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Abstract

A striking fact about prices is the prevalence of “sales”: large temporary price cuts followed

by prices returning exactly to their former levels. This paper builds a macroeconomic model

with a rationale for sales based on firms facing consumers with different price sensitivities.

Even if firms can adjust sales without cost, monetary policy has large real effects owing to

sales being strategic substitutes: a firm’s incentive to have a sale is decreasing in the number

of other firms having sales. Thus the flexibility seen in individual prices due to sales does not

translate into flexibility of the aggregate price level.
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1 Introduction

A striking fact about prices is that many price changes are “sales”: large temporary price cuts

followed by prices returning exactly to their former levels. Figure 1 shows a typical price path for

a six-pack of Corona beer at an outlet of Dominick’s Finer Foods, a U.S. supermarket. Sales are

frequent; other types of price change are rare. This pattern is an archetype of retail pricing.1

Figure 1: Example price path

Corona beer: $ per six-pack
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Notes: Weekly price observations from Dominick’s Finer Foods, Oak Lawn, Illinois, U.S.A.
Source: James M. Kilts Center, GSB, University of Chicago (http://research.chicagogsb.edu/
marketing/databases/dominicks).

Monetary policy’s real effects on the economy depend crucially on the stickiness of prices. So

Figure 1 poses a conundrum: viewed from different perspectives, the price path exhibits great

flexibility on the one hand, but substantial stickiness on the other. While changes between some

“normal” price and a temporary “sale” price are frequent, the “normal” price itself changes far less

often.2 Consequently, empirical estimates of price stickiness widely diverge when sales are treated

differently. Bils and Klenow (2004) count sales as price changes and find that the median duration

of a price spell across the whole consumer price index is around 4 months; by disregarding sales,

Nakamura and Steinsson (2007) find a median duration of around 9 months.3 Quantitative models

deliver radically different estimates of the real effects of monetary policy depending on which of

these two numbers is used. Hence an understanding of sales is needed to answer the question of

how large those real effects should be.

Given the pattern of price adjustment documented in Figure 1, changes in the aggregate price

level can come from three sources: changes in the “normal” price, changes in the size of the sale

discount, and changes in the proportion of goods on sale. First consider a world where all changes in

1See Hosken and Reiffen (2004), Klenow and Kryvtsov (2005), Nakamura and Steinsson (2007), Kehoe and Midri-
gan (2007), Goldberg and Hellerstein (2007) and Eichenbaum, Jaimovich and Rebelo (2008) for recent studies.

2It is harder to make generalizations about sale prices. Some products feature a relatively constant sale discount;
others display sizeable variation over time.

3Comparisons across euro-area countries also reveal that the treatment of sales has a significant bearing on the
measured frequency of price adjustment, as discussed in Dhyne, Álvarez, Le Bihan, Veronese, Dias, Hoffmann, Jonker,
Lünnemann, Rumler and Vilmunen (2006).
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the aggregate price level are driven by variations in the fraction of goods on sale, and all individual

price changes are associated with sales. This could be modelled by assuming firms have a fixed

normal price, a fixed sale discount, and then optimally choose the fraction of time their good is on

sale. If consumer preferences were standard, with all firms facing a constant price-elasticity demand

function, then this paper shows firms’ profit-maximizing choice of the frequency of sales would lead

to approximate money neutrality. Even if the normal price and sale discount were fixed, optimizing

variation in the fraction of goods on sale would mimic the price changes chosen by firms in a world

of completely flexible prices.

This simple framework for analysing sales is not complete, though. No reason has yet been

presented for why firms would want to choose a pricing strategy in which sales discounts play a

significant role. In the IO literature, the most prominent theories of sales are based on incomplete

information about prices and consumer preferences. Leading examples include Salop and Stiglitz

(1977, 1982), Varian (1980), Sobel (1984) and Lazear (1986). This paper builds a general-equilibrium

macroeconomic model with sales that draws upon the rationale proposed in the IO literature. De-

spite substantial heterogeneity at the microeconomic level, the model is easily aggregated to study

macroeconomic questions.

The model presented here assumes consumers have different preferences over goods, and for each

good, some consumers are more price sensitive than others. There are two types: loyal consumers

with low price elasticities, and bargain hunters with high elasticities. Firms do not know the type of

any individual customer, so they cannot practise price discrimination. One key finding of the paper

is that when the difference between the price elasticities of loyal consumers and bargain hunters is

sufficiently large, and there is a sufficient mixture of the two types, then in the unique equilibrium

of the model, firms strictly prefer to sell their good at a high price at some moments and at a

low sale price at other moments. The choice of different prices at different moments is a profit-

maximizing strategy even in an entirely deterministic environment. Each of the two prices is aimed

at a particular type of consumer, in spite of the fact that at a given moment all customers of a firm

are actually paying the same price. Firms would like to price discriminate, but as this is impossible,

their best alternative strategy is to target the two types of consumer at different moments by holding

periodic sales.

The existence of consumers with different price elasticities leads to sales being strategic substi-

tutes, or in other words, the more others have sales, the less any individual firm wants to have a

sale. This is because the difficulty faced by a given firm in trying to win the custom of the more

price-sensitive consumers is greatly dependent on the extent to which other firms are having sales.

In contrast, a firm can rely more on its loyal customers, whose purchases are much less sensitive

to other firms’ pricing decisions. Thus the relative attractiveness of targeting the bargain hunters

decreases when others are targeting them with sales. The resulting market equilibrium features a

balance between the fractions of time a firm spends targeting the two groups of consumers, and

hence large and frequent price changes occur even in the absence of any shocks.

Having built a model of sales, the key question to be answered is: for the purposes of monetary

policy analysis, does it matter that the normal price is sticky amidst all the flexibility due to sales

seen in Figure 1? In sharp contrast to the simple framework discussed first where flexibility in sales
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together with homogeneous and standard consumer preferences implied money was approximately

neutral, monetary policy has strong real effects in the IO-based model of sales when the normal

price is sticky but sales decisions are completely flexible.

The strong real effects of monetary policy follow from sales being strategic substitutes in the IO-

based model. After an expansionary monetary policy shock, an individual firm has a direct incentive

to hold fewer and less generous sales, thus increasing the price it sells at on average. However, if all

other firms were to follow this course of action then any one firm would have a tempting opportunity

to boost its market share among the bargain hunters by holding a sale — bargain hunters are much

easier to attract if neglected by others. This leads firms in equilibrium not to adjust sales by much

in response to a monetary shock. Although the shock is common to all firms, there are also strong

incentives not to follow what others do. Consequently, the aggregate price level adjusts by less and

monetary policy shocks have larger real effects.

The model is then calibrated to match some simple facts about sales and hence assess quantita-

tively the real effects of monetary policy. If the normal price is completely sticky and sales decisions

are completely flexible then the elasticity of output with respect to an unanticipated change in the

money supply is around 0.9, and the elasticity of the price level is around 0.1. The flexibility due

to sales seen at the level of individual prices imparts little flexibility to the aggregate price level.

Therefore, the real effects of monetary policy in a model with a sticky normal price and fully flexible

sales are very similar to those found in a model with a single sticky price and no sales. These

numerical results are not particularly sensitive to the calibration of the model.

This analysis treats the normal price as sticky, an assumption in line with the stylized facts

as illustrated in Figure 1. A branch of the macroeconomics literature has proposed a range of

justifications for price rigidity, some of which can be applied to explain why the normal price is not

continuously readjusted. While these features are not directly incorporated into the model, there

are three findings of this paper which add support to the assumption of a sticky normal price when

firms simultaneously have the option of adjusting sales. First, the absolute size of any reoptimization

costs needed to justify a constant normal price is much lower than in an otherwise comparable model

where the normal price is the only price. Second, deviations of normal prices from profit-maximizing

levels are small — even though the model features very large individual price changes — so the losses

from failing to adjust the normal price are not as great as might be supposed simply by looking at

the volatility of individual prices. Third, a firm has more to gain from ensuring its sale price is set

optimally than it has from continuously monitoring the optimality of its normal price.

This paper then constructs a fully dynamic version of the model with sales where firms’ normal

prices are reoptimized at staggered intervals. Individual price paths generated by the model are

similar to real-world examples such as that in Figure 1 even though no idiosyncratic shocks are

assumed. This dynamic extension is also very tractable and an expression for the resulting Phillips

curve is derived analytically. It is embedded into a dynamic stochastic general equilibrium model

and the results of simulations are compared to those from the same DSGE model without sales

incorporating a standard New Keynesian Phillips curve instead. A quantitative analysis reveals

that the difference between the real effects of monetary policy in the two models is small, and in

line with the findings of the simpler model with a fixed normal price.
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Even though the recent empirical literature on price adjustment has highlighted the importance

of sales, macroeconomic models have largely side-stepped the issue. The one exception is Kehoe and

Midrigan (2007). In their model, firms face different menu costs depending on whether they make

permanent or temporary (downward) price changes. Coupled with large but transitory idiosyncratic

shocks, this mechanism gives rise to sales in equilibrium.

The plan of the paper is as follows. Section 2 sets out a simple model with a fixed normal price

and sale discount, which provides a benchmark for subsequent analysis. The IO-based model of

sales is introduced in section 3, and the equilibrium of the model is characterized in section 4. The

response to monetary shocks is studied in section 5. Section 6 examines the robustness of the results

to different assumptions about wage flexibility. Section 7 constructs the fully dynamic extension of

the model. Section 8 draws some conclusions.

2 Benchmark model

As a first pass at exploring the implications of sales for monetary policy analysis, this section adds

sales in the simplest possible way to an otherwise standard macroeconomic model. While ad hoc, this

benchmark model is useful in shedding light on the potential of sales as an adjustment mechanism

in response to shocks, and also provides a point of comparison for later results.

The economy contains a measure-one continuum H of households with utility:

U ≡ u
(

2C
1
2m

1
2

)
− ν(H) , [2.1]

where C denotes consumption of a composite good, m is real money balances, and H is hours of

labour supplied. The utility function u(·) is differentiable, strictly increasing and strictly concave;

the disutility function ν(·) is differentiable, strictly increasing and convex.

The composite good C is a Dixit-Stiglitz aggregator over a measure-one continuum T of types

of differentiated goods:

C ≡
(∫

T

c(τ)
ε−1
ε dτ

) ε
ε−1

,

where c(τ) is consumption of good type τ ∈ T and ε is the elasticity of substitution, which satisfies

ε > 1.

Each household makes all its consumption purchases at only one random point in time, however,

in equilibrium it is actually indifferent about when it shops. At a given point in time suppose the

price of good τ is p(τ). Minimizing the cost of purchasing composite good C implies the following

demand functions for each individual good τ :

c(τ) =

(
p(τ)

P

)−ε
C ,

where the price level P is:

P =

(∫
T

p(τ)1−εdτ

) 1
1−ε

.
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Households may pay different prices for individual goods depending on when they do their

shopping, but in equilibrium they all face the same cost P of buying one unit of the composite

good. Households hold money balances M , or equivalently, real money balances m ≡ M/P . The

money wage is W per hour of labour. Each household receives dividends D from firms (households

have equal equity stakes), and a lump-sum transfer T, both of which are specified in money terms.

The household budget constraint is thus:

PC +M = WH + D + T . [2.2]

The utility-maximizing choice of real money balances implies:

C =
M

P
, [2.3]

and in equilibrium, M is equal to the monetary transfer T. This provides a simple specification

of aggregate demand, similar to a cash-in-advance constraint. There is no capital accumulation,

and no government or international sectors in the economy, so goods market equilibrium requires

C = Y , and therefore:

c(τ) =

(
p(τ)

P

)−ε
Y ,

Y =
M

P
. [2.4]

Each good is made by a single firm. With H hours of labour, a firm can produce physical output

Q of its good according to the production function:

Q = F(H) , [2.5]

where F(·) is a differentiable, strictly increasing and strictly concave function with F(0) = 0. Hence

the minimum cost C (Q;W ) of producing output Q for a given wage W is:

C (Q;W ) = WF−1(Q) . [2.6]

The cost function C (Q;W ) is differentiable, strictly increasing and strictly convex in Q, and satisfies

C (0;W ) = 0 as a result of the properties of the production function [2.5].

Firms sell their goods at all points in time, and can choose to vary their prices. To isolate the

effects of firms adjusting the fractions of time when their goods are on sale, the benchmark model

assumes that firms start with two predetermined prices, taken as exogenous here, and can choose

how often each price is charged. Denote the lower of the two prices by pS, referred to as the “sale”

price, and the other price by pN , referred to as the “normal” price. A firm then chooses the fraction

of time s when its good is on sale at price pS, with its good sold at price pN for the remaining

fraction of time 1 − s. Firms choose the timing of their sales randomly, which is an equilibrium

strategy given that all other firms are doing so. This also confirms that consumers face the same

price level P irrespective of when they do their shopping.
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Since households select their shopping times at random, the total quantity Q sold by a firm

across all shopping times is obtained from households’ demand functions as follows:

Q = s
(pS
P

)−ε
Y + (1− s)

(pN
P

)−ε
Y ,

and thus total profits P are:

P = spS

(pS
P

)−ε
Y + (1− s)pN

(pN
P

)−ε
Y − C

(
s
(pS
P

)−ε
Y + (1− s)

(pN
P

)−ε
Y ;W

)
. [2.7]

Firms choose their sales fraction s to maximize profits, taking predetermined prices pS and pN as

given for now.

Suppose that prices pS and pN and wage W are fixed in money terms. Now consider a shock

to the money supply M . Firms adjust s in response, which means that they can effectively choose

the average price they sell at. This gives them considerable freedom to respond to shocks. The

following proposition establishes that firms find it optimal to use this freedom to the full: in this

setting, money is neutral.

Proposition 1 Given predetermined prices pS and pN , and predetermined wage W , if firms choose

their sales fraction s to maximize profits [2.7], as long as s ∈ (0, 1) before and after the monetary

shock, firms’ output Q is unaffected by the shock.

Proof The first-order condition for s is:

(pS −X)p−εS P εY = (pN −X)p−εN P εY , [2.8]

where X ≡ C ′(Q;W ) is the marginal cost of producing total output Q. Because the term P εY is

common to both sides of the first-order condition, the equation reduces to one involving only pS,

pN and X. As pS and pN are predetermined, X must be constant. Since W is also predetermined

and the cost function C (Q;W ) is strictly convex, Q must be constant as well. �

This result shows that monetary policy does not affect the physical output Q of firms. A positive

shock to M leads firms to sell fewer goods on sale. As the quantity produced is constant, an increase

in the money supply has to be followed by a corresponding increase in the price level. The prices

pS and pN are sticky; the proportion s of goods sold on sale is responsible for the adjustment.

As households buy different goods at different prices, aggregate output Y is not exactly equal to

the physical quantity of output Q. Proposition 1 shows that Q is constant in the face of monetary

shocks, and though aggregate output Y is affected by these shocks, the size of the effect is extremely

small and its direction is necessarily ambiguous. Furthermore, if a shock resulted in the sales fraction

s changing from (almost) zero to (almost) one, then output Y would be completely unaffected.

The result of Proposition 1 is even more surprising in light of the assumption of a predetermined

money wage. Usually nominal rigidity need only be present in either prices or wages for monetary

policy to have significant real effects.
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3 The model of sales

The benchmark model assumes that firms start with two predetermined prices pS and pN . However,

this is not a profit-maximizing strategy given household preferences in that setting. This section

proposes a model in which firms want to choose a two-price distribution even in a deterministic

environment.

3.1 Households

Each household ı ∈ H has the same utility function [2.1] over its composite consumption good

C(ı), real money balances m(ı), and hours worked H(ı), as is used in the benchmark model of

section 2. The budget constraint [2.2] and aggregate demand [2.4] are also as before. Household ı’s

utility-maximizing trade-off between consumption and leisure is given by:

νh(H(ı))

uc(C(ı))
=
W

P
, [3.1]

making use of the first-order condition [2.3] for utility-maximizing money demand. The only change

to the benchmark model introduced here is in the specification of each household’s composite good.

3.2 Composite goods

Household ı’s consumption C(ı) is a composite good comprising a large number of individual prod-

ucts. Individual goods are categorized as brands of particular product types. There is a measure-one

continuum T of product types in the economy. For each product type τ ∈ T , there is a measure-

one continuum B of brands, with individual brands indexed by b ∈ B. Hence every good in the

economy is uniquely referred to by a type-brand pair (τ, b) ∈ (T ×B).

Households have different preferences over this set of goods. Taking a given household, there is a

set of product types Λ ⊂ T for which that household is loyal to a particular brand of each product

type τ ∈ Λ in the set. For product type τ ∈ Λ, the brand receiving the household’s loyalty is denoted

by B(τ), where B : Λ → B is a mapping from types to brands. Loyalty means the household gets

no utility from consuming any other brands of that product type. When the household is not loyal

to a particular brand of a product type τ , that is, τ ∈ T \Λ, the household is said to be a bargain

hunter for product type τ . This means the household gets utility from consuming any of the brands

of that product type.

The composite consumption good C for a given household is first defined in terms of a Dixit-

Stiglitz aggregator over product types with elasticity of substitution ε. For those product types

where the household is a bargain hunter, there is an additional Dixit-Stiglitz aggregator defined

over brands of that product type with elasticity of substitution η. The overall aggregator is:

C ≡
(∫

Λ

c(τ,B(τ))
ε−1
ε dτ +

∫
T \Λ

(∫
B

c(τ, b)
η−1
η db

) η(ε−1)
ε(η−1)

dτ

) ε
ε−1

, [3.2]

where c(τ, b) is the household’s consumption of brand b of product type τ . It is assumed that
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η > ε > 1, so bargain hunters are more willing to substitute between different brands of a specific

product type than households are to substitute between different product types. Households have a

zero elasticity of substitution between brands of product types for which they are loyal to a particular

brand.

There is a measure-one continuum M of shopping moments when goods are purchased and

consumed. A household does all its shopping at a randomly chosen moment  ∈ M . Denote the

set of households that shop at moment  by H (). As shown later, all households are indifferent in

equilibrium between all shopping moments.

The price level P is the minimum cost to the household of buying one unit of its composite good

[3.2]:

P ≡ min
{c(τ,b)}

∫
T

∫
B

p(τ, b)c(τ, b)dbdτ s.t. C ≥ 1 ,

where p(τ, b) is the price of brand b of product type τ prevailing at the household’s shopping moment.

For the composite good defined in [3.2], the minimized level of expenditure is:

P =

(∫
Λ

p(τ,B(τ))1−εdτ +

∫
T \Λ

(∫
B

p(τ, b)1−ηdb

) 1−ε
1−η

dτ

) 1
1−ε

. [3.3]

The expenditure-minimizing demand functions are:

c(τ, b) =


(
p(τ,b)
pB(τ)

)−η (
pB(τ)
P

)−ε
C if τ ∈ T \Λ , where pB(τ) ≡

(∫
B
p(τ, b)1−ηdb

) 1
1−η ,(

p(τ,b)
P

)−ε
C if τ ∈ Λ and b = B(τ) ,

0 if τ ∈ Λ and b 6= B(τ) ,

[3.4]

where C is the amount of the composite good consumed and P is the price level given in [3.3]. The

term pB(τ) is an index of prices for all brands of type τ , as is relevant to those households who

are bargain hunters for that product type. With these demand functions, total expenditure on all

consumption goods is: ∫
T

∫
B

p(τ, b)c(τ, b)dbdτ = PC .

Household preferences over goods are completely characterized by the consumption aggregator

in [3.2], the loyal set Λ, and the brands B(τ) receiving the household’s loyalty. All households share

a consumption aggregator of the same form with the same elasticities of substitution ε and η, but

Λ and B(τ) differ across households, and are randomly drawn from a probability distribution.

For each product type τ ∈ T , a household has probability λ of including type τ in its loyal set

Λ. This event is independent across households and product types. Formally:

PH [τ ∈ Λ] = λ , for all τ ∈ T . [3.5]

Consequently, the loyal set Λ and the set of types T \Λ for which a household is a bargain hunter

have measures λ and 1 − λ respectively for all households. It is assumed that 0 < λ < 1, thus

each household is loyal to a brand for some product types and a bargain hunter for other product
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types. So when households are referred to as either loyal or bargain hunters, this designation is for

a specific product type only.

Conditional on including product type τ in a household’s loyal set Λ, all brands of that type have

an equal chance of receiving the household’s loyalty. The assignment of brands to loyal households

is independent across households and product types. Formally:

PH

[
B(τ) ∈ B

∣∣τ ∈ Λ
]

=

∫
B

db , for all B ⊆ B and any τ ∈ T . [3.6]

Viewed from the perspective of a firm, assumptions [3.5] and [3.6] imply that it operates in a market

where a randomly selected fraction λ of consumers are loyal to its product, and a fraction 1− λ are

bargain hunters for its product type.

3.3 Firms

Each brand b of each product type τ is produced by a single firm, indexed by (τ, b) ∈ (T ×B). All

firms have the same production function F(H) and cost function C (Q;W ) as are given in [2.5] and

[2.6] for the benchmark model of section 2.

Each firm sells its good at every shopping moment, but not necessarily at the same price at

all moments. Consider a given firm producing brand b of product type τ , and a given moment

 ∈ M when households H () are doing their shopping. Take a particular household ı ∈ H ().

If the household is loyal to this brand and the brand is sold at price p, equation [3.4] shows that

p−ε(P (ı)εC(ı)) units are demanded. But demand is zero if the household is loyal to another brand.

If the household is a bargain hunter for this product type then demand is p−ηP η−ε
B (P (ı)εC(ı)), where

PB is the bargain hunters’ price index for type-τ brands, that is, the price index pB(τ) from equation

[3.4] constructed using prices posted at moment . PB is the same for all bargain hunters for the

same product type at the same shopping moment. The only component of demand that could

be household specific is P (ı)εC(ı), which multiplies the amount demanded irrespective of whether

the household is loyal or a bargain hunter, and determines the overall level of expenditure. Define

E() as the summation of this household-specific expenditure component taken over all shoppers at

moment :

E() ≡
∫

H ()

P (ı)εC(ı)dı . [3.7]

Since the market for any good is contains a fraction λ of potential buyers who are loyal to the

product and a fraction 1−λ of bargain hunters, and because the product types and brands benefiting

from households’ loyalty are selected randomly according to [3.5] and [3.6], and as households choose

shopping moments at random, total demand for a good sold at price p is:

D(p;PB, E) = (λ+ (1− λ)v(p;PB)) p−εE , where v(p;PB) ≡
(
p

PB

)−(η−ε)
, [3.8]

at a shopping moment with bargain hunters’ price index PB for brands of the same product type,

and a total household expenditure level [3.7] equal to E . Demand is specified in terms of a function

v(p;PB), referred to as the purchase multiplier, which is defined as the ratio of the amounts sold at
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the same price to a given measure of bargain hunters relative to the same measure of loyal customers.

The demand function D(p;PB, E) is used to calculate the total revenue R(q;PB, E) received from

selling quantity q at a particular shopping moment with PB and E given:

R(q;PB, E) ≡ qD−1(q;PB, E) , with p = D−1(q;PB, E) , [3.9]

where D−1(q;PB, E) is the inverse demand function corresponding to [3.8].

3.4 Price setting

Now consider the profit-maximization problem for a given firm, which chooses a price for its product

at each shopping moment. As is shown below, the total household expenditure level E , defined in

[3.7], is the same at all moments in equilibrium. Furthermore, the bargain hunters’ price index PB

appearing in the demand function [3.8] is the same for all product types and at all moments. Under

these conditions, the profit-maximization problem reduces to choosing the distribution of prices used

across shopping moments.

For the specification of demand found in the benchmark model of section 2, firms would choose

a single price at all moments even if they were to have the option of choosing a general distribution.

But this is not true when households have the heterogeneous preferences described in section 3.2.

Let F (p) be a general distribution function for prices. This distribution function is chosen to

maximize profits P:

P =

∫
p

R (D(p;PB, E);PB, E) dF (p)− C

(∫
p

D(p;PB, E)dF (p);W

)
, [3.10]

where R(q;PB, E) is total revenue from selling quantity q at one shopping moment, defined in [3.9],

and C (Q;W ) is the total cost [2.6] of producing the entire output Q of the good sold across all

shopping moments.

Consider a discrete distribution of prices {pi} with weights {ωi}.4 The first-order conditions for

maximizing [3.10] with respect to prices pi and weights ωi are:

R ′ (D(pi;PB, E);PB, E) = C ′
(∑

j

ωjD(pj;PB, E);W

)
and [3.11a]

R (D(pi;PB, E);PB, E) = ℵ+ D(pi;PB, E)C ′
(∑

j

ωjD(pj;PB, E);W

)
if ωi > 0 ; or [3.11b]

R (D(pi;PB, E);PB, E) ≤ ℵ+ D(pi;PB, E)C ′
(∑

j

ωjD(pj;PB, E);W

)
if ωi = 0 , [3.11c]

where ℵ is the Lagrangian multiplier attached to the constraint
∑

j ωj = 1. Equation [3.11a] is the

usual marginal revenue equals marginal cost condition, which must hold for any price that receives

positive weight. The interpretation of first-order conditions [3.11b] and [3.11c] is discussed later.

4It is shown later that restricting attention to discrete distributions is without loss of generality.
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3.5 Aggregation

Since all households are randomizing over their choice of shopping moment, and brand loyalty is

drawn randomly according to [3.5] and [3.6], there is no intrinsic difference for firms between any two

shopping moments. And as long as firms are selecting prices from their desired price distributions

at random for particular shopping moments, the bargain hunters’ price index PB is the same at all

moments and for all product types.5 This also means that P (ı) = P for all households ı ∈H , and it

therefore makes sense to talk about the aggregate price level P , in spite of households’ consumption

baskets differing.

Given that households share a common price level and have the same preferences [2.1] over their

composite goods, money balances and hours, it follows that all households choose the same levels

of composite consumption, real money balances and hours. That is, C(ı) = C, m(ı) = m and

H(ı) = H for all ı ∈ H . Since consumption is the only source of demand in the economy, goods

market equilibrium requires C = Y , where Y is aggregate income.

The common level of consumption C = Y and the common price level P imply that the total

household expenditure level [3.7] is the same across all shopping moments, as claimed earlier. This is

equal to E = P εY at every moment  ∈M . Together with the randomization assumptions for brand

loyalty, this justifies the claim that all firms face the same demand function at any shopping moment,

so a firm cannot improve upon randomly selecting the moments at which it charges particular prices

from its desired price distribution. Finally, note that randomization by firms makes households

indifferent between all shopping moments, as was claimed.

4 Equilibrium with flexible prices and wages

Consider the equilibrium of the economy when all exogenous variables are constant and prices can

be freely adjusted as discussed in section 3.4, and wages adjust to clear the labour market. With a

constant money supply, and no shifts in the production function [2.5], the aggregate price level and

aggregate output are also constant.

The equilibrium pricing strategies chosen by firms depend on the nature of the demand function

D(p;PB, E) for a firm’s product at a particular shopping moment, as given in equation [3.8]. What

is crucial is that demand comes from two different sources: loyal customers and bargain hunters —

and these groups have different price sensitivities. Loyal customers will not switch to other brands,

so the only margin of substitution they have is shifting expenditure to other types of product in

their consumption basket. On the other hand, bargain hunters want to find the brands offering

the best deals for a particular product type. The price elasticities of these two groups are ε and

η respectively, and it makes sense to assume η > ε. This means that the overall demand function

faced by a firm does not have a constant price elasticity: the elasticity changes with the composition

of the firm’s customers. High prices mean that most bargain hunters have deserted its brand, and

the residual mass of loyal customers has a low price elasticity. Low prices put the firm in contention

to win over the bargain hunters, but fierce competition among brands for these customers means

5This is true when the distribution of firms’ desired price distributions is not different across product types. This
requirement is satisfied at all points in the paper, including the fully dynamic extension of the model.
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the price elasticity is high.

These arguments suggest that the price elasticity of demand decreases with price. This is

confirmed by differentiating demand function D(p;PB, E) from [3.8] to obtain the price elasticity

ζ(p;PB) (in absolute value):

ζ(p;PB) =
λε+ (1− λ)ηv(p;PB)

λ+ (1− λ)v(p;PB)
. [4.1]

The elasticity is a weighted average of ε and η, with the weight on the larger elasticity η increasing

with the purchase multiplier v(p;PB), as defined in [3.8]. The higher is the price p, the lower is the

purchase multiplier, and the smaller is the price elasticity. Such a change in elasticity is simply a

less extreme version of a “kinked” demand curve. For very low prices, the elasticity is approximately

constant and equal to η because the bargain hunters are preponderant; for very high prices, it is

approximately constant and equal to ε because only loyal customers remain. In the middle of the

demand function there is a smooth transition between ε and η.

As is the case with a kinked demand curve, the varying price elasticity of demand means that

the marginal revenue function is not necessarily downward sloping for all prices, even though the

demand function [3.8] is downward sloping everywhere. To see this, note that marginal revenue

R ′(q;PB, E) can be expressed in terms of price p = D−1(q;PB, E) and the price elasticity of demand

ζ(p;PB) as follows:

R ′(D(p;PB, E);PB, E) =

(
1− 1

ζ(p;PB)

)
p . [4.2]

It can be confirmed that if η is sufficiently large for a given ε then marginal revenue is indeed

non-monotonic.

Proposition 2 Consider the total revenue function R(q;PB, E) defined in [3.9] and suppose that

η > ε > 1. Then marginal revenue R ′(q;PB, E) is non-monotonic (initially decreasing, then increas-

ing on an interval, and then subsequently decreasing) if and only if 0 < λ < 1 and

η > (3ε− 1) + 2
√

2ε(ε− 1) [4.3]

hold, and everywhere decreasing otherwise.

Proof See appendix A.2. �

Observe from [4.2] that to obtain non-monotonicity it is necessary to have a sufficiently large increase

in the price elasticity ζ(p;PB) outweighing a falling price in some range. From [4.1], this happens

when the gap between ε and η is larger.

With a non-monotonic marginal revenue function R ′(q;PB, E), it is possible that two prices and

quantities are associated with the same level of marginal revenue. First-order condition [3.11a] then

suggests firms might want to charge different prices at different shopping moments.

As was discussed in the introduction, an interesting case is where firms find it optimal to choose

a distribution with two prices: a “normal” high price, and a low “sale” price. Denote these two

prices respectively by pN and pS with pN > pS, and let qN = D(pN ;PB, E) and qS = D(pS;PB; E) be
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the quantities demanded at a single shopping moment by all customers at these prices. The fraction

of shopping moments when a firm’s good is on sale is denoted by s. If 0 < s < 1 then both prices

must satisfy first-order conditions [3.11a]–[3.11b]. By eliminating the Lagrangian multiplier ℵ from

[3.11b], profit maximization requires:

R ′(qN ;PB, E) = R ′(qS;PB, E) =
R(qS;PB, E)−R(qN ;PB, E)

qS − qN
= C ′ (sqS + (1− s)qN ;W ) . [4.4]

Hence there are three requirements for the optimality of this price distribution: marginal revenue

must be equalized at both normal and sale prices, the extra revenue generated by having a sale at

a particular shopping moment per extra unit sold must be equal to the common marginal revenue;

and marginal revenue and average extra revenue must both equal marginal cost.

Firms have a choice at which shopping moment they sell each unit of their output, so switching

a unit from one moment to another must not increase total revenue, thus marginal revenue must

be equalized at all prices that are used at some shopping moment. Furthermore, firms must be

indifferent between having a sale or not at one particular moment. This requires that the extra

revenue generated by the sale per extra unit sold must equal marginal cost.

Figure 2: Demand function and non-monotonic marginal revenue function

qSqN q

pN

pS

MC

p

D−1(q; PB, E)

R ′(q; PB, E)

Notes: Schematic representation of demand function [3.8] and marginal revenue function [4.2]. Shown
for the case where elasticities ε and η satisfy [4.3].

A graphical interpretation of the first two optimality conditions from [4.4] is shown in Figure 2.

Marginal revenue is initially downward sloping, then becomes upward sloping, before finally changing

direction once more to become downward sloping again. Both quantities qN and qS are associated

with the same marginal revenue, which is in turn equal to the marginal cost MC of producing total

output Q = sqS + (1− s)qN (note that the marginal cost function is not shown).6 The average extra

revenue condition is represented in the diagram by the equality of the two shaded areas bounded

6There is a third point between qN and qS also associated with the same marginal revenue, but including this
point in a firm’s price distribution would violate the second-order conditions for profit maximization.
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between the marginal revenue function and the horizontal line MC, and between the quantities qN

and qS.

The full set of first-order conditions [4.4] is depicted using the total revenue and total cost

functions shown in Figure 3. The first point to note is that because firms can charge different

prices at different shopping moments, the set of achievable total revenues is convexified.7 This

raises attainable total revenue in the range between qN and qS. The first two conditions for profit

maximization in [4.4] require that the total revenue function has a common tangent line at both

quantities qN and qS, which is equivalent to the slope of the chord being the same as that of the

tangent itself. This slope then determines the unique point where marginal cost equals marginal

revenue, which yields the total quantity sold and hence the proportion s of sales.

Figure 3: Total revenue and total cost functions with first-order conditions

C (q; W )

R(q; PB, E)

qqSqN Q

C (Q; W ) + C ′(Q; W )(q −Q)

R(qN ; PB, E) + R ′(qN ; PB, E)(q − qN)

Notes: Schematic representation of total revenue function R(q;PB , E) from [3.9] and total cost function
C (Q;W ) from [2.6], shown for elasticities ε and η satisfying [4.3].

Conditions for the existence and uniqueness of the two-price equilibrium are given below.

Theorem 1 Suppose firms choose distributions of prices to maximize profits P in [3.10].

(i) If elasticities ε and η are such that the non-monotonicity condition [4.3] holds then there exist

λ(ε, η) and λ(ε, η) such that 0 < λ(ε, η) < λ(ε, η) < 1, and if λ ∈ (λ(ε, η), λ(ε, η)) then there

exists a two-price equilibrium, and no other equilibria exist.

(ii) If either of these conditions fails then there exists a one-price equilibrium, and no other equi-

libria exist.

Proof See appendix A.3 �

7This also implies that the first-order conditions for profit maximization are sufficient as well as necessary.
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This result indicates that two conditions need to be fulfilled if two prices are to be the unique

equilibrium. First, marginal revenue must be non-monotonic, which requires a sufficiently large

difference between the elasticities ε and η, as has been discussed above and analysed in Proposition 2.

Second, neither loyal consumers nor bargain hunters should predominate among a firm’s potential

customers: there must be a sufficient mixture of the two types. This justifies a firm having a high

price at some moments aimed at its loyal customers, and a low one at others aimed at bargain

hunters, even though no actual price discrimination is practised since it is not possible for the firm

to distinguish the two types prior to the moment of purchase.

Note that since there is no reference to the degree of convexity of the cost function in Theorem 1,

it is only the preference parameters ε, η and λ that determine whether the unique equilibrium features

two prices or not. This is because even if marginal cost were constant, the actions of other firms

affect the total revenue function, in particular the slope of the chord in Figure 3, as is discussed

in full later. Convexity of the cost function ensures individual firms strictly prefer a two-price

distribution across shopping moments when this is the equilibrium price distribution for brands

of their product type. Hence the two-price equilibrium cannot arise from firms choosing different

one-price distributions.

Although this analysis considers just two types of consumer, adding more types does not nec-

essarily make additional prices sustainable in equilibrium. There are two reasons: more prices in

equilibrium requires more undulations in the marginal revenue function, and a common tangent line

of the total revenue function at more than two points. Neither of these two configurations follows

automatically on augmenting the model with extra types of consumer.

Given the stylized facts discussed in the introduction, this paper focuses on parameters ε, η and

λ for which there is a unique two-price equilibrium. The total physical quantity of output sold by

firms is Q = sqS + (1 − s)qN . Using the price elasticity ζ(p;PB) from [4.1] and the relationship

between price and marginal revenue in [4.2], the marginal revenue equals marginal cost conditions

for each price are expressed in terms of desired markups on marginal cost X ≡ C ′(Q;W ):

pS = µ(pS;PB)X , pN = µ(pN ;PB)X , with µ(p;PB) =
λε+ (1− λ)ηv(p;PB)

λ(ε− 1) + (1− λ)(η − 1)v(p;PB)
.

[4.5]

The desired markup function µ(p;PB) depends on the parameters ε, η and λ, and the purchase

multiplier v(p;PB) from [3.8]. Let vS ≡ v(pS;PB) and vN ≡ v(pN ;PB) denote the two purchase

multipliers, and µS ≡ µ(pS;PB) and µN ≡ µ(pN ;PB) the associated desired markups:

µS =
λε+ (1− λ)ηvS

λ(ε− 1) + (1− λ)(η − 1)vS
, µN =

λε+ (1− λ)ηvN
λ(ε− 1) + (1− λ)(η − 1)vN

. [4.6]

By using demand function [3.8], the first-order condition in [4.4] linking average extra revenue to

marginal cost is expressed as:

µS − 1

µN − 1
=

(λ+ (1− λ)vN)µ−εN
(λ+ (1− λ)vS)µ−εS

. [4.7]

Given that a fraction s of all prices are set at pS and the remaining 1 − s are set at pN , equation
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[3.4] implies the bargain hunters’ price index PB is:

PB =
(
sp1−η

S + (1− s)p1−η
N

) 1
1−η , [4.8]

which is used to calculate the purchase multipliers and characterize the desired markups µS and µN .

In finding the equilibrium, the model has a convenient block-recursive structure, that is, the

microeconomic aspects of the equilibrium can be characterized independently of the macroeconomic

equilibrium, which is then determined afterwards. The key micro variables are the sales fraction

s, the markups µS and µN , the markup ratio µ ≡ µS/µN , and the ratio of the quantities sold at

the sale and normal prices, denoted by χ ≡ qS/qN . Using the demand function [3.8], equation [4.7]

yields a relationship between the quantity ratio χ and desired markups µS and µN :

χ =
µN − 1

µS − 1
.

The following proposition verifies the block-recursive structure of the model and derives some com-

parative statics results.

Proposition 3 Suppose parameters ε, η and λ are such that there is a unique two-price equilibrium.

(i) The equilibrium values of µ, χ, s, vS, vN , µS and µN are functions only of the parameters ε,

η and λ.

(ii) The equilibrium values of µ, χ, µS and µN are functions only of the parameters ε and η.

(iii) Let λ(ε, η) and λ(ε, η) be as defined in Theorem 1. Then:

lim
λ→λ(ε,η)+

s = 1 , lim
λ→λ(ε,η)−

s = 0 ,
∂s

∂λ
< 0 .

(iv) The markup and quantity ratios µ and χ are continuous functions of ε and η, and:

lim
ε→1+

µ = 0 , lim
ε→1+

χ =∞ , lim
η→η∗(ε)+

µ = 1 , lim
η→η∗(ε)+

χ = 1 ,

where η∗(ε) ≡ (3ε−1)+2
√

2ε(ε− 1) is the lower bound for η which ensures non-monotonicity

of the marginal revenue function according to Proposition 2.

Proof See appendix A.4. �

The first part of the proposition establishes the separation of the equilibrium for the microeco-

nomic variables from the broader macroeconomic equilibrium. Furthermore, the second part shows

that only ε and η are needed to pin down the markup ratio µ and the quantity ratio χ, which together

with λ then determine the sales fraction s. The equilibrium sales fraction s is strictly decreasing in λ

and varies from one to zero as λ spans its interval of values consistent with a two-price equilibrium.

The final part shows there is a smooth transition between the two-price and the one-price equilibria,

and that the markup and quantity ratios span their natural ranges for admissible parameter values.
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Given the purchase multipliers vS and vN and markups µS and µN , finding the macroeconomic

equilibrium is straightforward. The aggregate price level P is obtained by combining [3.3] and

demand function [3.4], and making use of the definition of the purchase multiplier v(p;PB) from

[3.8]:

P =
(
s(λ+ (1− λ)vS)p1−ε

S + (1− s)(λ+ (1− λ)vN)p1−ε
N

) 1
1−ε .

This allows the level of real marginal cost x ≡ X/P to be deduced as follows:

x =
(
s(λ+ (1− λ)vS)µ1−ε

S + (1− s)(λ+ (1− λ)vN)µ1−ε
N

) 1
ε−1 . [4.9]

With real marginal cost and the desired markups, relative prices %S ≡ pS/P and %N ≡ pN/P are

determined. These yield the amounts sold at the two prices relative to aggregate output:

qS = (λ+ (1− λ)vS) %−εS Y , qN = (λ+ (1− λ)vN) %−εN Y . [4.10]

Given that total physical output is Q = sqS + (1− s)qN , the ratio of Y to Q, denoted by δ, is:

δ ≡ 1

s(λ+ (1− λ)vS)%−εS + (1− s)(λ+ (1− λ)vN)%−εN
,

which satisfies 0 < δ < 1. The production function [2.5], cost function [2.6], and labour supply

function [3.1] imply a positive relationship between real marginal cost x and aggregate output Y :

x =
νh (F−1(Y/δ))

uc(Y )F ′ (F−1(Y/δ))
. [4.11]

Since the equilibrium real marginal cost x is already known from [4.9], the equation above uniquely

determines output Y . Using equation [2.4], the aggregate price level P is then given by P = M/Y .

5 Monetary shocks in a model of sales

The benchmark model of section 2 analysed the effects of a monetary shock with predetermined

prices pS and pN and wage W alongside flexibility in the sales fraction s, but critically, the reason

why firms had a two-price distribution rather than just a single price was left unexplained. The

sales model introduced in section 3 provides precisely such a reason, and this section performs a

similar experiment when sales are flexible.8

Starting from the flexible-price equilibrium characterized in section 4, suppose that prices pS and

pN and wage W are initially set at levels consistent with the expected money supply M̄ . Following

the realization of the actual money supply M , firms can adjust their sales by changing both the

frequency s and the price pS. The normal price pN remains at its predetermined level, and for now,

the money wage W also remains constant.

The freedom to adjust sales through s and pS, but not the normal price pN , means that of the

8Actually the exercise here gives firms greater freedom than in the benchmark model by allowing the size of the
sale discount to be adjusted. In the benchmark model, if pS could be changed then money would be automatically
neutral because the profit-maximizing strategy in that setting is to charge a single price.
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first-order conditions in [4.4], only the second and third equalities hold:

pSqS − pNqN
qS − qN

= X , pS = µ(pS;PB)X , [5.1]

where X denotes marginal cost. Note that achieving the optimal markup µ(pS;PB) at the sale price

is equivalent to equalizing marginal revenue at pS and marginal cost.

The use of the sales margin of adjustment in the benchmark model led to money neutrality. But

it turns out that the answer to the question of whether monetary shocks have real effects is radically

different once a reason for sales is built into the model: monetary shocks now have large real effects.

The crux of the result is that sales are strategic substitutes: a firm finds a sale more attractive when

other firms are holding fewer sales.

Monetary shocks are analysed by considering a situation where the money supply is in a neigh-

bourhood of its expected value. Denote log deviations of variables from their corresponding flexible-

price equilibrium value using sans serif letters, and from here onwards, the flexible-price equilibrium

values themselves with a bar over the variable.

Theorem 2 Consider parameter values ε, η and λ for which the economy has a unique two-price

equilibrium, as described in Theorem 1.

(i) If the sales fraction s is adjusted optimally according to the first equation in [5.1] then the

elasticity of marginal cost X with respect to PB is unity, and no other variables have first-order

effects on marginal cost:

X = PB .

(ii) If both the sales fraction s and the sale price pS are adjusted optimally according to [5.1] then

the elasticity of the optimal sale price pS with respect to marginal cost X is unity, and no

other variables have first-order effects on the optimal sale price:

pS = X .

Proof See appendix A.6. �

The first part of the theorem demonstrates that sales are strategic substitutes. As other firms

cut back on sales either by reducing s or increasing pS, the bargain hunters’ price index PB in [4.8]

increases. Theorem 2 shows this leads a given firm optimally to increase its total quantity sold to

the point where marginal cost X has risen one-for-one in percentage terms with PB. As the firm’s

normal price is not adjusted, the increase in quantity sold is brought about by holding more sales.

The problem of choosing the profit-maximizing adjustment of sales is essentially one of a firm

deciding how much to target its loyal customers versus bargain hunters for its product type. Because

competition for bargain hunters is more intense than for loyal customers, the incentive to target the

bargain hunters is much more sensitive to the extent that other firms are targeting them as well.

Thus, a firm’s desire to target the bargain hunters with sales is decreasing in the extent to which

others are doing the same.
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Recall that in the benchmark model, firms have an incentive to reduce sales in response to a

positive monetary shock, essentially mimicking an increase in price. The same incentive exists here,

but is counteracted by another effect. As firms reduce their sales, an individual firm has a strong

incentive to target the bargain hunters, who are being neglected by others. Consequently, the fall

in sales is smaller, and so the price level rises by less. Therefore, output increases.

This analysis demonstrates that there are two conflicting effects on sales and the price level after

a monetary shock. One tends toward money neutrality, while the other tends toward money having

real effects. It is therefore a quantitative question how strong monetary policy’s real effects will be.

The effects of others’ actions on an individual firm’s incentives to hold sales are shown in Figure 4.

Others’ price changes affect the demand function through both P and PB. A rise in P shifts demand

outward, with a proportional effect at every point. In contrast, a rise in PB has a much more marked

effect on demand at lower prices and higher quantities where the bargain hunters are found. Such

a change upsets the balance between profits from selling at the sale and normal prices, boosting

profits from selling on sale. This is seen in the differential between the shaded areas bounded

between marginal revenue and marginal cost. The imbalance does not occur following a change in

P , which is the only operative channel in the benchmark model.

Figure 4: Impact of other firms’ price changes on the demand and marginal revenue functions

p p

qq

pS

pN

pS

pN

qN qS

MC MC

qN qS

Change in P Change in PB

D−1(q; PB, E)D−1(q; PB, E)

R ′(q; PB, E)

R ′(q; PB, E)

Notes: Schematic representation of shifts of demand and marginal revenue functions [3.8] and [4.2].
The aggregate price level P affects demand through E = P εY according to [3.7].

The discussion above explains why there must be a positive relationship between PB and marginal

cost X (working through changes in the desired sales fraction and thus a firm’s total quantity sold),

but the result of Theorem 2 is stronger: the elasticity must be unity. This follows from some

elementary properties of the profit function. Define P(p;PB, X, P, Y ) to be a firm’s profits at the

margin from setting price p at one shopping moment:

P(p;PB, X, P, Y ) ≡ (p−X)D(p;PB, P
εY ) , [5.2]
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where E = P εY is used, in accordance with [3.7]. The ratio of marginal profits from selling at the

sale and normal prices is:

℘(pS, pN , PB, X, P, Y ) ≡ P(pS;PB, X, P, Y )

P(pN ;PB, X, P, Y )
, [5.3]

and the equation ℘(pS, pN , PB, X, P, Y ) = 1 is equivalent to the first-order condition for the optimal

sales fraction in [5.1].

The demand function D(p;PB, P
εY ) is homogeneous of degree zero in all prices, so the profit

function [5.2] must be homogeneous of degree one in p, PB, P and X, and hence the profit ratio

℘(pS, pN , PB, X, P, Y ) is homogeneous of degree zero in pS, pN , PB, P and X. The form of the

demand function D(p;PB, P
εY ) in [3.8] implies that P and Y proportionately affect profits at both

the sale and normal prices and so have no influence on relative profits, thus ℘(pS, pN , PB, X, P, Y ) =

℘(pS, pN , PB, X, 1, 1) for all P and Y . Consequently, relative profits [5.3] must be homogeneous of

degree zero in pS, pN , PB and X alone. Since pS and the predetermined value of pN are chosen

optimally, neither pS nor pN has a first-order effect on either profits or relative profits. Therefore,

the profit ratio ℘(pS, pN , PB, X, 1, 1) must be locally homogeneous of degree zero in just PB and X.

Hence to ensure the ratio remains equal to one, PB and X must change by the same proportion.

The option of adjusting the sales fraction s was also open to firms in the benchmark model,

but here the use of this margin has important implications for competition among firms. By com-

paring the sales first-order condition [2.8] in the benchmark model with the analogous condition

℘(pS, pN , PB, X, P, Y ) = 1 in the model of sales, the key difference is the presence of PB, the bargain

hunters’ price index, which influences demand differently at prices pS and pN .

The second part of Theorem 2 states that when both the sales fraction and sale price are optimally

adjusted, the chosen sale price features a constant markup on marginal cost, at least locally. The

first-order condition for the profit-maximizing sale price is pS/(µ(pS, PB)X) = 1, and this equation

is homogeneous of degree zero in pS, PB and X because the optimal markup function µ(p;PB)

in [4.5] is homogeneous of degree zero in prices. As PB and X must move proportionately to be

consistent with the optimal choice of the sales fraction, a movement of pS in the same proportion is

required to satisfy the first-order condition for the sale price.

5.1 Calibration

The distinguishing parameters of the sales model are the two elasticities ε and η and the fraction

λ of loyal consumers. As is shown in section 4, these parameters are directly related to observable

prices and quantities: the markup ratio µ, which gives the size of the discount offered when a good

is on sale; the quantity ratio χ, which measures proportionately how much more is purchased when

a good is on sale; and the fraction s of goods sold at sale prices. There are thus three parameters

that can be matched to data on three observables.

There is a growing empirical literature examining price adjustment patterns at the microeconomic

level. This literature provides information about the markup ratio µ and the sales fraction s. The

baseline values of these variables are taken from Nakamura and Steinsson (2007). Their study draws

on individual price data from the BLS CPI research database, which covers approximately 70% of
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U.S. consumer expenditure. They report that the fraction of price quotes which are sales (weighted

by expenditure) is 7.4%. They also report that the median difference between log(pS) and log(pN)

is 0.295, which yields µ = 0.745.

In the retail and marketing literature, there has been for a long time a discussion of the effects of

price promotions on demand. This literature provides information about the quantity ratio. Papers

typically report a range of estimates conditional on factors other than price that affect the impact

of a price promotion, for example, advertising. The baseline value of the quantity ratio is obtained

from the study by Chakravarthi, Neslin and Sen (1996). Their results are based on scanner data

from a large number of U.S. supermarkets. According to the elasticities they report, a temporary

price cut of the size consistent with the markup ratio taken from Nakamura and Steinsson (2007)

implies a quantity ratio of between approximately 4 and 6 if retailers draw their sale to the attention

of customers. The baseline number used here is the midpoint of this range, so χ = 5.

The three facts about sales, summarized in Table 1, are then used to find matching values of

the three unknown parameters. This first requires a method for obtaining the unique equilibrium

values of µ, χ and s. Proposition 3 shows that these depend only on the parameters ε, η and λ, and

furthermore, that µ and χ are functions of ε and η alone. Procedures for calculating the equilibrium

values of µ and χ, and then s, are described in appendix A.1 and appendix A.3 respectively.

Table 1: Stylized facts about sales

Description Parameter Value

Ratio of the sale markup to the normal markup (µS/µN) µ 0.745*

Ratio of quantities sold at the sale price and the normal price (qS/qN) χ 5†

Fraction of goods sold at the sale price s 0.074*

* Source: Nakamura and Steinsson (2007)
† Source: Chakravarthi, Neslin and Sen (1996)

Given the mapping from parameters to the equilibrium of the model, parameters matching the

three stylized facts were found by applying the Nelder-Mead simplex algorithm. The results are

shown in Table 2. An extensive grid search over the parameters ε and η was used to verify that

no other values are consistent with the target values of µ and χ. Proposition 3 demonstrates that

given ε and η, there is always one and only one value of λ matching the target sales fraction s.

Table 2: Parameters matching the stylized facts about sales

Description Parameter Value

Elasticity of substitution between product types ε 3.01
Elasticity of substitution between brands for a bargain hunter η 19.7
Fraction of product types for which a household is loyal to a brand λ 0.901

Notes: These parameters are the only values exactly consistent with the three stylized facts about sales
given in Table 1.
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In order to compute the effects of a monetary policy shock, the elasticity of marginal cost with

respect to output must also be known, which requires one further parameter to be calibrated. This

is done by specifying a production function:

F(H) = AHα , [5.4]

and setting α = 2/3 to match the labour share of income.

5.2 Results

This section calculates the elasticities of aggregate output and the price level with respect to a mon-

etary surprise, evaluated at the flexible-price equilibrium described in section 4. The results draw

on the first-order Taylor approximation of the model presented in appendix A.7. The equilibrium

values of output and the price level are determined under the assumption that the sales fraction

and the sale price are optimally adjusted, but the normal price and money wage remain at their

predetermined equilibrium values. The equations that characterize the equilibrium after a monetary

shock are as in section 4, except that the first-order conditions for price pN in [4.4] and wage W in

[4.11] are dropped. The first-order conditions for profit-maximizing sales are summarized in [5.1].

The results for the baseline calibration are examined first.9 Using the parameters from Table 2

and α = 2/3, the elasticities of output and the price level with respect to a monetary shock are:

d log Y

d logM
= 0.895 ,

d logP

d logM
= 0.105 .

For a 1% surprise increase in the money supply, output rises by 0.895%. The sensitivity analysis

in Figure 5 shows that this finding is not very sensitive to the stylized facts about sales and the

production function used to calibrate the model. Of the target values, the real effects of money

surprises are most sensitive to the sales fraction s. In the range of empirically plausible values of s

(5% – 15%), monetary policy has substantial real effects: the elasticity of output with respect to a

money surprise is found between 0.84 and 0.92.

The quantity ratio χ is the target for which the literature yields the widest range of estimates.

But nonetheless, varying χ from 3 to 8 implies that the elasticity lies between 0.87 and 0.90. The

target value of the elasticity of output with respect to hours α has some influence on the size of the

real effects of money surprises, with the output response lying in the range 0.85–0.95 for reasonable

choices of this parameter, but all values in this range imply substantial real effects. Finally, the

target value of the markup ratio µ makes essentially no difference to the results.

These findings are in sharp contrast to the money neutrality result of the experiment performed

using the benchmark model of section 2, where there was no rationale for firms having a two-

price distribution. In the new model, consumer preferences are such that sales are an equilibrium

phenomenon. In both cases, firms have an incentive to revise the frequency of sales and the size of

9Although determining the flexible-price equilibrium requires specifying the utility function [2.1], this information
is not needed to compute the elasticities of output and the price level. This is seen by examining the first-order
Taylor approximation of the model in appendix A.7.
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Figure 5: Sensitivity analysis for the real effects of monetary shocks

Markup ratio (µ)

Elasticity of output with respect to money surprise
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Notes: For each graph, the results are obtained by fixing the other targets at their baseline values as
given in Table 1 (together with α = 2/3) and choosing matching values of the parameters ε, η and λ
as explained in section 5.1.

sale discounts following a monetary shock. But the consumer preferences introduced to explain sales

also give rise to strategic substitutability in sales decisions. Strategic substitutability is so strong

that flexibility in sales imparts very little flexibility to the aggregate price level.
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5.3 Justification for “sticky” normal prices

The previous analysis treated pN as fixed, and s and pS as completely flexible. In reality, there may

be costs of readjusting s and pS, but this paper shows that even without such costs, the possibility

of continuously adjusting sales decisions has only a small impact on the real effects of monetary

policy. Thus stickiness in pN suffices to explain why monetary policy has real effects.

Recent micro evidence on price setting has highlighted the relative stickiness of so-called “ref-

erence” prices (Eichenbaum, Jaimovich and Rebelo, 2008), which include the “normal” prices of

this paper. The model developed here is consistent with the finding of sticky reference prices, and

moreover, in the setting of the model, it makes sense that the reference/normal price is relatively

sticky. Three arguments are offered in support of this claim: (i) in the context of the model, the

extra gain from adjusting the normal price after a firm has optimally chosen s and pS is only 14%

of the corresponding gain found in a standard model from adjusting a firm’s single price; (ii) by

adjusting its sales fraction s, a firm already reaps most of the overall benefits from price adjustment;

and (iii) after adjusting s, the total gains from repeatedly adjusting the normal price (which is used

92.6% of the time in the baseline calibration) are actually very close to the total gains obtained

from optimally setting the price used only when a good is on sale (that is, only 7.4% of the time).

These results build on the following proposition:

Proposition 4 Consider arbitrary distributions of pN and pS around their flexible-price equilibrium

values from section 4. Suppose all firms optimally choose their sales fraction s according to the first

equation in [5.1].

(i) Nominal marginal cost X is the same for all firms irrespective of their individual prices pS and

pN , and moreover, X = PB.

(ii) The total quantity sold Q is the same for all firms irrespective of their individual prices pS

and pN .

(iii) If p∗S and p∗N denote the log-deviations of the desired sale and normal prices then p∗S = p∗N = X.

(iv) A second-order approximation of the gains (expressed as a fraction of steady-state total rev-

enue) from adjusting the sale and normal prices from pS and pN to p∗S and p∗N is:

Gains =
1

2
s̄
q̄S
Q̄
x̄

(
ζ̄S −

(η − ε)2λ(1− λ)v̄S(µ̄S − 1)

(λ+ (1− λ)v̄S)2

)
(pS − X)2

+
1

2
(1− s̄) q̄N

Q̄
x̄

(
ζ̄N −

(η − ε)2λ(1− λ)v̄N(µ̄N − 1)

(λ+ (1− λ)v̄N)2

)
(pN − X)2 [5.5]

Proof See appendix A.8. �

Corollary If both s and pS are optimally chosen, so pS = p∗S = PB = X, then the gain from

adjusting the normal price pN to p∗N is:

Gain =
1

2
(1− s̄) q̄N

Q̄
x̄

(
ζ̄N −

(η − ε)2λ(1− λ)v̄N(µ̄N − 1)

(λ+ (1− λ)v̄N)2

)
(pN − X)2 [5.6]

�
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The proposition considers the implications of firms optimally adjusting s, while the corollary

also supposes that pS is chosen to maximize profits.

Proposition 4 shows that the optimal choice of the sales fraction s already implies an optimal

choice of total quantity sold, in the sense that if a firm were also to adjust optimally either its

normal price or its sale price (or both) then this would make no difference to its total quantity sold.

The implication is that most of the gains from price adjustment are already exhausted by choosing

the sales fraction optimally. Quantitatively, the size of any remaining gains from changing the sale

and normal prices themselves is assessed using the formula [5.5] set out in the proposition.

To understand the differences introduced by sales when compared to standard analyses of sticky

prices, the expression in [5.5] for the gains in profits is contrasted with that which obtains in a

model with entirely standard Dixit-Stiglitz preferences, and thus a constant price-elasticity demand

function and a one-price equilibrium, but which is otherwise identical. As is shown in appendix

A.11, the gain in profits (also expressed as a fraction of steady-state total revenue) from a firm

adjusting its single price in such a model is:

Gain =
1

2
ε(1 + εγ)x̄

(
p−

(
P +

1

1 + εγ
x

))2

, [5.7]

where ε is the constant price elasticity of demand and γ is the elasticity of marginal cost with respect

to quantity produced. With the production function [5.4], γ = (1− α)/α.

There are two key differences between the profit gains [5.5] and [5.7]. Quantitatively, the most

important difference corresponds to the term 1 + εγ, which appears only in [5.7]. This represents

the gain from producing the optimal total quantity, which in a standard model can be achieved only

through a price change. But as Proposition 4 shows, the gain from producing the optimal total

quantity automatically accrues to a firm that is free to adjust its sales fraction.

The second reason for smaller gains from full price adjustment in the sales model relative to

a standard model is that with a demand function consistent with sales in equilibrium, the price

elasticity is decreasing in price. Thus if a price is too high then a firm’s desired markup also increases,

and vice versa if its price is too low. The bracketed terms in [5.5] multiplying the deviations of prices

are smaller than the respective price elasticities ζ̄S and ζ̄N since the terms being subtracted from

these elasticities are unambiguously positive. In contrast, in [5.7], the price deviation is multiplied

simply by the price elasticity ε.

The gains from full price adjustment in the sales model are compared to those in a standard

one-price model where firms are faced with the same shocks, even though a one-price model would

require much larger shocks to generate the observed magnitude of price changes. The difference in

the size of adjustment costs needed to rule out a flexible-price equilibrium is computed using the

calibration from section 5.1 and the expressions in [5.5] and [5.7]. In the latter for the one-price

model, the constant price elasticity of demand ε is chosen to generate a markup equal to the average

markup found in the calibrated model of sales.10 With an elasticity of output with respect to hours

of α = 2/3, the implied value of γ is 0.5. In the sales model, the adjustment cost needed to dissuade

10The bracketed terms in [5.5] are multiplied by s̄q̄S/Q̄ and (1 − s̄)q̄N/Q̄, which weight them according to the
quantities sold at the two prices. For the baseline calibration, µS = 1.09, µN = 1.47, and s̄q̄S/Q̄ = 0.28, which yield
an average markup of 1.36. With Dixit-Stiglitz preferences, the optimal markup is ε/(ε− 1), so ε = 3.77.

25



a given firm from changing both its sale and normal prices is only 27% of the cost that justifies a

firm not changing its single price in a standard one-price model.

A similar exercise is performed assuming that both pS and s are optimally chosen in the model

with sales, which corresponds to comparing the gains implied by [5.6] and [5.7]. This exercise reveals

that the adjustment cost needed to dissuade a firm from adjusting its normal price pN is only 14%

of the cost needed to deter adjustment of a firm’s single price in a standard one-price model. This

constitutes approximately half of the total gains from changing both pS and pN , which shows that

the coefficients of the deviations of pS and pN in [5.5] are approximately of the same magnitude.

Even though the coefficients in [5.5] are very close, at a given moment, the gains from optimally

adjusting pS are approximately 12 times larger than those from adjusting pN . This is because the

price elasticity is much higher, the profit margin is narrower, and the quantity sold significantly

larger at pS than at pN . These factors make the profit function much more concave at pS, so a given

percentage deviation from optimality of the sale price is much more costly than a similar deviation

of the normal price. The overall importance of adjusting pS and pN turns out to be similar because

s is around 12 times smaller than (1 − s). So at a given moment, if there is no intrinsic difference

between the cost of optimally adjusting a normal price versus a sale price, a firm would strongly

prefer to reoptimize its sale price.

A further relevant consideration is that in the model with sales, the magnitude of a firm’s desired

changes to its normal price in response to shocks is significantly smaller than the size of individual

price changes typically observed, which correspond to shifts between the normal and sale prices.

Therefore, although large price changes are often observed, full reoptimization of normal prices

would require only minor adjustments, and hence only small losses if those adjustments are not

made. This means that reoptimization of the normal price falls within the remit of the literature in

macroeconomics which seeks to justify why firms do not always take small profit-enhancing actions,

as first analysed in Mankiw (1985) and Akerlof and Yellen (1985).11

It may seem paradoxical that firms are able to extract most of the gains from changing price

simply by varying their sales fractions, but at the same time choose to do so sparingly in response

to a monetary shock. This apparent contradiction is resolved by noting the reason for the small

response of the sales fraction is not its lack of efficacy for an individual firm, but that other firms

also react to common shocks in the same way, and sales have been shown to be strategic substitutes.

6 Flexible wages

This section considers the model of sales with fully flexible wages. Here, households’ first-order

condition [3.1] for hours of labour supplied always holds. Since every household faces the same price

level P and money wage W , this implies:

νh(H)

uc(Y )
=
W

P
. [6.1]

11Direct empirical evidence on the costs of reoptimizing prices is presented in Levy, Bergen, Dutta and Venable
(1997) and Zbaracki, Ritson, Levy, Dutta and Bergen (2004).
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The remainder of the model is as described in section 5.

Obtaining the effects of a monetary shock now requires calibrating the utility function [2.1]. The

main issue is to avoid the counterfactual prediction that real wages fluctuate by more than output.

Thus a lower bound for the real effects of a monetary shock is found by choosing a utility function

which implies real wages and output move one-for-one. This is done by adopting the conventional

specification of log utility in consumption C and linear disutility in hours worked H:12

u(C) = logC , ν(H) = aH .

As in section 5, the economy is subjected to a money-supply shock. The sales fraction s, the

sale price pS, and wage W are optimally readjusted. Only the normal price pN is predetermined.

The resulting elasticities of output and the price level with respect to the monetary surprise are:

d log Y

d logM
= 0.685 ,

d logP

d logM
= 0.315 .

These results show the strength of strategic substitutability in sales decisions. Even though wages

are fully flexible (and fluctuate by more than in the data), and firms face no impediments to adjusting

either their sale price or sales fraction, monetary policy has large real effects.

7 Dynamics

This section extends the previous analysis to a fully dynamic environment, where firms’ normal

prices are readjusted, but not continuously so. There is a tractable dynamic version of the sales

model and this section derives the resulting Phillips curve, which is easily embedded into any broader

DSGE model. While the presence of sales in the model adds an extra feature when compared to

the standard New Keynesian Phillips curve, quantitatively the difference is not large. The results

are thus in line with the findings of section 5.

7.1 Staggered adjustment of normal prices

The model developed here continues to allow firms costlessly to vary their sales fractions and sale

prices, but now a firm can also choose a new normal price at random times, as in the Calvo (1983)

pricing model. It is important to stress that the Calvo pricing assumption is used only for changes of

the normal price; a firm continues to have complete discretion to switch its individual price without

cost between the normal and sale price at any given moment, and to change the sale price itself.

The assumption of Calvo adjustment times for the normal price is made for simplicity. Of course

the choice of an alternative model of price adjustment, for example, state-dependent pricing, would

affect the results in its own right. But there is no obvious reason to believe that the interaction of

different models with firms’ optimal sales decisions would significantly affect the results (unless a

12This reflects standard practice in the real business cycle literature following Hansen (1985), and is also a speci-
fication employed in recent theoretical work on pricing, such as Golosov and Lucas (2007) and Kehoe and Midrigan
(2007).
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model yielded the counterfactual prediction that normal prices are continuously adjusted, thus ren-

dering the sales margin redundant). This is because Proposition 4 implies that the profit-maximizing

normal price is a function only of the aggregate state of the economy, and furthermore, a firm’s op-

timal sales decisions depend only on its own current normal price and the aggregate state of the

economy.

In every time period, each firm has a probability 1−φp of receiving an opportunity to adjust its

normal price. Consider a firm that receives such an opportunity at time t. The new normal price

it selects is referred to as its reset price, and is denoted by RN,t. All firms that choose new normal

prices at the same time choose the same reset price. In any time period, each firm’s optimal sales

decisions will in principle depend on its current normal price, and so on its last adjustment time.

Denote by s`,t and pS,`,t the optimal sales fraction and sale price for a firm at time t that last changed

its normal price ` periods ago. The reset price RN,t is chosen to maximize the present value of the

firm, and asset markets are assumed to be complete, with At+`|t denoting the asset-pricing kernel

for state-contingent monetary payoffs received at time t+ ` (relative to the conditional probability

of each state occurring as of time t):

max
RN,t

∞∑
`=0

φ`pEt

At+`|t

 s`,t+`pS,`,t+`D(pS,`,t+`;PB,t+`, Et+`) + (1− s`,t+`)RN,tD(RN,t;PB,t+`, Et+`)
−C

(
s`,t+`D(pS,`,t+`;PB,t+`, Et+`) + (1− s`,t+`)D(RN,t;PB,t+`, Et+`);Wt+`

)


[7.1]

The first-order condition for the profit-maximizing reset price RN,t is given by:

∞∑
`=0

φ`pEt

[
(1− s`,t+`)Vt+`|t

{
RN,t

Pt+`
− µ(RN,t;PB,t+`)

C ′(Q`,t+`;Wt+`)

Pt+`

}]
= 0 , [7.2]

where Vt+`|t ≡
(ζ(RN,t;PB,t+`)− 1)D(RN,t;PB,t+`, Et+`)Pt+`At+`|t

Pt
.

Using [3.3], [3.4] and [3.8], an expression for the aggregate price level Pt is:

Pt =

(
(1− φp)

∞∑
`=0

φ`p

{
s`,t(λ+ (1− λ)v(pS,`,t, PB,t))p

1−ε
S,`,t

+(1− s`,t)(λ+ (1− λ)v(RN,t−`, PB,t))R
1−ε
N,t−`

}) 1
1−ε

, [7.3]

and the bargain hunters’ price index PB,t from [3.4] is obtained accordingly.

The profit-maximizing sales fractions s`,t and sale prices pS,`,t are determined as in [5.1]:

pS,`,tqS,`,t −RN,t−`qN,`,t
qS,`,t − qN,`,t

= X`,t , pS,`,t = µ(pS,`,t;PB,t)X`,t , [7.4]

where qS,`,t and qN,`,t are the quantities sold by a firm at its sale and normal prices if it changed its

normal price ` periods ago, and X`,t is nominal marginal cost for such a firm.

7.2 A Phillips curve with sales

To study the dynamic implications of the sales model, it is helpful to derive a Phillips curve that can

be compared with those from standard models with Calvo pricing. It turns out that the dynamic
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model with sales also yields a simple Phillips curve.

Theorem 3 Suppose each firm determines its profit-maximizing reset price RN,t according to equa-

tion [7.2] and its profit-maximizing sales fraction and sale price using [7.4]. Let πt ≡ Pt/Pt−1 be the

inflation rate for the aggregate price level [7.3]. Log-linearizing around the flexible-price equilibrium

of section 4 with zero inflation yields an equation for the reset price:

RN,t = (1− βφp)
∞∑
`=0

(βφp)
`EtXt+` ,

where Xt is the common level of nominal marginal cost that results from firms optimizing over their

sales fractions as shown in Proposition 4, and β is the discount factor. The implied Phillips curve

linking inflation πt and real marginal cost xt is:

πt = βEtπt+1 +
1

1− ψ (κxt + ψ (∆xt − βEt∆xt+1)) , [7.5]

where the parameter ψ is defined as follows:

ψ ≡
((

1− ∂ logPB
∂ logPS

)
∂ logP

∂s
+
∂ logP

∂ logPS

∂ logPB
∂s

)/∂ logPB
∂s

,

and κ ≡ ((1− φp)(1− βφp)) /φp. By solving forwards, inflation can also be expressed as:

πt =
κ

1− ψ
∞∑
`=0

β`Etxt+` +
ψ

1− ψ∆xt . [7.6]

Proof See appendix A.9. �

The Phillips curve with sales [7.5] would reduce to the standard New Keynesian Phillips curve

πt = βEtπt+1 + κxt were it the case that ψ = 0, but ψ is always positive in the model with sales.

When ψ → 1, the economy behaves as though all prices were fully flexible. The condition ψ < 1 is

equivalent to:

−∂ logP

∂s

/(
1− ∂ logP

∂ logPS

)
< −∂ logPB

∂s

/(
1− ∂ logPB

∂ logPS

)
. [7.7]

First note that the elasticity of PB with respect to PS is always larger than the corresponding

elasticity of P because bargain hunters buy more goods at sale prices, hence the denominator of the

right-hand side is smaller than that of the left-hand side. Second, the numerator on the right-hand

side is larger than on the left-hand side as long as an increase in the number of sales offered by firms

benefits bargain hunters more than loyal consumers, which is intuitively plausible and true in the

baseline calibration, although it cannot hold for all possible parameters. Because the first statement

is always true, the second condition is sufficient but not necessary for [7.7] to hold. In the baseline

calibration, ψ is 0.26.

The effect of a positive value of ψ is to increase the response of inflation to real marginal cost

when compared to a standard model where the probability of changing price is the same as the
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probability of adjusting a normal price in the sales model. This is best seen by looking at the

solved-forwards version of the Phillips curve in [7.6], where there are two distinct differences relative

to the solved-forwards version of the New Keynesian Phillips curve: πt = κ
∑∞

`=0 β
`EtXt+`. The first

is a scaling of the coefficient multiplying expected real marginal costs, which is isomorphic to an

increase in the probability of price adjustment. The second is the presence of the term in the growth

rate of real marginal cost ∆xt, which is linked to the possibility of varying sales in each period. It

is subsequently shown how this term affects the dynamics of output and the price level.

7.3 A DSGE model with sales

This section embeds sales into a calibrated dynamic stochastic general equilibrium model with

staggered adjustment of normal prices and wages.

Household ı ∈H ’s lifetime utility function is given by:

Ut(ı) =
∞∑
`=0

β`Et [υ(Ct+`(ı),mt+`(ı))− ν(Ht+`(ı))] . [7.8]

The utility function υ(C,m) is differentiable, strictly increasing and strictly concave in both C and

m; ν(H) is a differentiable, strictly increasing and convex function of H. Each household supplies

a differentiated labour input. The parameter β is the subjective discount factor, which satisfies

0 < β < 1.

Denote by At+1(ı) household ı’s portfolio of money-denominated Arrow-Debreu securities held

between periods t and t+ 1. Household ı’s period-t budget constraint is thus:

PtCt(ı) +Mt(ı) + Et

[
At+1|tAt+1(ı)

]
= Wt(ı)Ht(ı) + Dt + Tt +Mt−1(ı) +At(ı) . [7.9]

Households have equal initial financial wealth and all have the same expected lifetime income.

There are no arbitrage opportunities in financial markets, so the yield it on a one-period risk-free

nominal bond satisfies:

1 + it =
(
EtAt+1|t

)−1
. [7.10]

Maximization of lifetime utility [7.8] subject to the sequence of budget constraints [7.9] implies

the following first-order conditions for consumption Ct(ı) and real money balances mt(ı):

β
υc(Ct+1(ı),mt+1(ı))

υc(Ct(ı),mt(ı))
= At+1|t

Pt+1

Pt
, [7.11a]

υm(Ct(ı),mt(ı))

υc(Ct(ı),mt(ı))
=

it
1 + it

. [7.11b]

Equation [7.11a] is the Euler equation for consumption across time and across states, with υc(C,m)

denoting the marginal utility of consumption. The optimal tradeoff between consumption and

holding money balances is given by [7.11b], with υm(C,m) denoting the marginal utility of real

balances and it/(1 + it) being the opportunity cost of holding money.

As in Erceg, Henderson and Levin (2000), firms hire differentiated labour inputs. So hours H in
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the production function [2.5] is now a composite labour input defined by the following Dixit-Stiglitz

aggregator:

H ≡
(∫

H

H(ı)
ς−1
ς dı

) ς
ς−1

,

where H(ı) is hours supplied by household ı ∈ H to a given firm, and ς is the elasticity of substi-

tution between labour types. It is assumed that ς > 1, and firms are price takers in the markets for

labour inputs. The money wage received by labour input ı is W (ı). The minimum cost of hiring

one unit of the composite labour input H is denoted by W , and this is now the relevant wage index

appearing in firms’ cost function [2.6]. This wage index is given by:

W ≡
(∫

H

W (ı)1−ςdı

) 1
1−ς

, [7.12]

and the cost-minimizing labour demand functions are:

H(ı) =

(
W (ı)

W

)−ς
H . [7.13]

Suppose that households have a probability 1 − φw of being able to adjust their money wage

in any given time period. Since households have equal initial wealth and expected lifetime income,

and as asset markets are complete, and as utility [7.8] is additively separable between hours and

consumption, households are fully insured and hence have equal consumption and money balances in

equilibrium. As before, consumption is the only source of expenditure, so goods market equilibrium

requires Ct = Yt. Thus by using [7.10], [7.11a] and [7.11b], the following intertemporal IS equation

and implicit money-demand function are obtained:

β(1 + it)Et

[
υc(Yt+1,mt+1)

υc(Yt,mt)

1

πt+1

]
= 1 ,

υm(Yt,mt)

υc(Yt,mt)
=

it
1 + it

. [7.14]

As households are selected to update their wages at random, as they enjoy the same consumption,

and as they face the same demand function for their labour services, all households setting a new

wage at time t choose the same wage. This common wage is referred to as the reset wage, and is

denoted by RW,t. It is chosen to maximize expected utility over the lifetime of the wage subject to

the labour demand function [7.13]. As shown by Erceg, Henderson and Levin (2000), the first-order

condition for this maximization problem is:

∞∑
`=0

(βφw)`Et

[
W ς
t+`Ht+`υc(Yt+`,mt+`)

υc(Yt,mt)

{
RW,t

Pt+`
− ς

ς − 1

νh
(
R−ςW,tW

ς
t+`Ht+`

)
υc(Yt+`,mt+`)

}]
= 0 . [7.15]

The wage index Wt in [7.12] then evolves according to:

Wt =

(
(1− φw)

∞∑
`=0

φ`wR
1−ς
W,t−`

) 1
1−ς

. [7.16]
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7.4 Dynamic calibration

This section presents the calibration of the DSGE model described above. All the values of the

calibrated parameters are listed in Table 3.

One period corresponds to one month. The discount factor β is chosen to yield a 3% annual

real interest rate, the intertemporal elasticity of substitution in consumption σc is chosen to match

a coefficient of relative risk aversion of 3, and the Frisch elasticity of labour supply σh is set to

0.7, which lies in the range of estimates found in the literature. The elasticity of money demand

with respect to income ϑy, the interest semi-elasticity ϑi, and the real balance effect of money on

consumption ϑm are taken from Woodford (2003), making the conversion from a quarterly to a

monthly calibration.

Table 3: Dynamic calibration

Description Parameter Value

Preference parameters
Subjective discount factor β 0.9975
Intertemporal elasticity of substitution in consumption σc 0.333
Frisch elasticity of labour supply σh 0.7
Income elasticity of money demand ϑy 1.0*

Interest semi-elasticity of money demand ϑi 84*

Real balance effect on consumption ϑm 0.0067*

Technology parameters
Elasticity of output with respect to hours α 0.667
Elasticity of marginal cost with respect to output γ 0.5
Elasticity of substitution between differentiated labour inputs ς 20†

Nominal rigidities
Probability of stickiness of “normal” prices φp 0.889§

Probability of wage stickiness φw 0.889

Notes: Monthly calibration.
* Source: Woodford (2003)
† Source: Christiano, Eichenbaum and Evans (2005)
§ Source: Nakamura and Steinsson (2007)

The elasticity of output with respect to hours α is chosen to match a labour share of 2/3. With

the specification of the production function in [5.4], this implies an elasticity of marginal cost with

respect to output of γ = (1 − α)/α. So α = 2/3 yields γ = 0.5. The elasticity of substitution

between labour inputs ς is taken from Christiano, Eichenbaum and Evans (2005). The probability

of stickiness of the normal price φp is set to match an average price-spell duration of 9 months,

which is taken from Nakamura and Steinsson (2007). The same number is used for the probability

of wage stickiness φw, as evidence shows that most, but not all, wages are adjusted annually.

The model is analysed under different assumptions about monetary policy. First, a first-order
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autoregressive process for money growth is considered:

Mt

Mt−1

=

(
Mt−1

Mt−2

)ϕm
exp(et) , et ∼ i.i.d.(0, v2) . [7.17a]

The persistence parameter ϕm is chosen to match the empirical first-order autocorrelation coefficient

of M1 growth in the U.S. from 1979:8 to 1996:12.

Second, the case of a monetary policy rule with feedback from the state of the economy is

considered. A Taylor rule with interest-rate smoothing is the most popular specification for this:

1 + it = (1 + it−1)ϕi
(

(1 + ī)
(πt
π̄

)ϕπ (Yt
Ȳ

)ϕy)1−ϕi
exp(et) , et ∼ i.i.d.(0, v2) , [7.17b]

where ϕπ is the interest-rate response to inflation, ϕy is the response to output (or the output gap),

and ϕi is the interest-rate smoothing parameter. The Taylor rule parameters are taken from the

baseline estimates for the Volcker–Greenspan period in Clarida, Gaĺı and Gertler (2000), which is

1979:8–1996:12 (the same sample period as was used for the money-supply growth specification).

Table 4: Parameters used for the monetary policy experiments

Description Parameter Value

Exogenous path for growth of the money supply
First-order serial correlation of the money-supply growth rate ϕm 0.6*

Taylor rule
Response of interest rates to deviations of inflation from target ϕπ 2.15†

Response of interest rates to deviations of aggregate output from target ϕy 0.078†

Degree of interest-rate smoothing ϕi 0.924†

Notes: Monthly calibration.
* Source: Authors’ calculations using data on M1 for the period 1979:8–1996:12. Series M1SL from Federal

Reserve Economic Data (http://research.stlouisfed.org/fred2).
† Source: Clarida, Gaĺı and Gertler (2000), converted from estimates based on quarterly data to a monthly

calibration.

7.5 Dynamic simulations

This section calculates the impulse responses of output and the price level to monetary policy shocks

in the DSGE model with sales described in section 7.1 and section 7.3. These are compared to the

corresponding impulse responses in a standard DSGE model, that is, one where consumers have

regular Dixit-Stiglitz preferences and thus firms employ a one-price strategy, and price adjustment

times are staggered according to the Calvo model. With Calvo pricing, a standard New Keynesian

Phillips curve is obtained.13 The latter model is set up so that it is otherwise identical to the DSGE

model with sales.

13See appendix A.10 for details.
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The calibrated parameters of the DSGE model with sales are given in Table 2 and Table 3.

For the standard model without sales, the same parameter values from Table 3 are used, with the

probability of price stickiness applying to a firm’s single price, rather than to its normal price in

the sales model. In place of parameters ε, η and λ, the standard model requires only a calibration

of the constant price elasticity of demand ε. This is chosen to match the average markup found in

the calibrated sales model.14

Impulse response functions are calculated for the two monetary policy experiments described in

section 7.4 with parameters from Table 4: a persistent shock to money supply growth [7.17a]; and

a shock to a Taylor rule with interest-rate smoothing [7.17b].

Figure 6: Impulse responses to a persistent shock to money growth
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Notes: The specification of monetary policy used is equation [7.17a].

Figure 6 plots the impulse responses of aggregate output and the price level when money growth

follows an AR(1) process in both the sales model and the standard model without sales. As in the

analysis of section 5 with a fixed normal price, the real effects of monetary policy in the model with

sales are large and very similar to those found in the standard model, in spite of firms’ full freedom

to adjust their sales decisions without cost. The ratio of the cumulated deviations of output in

14See footnote 10 for details. The calculations lead to ε = 3.77.

34



the two models is 0.929. The response of the price level in the sales model shows a small jump

immediately after the shock. This corresponds to the term ∆xt in the Phillips curve [7.6].

The impulse responses are not particularly sensitive to the calibrated parameters. Considering

the same range of parameters as was done for the sensitivity analysis of section 5.2 leads to only

small differences in these findings.

Figure 7 shows an example of an individual price path in the model with sales generated using

the baseline calibration. The underlying stochastic process for the money supply is a random walk

with drift. The behaviour depicted is qualitatively and quantitatively consistent with real-world

examples of prices without needing to assume any idiosyncratic shocks are present.

Figure 7: Theoretical price path implied by the model with sales

Time
10 20 30 40 50 60 70 80 90

0.80

0.90

1.00

Notes: Generated using the baseline calibration of the DSGE model with sales and the money supply
following a random walk with drift. The initial normal price is set to 1.

It is interesting to note from Figure 7 that the model can explain the coexistence of both small

and large price changes for the same product in the presence of only macroeconomic shocks. Without

any shocks at all, sales would still occur at a very similar frequency, but individual prices would

switch between unchanging normal and sale prices.

When the central bank follows a Taylor rule, the reaction to monetary policy shocks is somewhat

different, as is seen in Figure 8. The responses of output in the sales model and in the standard

model are now virtually identical. But the responses of the price level are different. As before, the

sales model features an initial jump in the price level. This is more marked than in the case of a

shock to money growth. The difference in the price-level response diminishes over time, but does

not vanish in the long run, converging to around 17% in the baseline calibration.

In essence, however, this finding is not in conflict with the those obtained when the money

supply is exogenous. The addition of sales to the model affects the Phillips curve relationship,

which determines how much inflation is generated for a given sequence of output gaps. The analysis

in the case of exogenous money growth shows that sales lead to a slight reduction in the real effects

of monetary policy. In the case of a Taylor rule, the effect of a monetary shock on output is

approximately the same in both models, but cumulated inflation in the sales model is a little higher.
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Figure 8: Impulse responses to interest-rate shock with a Taylor rule
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Notes: The specification of monetary policy used is equation [7.17b].

8 Conclusions

For macroeconomists grappling with the welter of recent micro pricing evidence, one particularly

puzzling feature is noteworthy: the large, frequent and short-lived price changes followed by prices

returning exactly to their former levels. If price changes are driven purely by shocks then explaining

this tendency requires a very special configuration of shocks. The model presented in this paper

shows that just such pricing behaviour arises in equilibrium if firms face consumers with sufficiently

different price sensitivities.

The model explains why firms choose a two-price distribution over time with a normal price and

a sale price, and thus want to switch individual prices frequently between the two desired prices

in their distribution. The two prices are themselves sensitive to shocks, but the magnitudes of

optimizing adjustments to the normal and sale prices are dwarfed by the gap between the two.

Furthermore, the impact on profits of not correcting deviations from optimality of the normal

price at a particular moment is much smaller than the impact of not correcting similar percentage

deviations of the sale price. So the apparent “puzzle” of why prices return to their former levels

after a sale reduces to explaining why after a move from $5.99 to $4.49, a price returns to $5.99
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instead of $6.02. But small costs of reoptimizing the normal price would explain firms’ reluctance

to make small profit-maximizing improvements in accordance with a well-established literature in

macroeconomics.

One main message from the micro evidence is that the normal price is indeed considerably

sticky, despite the significant flexibility of individual prices due to sales. Since the real effects of

monetary policy depend on how sticky prices are, how should this evidence be interpreted? On the

one hand, some would argue that temporary sales are orthogonal to monetary policy and thus such

price changes should be ignored. On the other hand, others would argue that if decisions about

temporary sales react to demand fluctuations, they should also react to monetary policy shocks to

the extent that these shocks have an impact on aggregate demand.

The model proposed in this paper contains a rationale for sales, and therefore it can be used to

understand the implications for monetary policy analysis of flexibility in sales decisions alongside

stickiness in the normal price. In the model, sales are occurring for a reason, but firms potentially

have an incentive to vary sales in response to shocks of all kinds, including those to monetary policy.

However, it turns out that firms barely adjust sales in response to monetary policy shocks because

the rationale for sales also implies that sales are strategic substitutes, that is, firms have a strong

incentive to increase sales when others decrease them. While a firm may adjust sales substantially

in response to shocks affecting only itself, it will not do so in the case of shocks affecting all firms.

The findings of this paper indicate that in a world with both sticky normal prices and flexible

sales, it is predominantly stickiness in the normal price that matters so far as monetary policy

analysis is concerned. Arriving at this conclusion requires a careful modelling of the reasons why

sales occur. Thus the results highlight the importance for macroeconomics of understanding what

lies behind firms’ pricing decisions.
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A Technical appendix

A.1 Properties of the demand, total revenue and marginal revenue
functions

The structure of household consumption preferences introduced in section 3.2 implies that firms face a
demand curve q = D(p;PB, E) of the form given in equation [3.8] at each shopping moment. It is easier to
analyse the properties of this demand function — and the associated total and marginal revenue functions
— by working with what can be thought of as the corresponding “relative” demand function D(ρ), defined
by:

D(ρ) ≡ λρ−ε + (1− λ)ρ−η , [A.1.1]

which satisfies D(1) = 1 for all choices of parameters. The relative demand function q = D(ρ) gives the
“relative” quantity sold q as a function of the relative price ρ, where relative price here means money price
p relative to PB, the bargain hunters’ price index from [3.4], and relative quantity means quantity q sold
relative to E/P εB, where E = P εY is the measure of aggregate expenditure from [3.7]:

ρ ≡ p

PB
, q ≡ P εB

E q . [A.1.2]

With these definitions, the original demand function [3.8] is stated in terms of the relative demand function
[A.1.1] as follows:

D(p;PB, E) =
E
P εB
D
(
p

PB

)
. [A.1.3]

The relative demand function [A.1.1] is a continuously differentiable function of ρ for all ρ > 0, and
is strictly decreasing everywhere. Notice also that D(ρ) → ∞ as ρ → 0, and D(ρ) → 0 as ρ → ∞. By
continuity and monotonicity, this implies that for every q > 0 there is a unique ρ > 0 such that q = D(ρ).
Thus the inverse demand function D−1(q) is well defined for all q > 0, and is itself strictly decreasing
and continuously differentiable. The total revenue function R(q), defined in terms of the relative demand
function, is:

R(q) ≡ qD−1(q) . [A.1.4]
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Using the inverse demand function ρ = D−1(q), an equivalent expression for total revenue is R(q) =
D−1(q)D

(
D−1(q)

)
, and by substituting the demand function from [A.1.1]:

R(q) = λ
(
D−1(q)

)1−ε + (1− λ)
(
D−1(q)

)1−η
.

Since ε > 1 and η > 1, and given the limiting behaviour of the demand function established above, it
follows that R(q) → ∞ as q → ∞ and R(q) → 0 as q → 0. Hence, R(0) = 0, and R(q) is continuously
differentiable for all q ≥ 0.

Differentiating the total revenue function R(q) from [A.1.4] using the inverse function theorem, and
substituting demand function [A.1.1] yields an expression for marginal revenue:

R′ (D(ρ)) =
(

(ε− 1)λ+ (η − 1)(1− λ)ρε−η

ελ+ η(1− λ)ρε−η

)
ρ . [A.1.5]

Because ε > 1 and η > 1, it follows that R′(q) > 0 for all q, so total revenue R(q) is strictly increasing in
q. Furthermore, because ρ→∞ as q→ 0, and ρ→ 0 as q→∞, [A.1.5] implies R′(q)→∞ as q→ 0 and
R′(q)→ 0 as q→∞.

Just as [A.1.3] establishes the original demand function D(p;PB, E) in [3.8] is connected to the relative
demand function D(ρ) in [A.1.1], there are similar relations between the original inverse demand function
D−1(q;PB, E), original total revenue R(q;PB, E) and marginal revenue R′(q;PB, E) functions, and their
equivalents defined in terms of the relative demand function. The link between the inverse demand functions
follows directly from [A.1.3]:

D−1(q;PB, E) = PBD−1

(
qP εB
E

)
. [A.1.6]

Equations [3.9], [A.1.4] and [A.1.6] justify the following connections between the total revenue functions
and their derivatives:

R(q;PB, E) = P 1−ε
B ER

(
qP εB
E

)
, R′(q;PB, E) = PBR′

(
qP εB
E

)
, R′′(q;PB, E) =

P 1+ε
B

E R
′′
(
qP εB
E

)
.

[A.1.7]
The next result examines the conditions under which marginal revenue R′(q) is non-monotonic.

Lemma 1 Consider the marginal revenue function R′(q) obtained from [A.1.4] using the relative demand
function [A.1.1], and suppose that η > ε > 1.

(i) If λ = 0 or λ = 1 or condition [4.3] does not hold then marginal revenue R′(q) is strictly decreasing
for all q ≥ 0.

(ii) If 0 < λ < 1 and ε and η satisfy condition [4.3] then there exist q and q such that 0 < q < q < ∞
and where R′(q) is strictly decreasing between 0 and q and above q, and strictly increasing between
q and q.

Proof (i) If λ = 0 then it follows from [A.1.5] that R′(q) = ((η − 1)/η)D−1(q), and if λ = 1 that
R′(q) = ((ε− 1)/ε)D−1(q). Since the inverse demand function D−1(q) is strictly decreasing, then marginal
revenue must also be so in these cases.

(ii) In what follows, assume 0 < λ < 1. Differentiate [A.1.5] to obtain:

D′(ρ)R′′ (D(ρ)) =
η(η − 1)

(
1−λ
λ ρε−η

)2 − ((η − ε)2 − η(ε− 1)− ε(η − 1)
) ( (1−λ)

λ ρε−η
)

+ ε(ε− 1)(
ε+ η

(
1−λ
λ ρε−η

))2 , [A.1.8]

for all ρ > 0, where the assumption that λ 6= 0 is used to simplify the expression by dividing through by
λ2. Define the function Z(q) in terms of inverse demand function D−1(q):

Z(q) ≡ 1− λ
λ

(
D−1(q)

)ε−η
, [A.1.9]
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and use this together with [A.1.8] to write the derivative of marginal revenue as follows:

R′′(q) =
η(η − 1) (Z(q))2 −

(
(η − ε)2 − η(ε− 1)− ε(η − 1)

)
Z(q) + ε(ε− 1)

D′ (D−1(q)) (ε+ ηZ(q))2 . [A.1.10]

Since D′
(
D−1(q)

)
< 0 for all q, and the remaining term in the denominator of [A.1.10] is strictly positive,

the sign of R′′(q) is the opposite of that of the quadratic function:

Q(z) ≡ η(η − 1)z2 −
(
(η − ε)2 − η(ε− 1)− ε(η − 1)

)
z + ε(ε− 1) , [A.1.11]

evaluated at z = Z(q). The aim is to find a region where marginal revenue is upward sloping, which
corresponds to Q(z) being negative, which is in turn equivalent to its having positive roots (it is U-shaped
because η > 1).

Under the assumptions ε > 1 and η > 1, the product of the roots of quadratic equation Q(z) = 0 is
positive, so it has either no real roots, two negative real roots, or two positive real roots (possibly including
repetitions). In the first two cases, since Q(0) = ε(ε− 1) > 0 it then follows that Q(z) > 0 for all z > 0. To
see which combinations of elasticities ε and η lead to positive real roots, define the following two quadratic
functions of the elasticity η (for a given value of the elasticity ε):

Gp(η; ε) ≡ η2 − (4ε− 1)η + ε(ε+ 1) , Gr(η; ε) ≡ η2 − 2(3ε− 1)η + (ε+ 1)2 . [A.1.12]

By comparing Gp(η; ε) to the coefficient of z in [A.1.11], the sum of the roots Q(z) = 0 is positive if and
only if Gp(η; ε) > 0 since η > 1. Then the discriminant of the quadratic Q(z) is factored in terms of Gr(η; ε)
as follows: (

(η − ε)2 − η(ε− 1)− ε(η − 1)
)2 − 4εη(ε− 1)(η − 1) = (η − ε)2Gr(η; ε) , [A.1.13]

and as η 6= ε, the equation Q(z) = 0 has two distinct real roots if and only if Gr(η; ε) > 0. To summarize,
the quadratic Q(z) has two positive real roots if and only if Gp(η; ε) > 0 and Gr(η; ε) > 0. It turns out that
in the relevant parameter region η > ε > 1, the binding condition is Gr(η; ε) > 0.

Since ε > 1, the quadratic equations Gp(η; ε) = 0 and Gr(η; ε) = 0 in η (for a given value of ε) both
have two distinct positive real roots (this is confirmed by verifying that the discriminants and the sums and
products of the roots are all positive). Let η∗(ε) be the larger of the two roots of the equation Gr(η; ε) = 0:

η∗(ε) = (3ε− 1) + 2
√

2ε(ε− 1) ,

and observe that η∗(ε) > ε and η∗′(ε) > 0 for all ε > 1. Since both quadratics Gp(η; ε) and Gr(η; ε) have
positive coefficients of η2, it follows that they are negative for all η values lying strictly between their two
roots.

The difference between the two quadratic functions Gp(η; ε) and Gr(η; ε) in [A.1.12] is:

Gp(η; ε)− Gr(η; ε) = (2ε− 1)η − (ε+ 1) ,

which is a linear function of η. Thus let η̂(ε) be the unique solution for η of the equation Gp(η; ε) = Gr(η; ε),
taking ε as given. As ε > 1, such a solution exists and is unique, and Gp(η; ε) > Gr(η; ε) holds if and only if
η > η̂(ε). The difference between the solution η̂(ε) and ε is given by:

η̂(ε)− ε =
2ε− (2ε2 − 1)

2ε− 1
. [A.1.14]

Consider first the case of ε values where η̂(ε) ≤ ε. This means that for all η > ε, Gr(η; ε) < Gp(η; ε).
Since Gp(ε; ε) = −2ε(ε − 1) < 0 for all ε > 1, it follows that Gr(ε; ε) < 0. Therefore, the smaller root of
Gr(η; ε) = 0 is less than ε. This establishes that the only η values for which all the inequalities η > ε,
Gr(η; ε) > 0 and Gp(η; ε) > 0 hold are those satisfying η > η∗(ε).

Now consider what happens in the remaining case where η̂(ε) > ε. By rearranging the terms in [A.1.12],
notice that Gp(η; ε) = (η − ε)2 − 1− ((2ε− 1)η − (ε+ 1)). Therefore, from the definition of η̂(ε), it follows
that Gp(η̂(ε); ε) = Gr(η̂(ε); ε) = (η̂(ε) − ε)2 − 1. As η̂(ε) > ε in this case, equation [A.1.14] implies that
2ε− (2ε2 − 1) > 0, and therefore 0 < η̂(ε)− ε < 1 if 2ε2 − 1 > 1, which is equivalent to ε2 > 1. This must
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hold since ε > 1, and hence (η̂(ε)− ε)2 < 1. Thus Gp(η̂(ε); ε) = Gr(η̂(ε); ε) < 0. As Gp(η; ε) > Gr(η; ε) holds
for η > η̂(ε), the larger of the roots of Gp(η; ε) = 0 lies strictly between η̂(ε) and η∗(ε). Therefore in this
case as well, the only values of η consistent with all the inequalities η > ε, Gr(η; ε) > 0 and Gp(η; ε) > 0 are
those satisfying η > η∗(ε).

Thus for η > ε > 1, if η > η∗(ε) then the quadratic equation Q(z) = 0 from [A.1.11] has two distinct
positive real roots z and z with z < z. Q(z) < 0 must hold for all z ∈ (z, z) since the coefficient of z2 is
positive. For z ∈ [0, z) or z ∈ (z,∞), the quadratic satisfies Q(z) > 0. If η ≤ η∗(ε) then Q(z) > 0 for all
z (except at a single isolated point when η = η∗(ε) exactly). Therefore, in the case where η ≤ η∗(ε), it
follows from [A.1.10] and [A.1.11] that R′(q) is strictly decreasing for all q ≥ 0.

Now restrict attention to the case where η > η∗(ε). Since 0 < λ < 1, η > ε, and the inverse demand
function D−1(q) is strictly decreasing, the function Z(q) defined in [A.1.9] is strictly increasing. Its inverse
is:

Z−1(z) = D
((

λ

1− λz
) 1
ε−η
)
, [A.1.15]

which is also a strictly increasing function. Define q ≡ Z−1(z) and q ≡ Z−1(z) using the roots z and z
of the quadratic equation Q(z) = 0. From [A.1.10] and [A.1.11] it follows that R′′(q) = 0 and R′′(q) = 0.
As Z−1(z) is a strictly increasing function, R′(q) must be strictly decreasing for 0 < q < q and q > q,
and strictly increasing for q < q < q. The condition η > η∗(ε) is the same as that given in [4.3], so this
completes the proof. �

When the marginal revenue function R′(q) is non-monotonic, the following result provides the founda-
tion for verifying the existence and uniqueness of the two-price equilibrium.

Lemma 2 Given the total revenue function R(q) defined in [A.1.4], suppose that 0 < λ < 1, and ε and η
are such that non-monotonicity condition [4.3] holds:

(i) There exist unique values qS and qN such that 0 < qN < qS <∞ which satisfy the equations:

R′(qS) = R′(qN ) =
R(qS)−R(qN )

qS − qN
. [A.1.16]

(ii) The solutions qS and qN of the above equations must also satisfy the inequalities:

R′′(qS) < 0 , R′′(qN ) < 0 , R(qS)/qS > R′(qS) , R(qN )/qN > R′(qN ) . [A.1.17]

(iii) The following inequality holds for all q ≥ 0:

R(q) ≤ R(qS) +R′(qS)(q− qS) = R(qN ) +R′(qN )(q− qN ) . [A.1.18]

Proof (i) When 0 < λ < 1 and condition [4.3] hold then Lemma 1 demonstrates that there exist q and
q such that 0 < q < q < ∞ and R′′(q) = R′′(q) = 0. Define R′ ≡ R′(q) and R′ ≡ R′(q). Since Lemma 1
also shows that R′(q) is strictly increasing between q and q, it follows that R′ < R′.

The function R′(q) is continuously differentiable for all q > 0 and limq→0R′(q) =∞. Hence there must
exist a value q

1
such that R′(q

1
) = R′ and q

1
< q. Define q1 ≡ q. According to Lemma 1, the function

R′(q) is strictly decreasing on the interval [q
1
, q1] and thus has range [R′,R′].

Define q
2
≡ q and q2 ≡ q. Given the construction of R′ and R′ and the fact that R′(q) is strictly

increasing on [q
2
, q2], the range of R′(q) is [R′,R′] on this interval.

Now define q
3
≡ q. Since limq→∞R′(q) = 0 and R′(q) is continuously differentiable, there must exist a

q3 such that R′(q3) = R′ and q3 > q
3
. Lemma 1 shows that R′(q) is strictly decreasing on [q

3
, q3] and so

has range [R′,R′] on this interval.
For each κ ∈ [0, 1], define the function q1(κ) as follows:

q1(κ) ≡ (1− κ)q
1

+ κq1 , [A.1.19]
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in other words, as a convex combination of q
1

and q1. Note that q1(κ) is strictly increasing in κ. The
construction of this function, the monotonicity ofR′(q) on [q

1
, q1], and the definitions ofR′ andR′ guarantee

that R′ ≤ R′(q1(κ)) ≤ R′ for all κ ∈ [0, 1]. Given that the function R′(q) is also strictly monotonic on
each of the intervals [q

2
, q2] and [q

3
, q3], and has range [R′,R′] on both, there must exist unique values

q2 ∈ [q
2
, q2] and q3 ∈ [q

3
, q3] such that R′(q2) = R′(q3) = R′(q1(κ)) for any particular κ. Hence define the

functions q2(κ) and q3(κ) to give these values in the two intervals for each specific κ ∈ [0, 1]:

R′(q1(κ)) ≡ R′(q2(κ)) ≡ R′(q3(κ)) . [A.1.20]

At the endpoints of the intervals (corresponding to κ = 0 and κ = 1) note that:

q2(0) = q3(0) = q , q1(1) = q2(1) = q . [A.1.21]

Continuity and differentiability of R′(q) and of q1(κ) from [A.1.19] guarantee that q2(κ) and q3(κ) are
continuous for all κ ∈ [0, 1] and differentiable for all κ ∈ (0, 1). By differentiating [A.1.20] it follows that:

q′2(κ) =
R′′(q1(κ))
R′′(q2(κ))

q′1(κ) , q′3(κ) =
R′′(q1(κ))
R′′(q3(κ))

q′1(κ) .

As Lemma 1 establishes R(q) is concave on [q
1
, q1] and [q

3
, q3], and convex on [q

2
, q2], the results above

show that q′2(κ) < 0 and q′3(κ) > 0 for all κ ∈ (0, 1).

Existence

For each κ ∈ [0, 1], define the function z(κ) in terms of the following integrals:

z(κ) ≡
∫ q3(κ)

q2(κ)

(
R′(q)−R′(q2(κ))

)
dq−

∫ q2(κ)

q1(κ)

(
R′(q2(κ))−R′(q)

)
dq . [A.1.22]

From continuity and differentiability of q1(κ), q2(κ) and q3(κ), it follows that z(κ) is also continuous for
all κ ∈ [0, 1] and differentiable for all κ ∈ (0, 1). Evaluating z(κ) at the endpoints of the interval [0, 1] and
making use of [A.1.21] yields:

z(0) = −
∫ q2

q
1

(
R′ −R′(q)

)
dq < 0 , z(1) =

∫ q3

q
2

(
R′(q)−R′

)
dq > 0 ,

where the first inequality follows because R′(q) < R′ for all q
1
< q < q2, and the second because R′(q) > R′

for all q
2
< q < q3. Differentiating z(κ) in [A.1.22] using Leibniz’s rule and substituting the definitions

from [A.1.20] leads to the following result:

z′(κ) = −(q3(κ)− q1(κ))q′2(κ)R′′(q2(κ)) > 0 ,

for all κ ∈ (0, 1) since q3(κ) > q1(κ), q′2(κ) < 0, and R′′(q2(κ)) > 0 from Lemma 1. Therefore, because
z(0) < 0, z(1) > 0, and z(κ) is continuous and strictly increasing in κ, there exists a unique κ∗ ∈ (0, 1)
such that z(κ∗) = 0.

The solution of the system of equations [A.1.16] is found by setting qN ≡ q1(κ∗) and qS ≡ q3(κ∗),
using the solution κ = κ∗ of the equation z(κ) = 0 obtained above. From [A.1.20], it follows immediately
that R′(qN ) = R′(qS), establishing the first equality in [A.1.16]. Since z(κ∗) = 0, the definition of z(κ)
in equation [A.1.22] implies:∫ qS

q2(κ∗)

(
R′(q)−R′(q2(κ∗))

)
dq =

∫ q2(κ∗)

qN

(
R′(q2(κ∗))−R′(q)

)
dq , [A.1.23]

which is rearranged to deduce: ∫ qS

qN

R′(q)dq = (qS − qN )R′(q2(κ∗)) . [A.1.24]
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Equation [A.1.20] implies R′(q2(κ∗)) = R′(qN ) = R′(qS) which together with the above establishes that:

R′(qS) = R′(qN ) =
R(qS)−R(qN )

qS − qN
, [A.1.25]

that is, the values of qN and qS are indeed a solution of the system of equations in [A.1.16].

Uniqueness

First note that given the monotonicity of R′(q) on the intervals [0, q] and [q,∞), and using the fact that the
range of R′(q) is [R′,R′] on [q

1
, q1], [q

2
, q2] and [q

3
, q3], it follows that no solution of [A.1.16] can be found

in either [0, q
1
) or (q3,∞) since marginal revenue needs to be equalized at two quantities. Furthermore,

as the definitions of the functions q1(κ), q2(κ) and q3(κ) in [A.1.20] make clear, it is necessary that those
two quantities correspond to two out of the three of q1(κ), q2(κ) and q3(κ) for some particular κ ∈ [0, 1]
if marginal revenue is to be equalized at two distinct points.

In addition to equalizing marginal revenue, the solution qS and qN must satisfy the second equality in
[A.1.16]. If qN is set equal to q1(κ) and qS equal to q3(κ) for the same value of κ ∈ [0, 1] then equations
[A.1.23] and [A.1.24] show that the second equality in [A.1.16] requires z(κ) = 0. But it has already been
demonstrated that there is one and only one solution of this equation.

Now consider the alternative choices of setting qN to q1(κ) and qS to q2(κ) for some common κ ∈ [0, 1],
or to q2(κ) and q3(κ) respectively, again for some common value of κ. Since [A.1.20] holds by construction,
and the function R′(q) is strictly decreasing on the intervals [q

1
, q1] and [q

3
, q3], and strictly increasing on

[q
2
, q2], it follows that:∫ q2(κ)

q1(κ)
R′(q)dq < (q2(κ)− q1(κ))R′(q2(κ)) ,

∫ q3(κ)

q2(κ)
R′(q)dq > (q3(κ)− q2(κ))R′(q2(κ)) ,

and hence both inequalities R(q2(κ))−R(q1(κ)) < (q2(κ)− q1(κ))R′(q2(κ)) and R(q3(κ))−R(q2(κ)) >
(q3(κ) − q2(κ))R′(q2(κ)) must hold for every κ ∈ [0, 1]. Consequently, there is no way that all three
equations in [A.1.25] can hold except by setting qN = q1(κ∗) and qS = q3(κ∗). Therefore the solution of
[A.1.16] constructed above is unique.

(ii) Lemma 1 shows that R(q) is a strictly concave function on the intervals [0, q] and [q,∞). The
argument above demonstrating the existence and uniqueness of the solution establishes that qN and qS
must lie respectively in the intervals (q

1
, q1) and (q

3
, q3), which are themselves contained in [0, q] and [q,∞)

respectively. Together these findings imply R′′(qN ) < 0 and R′′(qS) < 0, and that the following inequalities
must hold:

R(q) ≤ R(qN )+R′(qN )(q−qN ) ∀q ∈ [0, q] , and R(q) ≤ R(qS)+R′(qS)(q−qS) ∀q ∈ [q,∞) , [A.1.26]

where the inequalities are strict for q 6= qN and q 6= qS respectively. Note that an implication of the
equations characterizing qS and qN in [A.1.16] is:

R(qS)−R′(qS)qS = R(qN )−R′(qN )qN . [A.1.27]

By evaluating the first inequality in [A.1.26] at q = 0, where R(0) = 0, and making use of the equation
above it is deduced that:

R(qS)−R′(qS)qS > 0 , R(qN )−R′(qN )qN > 0 ,

and thus R(qS)/qS > R′(qS) and R(qN )/qN > R′(qN ). This confirms all the inequalities given in [A.1.17].

(iii) By applying the inequalities in [A.1.26] at the endpoints q and q of the intervals [0, q] and [q,∞) it
follows that:

R(q) ≤ R(qN ) +R′(qN )(q− qN ) , and R(q) ≤ R(qN ) +R′(qN )(q− qN ) . [A.1.28]

44



Now take any q ∈ (q, q) and note that because Lemma 1 demonstrates R(q) is a convex function on this
interval:

R(q) ≡ R
((

q− q

q− q

)
q +

(
q− q

q− q

)
q

)
≤
(

q− q

q− q

)
R(q) +

(
q− q

q− q

)
R(q) , [A.1.29]

using the fact that the coefficients of R(q) and R(q) in the above are positive and sum to one. A weighted
average of the two inequalities in [A.1.28] using as weights the coefficients from [A.1.29] yields R(q) ≤
R(qN ) +R′(qN )(q− qN ) for all q ∈ (q, q). This finding, together with the inequalities in [A.1.26] and the
equations [A.1.25] and [A.1.27], implies:

R(q) ≤ R(qS) +R′(qS)(q− qS) = R(qN ) +R′(qN )(q− qN )

for all q ≥ 0. Thus [A.1.18] is established, which completes the proof. �

The existence and uniqueness of the solution of equations [A.1.16] has been demonstrated given condi-
tion [4.3] for the non-monotonicity of the marginal revenue function R′(q). A method for computing this
solution and a characterization of which parameters it depends upon is provided in the following result.

Lemma 3 Let qS and qN be the solution of equations [A.1.16] (under the conditions assumed in Lemma 2),
and let ρN ≡ D−1(qN ) and ρS ≡ D−1(qS) be the corresponding relative prices consistent with the demand
function [A.1.1]. In addition, define the markup ratio µ ≡ µS/µN = ρS/ρN and the quantity ratio χ ≡
qS/qN .

Consider the functions:

a0(µ; ε, η) ≡ ε(ε− 1)µη−ε , [A.1.30a]

a1(µ; ε, η) ≡ η(ε− 1)
(

1− µη−ε+1

1− µ

)
+ ε(η − 1)

(
µη−ε − µ

1− µ

)
, [A.1.30b]

a2(η) ≡ η(η − 1) , [A.1.30c]

b0(µ; ε, η) ≡ (ε− 1)

(
µ2(η−ε) − µ2η−ε

1− µη

)
, [A.1.30d]

b1(µ; ε, η) ≡ (η − 1)

(
µ2(η−ε) − µη

1− µη

)
+ 2(ε− 1)

(
µη−ε − µ2η−ε

1− µη
)
, [A.1.30e]

b2(µ; ε, η) ≡ (ε− 1)
(

1− µ2η−ε

1− µη
)

+ 2(η − 1)
(
µη−ε − µη

1− µη
)
, [A.1.30f]

b3(η) ≡ (η − 1) , [A.1.30g]

and the resultant R(µ; ε, η), defined in terms of the following determinant:

R(µ; ε, η) ≡

∣∣∣∣∣∣∣∣∣∣
a0(µ; ε, η) a1(µ; ε, η) a2(η) 0 0

0 a0(µ; ε, η) a1(µ; ε, η) a2(η) 0
0 0 a0(µ; ε, η) a1(µ; ε, η) a2(η)

b0(µ; ε, η) b1(µ; ε, η) b2(µ; ε, η) b3(η) 0
0 b0(µ; ε, η) b1(µ; ε, η) b2(µ; ε, η) b3(η)

∣∣∣∣∣∣∣∣∣∣
. [A.1.31]

Define also the function z(µ; ε, η):

z(µ; ε, η) ≡ −a1(µ; ε, η)−
√

a1(µ; ε, η)2 − 4a2(η)a0(µ; ε, η)
2a2(η)

. [A.1.32]

(i) The markup ratio µ ≡ ρS/ρN is the only solution of R(µ; ε, η) = 0 for 0 < µ < 1 where z(µ; ε, η) is a
positive real number. Thus µ depends only on parameters ε and η.

(ii) Given the value of µ satisfying R(µ; ε, η) = 0, the quantity ratio χ ≡ qS/qN is:

χ = µ−ε
(

1 + µ−(η−ε)z(µ; ε, η)
1 + z(µ; ε, η)

)
, [A.1.33]

45



which depends only on parameters ε and η.

(iii) The equilibrium markups µS and µN from [4.6] depend only on ε and η and are given by:

µS =
ε+ ηµ−(η−ε)z(µ; ε, η)

(ε− 1) + (η − 1)µ−(η−ε)z(µ; ε, η)
, µN =

ε+ ηz(µ; ε, η)
(ε− 1) + (η − 1)z(µ; ε, η)

. [A.1.34]

(iv) The equilibrium values of ρN , ρS , qN and qS depend on parameters ε, η and λ and are obtained as
follows:

ρN =
(

λ

1− λz(µ; ε, η)
)− 1

η−ε
, ρS =

(
λ

1− λz(µ; ε, η)
)− 1

η−ε
µ , [A.1.35]

with qN = D(ρN ) and qS = D(ρS) using the relative demand function D(ρ) from [A.1.1].

Proof (i) Using the expression for marginal revenue from [A.1.5], the first equality in [A.1.16] is
equivalent to the requirement that:(

λ(ε− 1) + (1− λ)(η − 1)ρε−ηN

λε+ (1− λ)ηρε−ηN

)
ρN =

(
λ(ε− 1) + (1− λ)(η − 1)ρε−ηS

λε+ (1− λ)ηρε−ηS

)
ρS .

By dividing numerator and denominator of the above by λ, defining z ≡ ((1−λ)/λ)ρε−ηN , and restating the
resulting equation in terms of µ = ρS/ρN and z it follows that:

µ =

(
ε+ ηµ−(η−ε)z

ε+ ηz

)(
(ε− 1) + (η − 1)z

(ε− 1) + (η − 1)µ−(η−ε)z

)
. [A.1.36]

Since ρS < ρN the markup ratio satisfies 0 < µ < 1, and thus neither of the denominators of the fractions
above can be zero. Hence for a given value of µ, equation [A.1.36] is rearranged to obtain a quadratic
equation in z:

η(η − 1)µ−(η−ε)(1− µ)z2 +
(
ε(η − 1)

(
1− µ1−(η−ε)

)
+ η(ε− 1)

(
µ−(η−ε) − µ

))
z + ε(ε− 1)(1− µ) = 0 ,

which as 0 < µ < 1 is in turn multiplied on both sides by µη−ε/(1− µ) to obtain an equivalent quadratic:

η(η − 1)z2 +
(
η(ε− 1)

(
1− µη−ε+1

1− µ

)
+ ε(η − 1)

(
µη−ε − µ

1− µ

))
z + ε(ε− 1)µη−ε = 0 . [A.1.37]

This quadratic is denoted by Q(z;µ, ε, η) ≡ a0(µ; ε, η)+a1(µ; ε, η)z+a2(η)z2, where the coefficient functions
a0(µ; ε, η), a1(µ; ε, η) and a2(η) listed in [A.1.30] are obtained directly from [A.1.37].

Now note that R(qN ) − qNR′(qN ) = R(qS) − qSR′(qS) is deduced by rearranging the equations in
[A.1.16]. The definition of the total revenue function R(q) in [A.1.4] shows that R (D(ρ)) = ρD(ρ) is a
valid alternative expression for all ρ > 0. By combining these two observations and substituting qS = D(ρS)
and qN = D(ρN ), the relative prices and quantities must satisfy:

qS
(
ρS −R′(qS)

)
= qN

(
ρN −R′(qN )

)
. [A.1.38]

After expressing this in terms of the quantity ratio χ ≡ qS/qN and dividing both sides by R′(qS) = R′(qN )
(justified by [A.1.16]), equation [A.1.38] becomes:

χ =
(

ρN
R′ (D(ρN ))

− 1
)/( ρS

R′ (D(ρS))
− 1
)
. [A.1.39]

The formula for marginal revenue R′(D(ρ)) in [A.1.5] is then rearranged to show:

ρ

R′ (D(ρ))
− 1 =

λ+ (1− λ)ρε−η

λ(ε− 1) + (η − 1)(1− λ)ρε−η
,
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which is substituted into [A.1.39] to obtain:

χ =

(
λ+ (1− λ)ρε−ηN

λ+ (1− λ)ρε−ηS

)(
(ε− 1)λ+ (η − 1)(1− λ)ρε−ηS

(ε− 1)λ+ (η − 1)(1− λ)ρε−ηN

)
.

By dividing numerator and denominator of both fractions by λ and recalling µ = ρS/ρN and the definition
z ≡ ((1− λ)/λ)ρε−ηN , this equation is equivalent to:

χ =
(

1 + z

1 + µ−(η−ε)z

)(
(ε− 1) + (η − 1)µ−(η−ε)z

(ε− 1) + (η − 1)z

)
. [A.1.40]

The quantity ratio is then written as χ = D(ρS)/D(ρN ) using the relative demand function q = R(ρ)
from equation [A.1.1], and thus:

χ =
λρ−εS + (1− λ)ρ−ηS
λρ−εN + (1− λ)ρ−ηN

.

By factorizing λρ−εS and λρ−εN from the numerator and denominator respectively, and using µ = ρS/ρN and
the definition z ≡ ((1− λ)/λ)ρε−ηN , the above expression for χ becomes:

χ = µ−ε
(

1 + µ−(η−ε)z
1 + z

)
. [A.1.41]

Putting together the two expressions for the quantity ratio χ in [A.1.40] and [A.1.41], µ and z must
satisfy the equation:(

1 + z

1 + µ−(η−ε)z

)(
(ε− 1) + (η − 1)µ−(η−ε)z

(ε− 1) + (η − 1)z

)
= µ−ε

(
1 + µ−(η−ε)z

1 + z

)
. [A.1.42]

Since the quantity ratio χ is finite, none of the terms in the denominators of [A.1.40] or [A.1.41] can be
zero, so [A.1.42] is rearranged as follows to obtain a cubic equation in z for a given value of µ:

(η − 1)µ−(2η−ε) (1− µη) z3 + µ−(2η−ε) ((ε− 1)
(
1− µ2η−ε)+ 2(η − 1) +

(
µη−ε − µη

))
z2

+ µ−(2η−ε)
(

(η − 1)
(
µ2(η−ε) − µη

)
+ 2(ε− 1)

(
µη−ε − µ2η−ε)) z

+ (ε− 1)µ−(2η−ε)
(
µ2(η−ε) − µ2η−ε

)
= 0 .

Because 0 < µ < 1, both sides of the above are multiplied by µ2η−ε/(1− µη) to obtain an equivalent cubic
equation:

(η − 1)z3 +
(

(ε− 1)
(

1− µ2η−ε

1− µη
)

+ 2(η − 1)
(
µη−ε − µη

1− µη
))

z2

+

(
(η − 1)

(
µ2(η−ε) − µη

1− µη

)
+ 2(ε− 1)

(
µη−ε − µ2η−ε

1− µη
))

z

+ (ε− 1)

(
µ2(η−ε) − µ2η−ε

1− µη

)
= 0 . [A.1.43]

This cubic is denoted by C(z;µ, ε, η) ≡ b0(µ; ε, η)+b1(µ; ε, η)z+b2(µ; ε, η)z2 +b3(η)z3, where the coefficient
functions b0(µ; ε, η), b1(µ; ε, η), b2(µ; ε, η) and b3(η) listed in [A.1.30] are obtained directly from [A.1.43].

These steps demonstrate that starting from a solution qS and qN of [A.1.16], the quadratic and the cubic
equations [A.1.37] and [A.1.43] in z must simultaneously hold for z = ((1−λ)/λ)ρε−ηN , with ρN ≡ D−1(qN ),
and where the coefficient functions [A.1.30] are evaluated at µ = ρS/ρN , with ρS ≡ D−1(qS). If the
quadratic equation Q(z;µ, ε, η) = 0 and cubic equation C(z;µ, ε, η) = 0 share a root then it is a standard
result from the theory of polynomials that the resultant R(µ; ε, η), as defined in [A.1.31], is zero. Since the
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coefficients of the polynomials Q(z;µ, ε, η) and C(z;µ, ε, η) are functions only of the markup ratio µ and the
parameters ε and η, solving the equation R(µ; ε, η) = 0 provides a straightforward procedure for finding the
equilibrium markup ratio µ. Furthermore, the only parameters appearing in the equation R(µ; ε, η) = 0
are ε and η, so the equilibrium markup ratio µ depends only on these parameters.

Lemma 2 shows that the solution of [A.1.16] for qS and qN is unique, and therefore the solution of
R(µ; ε, η) = 0 for µ must also be unique, given the added condition that the shared root z of the quadratic
Q(z;µ, ε, η) = 0 and cubic C(z;µ, ε, η) = 0 is a positive real number. This restriction is required because
z = ((1 − λ)/λ)ρε−ηN , and ρN must of course be a positive real number. Since η > ε > 1, the product
of the roots of the quadratic Q(z;µ, ε, η) = 0 is positive, so the shared root z is positive and real if and
only if either branch of the quadratic root function is positive and real. Hence this condition is verified by
checking whether z(µ; ε, η) is positive and real.

Note that the resultant R(µ; ε, η) is always zero at µ = 0 and µ = 1 for all values of ε and η. This
is seen by taking limits of the coefficients in [A.1.30] as µ → 0 and µ → 1 and applying L’Hôpital’s rule,
which yields:

C(z; 0, ε, η) = zQ(z; 0, ε, η) , C(z; 1, ε, η) = (1 + z)Q(z; 1, ε, η) .

As the polynomials Q(z;µ, ε, η) and C(z;µ, ε, η) clearly share roots when µ = 0 or µ = 1, it follows that
R(0; ε, η) = R(1; ε, η) = 0. Thus these zeros of the equation R(µ; ε, η) = 0 must be ignored when solving
for µ.

(ii) The quadratic equation Q(z;µ, ε, η) = 0 with z = ((1 − λ)/λ)ρε−ηN determines a relative price ρN
such that with ρS = µρN , marginal revenue is equalized at both ρS and ρN . Lemma 1 demonstrates that
there are two candidate solutions for ρN that meet this criterion under the conditions shown by Lemma 2
to be necessary for a solution qS and qN of [A.1.16] to exist. However, Lemma 2 shows that both ρN and
ρS are on the downward-sloping sections of the marginal revenue function. To rule out a solution in the
middle upward-sloping section of marginal revenue, the smaller of the two ρN candidate values must be
discarded to select the correct solution. Since z is decreasing in ρN , this is equivalent to discarding the
larger of the two roots of the quadratic. Given that a2(η) in [A.1.30] is positive, the smaller of the two
roots of quadratic Q(z;µ, ε, η) = 0 is found using the expression for z(µ; ε, η) in [A.1.32].

The equilibrium quantity ratio χ is obtained by substituting z = z(µ; ε, η) into [A.1.41]. This construc-
tion demonstrates that χ depends only on ε and η.

(iii) Since ρS ≡ PS/PB and ρN ≡ PN/PB according to [A.1.2], the formula for the purchase multipliers in
[3.8] implies vN = ρε−ηN and vS = µε−ηvN . Using the fact that z ≡ ((1−λ)/λ)ρε−ηN , and dividing numerator
and denominator of the expression in [4.5] by λ yields [A.1.34].

(iv) The expressions for the relative prices ρS and ρN in [A.1.35] are obtained by rearranging the
definition of z ≡ ((1− λ)/λ)ρε−ηN and using ρS = µρN . This completes the proof. �

A.2 Proof of Proposition 2

Using the relationship between the total revenue function R(q;PB, E) and its equivalent R(q) defined in
[A.1.4] using the relative demand function D(ρ) from [A.1.1], the corresponding marginal revenue functions
R′(q;PB, E) and R′(q) are proportional according to [A.1.7]. Lemma 1 demonstrates that R′(q) has the
described pattern of non-monotonicity under the conditions 0 < λ < 1 and [4.3], and is otherwise a
decreasing function of q. This completes the proof.

A.3 Proof of Theorem 1

Existence of a two-price equilibrium

For a two-price equilibrium to exist, first-order conditions [4.4] for profit-maximization must be satisfied
at two prices pS and pN , with associated quantities qS = D(pS ;PB, E) and qN = D(pN ;PB, E), where PB
is the bargain hunters’ price index from [3.4], and E = P εY is the measure of aggregate expenditure from
[3.7].
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The necessary conditions for the two-price equilibrium are now restated in terms of the relative demand
function D(ρ) defined in [A.1.1], and its associated total and marginal revenue functions R(q) and R′(q),
as defined in [A.1.4] and analysed in section A.1. The relative demand function q = D(ρ) is specified in
terms of the relative price ρ ≡ p/PB and relative quantity q ≡ q/(E/P εB), in accordance with [A.1.2]. Using
the relationships in [A.1.3] and [A.1.7], the first two optimality conditions in [4.4] are equivalent to:

R′
(
qSP

ε
B

E

)
= R′

(
qNP

ε
B

E

)
=
R
(
qSP

ε
B
E

)
−R

(
qNP

ε
B
E

)
qSP

ε
B
E − qNP

ε
B
E

. [A.3.1]

With qS ≡ qS/(E/P εB) and qN ≡ qN/(E/P εB), the first-order conditions in [A.3.1] are identical to the
equations in [A.1.16] studied in Lemma 2. These clearly require the equalization of marginal revenue
R′(q) at two different quantities, which means that the marginal revenue function must be non-monotonic.
Lemma 1 then shows that 0 < λ < 1 and parameters ε and η satisfying the inequality [4.3] are necessary
and sufficient for this. If these conditions are met then Lemma 2 demonstrates the existence of a unique
solution qS and qN of the equations [A.1.16].

The relative quantities qS and qN must also be well defined if the solution is to be economically
meaningful. This means that if ρS = D−1(qS) and ρN = D−1(qN ) are the corresponding prices pS and
pN relative to PB then ρS < 1 < ρN . This is a necessary requirement because the expression [4.8] for the
bargain hunters’ price index PB implies:

sρ1−η
S + (1− s)ρ1−η

N = 1 , [A.3.2]

and the equilibrium sales fraction s must satisfy s ∈ (0, 1).
Assume the parameters are such that ε and η satisfy [4.3], and consider a given value of λ ∈ (0, 1).

Lemma 3 shows that the markup ratio (or price ratio) µ ≡ µS/µN = ρS/ρN consistent with the unique
solution of [A.1.16] is a function only of the elasticities ε and η. The equilibrium relative prices ρS and ρN
are functions of all three parameters ε, η and λ, and are obtained from equation [A.1.35] by substituting
the equilibrium value of µ into the function z(µ; ε, η) defined in [A.1.32]. Since ρS = µρN and µ < 1, the
requirement ρS < 1 < ρN implies µ < ρS < 1. By substituting for ρS from [A.1.35], this condition is
equivalent to:

z (µ; ε, η) <
1− λ
λ

< µ−(η−ε)z (µ; ε, η) . [A.3.3]

Define lower and upper bounds for λ conditional on ε and η using the function z(µ; ε, η) together with the
equilibrium value of µ (which is a function only of ε and η):

λ(ε, η) ≡ 1
1 + µ−(η−ε)z (µ; ε, η)

, and λ(ε, η) ≡ 1
1 + z (µ; ε, η)

. [A.3.4]

Note that if z(µ; ε, η) > 0 and 0 < µ < 1 then 0 < λ(ε, η) < λ(ε, η) < 1. By rearranging the inequality
[A.3.3] and using the above definitions of the bounds on λ, the inequality is equivalent to λ lying in the
interval:

λ(ε, η) < λ < λ(ε, η) . [A.3.5]

This restriction on λ is necessary and sufficient for the existence of an equilibrium sales fraction s ∈ (0, 1)
satisfying [A.3.2]. The equivalence is demonstrated by substituting the expressions for ρS and ρN from
[A.1.35] into [A.3.2]: (

1 + s
(
µ−(η−1) − 1

))( λ

1− λz(µ; ε, η)
) η−1
η−ε

= 1 .

This is a linear equation in s, and has a unique solution because η > 1 and 0 < µ < 1. Solving explicitly
for s yields:

s =

(
λ

1−λz(µ; ε, η)
)−( η−1

η−ε

)
− 1

µ−(η−1) − 1
. [A.3.6]

Recalling the equivalence of inequalities [A.3.3] and [A.3.5], it follows that s ∈ (0, 1) if and only if λ ∈
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(λ(ε, η), λ(ε, η)). So for λ ∈ [0, λ(ε, η)] or λ ∈ [λ(ε, η), 1] there is no two-price equilibrium. But given
elasticities ε and η satisfying the non-monotonicity condition [4.3] and a loyal fraction λ ∈ (λ(ε, η), λ(ε, η)),
by using the arguments above there exist two distinct relative prices ρS ≡ pS/PB and ρN ≡ pN/PB and a
sales fraction s ∈ (0, 1) consistent with the first two equalities in [4.4]. Lemma 3 then demonstrates that the
two purchase multipliers vS and vN and the two optimal markups µS and µN are determined. Equations
[4.1], [4.2] and [4.5] show that using the optimal markups in [4.6] is equivalent to satisfying the remaining
first-order condition involving marginal cost in [4.4]. The other variables relevant to the macroeconomic
equilibrium are then determined as discussed in section 4.

Confirming that the two-price equilibrium exists then requires checking that the remaining first-order
condition [3.11c] is satisfied and that the first-order conditions are sufficient as well as necessary to charac-
terize the maximum of the profit function. Using the relationships in [A.1.7] and the results of Lemma 2
in [A.1.17] the following inequalities are deduced:

R(qS ;PB, E)−R′(qS ;PB, E)qS > 0 , and R(qN ;PB, E)−R′(qN ;PB, E)qN > 0 . [A.3.7]

Since s ∈ (0, 1), the Lagrangian multiplier ℵ from first-order conditions [3.11b]–[3.11c] is determined as
follows:

ℵ = R(qS ;PB, E)−R′(qS ;PB, E)qS = R(qN ;PB, E)−R′(qN ;PB, E)qN ,

and hence ℵ > 0 because of [A.3.7]. By combining this expression for the Lagrangian multiplier with the
first-order condition [3.11c]:

R(q;PB, E) ≤ R(qN ;PB, E) + R′(qN ;PB, E)(q − qN ) = R(qS ;PB, E) + R′(qS ;PB, E)(q − qS) , [A.3.8]

which is required to hold for all q ≥ 0. Appealing to the result of Lemma 2 in [A.1.18] and again using
[A.1.7] verifies the inequality.

The assumptions about the production function [2.5] ensure that the total cost function C (Q;W ) in
[2.6] is continuously differentiable and convex, so for all q ≥ 0:

C (q;W ) ≥ C (Q;W ) + C ′(Q;W )(q −Q) , [A.3.9]

where Q ≡ sqS+(1−s)qN is the specific total physical quantity sold using the two-price strategy constructed
earlier. Now consider a general alternative pricing strategy for a given firm, assuming that all other firms
continue to use the same two-price strategy. The new strategy is specified in terms of a distribution function
F (p) for prices. Let G(q) ≡ 1 − F (D(p;PB, E)) be the implied distribution function for quantities sold.
The level of profits P from the new strategy is obtained by making a change of variable from prices to
quantities in the integrals of [3.10]:

P =
∫
q
R(q;PB, E)dG(q)− C

(∫
q
qdG(q);W

)
.

Applying the inequalities involving the total revenue and total cost functions from [A.3.8] and [A.3.9] to
the expression for profits yields:

P ≤
(
R(qN ;PB, E)−R′(qN ;PB, E)qN

)
−
(
C (Q;W )− C ′(Q;W )Q

)
+
(
R′(qN ;PB, E)− C ′(Q;W )

)(∫
q
qdG(q)

)
.

The first-order conditions [4.4] imply that the coefficient of the integral in the above expression is zero, and
that R(qN ;PB, E)−R′(qN ;PB, E)qN = R(qS ;PB, E)−R′(qS ;PB, E)qS . Recalling Q = sqS + (1− s)qN , it
follows that:

P ≤ sR(qS ;PB, E) + (1− s)R(qN ;PB, E)− C (sqS + (1− s)qN ;W ) ,

for all alternative pricing strategies. Hence there is no profit-improving deviation from the two-price
strategy. This establishes that a two-price equilibrium exists when [4.3] and λ ∈ (λ(ε, η), λ(ε, η)) hold, and
that it is unique within the class of two-price equilibria.
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Uniqueness of the two-price equilibrium

Suppose the parameters ε, η and λ are such that a two-price equilibrium exists. Now consider the possibility
that a one-price equilibrium also exists for the same parameters. Since all firms are symmetric, the relative
price found in this one-price equilibrium is necessarily equal to one. The relative prices ρS and ρN in the
two-price equilibrium cannot be on the same side of one, implying µ < ρS < 1 and thus ρS < 1 < ρN , where
ρS = D−1(qS) and ρN = D−1(qN ) using the relative quantities qS and qN . Since [A.1.1] implies D(1) = 1
and because the relative demand function D(ρ) is strictly decreasing in ρ, it follows that qN < 1 < qS .

Given that marginal revenue must be non-monotonic if a two-price equilibrium is to exist, it follows
from Lemma 1 that R(q) is strictly concave on the intervals (0, q) and (q,∞), strictly convex on (q, q), and
from Lemma 2 that qN < q < q < qS .

Consider first the case where q < 1 < q. Since q1 = 1 for all firms in the one-price equilibrium, the
actual common quantity produced is q1 = E/P εB using [A.1.2], where PB and E are the values of these
variables associated with the putative one-price equilibrium. Since R′′(1) > 0, equation [A.1.7] implies
R′′(q1;PB, E) > 0. Therefore, for sufficiently small ξ > 0, the profits P from selling quantity q1 − ξ at one
half of shopping moments and q1 + ξ at the other half exceed the profits from offering one price and hence
one quantity at all shopping moments:

1
2
R(q1 − ξ;PB, E) +

1
2
R(q1 + ξ;PB, E)− C

(
1
2

(q1 − ξ) +
1
2

(q1 + ξ);W
)
> R(q1;PB, E)− C (q1;W ) .

Therefore a one-price equilibrium cannot exist in this case.
Next consider the case where qN < 1 < q. Let p1 = PB denote the price it is claimed all firms charge

in a one-price equilibrium, and q1 = E/P εB the associated quantity sold. Now let qS = D(ρSp1;PB, E) be
quantity sold if the sale relative price ρS = D−1(qS) is used when other firms are following the one-price
strategy of charging p1 at all shopping moments. Consider an alternative strategy where price ρSp1 is
offered at a fraction ξ of moments and price p1 at the remaining fraction 1− ξ of moments. Profits P from
the hybrid strategy are given by:

P = (1− ξ)R(q1;PB, E) + ξR(qS ;PB, E)− C ((1− ξ)q1 + ξqS ;W ) . [A.3.10]

As the cost function C (q;W ) is differentiable in q, the above equation implies:

P = (R(q1;PB, E)− C (q1;W )) + ξ(qS − q1)
(

R(qS ;PB, E)−R(q1;PB, E)
qS − q1

− C ′(q1;W )
)

+ O
(
ξ2
)
,

where O
(
ξ2
)

denotes second- and higher-order terms in ξ. A necessary condition for a one-price equilibrium
to exist is that the single price p1 is chosen optimally, in which case first-order conditions [3.11] reduce
to the usual marginal revenue equals marginal cost condition R′(q1;PB, E) = C ′(q1;W ). Hence the above
expression for P becomes:

P = (R(q1;PB, E)− C (q1;W )) + ξ(qS − q)
(

R(qS ;PB, E)−R(q1;PB, E)
qS − q1

−R′(q1;PB, E)
)

+ O
(
ξ2
)
.

[A.3.11]
Since qN < 1 < qS in the case under consideration and q1 = 1, the results from Lemma 2 in [A.1.16]

can be expressed as follows:∫ 1

qN

R′(q)dq +R(qS)−R(q1) = (qS − qN )R′(qN ) . [A.3.12]

As qN < 1 < q and R′(q) is strictly decreasing for q < q, the integral above satisfies:∫ 1

qN

R′(q)dq < (1− qN )R′(qN ) . [A.3.13]

Noting that R′(qN ) > R′(1) because of qN < 1 < q, and substituting [A.3.13] into [A.3.12] and rearranging
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yields:
R(qS)−R(1)

qS − 1
> R′(qN ) > R′(1) , [A.3.14]

where qS > 1 ensures that the direction of the inequality is preserved. Now given the fact that q1 = (E/P εB)
and qS = (E/P εB)qS from [A.1.2], and the links between the functions R(q) and R(q;PB, E) as set out in
[A.1.7]:

R(qS ;PB, E)−R(q1;PB, E)
qS − q1

> R′(q1;PB, E) . [A.3.15]

Therefore, by comparing this inequality with [A.3.11] and noting qS > q1, it follows for sufficiently small
ξ > 0 that P > R(q1;PB, E)−C (q1;W ), so profits from a hybrid strategy exceed those from following the
strategy required for the one-price equilibrium to exist.

The remaining case to consider is q < 1 < qS . The argument here is analogous to that given above.
The alternative strategy considered is offering price pN = ρNp1 (where ρN = D−1(qN )) at a fraction ξ of
shopping moments and price p1 = PB at the remaining fraction 1 − ξ, with quantities sold respectively
at those moments of qN = D(ρNp1;PB, E) and q1. Following the steps in [A.3.10]–[A.3.11] leads to an
expression for profits P resulting from this hybrid strategy:

P = (R(q1;PB, E)− C (q1;W )) + ξ(q1 − qN )
(

R′(q1;PB, E)− R(q1;PB, E)−R(qN ;PB, E)
q1 − qN

)
+ O

(
ξ2
)
.

[A.3.16]
Appealing to the properties of R(q) for q > q and following similar steps to those in [A.3.12]–[A.3.14]
implies R′(1) > R′(qS) > (R(1)−R(qN ))/(1− qN ), and hence an equivalent of [A.3.15]:

R′(q1;PB, E) >
R(q1;PB, E)−R(qN ;PB, E)

q1 − qN
. [A.3.17]

Since q1 > qN , for sufficiently small ξ > 0, [A.3.16] and [A.3.17] demonstrate that there is a hybrid strategy
which delivers higher profits than the one-price strategy used by all other firms. This proves that for all
parameters where the two-price equilibrium exists, a one-price equilibrium cannot exist for any of these
same parameter values.

One-price equilibrium

The first point to note is that when a two-price equilibrium fails to exist owing to a violation of the non-
monotonicity condition [4.3], Lemma 1 implies that marginal revenue R′(q;PB, E) is strictly decreasing
for all q. This is equivalent to total revenue R(q;PB, E) being a strictly concave function of quantity q.
Since total cost C (q;W ) is a convex function of the quantity produced, it follows immediately that the
profit function is globally concave, and thus a one-price equilibrium always exists, and is the only possible
equilibrium in the parameter range where ε or η fail to satisfy [4.3], or where λ = 0 or λ = 1.

Now suppose the parameters are such that the marginal revenue function is non-monotonic, but a
two-price equilibrium fails to exist owing to λ not lying between λ(ε, η) and λ(ε, η). Note that [A.3.3] and
[A.3.4] imply λ ∈ [0, λ(ε, η)] and λ ∈ [λ(ε, η), 1] are equivalent to 1 > qS and 1 < qN respectively.

Taking the first of these cases, Lemma 1 demonstrates the concavity of R(q) on [q,∞) (containing qS),
which establishes that R(q) ≤ R(1) +R′(1)(q− 1) for all q ∈ [q,∞). Lemma 2 shows that R(q) ≤ R(qS) +
R′(qS)(q− qS) for all q ≥ 0. Note that the concavity of R(q) in the relevant range implies R′(qS) > R′(1),
which together with the second of the previous inequalities yields R(q) ≤ R(qS) + R′(1)(q − qS) for all
q ∈ [0, qS ]. Applying the first inequality at q = qS establishes that R(qS) ≤ R(1) + R′(1)(qS − 1). By
combining these results it follows that R(q) ≤ R(1) +R′(1)(q − 1) for all q ≥ 0. Translating this into a
property of the original total revenue function R(q;PB, E) using [A.1.2] and [A.1.7] yields the following for
all q:

R(q;PB, E) ≤ R(q1;PB, E) + R′(q1;PB, E)(q − q1) . [A.3.18]

When λ ∈ [λ(ε, η), 1] the other case to consider is 1 < qN . Using an exactly analogous argument to that
given above, it is deduced that R(q) ≤ R(1) +R′(1)(q− 1) for all q ≥ 0 in this case as well. Hence [A.3.18]
holds in both cases. The convexity of the total cost function C (q;W ) together with [A.3.18] proves that
no pricing strategy can improve on that used in the one-price equilibrium.
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Non-existence of equilibria with more than two prices

Take any two prices p1 and p2 offered by a firm at a positive fraction of shopping moments, and define
ρ1 ≡ p1/PB and ρ2 ≡ p2/PB in accordance with [A.1.2]. Denote the quantities sold by q1 and q2 and define
q1 ≡ (P εB/E)q1 and q2 ≡ (P εB/E)q2 also in accordance with [A.1.2]. Using the first-order conditions [3.11]
together with [A.1.2] and [A.1.7], it follows that q1 and q2 must satisfy the system of equations [A.1.16] in
place of qS and qN . But as Lemma 2 demonstrates that the solution to this system of equations is unique,
there is a maximum of two distinct prices in any firm’s profit-maximizing strategy. This completes the
proof.

A.4 Proof of Proposition 3

(i) Lemma 3 shows that µ and χ are uniquely determined as functions of ε and η when the inequality
[4.3] is satisfied, as is necessary for the two-price equilibrium to exist. Lemma 3 also gives solutions for
µS and µN , and implicitly determines the purchase multipliers vS and vN using the expressions for ρS and
ρN in [A.1.35] and the fact that vS = (pS/PB)−(η−ε) and vN = (pN/PB)−(η−ε) from [3.8]. Hence Lemma 3
shows that these variables depend only on ε, η and λ. In conjunction with equation [4.8], knowledge of ρS
and ρN from [A.1.35] yields a linear equation for s after dividing both sides of the equation by PB.

(ii) Lemma 3 shows that µ, µS , µN and χ are independent of λ, hence verifying the claim.

(iii) Substituting the bounds for λ from [A.3.4] into equation [A.3.6] proves the first two results. Differ-
entiating [A.3.6] with respect to λ yields the third result.

(iv) The markup ratio µ is characterized implicitly as a root of the function R(µ; ε, η) = 0 from [A.1.31].
This is a determinant of a matrix whose elements are continuous functions of µ, ε and η. Therefore, µ is a
continuous function of ε and η.

Let z and z be the roots of the quadratic Q(z) = 0 from [A.1.11] of Lemma 1. Taking the limit as
ε→ 1+ yields z → 0 and z → (η − 2)/η. Note that q and q from Lemma 1 are related to z and z through
the transformation Z−1(z) from [A.1.15], which is strictly increasing. Now define zS and zN as follows in
terms of relative prices ρS and ρN :

zS ≡
1− λ
λ

ρε−ηS , zN ≡
1− λ
λ

ρε−ηN . [A.4.1]

Lemma 2 shows that qN < q < q < qS , and hence zN < z < z < zS using the monotonicity of the
Z−1(z) transformation from [A.1.15]. It follows from these inequalities and the definitions in [A.4.1] that
µ = ρS/ρN must satisfy:

µ =
(
zN
zS

) 1
η−ε

<
(
z
/
z
) 1
η−ε .

So as ε → 1+, µ converges to zero. Then note that χ is determined by [A.1.33] with z(µ; ε, η) = zN , and
hence χ→∞ as ε→ 1+.

The proof of Lemma 1 shows that the value of the function Gr(η; ε) from [A.1.12] tends to zero as
η → η∗(ε). This implies the discriminant of the quadratic Q(z) in [A.1.13] tends to zero. Therefore, the
roots z and z of Q(z) = 0 converge to some common point. Given the continuity of the transformation
Z−1(z), it follows that q and q must also converge to a common point q0. Thus in the limit, R′′(q) < 0
everywhere except at q = q0. At each stage in approaching this limit, R′(qS) = R′(qN ) holds, and therefore
it follows that qS → qN , and consequently χ converges to one. The continuity of the demand function D(ρ)
implies that ρS → ρN and so µ also converges to one. This completes the proof.

A.5 Log linearizations

A.5.1 Sales model from section 5

The notational convention adopted here is that a bar above a variable denotes its flexible-price steady-state
value as determined in section 4, and the corresponding sans serif letter denotes the log deviation of the
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variable from its steady-state value (except for the sales fraction s, where it denotes just the deviation from
steady state).

Consider first the demand function faced by firms. In the following, PS and PN denote the common sale
and normal prices pS and pN chosen by all firms, or in subsequent extensions of the model, the averages
of the normal prices and the sale prices chosen by firms. The levels of demand qS and qN at the sale and
normal prices are obtained from [4.10], which has the following log-linearized form:

qS =
(

(1− λ)v̄S
λ+ (1− λ)v̄S

)
vS − ε(PS − P) + Y , [A.5.1a]

qN =
(

(1− λ)v̄N
λ+ (1− λ)v̄N

)
vN − ε(PN − P) + Y , [A.5.1b]

and where the expressions are given in terms of log deviations of the purchase multipliers vS and vN from
[3.8]:

vS = −(η − ε) (PS − PB) , vN = −(η − ε) (PN − PB) . [A.5.2]

By substituting the purchase multipliers into the demand functions [A.5.1]:

qS = −
(
λε+ (1− λ)ηv̄S
λ+ (1− λ)v̄S

)
PS + (η − ε)

(
(1− λ)v̄S

λ+ (1− λ)v̄S

)
PB + εP + Y , [A.5.3a]

qN = −
(
λε+ (1− λ)ηv̄N
λ+ (1− λ)v̄N

)
PN + (η − ε)

(
(1− λ)v̄N

λ+ (1− λ)v̄N

)
PB + εP + Y . [A.5.3b]

From equation [4.5], the log-linearized optimal markups at given sale and normal prices are:

µS = −cSvS , with cS ≡
λ(1− λ)(η − ε)v̄S

(λε+ (1− λ)ηv̄S) (λ(ε− 1) + (1− λ)(η − 1)v̄S)
, [A.5.4a]

µN = −cNvN , with cN ≡
λ(1− λ)(η − ε)v̄N

(λε+ (1− λ)ηv̄N ) (λ(ε− 1) + (1− λ)(η − 1)v̄N )
, [A.5.4b]

which are given in terms of the purchase multipliers from [A.5.2]. Overall demand Q = sqS + (1− s)qN is
log-linearized as follows:

Q =
(

q̄S − q̄N
s̄q̄S + (1− s̄)q̄N

)
s +

(
s̄q̄S

s̄q̄S + (1− s̄)q̄N

)
qS +

(
(1− s̄)q̄N

s̄q̄S + (1− s̄)q̄N

)
qN . [A.5.5]

The bargain hunters’ price index PB as given in [4.8] (and its later generalizations) is log-linearized as
follows:

PB = θBPS + (1− θB)PN − ψBs , where [A.5.6]

θB ≡
(

s̄

s̄+ (1− s̄)µ̄η−1

)
, and ψB ≡

1
η − 1

(
1− µ̄η−1

s̄+ (1− s̄)µ̄η−1

)
,

where s is the average deviation of firms’ sales fractions. Similarly, the log-linearized aggregate price level
P from [3.3] (and its later generalizations) is:

P = s̄(λ+ (1− λ)v̄S)%̄1−ε
S PS + (1− s̄)(λ+ (1− λ)v̄N )%̄1−ε

N PN −
(

1− λ
ε− 1

)
s̄v̄S %̄

1−ε
S vS

−
(

1− λ
ε− 1

)
(1− s̄)v̄N %̄1−ε

N vN −
1

ε− 1
(
(λ+ (1− λ)v̄S)%̄1−ε

S − (λ+ (1− λ)v̄N )%̄1−ε
N

)
s .

Using the expressions for the purchase multipliers and relative prices in the flexible-price equilibrium to-
gether with the log deviations of vS and vN from [A.5.2], and the expression for PB in [A.5.6], the log-
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linearized aggregate price level is written as follows:

P = θPPS + (1− θP )PN − ψP s , where [A.5.7]

θP ≡ s̄(λ+ (1− λ)v̄S)%̄1−ε
S , and ψP ≡

λ

ε− 1
(
%̄1−ε
S − %̄1−ε

N

)
+

1− λ
η − 1

(
v̄S %̄

1−ε
S − v̄N %̄1−ε

N

)
.

The log linearization of the production function [2.5] is:

Q = αH , where α ≡ F
−1(Q̄)F ′(F−1(Q̄))
F(F−1(Q̄))

. [A.5.8]

The nominal marginal cost function [2.6] has the following log-linear form:

X = γQ + W , where γ ≡ Q̄C ′′(Q̄; W̄ )
C ′(Q̄; W̄ )

=
(
−F

−1(Q̄)F ′′(F−1(Q̄))
F ′(F−1(Q̄))

)(
Q̄

F−1(Q̄)F ′(F−1(Q̄))

)
. [A.5.9]

The final relationship to derive is that linking Y and Q. The log-deviation of the ratio Y/Q is denoted
by δ = Y−Q. To find its determinants, begin by substituting [A.5.3] into [A.5.5], and using PS = PB = X:

Q = Y + εP +
(
q̄S − q̄N

Q̄

)
s−

(
(1− s̄)ζ̄N q̄N

Q̄

)
PN

+
(
δ(η − ε)(1− λ)

(
s̄v̄S %̄

−ε
S + (1− s̄)v̄N %̄−εN

)
− s̄ζ̄S q̄S

Q̄

)
X . [A.5.10]

Substituting PS = PB = X into the expression for PB in [A.5.6] and rearranging terms yields:

s =
(1− θB)
ψB

(PN − X) . [A.5.11]

Using the above equation and making the same substitutions in the expression for P from [A.5.7]:

PN =
(

ψB
(1− θP )ψB − (1− θB)ψP

)
P−

(
(1− θB)ψP θPψB

(1− θP )ψB − (1− θB)ψP

)
X . [A.5.12]

Substituting equations [A.5.11] and [A.5.12] into [A.5.10] yields the following formula for δ = Y − Q:

δ =
(
ε+

(q̄S − q̄N )(1− θB)− ψB(1− s̄)ζ̄N q̄N
((1− θP )ψB − (1− θB)ψP ) Q̄

)
(X− P) , [A.5.13]

which has been simplified by noting that all the constituent equations are homogeneous of degree zero in
nominal variables, so the resulting expression for δ must be expressible in terms of real marginal cost X−P.
Writing this as δ = δxx, where x = X− P, the coefficient δx is given by:

δx ≡ ε− δ
ψB(1− s̄) (λε+ (1− λ)ηv̄N ) %̄−εN − (1− θB)

(
(λ+ (1− λ)v̄S)%̄−εS − (λ+ (1− λ)v̄N )%̄−εN

)
(1− θP )ψB − (1− θB)ψP

,

[A.5.14]
where the expressions for the flexible-price equilibrium values of ζ̄N , q̄S , q̄N and Q̄ are used.

A.5.2 Sales model with flexible wages from section 6

The log-linearized labour supply equation [6.1] is:

w =
σ−1
h

α
Q + σ−1

c Y , where σc ≡ −
(
Ȳ ucc(Ȳ )
uc(Ȳ )

)−1

, and σh ≡
(F−1(Ȳ /δ)νhh(F−1(Ȳ /δ))

νh(F−1(Ȳ /δ))

)−1

,

[A.5.15]
and where the log deviation of the real wage is w = W − P.
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A.5.3 Aggregation in the dynamic sales model from section 7.1

The equivalent of the expression for the aggregate price level Pt in [7.3] for PB,t, the bargain hunters’ price
index, is obtained from the definition in [3.4]:

PB,t =

(
(1− φp)

∞∑
`=0

φ`p

{
s`,tp

1−η
S,`,t + (1− s`,t)R1−η

N,t−`

}) 1
1−η

.

Using the demand function [3.8], the total quantity sold by a vintage-` firm is:

Q`,t ≡ s`,tqS,`,t + (1− s`,t)qN,`,t , where qS,`,t = D(pS,`,t;PB,t, Et) , and qN,`,t = D(RN,t−`;PB,t, Et) .

where qS,`,t and qN,`,t are the respective quantities sold at prices pS,`,t and RN,t−`. The corresponding pur-
chase multipliers are vS,`,t = v(pS,`,t;PB,t) and vN,`,t = v(RN,t−`;PB,t). Given the total quantity produced
Q`,t, the vintage-specific hours of labour hired H`,t and nominal marginal cost X`,t are:

H`,t = F−1(Q`,t) , X`,t ≡ C ′(Q`,t;Wt) .

Proposition 4 shows that X`,t = Xt, Q`,t = Qt and pS,`,t = PS,t. It follows immediately that H`,t = Ht,
qS,`,t = qS,t and vS,`,t = vS,t.

The log linearizations derived in section A.5.1 continue to hold in the fully dynamic version of the
model if certain variables are reinterpreted as weighted averages over normal-price vintages. These weighted
averages are:

st ≡ (1− φp)
∞∑
`=0

φ`ps`,t , qN,t ≡ (1− φp)
∞∑
`=0

φ`pqN,`,t , vN,t ≡ (1− φp)
∞∑
`=0

φ`pvN,`,t ,

and also:

PN,t ≡ (1− φp)
∞∑
`=0

φ`pRN,t−` . [A.5.16]

A.5.4 DSGE model from section 7.3

The log linearization of the intertemporal IS equation in [7.14] is:

Yt = EtYt+1 + ϑm (mt − Etmt+1)− σc (it − Etπt+1) , [A.5.17]

where it ≡ log(1 + it)− log(1 + ī) is the log deviation of the gross nominal interest rate, πt ≡ log πt − log π̄
is the log deviation of the gross inflation rate, and the elasticities σc and ϑm are given by:

σc ≡ −
(
Ȳ υcc(Ȳ , m̄)
υc(Ȳ , m̄)

)−1

, ϑm ≡ −
m̄υmc(Ȳ , m̄)
Ȳ υcc(Ȳ , m̄)

.

Money demand from [7.14] is log linearized as follows:

mt = ϑyYt − ϑiit , [A.5.18]

where the income elasticity ϑy and interest semi-elasticity ϑi are:

ϑy ≡
Ȳ υmc(Ȳ ,m̄)
υm(Ȳ ,m̄)

− Ȳ υcc(Ȳ ,m̄)
υc(Ȳ ,m̄)

m̄υmc(Ȳ ,m̄)
υc(Ȳ ,m̄)

− m̄υmm(Ȳ ,m̄)
υm(Ȳ ,m̄)

, ϑi ≡
β

(1− β)
(
m̄υmc(Ȳ ,m̄)
υc(Ȳ ,m̄)

− m̄υmm(Ȳ ,m̄)
υm(Ȳ ,m̄)

) .
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Note that after specifying σc, ϑy and ϑi, the steady-state ratio of real money balances to income (the
reciprocal of money velocity) is determined as follows:

m̄ =

 (1− β)ϑm
βσcϑy

(1−β)ϑi
− 1

 Ȳ . [A.5.19]

The log-linearized version of equation [7.15] for the utility-maximizing reset wage is:

RW,t =
(1− βφw)
(1 + ςσ−1

h )

∞∑
`=0

(βφw)`Et
[
Pt+` + ςσ−1

h Wt+` + σ−1
c (Yt+` − ϑmmt+`) + σ−1

h Ht+`
]
,

which has the following recursive form:

RW,t = βφwEtRW,t+1 +
(1− βφw)
(1 + ςσ−1

h )

(
Pt + ςσ−1

h Wt + σ−1
c (Yt − ϑmmt) + σ−1

h Ht
)
. [A.5.20]

The log-linearized wage index [7.16] is:

Wt =
∞∑
`=0

(1− φw)φ`wRW,t−` ,

which also has a recursive form:
Wt = φwWt−1 + (1− φw)RW,t . [A.5.21]

Combining the reset wage equation [A.5.20] with the wage index equation [A.5.21] yields an expression for
wage inflation πW,t ≡Wt −Wt−1:

πW,t = βEtπW,t+1 +
(1− φw)(1− βφw)

φw

1
1 + ςσ−1

h

(
σ−1
h

α
Qt + σ−1

c (Yt − ϑmmt)− wt

)
, [A.5.22]

where the link between hours Ht and quantity Qt in [A.5.8] is used.

A.6 Proof of Theorem 2

(i) Suppose that all firms share the same fixed normal price pN consistent with the flexible-price equi-
librium of section 4. The first-order condition for the optimal choice of the sales fraction s, which is the
first equation in [5.1], is log-linearized as follows:

(q̄S − q̄N )X = µ̄S q̄SpS + (µ̄S − 1)q̄S(qS − qN ) ,

where the fact that (µ̄S − 1)q̄S = (µ̄N − 1)q̄N is used to simplify the expression. By using the log-linearized
demand functions [A.5.3] and setting pN = 0:

(q̄S − q̄N )X =
(
µ̄S − (µ̄S − 1)

(
λε+ (1− λ)ηv̄S
λ+ (1− λ)v̄S

))
q̄SpS

+ (η − ε)
(

(1− λ)v̄S
λ+ (1− λ)v̄S

− (1− λ)v̄N
λ+ (1− λ)v̄N

)
(µ̄S − 1)q̄SPB . [A.6.1]

Given the expression for µ̄S in [4.6], the coefficient of pS in the above is zero. Since q̄S > q̄N , this equation
implies X is independent of pS . By using (µ̄S − 1)q̄S = (µ̄N − 1)q̄N again, [A.6.1] implies:

(q̄S − q̄N )X = (q̄S − q̄N )PB −
(

1− (η − ε)
(

(1− λ)v̄S
λ+ (1− λ)v̄S

)
(µ̄S − 1)

)
q̄SPB

+
(

1− (η − ε)
(

(1− λ)v̄N
λ+ (1− λ)v̄N

)
(µ̄N − 1)

)
q̄NPB . [A.6.2]
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After substituting the expressions for µ̄S and µ̄N from [4.6], the above equation reduces to:

(q̄S − q̄N )X = (q̄S − q̄N )PB + (ε− 1) ((µ̄S − 1)q̄S − (µ̄N − 1)q̄N ) PB ,

and noting that the coefficient on the final term is zero, it follows that X = PB for all pS .

(ii) The optimal pS is characterized by the second equation in [5.1]. In log-linear terms it is:

pS = µS + X .

By substituting the expression for the log-linearized optimal sale markup from [A.5.4] and the sale purchase
multiplier from [A.5.2], and then rearranging terms yields:

(1− (η − ε)cS) (pS − X) = 0 , [A.6.3]

so pS = X if the coefficient in the above is different from zero. The expressions for cS from [A.5.4] and µ̄S
from [4.6] imply:

(1− (η − ε)cS)
µ̄S

=
(λ(ε− 1) + (1− λ)(η − 1)v̄S) (λε+ (1− λ)ηv̄S)− (η − ε)2λ(1− λ)v̄S

(λε+ (1− λ)ηv̄S)2 .

Using [A.1.8] and noting that vS = ρε−ηS it follows that 1 − (η − ε)cS = µSD′(ρS)R′′(D(ρS)), where the
functions D(ρ) and R(q) are defined in [A.1.1] and [A.1.4]. The coefficient in [A.6.3] is strictly positive
because D′(ρS) < 0 and Lemma 2 shows that R′′(D(ρS)) < 0, and therefore pS = X. This completes the
proof.

A.7 Solving the log-linearized model

A.7.1 Sales model from section 5

The model is log-linearized around the flexible-price and flexible-wage equilibrium characterized in section 4.
The system of log-linearized equations is:

P = θPpS − ψP s , [A.7.1a]
PB = θBpS − ψBs , [A.7.1b]
pS = X , [A.7.1c]
PB = X , [A.7.1d]
Y = Q + δx(X− P) , [A.7.1e]
X = γQ , [A.7.1f]
Y = M− P . [A.7.1g]

Equations [A.7.1a] and [A.7.1b] are [A.5.7] and [A.5.6] with PN = 0. Equations [A.7.1c] and [A.7.1d] are
the results of Theorem 2. Equation [A.7.1e] is taken from [A.5.13] and [A.5.14] with δ = Y − Q. Equation
[A.7.1f] follows from [A.5.9] with W = 0. Finally, equation [A.7.1g] is the log linearization of [2.4]. The
money supply M is exogenous.

A.7.2 Sales model with flexible wages from section 6

The system of equations is the same as [A.7.1] except that [A.7.1f] is dropped and replaced by [A.5.9], and
an additional equation for the wage W is taken from [A.5.15]:

W = P +
σ−1
h

α
Q + σ−1

c Y , [A.7.2a]

X = W + γQ . [A.7.2b]
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A.8 Proof of Proposition 4

(i) Consider a firm with arbitrary deviations pS and pN of its sale and normal prices from the flexible-
price equilibrium. The log-linearized first-order condition for the sales fraction (the first equation in [5.1])
is:

(q̄S − q̄N )X = µ̄S q̄SpS − µ̄N q̄NpN + (µ̄S − 1)q̄S(qS − qN ) , [A.8.1]

where the fact that (µ̄S − 1)q̄S = (µ̄N − 1)q̄N is used to simplify the expression. By using [A.5.3]:

(q̄S − q̄N )X =
(
µ̄S − (µ̄S − 1)

(
λε+ (1− λ)ηv̄S
λ+ (1− λ)v̄S

))
q̄SpS

−
(
µ̄N − (µ̄N − 1)

(
λε+ (1− λ)ηv̄N
λ+ (1− λ)v̄N

))
q̄NpN

+ (η − ε)
(

(1− λ)v̄S
λ+ (1− λ)v̄S

− (1− λ)v̄N
λ+ (1− λ)v̄N

)
(µ̄S − 1)q̄SPB .

Given the expressions for µ̄S and µ̄N in [4.5], the coefficients of both pS and pN in the above are zero.
Since q̄S > q̄N , this equation implies X is independent of pS and pN . Using (µ̄S − 1)q̄S = (µ̄N − 1)q̄N again
in equation [A.8.1] yields the same expression involving X and PB as found in [A.6.2]. Following the same
steps subsequent to [A.6.2] establishes that X = PB.

(ii) Since all firms face the same wage W, and as part (i) shows that all have the same nominal marginal
cost X, the log linearization of nominal marginal cost in [A.5.9] shows that all must produce the same total
quantity Q.

(iii) The profit-maximizing sale and normal prices from [4.5] are p∗S = µSX and p∗N = µNX. In log-linear
terms these equations are:

p∗S = µS + X , p∗N = µN + X .

By following the same steps as in the proof of part (ii) of Theorem 2, it follows that p∗S = X and p∗N = X.

(iv) Let pS and pN be given sale and normal prices for a particular firm, and let s be the optimal sales
fraction implied by the first equation in [5.1]. The resulting profits P from [3.10] are:

P = spSqS + (1− s)pNqN − C (Q;W ) ,

where C (Q;W ) is the total cost function [2.6]. Taking a second-order Taylor expansion of profits around
the flexible-price equilibrium yields:

P = s̄p̄S q̄S (pS + qS) + p̄S q̄Ss + (1− s̄)p̄N q̄N (pN + qN )− p̄N q̄N s + p̄S q̄Ss (pS + qS)

− p̄N q̄N s (pN + qN ) +
1
2
p̄S q̄S s̄ (pS + qS)2 +

1
2
p̄N q̄N (1− s̄) (pN + qN )2

− Q̄X̄Q− 1
2
Q̄X̄(1 + γ)Q2 − Q̄X̄QW + t.i.p. + O(3) , [A.8.2]

where “t.i.p.” denotes terms independent of an individual firm’s normal and sale prices, and O(3) represents
third- and higher-order terms in the log deviations of variables from their steady-state values. The first-
order approximation [A.5.3] of the demand functions [4.10] is extended to include second-order terms as
follows:

qS = −ζ̄SpS + dS +
(η − ε)2λ(1− λ)v̄S
2(λ+ (1− λ)v̄S)2

(pS − PB)2 + O(3) , [A.8.3a]

qN = −ζ̄NpN + dN +
(η − ε)2λ(1− λ)v̄N
2(λ+ (1− λ)v̄N )2

(pN − PB)2 + O(3) , [A.8.3b]

where expressions for the price elasticities ζ̄S and ζ̄N are obtained from [4.1], and the following terms are
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defined:
dS =

(η − ε)(1− λ)v̄S
λ+ (1− λ)v̄S

PB + εP + Y , dN =
(η − ε)(1− λ)v̄N
λ+ (1− λ)v̄N

PB + εP + Y .

Then by using the second-order Taylor expansion of total quantity sold Q = sqS + (1− s)qN :

Q̄

(
Q +

Q2

2

)
= s̄q̄SqS + (1− s̄)q̄NqN + (q̄S − q̄N )s +

s̄q̄S
2

q2
S +

(1− s̄)q̄N
2

q2
N + q̄SsqS − q̄N sqN + O(3) ,

the level of profits P from [A.8.2] is broken down into four components:

P = P1 + P2 + P3 + P4 + t.i.p. + O(3) ,

with:

P1 ≡ s̄p̄S q̄S (pS + qS) + (1− s̄)p̄N q̄N (pN + qN ) + (p̄S q̄S − p̄N q̄N )s
− X̄(s̄q̄SqS + (1− s̄)q̄NqN + (q̄S − q̄N )s) , [A.8.4a]

P2 ≡
1
2
p̄S q̄S s̄ (pS + qS)2 +

1
2
p̄N q̄N (1− s̄) (pN + qN )2 − X̄

(
s̄q̄S
2

q2
S +

(1− s̄)q̄N
2

q2
N

)
, [A.8.4b]

P3 ≡ p̄S q̄Ss (pS + qS)− p̄N q̄N s (pN + qN )− X̄ (q̄SsqS − q̄N sqN ) , [A.8.4c]

P4 ≡ −
γX̄Q̄

2
Q2 − X̄Q̄WQ . [A.8.4d]

By using the equations p̄S = µ̄SX̄ and p̄N = µ̄NX̄ and simplifying, an equivalent expression for P1 in
[A.8.4a] is:

P1 = s̄q̄SX̄(µ̄SpS + (µ̄S − 1)qS) + (1− s̄)q̄NX̄(µ̄NpN + (µ̄N − 1)qN ) + X̄(q̄S(µ̄S − 1)− q̄N (µ̄N − 1))s .

The first-order terms in the above are shown to have zero coefficients by substituting the second-order
expansions of demand from [A.8.3] and using the expressions for µ̄S and µ̄N from [4.6], and q̄S(µ̄S − 1) =
q̄N (µ̄N − 1). Thus:

P1 =
s̄q̄SX̄(µ̄S − 1)(η − ε)2λ(1− λ)v̄S

2(λ+ (1− λ)v̄S)2
(pS − PB)2

+
(1− s̄)q̄NX̄(µ̄N − 1)(η − ε)2λ(1− λ)v̄N

2(λ+ (1− λ)v̄N )2
(pN − PB)2 + t.i.p. + O(3) . [A.8.5]

The expression for P2 is simplified by noting that [A.8.3] implies qS = −ζ̄SpS + dS + O(2), and by
substituting this into the following equation:

p̄S (pS + qS)2 − X̄q2
S = X̄

(
µ̄S

(µ̄S − 1)2
p2
S − 2

µ̄S
µ̄S − 1

pSdS + µ̄Sd2
S

)
− X̄

(
µ̄2
S

(µ̄S − 1)2
p2
S − 2

µ̄S
µ̄S − 1

pSdS + d2
S

)
+ O(3)

= −X̄ µ̄S
µ̄S − 1

p2
S + t.i.p. + O(3) ,

where µ̄S−1 = 1/(ζ̄S−1) is used. An analogous expression holds for pN and qN . Substituting these results
into [A.8.4b] yields:

P2 = −X̄
2
(
s̄q̄S ζ̄Sp2

S + (1− s̄)q̄N ζ̄Np2
N

)
+ t.i.p. + O(3) . [A.8.6]

By taking out the term s as a common factor from P3 in [A.8.4c] and noting that p̄S = µ̄SX̄ and
p̄N = µ̄NX̄:

P3 = X̄ (q̄S (µ̄SpS + (µ̄S − 1)qS)− q̄N (µ̄NpN + (µ̄N − 1)qN )) s . [A.8.7]

Equation [A.8.3] implies qS = −ζ̄SpS +dS +O(2) and qN = −ζ̄NpN +dN +O(2), and by substituting these
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expressions into [A.8.7] and noting that µ̄S − 1 = 1/(ζ̄S − 1) and (µ̄S − 1)q̄S = (µ̄N − 1)q̄N :

P3 = X̄q̄S(µ̄S − 1)s(dS − dN ) + O(3) . [A.8.8]

The expression for P3 is simplified by noting that:

q̄S(µ̄S − 1)(dS − dN ) = q̄S(µ̄S − 1)
(

(η − ε)(1− λ)v̄S
λ+ (1− λ)v̄S

− (η − ε)(1− λ)v̄N
λ+ (1− λ)v̄N

)
PB

=
(
q̄S

(η − ε)(1− λ)v̄S(µ̄S − 1)
λ+ (1− λ)v̄S

− q̄N
(η − ε)(1− λ)v̄N (µ̄N − 1)

λ+ (1− λ)v̄N

)
PB

= (q̄S (1− (ε− 1)(µ̄S − 1))− q̄N (1− (ε− 1)(µ̄N − 1))) PB = (q̄S − q̄N )PB ,

using (µ̄S − 1)q̄S = (µ̄N − 1)q̄N repeatedly and the expressions for µ̄S and µ̄N from [4.6]. The following
expression is obtained by substituting the above result into [A.8.8]:

P3 = X̄PB(q̄S − q̄N )s + O(3) = −X̄(s̄q̄SqS + (1− s̄)q̄NqN − Q̄Q)PB + O(3) ,

where the second equality makes use of the first-order expansion of total quantity Q from [A.5.5].
Appealing to Proposition 4, the log deviations of nominal marginal cost X and total quantity sold Q

are independent of an individual firm’s pS and pN . Therefore all the terms affecting P4 in [A.8.4d] are
independent of an individual firm’s sale and normal prices. Furthermore, in the expression for P3, the
product of Q and PB is also independent of an individual firm’s two prices. Thus:

P3 = −X̄(s̄q̄SqS + (1− s̄)q̄NqN )PB + t.i.p. + O(3) , P4 = t.i.p. [A.8.9]

The following expression for the sum of P2 and P3 from [A.8.6] and [A.8.9] results after substituting
the first-order expansions of the levels of demand qS and qN into P3:

P2 + P3 = −X̄
2
(
s̄q̄S ζ̄Sp2

S + (1− s̄)q̄N ζ̄Np2
N

)
+ X̄(s̄q̄S ζ̄SpS + (1− s̄)q̄N ζ̄NpN )PB + t.i.p. + O(3) .

By completing the square of the above and noting that the remainder is independent of prices:

P2 + P3 = −1
2
s̄q̄S ζ̄SX̄ (pS − PB)2 − 1

2
(1− s̄)q̄N ζ̄NX̄ (pN − PB)2 + t.i.p. + O(3) .

Proposition 4 shows that PB = X + O(2), and hence by combining the above equation with the expression
for P1 from [A.8.5]:

P = −1
2
s̄q̄SX̄

(
ζ̄S −

(η − ε)2λ(1− λ)v̄S(µ̄S − 1)
(λ+ (1− λ)v̄S)2

)
(pS − X)2

− 1
2

(1− s̄)q̄NX̄
(
ζ̄N −

(η − ε)2λ(1− λ)v̄N (µ̄N − 1)
(λ+ (1− λ)v̄N )2

)
(pN − X)2 + t.i.p. + O(3) ,

which completes the proof.

A.9 Proof of Theorem 3

The first step is to log-linearize equation [7.2] for the optimal reset price RN,t at time t. Since R̄N = p̄N =
µ̄NX̄, it follows that this equation simplifies to:

∞∑
`=0

(βφp)`Et [RN,t − µN,`,t+` − X`,t+`] = 0 , [A.9.1]

where µN,`,t is the log-deviation of the optimal markup µN,`,t ≡ µ(RN,t−`;PB,t). The optimal markup
function is log-linearized in [A.5.4] and is given in terms of the corresponding purchase multiplier, itself
log-linearized in [A.5.2]. Putting together those results, it follows that µN,`,t+` = (η− ε)cN (RN,t − PB,t+`).
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Proposition 4 shows that marginal cost is equalized across all price vintages and thus X`,t = Xt. Further-
more, the proposition establishes that Xt = PB,t. Substituting all these findings into [A.9.1] yields:

(1− (η − ε)cN )
∞∑
`=0

(βφp)`Et [RN,t − Xt+`] = 0 .

The proof of part (iii) of Proposition 4 demonstrates that 1− (η − ε)cN > 0, and hence:

RN,t = (1− βφp)
∞∑
`=0

(βφp)`EtXt+` ,

which is expressed in an equivalent recursive form:

RN,t = βφpEtRt+1 + (1− βφp)Xt . [A.9.2]

Using the log-linearizations [A.5.7] and [A.5.6] and the definition of the price index PN,t in [A.5.16], the
expressions for Pt and PB,t are:

Pt = θPPS,t + (1− θP )PN,t − ψP st , PB,t = θBPS,t + (1− θB)PN,t − ψBst , [A.9.3]

where the fact that pS,`,t = PS,t is used in accordance with Proposition 4. The recursive form of the
expression for PN,t in [A.5.16] is:

PN,t = φpPN,t−1 + (1− φp)RN,t . [A.9.4]

Proposition 4 establishes that PS,t = Xt and hence by substituting this into [A.9.3]:

ψP st = θP (Xt − Pt) + (1− θP )(PN,t − Pt) . [A.9.5]

Likewise, by using PB,t = Xt and performing similar substitutions in the second part of [A.9.3]:

ψBst = (1− θB)(PN,t − Xt) . [A.9.6]

Equation [A.9.5] is written as:

ψP st = θP (Xt − Pt) + (1− θP ) ((PN,t − Xt)− (Xt − Pt)) ,

and st is eliminated using [A.9.6]. After some rearrangement this leads to:

Xt − PN,t =
1

1− ψ xt , [A.9.7]

where ψ is as defined in the statement of the theorem and xt = Xt − Pt is real marginal cost.
Multiplying both sides of [A.9.2] by (1 − φp) and substituting the recursive equation [A.9.4] for PN,t

yields:
PN,t − φpPN,t−1 = βφpEt [PN,t+1 − φpPN,t] + (1− φp)(1− βφp)Xt ,

which is expressed in terms of normal-price inflation πN,t ≡ PN,t − PN,t−1:

πN,t = βEtπN,t+1 + κ(Xt − PN,t) , [A.9.8]

and where κ is as defined in the statement of the theorem.
Taking the first difference of [A.9.6] yields:

∆st = −(1− θB)
ψB

(∆Xt − πN,t) . [A.9.9]

Now use the first part of [A.9.3] and make the substitution PS,t = Xt as before, and then take first differences
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and rearrange:
πt = πN,t + θP (∆Xt − πN,t)− ψP∆st .

By eliminating ∆st from this equation using [A.9.9]:

πt = πN,t + ψ (∆Xt − πN,t) .

Substituting the first difference of equation [A.9.7] into the above yields:

πN,t = πt −
ψ

1− ψ∆xt .

Combining this equation with [A.9.7] and [A.9.8] implies:(
πt −

ψ

1− ψ∆xt

)
= βEt

[
πt+1 −

ψ

1− ψ∆xt+1

]
+

κ

1− ψ xt ,

which is rearranged to yield the result [7.5]. Recursive forward substitution of equation [7.5] leads to:

πt =
1

1− ψ
∞∑
`=0

β`Et [κxt+` + ψ (∆xt+` − β∆xt+1+`)] .

Notice that all ∆xt+` terms apart from ∆xt cancel out because each occurs twice with opposite signs. Hence
equation [7.6] is obtained, which completes the proof.

A.10 Solving the log-linearized DSGE model

The fully dynamic model is log-linearized around the flexible-price and flexible-wage equilibrium charac-
terized in section 4, with [4.11] replaced by:

x̄ =
ς

ς − 1
νh
(
F−1(Ȳ /δ)

)
υc(Ȳ , m̄)F ′

(
F−1(Ȳ /δ)

) ,
and where the link between m̄ and Ȳ is given in [A.5.19]. The system of log-linearized equations is:

πt = βEtπt+1 +
1

1− ψ (κxt + ψ (∆xt − βEt∆xt+1)) , [A.10.1a]

πW,t = βEtπW,t+1 +
(1− φw)(1− βφw)

φw

1
1 + ςσ−1

h

(
σ−1
h

α
Qt + σ−1

c (Yt − ϑmmt)− wt

)
, [A.10.1b]

∆wt = πW,t − πt , [A.10.1c]
Yt = Qt + δxxt , [A.10.1d]
xt = wt + γQt , [A.10.1e]
Yt = EtYt+1 + ϑm (mt − Etmt+1)− σc (it − Etπt+1) , [A.10.1f]
mt = ϑyYt − ϑiit . [A.10.1g]

Equation [A.10.1a] is the Phillips curve with sales derived in Theorem 3. Equation [A.10.1b] is the Phillips
curve for wage inflation from [A.5.22], and equation [A.10.1c] follows from the definition of the real wage.
Equations [A.10.1d] and [A.10.1e] are taken from [A.7.1e] and [A.7.2b], which continue to hold in the
dynamic model. The IS equation [A.10.1f] and money demand [A.10.1g] come from [A.5.17] and [A.5.18].

There are two specifications of monetary policy considered: exogenous money growth [7.17a]:

∆Mt = ϕm∆Mt−1 + et , [A.10.1h]

and the Taylor rule with interest-rate smoothing [7.17b]:

it = ϕiit−1 + (1− ϕi) (ϕππt + ϕyYt) + et . [A.10.1i]
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The standard model with Dixit-Stiglitz preferences, a one-price equilibrium, and Calvo staggered price-
adjustment times features the following New Keynesian Phillips curve:

πt = βEtπt+1 +
κ

1 + εγ
xt ,

in place of [A.10.1a].15 Equation [A.10.1d] is replaced by Qt = Yt.

A.11 Second-order approximation of profits with standard consumer
preferences

Suppose a given firm charges price p and the aggregate price level is P and output is Y . Standard Dixit-
Stiglitz preferences imply the following demand function with constant price elasticity ε:

q =
( p
P

)−ε
Y .

Assume the total cost function is C (q;W ). Profits P are then given by:

P =
p1−ε

P−ε
Y − C

(( p
P

)−ε
Y ;W

)
.

Taking a second-order approximation of total revenue yields:

p1−ε

P−ε
Y = Ȳ

(
1 + (1− ε)p− εP + Y +

1
2

((1− ε)p− εP + Y)2

)
+ O(3) ,

and of total cost:

C (q;W ) = C (Ȳ ; W̄ ) +
(
ε− 1
ε

)
Ȳ

(
−ε(p− P) + Y +

1
2

(1 + γ) (−ε(p− P) + Y)2

)
+ O(3) ,

where γ ≡ Ȳ C ′′(Ȳ ; W̄ )/C ′(Ȳ ; W̄ ), and C ′(Ȳ ; W̄ ) = (ε− 1)/ε and q = −ε(p− P) + Y are used. Combining
these equations and rearranging terms leads to the following expression for profits:

P = −1
2
ε(1 + εγ)x̄P̄ Ȳ

(
p−

(
P +

1
1 + εγ

x

))2

+ t.i.p. + O(3) ,

where x = γY is real marginal cost averaged over all firms.

15See Woodford (2003) for a derivation of this equation.
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