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Abstract

To detect the quantity theory of money, we follow Lucas (1980) by looking
at scatter plots of filtered time series of inflation and money growth rates and
interest rates and money growth rates. Like Whiteman (1984), we relate those
scatter plots to sums of two-sided distributed lag coefficients constructed from
fixed-coefficient and time-varying VARs for U.S. data from 1900-2005. We
interpret outcomes in terms of population values of those sums of coefficients
implied by two DSGE models. The DSGE models make the sums of coefficients
depend on the monetary policy rule via cross-equation restrictions of a type
that Lucas (1972) and Sargent (1971) emphasized in the context of testing
the natural unemployment rate hypothesis. When the U.S. data are extended
beyond Lucas’s 1955-1975 period, the patterns revealed by scatter plots mutate
in ways that we want to attribute to prevailing monetary policy rules.
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1 Introduction

Robert E. Lucas, Jr., (1980) described low-frequency ramifications of the quantity
theory of money that he took to hold across a class of models possibly having very
different transient dynamics. He focused on low frequencies because he did not want
faulty estimates of transient dynamics to obscure the quantity theory. He verified
that the low-frequency characterizations approximated post WWII U.S. data from
1955-1975.

The virtue of relatively atheoretical tests . . . is that they correspond
to our theoretically based intuition that the quantity theoretic laws are
consistent with a wide variety of possible structures. If so, it would be
desirable to test them independently and then, if confirmed, to impose

them in constructing particular structural models rather than to proceed
in the reverse direction. Lucas (1980, p. 1007)

Lucas’s quantity theoretic connections can be cast as unit restrictions on sums of
coefficients in two-sided distributed lag regressions of an inflation rate and a nominal
interest rate on money growth rates.1 In most DSGE models, population values of
these sums of weights depend on all of the structural objects that govern transient
dynamics, including the monetary policy rule. In interpreting his empirical findings
“as a measure of the extent to which the inflation and interest rate experience of
the postwar period can be understood in terms of purely classical monetary forces,”
Lucas (1980, p. 1005) trusts that a monetary policy rule prevailed that, via the
cross-equation restrictions emphasized by Lucas (1972) and Sargent (1971, 1981),
makes the quantity theory reveal itself with a unit sum of distributed lag weights.

In this paper, we do three things. (1) We study whether Lucas’s low-frequency
findings extend beyond his 1955-1975 period to a much longer 1900-2005 period
that arguably witnessed alternative monetary rules; (2) In the context of two DSGE
models, one with flexible prices, the other with sticky prices, we study mappings
from key parameters of monetary rules to the sums of distributed lag coefficients
associated with the two quantity theoretic propositions. (3) We invert the mappings

1See Whiteman (1984) and section 2.3 below. Lucas (1972) and Sargent (1971) had warned
against using a closely related object to test the natural rate of unemployment theory. A point of
Sargent (1972, 1973) is that empirical manifestations of the natural unemployment rate hypothesis
and the Fisher equation are two sides of the same coin. In the context of the Great Moderation,
Benati and Surico (2008) show an example in which changes in reduced-form statistics are difficult
to interpret because they can be explained either by changes in predictable parts of shocks processes
and decision rules, including those for monetary policy, or by changes in variances of shocks.
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in part 2 to infer what our estimated sums of distributed lag coefficients imply about
prevailing monetary policies.

We write this paper now in the summer of 2008 because stagflation might be
back, threatening (or promising, depending on your research interests) to supply
new observations conforming to Lucas’s low-frequency characterizations of the two
quantity-theoretic propositions.

2 Revisiting Lucas’s method and findings

For U.S. data for 1955-1975, Lucas (1980) plotted moving averages of inflation and
a nominal interest rate on the y axis against the same moving average of money
growth on the x axis in order to pursue

. . . the hunch that identifying long-run with “very low frequency” might
isolate those movements in postwar inflation and interest rates which can
be accounted for on purely quantity-theoretic grounds. Lucas (1980, p.
1013)

Lucas chose a moving average that isolates low-frequency components. We present
outcomes from Lucas’s filter in our figure 1, which uses M2, the GDP deflator, and the
Federal Funds rate instead of M1, the CPI, and the treasury bill rate used by Lucas.
(In section 3.1, we describe our data, which differ from Lucas’s in ways that allow us
to study a longer time period.) The figure contains scatter plots of our raw data in
the top panels and moving averages of the raw data in the bottom panels. Following
Lucas, we plot only second quarter data. The bottom panel shows the 45 degree line
as well as two simple regression lines through the filtered data, one running ‘y on x’,
the other ‘x on y’.2 Lucas regards low-frequency versions of two quantity-theoretic
propositions as asserting that both scatter plots should approximate a 45 degree
line. Those assertions are more or less borne out by our filtered data, which seem
to wander around lines parallel and below the 45 degree line. For comparison, we
report analogous plots for Lucas’s measures of inflation and money growth in figure
26 in appendix A.

To appreciate what inspired Lucas to cast the quantity theory in this way, we
describe some mechanical features of Lucas’s filter and, following Whiteman (1984),
how Lucas’s scatter plots relate to the sum of weights in a two-sided distributed lag.

2These regression lines use all of the data, not just second-quarter data.
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Figure 1: Lucas’ filter over his sample, M2 and GDP deflator
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2.1 Lucas’s low-pass filter

For a scalar series xt and β ∈ [0, 1), Lucas (1980) constructed moving averages

xt (β) = α

n
∑

k=−n

β |k|xt+k with α =
(1 − β)2

1 − β2 − 2βn+1(1 − β)
. (1)

Choosing α according to this formula makes the sum of weights equal one. The
Fourier transform of a sequence {fk} is f(ω) =

∑∞
k=−∞ fke

−iωk. The squared Fourier

transform of the two-sided sequence {αβ |k|}n
k=−n is

|f(ω)|2 =
(1 − β)4 (1 − β2 − 2 βn+1 cos ((n+ 1)ω) + 2 βn+2 cos (nw))

2

(1 − β2 − 2 βn+1 (1 − β))2 (1 + β2 − 2 β cos (ω))2 .

Using the value β = .95 featured in Lucas’s graphs that best confirm the quantity
theory, figure 2 plots |f(ω)|2 for n = 8, 16, and 100. Because the spectral density
of the filtered variable is |f(ω)|2 times the spectral density of the original variable,
application of Lucas’s moving average filter with β = .95 achieves his intention of
focusing on low-frequency variations.3

2.2 Cross-equation restrictions in a plain vanilla model

To illustrate mappings from structural parameters to slopes of scatter plots, consider
the following simple macroeconomic model:4

πt = (1 − λ)µt + λEtπt+1 + σπǫt
µt+1 = (1 − ρ)φ+ ρµt + σµǫt+1

Rt = r + Etπt+1 + σRǫt+1,

where πt is inflation, µt is money growth, r + σRǫt+1 is the one-period real interest
rate, Rt is a one-period nominal interest rate, and ǫt+1 is an i.i.d. 3×1 random vector.
The first equation is Sargent’s (1977) rational expectations version of Phillip Cagan’s
(1955) demand function for money with λ ∈ (0, 1) parameterizing the response of
the demand for real balances to the nominal interest rate. The second equation is

3For a presentation of the classical filtering theory used in this paper, see Sargent (1987, ch XI).
4Though the example is different, the message of this subsection is also delivered by Lucas

(1972), Sargent (1971), and King and Watson (1994). The example in this section is in the spirit of
the three time-invariant examples of cross-equation restrictions in the second part of Lucas (1976).
The first part of Lucas (1976) is about random coefficients models that account for instabilities
over time.
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Figure 2: Squared Fourier transform of Lucas’s filter with β = .95 for n = 8, 16, and 100.

an exogenous law of motion for money growth. The third equation is the Fisher
equation. A rational expectations equilibrium has representation

πt = φ+

(

1 − λ

1 − λρ

)

(µt − φ) + σπǫt

Rt = r + φ+ ρ

(

1 − λ

1 − λρ

)

(µt − φ) + σRǫt+1,

two equations that are linear least squares projections of πt and Rt, respectively, on
µt.

The equilibrium displays two sharp quantity theory predictions: cross-economy
variations in the uncondition mean of money growth φ show up one-for-one in cross-
economy variations in unconditional means of π and R. However, this says nothing
about the slopes of scatter diagrams of filtered data.

To say something about those slopes, note that because the equilibrium expresses
πt and Rt directly as linear least squares regressions on contemporaneous πt, it im-
mediately follows that for this model the slopes of Lucas’s scatter plots on filtered
data are, for any filter f , just the slopes of these regressions, namely, 1−λ

1−λρ
for π on

µ and ρ

(

1−λ
1−λρ

)

for R on µ. The π on µ slope is unity if λ = 0 (no interest elasticity
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and a Cagan money demand function with no response to expected inflation) or if
ρ = 1 (money growth takes a random walk). The R on µ slope is 1 if ρ = 1.

If we had specified the evolution equation for µt to be a higher order univariate
autoregression or some rule feeding back on R and π, we would have to work harder
to find the population values of the slopes of Lucas’s scatter plots. We do that in
the next section. But the message of this section will remain intact: the slopes of
Lucas’s scatter plots are in general functions of structural parameters, prominently
including ones that describe the evolution of money growth.

In section 5 we show that the message of this section comes through in two DSGE
models. If one succeeds in injecting into these models a highly persistent and highly
volatile money growth process, the neutralities that are built into them mean that
effects of money growth variations should surface mostly in variations fluctuations
in inflation and interest rates while letting real variables live lives of their own. We
shall confirm this hunch in subsection 5.1.5 by watching how measures of volatility
and persistence vary with parameters of the monetary policy rules.

2.3 An equivalent distributed lag procedure

Whiteman (1984) observed that fitting straight lines through scatter plots of moving
averages is an informal way of computing sums of weights in long two-sided dis-
tributed lag regressions. In this subsection, we shall follow a somewhat different
route to Whiteman’s result but will return to his argument at the end.

Let {yt, zt} be a bivariate jointly covariance stationary process with unconditional
means of zero and consider the two-sided infinite least-squares projection of yt on
past, present, and future z’s:

yt =
∞

∑

j=−∞

hjzt−j + ǫt (2)

where ǫt is a random process that satisfies the population orthogonality conditions

Eǫtzt−j = 0 ∀j.

Let the spectral densities of y and z be denoted Sy(ω) and Sz(ω), respectively, and
let the cross-spectral density be denoted Syz(ω). Let the Fourier transform of {hj}
be h̃(ω) =

∑∞
j=−∞ hje

−iωj . Then

h̃(ω) =
Syz(ω)

Sz(ω)
(3)
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and the sum of the distributed lag regression coefficients is

∞
∑

j=−∞

hj = h̃(0) =
Syz(0)

Sz(0)
. (4)

Where ȳt =
∑∞

j=−∞ fjyt−j and z̄t =
∑∞

j=−∞ fjzt−j , the regression coefficient bf of
ȳt on z̄t is

bf =
cov(ȳt, z̄t)

var(z̄t)
=

1
2π

∫ π

−π
|f(ω)|2Syz(ω)dω

1
2π

∫ π

−π
|f(ω)|2Sz(ω)dω

. (5)

Evidently, (5) implies that for ȳt, z̄t constructed by applying a filter f(ω) that puts

most power near zero frequency and for a Syz(ω)
Sz(ω)

that is sufficiently smooth near

ω = 0,5

bf ≈
Syz(0)

Sz(0)
. (6)

Remark 1. Comparing formula (6) to formula (3) evaluated at ω = 0 shows that

bf ≈
∑∞

j=−∞ hj.

The population R2 of a regression of ȳ on z̄ is

R2 =
cov(ȳt, z̄t)

2

var(z̄t)var(ȳt)
(7)

which, with a filter f(ω) that puts most power near zero frequency and a Syz(ω)
Sz(ω)

that
is sufficiently smooth near ω = 0, implies

R2 ≈
Syz(0)2

Sz(0)Sy(0)
. (8)

The low-frequency relationship between inflation and money growth is better
identified when there is more variation in the low frequency components of money
growth. Government policies that influence the variance of filtered money growth
thus affect an econometrician’s ability to detect Lucas’s low-frequency manifestations
of the quantity theory.

Whiteman’s (1984) way of showing that the slope of the line drawn between
moving averages of y and z can be regarded as an estimator of the sum of distributed
lag coefficients

∑∞
j=−∞ hj differed from the direct argument we have used. Instead,

5Appendix D evaluates the quality of approximations (6) and (8) in the context of
Syz(ω)
Sz(ω) ’s

associated with two DSGE models.

8



appealing to Sims’s (1972a) approximation formula enabled Whiteman to point out
that Lucas’s low-frequency regression coefficient is an estimator of

∑∞
j=∞ hj that is

robust to misspecification of lag lengths in the projection equation (2).
Formula (5) allows us to formalize Lucas’s low-frequency characterizations of the

two quantity theoretic propositions by investigating how the parameters of a DSGE
model, including the monetary policy rule, influence the sum of weights in (2).

2.4 Mappings from VAR and DSGE models to h̃(0)

We construct estimates of sums of coefficients
∑∞

j=−∞ hj by estimating vector au-
toregressions (VARs), then interpret them in terms of two log-linear DSGE models.
Whether the sums of coefficients reveal Lucas’s frequency-domain expressions of the
two quantity-theoretic propositions depends on the prevailing monetary policy.

Time-invariant versions of our VARs and of our log-linear DSGE models can both
be represented in terms of the state space system

Xt+1 = AXt +BWt+1

Yt+1 = CXt +DWt+1 (9)

where Xt is an nX × 1 state vector, Wt+1 is an nW × 1 Gaussian random vector
with mean zero and unit covariance matrix and that is distributed identically and
independently across time, Yt is an nY × 1 vector of observables, and A,B,C,D are
matrices, with the eigenvalues of A being bounded strictly above by unity (A can be
said to be a ‘stable’ matrix). Elements of the matrices A,B,C,D can be (nonlinear)
functions of a vector of structural parameters η. Let yt, zt be two scalar components
of Yt and consider the two-sided infinite regression (2). As noted above, the Fourier
transform of the population regression coefficients is h̃(ω) =

∑∞
j=−∞ hje

−iωj and the

sum of coefficients is evidently h̃(0). We seek a mapping to h̃(0) from the structural
parameters η underneath A(η), B(η), C(η), D(η).

The spectral density matrix of Y is

SY (ω) = C(I − Ae−iω)−1BB′(I − A′eiω)−1C ′ +DD′. (10)

The spectral density matrix is the Fourier transform of the sequence of autocovari-
ance matrices EYtY

′
t−j, j = −∞, . . . ,−1, 0, 1, . . . ,+∞ whose typical element can be

recovered from SY (ω) via the inversion formula

EYtY
′
t−j =

1

2π

∫ π

−π

SY (ω)eiωjdω. (11)
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Figure 3: Persistence of a first-order a.r. process with a.r. parameter ρ, as measured by
normalized spectrum at zero frequency.

The Fourier transform of the population regression coefficients h̃(ω) can be com-
puted from formula (3) where Syz(ω), the cross spectrum between y and z, and Sz(ω),
the spectrum of z, are the appropriate elements of SY (ω).

2.5 Measures of volatility and persistence

In section 5, we shall see that within two examples of DSGE models, Lucas’s frequency-
domain expressions of the two quantity-theoretic propositions require that monetary
policy put sufficient volatility and persistence into money growth, inflation, and the
nominal interest rate. As a measure of persistence in a univariate time series y, we
follow Cogley and Sargent (2001) in using the normalized spectrum at zero:

persisty ≡
Sy(0)

1
2π

∫ π

−π
Sy(ω)dω

, (12)

where the denominator is the unconditional variance of y. For a first-order univariate
autoregression yt+1 = ρyt + ǫt+1, where {ǫt+1} is i.i.d. with mean zero and finite
variance

persisty =
1 + ρ

1 − ρ

which we plot in figure 3 for ρ ∈ [0, .95].
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3 A picture show (then some regressions)

In this section, we present the data, report Lucas’ representation of the low frequency
relationships between money growth and inflation, and money growth and the nom-
inal interest rate. Then we compute sums of distributed lag coefficients by applying
formulas (3) and (10) to bi-variate and multi-variate VARs.

3.1 Data

We use quarterly U.S. data. Real and nominal GDP (M2 stock) are available from
the FRED database since 1947Q1 (1959Q1). Prior to that, we apply backward the
growth rates on the real GNP and M2 series constructed by Balke and Gordon (1986).
As for the nominal short-term interest rate, the Federal funds rate is available from
the FRED database since 1954Q3. Prior to that, we apply backward the growth rates
on the Commercial Paper rate 6 month constructed by Balke and Gordon (1986).
Figure 4 displays year-on-year first differences of logs of raw variables. Figure 5
reports moving averages of the raw data using Lucas’s β = .95 filter. The shaded
regions in these two filters isolate the 1955-1975 period that Lucas focused on.

These figures reveal some striking patterns.

• Figure 4 reveals that for money growth, inflation, and output growth, but not
for the interest rate, volatility decreased markedly after 1950.

• The filtered data in figure 5 indicates that the shaded period that Lucas studied
exhibit persistent increases in money growth, inflation, and the interest rate.
These features let Lucas’s two quantity-theoretic propositions leap off the page.

• For the filtered data, the shaded area observations are atypical.

3.2 More scatter plots

Figure 6, which is best viewed in color, shows scatter plots of 2nd quarter observations
of filtered series over the entire period of our data sample from 1900-2005. Different
colors indicate subperiods 1900-1928, 1929-1954, Lucas’s subperiod of 1955-1975, and
1976-2005. Figures 7, 8, and 9 show scatters for subsamples alone from 1900-1928,
1929-1954, and 1976-2005. These are to be compared with figure 1 for Lucas’s period
1955-1975.

These graphs reveal the following patterns in our eyes. The scatters of points
can be said to align broadly with the two quantity propositions in the 1955-75 and
1976-2005 subperiods: the points adhere to lines that at least seem to be parallel
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Figure 4: Money growth, inflation, short-term interest rate and output growth.
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Figure 5: β=.95-filtered Money growth, inflation, short-term interest rate and output
growth.
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Figure 6: Lucas’ filter over the full sample, 2nd quarter
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Figure 7: Lucas’ filter over the sub-sample 1900-1928, 2nd quarter
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Figure 8: Lucas’ filter over the sub-sample 1929-1954, 2nd quarter

16



0 1 2 3 4 5
0

1

2

3

4

5

annual rate of money growth

an
nu

al
 r

at
e 

of
 in

fla
tio

n

                                                                                          LUCAS FILTER, 1976−2005

 

 

0 1 2 3 4 5
0

1

2

3

4

5

annual rate of money growth

sh
or

t−
te

rm
 in

te
re

st
 r

at
e

 

 

0 5 10 15
0

5

10

15
                                                                                     1976−2005

annual rate of money growth

an
nu

al
 r

at
e 

of
 in

fla
tio

n

0 5 10 15
0

5

10

15

annual rate of money growth

sh
or

t−
te

rm
 in

te
re

st
 r

at
e

β = 0.95
45 line
π on ∆m
∆m on π

β = 0.95
45 line
R on ∆m
∆m on R

Figure 9: Lucas’ filter over the sub-sample 1976-2005.

to the 45 degree line. But for the other two subperiods there are deviations. The
inflation on money growth scatter is steeper than 45 degrees during 1900-1928 and
flatter during 1929-1954; while the interest on money growth scatter is flatter than
the 45 degree line during 1900-1928 and negatively sloped during 1929-1954.6 We
enter these impressions in the appropriate places in table 1 and move on to other
entries in the table.

6Similar results are obtained using the band-pass filter proposed by Christiano and Fitzgerald
(2002) and also employed by Benati (2005), with frequency above either eight or twenty years.
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Table 1: Regressions on β = .95-filtered data, 1900-2005

Data - m: M2; p: GNP/GDP deflator; R: 6-month Commercial paper rate/federal funds rate

π on ∆m R on ∆m

median h̃(0) median h̃(0)
Lucas graph from V ARs Lucas graph from V ARs

slope OLS (2-, 4-variate) slope OLS (2-, 4-variate)

full sample <1 .58 (.58, .56) ∼0 .07 (.28, .23)
1900-28 >1 1.13 (1.31, 1.21) ∼0 .06 (.06, .05)
1929-54 <1 .39 (.43, .41) <0 -.08 (-.05, -.06)
1955-75 ∼1 .86 (1.02, .90) ∼1 .62 (.70, .78)
1976-05 <1 .48 (.75, .55) ∼1 .75 (1.05, .73)

3.3 Regressions on filtered data

Table 2 reports regression coefficients of y on x and x and y for filtered data using
different values of β. We want to focus mainly on the β = .95 outcomes that
contribute entries to table 1.

3.4 Estimates of h̃(0) from time-invariant VARs

In this section, we report three sets of fixed coefficient Bayesian VARs (BVARs) over
the full sample as well as for our four sub-samples. The three families of BVARs are:

1. a bivariate BVAR in money growth and inflation

2. a bivariate BVAR in money growth and the nominal interest rate

3. a BVAR in money growth, inflation, nominal interest rate and output growth.

Following the procedure developed by Litterman (1986) and extended by Kadiyala
and Karlsson (1997), we assume that the parameters of a VAR of order p are dis-
tributed as a Normal inverse Wishart, centered around the least square estimates of
the VAR augmented with dummy observations for the priors.7

7The prior on the autoregressive parameters is set to zero with tightness 1/p2 for the coefficient
on the first (own) lag of each variable i and σ̂i/(σ̂jp

2) with j 6= i for all the others. The scale factor
σ̂i is equal to the sample variance of the residuals from a univariate autoregressive model of order
p for the variable i (see Sims and Zha, 1998). The prior on the intercept is diffuse.
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Table 2: Regressions on filtered data, 1900-2005

Data - m: M2; p: GNP/GDP deflator; R: 6-month Commercial paper rate/federal funds rate

π on ∆m ∆m on π R on ∆m ∆m on R
β .95 .8 .5 0 .95 .8 .5 0 .95 .8 .5 0 .95 .8 .5 0

full sample .58 .57 .56 .54 .89 .84 .73 .64 .07 .05 .02 .01 .18 .15 .09 .04

1900-28 1.13 1.18 1.21 1.15 .67 .65 .61 .57 .06 .04 .00 -.01 2.16 1.27 -.01 -.41

1929-54 .39 .39 .37 .34 1.48 1.33 1.02 .84 -.08 -.07 -.06 -.06 -6.8 -7.1 -7.3 -7.2

1955-75 .86 .69 .36 .22 .61 .56 .41 .31 .62 .45 .13 .00 .89 .71 .24 .01

1976-05 .48 .45 .38 .32 .65 .59 .50 .46 .75 .74 .66 .56 .45 .43 .37 .32

Note: numbers in bold are not statistically different from one at the 10% significance level, HAC covariance matrix

We use 80000 Gibbs sample replications, discard the first 60000 as burn-in, and
then retain one every ten to minimize the autocorrelation across retained draws. For
the sake of comparison with the results from the time-varying VAR below, we set
p = 2 and retain those draws for which the roots of the associated VAR polynomial
are not inside the unit circle.

For each BVAR, we compute h̃(0) using formulas (10) and (4). Posterio distribu-
tions of h̃π,∆m(0) and h̃R,∆m(0) for the full sample 1900-2005 are plotted in Figure
10. The positive (negative) ordinate values report the posterior distribution from the
bivariate (multivariate) VAR. The posteriors indicate substantial uncertainty about
the h̃(0)’s. The probability mass associated with h̃π,∆m(0) = 1 is zero according to
the bivariate VAR, whose median estimate is 0.58. The median values for the money
growth-interest rate h̃(0) are around 0.25 in both VARs with the central 68% (90%)
mass of the distribution within the band [0, 0.55] ([−0.2, 0.84]).

The sub-sample results for the sum of distributed lag coefficients h̃(0) between
money growth and inflation (money growth and the nominal interest rate) are re-
ported in Figure 11 (Figure 12). The h̃(0)’s estimated using the multivariate VARs
are typically characterized by less uncertainty than the bivariate VAR counterparts.
In Figure 11, the value of one is inside the 68% posterior bands for the samples
1900-28 and 1955-75, and, only for the bivariate VAR, for the period 1976-2005 too.
The distributions for the later two sub-periods, however, have fatter tails than the
distributions for the earlier sub-periods.

As for the sums of coefficients h̃(0) in the two-sided distributed lag of the nominal
interest rate on money growth, figure 12 shows a striking difference between the pre-
and post-1955 periods. In the sample 1900-1928, for instance, the value of zero
is inside the 68% posterior bands. During the years between 1929 and 1955, the
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Figure 10: Full sample, 1900-2005. Posterior distributions of the long-run coefficients:
multivariate vs. bivariate VAR

probability mass associated with negative values of h̃R,∆m(0) is 98%. In contrast, the
median values for the period 1955-75 (1976-2005) are 0.78 (0.73) for the multivariate
VAR and 0.70 (1.05) for the bivariate VAR and a value of one is always inside the
68% interval.

4 Evidence from a time-varying VAR

In this section, we use a time-varying VAR with stochastic volatility to construct
‘temporary’ estimates of h̃(0) that vary over time. There are at least two good reasons
to allow for such time variation. First, the dynamics of money growth, inflation,
nominal interest rate and output growth have exhibited substantial instabilities.
Second, our long sample arguably transcends several monetary regimes, starting with
a Gold Standard and ending with the fiat standard supported by a dual mandate to
promote high employment and stable prices that succeeded Bretton Woods. Before
presenting details of the statistical model in subsection 4.2, we hurry to state the
punch line.
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Figure 11: Posterior distributions of the h̃π,∆m(0) coefficient between money growth and
inflation: multivariate vs. bivariate VAR
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Figure 12: Posterior distributions of the h̃R,∆m(0) coefficient between money growth and
the nominal interest rate: multivariate vs. bivariate VAR
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4.1 Time-variation in sums of coefficients

In Figure 13, we report as red solid lines the central 68% posterior bands of the
following object constructed from our time-varying VAR.

h̃xy,t|T (0) =
Syx,t|T (0)

Sx,t|T (0)
(13)

namely, the temporary cross-spectrum divided by the temporary spectrum at t, using
the smoothed estimates of the time-varying VAR conditioned on the data set 1, . . . , T .
We compute the temporary spectral objects by applying formulas (10) and (4) to
the (t, T ) versions of A,B,C,D.

We view equation (13) as a local-to-date t approximation of equation (4). Ide-
ally, when extracting the low-frequency relationships, we should also account for the
fact that the parameters drift going forward from date t. But this is computation-
ally challenging because it requires integrating a high-dimensional predictive density
across all possible paths of future parameters. Adhering to a practice in the learning
literature (referred to as ‘anticipated-utility’ by Kreps, 1998), we instead update the
elements of θt, Ht and At period-by-period and then treat the updated values as if
they would remain constant going forward in time.

For comparison, we also report as blue dotted (solid) lines the 68% posterior
bands (median values) based on the estimates from a fixed-coefficient 4-variate VAR
for money growth, inflation, the nominal interest rate, and output growth over the
full sample.

The medians of the distributions of the h̃(0)s display large amounts of time vari-
ation, especially for the money growth and the nominal interest rate. The posteriors
reveal substantial uncertainty about the h̃(0)s, however, and in some episodes like
the 1970s, h̃(0) values of zero and one are simultaneously inside the posterior bands
for both panels. The most recent twenty years as well as the 1940s are character-
ized by the lowest values of the median estimates and the smallest uncertainty. The
1970s, in contrast, are associated with the highest values and the largest uncertainty.

It is worth noting that the median estimates of h̃π,∆m(0) and h̃R,∆m(0) based
on the fixed coefficient multivariate BVAR for the full sample are 0.55 and 0.25
respectively. These are probably similar to the values that one would obtain by
averaging the time-varying h̃xy,t|T (0)’s over the full sample as well as across Gibbs-
sampling repetitions.

As for the unit coefficients associated with the quantity theory of money, the
value of one is outside the posterior bands for most of the sample, with the exceptions
typically concentrated in the 1970s. A comparison between the results based on the
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stochastic volatility.
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time-varying VAR and the straight lines from the fixed-coefficient VAR over different
sub-samples reveal that the two models can yield very different results. Notice that
in each sub-sample, estimates of h̃(0) based on the fixed-coefficient model (reported
in the previous section) appear to give disproportionate weight to the episodes whose
h̃(0)’s seem outliers when viewed through the lens of the time-varying estimates.

4.2 A model with drifting coefficients and stochastic volatil-
ities

We now describe the time-varying statistical model underlying the results presented
above. The model is a VAR(p) with drifting coefficients and stochastic volatility:

Yt = B0,t +B1,tYt−1 + ... +Bp,tYt−p + ǫt ≡ X
′

tθt + ǫt (14)

where X
′

t collects the first p lags of Yt, θt is a matrix of time-varying parameters, ǫt
are reduced-form errors and Yt is defined as Yt ≡ [∆mt, πt, ∆yt, Rt]

′. The operator
∆ denotes a first log difference; mt denotes the money, πt is the inflation rate, the
first difference of the log of the GDP deflator, pt; and yt is real GDP. The short-term
nominal interest rate is Rt. Following Cogley and Sargent (2005), we set the lag order
p=2. The time-varying VAR parameters, collected in the vector θt, are postulated
to evolve according to:

p(θt | θt−1, Q) = I(θt) f(θt | θt−1, Q) (15)

where I(θt) is an indicator function that takes a value of 0 when the roots of the
associated VAR polynomial are inside the unit circle and is equal to 1 otherwise.
f(θt | θt−1, Q) is given by

θt = θt−1 + ηt (16)

with ηt ∼ N(0, Q). The VAR reduced-form innovations in (14) are postulated to
be zero-mean normally distributed, with time-varying covariance matrix Ωt that is
factored as

V ar(ǫt) ≡ Ωt = A−1
t Ht(A

−1
t )′ (17)

The time-varying matrices Ht and At are defined as:

Ht ≡









h1,t 0 0 0
0 h2,t 0 0
0 0 h3,t 0
0 0 0 h4,t









At ≡









1 0 0 0
α21,t 1 0 0
α31,t α32,t 1 0
α41,t α42,t α43,t 1









(18)
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with the elements hi,t evolving as geometric random walks:

lnhi,t = lnhi,t−1 + νi,t (19)

Following Primiceri (2005), we postulate:

αt = αt−1 + τt (20)

where αt ≡ [α21,t, α31,t, .., α43,t]
′, and assume that the vector [u′t, η

′
t, τ

′
t , ν

′
t]
′ is

distributed as








ut

ηt

τt
νt









∼ N (0, V ) , with V=









I4 0 0 0
0 Q 0 0
0 0 S 0
0 0 0 Z









and Z=









σ2
1 0 0 0
0 σ2

2 0 0
0 0 σ2

3 0
0 0 0 σ2

4









(21)

where ut is such that ǫt ≡ A−1
t H

1

2

t ut.
The model (14)-(21) is estimated using Bayesian methods (see Kim and Nelson

(2000)). Full descriptions of the algorithm, including the Markov-Chain Monte Carlo
(MCMC) used to simulate the posterior distribution of the hyperparameters and the
states conditional on the data, are provided in a number of papers (see, for instance,
Cogley and Sargent, 2005, and Primiceri, 2005) and will not be repeated here.

Even though one cannot characterize analytically the joint posterior distribution
of the model parameters, it is to construct a Markov chain whose invariant distribu-
tion is the posterior. The MCMC procedure draws from the marginal density of a
set of random variables j, conditional on some realizations for another set of random
variables i, and then drawing from the marginal distribution of i conditional on the
realizations of j in the previous step. Under some assumption, the chain converge to
an invariant density that that equals the desired posterior density.

To calibrate the priors for the VAR coefficients, we use a training sample of twenty
five years, from 1875Q1-1899Q4. The results hereafter, then, refer to the period
1900Q1 to 2007Q4. The elements of S are assumed to follow an inverse-Wishart
distribution centered at 10−3 times the prior mean(s) of the relevant element(s)
of the vector αt with the prior degrees of freedom equal to the minimum allowed.
The priors for all the other hyperparameters are borrowed from Cogley and Sargent
(2005). We use 80000 Gibbs sampling replications, discard the first 60000 as burn-
in, and then retain every tenth one to minimize the autocorrelation across retained
draws. In Appendix B, we show that the posterior moments vary little across subsets
of retained draws, providing some evidence of convergence.
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4.3 Macroeconomic volatility

We measure volatilities by computing the temporary variances

1

2π

∫ π

−π

Sx,t|T (ω)dω

where as in Cogley and Sargent (2005), Sx,t|T (ω) is the spectral density formed by
applying formula (10) with the time t estimates of the state-space matrices formed
using all the data from t = 1, . . . , T , which in our case span the period 1900-2005.

The results for the median estimates and the 68% central posterior bands are
reported in Figure 14. Money growth and inflation were very volatile towards the
end of 1910s. WWI was associated with output volatility and moderate interest rate
variation. The volatilities of money growth and output growth exhibited their highest
values in the intra-wars sample, which was dominated by the Great Depression and
Roosevelt’s New Deal. Inflation was volatile too, though not at the levels seen during
WWI. After the peaks associated with WWII, all series experienced a significant
decline in volatility that lasted until the 1970s.

The years between 1973 and 1984 were characterized by the largest fluctuations
since the end of WWII. Unlike the first part of the of the twentieth century, however,
the variation in money growth and inflation coincided with the highest sample value
for the interest rate volatility. When judged against a broader historical perspective,
the so-called Great Moderation in output in recent years seems less impressive. Since
the second half of the 1980s, inflation and output growth have been most stable. The
volatilities of money growth and interest rate have also been limited by historical
standards, with a common local peak in the early 2000s.

4.4 Innovation standard deviation and stochastic volatility

Appendix C reports measures of stochastic volatility constructed from our time-
varying VAR. These indicate a significant decline in the variance of forecast errors
for money growth, inflation, output growth and the interest rate. The flip-side of
the reduction in the innovation variances (but not the flip-side of the reduction in
the variances of the series) is that the forecasts based on a naive model such as the
unconditional mean have become relatively more accurate than the forecasts based
on more sophisticated models such as VARs.8

A similar picture emerges from Figure 30, which plots the stochastic volatility of
each variable j computed as the square root of hj,t.

8See D’Agostino, Giannone and Surico (2006) for a discussion of the link between (the breakdown
in) predictability and the Great Moderation.
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4.5 Persistence

Figure 15 shows the evolution of persistence for the four variables in the VAR as
measured by the temporary normalized spectra

Sx,t|T (0)
1
2π

∫ π

−π
Sx,t|T (ω)dω

. (22)

Four findings stand out. First, there seems to be little variation in the persistence of
money growth. Second, inflation persistence experienced a substantial and unprece-
dented increase during the 1960s and the 1970s. Third, the highest persistence for
the nominal interest rate occurred around 1940, which is not surprising after we have
observed the behaviour of the series shown in Figure 4. Fourth, the persistence for
output growth appears relatively stable, with possible peaks both in our estimates
of persistence and in the uncertainty surrounding these estimates towards the end of
the 1970s.

5 Two DSGE models

. . .we have specific theoretical examples exhibiting both quantity-theoretic
las in clear, exact form, and others which suggest possibly important qual-
ifications. This is all we can ever hope for from our theory; some strong
clues as to what to look for in the data; some warnings as to potential
sources of error in these predictions. Lucas (1980, p. 1006)

This section applies formulas (10) and (4) to study how theoretical values of the
sums of coefficients h̃π,∆m(0) and h̃R,∆m(0) depend on monetary policy rules in two
DSGE models. The first model has completely flexible prices while the second has
sticky prices. If monetary policies are conducted in particular ways, it is possible for
Lucas’s low frequency characterizations of the two quantity theory propositions to
come through in both models. But if policies are conducted in other ways, Lucas’s
characterization does not prevail.

We posit more general monetary policies than did Lucas and Whiteman, both of
whom assumed that money growth is econometrically exogenous in the sense of Sims
(1972b). We consider two types of monetary policy rules, each of which, depending
on parameter values, allows extensive feedback from endogenous variables to money
growth.9 The first is a money growth rule according to which the central bank sets

9For us, depending on monetary policy rule parameter values, other variables can Granger cause
money growth rates (see Granger (1969) and Sims (1972b)).
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the growth rate of money in response to movements in inflation and output growth.
The second is a Taylor rule according to which the central bank sets the short-term
nominal interest rate in response to movements in inflation and output growth.

5.1 A neoclassical model

The competitive equilibrium of Lucas’s (1975) monetary business cycle model can
be expressed in the state-space form (9). A parameter vector η implies a 4-tuple of
matrices A(η), B(η), C(η), D(η). We are interested in how monetary policies affect
population values of the sums of distributed lag coefficients of inflation on money
growth and the short term interest rate on money growth.

5.1.1 The structure

The structural equations of Lucas’s model are:

rt = −δkkt (23)

kt+1 = θrEtrt+1 + θπEtπt+1 + θkkt + εkt (24)

∆mt = πt + zt − τrEt∆rt+1 − τπEt∆πt+1 + τk∆kt + εχt (25)

yt = αkkt + ln(Zt), ∆yt = αk∆kt + zt (26)

Rt = rt + Etπt+1 (27)

where πt, kt, ∆mt, rt and Rt are inflation, the capital stock, nominal money growth,
the real and the nominal short-term interest rates, respectively. The rate of techno-
logical progress is zt ≡ ∆ ln (Zt) and the output growth is ∆yt. The mathematical
expectation operator conditional on information available at time t is denoted Et.

Equation (23) is a marginal productivity condition for capital, (24) is a portfolio
balance equation that expresses the behavior of owners of capital, while (25) is the
demand for money, and (26) is a production function. The Fisher equation (27)
asserts that the nominal interest rate is the sum of the real rate and the expected rate
of inflation. The structural shocks are iid and normally distributed with variances
σ2

k, σ
2
χ, and σ2

z , respectively. All variables are expressed in log deviations from their
steady state values.

5.1.2 Monetary policy

We study two types of policies.
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Table 3: Parameter values

economy shocks policy rules

δk 0.05 σk 0.5 ψπ [0, 3]
θr 0.2 σχ 0.4 ψ∆y [0, 1]
θπ 0.1 σz 0.5 ρr 0.7
θk 0.97 σss 0.2 σr 0.4
τr 0.1 φπ [−2, 1]
τπ 0.2 φ∆y [−1, 0]
τk 0.2 ρm 0.7
αk 0.3 σm 0.4

A money supply rule A rule adjusts the growth rate of money smoothly in re-
sponse to movements in inflation and output growth and a shock εmt.

∆mt = ρm∆mt−1 + (1 − ρm) (φππt + φ∆y∆yt) + εmt, εmt ∼ N(0, σ2
m) (28)

A Taylor rule A Taylor rule adjusts the short-term nominal interest rate smoothly
in response to movements in inflation and output growth and a monetary policy shock
εRt.

Rt = ρrRt−1 + (1 − ρr) (ψππt + ψ∆y∆yt) + εRt with εRt ∼ N(0, σ2
R) (29)

5.1.3 Parameter values

We set parameter values in Table 3. These respect the theoretical restrictions θr >

θπ ≥ 0, τπ > τr > 0 and θk, τk ∈ (0, 1).
Fixing the other structural parameters at their table 3 values, we solve the model

for alternative values of the monetary policy rule parameters, deduce the associated
A,B,C,D matrices, then use formulas (10) and (4) to compute the theoretical values
of sums of distributed lag coefficients h̃(0). Under the configurations that imply in-
determinacy in the Taylor rule regime 2, we apply the orthogonality solution method
developed by Lubik and Schorfheide (2004). Here we set the standard deviation of
their sunspot shock, σss, to 0.2, their estimated value. Under the money supply rule
regime 1, the configurations of policy parameters always imply determinacy.
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5.1.4 Sums of weights h̃(0) across monetary regimes

Figures 16 and 17 record the results of applying formulas (10) and (4) to our numer-
ical version of Lucas’s model.

A more anti-inflationary stance, as exemplified by lower values of φπ in figure
16, is associated with monotonically smaller values of h̃(0), which reach their min-
ima around 0.4 at φπ = −2. The explanation for this outcome is that the more
successfully monetary policy stabilizes inflation, the less persistent is inflation and
therefore also the interest rate, with the consequence that, as encoded in h̃π,∆m(0)
and h̃R,∆m(0), the the low frequency associations between these variables and money
growth become attenuated.

However, weaker policy responses of money growth to inflation (i.e. a φπ that
approaches one) generate one-to-one low frequency comovements between money
growth and inflation and money growth and the nominal interest rate as reflected in
the h̃(0)’s.10

Moving to outcomes with a Taylor rule, we note that under a passive monetary
policy, (i.e. one with a less than proportional response of the interest rate to in-
flation), high values of h̃π,∆m(0) and h̃R,∆m(0). Money growth and inflation (the
nominal interest rate) display the highest sums of distributed lag coefficients 1 (0.9)
for monetary policies in the neighborhood of ψπ = 1, largely independently from the
policy response ψ∆y to output growth. Within the active policy regime, outcomes
for the interest rate rule are mirror images of those for the money growth rule.

5.1.5 Volatility and persistence

To highlight a force that drives these outcomes, Figure 18 plots the persistence of
money growth, as measured by the normalized spectrum at zero frequency defined
in equation (12), and the volatility, as measured by the unconditional variance of
money growth. We plot these under both a money growth rule and a Taylor rule.
A more aggressive policy response to inflation (lower values of φπ in the money rule
and higher values of ψπ in the Taylor rule) diminishes both the persistence and the
volatility of the money supply within the determinacy region.

The shapes of persistence and volatility as functions of the policy parameters
resemble the shapes of sums of distributed lag coefficients h̃(0)’s as functions of
the same parameters, depicted in Figures 16 and 17. This pattern suggests that
the amounts of variability and persistence of money growth are key features that

10Results are robust to halving the transmission mechanism parameters.
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intermediate how the h̃(0)s depend on policy.11 Furthermore, the fact that high
volatility and high persistence are associated with h̃(0)s near one confirms the hunch
articulated in subsection 2.2 about the sources of variation in the data that could
allow the low frequency connections featured by Lucas (1980) to emerge from his
plots of one filtered data series against another.

5.1.6 Mundell-Tobin effect

Figures 16 and 17 lock the Mundell-Tobin effect parameter θπ at the value of .1
reported in table 3. Figure 19 shows the consequences of setting this parameter first
to eradicate the Mundell-Tobin effect (θπ = 0) and then to strengthen it (θπ equal
to .5 or 1).12 The figure is constructed for money growth rules and we intend it to
be compared with figure 16. Outcomes confirm Lucas’s assertions about how the
Mundell-Tobin effect should affect the h̃(0) sums of distributed lag coefficients for
two-sided distributed lag regressions of interest on money supply growth and how it
should not affect that for inflation on money supply growth.

It is notable that, with the parameterization in table 3, the model requires a
significant Mundell-Tobin effect to be able to match the h̃R,∆m(0) estimated for the
sub-samples at the beginnings of both the twentieth and the twenty-first centuries.
Similar results, not reported but available upon request, are obtained using a Taylor
rule for monetary policy.

5.1.7 The variance of the monetary policy shock

The results in Figure 16 are based on a parameterization in which the standard
deviation of the shocks to monetary policy is as large as the standard deviations of
the shocks to technology and the process for capital accumulation. Another way that
monetary policy may change, however, is through the frequency and the size of the
deviations from its systematic behaviour. In Figure 20, we explore the consequences
for h̃π,∆m(0) and h̃R,∆m(0) of halving the standard deviation of the monetary policy
shock, σm, from the baseline value of 0.4 to 0.2. For expositional convenience, the
left column reports the two panels of figure 16.

Two findings are worth noting. First, h̃R,∆m(0) is virtually unaffected by the
change in σm. Second, the model can now generate low (and even slightly negative)
values of h̃π,∆m(0), when the policy response to inflation is sufficiently aggressive, (i.e.

11See King and Watson (1994, 1997) for a discussion of related forces that affect particular tests
of the natural unemployment rate hypothesis.

12To conform to the inequality θr > θπ, in the second and third columns of figure 19 we have set
θr equal to .6 and 1.1, respectively. Similar results, however, are obtained keeping θr to .2.
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Figure 18: Properties of money growth in the Lucas model
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under alternative money supply rules.
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Figure 20: The effects of the variance of the monetary policy shock on the sums of
coefficients h̃(0) on the y axes, under alternative money supply rules.

φπ ≤ −0.5). This is important for the ability of the model to replicate the estimated
values of h̃π,∆m(0) over the most recent period reported in figure 13. Halving the
standard deviation of the money demand shock, in contrast, has little impact on
the h̃(0)’s.13 Interestingly, low values of the variance of the monetary policy shocks
appear important to generate low values of h̃π,∆m(0) (with virtually no impact on
h̃R,∆m(0)) while high values of the Mundell-Tobin effect appear important to generate
low values of h̃R,∆m(0) (with virtually no impact on h̃π,∆m(0)).

5.2 A new neoclassical model

In this section, we execute calculations like those described in section 5.1 but for a
DSGE model with sticky prices, separability between consumption and real money
balances, habit formation in households’ preferences, price indexation by firms, and
a unit root in technology. This type of model is said by Goodfriend and King
(1997) to represent a New Neoclassical Synthesis. Related models have been studied
extensively by Woodford (2003).

13We obtain similar results halving the variance of the monetary policy shock in the Taylor rule.
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We continue to assume that the central bank uses either a money-growth rule or
a Taylor interest-rate rule. However, now money growth will respond to the output
gap rather than to output growth, as well as to inflation.

5.2.1 The economy

The structure is:

πt = β (1 − απ)Etπt+1 + βαππt−1 + κxt −
1

τ
et (30)

xt = (1 − αx)Etxt+1 + αxxt−1 − σ(Rt −Etπt+1) + σ (1 − ξ) (1 − ρa) at (31)

∆mt = πt + zt +
1

σγ
∆xt −

1

γ
∆Rt +

1

γ
(∆χt − ∆at) (32)

ỹt = xt + ξat, ∆yt = ỹt − ỹt−1 + zt (33)

where πt, xt, ∆mt and Rt are inflation, the output gap, nominal money growth and
the short-term interest rate, respectively. The level of de-trended output is ỹt and
∆yt refers to output growth. The rate of technological progress is zt. Equation (30)
is an example of a new Keynesian Phillips curve, while (31) is the so-called new
Keynesian IS curve, and (32) is the money demand equation.

The discount factor is β, the parameter απ is price setters’ extent of indexation
to past inflation, αx captures the extent of habit formation. The coefficients κ and σ
are the slope of the Phillips curve and the elasticity of intertemporal substitution in
consumption. The price adjustment cost parameter in Rotemberg’s (1982) quadratic
function is τ , while ξ represents the inverse of the labor supply elasticity. The inverse
of the interest elasticity of money demand is captured by γ.

The economy is exposed to four non-policy disturbances: a markup shock et, a
demand shock at, a money demand shock χt, and a technology shock Zt that evolve
as

et = ρeet−1 + εet, with εet ∼ N(0, σ2
e)

at = ρaat−1 + εat, with εat ∼ N(0, σ2
a)

χt = ρχχt−1 + εχt, with εχt ∼ N(0, σ2
χ)

∆ ln (Zt) ≡ zt = εzt, with εzt ∼ N(0, σ2
z)

All variables are expressed in log deviations from their steady state values. More
details about the specification are to be found in Ireland (2004).

Unlike the model of section 5.1, there is no capital or capital accumulation here.
The model generates persistence through its specification of the processes of the
shocks and the backward looking dynamics appended to the Phillips curve and the
IS curve.
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Table 4: Parameter values

economy shocks policy rules

β 0.99 ρe 0.5 ψπ [0, 3]
απ 0.5 ρa 0.5 ψx [0, 1]
απ 0.5 ρχ 0.7 ρr 0.7
κ 0.1 σe 0.5 σr 0.4
τ 6 σa 0.5 φπ [−2, 1]
σ 0.1 σχ 0.4 φx [−1, 0]
ξ 0.15 σz 0.5 ρm 0.7
γ−1 0.15 σss 0.2 σm 0.4

5.2.2 Monetary policy

There are two types of monetary regime.

A money supply rule Money growth adjusts smoothly in response to move-
ments in inflation and the output gap. Unlike (28), money growth depends on the
output gap rather than output growth.

∆mt = ρm∆mt−1 + (1 − ρm) (φππt + φxxt) + εmt, εmt ∼ N(0, σ2
m) (34)

A Taylor rule The short-term nominal interest rate is adjusted smoothly in
response to movements in inflation and the output gap.

Rt = ρrRt−1 + (1 − ρr) (ψππt + ψxxt) + εRt, εrt ∼ N(0, σ2
R) (35)

5.2.3 Parameters

We report parameters in table 4. We take them from recent empirical studies (see
Ireland, 2004, McCallum and Nelson, 1999, and the references therein).

For most of the parameter space associated with ψπ < 1 under the Taylor rule,
the model implies equilibrium indeterminacy. Under the money supply rule, the
configurations of policy parameters always imply determinacy.
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5.2.4 The quantity theory across monetary regimes

Figures 21 and 22 report results that are broadly similar to those obtained using
the Lucas model of section 5.1. But three differences are worth noting. First, the
variation in the coefficients describing monetary policy is such that the model can
attain the entire [0,1] interval for h̃R,∆m(0) under both policy rules. Second, a larger
policy response to the output gap is associated with significantly larger h̃(0) values.
Third, the move from indeterminacy to determinacy in figure 22 is associated with
a somehow more abrupt change in the h̃π,∆m(0) values across the boundary.

Notice that small values of φx are associated with low values of h̃(0) for the
nominal interest rate. This outcome emerges because under a money growth rule,
the nominal interest rate is pinned down by the money demand equation (32). In
the new neoclassical model money balances depend upon xt, and therefore a policy
that does not stabilize the output gap induces weaker comovements between money
and the nominal interest rate.

As for the outcomes for persistence and volatility of money growth within the
determinacy region, the findings for the new neoclassical model are qualitatively and
quantitatively similar to the section 5.1 findings for the Lucas (1975) model: low
values of the long-run response coefficients in figures 21 and 22 are associated with
low persistence and low volatility. In the presence of equilibrium indeterminacy,
which occurs under a Taylor rule only for ψπ < 1, the persistence and volatility
of money growth in the new neoclassical model are larger than the persistence and
volatility in the Lucas model for values of ψπ close to but below 1.

5.2.5 The roles of non-policy shocks

In this section, we explore whether, under a Taylor rule, alterations in the process
for the non-policy shocks in the new neoclassical model are capable of generating
time profiles for h̃π,∆m(0) and h̃R,∆m(0) like those that emerge in the U.S. data.14

To this end, we study the effects of changing parameters that govern the degrees
of persistence and the variances for all shocks. We report outcomes only for those
alterations that we find to be associated with substantial changes in the low-frequency
relationships between inflation and money growth and between the nominal interest
rate and money growth.

In figure 24, we move the autoregressive parameters in the process for the supply
shock, ρe, from 0.5 to 0.9 while keeping all other coefficients to the values in table 4.
A comparison with the plots in figure 22 reveals that more persistent supply shocks

14Under a money growth rule, we obtained results similar to those reported in this section.
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Figure 21: Sums of weights h̃(0) in new neoclassical model under money supply rule.
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Figure 22: Sums of weights h̃(0) in new neoclassical model under a Taylor rule.
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Figure 23: Volatility and persistence of money growth in the new newoclassical model
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Figure 24: Sums of weights h̃(0) in new neoclassical model under a Taylor rule with highly
persistent supply shocks.

are typically associated with higher values of h̃π,∆m(0) and h̃R,∆m(0). It should be
noted, however, that high values of ρe are neither necessary nor sufficient to generate
high values of the h̃(0)’s. In fact, an activist monetary policy stance that assigns
a sufficiently large weight to inflation (i.e., ψπ above 1.5) and little or no weight to
the output gap response (i.e., ψx close to zero) is capable of generating values for
h̃π,∆m(0) and h̃R,∆m(0) that are substantially lower than one.

A similar finding emerges from figure 25, where we increase the standard deviation
of the supply shocks, σe, from 0.5 to 2, while keeping values for all other parameters
unchanged. The low-frequency relationships now seem less influenced by monetary
policy relative to figure 22, with the notable exception of the policy rules associated
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Figure 25: Sums of weights h̃(0) in new neoclassical model under a Taylor rule with highly
volatile supply shocks

with low values of ψx and ψπ > 1. Our findings suggest that while a change in
the process for the supply shocks (in the form of higher persistence and/or higher
variance) may have helped to account for the high values of the sums of distributed
lags observed in U.S. data during the original period studied by Lucas (1980), a
monetary policy response that placed sufficient weight on inflation relative to the
output gap could have prevented the U.S. from attaining realizations of these large
values for h̃π,∆m(0) and h̃R,∆m(0).

The results in this section are similar to findings that Woodford (2007) and
Benati (2007) obtained by using versions of the new neoclassical model that differ
from ours. Woodford (2007), for instance, showed that in a model where the low-
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frequency variation in money growth is mostly driven by trend inflation (defined as a
unit root process for the central bank’s inflation target), the slow-moving components
of inflation and money growth tend to be highly correlated.15

We conclude that the sources of variation in the process for money growth, as ex-
emplified by shocks in a money demand equation like (32), are crucial for identifying
and interpreting the low-frequency associations between nominal variables. In partic-
ular, if the variances of the determinants of the low-frequency components of inflation
are sufficiently larger than the variances of the determinants of the low-frequency
components of output growth and the nominal interest rate, then an econometrician
would get higher values for the sum of distributed lag coefficients for inflation on
money growth. We have shown that within two DSGE models monetary policy can
strongly influence the relative variances of the slow-moving components of inflation,
output growth, and the nominal interest rates, and through those avenues it can
strongly influence the slow-moving components of money growth.

6 Inferring the monetary policy stance from h̃(0)

Section 5 described how low-frequency manifestations of the quantity theory depend
on the stance of monetary policy. In this section, we surrender to the temptation to
invert the mapping from policy rule parameters to sums of weights and draw some
inferences about prevailing policy rules from our estimates of h̃π,∆m(0) and h̃R,∆m(0).

We select two years, 1973 and 2005. In figure 13, the median estimates of the
sums of the distributed lag coefficients from the time-varying VAR are approximately
0.9 for both h̃π,∆m(0) and h̃R,∆m(0) in 1973, but they are around 0.2 in 2005. A
comparison with figure 16 (17) reveals that, according to Lucas’s (1975) neoclassical
model, the values for 1973 can have only been generated by weak policy responses to
inflation, as measured for instance by values of φπ (ψπ) close to 1 (0.8) in the money
supply rule (interest rate rule). Very similar values for φπ and ψπ can be backed out
using the results for the new neoclassical model in figures 21 and 22.

As for 2005, values of 0.2 for both low frequency relationships can be generated in
the neoclassical model by a strong anti-inflationary monetary policy stance (i.e. φπ

close to -2), but only in the presence of large Mundell-Tobin effects for h̃R,∆m(0) in
figure 19 and small values of the variance of the monetary policy shock for h̃π,∆m(0)

15In the presence of both highly persistent and highly volatile supply shocks, of the magnitude
considered in this section, the sums of weights h̃(0) are close to one, virtually independently of
monetary policy parameters. The stability that the low-frequency relationships would display across
time under this scenario, however, is at variance with the instability of h̃(0) in U.S. data documented
in sections 3 and 4.
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in figure 20. In the new-neoclassical model parameterized according to table 4, esti-
mates of the sum of the distributed lags coefficients around 0.2 require configurations
of the policy rule parameters that attach large weight to the inflation response (i.e.
φπ close to -2 and ψπ close to 2) as well as small or no weight to the output response
(i.e. φ∆y and ψx close to 0) in figures 21 and 22.

We view these results as tantalizing invitations to extend this study by bringing
to bear evidence from all frequencies to estimate the evolution of monetary policy
rules. We leave this work to a sequel to this already long paper.

7 Concluding remarks

A long-standing, but flawed, tradition in macroeconomics has regarded low-frequency
quantity theory relationships as policy-invariant features of macroeconomic models
that embody long-run neutrality propositions. We say ‘flawed’ for reasons that Lucas
(1972), Sargent (1971), and King and Watson (1994, 1997) described in the context
of econometric tests of the natural unemployment rate hypothesis and that White-
man (1984) analyzed in the context of the quantity theory of money: low-frequency
properties of two-sided infinite projections are themselves functionals of government
policies.16

To study how Lucas’s (1980) low-frequency manifestations of the quantity the-
ory have evolved, we have estimated time-invariant and time-varying VARs for U.S.
data spanning 1900-2005. We computed equilibria of two DSGE models for differ-
ent monetary policies to study how the low-frequency relationships between inflation
and money growth and the short-term interest rate and money growth should vary
with monetary policy. Our results show how the low-frequency co-movements be-
tween nominal variables that Lucas featured convey information about the stance of
monetary policy. In particular, Lucas’s low-frequency manifestations of the quan-
tity theory are (more) less likely to emerge when the monetary authorities respond
(in)sufficiently to inflationary pressures.

16Also see Sargent (1987, ch. XI).
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Figure 26: Lucas’ filter over his sample, using his measures of money and prices, 1955-1975.

A CPI and M1 data

In this Appendix, we reproduce the calculations in Lucas (1980) using his favourite
measures of money (M1) and prices (CPI), over the sample 1955-2005, and the sub-
sample 1975-2005. In Table A, we report the full set of low frequency relationships
for different values of β in (1).

Table A: Regressions on filtered data, Lucas’ measures of money and prices

Data as in Lucas (1980) - m: M1; p: Consumer Price Index. R: federal funds rate

π on ∆m ∆m on π R on ∆m ∆m on R
β .95 .8 .5 0 .95 .8 .5 0 .95 .8 .5 0 .95 .8 .5 0

full sample .44 .36 .21 .13 .57 .49 .34 .24 .58 .45 .24 .14 .51 .43 .27 .17

1955-75 1.39 1.22 .74 .46 .54 .49 .36 .28 1.15 1.00 .58 .30 .74 .66 .41 .24

1976-05 .30 .24 .13 .08 .58 .48 .31 .20 .46 .33 .17 .09 .47 .38 .22 .13

Note: numbers in bold are not statistically different from one at the 10% significance level, HAC covariance matrix
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Figure 27: Lucas’ filter over his sample, using his measures of money and prices, 1955-1975.
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Figure 28: Posterior means of key parameters of the time-varying VAR

B Convergence

In Figure 28, we plot the posterior means of key model parameters. These statistics
are computed recursively as the average for every 20th draw of the retained repeti-
tions of the Gibbs sampler. The figure reveals that the fluctuations in the posterior
means are modest, thereby providing informal evidence in favour of convergence.
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Figure 29: Standard deviations of the VAR reduced-form errors

C Volatility statistics from time-varying VAR

In Figure 29, we report the evolution of the standard deviations of the VAR innova-
tions computed as the square root of the elements in (17). A comparison of the time
profiles in Figures 14 and 29 reveal that in the late 1970s and early 1980s money
growth, inflation, output growth and the interest rate displayed a significant surge in
volatility whereas their innovations were relatively more stable. It should be noted,
however, that during this episode, the volatility of the variables were eight (ten, four
and three) times larger for money growth (inflation, the interest rate and output)
than the volatility of the reduced-form errors. During the most volatile episodes of
the first part of last century, in contrast, the ratios between variable and innovation
volatilities were always below four. This implies that, during the second half of the
sample, it has become more difficult for a statistical model such a VAR to produce
forecasts for money growth, inflation, output growth and the interest rate which are
more accurate than the forecasts produced by a naive model such as the uncondi-
tional mean. A similar picture emerges from Figure 30, which plots the stochastic
volatility of each variable j computed as the square root of hj,t.
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Figure 30: Square roots of the stochastic volatility
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D Slopes using Lucas’ filter and the sums of dis-

tributed lags coefficients

By applying formulas from section 2.3, this appendix evaluates how well bf approx-
imates h̃(0). In figure 31, we report estimates of bf and h̃(0) obtained in the Lucas
model under a Taylor rule. For expositional convenience the first column reproduces
the charts in figure 17, which correspond to h̃π,∆m(0) and h̃R,∆m(0), respectively.
The second (third) column depicts estimates of bf for a window width of n = 8 (100)
quarters in Lucas’ filter (see equation 1).17

The first row of figure 31 reveals that for inflation and money growth, bf does a
good job of approximating h̃(0) for both n equal to 8 and n equal to 100, with the
approximation being uniformly better for n = 100. Interestingly, very similar results
for inflation and money growth are obtained using a money growth rule in Lucas
model and using either a Taylor rule or a money growth rule in the new neoclassical
model.

As for the low-frequency relationship between the interest rate and money growth,
the approximation errors typically appear to be larger. A comparison of the bottom
left panel with the other two panels in the second row suggests that the gap between
bf and h̃(0) can be as large as .3 (.1) for n=8 (100) in the Lucas filter when ψπ > 1.
Under a money growth rule, however, bf and h̃(0) become very close again, indicat-
ing that, in the Lucas model, the monetary policy rule matters for the quality of
the approximation. However, in the new neoclassical model, the maximum distance
between bf and h̃(0) for the nominal interest rate and money growth is .2, indepen-
dently on the monetary policy rule in place. The gap is smaller using a window of
n=100 in the Lucas filter.

17The element Syz(ω) of bf in equation (5) is computed as the sum of the squared co-spectrum
and the squared quadrature.
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Figure 31: Lucas’ slope estimator bf vs. the sums of weights h̃(0) in Lucas model under
a Taylor rule.

56



E Other approximation issues

Whiteman indicated how approximation issues raised by Sims (1972a) can mean that
low-order distributed lags can produce unreliable estimates of sums of coefficients.
Similar issues can plague estimates of these sums constructed by using formula (4) in
conjunction with cross-spectra estimated by applying a version of (10) to parameter
estimates for a prematurely truncated VAR. To evaluate such approximation issues
in the context of Lucas’s model and VARs of the sizes that we have used in our
empirical work, we have also calculated h̃π,∆m(0) and h̃R,∆m(0) by simulating the
equilibrium of Lucas’s model, and then computing VARs and the associated sums of
coefficients displayed in figures 16 and 17.

We simulate 5, 000 times a period of 120 observations, which at quarterly fre-
quency correspond to 30 years. It should be noted that 30 years lie at the upper
bound of the sample sizes used in the sub-period analysis of Section 3. For each
simulation, we run a four-variate VAR in money growth, inflation, the short-term
interest rate, and output growth. For each VAR, we compute the sums of distributed
lag coefficients reported in figures 16 and 17, and then we take averages across the
5, 000 simulations. We report the deviations of these averages from the analytical
h̃(0) as a function of the coefficients in both policy rules.

In the Lucas model, the estimates of h̃π,∆m(0) based on the small sample VARs
on simulated data appear to do a good job of approximating their population coun-
terparts under both policy rules.18 As for h̃R,∆m(0), the approximation errors are
small only under a money rule. When monetary policy is conducted according to
a Taylor rule, in contrast, the small sample estimates of h̃R,∆m(0) tend to lie above
(below) the population values for values of ψπ below (above) 1.

To explore the sources of these deviations, in figure 33 we report the approxima-
tion errors on h̃R,∆m(0) for six different combinations of lag order of the VAR (i.e.
p = 2, 10, 20) and sample size (i.e. T = 400, 600 observations, which at quarterly
frequency correspond to 100 years -roughly the size of our full sample- and 150 years)
in the context of the Lucas model under a Taylor rule.

Three results stand out. First, increasing the number of observations to 100 years
(first column) and 150 years (second column), within the determinacy region, halves
the approximation errors relative to the results from the 30 years simulated sample
reported in the bottom right panel of figure 32. Second, increasing the order of the
VAR to 10 lags (second row) and 20 lags (third row) further reduces the distance
between estimated and population values of h̃R,∆m(0). Third, the largest accuracy
gains from increasing the lag order occur in the indeterminacy region. Consistent

18A similar result holds for the new neoclassical model
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Figure 32: Approximation errors on h̃(0)s in Lucas model.

with the findings in Benati and Surico (2008) for the new neoclassical model, a
possible interpretation of the third result is that indeterminacy introduces a small
MA component in the VAR(MA) representation of the DSGE model. Altogether,
fitting a VAR of order ten on a sample of about 100 years produces, on average,
approximation errors of the order 7e-02.
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F Evidence on R2: data and DSGE models

This appendix compares, on the one hand, the R2’s in equation (8) based on the time-
varying and the fixed-coefficient VARs estimated on U.S. data for money growth,
inflation, the short-term interest rate and output growth, and, on the other hand,
the R2’s based on the Lucas model under both money growth and Taylor rules at
parameter values recorded in table 3.

In figure 34, we note that both R2 statistics computed on actual data seem
characterized by a lesser extent of time variation than their h̃(0) counterparts in
figure 13. The amount of uncertainty, however, is so large that the probability
distributions span most of the R2 domain. Over the end of the 1970s, for instance,
the values of 0.85 and 0.05 are both inside the 68% central posterior bands in the
top panel as well as in the bottom panel of figure 34.

In line with the evidence presented in section 4, a fixed coefficient VAR over the
full-sample, represented as straight blue lines, delivers estimates that are, in some
years, significantly different from the estimates based on the time-varying VAR,
especially for inflation and money growth.

Moving to the DSGE models, in figure 35, we vary the parameters of both policy
rules in Lucas model to assess the extent of time variation in the R2’s observed on
actual data implied by alterations of monetary policy. The patterns uncovered by
this exercise resemble the patterns disclosed by figures 16 and 17, and the same
arguments used in section 5 carry over to this appendix. We obtain similar results
with the new neoclassical model.
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Figure 34: Median and 68% central posterior bands for R2 based on a fixed-coefficient
VAR over the full samples and a VAR with time-varying coefficient and stochastic volatility.
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