market, or orders from an affiliated passive asset management desk.

2I also do not model the issues related to the agency-based approach of managing portfolio transitions,
during which transition managers do not provide additional capital or guarantee pre-specified execution
prices but commit to act in the best interests of their clients.

3In general, both continuous and discrete trading strategies might be considered. Admissibility of discrete
trading will not change my main conclusions.
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Presumably, transactions in internal crossing networks incur neither trading costs nor infor-

mation leakage. Another valuable source of liquidity are external crossing networks such as

ITG’s POSIT, LiquidNet or PipeLine. These networks facilitate crossing orders at prices

that are derived from primary exchanges and are adjusted to alleviate gaming and manipu-

lation concerns. Although not insuring a full anonymity, they claim to substantially reduce

information leakage and help avoid the bid-ask spread.4 Since the transition manager might

split this order over different trading venues, the total trading at time t, X ′
tdt, is further

split into three groups. The fraction of orders executed in each of trading venue at time t

is It,omt, It,ec, and It,ic, respectively. For each t, they sum up to one, It,omt + It,ec + It,ic = 1.

During [t, t + dt), It,ic ×X ′
tdt shares are executed in internal crossing networks, It,ec ×X ′

tdt

in external crossing networks, and It,omt×X ′
tdt shares are transacted in traditional markets.

Let Xt be a total number of shares executed during time interval [0, t). I also denote the

number of shares executed in open markets, external and internal crossing networks during

time interval [0, t) as

Xomt
t =

∫ t

0

Iomt
u X ′

udu, Xec
t =

∫ t

0

Iecu X ′
udu, X ic

t =

∫ t

0

Iicu X ′
udu.

I next specify the price dynamics around portfolio transition orders. Since the magnitude

of portfolio transition orders is large, the price dynamics certainly depend on the executed

trades of transition managers. I fix the pre-transition security price at level P0 and specify

the following price dynamics as:

dPt = λ× (IBS × dXt) + σP × dZ̃t, Z̃0 = 0, (1)

where σP is the standard deviation of security prices, IBS is a variable equal to 1 for buy

orders and -1 for sell orders, and dZ̃t are news about security’s fundamentals modeled as

N(0, dt). Parameter λ is the price impact. It reflects how strongly security prices change in

response to trades.

The specification of price dynamics is inspired by a measure of information asymmetry,

first introduced by Kyle (1985) and defined as the price change over the trade size. However,

in order to make the price impact variables more meaningful for a cross-section of stocks, it

is natural to use its scaled version. Therefore, I normalize trade size dXt by a fraction of

trading volume (e.g. the average daily volume) and express the price impact as a fraction

of the return standard deviation (e.g. the daily return standard deviation). Then, the price

4For the recent overview of crossing networks see Ramistella (2006).
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dynamics (1) is:

dPt

Pt × σr

= λ̃×
(
IBS × 1

ADV
× dXt

)
+ dZ̃t, Z̃0 = 0, (2)

where σr is the daily return standard deviation, ADV is the average daily volume (in shares),

IBS is a variable equal to 1 for buy orders and -1 for sell orders, and dZ̃t are news about

security’s fundamentals modeled as N(0, dt). The scaled price impact λ̃ is the variable of

interest in this study. It means by how much (in percents of the daily return standard

deviation σr) 1% of the average daily volume will change the security prices. Thus, the

underlying assumption is that a certain fraction of “normal” daily trading volume is expected

to trigger a certain level of “normal” price motion (e.g., Almgren et al.(2005)). This scaling

procedure assures the proper specification of the price impact for the stocks with the same

market capitalization and return volatility but with different numbers of shares outstanding.

This measure is also stable with respect to splits.

Another variable of interest is the effective spread. While trading, manager incurs a fixed

transaction cost due to bid-ask spread. More precisely, I assume that he pays on a 1-share

buy order and receives on a 1-share sell order αic dollars, if this order is executed as an

internal cross, αec dollars if it is executed as an external cross, and αomt dollars if it is traded

in open markets. Presumably, αomt ≥ αec ≥ αic. Moreover, αec and αic might be equal

to zero, since crossing networks are believed to help avoid bid-ask spread. In other words,

variables αomt, αec, αic are the effective half spread in open markets, in internal and external

crossing networks, respectively. Again, it is useful to specified the effective spread in relative

terms. I define α̃omt, α̃ec, and α̃ic that quantify the spread payment on $1 dollar invested

into stock in percents of the daily return standard deviation. In other words, these variables

characterize the percentage effective spread, which is equal to 2× α̃omt×σr, 2× α̃ec×σr and

2× α̃ic × σr for various trading platforms.

To summarize, I estimate the scaled variables of the price impact and the effective spread:

λ̃, α̃omt, α̃ec and α̃ic. (3)

However, my results can be interpreted in terms of the unscaled variables, λ, αomt, αec, and

αic, because they can be expressed as the simple transformations of the scaled variables (3):

λ = λ̃× σrP

ADV
, αomt = α̃omt × σrP

100
, αec = α̃ec × σrP

100
, αic = α̃ic × σrP

100
. (4)

To further clarify my estimation procedure, I provide an illustrative example of plausible

values for variables in this study. Variable dXt is in the number of shares, e.g. 1000 shares.
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Variable σr is the daily return standard deviation, e.g. 0.04 for volatile stocks and 0.01 for

not volatile stocks. Variable ADV is the average daily volume in shares, e.g. 50 millions for

large stocks and 1 million for small stocks. Variable P is the stock price, e.g. $20 dollars.

If the price impact variable λ̃ = 2, then it means that 1% of the average daily volume

results in the positive return of 2% × σr or, in other words, in the absolute price deviation

of 2% × σr × P . In a given above example, for large and volatile stocks, the purchase of

500, 000 shares of stocks (1% of ADV) at price $20 is expected to induce a positive return

of 2%× 0.04 = 8 bps or move the price by 2%× 0.04× $20 = 1.6 cents.

If the half effective spread in open markets α̃omt = 15, then it means that the percentage

effective spread in open markets is equal to 2 × 15% × σr or, in other words, the absolute

effective spread in open markets is equal to 2 × 15% × σr × P . In a given above example,

for volatile stocks with the current price of $20, the percentage effective spread is equal to

2× 15%× 0.04 = 1.2%, and the absolute effective spread is equal to 2× 15%× 0.04× $20 =

24 cents.

3 Methodology

In this section, I discuss a conventional method to estimate the parameters of trading costs

and show that it delivers biased estimates in cases when trading strategies are price dependent

and when only fractions of ex ante orders are considered. Then, I describe a bias-free method.

The intuition behind both methods is illustrated in Figure 1.

3.1 Implementation Shortfall

The calibration of the parameters of trading costs is usually based on the reported costs.

A standard metrics of execution quality is the implementation shortfall defined in Perold

(1988). This measure is equal to the difference between two returns: (1) the dollar return

of a paper portfolio where all shares are assumed to be transacted at the prevailing market

prices at the time of trading decision and (2) the actual dollar return of the portfolio. Despite

a straightforward intuition behind this measure, its definition involves a few subtle issues,

therefore I discuss next its adaptation for a case of portfolio transition trading in more detail.

The benchmark implementation assumes that an entire package is transacted momentar-

ily at pre-trade prices. The “hypothetical” cost of acquiring position is X̄P0. Its final value

is a total desired position X̄ evaluated at the stock price at time t. Thus, if IBS is a buy/sell
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indicator, then the return on a paper portfolio by time t ∈ [0, T ) is

IBS × X̄ × (Pt − P0).

The actual implementation includes trading costs due to various market imperfections. The

return on a real portfolio is typically affected by two factors. The first one reflects the

shifts in the market’s assessment of stock fundamentals and the compensation for liquidity

provision, whereas the second one is due to bid-ask spread. Thus, the actual portfolio return

by time t ∈ (0, T ) is computed as

IBS ×
(∫ t

0

(Pt − Pu)X
′
udu

)
−

∫ t

0

(αomtIomt
u + αecIecu + αicIicu )X ′

udu.

Consequently, the total implementation shortfall, marked-to-market at time t ∈ [0, T ) and

denoted as ISt, can be determined as

IBS ×
(

X̄(Pt − P0)−
∫ t

0

(Pt − Pu)X
′
udu

)
+

∫ t

0

(αomtIomt
u + αecIecu + αicIicu )X ′

udu. (5)

The implementation shortfall ISt depicted as a shaded area in Figure 1. It can be also

represented as a sum of two components ISt = Πt + OCt where

Πt = IBS ×
∫ t

0

(Pu − P0)X
′
udu +

∫ t

0

(αomtIomt
u + αecIecu + αicIicu )X ′

udu, (6)

OCt = IBS × (Pt − P0)×
(
X̄ −Xt

)
. (7)

The first component, Πt, corresponds to the realized trading costs of trades transacted

during [0, t). It comprises the explicit costs, such as bid-ask spread of various trading

platforms, and the implicit costs, such as the price impact of transacting at what may be

disadvantageous prices. Due to typically adverse price changes and the bid-ask spread, Πt

tend to be positive for both purchases and sales.

The second component, OCt, stands for the opportunity costs, or losses of potential gains

due to the transactions that are unexecuted by time t, X̄ −Xt. The unconditional expected

value of this component, E0(OCt), is non-zero whenever only a part of trading package

rather than an entire ex ante order is executed. Moreover, its expected value tends to be

positive, since predominantly adverse changes in security prices during the trading make

IBS × (Pt − P0), on average, greater than zero. Thus, non-zero opportunity costs is likely to

be observed in many situations. For instance, it might be caused by canceled orders. Indeed,

if a portion of an order is canceled and only the completed by time t trades are taken in
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account, then the opportunity costs, OCt, is non-zero and most likely positive. Similarly,

the opportunity cost, OCt, differs from zero if the implementation shortfall ISt is defined

for a subinterval [0, t) ∈ [0, T ) rather than a whole trading period [0, T ), for instance, for a

given day in a multi-day trading packages.

Parameters of the price impact and the effective spread (3) are often calibrated based

exclusively on the realized trading costs of executed trades Πt, since unexecuted trades are

usually unobservable. I review this methodology in the next section and show mathematically

when it leads to biased estimates. According to my further analysis, the opportunity cost

OCt of unexecuted trades is an essential part of trading costs, and disregarding it, while

estimating (3), is not inconsequential.

3.2 Conventional Methodology

A conventional way to proceed with the calibration of transaction costs parameters (3) is

to estimate them from a regression equation that relates these parameters to the realized

trading costs, Πt, without taking in account the opportunity costs, OCt. I next illustrate

this approach in more detail. The variable Πt defined in (6) is a total realized costs of

trades executed during time interval [0, t) given a pre-trade benchmark price P0. Using (1),

I express the security price at time u as,

Pu = P0 + IBS × λ× (Xu −X0) + σP × (Z̃u − Z̃0). (8)

Plugging (8) into (6), I get

Πt =
1

2
λX2

t +

∫ t

0

(
IBS × σP (Z̃u − Z̃0) + αomtIomt

u + αecIecu + αicIicu
)

X ′
udu. (9)

Then, if I use equations (4) and σP = σrP0, then the average trading costs per $1 traded

(in percents of the return standard deviation) can be written as

Πt

σrP0Xt

=
1

2
λ̃

1

ADV
Xt +

α̃omt

100

Xomt
t

Xt

+
α̃ec

100

Xec
t

Xt

+
α̃ic

100

X ic
t

Xt

+ ε̃t (10)

where

ε̃t = IBS ×
∫ t

0

(Z̃u − Z̃0)
X ′

u

Xt

du.

The equation (10) has an intuitive sense. The price “slippage”, or the difference between the

average execution price and the decision price, is determined by several factors. The first one

is due to the price impact of a given order, which is usually linear in order size. The second
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one is due to the non-zero spread on various trading platform. The term ε̃t is often assumed

to capture the noise. Therefore, the trading costs variables (3) can be estimated from the

regression equation (10) with ε̃t assumed to be independent of regressors and E(ε̃t) = 0.

Different versions of regression equation (10), sometimes with slight modifications, are used

in the work of Almgren et al. (2005), Breen, Hodrick, and Korajczyk (2002), among others. I

refer to regression equation (10) as a conventional methodology for estimating the parameters

of trading costs (3).

A conventional approach relies on the assumption that εt can be approximated by a

random variable with a zero mean. This assumption is not an innocuous one. Indeed,

integrating by parts, I find that E(εt) can be presented as follows,

IBS×E

(
1

Xt

(Z̃u − Z̃0)Xu|tu=0

)
−IBS×E

(∫ t

0

Xu

Xt

dZu

)
= −E

(∫ t

0

Xu

IBS ×Xt

dZu

)
. (11)

Therefore, the first moment of εt can be safely assumed to be zero, only if (11) is equal to zero

for a given time t. This condition holds if t = T and XT is an entire ex ante order X̄ with no

trades remained unexecuted, since E
(∫ T

0
XudZu

)
= 0. In this case, conventional estimates

are unbiased regardless of interim trading strategies of market participants, which may be

price-dependent, for instance, it may include the limit orders. Indeed, even if conditioning

the strategy on the security prices, the cost might be deferred in time, it will be inevitably

realized by the end of a trading period [0, T ). To summarize, a conventional approach is

valid for assessing the trading costs of an entire ex ante orders traded over a period [0, T ).

At the same time, if the regression equation (10) is used to estimate the trading costs

for only a part of ex ante order, then the estimates are likely to be biased. Indeed, traders

usually try to influence the magnitude of the variable trading costs by adapting their trading

strategies to the conditions encountered when a trade is brought to the marketplace. Often,

market participants slow down their trading when the market runs away. Frequently, some

trades are canceled, since the available market prices are not considered favorable anymore,

thus leaving out of an ex post sample the most expensive trades that have never been

executed. This endogenous dependence of trading strategies on the security prices leads to

the negative correlation between IBS×Xt and dZu for u ∈ [0, t) and induces a downward bias

in the estimates of price impact. Thus, if traders slow down their trading when security prices

run away from them, then conventional estimates of price impact are biased downwards. In

contrast, if traders speed up their trading during unfavorable market conditions, then these

estimates are biased upwards. In other words, Πt is not equal to λ
2
X2

t (see Figure 1). For

instance, this selection-bias problem is relevant to any calibrations based on the TAQ dataset,

in which only realized rather than ex ante orders are observed.
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To summarize, the conventional method can be applied only for estimation of the trading

costs of total ex ante orders. In other situations, improper evaluation metrics will likely

induce a bias in conventional estimates and lead to erroneous conclusions. Thus, a more

robust estimation procedure is of particular interest, especially considering how prevailing

are cancelations and limit orders in the markets. Next, I describe a bias-free estimation

methodology that can be applied in a general case.

3.3 Bias-Free Methodology

A bias-free methodology is based on the total implementation shortfall, ISt, marked-to-

market at time t, which includes both components Πt and OCt, the realized trading costs

of executed trades and the opportunity costs of unexecuted trades. The implementation

shortfall ISt, defined in (5), is equal to

IBS×
(

X̄(Pt − P0) + Xt(PT − Pt) +

∫ t

0

(Pu − PT )X ′
udu

)
+

∫ t

0

(αomtIomt
u +αecIecu +αicIicu )X ′

udu.

Using the expression (8) for security prices and equation (4), it is easy to show that the

implementation shortfall ISt normalized by σrP0X̄ can be further decomposed into the sum

of a deterministic and random components,

ISt

σrP0X̄
=

1

2
λ̃

1

ADV

X̄2 − (X̄ −Xt)
2

X̄
+

α̃omt

100

Xomt
t

X̄
+

α̃ec

100

Xec
t

X̄
+

α̃ic

100

X ic
t

X̄
+ ε̃t, (12)

where

ε̃t = IBS ×
(

Z̃t − Z̃0 −
∫ t

0

(Z̃t − Z̃u)
X ′

u

X̄
du

)
.

This equation shows explicitly what determines the average change in the implementation

shortfall for one-dollar transaction (in percents of the return standard deviation σr). The

intuition behind this method is that expected mark-to-market implementation shortfall ISt

is represented as the difference between expected execution costs of a total ex ante order

X̄ and the expected execution costs of unexecuted part X̄ − Xt (see Figure 1). In other

words, the total implementation shortfalls ISt is written in a way that the random part ε̃t

does not involve the interaction terms between Xt and any past changes in prices. Since

the trading strategy is independent from the future changes in prices, the expectation of ε̃t

is equal to zero regardless of t. These considerations suggests that unbiased estimates of

trading cost parameters (3) can be obtained from the regression equation (12). Regardless

of time interval [0, t) under investigation, the key input is a total size of ex ante order X̄.
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To further clarify the distinction between two methodologies for estimating the parame-

ters of trading costs, I compare two equations (10) and (12). The left-hand side variables in

these equations are different: Πt/σrP0Xt and ISt/σrP0X̄, respectively. Both variables are

stated in percents of the return standard deviation. However, in the conventional method-

ology, the left-hand side variable is the realized trading cost Πt for trades that are executed

during [0, t) per one dollar traded. At the same time, in the bias-free methodology, the

left-hand side variable is also the realized trading cost Πt for trades executed during [0, t)

but augmented with the opportunity cost for the remaining orders, OCt, and stated per

one dollar of total ex ante order. Furthermore, the right-hand side of the equation (12) is

properly adjusted for the expected costs of yet unexecuted trades.

The suggested method provides a flexible framework for estimating the parameters of

the trading costs. It allows to assess trading costs of any part of executed orders without

incurring biases due to endogenous split of executed orders over time in response to the

observed price dynamics or order cancelations. For example, I can calibrate the estimates of

(3) by analyzing the variable ISt for any time t regardless of whether some trades are still

incomplete at time t. Thus, the suggested methodology (12) is a good tool to disentangle

price impact and opportunity costs and to obtain unbiased estimates of trading costs (3).

3.4 Comparison of Methodologies

I highlight the difference between two approaches on a simulated data for trades and price

process defined in (1). For simplicity, I assume that there is no bid-ask spread. I fix the

value of price impact λ̃ = 2 to be estimated and generate 5000 scenarios, each of which

evolves according to the following schema. The average daily volume ADV = 1000, the

daily standard deviation of returns σr = 0.02. The initial price P0 is uniformly distributed

between 1 and 100. A noise term Z̃ is drawn from a normal distribution with zero mean

and standard deviation equal to σr × P0. The size of ex ante buy order, X̄, is uniformly

distributed between -1000 and 1000. I also simulate the dependence of trading strategies

on price dynamics. If security prices move favorably (Z̃ × X̄ < 0), then total ex ante order

X̄ is executed. If security prices move adversely (Z̃ × X̄ > 0), then a part of ex ante

order is canceled and only a random fraction of X̄ is executed. This schema reproduces

the general practice to cut off trading during unfavorable market environment. The realized

price trajectory is defined by (1).

Next, I estimate λ̃ using two methodologies. I discuss a particular scenario to illustrate

how to construct regression equations in both cases. The initial price P0 is $20. A trader

plans to buy 1000 shares. While trading, he faces adverse market conditions as σP × Z̃ turns
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out to be $0.5. The available prices are so high that a trader decides to cancel the execution

of remaining 100 shares and thus only 900 shares are being purchased. From (4) and (1),

λ = 0.0008, the post-trade price is P0 + λ×X + Z̃ = 20 + 0.0008× 900 + 0.5 = $21.22 and

the average execution price is P0 + 1
2
(λ×X + Z̃) = 20 + 1

2
(0.0008× 900 + 0.5) = $20.61. In

conventional approach, this observation leads to the equation:

900× 20.61− 900× 20

σr × 20× 900
=

1

2
λ̃

1

ADV
900 + ε̃.

In bias-free approach, this observation gives the equation:

900× 20.61 + 100× 21.22− 20× 1000

σr × 20× 1000
=

1

2
λ̃

1

ADV

10002 − (1000− 900)2

1000
+ ε̃.

When a parameter λ̃ (equal to 2 in my experiment) is estimated based on 5000 simula-

tions, the results are the following. Using a conventional approach, the estimates of λ̃ are 1.56

with standard errors equal to 0.03 and R-squared equal to 37%. Using a bias-free approach,

the estimates of λ̃ are 1.95 with standard errors equal to 0.04 and R-squared equal to 37%.

As predicted, the conventional estimates are biased downwards, since by design a trader

slows down his trading when the market runs away. At the same time, a new methodology

delivers unbiased estimates.

3.5 Different Trading Venues

Methodologies are also robust to endogenous split of orders over different trading venues

in response to current market environment. In fact, the selection of trading system might

affect ex post trading costs. Usually, transition managers follow a pecking-order while im-

plementing their strategies. The priority, in which they are considering trading platforms,

is the following: internal crossing networks, external crossing networks and then traditional

open markets, presumably from the cheapest alternatives to the most expensive ones.

This practice might lead to biased estimates of trading costs obtained from the analysis

of ex post execution data. To illustrate, I consider two cases when a portfolio transition is

executed during favorable and unfavorable market conditions. In the first scenario, many

market participants are trading in the opposite direction to the transition manager, and

since liquidity is easy to get, most orders are executed internally. Hence, ex post price

impact in internal crossing networks are found to be close to zero, and the price impact in

other trading venues are not be observed. In the second scenario, many market participants

are trading in the same direction as the transition manager, and since liquidity is scare in

crossing networks, most orders are directed to open markets. Hence, the ex post records
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of the price impact in the traditional exchanges are particularly significant, whereas the

transaction data on crossing networks is not observed. Thus, if the estimates of the price

impact are obtained separately for trading venues, then the pecking-order in selecting trading

venues might trigger underestimation of trading costs for the external and internal crosses

and their overestimation for the open markets trades.

To get around this problem, I bundle orders executed in various systems together. Thus,

I provide only unconditional estimates of the price impact. At the same time, I assume that

fixed costs of trading can not be influenced by strategic behavior of transition managers and,

therefore, I estimate the implied effective spread for each of trading platform separately.

Next, I discuss a data set of portfolio transition trades and other details of estimation

procedure.

4 Estimation

4.1 Portfolio Transition Data

I use a proprietary database of portfolio transitions from a leading provider of portfolio

transition services, who supervises more than 30% of transitions in the U.S. The samples

includes about 2,680 portfolio transitions with a trading volume of roughly $630 billion (out

of which $450 billion are traded in the U. S. markets), which are executed on behalf of U.S.

institutions from January 2001 to December 2005.

This unique data set is based on the actual post-transition reports prepared by tran-

sition managers for their clients. For each transition, each security, each trading day and

each trading venue (open markets, external or internal crossing networks), the number of

shares traded, the average execution price, the pre-transition benchmark price as well as the

information on transaction costs are specified.

The data set of portfolio transitions provides a unique opportunity to observe ex ante

orders, i.e. their size and direction, which is a crucial input in the regression equation (12).

In fact, the trading intentions of portfolio transition managers are set in advance when

they get mandates with pre-specified lists of securities in legacy and target portfolios. This

property of portfolio transitions is a valuable one, since usually ex ante orders cannot be

identified, and observed orders might be influenced by a variety of investment styles and

order placement strategies.

Trading data is available for each trading day in trading packages. Instead of aggregating

information at order level, I utilize data on individual trades in a trading sequence and treat

them as separate observations to enlarge the size of a sample under investigation. Namely, I
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estimate the parameters of trading costs λ, α̃omt, α̃ec, and α̃ic from regression equations (10)

and (12) for days when trades were executed. For instance, if a purchase is executed over five

days but transactions are done only on the first and the last days, then my sample includes

two observations for these two days. For each day t and a security in a given transition, I

assume that X̄ is the total number of shares left to be executed at the beginning of day t,

Xt is the number of shares executed during that day, Πt is the realized trading costs for that

day, and ISt is mark-to-market implementation shortfall for that day (with a previous day

close price taken as a benchmark price).

It is worth noting that since I consider execution of daily parts of orders rather than that of

total ex ante orders and since trading strategies are most likely price dependent, conventional

method might deliver biased estimates, whereas bias-free method delivers unbiased estimates.

I also run tests on a sample of total orders. For this sample, both methods are mathematically

identical and deliver identical estimates. Moreover, they are close to bias-free estimates for

a sample of daily trades (not reported).

Additionally, I use the CRSP database to get data on stock prices, returns, volume,

and shares outstanding. My sample includes common stocks (with CRSP share codes of

10 and 11) listed on the New York Stock Exchange (NYSE), the American Stock Exchange

(Amex), and NASDAQ in the period of January 2001 through December 2005. I exclude

any ADRs, REITS, or closed-end funds. I remove stocks with missing CRSP information,

necessary to construct variables for the tests. I also exclude low-priced stocks and further

check data to avoid any potential typographical errors and inaccuracies. Moreover, since the

treatment of dividends and splits, occurred during portfolio transitions, is unclear from the

data, I also exclude all observations with non-zero payouts during the first week following the

starting date of portfolio transitions. I use a fixed period of one week rather than an actual

duration of implementing the strategies in order to avoid any potential sample selection bias,

as the duration of execution might be endogenously related to various properties of traded

securities. In total, I consider 702,406 observations (334,035 buys and 368,371 sells).

4.2 Econometric Details

Beside the execution-related variables (ISt, Πt, Xt and X̄), the regression equations (10) and

(12) involve variables such as the trading volume, ADV , the return standard deviations, σr,

and the security price, P0. I use the variables known before portfolio transition trades in

order to avoid any spurious effects of using contemporaneous variables. Next, I describe how

I define these variables.

The trading volume, ADV , is the average daily trading volume, denoted in the number
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of shares, for a month prior to that during which a portfolio transition is implemented. It is

a good proxy for a “normal” trading volume during portfolio transitions. The security price,

P0, is the close price in the previous day.

I also estimate the volatility of daily returns, σr. For each security, I first find the

estimates of the monthly return variance as a the sum of the squared daily returns:

σm
i,t =

Nt∑

k=1

r2
i,t

where there are Nt daily returns ri,t in month t. I do not subtract the average daily return

in month t because it has little effect on the results. I also do not adjust the estimates for

autocorrelation of returns adding a cross-product of adjacent returns, as it might result in

the negative estimates of volatility for some stocks. Then, the historical daily volatility, σh
i,t,

of stock i in month t is defined as

σ̂h
i,t =

1√
Nt

σm
i,t. (13)

The volatility of stock returns is changing over time. Therefore, I also estimate the ARIMA

model and get the conditional forecasts of the daily return standard deviations for each stock

i and month t. I follow the procedure suggested in French et al. (1987). To account for the

positive skewness of the standard deviation estimates, I use the logarithmic transformation

for the volatility instead of its raw estimates. I estimate a third-order moving average process

for the changes in ln σm
i,t over the whole sample from 2001 to 2005:

(1− L) ln σm
i,t = Θ0 + (1−Θ1L−Θ2L

2 −Θ3L
3)ut

Then, the conditional forecast for the volatility of daily returns is

σ̂e
i,t = exp

[
ln σm

i,t + 0.5V̂ (u)
]

(14)

where V̂ (u) is the variance of the prediction errors of ARIMA model. In estimation of the

regression equations (12), I use proxies σ̂e
i,t−1 and σ̂h

i,t−1 for σr. I only report the results for

σ̂e
i,t−1, as these results are quantitatively similar to the results for the other proxy.

It is important to adjust standard errors for the potential cross-sectional correlation.

Without correcting for these effects, the precision of estimates can be largely overestimated.

This interdependence across close in time observations may arise due to several reasons.

First, splitting of trades over several days and considering them as separate observations
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might lead to high correlation of their standard errors. Second, this correlation might be

also either due to the fact that the portfolio transitions involve trading portfolios of securities

with often similar characteristics or due to effects of the overall market dynamics.

To correct for potential cross-sectional correlation of standard errors, I cluster standard

errors of observations for each week and each industry. I consider the conventional definitions

of 17 industries. For robustness check, I also implement a number of slightly modified tests

and run my regression analysis for various numbers of industries and monthly-grouped data

as well as using the Fama-McBeth procedure instead of the pooled regression. The resulting

estimates are very stable across various econometric tests. This fact assures the robustness

of my results.

5 Main Results

5.1 Portfolio Transition Orders

I describe next the size of portfolio transition orders and the characteristics of securities in

legacy and target portfolios. To capture cross-sectional differences, I consider the groups of

securities with different average daily volume and volatility. I divide observations into 10×5

groups based on the average daily trading volume in dollars and the historical standard

deviation of daily returns, σ̂h
i,t defined in (13), in the previous month. The volume thresholds

are 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th quintiles, and the volatility

thresholds are 20th, 40th, 60th, and 80th quintiles of the corresponding variables for the

universe of the NYSE-listed stocks with CRSP share codes of 10 and 11. Each month, I

recalculate thresholds and reshuffle stocks across bins. I choose not to consider equally-

spaced thresholds for the trading volume and instead focus on larger stocks, which are

economically more important.

Panel A of Table 1 shows that the number of observations is relatively stable across

groups. Typically, there are more than 10,000 observation in each bin. Significantly more

observations is placed only in the lowest volume and the highest volatility bins. Panel B

and Panel C of Table 1 present the median values for the average daily trading volume and

the daily return standard deviations, respectively. The daily trading volume ranges from $1

million for small stocks to $200 million for large stocks, whereas the historical daily volatility

varies from 1% for non-volatile stocks to almost 4% for volatile stocks.

The magnitude of portfolio transition orders varies significantly across bins. Figure 2

shows the mean and median values of order sizes as a percentage of the average daily volume

for 50 groups of securities, defined on the basis of the trading volume and volatility. Order
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sizes are inversely related to trading volume. For small stocks, the average order size is

about 20%; for large stocks, it is only 0.50%. This difference remains, if the median values

are considered. The relation between order sizes and volatility tend to be inverse as well.

5.2 Estimates of Trading Costs

Table 2 presents the estimates of the price impact λ̃ and the effective spread α̃omt, α̃ec and

α̃ic, obtained using conventional method (10) and bias-free methods (12). I consider a

total sample of daily portfolio transition trades. Since trading costs might be different for

purchases and sales as well as for securities listed in different exchanges, I also supplement

my analysis with the analysis of trading costs for corresponding sub-samples.

When a bias-free method is applied to a total sample, the unconditional estimate of the

price impact λ̃ is equal to 0.33. Therefore, on average, 1% of the average daily volume has

the price impact equal to 0.33% of the daily return standard deviation. These estimates tend

to be higher for purchases than for sales, however, this difference is statistically significant

only for the Nasdaq-listed stocks. Also, I do not find any significant difference between the

magnitude of the price impact for Nasdaq and NYSE/Amex stocks. These patterns remain

if estimates are obtained through the conventional method.

For both methods, the unconditional estimate of the effective spread for open market

trades, 2× α̃omt, is about 13, which corresponds to a fixed cost of 13% of the daily standard

deviation per $1-trade. These estimates are higher for transition purchases than for transi-

tion sales. Moreover, I document larger estimates of the effective spread for the Nasdaq-listed

stocks. This finding is consistent with a report of the U.S. Securities and Exchange Com-

mission that analyzes the effective spreads on various trading platforms and concludes that

NYSE provides a better order execution than Nasdaq.

The estimated effective spread for the crosses on external crossing networks, 2×α̃ec, is also

about 13% of the daily standard deviation. Despite a belief that crossing networks help avoid

bid-ask spread, there is no evidence that spread in crossing networks is significantly different

from the one on the traditional markets. Indeed, the point estimates of the effective spread

are sometimes even higher for the external crosses than for the open market transactions. The

estimates of the effective spread on internal crossing networks, 2×α̃ic, is usually insignificant.

I examine the difference between the estimates of conventional and bias-free methods.

Table 2 reports the percentage difference between these estimates, %∆. For purchases,

the conventional estimates tend to be weakly biased downwards (%∆ < 0). For example,

the magnitude of this bias is -13% for purchases of the NYSE-listed securities. For sales,

the conventional estimates of λ̃ are biased upwards (%∆ > 0). The magnitude of this
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bias is substantial. It is equal to about 20%. The bias in the estimates α̃omt is 31% for the

NYSE/Amex-listed stocks and 16% for Nasdaq-listed stocks. The sign of bias reveals indirect

evidence of price dependence of transition strategies. Negative bias for sales and positive bias

for purchases indicate that when shifting funds in unfavorable market conditions, transition

managers tend to speed up sales of securities in legacy portfolios and somewhat slow down

purchases of securities in target portfolios. These patterns might be explained by the agency-

based approach of managing portfolio transitions, during which transition managers do not

employ their own capital but have to use proceeds of sales to purchase new securities.

6 Cross-Sectional Properties of Trading Costs

In the previous sections, I reported unconditional estimates of price impact and effective

spread that can be summarized as follows. For conventional method, the estimate of regres-

sion equation (10) is

Πt

σrP0Xt

=
0.39

2
× 1

ADV
Xt +

6.25

100
× Xomt

t

Xt

+
6.53

100
× Xec

t

Xt

+
1.33

100
× X ic

t

Xt

+ ε̃t

For bias-free method, the estimate of regression equation (12) is

ISt

σrP0X̄
=

0.33

2
× 1

ADV

X̄2 − (X̄ −Xt)
2

X̄
+

6.55

100
× Xomt

t

X̄
+

6.94

100
× Xec

t

X̄
+

0.22

100
× X ic

t

X̄
+ ε̃t.

My next goal is to analyze cross-sectional properties of the parameters of interest, λ̃, α̃omt, α̃ec,

and α̃ic. In this section, I consider how these parameters depend on stocks’ average daily

volume, their volatility, the proxies of information asymmetry, and the pre-transition price

dynamics.

6.1 Trading Costs and Volume

I begin with the analysis of how the parameters of trading costs change across stocks with

different average daily volume.5 I split all observations into 10 volume groups according

to the trading volume of securities in the previous month. The thresholds are the same as

described in Section 5.1. Then, I estimate price impact and effective spread for each of these

groups.

Effectively, I augment the regression equations (10) and (12) with the interaction terms of

5Since the market capitalization and the dollar trading volume are highly correlated across stocks, the
relations between trading costs and stock size is very similar to the ones discussed in this section.
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existing explanatory variables and dummy variables for each volume groups. This procedure

allows me to obtain the estimates of the price impact and the effective spread for securities

with different trading volume. I focus on a pooled regression rather than on a set of separate

regressions for each group of observations, since this procedure enables me to take into

account potential correlation of residuals across volume groups. Additionally, I redo my

tests for the sub-samples of observations, namely, purchases and sales of the NYSE/Amex-

listed and the Nasdaq-listed securities. Table 3 reports the estimates of the bias-free trading

costs for three out ten volume groups, Groups 1, 5 and 10, obtained through bias-free

(complete results as well as conventional estimates can be provided upon request). Figure

3 graphically shows the estimates for all groups and their 95%-confidence intervals for the

bias-free approach. The observed patterns are worth discussing.

First, the price impact λ̃ increases with the average daily volume. For instance, if a total

sample is considered, then estimates λ̃ from bias-free method range from 0.27% for thinly

traded stocks to 2.99% for actively traded stocks. These point estimates have the following

interpretation. On average, 1% of trading volume triggers the price changes of 0.27% × σr

and 2.99%×σr for securities with the low and high dollar trading volume, respectively. Thus,

the price impact is ten times higher for the latter than for the former. Likewise, all sub-

samples exhibit similar relation between the price impact and the trading volume. The only

exception is a relatively small price impact induced by purchases of the largest Nasdaq-listed

stocks.

Second, the effective half spread α̃omt decreases with the dollar trading volume, and it

is particularly significant for the least actively traded stocks (Group 1). For both methods,

while being roughly 2×15%×σr for the securities with the lowest dollar trading volume, the

effective spread drops to only 2× 3%× σr for the securities with the highest dollar trading

volume. I also document similar patterns of inverse relation between the trading volume and

the effective spread for external crossing networks. At the same time, internal crosses do not

involve statistically significant spread-related trading costs.

Figure 4 shows the implied price impact functions for the most thinly and actively traded

stocks (Groups 1 and 10). Plots are based on the estimates of trading costs in Table 3. I

also assume that orders are split across trading venues according to the average proportions

in my sample. For stocks with the lowest (highest) volume, these proportions are 31%

(24%) for open markets, 45% (38%) for external crossing networks, and 17% (38%) for

internal crossing networks. The signatures of price impact functions are different for these

securities. For thinly traded securities, trading costs are almost invariant with respect to a

trade size and spread-related payments account for their largest fraction. For actively traded

securities, trading costs are very sensitive to a trade size and spread-related payments are
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less significant. It is worth emphasizing that high price impact for stocks with large trading

volume reveals high sensitivity of price changes to order sizes. However, trading in these

stocks is cheaper in dollar terms.

To summarize, I find that transactions in stocks with higher volume tend to be associated

with lower effective spread but with more substantial price impact. While the first finding is

consistent with existing market microstructure models, the second one seems to contradict

conventional intuition. Indeed, it is commonly believed that trading in large stocks involves

less risk of information asymmetry and requires smaller compensation for liquidity providers

which, consequently, leads to slighter price concessions. Moreover, the price impact for

trading in large stocks is mitigated by the easiness of market-making in their markets: it is

less strenuous to find a hedge for these securities or reallocate them in the future to other

market participants.

My findings might be counterintuitive at first sight but they also appear in work of others.

For instance, Breen, Hodrick, Korajyzyk (2002) mention that the price impact, estimated

with transaction data from the TAQ database, increases with the market capitalization,

if trade size in its definition is scaled by the shares outstanding and, consequently, these

estimates quantify the price impact for one percent of turnover rather than one dollar. To

avoid these “unreasonable” results, they choose to focus on the unscaled measure of price

impact (as λ in (1)) that “reasonably” decreases with the market capitalization (see also

Hasbrouck (1991b) and Chen, Stanzl and Watanabe (2005), among others)). Thus, the

choice of specification for the price impact parameters is crucial. Furthermore, for a more

meaningful scaled specification of the price impact (2), its estimates increase with the market

capitalization and the dollar trading volume.

I outline several reasons that may potentially explain the documented patterns. My

first argument is that trading in large stocks is a subject to a significant competition among

market participants, which might further result in high estimates of the price impact. On one

hand, when stocks are traded intensively and their trading volume is large, its substantial part

is two-sided: buys alternates with sells, as market participants trade on their information.6

Consequently, for these stocks, a one-sided trade equivalent to 1% of the average daily

volume represents a distinctive and informative signal. On the other hand, when stocks are

not traded a lot and their trading volume is small, a large fraction of this trading volume

constitutes one-sided trading. Therefore, for these stocks, the information content of a trade,

equivalent to 1% of the average trading volume, might be less significant. This mechanism

6For example, Chordia, Huh, and Subrahmanyam (2007) find that the stock size is negatively related to
the absolute order imbalances, or the net selling or buying pressure, and positively related to the trading
volume.
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might lead to higher price impact for securities with larger trading volume.

Potential concavity of the price impact functions might also manifest itself in the coun-

terintuitive relation between the trading volume and the price impact. As I show in Section

5.1, the average magnitude of transition orders (in percents of the average trading volume) is

much lower for stocks with high trading volume and market size. If large order are “cheaper”

than small orders, then trades in thinly traded stocks might appear less expensive that trades

in large stocks. Obizhaeva (2008b) explores the non-linearity of price impact functions and

shows that even after adjusting for non-linearity, price impact still increases with trading

volume.

Finally, it might be misleading to compare the estimates of the price impact and the

effective spread of different securities by scaling them using the trading volume, ADV ,

and the standard deviation, σr, over the same time interval (a day in ). An incorrect

scaling procedure might lead to the observed patterns, whereas if a properly adjusted scaling

procedure is implemented, then the estimates of trading costs might be constant across

securities in different groups. This line of research is further developed in Kyle and Obizhaeva

(2008).

6.2 Trading Costs and Volume/Volatility

Volatility is another stock characteristic that might help explain the cross-sectional variation

in the estimates. To analyze the relation between this variable and parameters of trading

costs, I split all observations into 10 × 5 groups based on the average daily trading volume

in dollars and the standard deviation of daily returns, σh
i,t, defined in (13). The rule of

assigning securities to different bins is the same as in Section 5.1 and Section 6.1. I augment

the regression equation (12) with the interaction terms of explanatory variables and dummy

variables for each bin. I focus on the estimates obtained using the bias-free methodology.

Figure 5 shows estimated parameters of price impact (λ̃) and effective half spread in open

markets, external crossing networks and internal crossing networks (α̃omt, α̃ec, and α̃ic), in

Panel A, B, C and D, respectively.

First, the relation between the price impact and the volatility is not clearly defined.

Perhaps, the split of sample into 50 groups decreases the number of observations available to

get individual estimates for each subset and, consequently, amplifies their standard errors.

Second, the relation between the effective half spread and the volatility is less ambiguous.

For both open markets and external crossing networks, the effective spread tend to be smaller

for more volatile stocks. These patterns are particularly pronounced for the securities with

the lowest average daily volume. When these securities are traded in open markets, the
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effective half spread drops from 19% for the least volatile stocks to 11% for the most volatile

stocks. To summarize, the association between the price impact and the volatility is weak.

Yet, the effective spread tends to decrease with volatility.

6.3 Cross-Sectional Regressions

In the previous section, I analyze how price impact and effective spread depend on the aver-

age daily volume and the standard deviation of daily returns. It is known that parameters

of trading costs may be also explained by other stocks’ characteristics. For instance, trad-

ing costs may be related to the measures of information asymmetry (e.g. Breen, Hodrick,

Korajyzyk (2002), Hasbrouck (1991 a,b), Glosten and Harris (1988)). Also, Saar (2001)

presents theoretical arguments why trading costs may be affected by past returns dynamics,

and Chiyachantana et al. (2006) tests this hypothesis. Since these characteristics are sys-

tematically related to each other, I study these relations using the cross-sectional bias-free

regression analysis.

I modify the regression equation (12) and include interaction terms of λ̃, α̃omt, α̃ec, and

α̃ic with the scores of the following stocks’ characteristics. I consider ADV$, the average

daily dollar trading volume in the previous month in million of dollars, and σh
r , the standard

deviation of daily returns in the previous month. As proxies for information asymmetry, I

include Spread, the quoted percentage spread in basis points, and #ANAL, the number

of analysts following stocks in the previous month. To capture the past price dynamics, I

analyze the effect of Ret−5,0, the stock return over five days prior to portfolio transition. I

also include the interaction terms with a dummy Nasdaq, which is equal to 1 for the Nasdaq-

listed stocks and 0 otherwise. I cluster the standard errors at weekly levels for 17 industries.

Table 4 reports the estimates for a sample of portfolio transition purchases; Table 5 presents

the results for a sample of portfolio transition sales.

The cross-sectional patterns of the price impact, λ̃, can be summarized as follows. The

unconditional estimates of the price impact are positive and statistically significant for both

purchases and sales. They increase with the dollar trading volume, ADV$, and slightly in-

crease with volatility, σh
r , but this association is weak. For portfolio transition purchases, the

coefficient on σh
r × λ̃ is positive and significant, if explanatory variables ADV$, σh

r , Spread,

and Nasdaq are considered, and insignificant for other specifications. For portfolio transi-

tion sales, this coefficients is positive but statistically insignificant. Moreover, my analysis

does not reveal any statistically significant difference between λ̃ for the NYSE/Amex-listed

securities and that of the Nasdaq-listed ones. I also find that λ̃ decreases with the quoted

spread, Spread. These findings might represent a manifestation of aforementioned patterns,
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i.e. price impact increases with the trading volume, and spread decreases with the trading

volume. These findings contradict a conventional intuition and imply that the relation be-

tween different facets of liquidity, i.e. spread and price impact, might be more complicated

than a one-to-one correspondence. For instance, trading in securities with the largest spread

may be associated with the lowest price impact. Therefore, it will be interesting to do more

research on how different aspects of liquidity are related to each other as well as to asset

prices. Furthermore, I do not find any statistically significant relation between λ̃ and past

returns, Ret−5,0.

I next describe the cross-sectional properties of the effective half spread, α̃omt, α̃ec, and

α̃ic. The unconditional estimates of α̃omt and α̃ec are positive and statistically significant,

whereas that of α̃ec is usually indistinguishable from zero. Other results are, by and large,

consistent with the conclusions in the previous sections. For instance, the effective half

spread, α̃omt and α̃ec, tend to decrease with the trading volume and the return standard

deviation. Also, trading in Nasdaq-listed stocks usually involves larger losses due to bid-ask

spread than trading in the similar NYSE/Amex-listed securities. Furthermore, the effective

spread is positively related to the quoted spread, Spread, and negatively related to the

number of analysts reporting their forecasts, #ANAL. These patterns are consistent with

a conventional intuition that the effective spread is larger for securities with higher risk of

adverse selection. Also, it is worth discussing the relation between the effective spread and

the stock returns over one week before portfolio transitions. Following high stock returns

in the pre-transition period, the effective spread on transition purchases decreases and the

effective spread on transition sales increases. This asymmetric relation between the realized

impact of trades and the price history is similar to the one documented in Chiyachantana et

al. (2006). The authors report that the institutional purchases (sales) of stocks with several

days of price run-up induce smaller (larger) permanent price changes.

Several explanations may be suggested for the documented relation between past returns

and trading costs. First, it might be a mechanical manifestation of bid-ask bounce. Second,

these patterns might be due to the negative autocorrelation of stock returns, potentially

caused by the market resiliency, as the market accommodates pre-transition order imbal-

ances, consequently, sometimes the estimates of trading costs seem to be lessening by the

reversals in stock prices. Third, the relation between trading costs and the recent price

dynamics can be explained by the degree of new information content underlying transac-

tions (e.g., Obizhaeva (2008a)). For example, if the positive information has been already

partially incorporated into security prices in the pre-transition period and thus reflected in

the upward price dynamics, then new coming buy orders might contain “stale” rather than

“new” information. On the other hand, after an increase of security prices, new coming sale
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orders might potentially reflect the new negative information and induce significant price

reduction.

To summarize, I find that the price impact increases with the dollar trading volume and

the return standard deviation. At the same time, the effective spread on the traditional

trading platforms and external crossing networks decreases with the dollar trading volume

and the return standard deviations. It is also larger for Nasdaq-listed securities. Finally, the

parameters of trading costs depend on the conventional proxies of information asymmetry

and the price dynamics in pre-transition periods.

7 Conclusion

This paper is a study of price impact and effective spread. Its contribution to the existing lit-

erature is threefold. First, I develop a bias-free methodology for the trading costs estimation,

which allows to obtain unbiased estimates even when trading strategies are price dependent

or trades are canceled. Second, I apply this methodology to a unique dataset of portfolio

transition trades. Third, I document a number of new findings about the parameters of

trading costs for a period from 2001 to 2005 as well as their cross-sectional properties.

I find that, on average, 1% of the average daily trading volume has price impact equal to

0.33% of the daily returns standard deviation. For both open markets and external crossing

networks, the estimates of the effective spread are roughly 13% of the daily returns standard

deviations, thus questioning a claim that crossing networks help avoiding spread costs. At

the same time, the effective spread in internal crossing networks is insignificant.

I also investigate the cross-sectional properties of trading costs. In a sharp contrast

with conventional intuition, the price impact increases with the dollar trading volume: it is

about tenfold higher for actively traded stocks than for thinly traded ones. The effective

spread is lower for securities with higher trading volume. Furthermore, the price impact

weakly decreases with the volatility, whereas the effective spread sharply increases with this

characteristic. I also document that the price impact does not statistically differ for various

trading platforms, whereas the effective spread is more significant for the Nasdaq-listed

securities rather than for the NYSE/Amex-listed ones. Most aforementioned results call for

further theoretical and empirical investigation.
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Table 1: The Information on ADV and SD Bins

Panel A: Number of Observations in Each Bin (in thousands)

adv1 adv2 adv3 adv4 adv5 adv6 adv7 adv8 adv9 adv10
sd1 12.84 18.32 11.51 12.82 7.87 9.16 9.16 10.25 11.83 14.53
sd2 16.05 17.86 10.89 12.39 6.91 7.56 7.66 9.74 11.49 13.39
sd3 21.87 21.38 12.03 13.50 7.44 7.09 8.02 9.14 11.93 12.76
sd4 29.15 26.77 14.49 16.18 8.08 8.60 8.26 9.51 11.22 14.07
sd5 37.55 36.38 19.66 22.29 12.07 11.32 10.58 11.12 11.11 12.52

Panel B: Median ADV in Each Bin (in millions of dollars)

adv1 adv2 adv3 adv4 adv5 adv6 adv7 adv8 adv9 adv10
sd1 1.05 4.84 9.07 15.49 24.43 31.23 43.43 62.94 104.00 232.90
sd2 1.20 4.76 9.65 15.85 23.33 30.53 42.32 59.77 100.40 216.20
sd3 1.24 4.82 9.39 14.90 23.09 29.60 40.10 56.98 99.47 196.30
sd4 1.18 4.75 9.27 14.17 21.38 29.16 38.59 55.49 96.81 198.20
sd5 1.21 4.72 9.27 14.37 20.74 28.23 37.92 54.36 92.31 199.10

Panel C: Median SD in Each Bin

adv1 adv2 adv3 adv4 adv5 adv6 adv7 adv8 adv9 adv10
sd1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
sd2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
sd3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
sd4 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
sd5 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

Table shows the main characteristics of stocks in 50 volume-standard deviation bins.
These bins are based on the average daily volume of securities, ADV$, and the volatility
of daily returns, σr, in the previous to transition month. Each month, thresholds are
recalculated and stocks are reshuffled across the bins. For the average daily volume,
the thresholds are 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th quintiles
for common NYSE-listed stocks; for standard deviation, the thresholds are 20th, 40th,
60th, and 80th quintiles. Panel A presents the number of observations (in thousands).
Panel B presents the median values of the dollar average daily trading volume of each
stock (in million of dollars). Panel C presents the median values of the daily standard
deviations. The sample ranges from January 2001 to December 2005.
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Table 2: The Estimates of Price Impact and Effective Spread

NYSE NASDAQ

All Buy Sell Buy Sell

λ̃ M1 0.39*** 0.49* 0.40** 0.96*** 0.32***
(6.06) (2.35) (3.05) (7.18) (6.11)

M2 0.33*** 0.56* 0.34*** 0.91*** 0.26***
(5.80) (2.58) (3.53) (8.59) (7.44)

%∆ 18% -13% 18% 5% 23%

α̃omt M1 6.25*** 7.36*** 3.22*** 8.97*** 6.24***
(11.04) (7.40) (3.50) (7.52) (4.83)

M2 6.55*** 8.47*** 2.46* 11.62*** 5.39***
(9.58) (7.25) (2.49) (8.89) (3.48)

%∆ -5% -13% 31% -23% 16%

α̃ec M1 6.53*** 6.94*** 4.23*** 7.91*** 7.40***
(13.53) (8.69) (5.30) (6.32) (5.45)

M2 6.94*** 6.94*** 4.50*** 7.80*** 9.01***
(12.19) (6.99) (5.10) (5.21) (5.93)

%∆ -6% 0% -6% 1% -18%

α̃ic M1 1.33 2.64 -1.03 2.69 2.32
(1.77) (1.82) (-0.97) (1.05) (1.73)

M2 0.22 0.92 -2.18 1.42 2.63
(0.25) (0.56) (-1.83) (0.44) (1.76)

%∆ 505% 187% -53% 89% -12%

#Obs 702,406 210,194 228,934 123,841 139,437

Table shows the trading costs estimates λ̃, α̃omt, α̃ec, α̃ic based on the conventional
methodology (10) as M1 and on the bias-free methodology (12) as M2. For each
estimate, %∆ is the percentage difference equal to (M1 −M2)/M2 × 100%. Results
are also presented for stocks listed at the NYSE/Amex and the Nasdaq as well as for
buy and sell orders, separately. The estimates of λ̃ quantifies by how much (in percent of
the daily standard deviation) the 1-% of the average daily volume changes the security
price. The estimates α̃omt, α̃ec, α̃ic are the effective half spread in traditional markets,
external and internal crossing networks (in percent of the daily standard deviation).
The standard errors are clustered at weekly levels for 17 industries. The sample ranges
from January 2001 to December 2005.∗∗is significance at 1% level, ∗is significance at
5% level, †is significance at 10% level.
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Table 3: Price Impact and Spread for ADV Groups

NYSE NASDAQ

All Buy Sell Buy Sell

λ̃ x adv1 0.27*** 0.43** 0.21** 0.80*** 0.23***
(7.84) (2.61) (3.05) (7.60) (10.30)

x adv5 2.22*** 1.54* 2.77*** 0.65 3.56**
(5.83) (2.29) (4.69) (0.48) (2.60)

x adv10 2.99*** 3.36* 2.76** -2.06 7.52*
(3.60) (2.33) (3.01) (-0.81) (2.02)

α̃omt x adv1 14.79*** 15.52*** 10.96*** 16.19*** 13.75***
(10.23) (8.85) (4.21) (7.87) (5.79)

x adv5 3.36** 9.41*** -1.76 9.19*** -2.56
(2.90) (4.93) (-0.94) (3.62) (-0.88)

x adv10 2.79** 2.63 2.94 5.15 0.46
(2.72) (1.37) (1.74) (1.79) (0.17)

α̃ec x adv1 18.10*** 17.15*** 17.08*** 18.54*** 17.19***
(15.96) (9.88) (8.37) (9.60) (9.10)

x adv5 1.53 2.50 -1.51 3.39 3.73
1.53 2.50 -1.51 3.39 3.73

x adv10 3.45*** 3.63 4.98** 3.92 -2.00
(3.50) (1.87) (3.17) (1.53) (-0.66)

α̃ic x adv1 -0.18 -4.52 -1.25 -5.56 6.75**
(-0.06) (-0.92) (-0.47) (-0.81) (2.64)

x adv5 0.57 4.84 -4.86* 7.14 -0.87
(0.32) (1.62) (-1.96) (1.37) (-0.24)

x adv10 -2.60* -3.59 -2.63 -3.25 1.23
(-2.50) (-1.89) (-1.46) (-1.00) (0.39)

Adj. R2 0.007 0.006 0.004 0.013 0.011

Table shows the results of regression (12) augmented with the interaction terms of λ̃,
α̃omt, α̃ec, and α̃ic with ten dummy variables for each of ten trading volume groups.
These groups are based on the average daily volume of securities, ADV$, in the previous
to transition month. The thresholds are 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th,
and 95th quintiles of the average daily volume for common NYSE-listed stocks. Each
month, thresholds are recalculated and stocks are reshuffled across the bins. Results
are presented for stocks listed at the NYSE/Amex and the Nasdaq as well as for buy
and sell orders separately. Only estimates for groups 1, 6, and 10 are reported. The
standard errors are clustered at weekly levels for 17 industries. The sample ranges
from January 2001 to December 2005.∗∗is significance at 1% level, ∗is significance at
5% level, †is significance at 10% level.
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Table 4: The Cross-Sectional Regressions, Buy Orders

Model 1 Model 2 Model 3 Model 4

λ̃ x 1 1.55*** (5.53) 1.56*** (5.61) 1.72*** (6.12) 1.70*** (5.62)
x ADV$ 1.43** (3.01) 1.31** (2.79) 0.99* (2.05) 1.20* (2.38)
x σh

r 0.23* (2.41) 0.18* (2.32) -0.08 -0.94) -0.08 (-1.12)
x Nasdaq 0.15 (1.14) 0.17 (1.22) -0.17 (-1.07) -0.05 (-0.35)
x Spread -0.07** (-2.86)
x #ANAL 0.09 (0.56)
x Ret−5,0 -0.06 (-0.98)

α̃omt x 1 7.66*** (6.82) 8.02*** (7.22) 7.21*** (6.37) 6.67*** (5.92)
x ADV$ -1.62** (-2.74) -0.97 (-1.61) -0.44 (-0.61) -2.12*** (-3.54)
x σh

r -2.07* (-2.29) -2.43** (-2.67) -1.80* (-1.99) -1.35 (-1.50)
x Nasdaq 4.26*** (3.39) 3.38** (2.82) 4.19*** (3.33) 4.75*** (3.70)
x Spread 2.92*** (4.88)
x #ANAL -1.31 (-1.94)
x Ret−5,0 -2.49** (-3.25)

α̃ec x 1 5.52*** (5.45) 5.83*** (5.76) 5.13*** (5.10) 5.30*** (5.12)
x ADV$ -1.20* (-2.50) -0.76 (-1.61) 0.51 (0.98) -1.40** (-2.86)
x σh

r -4.08*** (-5.25) -4.33*** (-5.66) -3.88*** (-4.96) -3.56*** (-4.46)
x Nasdaq 3.72** (3.12) 2.96* (2.53) 3.68** (3.06) 3.40** (2.74)
x Spread 2.02*** (3.85)
x #ANAL -2.20*** (-3.65)
x Ret−5,0 -2.01*** (-3.33)

α̃ic x 1 1.21 (0.66) 1.31 (0.72) 1.13 (0.62) 0.47 (0.25)
x ADV$ -1.33 (-1.68) -1.34 (-1.74) -1.77* (-2.52) -1.09 (-1.38)
x σh

r 1.80 (1.14) 1.82 (1.13) 2.42 (1.54) 2.70 (1.66)
x Nasdaq -0.94 (-0.40) -0.82 (-0.36) -0.97 (-0.42) -1.26 (-0.52)
x Spread 0.27 (0.32)
x #ANAL 1.07 (1.14)
x Ret−5,0 -2.56* (-2.33)

Adj. R2 0.008 0.009 0.008 0.009
#Obs 333,467 331,593 311,251 314,888

Table shows the results of regression (12) augmented with the interaction terms of
λ̃, α̃omt, α̃ec, and α̃ic with various explanatory variables. The sample includes only
buy order. Four regression models are considered. Additional explanatory variables
are ADV$, the average daily volume in the previous month in million of dollars, σh

r ,
the standard deviation of daily returns in the previous month, Sprd, the percentage
spread in basis points, #ANAL, the number of analysts following stocks in the previous
month, Ret−5,0, the stock return over five days before portfolio transition starts. Scores
of these variables are interacted with trading costs variables (3). Interaction terms with
a dummy Nasdaq, which is equal to 1 for Nasdaq stocks and to 0 otherwise, is also
included. The standard errors are clustered at weekly levels for 17 industries. The
sample ranges from January 2001 to December 2005.∗∗is significance at 1% level, ∗is
significance at 5% level, †is significance at 10% level.
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Table 5: The Cross-Sectional Regressions, Sell Orders

Model 1 Model 2 Model 3 Model 4

λ̃ x 1 1.93*** ( 6.50) 1.94*** (6.52) 2.19*** (7.71) 1.79*** (6.11)
x ADV$ 2.76*** (5.45) 2.78*** (5.45) 1.81*** (3.41) 2.61*** (5.22)
x σh

r 0.01 (0.31) 0.00 (0.11) 0.03 (0.42) 0.01 (0.15)
x Nasdaq -0.05 (-0.49) 0.04 (0.42) -0.13 (-1.00) -0.01 (-0.02)
x Spread -0.02*** (-4.41)
x #ANAL 0.34* (2.37)
x Ret−5,0 -0.02 (-0.38)

α̃omt x 1 2.02* (2.07) 2.69** (2.77) 1.30 (1.31) 2.13* (2.14)
x ADV$ -1.17 (-1.94) -0.30 (-0.50) 1.10 (1.77) -1.16 (-1.88)
x σh

r -0.19 (-0.28) -0.92 (-1.38) -0.13 (-0.19) -0.47 (-0.69)
x Nasdaq 2.88* (2.22) 1.24 (0.96) 1.87 (1.42) 3.40* (2.54)
x Spread 4.67*** (8.88)
x #ANAL -2.52*** (-3.75)
x Ret−5,0 1.07 (1.65)

α̃ec x 1 4.14*** (4.51) 4.69*** (5.03) 3.31*** (3.64) 3.88*** (4.17)
x ADV$ -2.40*** (-4.89) -1.27** (-2.59) 0.57 (1.06) -2.20*** (-4.43)
x σh

r -0.08 (-0.12) -0.84 (-1.30) -0.20 (-0.30) 0.08 (0.12)
x Nasdaq 4.11** (3.09) 1.54 (1.18) 2.81* (2.10) 4.44** (3.23)
x Spread 5.00*** (10.23)
x #ANAL -3.66*** (-6.34)
x Ret−5,0 3.17*** (4.58)

α̃ic x 1 -2.04 (-1.70) -1.88 (-1.57) -1.99 (-1.68) -1.68 (-1.35)
x ADV$ -0.53 (-1.01) -0.53 (-0.99) 0.92 (1.53) -0.37 (-0.68)
x σh

r 2.73*** (3.46) 2.73*** (3.42) 2.41** (2.99) 3.00*** (3.67)
x Nasdaq 3.21* (2.27) 3.04* (2.11) 2.39 (1.68) 3.50* (2.46)
x Spread 0.67 (0.79)
x #ANAL -2.64*** (-3.44)
x Ret−5,0 4.88*** (5.70)

Adj. R2 0.005 0.006 0.005 0.005
#Obs 368,358 365,336 342,702 348,324

Table shows the results of regression (12) augmented with the interaction terms of
λ̃, α̃omt, α̃ec, and α̃ic with various explanatory variables. The sample includes only
sell order. Four regression models are considered. Additional explanatory variables
are ADV$, the average daily volume in the previous month in million of dollars, σh

r ,
the standard deviation of daily returns in the previous month, Sprd, the percentage
spread in basis points, #ANAL, the number of analysts following stocks in the previous
month, Ret−5,0, the stock return over five days before portfolio transition starts. Scores
of these variables are interacted with trading costs variables (3). Interaction terms with
a dummy Nasdaq, which is equal to 1 for Nasdaq stocks and to 0 otherwise, is also
included. The standard errors are clustered at weekly levels for 17 industries. The
sample ranges from January 2001 to December 2005.∗∗is significance at 1% level, ∗is
significance at 5% level, †is significance at 10% level.
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Figure 1: Conventional and Bias-Free Methodologies

(     ) (OC  ) tt

Figure highlights intuition behind bias-free and conventional methodologies of
estimation the parameters of trading costs. Implementation shortfall ISt mark-
to-market at time t consists of two parts: the trading costs, Πt, denoted as (1),
and the opportunity costs, OCt, denoted as (2). The mark-to-market implemen-
tation shortfall ISt is the difference between expected implementation cost of
total ex ante order X̄, i.e. λ

2
X̄2, and the part X̄ − Xt still to be executed at

time t, i.e. λ
2
(X̄ −Xt)

2. This intuition underlies a bias-free methodology. At the
same time, for any t ∈ [0, T ), due to dependence of trading strategy on the price
dynamics, the expected value of realized trading costs, Πt, is not equal to λ

2
X2

t .
Consequently, the invalidity of conventional method can not be justified.
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Figure 2: Order Sizes across ADV and SD Bins

Figure shows the order sizes as the percentage of the average daily volume in the
previous. Panel A presents the average values of order sizes. Panel B presents
the median values of order sizes. The observations are split into 10 × 5 bins.
These bins are based on the average daily volume of securities, ADV$, and the
volatility of daily returns, σr, in the previous to transition month. Each month,
thresholds are recalculated and stocks are reshuffled across the bins. For the
average daily volume, the thresholds are 30th, 50th, 60th, 70th, 75th, 80th, 85th,
90th, and 95th quintiles for common NYSE-listed stocks; for standard deviation,
the thresholds are 20th, 40th, 60th, and 80th quintiles. The sample ranges from
January 2001 to December 2005.
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Figure 3: Price Impact and Effective Spread Across ADV Bins
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Figure shows the estimates of the price impact, λ̃, and the effective half spread
in open markets, external crossing networks and internal crossing networks,
α̃omt, α̃ec, α̃ic in Panel A, Panel B, Panel C and Panel D, respectively, for stocks
with different dollar trading volume. Each month, observations are split into 10
bins according to stocks’ average daily volume, ADV$, in the previous month
(from Small stocks to Big stocks). The thresholds are 30th, 50th, 60th, 70th,
75th, 80th, 85th, 90th, and 95th quintiles of the average daily volume for com-
mon NYSE-listed stocks. Each month, thresholds are recalculated and stocks are
reshuffled across the bins. The estimates of the coefficients from regression (12),
which is augmented with the interaction terms between the trading costs param-
eters (3) and the dummy variables for each group, are depicted together with
their 95%-confidence intervals. The observations for the NYSE/Amex-listed and
the Nasdaq-listed stocks as well as buy and sell orders are considered separately.
The standard errors are clustered at weekly levels for 17 industries. The sample
ranges from January 2001 to December 2005.
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Figure 4: Cross-sectional Properties of Trading Costs
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On the y-axe, I plot the difference between average execution price and pre-trade
benchmark price, dPt

Pt
, in percents of the daily standard deviation σr. On the

x-axe, I plot the trade size, Xt in percents of average daily volume, ADV . There
are two components in this price change. The first component is due to the price
impact. It is calculated for price dynamics (2). The second component is due
to bid-ask spread. It is calculated for a typical split between trading venues.
For thinly (actively) traded stocks, these proportions are 31% (24%) for open
markets, 45% (38%) for external crossing networks, and 17% (38%) for internal
crossing networks. The estimates of parameters λ̃, α̃omt, α̃ec, α̃ic from Table 3 are
used. Results are presented for 30% of the least actively traded stocks (thinly
traded stocks, Group 1) and 5% of the most actively traded stocks (actively
traded stocks, Group 10). The sample ranges from January 2001 to December
2005.
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Figure 5: Price Impact and Spread Across ADV and SD Bins

Figure shows the estimates of the price impact, λ̃, and the effective half spread
in open markets, external crossing networks and internal crossing networks,
α̃omt, α̃ec, α̃ic in Panel A, Panel B, Panel C and Panel D, respectively, for stocks
with different dollar trading volume, ADV$, and return standard deviation, σ̂h

i,t.
Bias-free methodology is used to obtain these estimates. The observations are
split into 10× 5 bins according to the average daily volume of securities, ADV$,
and the volatility of daily returns, σr, in the previous to transition month. Each
month, thresholds are recalculated and stocks are reshuffled across the bins. For
the average daily volume, the thresholds are 30th, 50th, 60th, 70th, 75th, 80th,
85th, 90th, and 95th quintiles for common NYSE-listed stocks; for standard de-
viation, the thresholds are 20th, 40th, 60th, and 80th quintiles. The estimates
of the coefficients from regression (12), which is augmented with the interaction
terms between the trading costs parameters (3) and the dummy variables for
each group, are reported. The standard errors are clustered at weekly levels for
17 industries. The sample ranges from January 2001 to December 2005.39


