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ABSTRACT 
 

Neoclassical investment models predict that firms should make frequent, small 
adjustments to their capital stocks.  Microeconomic evidence, however, shows just the 
opposite – firms make infrequent, large adjustments to their capital stocks.  In response, 
researchers have developed models with fixed costs of adjustment to explain the data.  
While these models generate the observed firm-level investment behavior, it is not clear 
that the aggregate behavior of these models differs importantly from the aggregate 
behavior of neoclassical models.  This is important since most of our existing 
understanding of investment is based on models without fixed costs.  Moreover, models 
with fixed costs have non-degenerate, time-varying distributions of capital holdings 
across firms, making the models extremely difficult to analyze.  This paper shows that, 
for sufficiently long-lived capital, (1) the cross-sectional distribution of capital holdings 
has virtually no bearing on the equilibrium and (2) the aggregate behavior of the fixed-
cost model is virtually identical to the neoclassical model.  The findings are not due to 
consumption smoothing but instead come from the near infinite elasticity of investment 
timing for long-lived capital – a feature that the fixed-cost model and the neoclassical 
models have in common.  The analysis shows that the so-called “irrelevance results” 
obtained in recent numerical studies of fixed-cost models are not parametric special cases 
but instead are fundamental properties of investment in long-lived capital.   

                                                 
* I gratefully acknowledge the comments of Lutz Kilian, John Leahy, Matthew Shapiro, Gianluca Violante, 
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I. INTRODUCTION 
Conventional neoclassical investment models typically assume that capital adjustment 

costs rise smoothly with investment and thus predict that firms should make frequent, 

small adjustments to their capital stocks.  Microeconomic evidence, however, shows that 

many firms make infrequent, large adjustments to their capital stocks.  Motivated by the 

micro-evidence, researchers have developed investment models that feature fixed costs of 

adjustment to explain the data.  While these models generate the observed firm-level 

investment behavior, it is not clear whether the aggregate equilibrium behavior of such 

models differs significantly from the equilibrium behavior generated by more 

conventional investment models.  Indeed, several numerical studies of calibrated DSGE 

models with fixed adjustment costs suggest that there are only minor differences between 

the two modeling frameworks.  The cause of these “irrelevance results” is typically 

attributed to consumption smoothing forces present in general equilibrium settings.  The 

irrelevance results have been contested by other researchers on the grounds that they hold 

only for certain parameter values and are not a general feature of equilibrium models with 

fixed adjustment costs.    

 The aggregate behavior of models with fixed adjustment costs is important for 

several reasons.  Much of our existing understanding of investment is based on 

neoclassical models that abstract from fixed adjustment costs.  Because the earlier models 

contrast sharply with the microeconomic evidence, researchers are justifiably concerned 

that policy conclusions or econometric predictions based on these models may be 

misleading.  On the other hand, if the aggregate behavior of the two modeling 

frameworks is similar, then the apparent failure of conventional neoclassical models at 

the micro level does not necessarily imply that we need to abandon neoclassical modeling 

techniques to analyze aggregate investment.  Indeed, there may be reasons to prefer the 

neoclassical framework.  Unlike neoclassical investment models, fixed-cost models are 

analytically very cumbersome.  Models with fixed costs of adjustment typically have 

non-degenerate distributions of capital holdings across firms.  The distribution is a time-

varying object which enters the model as an additional state variable.  The presence of a 

distribution as a state variable makes these models extremely difficult to analyze, 

particularly in general equilibrium settings.     
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This paper analyzes the approximate equilibrium behavior of an investment model 

where fixed costs matter at the microeconomic level.  The central insight of the analysis 

is that, in the face of fixed adjustment costs, optimal investment behavior is characterized 

by an extremely high intertemporal elasticity of substitution for investment purchases.  

For sufficiently long-lived capital goods (goods with low rates of economic depreciation), 

the intertemporal elasticity of substitution is nearly infinite.  This property has a number 

of implications.   

First, for long-lived investment goods, the underlying distribution of capital 

holdings across firms has little bearing on the equilibrium.  Because firms are willing to 

drastically change the timing of their investments, firms that are bunched up or spread out 

relative to the steady state distribution can simply delay or accelerate the timing of their 

investment purchases to avoid high prices or take advantage of low prices.  Thus, the 

high intertemporal elasticity of investment timing effectively breaks the link between the 

distribution of firms’ capital holdings and aggregate investment, thereby eliminating any 

role for the cross-sectional distribution at the aggregate level.   

Second, the near infinite intertemporal elasticity of investment timing is a 

property that the fixed-cost model shares with the neoclassical investment model.  In an 

instructive limiting case in which the economic depreciation rate approaches zero, the 

equilibrium in the fixed-cost model corresponds exactly to the equilibrium in the 

neoclassical model.  Thus, at the aggregate level, investment and investment prices, 

particularly for long-lived capital goods, can be accurately analyzed with traditional, 

neoclassical investment models.  While the traditional models cannot match the behavior 

of the firms at the microeconomic level, they provide an easy, reliable guide to aggregate 

behavior, policy analysis and empirical predictions.  This finding supports the recent 

“irrelevance results” in Thomas [2002] and Veracierto [2002].  Indeed, rather than being 

an artifact of a particular calibration, the irrelevance results reflect deep, fundamental 

properties of investment models with long-lived capital goods.   

In contrast to the received wisdom of the literature, the source of the equivalence 

between neoclassical models and fixed-cost models is not consumption smoothing per se.  

Because both neoclassical and fixed-cost models have high intertemporal elasticities for 

the timing of investment, anything that causes the effective price of new capital goods to 
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increase with aggregate investment will make the models difficult to distinguish with 

aggregate data.  Thus, an increasing quadratic adjustment cost in a neoclassical 

framework and an upward-sloping supply curve in the fixed-cost model will result in the 

same equilibrium paths provided that the elasticity of the marginal cost of investment is 

the same in each case.  Consumption smoothing in DSGE models is but one source of an 

increasing marginal cost of investment and is not the key cause of the equivalence 

between the models.   

I supplement the approximate analytical results with numerical analysis.  The 

analysis shows that the limiting approximations are highly accurate even for realistic 

depreciation rates away from the low-depreciation limit.  Among other things, the 

numerical analysis shows that while there are substantial variations in the cross-sectional 

moments of the distribution, these moments provide little information on the evolution of 

future prices and investment.   

The remainder of the paper is set out as follows: Section II presents background 

information and provides a brief overview of the related literature.  Section III presents 

the basic model and analyzes the equilibrium in the low depreciation limit.  Section IV 

presents a numerical analysis of the model and considers the quantitative performance of 

the limiting analysis in environments with realistic depreciation rates.  Section V 

concludes. 

 

II. BACKGROUND AND RELATED LITERATURE 
In micro data, plant level investment is characterized by long periods of relative inaction 

punctuated by episodes of high investment.  Thus, rather than smoothing investment, 

firms make large, infrequent adjustments to their capital stocks.  Doms and Dunne [1998] 

show that, for U.S. manufacturing, most plants experience at least one year where their 

capital stock rises by at least 50 percent.  For many establishments, half of all plant-level 

investment spending over a 17-year horizon is concentrated in the three years 

surrounding the year with the plant’s greatest investment.  Cooper et al. [1999] show that 

each year, roughly 1 out of every 5 manufacturing plants experiences an “investment 

spike,” which they define as an increase in plant-level capital of at least 20 percent.  

Aggregate variation in investment spikes accounts for the bulk of the variation in U.S. 
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manufacturing investment.  Gourio and Kashyap [2007] show that the aggregate variation 

in investment spikes is primarily driven by changes in the number of firms experiencing 

spikes rather than changes in the average size of spikes.1  Taken as a whole, the evidence 

from the micro-data stands in stark contrast to the predictions of standard neoclassical 

investment models with convex adjustment costs (e.g., Abel [1982], Hayashi [1982] and 

Summers [1981]).  Models with fixed costs rationalize the lumpy investment behavior 

seen in the data.  To avoid paying the fixed cost, firms make infrequent, large changes to 

their capital stock.   

Unlike earlier convex models, investment models with fixed costs are difficult to 

solve even in partial equilibrium settings and are often completely intractable in general 

equilibrium.  Indeed, much of the recent literature focuses simply on numerically solving 

such models.  The difficulty in solving these models arises because not all firms have the 

same capital stock.  At any point in time, some firms have old, outdated capital and are 

likely to adjust in the near term while other firms have recently adjusted and will not 

purchase new capital for quite some time.  The distribution of capital stocks changes 

whenever shocks or policies disturb the market.   Thus, to solve the model, one must keep 

track of an endogenous, time-varying distribution of capital holdings across firms.   

Because the position and dynamics of the distribution of capital holdings can 

influence the equilibrium, the distribution often plays a prominent role in the questions 

posed by the literature on fixed costs.  For example, suppose there is an unusually large 

number of firms with relatively old capital.  This situation might be thought of as “pent-

up demand.”  In this case, one would expect to see a predictable surge of demand in the 

near term as these firms update their capital.  Thus, investment prices would be high in 

the short-run and fall as time passes.  The opposite scenario is also possible.  If many 

firms recently adjusted, then there would be few firms that currently need new capital.  

This situation might be thought of as “capital overhang.”  In this case, investment 

demand and prices should be unusually low in the near term.  Only later, when the other 

                                                 
1 Doms and Dunne [1998] and Cooper et al. [1999] base their findings on data from the Longitudinal 
Research Database (LRD), which includes most U.S. manufacturing plants.  Gourio and Kashyap [2007] 
use both LRD and Chilean data on manufacturing plants. (See also Fuentes and Gilchrist [2005] and 
Fuentes et al. [2006].)  Like Cooper et al. [1999], Gourio and Kashyap define investment spikes to be 
increases in plant-level capital of 20 percent or more and show that variation in aggregate investment is 
associated with variation in aggregate investment spikes.  (See also Cooper and Haltiwanger [2006].)    
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firms’ capital depreciates sufficiently, will investment demand recover.  Moreover, 

economic policies could have different effects in each case.  In the pent-up demand case, 

a tax subsidy might have a considerable impact on investment since there are many firms 

close to the point at which they would invest.  In the capital overhang case, because there 

are very few firms with low capital stocks, the same subsidy might have little effect.2  In 

theory, each different configuration of the distribution could imply a different equilibrium 

outcome and have different policy implications.   

The cross-sectional distribution of capital thus presents both a problem and an 

opportunity for researchers.  Accounting for the equilibrium behavior of an endogenous 

distribution is computationally and analytically very difficult.  The combination of an 

incredibly large state space (the distribution) and highly non-linear behavior on the part 

of firms makes fixed-cost models difficult to analyze even in numerical settings.  At the 

same time, variations in the cross sectional distribution could have rich implications for 

the study of investment behavior and policy analysis.   

While many researchers have analyzed models of investment with heterogeneous 

agents and fixed costs, most of the well known results in this area come from models of 

individual firms taking prices as given.3  Caballero and Engel [1999] assume that all 

supply curves are perfectly elastic.  This is tantamount to working in a partial equilibrium 

framework since, with perfectly flat supply curves, investment decisions of other firms 

have no influence on equilibrium prices.  Adda and Cooper [2000] analyze a model of 

consumer durables with discrete replacement.  Like Caballero and Engel, Adda and 

Cooper assume that prices, though stochastic, are independent of aggregate investment.  

In both cases, the complexity that arises from the distribution is suppressed.     

Because obtaining analytical results for models with fixed costs in equilibrium 

settings is difficult, much of the progress in this area has been made with numerical 

                                                 
2 Adda and Cooper [2000] present a dynamic analysis of a French automobile scrapping subsidy with 
implications exactly in this spirit.  
3 See, among others, Abel and Eberly [1994], Bertola and Cabellero [1990], Cabellero [1993], Caballero 
and Leahy [1996], Caballero and Engel [1999], Cooper and Haltiwanger [1993], Cooper et al. [1999], Dixit 
and Pindyck [1994], and Eberly [1994].  For studies that confine attention to steady state analysis, 
see,Caplin and Spulber [1987], Hendel and Lizzeri [1999, 2002], House and Leahy [2004], House and 
Ozdenoren [2007], and Stolyarov [2002].  Caplin and Leahy [1991, 1997] make the simplifying assumption 
that firm-level investment demand does not react to endogenous changes in the distribution of firms. 
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studies of particular dynamic models.4  Using numerical techniques, Thomas [2002] and 

Veracierto [2002] find that calibrated DSGE models with fixed costs behave almost 

identically to conventional DSGE models that abstract from such micro-frictions.  

Thomas [2002] and Khan and Thomas [2007] attribute these “irrelevance results” to the 

consumption smoothing motives of the representative household in their models.  Gourio 

and Kashyap [2007] and Bachmann, et al. [2006] have challenged these results on the 

grounds that they hold only for certain parameter values and are not general properties of 

models with fixed adjustment costs. While numerical analysis has advanced rapidly in 

recent years, numerical techniques are limited to solving and cataloging particular special 

cases.  Furthermore, the techniques required are still quite cumbersome and the 

underlying economic forces at play are often obscured.  The main objective of this paper 

is to shed light on these forces.   

  
III. MODEL 

The basic structure of the model is inspired by the model in Caplin and Leahy [2004, 

2006].  The model is in continuous time.  The demand side of the model consists of a 

continuum of firms (measure one) that maximize their discounted profits net of 

investment costs.  Firms discount the future at the discount rate r .  Each firm owns a 

stock of capital k , which depreciates exponentially at the rate δ .  Flow profits are 

( ) ( )A t k t α , where 0 1α< <  and ( )A t  is a shock to the profitability of capital.  When a 

firm adjusts its capital stock, say from k  to 'k , it incurs two costs.  The first is a fixed 

cost of adjustment 0F > , which is paid whenever investment at the firm is non-zero.  

The second cost is a cost per-unit of investment given by [ ]( ) 'p t k k⋅ − .  To make matters 

simple, I assume that when a firm adjusts, it must adjust to a fixed level of capital k .  

Thus, the firm’s problem is simply a decision about when to adjust.  If the firm doesn’t 

                                                 
4 Typically, analytical results require strong assumptions to facilitate analysis.  See Danziger [1999] for a 
closed-form analysis of a model with fixed costs.  Gertler and Leahy [2006] adapt Danziger’s approach to a 
more conventional model of price rigidity.  Caplin and Leahy [2006] assume that idiosyncratic depreciation 
shocks smooth out the distribution over time thus simplifying the solution.  Feasible numerical approaches 
have only recently been made available.  Krusell and Smith [1997, 1998] assume that expectations are 
based on only a small number of moments of the distribution rather than on the entire distribution (see also 
Rios-Rull [1999]).  Other approaches use additional heterogeneity to make the model differentiable so that 
linear methods can be used.  See Dotsey, et al. [1999], Thomas [2002], Veracierto [2002], Khan and 
Thomas [2003] and King and Thomas [2006].    
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adjust, its capital stock obeys k kδ=−� .  If the firm makes an adjustment at time T, it 

jumps from its current capital stock ( )k T  to the reset level of capital k  and incurs the 

adjustment cost ( ) ( )p T k k T F⎡ ⎤⋅ − +⎢ ⎥⎣ ⎦ .   

 To focus attention on the demand side of the model, the supply side is 

intentionally kept as simple as possible.  The flow supply of investment is governed by an 

investment supply curve ( ) ( ) ( ( ))p t z t S I t= ⋅ .  ( )I t  is the flow supply of aggregate 

investment, ( )p t  is the prevailing market price of new investment goods and ( )z t  is an 

investment supply shock.  The supply curve is upward sloping ( ' 0S > ) and ( )0 0S = .  

Note that the model has no representative consumer and thus no direct role for 

consumption smoothing as has been emphasized in the DSGE literature.   

 A perfect-foresight equilibrium is a fixed point in prices.  Taking the price path 

( )p t  and the productivity path ( )A t  as given, firms make optimal investment decisions.  

The investment decisions imply a time path for aggregate investment  

 ( ) ( ) ( )
0

, ,I t f s t i s t ds
∞

= ∫ , (1) 

where ( ),f t s  is the date t measure of firms with capital of age s and ( , )i s t  is optimal 

investment for a firm at date t that last adjusted s periods ago.  Aggregate investment then 

implies a price path '( ) ( ) ( ( ))p t z t S I t= ⋅ .  Equilibrium requires '( ) ( )p t p t= .  The 

difficulty in solving the model arises from presence of the time-varying distribution f as 

an endogenous state variable.   

 

3.1 The Optimal Timing of Investment in the Steady State 

In steady state, the price level and the level of productivity are constant.  I normalize both 

the steady state price (p) and steady state productivity (A) to be 1.  Let V  denote the 

steady state value of having k  units of capital and behaving optimally.  The optimization 

problem of a typical firm is to choose a time to adjust T to maximize  

 ( ) ( )
0

T
rt t rT rT TV T e e k dt e V F e k e k

αδ δ− − − − −⎡ ⎤⎡ ⎤= + − − −⎢ ⎥⎣ ⎦ ⎣ ⎦∫ . (2) 

The first order condition for the optimal choice of T is   

 ( ) ( )( ) ( ) ( ) 0TV T k T r V F k r k T
α

δ⎡ ⎤= − − − − + =⎢ ⎥⎣ ⎦ , (3) 
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where ( ) Tk T e kδ−= .  At the optimum, the loss the firm would incur by waiting a bit 

more (dT) is zero.  The first term in TV  is the gain the firm would get by using its existing 

capital stock more.  The second term reflects the fact that waiting delays the payoff 

0V F k− − > .  The last term shows that the firm also suffers by delaying the resale of 

its existing capital and because the capital stock deteriorates, reducing its resale value.  At 

the optimum, all of these forces balance and the firm is indifferent between adjusting and 

waiting.   

The second order condition shows what happens to the first-order costs and 

benefits as the firm delays or accelerates adjustment.  The second order condition 

requires  

 ( ) ( ) ( )1 0k T k T rαδ α δ−⎡ ⎤− + >⎢ ⎥⎣ ⎦ . (4) 

Condition (4) says that if the firm is optimally adjusting at time T, then the marginal 

product of capital when the firm adjusts ( ) 1k T αα −  must be strictly greater than the user 

cost of capital r δ+ .  The difference between the marginal product and the user cost 

plays an important role in the analysis.  I refer to this difference as the Jorgenson gap and 

denote it as ( ) ( ) ( )1,G T k T rαδ α δ−= − + .   

 While I do not allow the firm to choose its reset level of capital k , I assume that 

k  is optimal in the steady state.  If the firm adjusts every T periods, and has a reset 

capital level k , then I can write V as  

 ( )
( )

( )1 1, 1
1

r T
rT T

rT

eV k T k e F k e
e r

αδ
α δ

αδ

− +
− −

−

⎧ ⎫⎪ ⎪−⎪ ⎪⎡ ⎤= − + −⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪− +⎪ ⎪⎩ ⎭
, (5) 

where I have used the fact that ( ) [ ] 1

0
1

T r Trt te e k dt k e r
α αδδ α αδ −− +− − ⎡ ⎤⎡ ⎤ = − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ .  If the firm 

could choose its reset capital stock, then k  would solve ( ){ }max ,k V k T k− .  The first 

order condition for k  would require  

 ( )
( )

( )
1 1,

1

r T

r T

e rk T r
re

αδ
α

δ

δα δ δ
αδ

− +
−

− +

⎛ ⎞⎛ ⎞− +⎟⎜ ⎟⎡ ⎤ ⎜⎟⎜ = +⎟⎜⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎜⎟⎟⎝ ⎠⎜ +−⎝ ⎠
, (6) 
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where I have written ( ),k Tδ  to reflect the dependence of the optimal reset level on the 

parameters δ  and T.  One can show that the marginal product of capital at k  is less than 

the user cost r δ+ .  For reference, I let Jk  denote the capital stock at which the standard 

user cost relation holds, so 
1Jk r

α
α δ

−⎡ ⎤ = +⎢ ⎥⎣ ⎦ .  Thus, k  exceeds the frictionless capital 

stock Jk , which in turn exceeds the capital stock at the optimal adjustment horizon 

( )k T .  Note that ( )0lim , J
T k T kδ→ = , so as the horizon T gets shorter, the normal user 

cost relationship emerges.  Figure 1 shows the relationship between ( )k T , Jk , ( ),k Tδ  

and the Jorgenson gap ( ),G Tδ .  

 It is easy to show that the condition ( ), 0TV k T =  implies condition (3).  This first 

order condition gives the optimal T for any given k  and any F.  Alternatively, I can 

invert the first order condition to find a fixed cost ( ), 0F Tδ >  that rationalizes a given 

adjustment horizon T and a given ( ),k Tδ .5  I prefer to cast the problem in terms of 

adjustment horizons (T) rather than fixed costs (F) since firms’ adjustment horizons are 

more easily observed than are their fixed costs.  Thus, in what follows, I devote relatively 

little attention to the magnitude of the fixed costs themselves and instead focus on the 

length of time it takes firms to adjust.  In the micro data mentioned in Section II above, 

the average adjustment horizon is roughly five years.   

  

3.2 The Intertemporal Elasticity of Substitution. 

In this section I demonstrate that firms in the fixed-cost model have very high 

intertemporal elasticities of substitution for the timing of investment purchases.  This 

high intertemporal elasticity is the key observation that allows us to analyze the solution.  

It is also a property that fixed-cost models share with neoclassical investment models.  

Consider the loss to the firm from adjusting early or late by an amount dT .  The loss 

                                                 
5 Some algebra shows that  

( )
( )

( )1 1, 1
r T rT

T T Te eF T k k e k e e k
r r

αδ
α δ α αδ δδ δ

αδ

− + −
− − −

⎡ ⎤ ⎛ ⎞− − ⎟⎜⎢ ⎥ ⎡ ⎤⎟= − − − −⎜ ⎢ ⎥⎟⎢ ⎥ ⎣ ⎦⎜ ⎟⎜+ ⎝ ⎠⎢ ⎥⎣ ⎦
. 
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from this suboptimal behavior is ( ) ( ) ( )L dT V T V T dT= − + , which, to a second order 

approximation, is  

 ( ) ( )( )21 '' 0 0
2

L dT V dT≈− > .  

Since T is optimal, we can use (3) and (4) to show that  

 
( ) ( )

( ) ( )( ) ( ) ( )2 2,1 1
2 , 1 2

L dT G T
dT dT

G T rr V F k
δ

δα δα
δ α δ

⎡ ⎤
⎢ ⎥≈ <⎢ ⎥⎡ ⎤ + − +− − ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

. (7) 

Equation (7) says that the loss relative to the annuity value of the firm’s profits must be 

less than ( )2 / 2dTδα .  To put this in quantitative terms, consider compensating the firm 

to invest one year in advance ( 1dT = ).  If the annual depreciation rate were four percent 

( .04δ = ) and if .5α = , then the left-hand side of (7) would need to be no greater than 

.01.  That is, the firm would require only one percent of its annual flow profits in 

compensation for adjusting early (or late) by one year.  Equation (7) also shows that the 

loss is related to the size of the Jorgenson gap ( ),G Tδ .  If ( ),G Tδ  is small, then the loss 

is even less than ( )2 / 2dTδα .   

 This finding – that losses from adjusting early or late even by large amounts are 

small relative to flow profits – provides our first glimpse into why the underlying 

distribution of firms has little influence on the aggregate behavior of investment.  Figure 

2 plots two distributions of firms’ capital holdings in an environment in which firms 

adjust every 10 years in the steady state.  The shaded rectangle represents the steady state 

distribution of capital holdings.  The steady state distribution is uniform.  There is an 

equal number of firms with capital of every age.  The heavy dark line represents an 

extreme alternate distribution in which the firms are concentrated on only five capital 

vintages.  Each vintage is owned by 1/5 of the firms and there are no other capital 

vintages.  This distribution is much closer to the steady state distribution than it appears 

because the firms are so willing to retime their investments.  Suppose we modify the 

usual profit maximization requirement for equilibrium and instead require that firms only 

come within 0ε>  of maximum profits.  This relaxed version of equilibrium is 

sometimes referred to as an ε -equilibrium (see Everett [1957]).  With the parameter 

values above, adjusting early or late by one year costs the firm at most one percent of its 
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annual flow profits.  If ( )( )0.01 r V F kε ⎡ ⎤= − −⎢ ⎥⎣ ⎦ , then the steady state price and 

investment paths ( ) 1p t p= =  and ( )I t I=  for all t constitute an ε -equilibrium for both 

the steady state distribution and the extreme distribution.  Even though the extreme 

distribution looks starkly different from uniform, it is actually within ε  of the steady 

state.   

Returning to optimal firm behavior, consider the change in payoffs from a small 

change in the purchase price of capital dp.  In this case, the change in the payoff is simply 

( )dp k k T⎡ ⎤− −⎢ ⎥⎣ ⎦ .  Putting this loss relative to the annuity value of profits gives 

 
( )

( ) ( )( ) ( )1
, 1

TL dp e dp
G T rr V F k

δ

α
δ α δ

⎡ ⎤−⎢ ⎥= ⎢ ⎥⎡ ⎤ + − +− − ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
, (8) 

which is positive if prices rise and negative if they fall.   

Using (7) we can solve for the price change required to make the firm indifferent 

between adjusting now and adjusting in one year.  This price change is  

 
( )( ) ( )( )2 2, ,1

2 1 2T

G T G T
dp dT dT

e Tδ

δ δ
δ≈− ≈−

−
. (9) 

Not surprisingly, the Jorgenson gap ( ),G Tδ  again emerges as the central determining 

factor for how willing firms are to retime capital purchases in response to price changes.  

At this point, it helps to get a sense of the magnitude of the gap.  Recall that 

( ) ( ) ( )1,G T k T rαδ α δ−= − + .  If  k  is optimal, then ( ),k Tδ  satisfies equation (6) so that 

( ) ( ),Tk T e k Tδ δ−=  and we can solve directly for ( ),G Tδ .  To get a simple expression 

for ( ),G Tδ , notice that (6) suggests that, for small T, the optimal reset level ( ),k Tδ  is 

not far from the frictionless level Jk .  If we assume that ( ), Jk T kδ ≈ , then  

 ( ) ( ) ( ) ( )1 1, 1TT JG T e k r r e
α α δδδ α δ δ
− −− ⎡ ⎤⎡ ⎤≈ − + = + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ . 

If we use ( ) ( )1 1 1Te Tα δ α δ− − ≈ − , we get a simple formula to approximate the gap,   

 ( ) ( )( ), 1G T r Tδ δ α δ≈ + − . (10) 

For example, if 10T = , .10δ = , .02r = , and .35α = , then (10) suggests that 

( ) ( )( )( )( ), .12 .65 .10 10 .078G Tδ ≈ = .  Thus, the gap between the marginal product and 
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the user cost when the firm adjusts is roughly 8 percentage points.  Because the 

approximation above assumes that Jk k=  rather than ( ), Jk k T kδ= > , the true gap is 

actually somewhat smaller than the approximation suggests.  Using the formula for 

( ),k Tδ  given by (6), direct calculation shows that ( ), .054G Tδ =  for these parameter 

values.  Figure 3 plots the exact ( ),G Tδ  for several time horizons T and depreciation 

rates δ .  Clearly, ( ),G Tδ  rises with both T and δ .  For low T and δ , ( ),G Tδ  is close to 

zero.   

We can now use approximation (10) together with condition (9) to find the price 

change required to induce a firm to change its investment timing by an amount dT.  We 

immediately have the required price change as  

 
( )( ) ( )( ) ( )2 2, 1 1
2 2

G T
dp dT r dT

T
δ

δ α δ≈− =− + − . 

Given the parameters above, the price change (from the steady state 1p = ) necessary to 

induce a firm to change its timing by one year is roughly 0.0039dp =−  or 39 basis 

points.  Clearly, the required price change is decreasing (in absolute value) in the 

durability of the capital good.  As δ  falls, both the gap ( ),G Tδ  and the required price 

change dp approach zero.  For example, if the depreciation rate were 2 percent rather than 

10 percent, then ( ), .0052G Tδ ≈ , and .0003dp ≈− , roughly 3/100 of one percent.   

 These calculations indicate that firms are willing to dramatically change the 

timing of investment purchases to take advantage of seemingly small changes in prices.  

This is particularly true for long-lived durables.  Another way to see this point is to 

compute a price path ( )p t  for which the firm is indifferent as to when to adjust.  If we 

allow for a time-varying price ( )p t  in (2), then the first-order condition for T is  

 ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) 0

p T
k T r V F p T k p T r k T k T k

p T
α δ

⎧ ⎫⎪ ⎪⎪ ⎪⎡ ⎤− − − − + − − =⎨ ⎬⎢ ⎥⎣ ⎦ ⎪ ⎪⎪ ⎪⎩ ⎭

�
. (11) 

(Note that if ( ) 0p T =�  and ( ) 1p T = , then (3) and (11) are the same.)  If the firm is 

indifferent between any adjustment horizon, then (11) must hold for all T.  Solving this 

differential equation, one can show that such a price path would satisfy  



 
14

 ( )( ) 11
t

t rtV F ep t e k e C
k r

αδ
δ α

αδ

−
− − −−− = − +

+
, (12) 

where C is an unknown constant.6  Restricting the path to satisfy ( ) 1p T =  pins down C.  

Since ( ) 1p T = , both (3) and (11) hold at T and ( ) 0p T =� .  In a neighborhood of T,  

 ( ) ( )( ) ( )( )2 21 11 , 1 ,
2 2 1

T

T

ep t p T t T G T t T
e

δ

δ
δδ δ

−

−≈ + − = − −
−

�� . 

If the gap ( ),G Tδ  is small, the indifferent price path stays close to the steady state price 

( ) 1p t p= = .  Since ( )0lim , 0p Tδ δ→ =�� , the price path that makes firms indifferent about 

when to adjust is more flat for long-lived capital than for short-lived capital.   

Figure 4 plots several indifferent price paths for various depreciation rates δ .  In 

the figure, firms adjust every 10 years in steady state.  Clearly, for long-lived durables 

(i.e., low δ ), the indifferent price path is quite flat.  Indeed, even for high depreciation 

rates ( .2δ = ), the firm requires only a 2 percent price cut to make it indifferent between 

adjusting 2 years early or late.  The important thing to realize is that the indifferent price 

paths are very close to the steady state price.  Put differently, in the steady state, while it 

is optimal to adjust at date T, the firm is almost willing to adjust at any date.   

 

3.3 Discussion 

In this section I briefly compare the fixed-cost model above with a standard neoclassical 

investment model.  The comparison reveals that the equilibrium behavior of both models 

can be reduced to a simple supply and demand system.  The supply and demand analysis 

allows me to summarize how various shocks influence the equilibrium.  I also consider 

the empirical implications of the lumpy-investment model.  

 

Comparison with Neoclassical Investment Models.  The analysis above shows that slight 

changes in prices can cause firms to dramatically alter the timing of their investment 

decisions.  Slight increases in prices cause firms to delay adjustment and slight reductions 

cause firms to accelerate adjustment.  For sufficiently long-lived investment projects and 

sufficiently patient firms (low δ  and low r), the incentive to delay or accelerate 

                                                 
6 To derive this condition, I have assumed that the reset value V is independent of the time of adjustment T.   
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investment in response to predictable price changes is nearly infinite.  Put differently, the 

elasticity of investment demand is essentially infinite in investment models with fixed 

costs.  Thus, despite the apparent complexity of the fixed-cost model, characterizing the 

equilibrium is disarmingly simple.  The demand for investment is approximately 

summarized by a flat demand curve.  If the shocks facing the firm are short-lived, and 

thus have little impact on the long-run payoff to capital (summarized by V  in the model), 

the demand curve simply remains at the steady state price.  In this case, the equilibrium 

quantity of investment is determined solely by the position of the supply curve.   

The extremely high intertemporal elasticity of demand is a feature that the fixed-

cost model shares with standard neoclassical investment models and it is why the two 

types of models, though very different at the micro-level, are often indistinguishable at 

the aggregate level.  In neoclassical settings, firms balance the marginal cost of 

investment against the marginal benefit of additional capital.  Letting ( )q t  denote the 

marginal benefit of an additional unit of capital, we can write 

 ( ) ( ) ( ) ( ) ( ) ( )1r s r sk

t t
q t e MP s ds e A s k s dsδ δ αα

∞ ∞− + − + −= =∫ ∫ , (13) 

where ( )kMP s  is the marginal product of capital at time s.  If the firm chooses 

investment to equate the marginal benefit and marginal cost of new investment, then 

optimal investment behavior would require ( ) ( )q t p t= .   

For sufficiently short-lived shocks and sufficiently long-lived capital, it is 

reasonable to approximate the forward-looking variable ( )q t  with its steady state value 

q .7  To understand the justification for this approximation, note that the marginal benefit 

( )q t  is a discounted sum of payoffs extending into the far future.  Because the shock is 

transitory, the system will eventually return to its steady state.  While this may take some 

time, most of the terms in the integral, particularly those in the far future, remain close to 

their steady state values.  Provided that the firm is sufficiently patient and depreciation 

sufficiently slow (i.e., δ  and r are both close to 0), and provided that the shock is 

sufficiently short-lived, the future terms dominate this expression and the change in ( )q t  

                                                 
7 See Barsky et al. [2007] and House and Shapiro [2007].   
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is negligible.  The approximation ( )q t q≈  has a clear economic interpretation.  Because 

the decision to invest is forward-looking, the benefit from additional investment is 

anchored by future, long-run considerations and is largely independent of short-run 

shocks.  Thus, for sufficiently short-lived shocks and sufficiently long-lived capital, the 

investment demand curve in the neoclassical model is perfectly elastic – a flat line at p .  

As δ  approaches zero, both the fixed-cost model and the neoclassical model have 

demand curves that are simply flat lines at the steady state price.  As a result, in the low-

depreciation limit, any differences in equilibrium outcomes reflect differences in the 

supply curves.  If the specification of the supply side is the same in the two models, then 

the equilibrium outcome in the fixed-cost model and the equilibrium outcome in the 

neoclassical model will be virtually identical.8  More precisely, in the low-depreciation 

limit, both models have identical reactions to transitory shocks.  Neither transitory supply 

shocks nor transitory demand shocks cause perceptible changes in prices and only supply 

shocks cause changes in investment.   

 

The Distribution of Capital Holdings: The distribution of capital holdings features 

prominently in both the theoretical and empirical literature on fixed costs.  In theoretical 

settings, researchers often use an approach suggested by Krusell and Smith [1998] to 

incorporate the effects of changes in the distribution of capital holdings across agents.  

Agents are assumed to know a finite number of moments of the distribution, which they 

use to predict future price movements.  In equilibrium, the coefficients on the moments 

must be consistent with the aggregate behavior of the model.  In empirical studies, 

researchers test whether observed variations in the distribution predict future movements 

in investment and prices.9     

The analysis above suggests that, for sufficiently long-lived investments, 

variations in the distribution of capital holdings across firms should have no independent 
                                                 
8 The seemingly more articulated DSGE models are in fact special cases of the supply and demand 
framework here.  The relevant supply curve for a one-good DSGE model is defined by the number of units 
of utility that must be forgone to acquire an additional unit of capital.  This supply curve is dictated by the 
curvature of the utility function ( ''/ 'u u ), the curvature of the production function ( ''/ 'F F ) and the 
curvature of the labor disutility function ( ''/ 'v v ).     
9 Using LRD data, Caballero et al. [1995] show that changes in the distribution of capital explain changes 
in the responsiveness of investment to shocks.  Similar results are in Caballero and Engel [1999] who use 
BEA investment data and show that the distribution has predictive power for aggregate investment.   
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influence on equilibrium investment or prices.  In particular, if the only changes to the 

system are changes in the distribution, then equilibrium prices and investment should 

remain close to their steady state levels.  Thus, the model and analysis so far indicate that, 

for long-lived investments, the coefficients on moments of the cross-sectional distribution 

in forecasting equations should be close to zero and the increase in predictive power from 

adding additional moments should be negligible.  That is, knowledge of the distribution 

should provide little to no information regarding the future behavior of investment.   

Of course, the analysis above is only approximate in nature.  Furthermore, the 

identical behavior of the neoclassical model and the fixed-cost model, and the irrelevance 

of the distribution are results that we should expect only in the low-depreciation limit.  In 

the next section, I consider a numerical version of the model to assess the accuracy of the 

approximate solution and the limiting results.  The numerical model shows that the 

approximate solution is quite accurate even for moderately slow depreciation rates.   

 

IV NUMERICAL ANALYSIS AND APPLICATIONS 
 
Based on the analysis in Section III and the discussion in Section 3.3, we should expect to 

observe the following in fixed-cost models for long-lived investments: (1) a temporary 

cost shock should have no noticeable affect on the price of new capital but should reduce 

equilibrium investment by the amount of the shock; (2) a temporary demand shock 

(modeled as a temporary increase in A ) should have virtually no influence on prices or 

investment; (3) different initial distributions of capital should have no consequences for 

prices or investment; and (4) for sufficiently transitory shocks, the aggregate behavior of 

the fixed-cost model should be identical to the aggregate behavior of a conventional 

neoclassical investment model.  

In this section I analyze a numerical version of the model in Section III.  The 

numerical model allows me to evaluate the accuracy of the limiting analysis for realistic 

parameter values.  Before I turn to the model’s behavior, I first sketch the numerical 

model itself.  The details are in the appendix.   
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4.1 Quantitative Model 

To test the quantitative predictions of the model, I use numerical techniques to analyze a 

parameterized version of the model.  The model is cast in discrete time with time 

intervals of size Δ .  There are J possible capital stocks 1 2, , ,... Jk k k k  with j
jk e k−Δ= .  

The lowest possible capital stock is Jk .  Let ,j tV  be the value of having capital stock j at 

time t and let tV  be the value of having the reset level k  at time t.   

The numerical solution uses a method developed jointly by Robert King, Julia 

Thomas and Marcelo Veracierto.10  The key simplifying assumption of the approach is to 

assume that firms draw idiosyncratic fixed costs of adjustment each period.  Thus, instead 

of facing the fixed cost F each period, firm i faces the stochastic fixed cost ,i tε  where 

( ),i tε εΨ∼ , ,i tE Fε⎡ ⎤ =⎣ ⎦ , , 0i tε ≥  and ,i tε  is i.i.d. across periods and across firms.  For 

purposes of computation, I assume that ,i tε  is a mixture of a log-normal random variable 

and a wide uniform.  Given a time interval Δ , I construct the discount factor reβ − Δ= .  I 

can then write the value for a firm with cost draw ε , capital stock jk k=  at time t as  

 ( ) ( ){ }, 1, 1 1, 1max ,j t t j t j t t t t t jV A k E v A k E v p k kα αε β β ε+ + +
⎡ ⎤ ⎡ ⎤= Δ⋅ + Δ⋅ + − − −⎢ ⎥ ⎣ ⎦⎣ ⎦ , (14) 

where  

 ( ) ( ), ,0j t j tv V dε ε
∞

= Ψ∫ . (15) 

The marginal firms with capital stock j have critical cost draw  

 ( ), 1, 1 1, 1ˆ j t t j t t j t t jA k k E v v p k kα αε β + + +
⎡ ⎤ ⎡ ⎤=Δ⋅ − + − − −⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ . (16) 

The critical ,ˆ j tε  is differentiable.  Firms with cost draws higher than ,ˆ j tε  choose not to 

adjust and firms with cost draws lower than ,ˆ j tε  adjust.  If a firm with capital stock j 

chooses to adjust, its investment is jk k− .  Aggregate investment tI  is the sum of 

individual firm-level investment.   

                                                 
10 The first appearance of the technique in the literature was in Dotsey King and Wohlman [1999] who used 
the approach to analyze a menu cost model.  Thomas [2002] and Veracierto [2002] used the technique 
explicitly for analyzing investment behavior under non-convex adjustment costs.  King and Thomas [2006] 
use the technique to analyze equilibrium in a quantitative model of labor adjustment.   
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 To close the model, I assume a simple isoelastic supply curve  

 ( )
1

t t tp z I I ξ= ⋅ . (17) 

Here ξ  is the elasticity of investment supply, I  is steady state investment and tz  is a 

cost shock with mean 1.  The cost shock (z) and the productivity shock (A) are assumed 

to have simple autoregressive forms  

 ( )1 , 11t A A t A tA Aρ ρ η+ += − + +  (18) 
and 
 ( )1 , 11t z z t z tz zρ ρ η+ += − + + . (19) 

 I choose parameter values for illustrative purposes only.  The baseline parameter 

values are summarized in Table 1.  The elasticity of supply ξ  is set to 1.  The 

autoregressive parameters zρ  and Aρ  are set to imply a 6-month half-life of the shocks 

and, together with the variances of the innovations zη  and Aη , imply an unconditional 

variance of one percent for z and A.  I set the parameter α  to 0.35 and I set T  to 10 so 

that firms adjust once every ten years in steady state.  I set the baseline depreciation rate 

δ  to 5 percent annually and the discount rate r to 2 percent annually.  Because it plays a 

central role in governing the system, I consider several different depreciation rates in the 

simulations below.  The remaining details of the numerical procedure are in the appendix.     

 

4.2 Temporary Shocks 

With the numerical model, I can now assess the accuracy of the analysis from Section III.  

I begin by considering temporary supply shocks and temporary demand shocks.   

 

Supply Shocks: I consider a positive innovation of one percent to the variable tz  in 

equation (17).  This increases the cost of investment and thus shifts the supply schedule 

back.  I consider five different annual depreciation rates: 0.20, 0.10, 0.05, 0.02 and 0.01.  

Twenty percent depreciation is comparable to depreciation rates experienced by 

computers, software and certain vehicles.  Typical business equipment has a depreciation 

rate of roughly ten percent per year.  The five, two and one percent depreciation rates are 

comparable to depreciation rates of many structures (e.g., residential investment and 
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business structures have depreciation rates of roughly two percent.  For a detailed 

discussion of empirical depreciation figures, see Fraumeni [1997]).    

 Figure 5 shows the system’s reaction to the temporary cost shock.  The top panel 

shows the response of aggregate investment.  The middle panel shows the response of the 

price level and the bottom panel shows the cost shock variable itself (the cost shock is the 

same for each depreciation rate).  In the figure, as one would expect from the earlier 

analysis, the equilibrium price of new investment changes only slightly in response to the 

shock.  For 0.10δ =  and 0.20δ = , the increase in prices on impact is roughly 12 basis 

points (0.12 percent).  For lower depreciation rates the price change is even smaller.  For 

example, for 0.01δ =  and 0.02δ = , the increase in prices is roughly 1 basis point 

(1/100th the size of the impulse).  Since prices change only slightly, most of the 

adjustment to the shock occurs through changes in aggregate investment.  For each 

depreciation rate, the drop in investment is almost 1.00 percent.  For 0.01δ =  and 

0.02δ = , the drop is 0.99 percent.  For the higher depreciation rates, the drop in 

investment is roughly 0.9 percent.  This behavior is exactly what the earlier analysis 

predicted.  The approximation is better for low depreciation rates as the gap ( ),G Tδ  

approaches zero and the elasticity of demand approaches infinity.   

 

Demand Shocks: Figure 6 shows the response to a temporary one percent increase in the 

productivity parameter tA .  Since the supply curve has not changed and since the 

elasticity of supply is 1.00, the reactions of prices and total investment are identical.  As 

predicted, the change in prices and total investment are small in all cases.  For 0.20δ =  

and 0.10δ = , the increase in both prices and investment is roughly 15 basis points and 8 

basis points, respectively.  For 0.01δ =  and 0.02δ = , the price increases are roughly 3 

basis points and 2.5 basis points.  Because the shock is transitory, the value of a 

sufficiently long-lived capital good is essentially unaffected.11   

 
                                                 
11 The near-infinite elasticity of investment demand implies that the after-tax price will be constant for 
temporary shocks.  Thus, a temporary investment tax subsidy would cause pre-tax prices to rise by the 
amount of the subsidy.  House and Shapiro [2007] use this prediction to estimate the elasticity ξ following 
the 2002 and 2003 bonus depreciation provisions.  While their analysis uses a standard neoclassical model, 
it is clear that their estimates are equally valid in a model with fixed-costs of adjustment.   
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The Cyclicality of Aggregate Investment:  Two remarks on the cyclicality of investment 

are appropriate at this point.  First, Figures 5 and 6 suggest that most variation in 

investment arises due to investment supply shocks rather than demand shocks.  This 

interpretation is correct for the numerical trials presented above but is not a general 

property of investment in models with fixed costs.  The reason demand shocks (shocks to 

A) play such a small role is that the shocks I have considered are temporary.  Permanent 

(or very long-lasting) changes to the productivity of capital will shift the investment 

demand curve and thus cause sharp changes in both investment and prices.  Also, the 

supply shocks do not need to be investment-specific.  A general technology shock, like 

the shock in the standard RBC model, will increase both supply and demand for 

investment.  If the shock is transitory, then, as above, the demand curve will not move 

and most of the reaction will come from changes in supply.   

 Second, as seen in empirical studies, most of the fluctuations in aggregate 

investment in the model are associated with changes in the number of firms making 

adjustments and not to changes in the average size of firm-level investment.  There is 

some variation in the amount of investment for each firm, since, by delaying or 

accelerating the timing of investment, the firm influences the size of its capital purchases 

( )k k T− .  However, since depreciation is slow, the implied variation in ( )k T  as the 

firm adjusts the timing of investment is quite small.   

 

4.3 Distributional Dynamics 

Non-uniform Initial Distribution:  I now consider the equilibrium path of investment and 

prices when the system begins with an out-of-steady-state distribution.12  The specific 

example considered here is a distribution with an unusually large number of firms with 

capital that is five years old.  To make the illustration stark, I consider a case in which the 

initial density of firms with capital between 4.5 and 5.5 years old is twice the density 

elsewhere.  The distribution considered is depicted in the top panel of Figure 7.  The 

steady state distribution is shown for comparison. Because the out-of-steady-state 

distribution has twice as many firms with five-year-old capital, one would anticipate that, 

                                                 
12 This thought experiment is inspired by Gourio and Kashyap [2007] who consider a similar out-of-
equilibrium experiment in their numerical model.   
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in roughly five years, prices and investment would rise dramatically as these firms 

approach the adjustment trigger.  Indeed, if firms could not change the timing of 

investment, then prices and aggregate investment would rise by 100 percent in five years.  

Figure 7 shows the equilibrium path of investment given the initial distribution 

shown in the top panel.  The middle panel shows the reaction of aggregate investment.  

Since the supply curve is stable and the elasticity of supply is 1.00, investment and prices 

are identical.  The distorted initial distribution has some bearing on the equilibrium.  The 

conventional supply and demand prediction that prices and investment should rise as the 

mass of firms adjusts is present in the figure but is quantitatively negligible relative to the 

magnitude of the distributional change.  While there are twice as many firms with five-

year-old capital, instead of an increase of 100 percent, investment rises by only one-half 

of one percent for capital with a ten percent depreciation rate.  For capital with a five 

percent depreciation rate, the equilibrium increase in investment is only 20 basis points.   

The reason the distribution exerts such little influence on the equilibrium is the 

high intertemporal elasticity for the timing of investment combined with the, albeit slight, 

increase in prices in equilibrium.  The middle panel presented results for an elasticity of 

investment supply (ξ ) of 1.00.  Some estimates of investment supply elasticities are 

substantially higher than this (see for example House and Shapiro [2007]).  If the 

intertemporal elasticity of investment demand were literally infinite (as it is in the low-

depreciation limit), then the form of the supply curve, and its elasticity, would not matter 

for the equilibrium.  On the other hand, since the elasticity of investment demand is 

actually finite, higher supply elasticities will temper the price changes and thus may 

allow the distribution to play a greater role.       

The bottom panel of Figure 7 shows the reaction of the model to the same initial 

distribution but considers five different supply elasticities.  In the figure, each line 

corresponds to the equilibrium investment path from a model with a different value of ξ .  

The depreciation rate is set to its baseline value 0.05δ = .  While the supply elasticity 

influences the equilibrium, it is remarkable how little influence this parameter has on the 

behavior of the system.  Even for a supply elasticity of 20, the maximum change in 

aggregate investment is only 2 percent.  Compared to the exogenous 100 percent increase 
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in firms with five-year-old capital, this is a very small effect.  Only for an elasticity of 

100 does aggregate investment noticeably react, and even then by less than 10 percent. 

 

Parametric Expectations: The presence of distributions as endogenous state variables led 

many researchers to develop tools for modeling such settings.  As mentioned earlier, the 

Krusell-Smith technique is to track a finite number of moments of the distribution rather 

than the entire distribution.  When firms form expectations regarding future prices, they 

are assumed to make their forecasts conditional on the observed date t moments.   

 The analysis in Section III and the numerical experiment above suggest that 

agents should place very little weight on these moments in forming their expectations.  

While the distribution of capital holdings is a state variable, it has only minor bearing on 

the equilibrium.  Consider the forecasting equations  

 0
m

t h p t z t A t m t t hm
p p z A M eβ β β β β+ += + + + + +∑ , (20) 

 0
m

t h p t z t A t m t t hm
I p z A Mβ β β β β υ+ += + + + + +∑ , (21) 

where h is the forecast horizon, the variables m
tM  are a set of moments of the date t 

distribution and e and υ  are reduced-form errors.  Although any set of moments is 

admissible, I focus on the number of firms in each fifth of the capital space at any point 

in time.  Specifically, at time t, the moment m
tM , for 1,...5m =  is  

 ( )
( )

5

1
5

Tm

m
t t

Ta m

M f a
= −

= ∑ , (22) 

where ( )tf a  is the number (or fraction) of firms with capital of age a at time t.  In the 

steady state, ' 1/ 5m mM M= =  for all ,  'm m .   

To assess the predictive value of these moments, I use the numerical model to 

calculate the asymptotic values of the coefficients in (20) and (21).13  I consider the 

baseline parameter values and uncorrelated, i.i.d., supply and demand shocks zη  and Aη .  

The shocks are normally distributed with variances that, together with Aρ  and zρ , imply 

tz  and tA  have unconditional variances of one percent.     

                                                 
13 The results reported below come from a simulation of 100,000 years of quarterly observations.   
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 Table 2 reports the standard deviations of investment tI , price tp , the supply and 

demand variables tz  and tA  and the moments 1 5,...t tM M  from the numerical model.  As 

one would expect, investment prices have less variation compared to investment and the 

shocks.  Table 3 reports estimated coefficients for the forecasting equation (20) for 

horizons h = 1, 2, 4 and 8 quarters.  The most important forecasting variable is the price 

itself.  The model implies that prices are very close to a random walk.  While the shocks 

have small impacts on prices, the effects are long-lasting.  Notice that the coefficients on 

the moments, while small, are not zero.  The distribution is a true state variable so it is 

relevant for forecasting prices.  However, the gain in forecast accuracy measured by the 

change in R2 as we add more and more moments is negligible (note, the fifth moment is 

not included because it is an exact linear combination of the other moments).  Thus, 

while the distribution matters, it doesn’t matter very much.  To a first approximation, it is 

reasonable for investors to simply ignore the distribution when forming expectations 

about future prices.   

 Table 4 reports the corresponding estimates for equation (21).  Again there is no 

improvement in forecasting ability from adding additional moments.  The lower R2 

statistics overall reflect the fact that, unlike investment prices, which are close to a unit 

root, investment itself is much more sensitive to transitory shocks and is thus more 

difficult to predict.   

 These findings are governed to some extent by the parameter values.  To check 

their robustness, I consider several different parameterizations.  Tables 5 and 6 report the 

R2 for similar forecasting equations for different parameter values.  Here, each row 

reports the R2 for particular forecast horizons and specifications (i.e., how many moments 

are included).  The columns consider different parameter settings.  Column (0) reports 

results for the baseline specification.  Columns (1) – (9) consider models with baseline 

parameter values except for the parameter listed in the column heading.  Thus, columns 

(1) – (3) report results for depreciation rates δ = .02, .10, and .50;  (4) – (6) report results 

for supply elasticities ξ = 5, 10, and 100; (7) – (9) consider curvature parameters 

α = .50, .15, and .05.  Column (10) reports results from a “myopic” model with .50δ = , 

.50r = , .10α =  and 5ξ = .   
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 As in the baseline case, the performance of the forecasting equations is for the 

most part unchanged as we include additional moments of the date t distribution.  There 

are some exceptions.  In particular, for high depreciation rates (e.g. .50δ = ) and for high 

supply elasticities (e.g. 100ξ = ), the moments of the distribution matter somewhat.  The 

distribution also matters more for distant forecast horizons.  This is not surprising since 

the average adjustment horizon in the model is T = 10.  Knowledge of the distribution 

two years out will matter most well beyond one quarter.  In the myopic calibration, the 

distribution matters at almost every horizon.14   

 

4.4 Comparison with Neoclassical Investment Models 

Because both the fixed-cost model and the neoclassical investment model have extremely 

high elasticities of substitution for the timing of investment, we should anticipate that the 

models will be difficult to distinguish using aggregate data alone.  In this section, I solve 

a simple neoclassical investment model and compare the equilibrium outcomes to the 

aggregate equilibrium outcomes under a similarly calibrated fixed-cost model.   

 Figure 8 presents simulated data from both the neoclassical investment model and 

the fixed-cost model.  The neoclassical model is a standard discrete time investment 

model with flow production function t tA kα .  The supply curve for both models is given 

by (17).  The parameters of both models are simply set to the baseline values in Table 1.  

Both models are subjected to exactly the same sequence of shocks.   

The upper panels in Figure 8 show results for aggregate investment, while the 

lower panels show results for prices. The panels on the left show simulated time series.  

The thin black line is the fixed-cost model while the thick grey line is the neoclassical 

model.  While the time paths for aggregate investment are essentially identical, there are 

noticeable differences in the price series.  The middle panels show the impulse response 

to a cost shock like the one considered in Figure 5.  The response of aggregate investment 
                                                 
14 Careful readers will recall that the R2 figures in Krusell and Smith [1998] are much closer to 1.00 than 
those reported here.  While the model they study is different from the model here, the main cause of the 
difference is that Krusell and Smith approximate the contemporaneous pricing function ({ })m

t tp M  and 
then form forecasts of future prices with an approximate transition function for the moments themselves 

1:{ } { }m m
t tQ M M +→ , while I form the price forecasts directly.  If I regress current prices pt on the current 

states zt , At  and the moments { }m
tM , I obtain R2 statistics close to 1.00 (essentially regardless of the 

number of moments included).   I thank Gianluca Violante for particularly helpful comments on this point.   
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is essentially identical in the two models, while the price responses display small 

differences.  The panels on the right show scatterplots of 500 years of quarterly data.  

Each dot represents a data point from the neoclassical model and the corresponding data 

point from the fixed-cost model.  Again, the investment data are virtually the same in the 

two models (all the observations are on the 45 degree line) while the price data display a 

noticeable difference.   

Table 7 considers variations of the two models.  In each case, I compare the 

predicted series in the fixed-cost model to the corresponding series in the neoclassical 

model.   Specifically, I simulate 100,000 years of quarterly observations for each model 

and then run regressions of the form Neo F-C
0 1t t tX X eβ β= + +  where X Neo  are simulated 

data from the neoclassical investment model and X F-C are the corresponding data 

simulated from the fixed-cost model.  The data X are either the quantity or price of 

investment.  The table reports the slope coefficients ( 1β ) and the R2 from the regressions.  

Except for the parameters listed in the table, parameter values are set to the baseline 

values.   

The top panel (Panel A) reports statistics for investment quantities.  As we would 

expect given the results in Figure 8, the time paths of aggregate investment from the 

neoclassical model and the fixed-cost model are essentially indistinguishable.  The slope 

coefficients and the R2 statistics are both very close to 1.00.  The lower panel (Panel B) 

reports statistics for prices.  As we would expect, the price time series are not as similar.  

Even when the models are calibrated identically, the slope coefficients are roughly 0.6 

and the R2 statistics are well below 0.9.   

Why is aggregate investment so similar across the two models while prices are 

not?  Two points are worth emphasizing.  First, the analysis in Section III said that the 

near-infinite elasticity of investment timing would eliminate price fluctuations in 

equilibrium.  That result, however, was only approximate in nature.  While the elasticity 

is very high, it is not infinite.  The fact that we observe price changes in the simulation 

reflects the fact that the analysis above is only approximate.  Since observed changes in 

prices arise from imperfections in the approximation, we cannot use the approximations 

to argue that the price paths should be identical.   
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Second, price changes reflect changes in the equilibrium value of capital.  In the 

neoclassical model, the price reflects the discounted marginal product of capital 

extending into the far future.  In the fixed-cost model, the price reflects the discounted 

average product of capital over the adjustment horizon.  In both cases, the price is tied to 

the long-run demand for capital.  Unlike the demand for investment, which can be 

characterized by a (nearly) flat demand curve, the long-run demand for capital is 

downward sloping and the shape of this demand curve depends on the details of the 

model.  While we can ignore the details of the demand side of the model when we 

analyze investment, we cannot ignore these details when we analyze the long-run demand 

for capital.  Since the price depends on the demand for capital, it is not surprising to 

observe different equilibrium price paths in the two models.15      

 

V. CONCLUSION 
The study of investment is of central importance to understanding business cycles and 

economic activity.  The drive to base aggregate theories on solid micro-foundations as 

well as the desire to match firm-level investment patterns has led to the development of 

complex models of investment behavior at the firm level.  Investment models featuring 

fixed costs of adjustment are attractive because they imply that investment at the plant-

level will be infrequent, as seen in micro data sets.  In this paper, I have analyzed the 

approximate equilibrium behavior of a dynamic investment model with fixed adjustment 

costs.  The analysis shows that for sufficiently long-lived capital goods, the elasticity of 

intertemporal substitution for the timing of investment is extremely high.  As the 

depreciation rate approaches zero, this elasticity approaches infinity.  The near-infinite 

elasticity of intertemporal substitution eliminates virtually any role for microeconomic 

heterogeneity in governing investment demand.  This high elasticity of intertemporal 

substitution is a property that conventional neoclassical models of investment demand 

and models with fixed costs have in common.  Thus, even though simple neoclassical 

                                                 
15 Caplin and Leahy [2004] analyze a model with fixed costs and provide conditions under which the 
equilibrium is identical to the equilibrium in a neoclassical model.  Their model considers permanent 
shocks, which have a strong influence on the long-run demand for capital.  They establish a mapping 
between the parameters of the fixed-cost model and the neoclassical model such that the two equilibria are 
the same.  (Their analysis requires several auxiliary conditions not present in this paper including a 
simplifying assumption to ensure that the distribution of capital holdings is always at the steady state.) 
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investment models are starkly at odds with the micro data, they capture virtually all of the 

relevant aggregate investment dynamics embodied in models with fixed investment 

adjustment costs.  This finding is highly robust and explains why researchers working in 

the DSGE tradition have found little role for fixed-costs in numerical trials.  Because the 

differences between the two models are small for plausible depreciation rates and vanish 

in the low-depreciation limit, conventional models offer an easy and accurate vehicle for 

economic analysis of investment decisions at the aggregate level. 

While conventional models and models with fixed costs and heterogeneous firms 

behave the same, it is not due primarily to consumption smoothing in general equilibrium 

frameworks.  Rather it is due to the extreme willingness on the part of firms to adjust the 

timing of investment to take advantage of predictable movements in prices.  The firms 

are so willing to retime their purchases that, in equilibrium, there can be no such price 

movements.  With prices pinned down, the quantity of investment can then simply be 

recovered from the supply curve.  Consumption smoothing motives are just one example 

of an increasing marginal cost of investment.  Decreasing returns to scale, upward 

sloping labor supply curves or rising input costs of any sort will all cause marginal costs 

to rise and thus eliminate any meaningful role for fixed costs in governing aggregate 

investment.   
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Appendix

This appendix presents the numerical model analyzed in “Fixed Costs and Long-Lived Investments” by C.L.
House.

Numerical Model:

Here I present details on the numerical model used to analyze the behavior of the system away from the
low-depreciation limit. The numerical solution follows the approach advanced by Dotsey, King and Wohlman
[1999], Thomas [2002], Veracierto [2002], and Khan and Thomas [2003], King and Thomas [2006].
The numerical model is in discrete time. The size of each time interval is ∆. The possible capital stocks

are given by a list of length J + 1 so that kj is the capital stock for a firm that last adjusted j periods ago.
Then, kj+1 = kje−δ∆ and k0 = k̄. The minimum possible capital stock is kJ . Let Vj,t be the value of having
kj at the beginning of period t and let V̄t be the value of having k̄ at the beginning of period t. These values
are time-dependent because prices and other endogenous variables fluctuate over time.
The key aspect of the numerical approach is the use of idiosynchratic fixed costs rather than the single

fixed cost F . Each firm i is presented with a fixed cost at time t given by εi,t. The fixed costs are i.i.d. across
firms and over time. The fixed cost is assumed to have positive support (i.e., εit takes values in [0,∞)) and
to have mean F . I assume the stochastic fixed cost has a density function ψ (ε) and associated distribution
Ψ (ε). For purposes of computation, I take ε to be a mixture of a log normally distributed variable εLN and
a wide uniform εU .
The log normal random variable obeys ln

¡
εLN

¢
∼ Φ (μ,σ) where Φ is a Gaussian distribution with mean

μ and variance σ2. Because I require E [εit] = F , for any σ, the parameter μ must satisfy

μ = ln (F )− 1
2
σ2 (1)

which follows from a well-known property of log-normal distributions. Thus, once F is given, the log normal
distribution has only a single free parameter: σ. The wide uniform variable has density 1

2F . centered around
F . The final composite random variable is ε = ωεLN + (1− ω) εU with ω ∈ (0, 1). Thus the expected value
of ε is F . The density of ε is the weighted sum of the two densities:

ψ (ε) = ω

"
1√
2π

1

ε

1

σ
exp

(
−1
2

µ
ln ε− μ

σ

¶2)#
+
(1− ω)

2F

and (using properties of the log-normal distribution), the c.d.f. of ε is

Ψ (ε) =
ω

2

∙
1 + erf

µ
ln ε− μ

σ
√
2

¶¸
+
(1− ω)

2F
ε

where erf is the error function erf (x) = 2√
π

R x
0
exp

©
−s2

ª
ds. In the numerical setup below, I also require

the truncated expectation
R b
0
εψ(ε)dε. This expectation isZ b

0

εψ(ε)dε = ω
1

2
· exp

½
μ+

1

2
σ2
¾
·
"
1 + erf

Ã
ξb − σ√

2

!#
+
(1− ω)

4F
b2

where ξb = ln b−μ
σ .

Since the Vj,t’s are the values of having kj at the beginning of period t, we can write

Vj,t (ε) = max
©
∆ · ztkαj + βEt [vj+1,t+1] ,∆ · ztk̄α + βEt [v1,t+1]− ε− pt

¡
k̄ − kj

¢ª
where vj,t =

R
Vj,t (ε)ψ (ε) dε is the expected value of being in state j at time t prior to the realization of

the stochastic fixed cost ε. For the lowest capital stock kJ I assume that the firm must adjust and pays F
with certainty. Thus, the expected value of entering the last grid point is

vJ,t = VJ,t = ∆ · ztk̄α + βEt [v1,t+1]− F − pt
¡
k̄ − kJ

¢
(2)
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Define ε̂j,t as the critical draw for the fixed cost for firms in position j at time t that makes them just
indifferent between adjusting and not:

ε̂j,t = ∆ · zt
£
k̄α − kαj

¤
+ βEt [v1,t+1 − vj+1,t+1]− pt

£
k̄ − kj

¤
(3)

Note, if ε < ε̂j,t then I adjust. Thus, we can write vj,t as

vj,t =

Z
Vj,t (ε)ψ (ε) dε

=

Z ε̂j,t

0

£
∆ · ztk̄α + βEt [v1,t+1]− ε− pt

¡
k̄ − kj

¢¤
ψ (ε) dε+ [1−Ψ (ε̂j,t)]

¡
∆ · ztkαj + βEt [vj+1,t+1]

¢
= Ψ (ε̂j,t)

¡
∆ · ztk̄α + βEt [v1,t+1]− pt

¡
k̄ − kj

¢¢
−
Z ε̂j,t

0

εψ (ε) dε+ [1−Ψ (ε̂j,t)]
¡
∆ · ztkαj + βEt [vj+1,t+1]

¢
= Ψ (ε̂j,t)

¡
∆ · zt

£
k̄α − kαj

¤
+ βEt [v1,t+1 − vj+1,t+1]− pt

¡
k̄ − kj

¢¢
−
Z ε̂j,t

0

εψ (ε) dε+
¡
∆ · ztkαj + βEt [vj+1,t+1]

¢
= Ψ (ε̂j,t) ε̂j,t −

Z ε̂j,t

0

εψ (ε) dε+∆ · ztkαj + βEt [vj+1,t+1]

Thus, we have

vj,t = Ψ (ε̂j,t) ε̂j,t −
Z ε̂j,t

0

εψ (ε) dε+∆ · ztkαj + βvj+1,t+1 (4)

Finally, the supply curve for new investment is

pt = p̄

µ
It
Ī

¶ 1
ξ

where It is total (aggregate) investment at time t and ξ > 0 is the elasticity of supply.

Steady State:

I normalize the supply curve so that in the steady state pt = p = 1. There is then the question of how one
can solve for the steady state values vj , ε̂j? It is tempting to use the solution from the non-stochastic model
in Section III of the text to find V̄ however this is not correct. The presence of the stochastic fixed costs
(rather than the pure fixed cost F ) makes the value of being at k̄ higher than otherwise because the firm has
the option to adjust early to take advantage of a low fixed cost or to adjust late and avoid a high fixed cost.
To find the steady state of the modified model I follow the procedure outlined below:

1. Pick parameters r α δ σ ω J and T . Set μ from equation (1). Set the step size ∆. The discount factor
is β = e−r∆.

2. Set k̄ at the non-stochastic level from equation (6) in the text. Construct the grid k1 = k̄e−δ∆,
k2 = k̄e

−δ2∆, ... kj = k̄e−δj∆.

3. Set v1 (Note for the initial guess of v1, I appeal to the non-stochastic setting in the text in which case
V̄ ≈ ∆ · k̄α + βv1. The initial setting of v1 is therefore v1 ≈ β−1

¡
V̄ −∆ · k̄α

¢
).

4. Equation (2) gives the steady state vJ = VJ as

vJ = VJ = ∆ · k̄α + βv1 − F −
¡
k̄ − kJ

¢
.

5. Equation (3) then implies ε̂J−1

ε̂J−1 = ∆ ·
£
k̄α − kαJ−1

¤
+ β [v1 − vJ ]−

£
k̄ − kJ−1

¤
.

6. I then calculate vJ−1 via quadrature using equation (4)

vJ−1 = Ψ (ε̂J−1) ε̂J−1 −
Z ε̂J−1

0

εψ (ε) dε+∆ · kαJ−1 + βvJ
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7. Then given vj+1 we can calculate ε̂j with equation (3)

ε̂j = ∆ ·
£
k̄α − kαj

¤
+ β [v1 − vj+1]−

£
k̄ − kj

¤
and vj with (4)

vj = Ψ (ε̂j) ε̂j −
Z ε̂j

0

εψ (ε) dε+∆ · kαj + βvj+1

8. I repeat step (7) until I arrive at an implied v1 say v01. If my initial guess v1 = v
0
1 then I have a set of

steady state values and cutoffs. If not, I update v1 and repeat from step 3. The steady state cutoffs ε̂j
values imply adjustment probabilities Ψj = Ψ (ε̂j) for each grid point j = 1, 2, ...J−1 and I set ΨJ = 1
since they must adjust at this point.

Equilibrium:

Let fj,t be the number (i.e., fraction) of investors at grid point j. Total investment at any date t is then

It =
JX
j=1

Ψj,t · fj,t ·
¡
k̄ − kj

¢
The total number of firms is fixed

PJ
j=1 fj,t = 1. Note, the numbers of firms at each grid point evolve

according to
fj,t = fj−1,t−1 (1−Ψj−1,t−1)

for 2 ≤ j ≤ J . For j = 1, we have

f1,t =
JX
j=1

Ψj,t−1 · fj,t−1

so that all of the firms that adjusted last period arrive at gridpoint 1 the following period. To find the steady
state values for fj I use

fj = (1−Ψj−1) fj−1 = (1−Ψj−1) (1−Ψj−2) fj−2 = ... = f1
j−1Y
m=1

(1−Ψj−m)

for all j between 2 and J . Then, to find f1, I use

JX
j=1

fj = f1 + f1 (1−Ψ1) + f1 (1−Ψ1) (1−Ψ2) + ... = f1 [1 + (1−Ψ1) + (1−Ψ1) (1−Ψ2) + ...] = 1

So that

f1 =

⎡⎣1 + JX
j=2

(
j−1Y
m=1

(1−Ψj−m)
)⎤⎦−1

The following auxiliary parameters are used in the numerical model: σ = 0.0025, m = 0.99, ∆ = 1/4 and
J = 80. The model is linearized and solved with the Anderson-Moore (AIM) algorithm.
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TABLE 1.  BASELINE PARAMETERS 

 
Parameter Baseline Value 

Discount rate, annual ( r ) 0.02 

Curvature of profit function (α ) 0.35 

Steady state adjustment horizon (T ) (years) 10.00 

Elasticity of aggregate investment supply (ξ ) 1.00 

Half-life of demand shock (years) 0.50 

Half-life of supply shock (years) 0.50 

 



 
 
 
 
 

TABLE 2: STATISTICAL PROPERTIES OF SIMULATED DATA 
 

Standard Deviations 
tI  tp  tz  tA  1

tM  2
tM  3

tM  4
tM  5

tM  
0.961 0.127 1.000 1.000 0.179 0.174 0.165 0.156 0.494 

Correlation Matrix 

tI  tp  tz  tA  1
tM  2

tM  3
tM  4

tM  5
tM  

1.000 -0.266 -0.993 0.059 0.406 -0.067 -0.081 -0.066 -0.075 
-0.266 1.000 0.382 0.426 -0.773 -0.680 -0.569 -0.456 0.853 
-0.993 0.382 1.000 -0.002 -0.487 -0.022 0.006 0.005 0.180 
0.059 0.426 -0.002 1.000 0.033 0.007 0.002 0.003 -0.016 
0.406 -0.773 -0.487 0.033 1.000 0.482 0.328 0.318 -0.742 

-0.067 -0.680 -0.022 0.007 0.482 1.000 0.452 0.294 -0.770 
-0.081 -0.569 0.006 0.002 0.328 0.452 1.000 0.417 -0.744 
-0.066 -0.456 0.005 0.003 0.318 0.294 0.417 1.000 -0.673 
-0.075 0.853 0.180 -0.016 -0.742 -0.770 -0.744 -0.673 1.000 

         
 

Note: The table shows the standard deviations and correlation coefficients for simulated variables: 
Investment, prices, supply parameters, productivity parameters, and moments j

tM .  The moments are 
described in the text.  The data are simulated from a version of the model with .05δ = .  The supply and 
demand shocks are normally distributed and independent.  Their variances are set to imply a 1 percent 
unconditional standard deviation in the long run.  The estimated coefficients come from a simulated data 
set of 100,000 years of quarterly observations.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 

TABLE 3: FORECASTING EQUATIONS FOR INVESTMENT PRICES 
 

Forecast 
Horizon Forecast Coefficients 

 
0β  pβ  zβ  Aβ  1β  2β  3β  4β  R2 

0.000 0.981 0.001 -0.016 n.a. n.a. n.a. n.a. 0.877 
0.001 0.978 0.001 -0.016 -0.002 n.a. n.a. n.a. 0.877 
0.002 0.972 0.001 -0.015 -0.004 -0.003 n.a. n.a. 0.877 
0.005 0.951 0.001 -0.014 -0.010 -0.008 -0.005 n.a. 0.877 
0.008 0.937 0.002 -0.013 -0.015 -0.011 -0.008 -0.002 0.877 

1 quarter 

         
0.000 0.961 0.001 -0.027 n.a. n.a. n.a. n.a. 0.804 
0.001 0.957 0.001 -0.026 -0.004 n.a. n.a. n.a. 0.804 
0.003 0.943 0.002 -0.026 -0.007 -0.007 n.a. n.a. 0.804 
0.010 0.904 0.002 -0.023 -0.020 -0.016 -0.010 n.a. 0.804 
0.013 0.890 0.003 -0.023 -0.024 -0.019 -0.013 -0.002 0.804 

2 quarters 

         
0.000 0.924 0.002 -0.039 n.a. n.a. n.a. n.a. 0.719 
0.002 0.914 0.002 -0.038 -0.008 n.a. n.a. n.a. 0.719 
0.007 0.886 0.003 -0.037 -0.015 -0.014 n.a. n.a. 0.719 
0.019 0.814 0.004 -0.033 -0.038 -0.030 -0.018 n.a. 0.719 
0.022 0.799 0.005 -0.032 -0.043 -0.034 -0.021 -0.002 0.719 

1 year 

         
0.000 0.850 0.004 -0.046 n.a. n.a. n.a. n.a. 0.612 
0.004 0.828 0.003 -0.044 -0.018 n.a. n.a. n.a. 0.612 
0.013 0.775 0.004 -0.041 -0.032 -0.025 n.a. n.a. 0.612 
0.032 0.668 0.007 -0.035 -0.067 -0.050 -0.028 n.a. 0.612 
0.030 0.680 0.006 -0.036 -0.063 -0.047 -0.026 0.001 0.612 

2 years 

         
 

Note: The table shows the estimated coefficients for reduced-form forecasting equations of the form 
0

m
t h p t z t A t m t t hm

p p z A M eβ β β β β+ += + + + + +∑  where m
tM  are moments of the cross-sectional 

distribution of capital holdings at date t.  The moments are described in the text.  The data are simulated 
from a version of the model with .05δ = .  The supply and demand shocks are normally distributed and 
independent.  Their variances are set to imply a 1 percent unconditional standard deviation in the long run.  
The estimated coefficients come from a simulated data set of 100,000 years of quarterly observations.    
 
 
 
 
 
 
 
 



 
 

TABLE 4: FORECASTING EQUATIONS FOR INVESTMENT QUANTITIES 
 

Forecast 
Horizon Forecast Coefficients 

 
0β  pβ  zβ  Aβ  1β  2β  3β  4β  R2 

-0.001 0.996 -0.709 -0.017 n.a. n.a. n.a. n.a. 0.488 
0.001 0.983 -0.709 -0.016 -0.010 n.a. n.a. n.a. 0.488 
0.005 0.958 -0.709 -0.015 -0.017 -0.012 n.a. n.a. 0.488 
0.002 0.978 -0.709 -0.016 -0.011 -0.007 0.005 n.a. 0.488 
0.015 0.907 -0.707 -0.012 -0.033 -0.025 -0.007 -0.008 0.488 

1 quarter 

         
-0.002 0.989 -0.503 -0.030 n.a. n.a. n.a. n.a. 0.237 
0.004 0.956 -0.503 -0.028 -0.026 n.a. n.a. n.a. 0.237 
0.011 0.912 -0.502 -0.025 -0.038 -0.021 n.a. n.a. 0.237 
0.002 0.962 -0.503 -0.028 -0.022 -0.010 0.013 n.a. 0.237 
0.034 0.785 -0.499 -0.018 -0.076 -0.053 -0.018 -0.020 0.237 

2 quarters 

         
-0.003 0.963 -0.251 -0.042 n.a. n.a. n.a. n.a. 0.056 
0.008 0.901 -0.252 -0.038 -0.049 n.a. n.a. n.a. 0.057 
0.018 0.838 -0.251 -0.035 -0.066 -0.030 n.a. n.a. 0.057 
0.007 0.906 -0.252 -0.039 -0.044 -0.015 0.017 n.a. 0.057 
0.023 0.813 -0.250 -0.033 -0.073 -0.037 0.002 -0.011 0.057 

1 year 

         
-0.003 0.887 -0.058 -0.048 n.a. n.a. n.a. n.a. 0.010 
0.008 0.821 -0.059 -0.044 -0.052 n.a. n.a. n.a. 0.010 
0.016 0.772 -0.058 -0.041 -0.066 -0.024 n.a. n.a. 0.010 
0.020 0.753 -0.058 -0.040 -0.072 -0.028 -0.005 n.a. 0.010 
0.008 0.816 -0.059 -0.043 -0.053 -0.013 0.006 0.007 0.010 

2 years 

         
 

Note: The table shows the estimated coefficients for reduced-form forecasting equations of the form 
0

m
t h p t z t A t m t t hm

I p z A M eβ β β β β+ += + + + + +∑  where m
tM  are moments of the cross-sectional 

distribution of capital holdings at date t.  The moments are described in the text.  The data are 
simulated from a version of the model with .05δ = .  The supply and demand shocks are normally 
distributed and independent.  Their variances are set to imply a 1 percent unconditional standard 
deviation in the long run.  The estimated coefficients come from a simulated data set of 100,000 years 
of quarterly observations.    
 
 
 
 

 
 
 
 
 



TABLE 5: PRICE FORECASTS (R2), SENSITIVITY ANALYSIS  
 

Model Forecast 
Horizon Moments 

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

  Baseline .02δ =  .10δ =  .50δ =  5ξ =  10ξ =  100ξ =  .50α =  .15α =  .05α =  Myopic 
0 0.880 0.923 0.837 0.692 0.927 0.920 0.849 0.867 0.905 0.910 0.624 
1 0.880 0.923 0.837 0.692 0.927 0.920 0.849 0.867 0.905 0.910 0.624 
2 0.880 0.923 0.838 0.692 0.927 0.920 0.849 0.867 0.905 0.910 0.624 
3 0.880 0.923 0.838 0.692 0.927 0.920 0.849 0.867 0.905 0.910 0.626 
4 0.880 0.923 0.838 0.692 0.927 0.920 0.849 0.867 0.905 0.910 0.632 

1 quarter 

            
0 0.809 0.878 0.740 0.524 0.865 0.847 0.708 0.790 0.843 0.849 0.449 
1 0.809 0.878 0.740 0.524 0.865 0.847 0.708 0.790 0.843 0.849 0.449 
2 0.809 0.878 0.740 0.525 0.865 0.847 0.708 0.790 0.843 0.849 0.451 
3 0.809 0.878 0.740 0.525 0.866 0.847 0.709 0.790 0.843 0.849 0.457 
4 0.809 0.878 0.740 0.525 0.866 0.847 0.710 0.790 0.843 0.849 0.475 

6 months 

            
0 0.726 0.826 0.625 0.358 0.759 0.715 0.473 0.703 0.762 0.765 0.259 
1 0.726 0.826 0.625 0.358 0.759 0.715 0.473 0.703 0.762 0.765 0.261 
2 0.726 0.826 0.625 0.359 0.759 0.715 0.474 0.703 0.762 0.765 0.269 
3 0.726 0.826 0.626 0.361 0.760 0.716 0.477 0.703 0.762 0.766 0.296 
4 0.726 0.826 0.626 0.361 0.760 0.716 0.478 0.703 0.762 0.766 0.321 

1 year 

            
0 0.622 0.761 0.478 0.189 0.578 0.497 0.191 0.598 0.647 0.640 0.067 
1 0.622 0.761 0.479 0.191 0.578 0.498 0.192 0.598 0.647 0.641 0.078 
2 0.622 0.761 0.480 0.196 0.579 0.499 0.197 0.598 0.647 0.641 0.108 
3 0.622 0.761 0.480 0.200 0.580 0.500 0.204 0.598 0.647 0.641 0.164 

2 years 

4 0.622 0.761 0.480 0.200 0.580 0.500 0.204 0.598 0.647 0.641 0.165 
 

 
Note: The table shows the R2 for different forecasting equations, model specifications and forecast horizons.  Forecast equations are of the form 

0
m

t h p t z t A t m t t hm
p p z A M eβ β β β β+ += + + + + +∑  where m

tM  are moments as described in the text.  Column 1 is the baseline calibration.  
Columns 2 – 10 consider alternate calibrations.  Parameter changes are described in the column heading.  Parameters not listed are kept at baseline 
values.  Column 11 (Myopic) gives results for .50δ = , .50r = , .10α =  and 5ξ = .  Supply and demand shocks are normally distributed and 
independent with variances set to imply a 1 percent unconditional standard deviation.  Statistics come from a simulation of 100,000 years of 
quarterly observations.    
 

 



TABLE 6: INVESTMENT FORECASTS (R2), SENSITIVITY ANALYSIS  
 

Model Forecast 
Horizon Moments 

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

  Baseline .02δ =  .10δ =  .50δ =  5ξ =  10ξ =  100ξ =  .50α =  .15α =  .05α =  Myopic 
0 0.486 0.494 0.474 0.423 0.467 0.459 0.412 0.485 0.482 0.480 0.407 
1 0.486 0.494 0.474 0.423 0.467 0.459 0.412 0.485 0.482 0.480 0.408 
2 0.486 0.494 0.474 0.423 0.467 0.459 0.412 0.485 0.482 0.480 0.408 
3 0.486 0.494 0.474 0.423 0.467 0.459 0.412 0.485 0.482 0.480 0.410 
4 0.486 0.494 0.474 0.423 0.467 0.459 0.412 0.485 0.482 0.480 0.417 

1 quarter 

            
0 0.234 0.242 0.222 0.178 0.220 0.216 0.207 0.234 0.231 0.231 0.235 
1 0.234 0.242 0.222 0.178 0.220 0.216 0.207 0.234 0.231 0.231 0.235 
2 0.234 0.242 0.222 0.178 0.220 0.216 0.208 0.234 0.231 0.231 0.238 
3 0.234 0.242 0.222 0.179 0.220 0.216 0.208 0.234 0.231 0.231 0.247 
4 0.234 0.242 0.222 0.179 0.220 0.216 0.209 0.234 0.231 0.231 0.269 

6 months 

            
0 0.054 0.060 0.050 0.046 0.063 0.074 0.139 0.055 0.055 0.055 0.159 
1 0.054 0.060 0.050 0.046 0.063 0.074 0.139 0.055 0.055 0.055 0.162 
2 0.054 0.060 0.050 0.047 0.063 0.074 0.140 0.055 0.055 0.056 0.173 
3 0.054 0.060 0.050 0.047 0.063 0.074 0.142 0.055 0.055 0.056 0.208 
4 0.054 0.060 0.050 0.047 0.063 0.074 0.144 0.055 0.055 0.056 0.241 

1 year 

            
0 0.008 0.008 0.013 0.033 0.037 0.057 0.109 0.009 0.011 0.014 0.059 
1 0.008 0.008 0.013 0.034 0.037 0.057 0.110 0.009 0.011 0.014 0.073 
2 0.008 0.008 0.013 0.035 0.037 0.057 0.114 0.009 0.011 0.014 0.112 
3 0.008 0.008 0.013 0.036 0.037 0.057 0.119 0.009 0.011 0.014 0.185 

2 years 

4 0.008 0.008 0.013 0.036 0.037 0.057 0.120 0.009 0.011 0.014 0.186 
 

 
Note: The table shows the R2 for different forecasting equations, model specifications and forecast horizons.  Forecast equations are of the form 

0
m

t h p t z t A t m t t hm
I p z A M eβ β β β β+ += + + + + +∑  where m

tM  are moments as described in the text.  Column 1 is the baseline calibration.  
Columns 2 – 10 consider alternate calibrations.  Parameter changes are described in the column heading.  Parameters not listed are kept at baseline 
values.  Column 11 (Myopic) gives results for .50δ = , .50r = , .10α =  and 5ξ = .  Supply and demand shocks are normally distributed and 
independent with variances set to imply a 1 percent unconditional standard deviation.  Statistics come from a simulation of 100,000 years of 
quarterly observations.    

 
 



 
 

TABLE 7: COMPARING THE FIXED-COST MODEL WITH THE NEOCLASSICAL MODEL 
 

Panel A: Investment Quantities 
   Fixed –Cost Model 
   Baseline δ = 0.20 δ = 0.01 α = 0.75 α = 0.05 

β1
 1.021 1.090 0.991 1.000 1.036 

Baseline 
R2

 0.997 0.955 0.998 1.000 0.991 

β1
 0.978 1.064 0.944 0.957 0.994 

δ = 0.20 
R2

 0.986 0.982 0.976 0.986 0.984 

β1
 1.033 1.095 1.006 1.013 1.047 

δ = 0.01 
R2

 0.991 0.937 0.999 0.998 0.983 

β1
 1.031 1.099 1.003 1.012 1.046 

α = 0.75 
R2

 0.993 0.947 0.997 0.999 0.985 

β1
 1.014 1.083 0.983 0.992 1.030 

N
eo

cl
as

si
ca

l M
od

el
 

α = 0.05 
R2

 0.999 0.959 0.998 1.000 0.994 

Panel B: Investment Prices 
   Fixed –Cost Model 
   Baseline δ = 0.20 δ = 0.01 α = 0.75 α = 0.05 

β1
 0.588 0.234 0.995 0.966 0.436 

Baseline 
R2

 0.883 0.707 0.683 0.998 0.790 

β1
 1.182 0.595 1.681 2.035 0.880 

δ = 0.20 
R2

 0.649 0.832 0.354 0.805 0.585 

β1
 0.238 0.085 0.560 0.416 0.169 

δ = 0.01 
R2

 0.596 0.380 0.890 0.764 0.488 

β1
 0.369 0.158 0.638 0.695 0.257 

α = 0.75 
R2

 0.570 0.530 0.459 0.847 0.452 

β1
 0.720 0.282 1.194 1.126 0.544 

N
eo

cl
as

si
ca

l M
od

el
 

α = 0.05 
R2

 0.960 0.748 0.712 0.984 0.894 

 
 

Note: The table shows the estimated slope coefficient β1 and the R2 for regressions of the form 
Neo F-C

0 1t t tX X eβ β= + +  where Neo
tX  is simulated data from a neoclassical investment model and F-C

tX  
is the corresponding data simulated from the fixed-cost model.  The data X are either investment 
quantities (Panel A) or investment prices (Panel B).  Both models received identical cost and demand 
shocks.  Parameter values not listed in the table are set to their baseline levels as given in Table 1.  The 
reported estimates come from a simulated data set of 100,000 years of quarterly observations.   



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 1: OPTIMAL BEHAVIOR IN THE STEADY STATE AND THE JORGENSON GAP ( ),G Tδ  
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FIGURE 2: TWO DISTRIBUTIONS OF CAPITAL HOLDINGS.  
 

The shaded rectangle represents the uniform steady state distribution.  In this case, there is an even number 
of firms with capital t years old for ( )0,10t ∈ .  The heavy grey line represents an extreme alternative 
distribution.  There are mass points of firms with 1-year-old capital, 3-year-old capital, etc.  Each mass point 
has 2/10 of the firms.  There are no firms with capital of any other age.   
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FIGURE 3: THE JORGENSON GAP 
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FIGURE 4: INDIFFERENT PRICE PATHS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: The lines plot price paths p(t) for which the firms are indifferent as to when they adjust their capital stock.  The paths were made under 
the assumption that the reset value V  was constant.  The steady state price level is 1.00.   
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FIGURE 5: EQUILIBRIUM RESPONSE TO A SUPPLY SHOCK 
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FIGURE 6: EQUILIBRIUM RESPONSE TO A DEMAND SHOCK 
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FIGURE 7: EQUILIBRIUM FROM AN OUT-OF-STEADY-STATE DISTRIBUTION  
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FIGURE 8: COMPARING THE FIXED-COST MODEL WITH THE NEOCLASSICAL MODEL, BASELINE PARAMETER VALUES  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: The parameter values for the fixed-cost model are given in Table 1.  The neoclassical model is described in the text.  Parameter 
values are identical to those in the fixed cost model.  The scatter-plot shows 500 years of simulated data.  Both models experienced 
identical shocks.  
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