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1. Introduction 

 Since the early 1970s, Daniel Kahneman and Amos Tversky (hereafter KT 1972, 

1974, 1983, 2002) published a series of remarkable experiments documenting significant 

deviations from Bayesian theory of judgment under uncertainty.   While KT’s heuristics 

and biases program has survived substantial experimental scrutiny, models of heuristics 

have proved elusive2.  In this paper, we offer a new model of decision making that 

accounts for quite a bit of this experimental evidence.   

 Perhaps the central heuristic unifying many of KT’s ideas is representativeness, 

“defined as a subjective judgement of the extent to which the event in question is similar 

in essential properties to its parent population or reflects the salient features of the 

process by which it is generated” (Bar-Hillel 1982, quoting KT 1972, p 431).  Judging 

probability by representativeness can trip a decision maker, as KT (1974) demonstrate.  

In one experiment, KT describe Jim as “shy and withdrawn, invariably helpful, but with 

little interest in people, or in the world of reality.  A meek and tidy soul, he has a need for 

order and structure and a passion for detail.”  They then ask one group of subjects to 

estimate the probability that Jim is a farmer, sales-person, airline pilot, librarian, or 

physician, and another group of subjects which one of these Jim is most similar to.  KT 

                                                 
1 CREI and Harvard University, respectively.  We are deeply grateful to Josh Schwarzstein for considerable 
input, and to Xavier Gabaix, Scott Kominers, David Laibson, Sendhil Mullainathan, Giacomo Ponzetto, 
and Jeremy Stein for extremely helpful comments.  
2 Partial exceptions include Mullainathan (2000) and Tversky and Koehler (1994), to which we come back. 
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find that the rankings of occupations by their probability is the same as that by their 

similarity, with librarian being the top choice.   Moreover, and quite strikingly, the 

probability estimate of Jim being a librarian is basically the same whether subjects are 

told that Jim is drawn from a population of 70% librarians or that of 30% librarians.   

Subjects use similarity or representativeness to predict Jim’s occupation.  

In this paper, we present a nearly Bayesian model of decision making closely 

related to representativeness (indeed, Bayesian decision making is a limit case).  In our 

model, an individual evaluates the likelihood of a hypothesis based on some partial 

evidence.  In making this evaluation, the individual fills in from memory the missing 

details, which we call “frames.”  The question is how the frames are filled in.  The idea of 

individuals filling in frames is consistent with KT’s insistence that judgment under 

uncertainty is similar to perception.  Just as an individual fills in details from memory 

when interpreting sensory data (for example, when looking at the duck-rabbit or when 

judging distance from the height of the object), in our model the decision maker recalls 

missing details for the hypothesis he is evaluating.  

We make two assumptions about this process.  First, in the spirit of KT, we 

assume that frames come to mind in order of their diagnosticity, which formally means 

their ability to predict the hypothesis being evaluated relative to other hypotheses.  To 

take an example, suppose that a political candidate commits a blunder in a speech, and 

we wish to evaluate the probability that he is competent.  We might quickly decide that 

this candidate is inarticulate, and therefore incompetent, even when most of the 

competent candidates are also inarticulate and make blunders.  The lack of expressive 

ability is diagnostic of incompetence. 
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KT (2002, p.23) have a discussion of diagnosticity related to our model’s 

definition:  “Representativeness tends to covary with frequency: common instances and 

frequent events are generally more representative than unusual instances and rare events,”  

but they add that “an attribute is representative of a class if it is very diagnostic; that is 

the relative frequency of this attribute is much higher in that class than in a relevant 

reference class.”   Most of our central results rely precisely on this distinction between 

diagnosticity and the relevant frequency (or likelihood) of frames.   

Second, we assume that memory is limited, and not all potentially relevant frames 

come to mind.  This assumption is essential because, with complete recall, the order of 

recall of missing data does not matter, and decision making is entirely Bayesian.  We 

develop the implications of these two assumptions for judgement under uncertainty.  

Our central results depend on the difference between the diagnosticity and 

likelihood of a frame.  When, as is usually the case, the most diagnostic frames are also 

the most likely ones (most incompetent candidates are inarticulate, and most competent 

candidates are articulate), then local thinkers make judgment errors, but these errors tend 

to be modest.   When, on the other hand, there is a mismatch between diagnosticity and 

likelihood of frames, and in particular the highly diagnostic frames for a given hypothesis 

happen to be highly unlikely, a local thinker’s probability assessment becomes very poor.   

In particular, the probability of hypotheses whose most diagnostic frames are very 

unlikely can be heavily underestimated. Suppose that most candidates who make 

blunders, whether or not they are competent, are inarticulate, but that being articulate 

(and thus seldom making blunders) is more diagnostic of a competent candidate.  The 

decision maker in this case severely underestimates the likelihood that a candidate is 
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competent after a blunder.  The mismatch between diagnosticities and likelihoods can 

also lead to substantial biases documented by KT.   

One of the crucial puzzles that our model can account for is the conjunction 

fallacy.   In perhaps their most famous experiment, KT described a young woman, Linda, 

as an activist in college, and asked their subjects about the relative likelihood of Linda’s 

various activities today.   Subjects reported that Linda is more likely today to be a bank 

teller and a feminist than just a bank teller, even though some bank tellers are surely not 

feminists.  We show that the conjunction fallacy can be explained if details of “Linda” 

are filled in differently by a local thinker depending on what data he is given.  In 

particular, if a former activist bank teller is represented with a diagnostic but very 

unlikely frame of a non-feminist, the local thinker can think that there are fewer such 

people around than there are formerly activist but now feminist bank tellers.      

The next section of the paper presents our model, and section 3 characterizes its 

implications for evaluating uncertain hypotheses.  Section 4 shows how the model can 

account for several phenomena documented by KT, including base rate neglect, failure of 

the conjunction rule, underestimation of implicit disjunctions, and insensitivity to 

predictability.   Section 5 discusses possible extensions of our model.  

 

2  The Model 

An agent evaluates the probability of  exhaustive hypotheses .  The 

evaluation may occur in light of some data .  We call 

1>N

d

Nhh ,...,1

)(Pr dhr
L  the local thinker’s 

estimate of the probability of hypothesis h , r =1,..,N, which may differ from the true 

probability 

r

)Pr( dhr .  Our key premise is that the agent forms )d(Pr hr
L  not on the 
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problem’s objective state space but on its mental representation produced by his 

background knowledge. 

 

2.1  The Mental Space 

The agent’s background knowledge consists of a database X and a “recall” 

function [ 1,0: →X ]π .  X collects all information in the agent’s memory, represented by 

bundles  of K > 1 dimensions along which the brain recognizes stimuli.  

Each dimension is discrete and finite, and we call  the domain of dimension i so that 

.  We assume that X is three dimensional, i.e. K = 3, but our results generalize 

to more dimensions.  In this setting, each assessed hypothesis  and the data d 

correspond to a set of bundles (an event) in X.  For each 

),...,( 1 Kxxx =

iX

iX

∏
=

≡
Ki

X
,...,1

rh

Nr ,..,1= , . That is, 

the set  of bundles jointly satisfying the data and one hypothesis is a subset of X.  

Naturally, any hypothesis or data can be represented in X.  When no data is given to the 

agent, d , so nothing is ruled out.   

Xd ⊆hr ∩

dr ∩

X=

h

The function [ 1,0: →X ]π  measures the ease of recall of a bundle , where  Xx∈

)(xπ  is between 0 and 1.  As suggested by memory research, the bundles stored in the 

brain are not all equally accessible to the agent.  Some bundles may be easier to recall 

because the agent has experienced them more intensely in the past or because they are 

objectively more frequent.  We focus on the case where )(xπ  coincides with the true 

probability distribution of x , i.e. )Pr()( xx =π .  This case shows the working of our 

model when memory operates with the correct prior.  Before seeing how X and )(xπ  
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produce mental representations, we illustrate our model with an example of an electoral 

campaign.  We use this example throughout to illustrate our main results.  

 

Example 1.A (Electoral Campaign): The Mental Space 

An agent assesses the competence of a political candidate in light of a blunder. The first 

dimension of the mental space ≡1X {competent, incompetent} captures the candidate’s 

competence, the second dimension ≡2X {articulate, inarticulate} captures his expressive ability.  

For simplicity we focus on a two dimensional version of this problem but we get back to three 

dimensions in example 1.G.  The agent’s background knowledge is represented by the table: 
 

Blunder articulate inarticulate 
competent π1 π2 
incompetent π3 π4 

 

Table 1.A 

The entries in the cells are the probabilities of different bundles.  Table 1.A lists the 

distribution of competence and expressive ability conditional on a blunder, so π1 is the probability 

that a candidate who blundered is competent and articulate. 

When the agent assesses whether the candidate is competent or incompetent, he assesses 

the two (alternative) hypotheses ≡1h {x1 = incompetent} and ≡2h {x1 = competent}.  As a 

consequence,  (respectively ) identify in Table 1.A all bundles where an incompetent 

(respectively competent) candidate made a blunder, i.e. (competent, articulate), (competent, 

inarticulate) [respectively (incompetent, articulate), (incompetent, inarticulate)]. A hypothesis 

may fix two dimensions such as 

1h 2h

≡1h {x1 = incompetent, x3 = articulate}. In this case,  perfectly 

identifies a bundle.  For brevity, we identify sets with the dimensions they fix, calling for instance 

 = incompetent (or incomp.) the hypothesis 

1h

1h ≡1h {x1 = incompetent}. We typically focus on the 

following numerical values:  
 

Blunder articulate inarticulate 
competent 0.2 0.2 
incompetent 0.1 0.5 

 

Table 1.A’ 

In Table 1.A’, many blunders are made by inarticulate and incompetent candidates but 

quite a few competent and articulate candidates make blunders. Crucially, inarticulate candidates 

tend to be incompetent but many of them are actually competent. After the blunder, a Bayesian 

estimates Pr(incomp) = π3 + π4 = 0.6 and Pr(comp) = π1 + π2 = 0.4.◘ 
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2.2  The Mental Representation and Probabilistic Assessments 

The agent’s represented state space is shaped by the recall of bundles in X 

prompted by the assessed hypothesis , r = 1,…,N.  Recall relies on two assumptions.  

First, a bundle is recalled earlier if it is more “diagnostic” of each given hypothesis  in 

a sense specified next. Second, limits in the agent’s working memory or attention 

“truncate” the recall of bundles.  These assumptions jointly imply that the represented 

state space is a selected subset of all bundles in

rh

rh

X . 

If , the agent perfectly represents  because, 

together with d, it identifies a unique bundle in X.  For example, if = competent, and 

= (articulate), then the agent perfectly represents 

{ } for some rh d x x X′∩ = ∈′ rh

rh

d rh d∩  with (competent, articulate).  

The interesting issues arise when rh d∩  does not perfectly identify a bundle.  For 

instance, the hypothesis that a blunder was made by an incompetent candidate leaves one 

missing dimension: the cause of blunder.  The blunder may be the result of being 

inarticulate or the occasional mistake made by an articulate candidate.   

More generally, for a given hypothesis  any bundle rh dhx r ∩∈  can be used to 

represent it.  In this setting we call “a frame” for hypothesis  a set  such that 

 for some bundle 

rh f X⊆

{ }rh d f x′∩ ∩ = Xx∈'  and such that φ≠∩ fd∩hr .  Here rh  is the 

complement {x∈X: x } of .  That is, a frame fully identifies a representation of 

hypothesis , i.e. a , but is at the same time consistent with the alternative 

hypotheses (here summarized by 

rh∉

hx∈

rh

drh r ∩

rh ).  For instance, in the electoral campaign example, 

the hypothesis = competent can be framed with the set f = {x2 = articulate}, which 

intersects with = incompetent at the bundle (incompetent, articulate) or with f = {x2 = 

2h

1h

 7



inarticulate}, which intersects with  at the bundle (incompetent, inarticulate).  The 

term frame captures the idea that often the set f constitutes one possible specification of 

the details missing from the hypothesis and the data.  For example, in the electoral 

campaign example, f = articulate is one way of specifying expressive ability, the 

characteristic left unspecified by hypothesis = competent.  In this respect, the term 

“frame” stresses the role of  in shaping the representation of a hypothesis in terms of a 

specific bundle in X.   

1h

2h

f

A frame as defined above does not always exist.  In particular, it does not exist if 

 can only be attained by choosing  since in this case the 

intersection of f with 

{ }rh d f x′∩ ∩ = rhf ⊆

rh  is always empty.  This happens when hypothesis  does not 

specify an exact value for any of the dimensions in X.  Assumption A.1 specifies what 

happens in this case.  When instead  specifies the exact value of at least one dimension 

in X (such as in = incompetent), then at least one frame exists for the hypothesis.  In 

those cases, a frame constitutes one possible specification of the details missing from the 

hypothesis and the data.  As in the electoral campaign example, there generally are 

several frames consistent with each 

rh

rh

1h

dhr ∩ , and different frames bear different 

implications for the agent’s evaluation.  To aid the assessment of )Pr( dhr , the brain 

starts to recall the various bundles in X consistent with dhr ∩  by fitting .  Crucially, 

we assume: 

f

 

A.1 (Recall Order):  Fix data d and hypothesis .  Then, whenever it exists, frame  is 

recalled earlier in conjunction with hypothesis  the higher is its diagnosticity, namely 

its value according to the probability 

r

r

fh

h
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Pr( )Pr( )
Pr( ) Pr( )

r
r

rr

h d fh d f
h d f h d f

∩ ∩
∩ =

∩ ∩ + ∩ ∩
.                              (1) 

When a frame for  does not exist, bundles rh dhx r ∩∈  are recalled in random order.   

 

Ties between frames can be broken randomly.  A frame  is recalled earlier in 

conjunction with hypothesis  if – given  – this frame is more “diagnostic” of , in 

the sense of being relatively more associated with it than with its altrenative 

f

rh d rh

rh .3  If 

hypothesis can be framed in Mr ways, expression (1) creates a ranking k = 1,…,Mr 

among them, with lower indexed frames  being easier to recall in conjunction with 

hypothesis .  In this ranking: 

rh

rh

k
rf

{ }
φ≠∩∩

∈=∩∩

∩=

fdh

Xxsomeforxfdhts

fdhf

r

r

r
f

r

''..

)Pr(maxarg1

                                  (2) 

1
rf  is the frame most diagnostic of , the one immediately recalled by the agent.rh 4  The 

subscript r indicates that different hypotheses are generally represented using different 

frames.  Expression (1) also implies that the recall of a frame is likely to depend on data 

d, but for notational simplicity we keep this dependence implicit.   

Before interpreting expression (1), consider its application below. 

 

 

                                                 
3 Little changes if one assumes that a frame is recalled earlier if it is more diagnostic of  relative to the 
other assessed hypotheses 

rh

sh , rs ≠ .  For the most part, we focus on the case where there are only two 

hypotheses, and 1h 12 hh = , in which case this distinction is immaterial.   
4 In light of (2), one can formally define  for every k > 1 as k

rf )Pr(maxarg fdhf r
f

k
r ∩=  such that 

 for some { }rh d f x′∩ ∩ = Xx∈' , and  for sf rf≠ 1,..,1 −= ks . 
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Example 1.B (Electoral Campaign): The Order of Recall 

Suppose that the agent assesses comphincomph == 21 ,  in light of a blunder. There are two 

ways to frame competence depending on expressive ability (articulate, inarticulate).  To apply (1), 

notice that 12 hh = .  We thus obtain: 
 

                   f articulate inarticulate 

Pr( )incomp f  

13

3

ππ
π
+

 
42

4

ππ
π
+

 

Pr( )comp f  

13

1

ππ
π
+

 
42

2

ππ
π
+

 

 

Table 2: Diagnosticities of Frames 

Thus, an incompetent candidate is immediately framed as inarticulate [formally, for 

 we have (inarticulate), (articulate)], when π4/π2 > π3/π1]. Intuitively, in 

this case incompetent candidates making blunders are relatively more frequent among inarticulate 

people, implying that the agent immediately associates incompetence with a lack of expressive 

ability.  The same condition implies that the recall order for 

incomph =1 =1
1f =2

1f

comph =2  is the opposite, because 

when (as in the current case) there are two alternative (and exhaustive) hypotheses, a frame is 

more diagnostic for one of them if and only if is less diagnostic for the other.  This is a key 

property of diagnosticity as it induces the agent to represent different hypotheses using different 

frames.  In the numerical example of Table 1.A’, the condition π4/π2 > π3/π1 holds since π4/π2 = 

5/2 > π3/π1= 1/2.  Thus, in this numerical example after a blunder the agent represents an 

incompetent candidate as someone inarticulate, and the competent candidate as someone 

articulate. It is harder for the agent to recall that also articulate incompetents can make blunders 

and, most important, that inarticulate competent candidates can make blunders as well.◘ 

 

A crucial feature of A.1 is that different hypotheses tend to yield different orders 

of recalls of frames.  In this important respect, our model is different from Mullainathan 

(2000), who considers how data are broadly framed in terms of categories.  In our model, 

unlike in Mullainathan (2000), the hypothesis itself influences the frames used to 

evaluate it, at least in their order of recall.   Diagnosticity of a frame (or in Mullainathan’s 

framework, of a category) changes from one hypothesis to the next.    
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To belabour assumption A.1, notice that the most diagnostic frame  must be 

sufficiently associated with hypothesis , but need not maximize 

1
rf

rh )Pr( dhr ∩f , the 

likelihood of the frame given the data and the assessed hypothesis, which we later show 

to be a key factor affecting the accuracy of the agent’s assessments.  The order of recall 

implied by (1) thus captures the idea that the brain frames a hypothesis by selecting the 

missing data  most consistent with that hypothesis.  In fact, many of our most 

interesting results, including our explanations of the biases resulting from heuristics, turn 

on the magnitude of the difference between the most likely frame and the most diagnostic 

one.  Example 1.C below illustrates the difference between diagnosticity and likelihood.  

f

 

Example 1.C (Electoral Campaign): Diagnosticity and Likelihood 

The likelihood of frame f for hr is measured by the probability )Pr( rhf  that  occurs 

when hr is true, as 

f

)Pr( rhf  captures the share of the total probability of hr accounted for by f. 

When the agent assesses comphincomph == 21 ,  in light of a blunder, the likelihoods of the 

different frames for those hypotheses are: 
 

 

       f articulate inarticulate 

)Pr( incompf
43

3

ππ
π
+

 
43

4

ππ
π
+

 

)Pr( compf  

12

1

ππ
π
+

 
12

2

ππ
π
+

 

 

Table 3: Likelihoods of Frames 

This implies that “inarticulate” is the most likely frame for incompetent if and only if π4 ≥ π3 

while “articulate” is the most likely frame for competent if and only if π1 ≥ π2.  This is indeed the 

case with the numbers of Table 1A’ since π4 = 0.5 ≥ π3 = 0.1 and π1 = 0.2 ≥ π2 = 0.2. Thus, in our 

numerical example the most diagnostic and most likely frames coincide for both hypotheses.  As 

we shall see, this aspect is important for the accuracy of the agent’s assessment.   

It is easy to see how diagnosticity and likelihood can become negatively related.  

Suppose for instance that we have the following distribution: 
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Blunder articulate inarticulate 
Competent 0.02 0.38 
Incompetent 0 0.6 

Table 4 

In this case, the overall probability of competence and incompetence are unchanged with respect 

to Table 1.A’ and it is still the case that “articulate” is the most diagnostic frame for competence 

(as only competent candidates can be articulate). The main change is that now the bulk of 

candidates making blunders are inarticulate, irrespective of their competence.  As a result, while 

most diagnostic, the “articulate” frame is the least likely for “competent”.◘   
 

In our setup, an agent representing a hypothesis recalls frames for that hypothesis 

in a certain order.  This first step does not yet yield a model of mental representations.  In 

the electoral campaign example, it seems important not only that after observing a 

blunder the agent thinks that the typical competent candidate is articulate and seldom 

makes blunders while the typical incompetent candidate is inarticulate and often makes 

blunders, but also that the event of a competent but inarticulate candidate escapes the 

agent’s mind.  Indeed, the order of recall does not matter for representations if all frames 

are recalled anyway.  It is here that our second assumption of “local thinking” bites:  
 

A.2. (Local Thinking):  For each r =1,…,N and given d, the agent represents  by 

recalling only the first  bundles in the order  induced by expression (1).   

rh

1≥b k
rf

 

Due to limits in the agent’s working memory or attention, not all frames 

consistent with  are recalled by the agent to represent it.  A frame is less likely to be 

integrated into the representation when it is harder to recall.  Since , at least the 

bundle  is retrieved from background knowledge. We call such a bundle 

“initial representation” of .  Two polar cases are of special interest: the case where 

, when thinking is fully local and only one frame is retrieved, and the case where 

rh

f∩

1≥b

1
rr dh ∩

rh

1=b
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rMb ≥  for each r, when the agent’s representation is complete.  In the campaign 

example, in considering whether a candidate is incompetent, a local thinker recalls only 

the inarticulate representation when the candidate commits a blunder, but both possible 

expressive abilities when there is greater memory capacity and b = 2. 

A.2 starkly captures limited recall.  If we alternatively assumed that the agent 

discounts the probability of hard to recall frames or that he recalls them with a certain 

probability, none of our substantive results would change.  Mullainathan (2002) develops 

a model of limited memory where an agent recalls past events with a certain probability, 

but does not allow for different hypotheses to stimulate the recall of different scenarios or 

frames.  Wilson (2002) is a normative study of decision making under bounded recall.   

Consider how local thinking affects the estimation of probabilities. To assess the 

probability of , the agent represents all hypotheses , thus obtaining a mental 

representation of the problem’s state space.  In this space, the agent’s assessment is: 

sh rh

min( , )

1
min( , )

1,.., 1

Pr( )
Pr ( )

Pr( )

s

r

b M
k

s s
L k

s b M
k

r r
r N k

h d f
h d

h d f

=

= =

∩ ∩
=

∩ ∩

∑

∑ ∑
,                                     (3) 

where the assessed probability is the probability of the agent’s representation of  

relative to that of the agent’s representation of all hypotheses .  That is, these 

probabilities are computed by considering for each hypothesis  only the first b frames 

 recalled in conjunction with it.    

sh

rh

rh

k
rf

One important property of expression (3) is that the local thinker’s assessment of 

the probability of a hypothesis depends on the other hypotheses examined in conjunction 

with it.  This property is a direct consequence of imperfect recall and captures the idea 
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that the description of the set of alternative scenarios can both remind the agent of 

scenarios in which a hypothesis is violated and also affect the framing of the alternative 

hypothesis by shaping the salience of alternative scenarios.  In Section 4.3, we show that 

our model naturally yields a central assumption of Tversky and Koehler’s (1994) support 

theory: the underestimation of the probability of implicit disjunctions.   

We can rewrite (3) as: 

∑ ∑

∑

= =

=

∩⎥
⎦

⎤
⎢
⎣

⎡
∩

∩⎥
⎦

⎤
⎢
⎣

⎡
∩

=

Nr
r

Mb

k
r

k
r

s

Mb

k
s

k
s

s
L

dhdhf

dhdhf
dh

rs

s

,..,1

),min(

1

),min(

1

)Pr()Pr(

)Pr()Pr(
)(Pr ,                         (3’) 

Expression (3’) highlights the role of local thinking.  If  for all r, the agent 

perfectly represents the state space and his probability assessment is correct.  The reason 

is that, since 

rMb ≥

1)Pr(
1

=∩∑
=

rsM

k
r

k
r dhf  must hold for all hypotheses  (i.e. the frames available 

in the mental space fully describe the hypothesis), expression (3’) becomes equal to 

, the Bayesian’s (or correct) assessment of 

rh

)Pr(/)Pr( ddhs ∩ )Pr(h ds .  Biases in 

judgements can only arise when the agent’s representation ability is limited.   

For many of the examples we develop, we focus on the above formula when 

thinking is fully local, i.e. when b = 1.  In this case,  

1

1

1,..,

Pr( )Pr ( )
Pr( )

L s s
s

r r
r N

h d fh d
h d f

=

∩ ∩
=

∩ ∩∑
.                                        (4) 

Each  is represented by only taking into account the corresponding easiest to recall 

frame .  We now illustrate the above formulas in the electoral campaign example. 

rh

1
rf
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Example 1.D (Electoral Campaign): The State Space and Probability Assessments 

An agent with b = 1 and the mental space of Table 1.A’ assesses .  

Then, since Example 1.B showed that  inarticulate,  articulate, expression (4) yields: 

comphincomph == 21 ,

=1
1f =1

2f

71.0)2.05.0/(5.0)/()(Pr 144 =+=+= πππincompL  

After a blunder, the agent over-estimates the probability of the candidate being incompetent, 

whose correct value is .  In this case, local thinking yields an over estimation of 

the probability of incompetence. 

6.0)Pr( =incomp

If instead the agent’s mental space is the one of Table 1.A’ we have that: 

97.0)02.06.0/(6.0)/()(Pr 144 =+=+= πππincompL  

Now over-estimation of incompetence is huge.  Example 1.F below discusses why.◘ 
 

The next section explores the circumstances under which local thinking yields 

biased or correct probabilistic assessments. 

 

3.  Biases in the Estimation of Probabilities 

To examine how biases arise in our model, consider the simple setting where an 

agent assesses the odds of hypothesis  relative to its alternative 1h 12 hh = .  Both 

hypotheses concern the value of , the first dimension of X which can take two values, 

i.e. .  Data concern the second dimension .  The agent then recalls for each 

hypothesis r = 1,2 frames  in the order given by (1).  In this case the total number of 

frames for  and  is the same, i.e. 

1x

{ 211 ,hhx =

1h

} 2x

k
rf

2h MMM == 21  (this is always true if  takes half 

of the elements of ). Expression (3) implies that the agent’s estimate satisfies: 

1h

1X

)Pr(
)Pr(

)Pr(

)Pr(

)(Pr
)(Pr

2

1
),min(

1
22

),min(

1
11

2

1

dh
dh

dhf

dhf

dh
dh

Mb

k

k

Mb

k

k

L

L

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∩

∩
=

∑

∑

=

=                                    (4) 
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The bracketed term is the key determinant of the agent’s estimate, capturing the 

total likelihood the frames  recalled to represent  relative to those  recalled to 

represent .  The agent correctly estimates the odds of  relative to  if and only if the 

bracketed term is equal to one.  When this term is greater (respectively smaller) than one, 

the agent over (under) estimates the probability of  relative to . 

kf1 1h

h

kf 2

2h 1 2h

1h 2h

When b =1, expression (4) becomes:   

)Pr(
)Pr(

)Pr(
)Pr(

)(Pr
)(Pr

2

1

2
1

2

1
1

1

2

1

dh
dh

dhf
dhf

dh
dh

L

L

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∩

∩
= .                                   (5) 

When thinking is fully local, the agent’s assessment is correct if and only if the diagnostic 

frames used to represent  and  are equally likely for the respective hypotheses.  

When 

1h 2h

)dPr()Pr( 21
1

1 hdhf ∩>∩ 1
2f , the agent represents  with a frame that is 

relatively more likely than the frame with which he represents .  The agent thus over 

estimates the odds of  because – for a given true odds ratio – his representation of  is 

more likely than that of .  The opposite is true when 

1h

h2

1h 1h

2h )Pr()Pr( 2
1

2
1

1 dhfhf ∩<1 ∩ d .  

To evaluate the consequences of (4), call ∑
=

∩=∩
t

k
r

k
rr dhfdhtF

1
)Pr()(  the 

cumulative likelihood of frames with recall order tk ≤  for hypothesis .  Define rh

∑
=

∩=∩
rM

k
r

k
rr dhfkdhkE

1
)Pr()(  as the average recall order for hypothesis .  rh )(E dhk r ∩  

measures the extent to which easy to recall frames are also likely [in which case 

)( dhkE r ∩  is low], or unlikely [in which case )d∩( hkE r  is high].   We can then show:  
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Proposition 1  If  the agent’s assessment is identical to that of a Bayesian.  If 

, the agent over (respectively under) estimates the odds of  relative to  if and 

only if 

Mb ≥

Mb < 1h 2h

)( 21 ddhbF ∩∩ () hbF>  (respectively )()( 1 dbFdhbF ∩<∩ 2h ).   The odds of 

 relative to  are (weakly) over-estimated for every 1h 2h Mb <  if and only if 

)() 12 dhkEdhk ∩≥∩(E . 

 

As we have seen before, if the agent thinks globally [i.e. ], he perfectly 

represents and thus assesses the hypotheses.  This is the benchmark of full rationality.  

But even if thinking is local, the assessment is unbiased provided the represented state 

spaces capture the same share of their respective hypotheses’ total probabilities [i.e. 

provided 

Mb ≥

)()( 21 dhbFdhbF ∩=∩ ].  Biases arise when the agent represents different 

hypotheses with frames of different likelihoods.  We call this consequence of local 

thinking the “narrow focus” effect. 

The narrow focus effect arises because, with local thinking, the recall intensity of 

different hypotheses affects the assessment of their probabilities; hypotheses that tend to 

be represented with unlikely frames are more likely to be underestimated.  In particular, a 

hypothesis is always underestimated if the average recall order of its frames is higher 

than that of its alternative hypothesis.  Intuitively, the representation of a hypothesis with 

lower average recall always includes relatively more likely frames than those of its 

alternative hypothesis.  Before seeing under what conditions is the narrow focus effect is 

the strongest, we illustrate Proposition 1 with an example. 
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Example 1.E (Electoral Campaign): the Order of Recall and the Narrow Focus Effect 

It is immediate to check that an agent with the state space of Table 1.A’ assessing 

 has: comphincomph == 21 ,

 t = 1 t = 2 
)( incomptF  0.83 1 

)( comptF  0.5 1 
 

Proposition 1 says that for b = t the odds of = incomp are overestimated if 1h )( incomptF  

> )( comptF , underestimated if )( incomptF  < )( comptF , and correctly estimated otherwise.  

Thus, the agent correctly assesses the odds of incompetence for b = 1.  Since there are only two 

frames, for b = 2 the agent becomes Bayesian.  Although in this example higher b trivially 

improves assessments, if there are more than two frames assessment bias can increase with b as 

additional frames may skew the represented space in favour of a hypothesis.◘ 

 

3.1  Diagnosticity, Likelihood, and The Narrow Focus Effect 

Depending on the distribution Pr( )x , local thinking may or may not generate 

assessment biases.  This raises two questions: a) under what conditions on Pr( )x  are 

those biases more severe?, and b) what is the role of the recall order assumed in A.1?   

To answer these questions, notice that A.1 implies that the recall orders of two 

hypotheses  and 1h 12 hh =  are negatively related.  Formally,  for 

.  Indeed, with two alternative hypotheses, the most diagnostic frame for  is 

the least diagnostic one for  and vice-versa.  This shows very clearly one key 

consequence of A.1: it induces the agent to represent different hypotheses with different 

frames.  The intuition here is important: if the agent frames hypotheses by picking the 

best exemplar of each, he ends up representing these hypotheses with very different 

frames because best exemplars are naturally different.  Proposition 1 illustrated under 

what conditions one hypothesis is systematically overestimated.  We now dig into the 

workings of our model by highlighting a sufficient condition for that to happen: 

kMk ff −+= 1
21

Mk ,...,1= 1h

2h
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Proposition 2.  Denote by k the recall order of frames for .  Then, if 1h )Pr( 11 dhf k ∩  and 

)Pr( 21 dhf k ∩  strictly decrease (respectively increase) in k, the agent over (respectively 

under) estimates the odds of  relative to  for every b < M.   1h 2h

 

The proof is in the Appendix.  If frames that are more easily recalled under  

(i.e., those with low k) are also more likely for both hypotheses, then the under-estimation 

of the odds of  is especially severe because  is represented with its most diagnostic 

but least likely frames (those with high k) while  is represented with its most diagnostic 

and likely frames (those with low k).  The opposite bias occurs when, under both 

hypotheses, more likely frames are characterized by higher k.   

1h

2h 2h

1h

The general principle here is that the narrow focus effect is particularly strong 

when diagnosticity and likelihood of frames are positively related for one hypothesis and 

negatively related for the other hypothesis.  In this case, the first hypothesis is represented 

with a high probability frame, while the second with a low probability frame, giving rise 

to a strong narrow focus that leads to an over-estimation of the former hypothesis.   

Although Proposition 2 does not imply that assessment biases only occur if 

diagnosticity and likelihood are far apart for one hypothesis, it suggests that in the latter 

case those biases are especially strong, as the result below confirms:  

 

Corollary 1  Suppose b = 1.  Then, consider the following two cases: 

a)  In the set of distributions  such that )Pr(x )Pr( 11 dhf k ∩  and )Pr( 21 dhf k ∩  decrease 

in k, the maximal factor of over estimation of the odds of  is arbitrarily large. 1h
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b)  In the set of distributions  such that )Pr(x )Pr( 11 dhf k ∩  and )Pr( 2
1

1 dhf kM ∩−+  

(weakly) decrease in k, the maximal factor of under (respectively over) estimation of the 

odds of  is bounded above by M. 1h

 

In a), the diagnosticity and likelihood of frames are negatively related for one 

hypothesis and positively related for the other hypothesis, so the narrow focus is very 

strong.  In this case, if the most diagnostic frame for  is very unlikely, the over 

estimation of  can be huge.  In b), where the diagnosticity and likelihood of frames are 

positively related for both hypotheses, biases are of limited (but possibly still large) 

magnitude.  In this case, the largest over estimation of  occurs when its likelihood is 

fully concentrated on its most diagnostic frame while hypothesis  is fully spread 

among all of its M frames.   

2h

1

1h

h

2h

The above discussion highlights that greater dispersion of one hypothesis among 

disparate frames relative to its alternative causes the under estimation of the former 

hypothesis.  Such over-estimation, however, is especially strong when the most likely 

frames are the same for both hypotheses.  In this case, following the recall order of A.1, 

the agent stresses the hypotheses’ differences rather than similarities, implying that only 

one hypothesis is represented with a likely frame, causing its over estimation.  Biases are 

the strongest when the local thinker, looking for best exemplars, represents one 

hypothesis with an unlikely but distinctive frame, forgetting the commonalities between 

the hypotheses.  We illustrate this idea in the example below. 

 

Example 1.F (Electoral Campaign): Diagnosticity, Likelihood, and Narrow Focus 

Table 1.A (and thus the estimate of Example 1.D) falls in case b) of Corollary 1, where 

for each hypothesis the most diagnostic and the most likely frames coincide and the bias is 
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limited.  The most likely frame for h1 = incomp is “inarticulate”, the most likely frame for h2 = 

comp is “articulate”, which are also the most diagnostic ones.  The bias arises because conditional 

on a blunder competent candidates are more dispersed in expressive abilities than incompetent 

candidates, who are more concentrated on the inarticulate frame.  Suppose instead we have: 

blunder articulate inarticulate 
competent 0.4 0 

incompetent 0 0.6 
 

Once more, the total pr a competen d an incomp

Table 1.A’, but only com ates are ar ulate and – m important – only incompetent 

er arises when the probability of one 

hypothe

n diagnosticity and likelihood are negatively related 

for one

obability of t an etent candidate is the same as in 

petent candid tic ost 

candidates are inarticulate.  In this case, diagnosticity and likelihood perfectly coincide.  As a 

consequence, the local thinker does not lose any information by representing a competent 

candidate as articulate and an incompetent one as inarticulate.  With no information loss, his 

assessment is exactly correct: the relative likelihood of 1h  and 2h  is 3/2.    

In accordance with case b) of Corollary 1, when for both hypotheses the diagnosticity and 

likelihood of frames are positively related, the most sev e bias 

sis is fully concentrated on the most diagnostic frame while the probability of the other 

hypothesis is fully dispersed among all the frames.  In the current example, this arises when π4 = 

0.6 and π1 = π2 =0.2, in which case the agent assesses the odds of h1 relative to 2h to be 3 and thus 

the over-estimation factor is equal to M = 2. 

As illustrated in Example 1.D by the huge bias created by Table 4, over-estimation of 

incompetence can be much more severe whe

 hypothesis but positively related for the alternative hypothesis, as stressed by case a) in 

Corollary 1.  In the Example, this occurs when π1/π3 > π2,/π4 but π1/<π2 and π3< π4.  Now, most 

candidates are inarticulate but the few articulate candidates are relatively more associated with 

competence.  For example, suppose: 

Blunder articulate inarticulate 
Competent ε 0.4-ε 

Incompetent 0 0.6 
 

where ε>0 is small. The me is diagnostic for h1 nt because only competent 

candidates are articulate esenting h  competent the 

 

articulate fra  = tecompe

.  Yet, by repr 1 =  with an articulate candidate, 

agent disregards that the bulk of competent candidates made a blunder precisely because they are 

inarticulate, which causes an over-estimation of incompetence.  As ε→0, the over estimation bias 

of incompetence relative to competence, at 0.6/ε, becomes infinite, again consistent with 

Corollary 1.◘ 
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We studied how biases can arise in our model when an agent assesses some 

hypotheses in light of some or no data.  We have however abstracted from the question of 

how da

We now illustrate with numerical examples how our model can account for 

covered by KT (e.g., 1974, 

1983). 

Several experiments reveal subjects’ failure to properly use base rates in the 

or instance, KT (1974) gave subjects personality descriptions 

random

ta provision can itself affect the agent’s assessments.  Although it is beyond the 

scope of this paper to systematically study the effects of data provision, this theme is 

sufficiently important to deserve some discussion.  We return to it in Section 4.4. 

 

4.  Local Thinking and the Heuristics and Biases Program 

several decision making biases related to representativeness un

 We focus specifically on base rate neglect, failure of the conjunction rule, 

underestimation of implicit disjunctions, and insensitivity to predictability.  We use the 

Linda experiment described in the introduction to illustrate the first two biases.   

 

4.1 Neglect of Base Rates 

assessment of probability.  F

ly sampled from a population of 100 professionals: engineers and lawyers.  

Subjects were told the total proportion of engineers and lawyers in the population but, in 

assessing the odds that a certain person was an engineer or a lawyer, they mainly focused 

on the personality description, barely taking the base rates of the two occupations into 

account.  According to KT, subjects implicitly substituted the required assessment of 

probability with the more intuitive assessment of representativeness, judging the degree 

to which a personality description resembled the stereotype of an engineer or a lawyer.  
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Our model of local thinking can rationalize such neglect of base rates without requiring 

agents to employ non-probabilistic logic, but relying instead on the limited ability of 

subjects to represent or recall the underlying state space.   

To restate the lawyer/engineer example in the Linda framework, suppose that 

Linda c

A 

NA

F NF 

an be in one of two occupations, bank teller (BT) or social worker (SW), have two 

possible backgrounds, leftist activist (A) or non-activist (NA), and two possible current 

political orientations, feminist (F) or non-feminist (NF). The probability distribution of 

full descriptions of Linda is displayed in the table below, where τ and σ are the base 

probabilities of a bank teller and a social worker in the population, respectively.  

 

BT (2/3)(2τ/8) 
 
 

/8)

(1/3)(2τ/8) 
 
 

/8)(1/3)(6τ (2/3)(6τ
SW (9/10)(2σ/3) 

 

(1/2)(σ/3)

(1/10)(2σ/3) 
 

(1/2)(σ/3)
  

 

The numbers in Table 5 represe babilities of alternative scenarios.  The 

number

mer non-

activist

Table 5. 

nt the pro

s above the diagonal represent the joint probability distribution of Linda´s current 

political orientation and occupation conditional on having been an activist (A).  The 

numbers below the diagonal represent this distribution for a non activist (NA).   

Table 5 then captures two ideas.  First, the bulk of bank tellers are for

s and currently non-feminist, and very few former activists subsequently become 

non-feminist bank tellers.  Indeed, 6/8th of the base probability of bank tellers is captured 
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by former non-activists, 2/3rd of whom are non-feminist.  Of the remaining 2/8th of 

former activist bank tellers, only 1/3rd are non-feminist.  Second, irrespective of whether 

they were activist or not, bank tellers tend to be relatively less feminist than social 

workers.  In particular, 9 out of 10 formerly activist social workers are feminist, while 

only 2 out of 3 formerly activist bank tellers are feminist.   

Suppose a subject is told that Linda was an activist (i.e., A) and asked to 

assess 

 =d

the probability she is a bank teller (BT).  Suppose that the subject is a fully local 

thinker, i.e. b =1.  Then, a former activist bank teller is framed as a non-feminist (NF), 

while a former activist social worker is framed as a feminist (F).  Concretely, for the 

hypothesis of bank teller, Table 5 implies that the diagnostic value Pr( , )BT A NF  of the 

“non-feminist” frame (NF) is larger than the diagnostic value Pr(B , )T A F  of the 

18σ), the f

aries imply that to a local thinker the odds of Linda being a bank 

teller a

“feminist” frame (F).  The latter diagnostic value is equal to 5τ/(5τ + ormer is 

equal to 5τ/(5τ + 4σ).  The same calculation also implies that the most diagnostic frame 

for the hypothesis of a social worker is “feminist” F.  Intuitively, in Table 5 former 

activists who became feminists are relatively more prevalent among social workers than 

among bank tellers.   

These prelimin

re: 

Pr ( ) Pr( , , ) (1/ 3)( / 4) 5
Pr ( ) Pr( , , ) (9 /10)(2 / 3) 36

L

L

BT A BT A NF
SW A SW A F

τ τ
σ σ

= = =                       (6) 

The correct odds ratio is instead equal to: 

σ
τ

8
3

)Pr(
)Pr(BT
=

ASW
A

                                                      (7) 

 24



If we compare (6) and (7), we see that the local thinker under-estimates the odds of Linda 

being a bank teller since he is less responsive than a Bayesian to the prior probability of 

” since the fact of Linda being a former 

activist

hile this 

change

those odds, τ/σ.  Even if the odds of being a bank teller in the population τ/σ are quite 

high, after hearing the description of Linda the local thinker’s updated probability under-

weights the base rate by a factor of (3/8)*(36/5) = 108/40 relative to the correct Bayesian 

assessment, yielding neglect of the base rate τ/σ.  

The intuition for this result is simple.  The evidence d = A skews the agent’s 

mental representation in favour of “social worker,

 allows the local thinker to represent her occupation as “social worker” with the 

most likely frame (activist, feminist), while it prompts him to represent the bank teller 

with a low likelihood frame (activist, non-feminist).  As in the Example 1.G, this results 

from the local thinker’s tendency to represent a hypothesis (bank teller) with the most 

diagnostic frame (non-feminist) rather then with the most likely one (feminist).   

This reasoning also suggests that dropping the description of Linda as a former 

activist should improve the assessed odds of her being a bank teller because, w

 does not affect the framing of a social worker (still depicted as a former activist 

and now feminist), it would lead the local thinker to represent the bank teller with the 

more likely frame of a former non-activist (and now non-feminist), yielding 

Pr ( ) Pr( , , ) (2 / 3)(6 / 8) 5
Pr ( ) Pr( , , ) (9 /10)(2 / 3) 6

L

L

BT BT NA NF
SW SW A F

τ τ
σ σ

= = = ,                             (8) 

an almost correct unconditional probability assessment.  Of course, it is not always the 

case that data provision reduces the quality of judgment.  In the current example, this 

happens because the data provision has an asymmetric effect on the two hypotheses. 

Since being a former activist is fully consistent with being a social worker but mildly 
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inconsistent with being a bank teller, the provision of d = A reduces the local thinker’s 

ability to represent the latter hypothesis with a likely frame, causing its underestimation. 

 

4.2  Violations of the Conjunction Rule 

The Linda example is most famous for the violation of the conjunction rule, 

of each

Our model of local thinking can shed light on conjunction rule violations with 

previously, when d = A is given to the 

subject

which states that the probability of a conjoined event C&D cannot exceed the probability 

 event C or D by itself.  We illustrate how our model accounts for violation of the 

conjunction rule when data that Linda is a former activist is provided, in Section 4.2.1.  

Section 4.2.2 accounts for conjunction rule violations with no data given.  

 

4.2.1 Conjunction Rule Violation with Data 

parameter values from Table 5.  As we saw 

, he represents a bank teller with the frame “non-feminist” and a social worker 

with the frame “feminist”.  The new hypothesis of “feminist bank teller” leaves no gaps 

to be filled and is thus correctly represented with the frame “former activist, now feminist 

bank teller”, i.e. (BT, A, F).  As a result, the local thinker estimates: 

Pr ( ) Pr( , , ) (1/ 3)(2 / 8) 1
Pr ( , ) Pr( , , ) (2 / 3)(2 / 8) 2

L BT A BT A NF
BT F A BT A F

τ
τ

1L = = = <                           (9) 

The local thinker grossly violates the conjunction rule.   

Interestingly, in this example, the conjunction rule would not be violated if the 

he event “bank teller” would be 

framed with “formerly non-activist, now non-feminist” [i.e. (NA, NF)], yielding: 

data d =A was not given to the subject.  In this case, t
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Pr ( ) Pr( , , ) (2 / 3)(6 / 8) 3 1
Pr ( , ) Pr( , , ) (2 / 3)(2 / 8)

L BT BT NA NF
BT F BT A F

τ
τ

= = = >                        (10) 

Again, the intuition is straightforward once this result is viewed in light of Exam

L

ple 1.G.   

The data d = A given to the local thinker induce him to frame the hypothesis of “bank 

teller” with a now moderate but former activist person.  The problem, however, is that the 

y be violated in situations where the subject represents 

the bro

epresent a 

former 

hypothesis of bank teller because the local thinker now selects the frame of a former non 

probability of this outcome is very low because, conditional on being a former activist, 

most bank tellers are feminists.   

In our model, the violation of the conjunction rule comes from the separation 

between frames’ diagnosticity and likelihood highlighted in Proposition 2 and Corollary 

1.  The conjunction rule can onl

ader hypothesis with a very low likelihood frame.  If the subject represents a 

hypothesis with the most likely frame, then the conjunction rule can never be violated.  In 

our example, the local thinker represents the hypothesis of Linda being a bank teller with 

the more numerous category of formerly activist, now feminist bank tellers rather than 

with the unlikely category of formerly activist now non-feminist bank tellers.   

In this respect, our model deals with the question, “why don’t people realize that 

the population of bank tellers includes the feminist ones?”, by replacing it with the 

question more pertinent to describing a local thinker, “why don’t people r

activist, now bank teller with the more likely frame of “feminist?”.  The answer is 

in Example 1.G: the local thinker never considers that a bank teller can be a feminist 

because feminist is a characteristic disproportionately associated with social workers, and 

does not therefore match with the image of an exemplar bank teller.   

Crucially, in the absence of data, the state space is no longer skewed against the 
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activist.  As a consequence, since in Table 5 formerly non activist and now non-feminist 

bank tellers are more likely than formerly activist and now feminist bank tellers, in (10) 

the con

ction error holds that instead of assessing Pr(h|d), 

subject

ome 

light on why the agent may his is best seen by writing: 

junction rule is not violated.  

Conjunction rule violations hinge on the separation between diagnosticity and 

likelihood of frames, not on data provision per se; indeed, such violations can also arise 

when data are not given, as Section 4.2.2 shows.  Before moving on, we wish to stress 

that one interpretation of the conjun

s intuitively assess the inverse probability Pr(d|h) of the data given the hypothesis 

in question.  Thus, in the Linda experiment subjects confuse the probability Pr(BT|A) of 

Linda being a bank teller with the probability Pr(A|BT) that a bank teller is Linda, and the 

probability of Linda being a feminist bank teller with the probability Pr(A|F,BT) that a 

feminist bank teller is Linda.5  This error can yield the conjunction fallacy because being 

feminist can increase the chance of being Linda.  Indeed, in our example of Table 5: 

Pr(A|BT) = 1/8 < Pr(A|F,BT) = ¼. 

One shortcoming of this explanation of the conjunction fallacy is that it does not 

elucidate the thought process by which the subject substitutes the target assessment 

Pr(h|d) with the delivered assessment Pr(d|h).  Interestingly, our model can shed s

assess Pr(d|h) instead of Pr(h|d).  T

)Pr(
)Pr(

)Pr(
)Pr(

)Pr(
)Pr(

2

1

2

1

2

1

h
h

hd
hd

dh
dh

In the above expression, the subject may mistakenly estimate the odds of h1 given the 

data with the odds of the data given h1 if he does not account for the base rates of the two 

=                                           (11) 

                                                 
5 In a personal communication, Xavier Gabaix proposed a “local prime” model complementary to our local 
thinking model. Such model exploits the above intuition about the conjunction fallacy. Specifically, in the 
local prime model an agent assessing h1, …, hn evaluates PrL’(hi|d) = Pr(d|hi)/[ Pr(h1|d) + …+ Pr(hn|d)].   
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hypotheses.  Insofar as our model can account for the subject’s failure to properly 

account for base rates, it can also induce the subject to estimate )Pr()Pr( 21 dhdh  as if 

he were estimating )Pr()Pr( 21 hdhd .  This can be directly seen in our numerical 

example where, according to expression (9), after observing d = A the local thinker 

assesses the odds of the bank teller versus feminist bank teller to be 1/2.  But this is 

exactly equal to the value of Pr(A|BT)/Pr(A|F,BT), which is 1/2 as well. 

 KT (1983) them

jects were asked 

to asse

More broadly, selves discussed the possibility that subjects may 

confuse Pr(h|d), with Pr(d|h), and demonstrated the inapplicability of this explanation to a 

range of situations where the conjunction fallacy is detected.  For example, after being 

told that the tennis player Bjorn Borg reached the Wimbledon final, sub

ss whether it was more likely that in the final Borg would lose the first set or 

whether he would lose the first set but win the match.  Most subjects violated the 

conjunction rule by stating that the second outcome was more likely than the first.  

Although our model is consistent with this experimental result, the hypothesis that 

subjects assess Pr(d|h) is not.  In the Borg example, the two hypotheses are “losing the 

first set” and “losing the first set but winning the final,” and the data is “Borg reached the 

final.”  Both hypotheses perfectly predict the data, so Pr(d|h) = 1 for both hypotheses.  

This is clearly not what the subjects estimate.  

 There is another family of conjunction rule violations that is inconsistent with 

subjects confusing Pr(h|d) with Pr(d|h), and that is when the conjunction rule is violated 

in the absence of data provision.  The next section studies this case in detail.   
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4.2.2 C

y (1983)].  

uppose an agent is asked to estimate the probability of the event “A massive flood 

somewhere in North America in which more than 1000 people drown” and of the event 

“An earthquake in California causing a flood in which more than 1000 people drown”.  

The correct probability of the second event should clearly be not larger than that of the 

first because the latter event is included in the former.   

Suppose that the agent’s mental space has three dimensions: the type of the flood, 

which can either be severe (S) or mild (M), the cause of a flood, which can either be a 

earthquake (E) or a tornado (T), and the location of the flood, which can either be 

California (C) or the rest of North America (NC).  Suppose that the distribution in X has 

the following features: 

M 

S

E T 

onjunction Rule Violations in the Absence of Data 

We propose a numerical example tracking an experiment carried out to document 

conjunction rule violations without data [e.g. see Kahneman and Tversk

S

C (1-x)eC 

xeC

tC/2 

tC/2
NC eNC/2 

eNC/2 

(1-z)tNC 

ztNC
 

Table 6 

In Table 6, eC and tC are the probabilities of an earthquake and a tornado in 

California, respectively,  eNC and tNC are the probabilities of an earthquake and a tornado 

in the rest of north America, respectively, and x > 1/2 and z> 1/2 are respectively the 

share of earthquakes causing severe floods in California and of tornados causing severe 
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floods in the rest of North America.  Obviously, parameter values should be such that eC 

+ tC + e

2 tornados cause severe floods in 

the rest

ns imply that a local thinker represents a mild flood (M) with the 

frame (C,T). Indeed, Table 6 implies 

NC + tNC = 1.   

Table 6 has two key features.  First, in the rest of North America earthquakes are 

sufficiently milder than in California that they cause fewer severe floods.   Indeed, while 

only 1/2 of earthquakes cause severe floods in North America, in California x > 1/2 

earthquakes cause severe floods.  Second, tornados are sufficiently milder in California 

than in the rest of North America that they cause fewer severe floods.  Indeed, while only 

1/2 of tornados cause severe floods in California, z > 1/

 of North America.  The specific assumption that x, z > 1/2 is not important, what 

matters is that earthquakes and tornadoes are stronger in California and in the rest of 

North America, respectively.  We make the natural assumption z > x, meaning that 

tornados are more likely to cause severe floods than earthquakes.   

These assumptio

 > =),Pr( CTM 2/1),Pr( =NCEM xCEM −=1),Pr(  > 

zNCTM −=1),Pr( .  Most important, since the least diagnostic frame for a mild flood (M) 

is the most diagnostic one for the severe flood (S), the above ranking implies that a local 

thinker represents the event of a severe flood (S) with e (T, NC), i.e. as a severe 

flood caused by a tornado in the rest of North a    

The event “Severe flood caused by an earthquake in California” need not be 

framed because it uniquely identifies the bundle (S, C, E).  Given this framing, the local 

thinker assesses the odds of (S, C, E) relative to (S) as: 

 the fram

Americ

C

NC
L

L

xeECSECS
==

),,Pr(),,(Pr
                                     (11) 

ztTNCSS ),,Pr()(Pr
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As long as the prior probability of disastrous earthquakes in California is 

sufficiently high relative to that of disastrous tornados in the rest of North America, (i.e. 

provide

the engine” – went up 

from 0.

Respondents – including most remarkably 

experienced car  

ry.    

ocal thinking – themselves reveal 

how the probability of an implicit disjunction such as bank teller is underestimated 

relative to that of a constituent event such as feminist bank teller.  As we have seen, 

d CNC xezt > ), the subject violates the conjunction rule in this case as well, even 

though he is given no data at all.  This bias arises because the subject represents severe 

floods with the diagnostic but unlikely frame (S, NC, T), forgetting that severe floods 

caused by earthquakes in California also belong to the set of severe floods.    

 

4.3  Underestimation of Implicit Disjunctions 

Fischoff, Slovic and Lichtenstein (1979) asked car mechanics, as well as lay 

people, to estimate the probabilities of different causes of a car’s failure to start.  They 

document that on average the probability assigned to the residual hypothesis – “The 

cause of failure is something other than the battery, fuel system, or 

22 to 0.44 when that hypothesis was broken up into more specific causes (e.g. the 

starting system, the ignition system).  

mechanics – discounted hypotheses that were not explicitly mentioned.  

The under-estimation of implicit disjunctions such as residual hypotheses relative to 

explicit disjunctions has been documented in many other experiments and is the 

cornerstone of Tversky and Koehler’s (1994) support theo

By incompletely representing hypotheses, a local thinker is naturally predisposed 

to underestimate implicit disjunctions.  Furthermore, conjunction rule violations – which 

Section 4.2 has shown to be a possible consequence of l
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conjunction rule violations only arise in our model under certain conditions, particularly 

when the diagnosticity and likelihood of frames are far apart.  It is thus interesting to ask 

under what conditions underestimation of implicit disjunctions arises in our model. 

Suppose that a local thinker with b = 1 assesses the probability of two hypotheses 

h1 and h2 without observing any data (it is immediate to generalize the analysis to the 

case where some data is observed).  The local thinker then assesses 

1
1 1

1 1 1
1 1 2 2

Pr( )Pr ( )
Pr( ) Pr( )

L h fh
h f h f

∩
=

∩ + ∩
                                   (12) 

Suppose instead that the same local thinker assesses three hypotheses h1, h2,1 and h2,2 

where φ≠1,2h , φ≠2,2h , 22,21,2 hhh =∪  and φ=∩ 2,21,2 hh .  Thus, he must now 

separately assesses the two disjoint constituent elements h2,1 and h2,2 of h2 rather than the 

implicit disjunction h2.  In this second problem, the local thinker recalls a frame 1
1,2f  for 

hypothesis 1,2h  and a frame 1
2,2f  for hypothesis 2,2h , thereby estimating: 

1

1 1 1 1
1 1 2,1 2,1 2,2 2,2

Pr ( )
Pr( ) Pr( ) Pr( )

h
h f h f h f

∩
=

∩ + ∩ + ∩
                            (13) 

Notice that h1 is still represented with 1f  because unpacking the implicit disjunction h2 

does not affect expression (1) for h .   

It is immediate to see that the implicit disjunction is

1 1Pr( )L h f

1

 strictly under-estimated 

relative

The implicit disjunction is underestimated when the probability of the bundle with which 

such a hypothesis is represented is smaller than the sum of the probabilities of the 

1

 to the explicit disjunction when (12) is larger than (13), which in turn boils down 

to the condition: 

1 1 1 .                             (14) 2,1 2,1 2,2 2,2 2 2Pr( ) Pr( ) Pr( )h f h f h f∩ + ∩ > ∩
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bundles with which the explicit disjunction is represented.  The only way in which (14) 

may not be fulfilled is if the explicit disjunction evokes two diagnostic frames 1
1,2f  and 

1 , both of which are much less likely than 1 .  A sufficient condition for this is: 2,2f 2f

{ }1 1 ,h f h f h f∩ ∈ ∩ ∩ 1                                       (15) 

tion of its unpacked 

version always contains the representation of the implicit disjunction (plus one or more 

additional bundles, depending on the number of explicit disjunctions).   

 are disjoint [i.e. 

2 2 2,1 2,1 2,2 2,2

The implicit disjunction is under-estimated when the representa

In our model, condition (15) is always satisfied, for two reasons.  First, since h2,1 

and h2,2 φ=∩ 2,21, h2h he implicit disjunction h2 

by choosing a bundle belonging to either h2,1 or h2,2 but not to both.  Second, and given 

the previous fact, one can rewrite the agent’s recall process of a frame for h2 as:   

], the agent represents t

bothnotbutfhorfhts

ffhf += 2,1,22 )Pr)Pr(axar h
f

φφ =∩=∩ 2,21,2

2
1

..

(mg
                (16) 

In sum, the agent represents the implicit disjunction h2 by selecting the most diagnostic 

esentation of the implicit disjunction, 

implying that in our m

ation occurs because unpacking of a hypothesis h2 into its constituent 

events preserves the diagnosticity of the former’s representation while allowing the agent 

to integrate into the representation bundles that would not be recalled otherwise.   

representation among all of its explicit disjunctions. Hence, the representation of the 

explicit disjunction always includes the repr

odel condition (15) always holds. 

Local thinking, then, naturally yields underestimation of implicit disjunctions.  

Such underestim
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These implications of local thinking can account for the car mechanic experiment.  

Suppose the different causes of a car’s failure to start can be represen  by 

{ }ignitionfuelbattery ,, , where fuel stands for “fuel system” and ignition stand

ted

s for 

 for every cause of the failure to start.  The agent is 

od that the car’s failure to start is for a reason other 

is, he is asked to assess the likelihood of hypotheses 

.   A local thinker arbitrarily represents the implicit 

 by one of its constituent elements fuel or ignition (e.g., 

r than battery troubles by ig

case where a frame as defined in Section 2 does 

mption A.1 the agent randomly chooses a bundle 

ithout loss of generality, suppose that the local thinker 

represents h1 by fuel.  The local thinker then attaches probability 

X ≡

“ignition system” and Pr(x

initially asked to assess

than battery troubles.  That 

{ }ignitionfuelh ,1 = , h =2

disjunction ignitionfuelh ,=

he may represent reasons othe

fuel system troubles).  Indeed, this is one 

not exist.  As a result, according to assu

in { }ignitionfuelh ,1 = .  W

0) >

 the likeliho

battery

{ }1

nition system troubles or by 

)Pr()Pr(
)(Pr 1 batteryfuel

hL

+
=                                            (17) 

to the cause of the car’s failure to start being a reason other than battery. 

Now suppose that the implicit disjunction h1 is broken up into its constituent 

elements, h1,1 = fuel and h1,2 = ignition (e.g., the individ

)Pr( fuel

ual is asked to separately assess 

the like

reason 

other than the battery because: 

lihood that the car’s failure to start is due to ignition troubles or to fuel system 

troubles).  Clearly, the local thinker represents h1,1 by fuel and h1,2 by ignition.  As before, 

the agent represents the other hypothesis h2 by battery.   As a consequence, the local 

thinker now attaches greater probability to the car’s failure to start being for a 
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)Pr()
)Pr(

)Pr()Pr()Pr(
)Pr()Pr()(Pr)(Pr

batteryel
fuel

fuelignitionfuelignition LL

+Pr(
)(Pr 1 fu

h

batteryfuelignition

L =>

++
+

=+
                  (18) 

 

4.4  Effects of Data Provision 

A cursory look at expression (4) shows that data provision can sway assessments 

ca representation of the hypotheses (the term in square 

1 2

by affecting the lo l thinker’s 

brackets).  This effect occurs even if the data are barely predictive or objectively 

irrelevant, namely when the conditional and unconditional odds of  relative to

coincide.  Section 4.2.1 already illustrated how data provision may trigger the violation of 

the conjunction rule.  We now look more systematically at the role of data by considering 

insensitivity to predictability.   

Various studies show that people often fail to account for the reliability of the 

evidence used in making probabilistic judgements, which are often heavily shaped by 

scarcely informative data.  Our model provides one way t

 

Examp

h  h  

o think about this kind of bias.  

Consider now the role of data in our electoral campaign example. 

le 1.G (Electoral Campaign): The Role of Data. 

Suppose that an agent assesses 1 2 versus h incomp h comp= =  without observing the 

candidate’s speech (i.e. whether he committed a blunder or not).  Suppose that the third 

dimension of the mental space is ≡3X {homerun, blunder} and captures the quality of the 

candidate’s speech.  Suppose furthermore that the three dimensional mental space is: 

 36



 

homerun 
 

blunder

articulate inarticulate 

Competent 0.25 
 

0.1

0.05 
 

0.1

Incompetent 0.1 
 

0.05

0.1 
 

0.25
 

conditional on blunder is the same as that of Table 1.A’ and articulate and competent candidates 

o

speech quality and expressive ability.  Using the number of Table 7 we can easily find that  

Table 7 

With these parameter values, the total probability of a blunder is one half, the distribution 

are associated together and make fewer blunders than inarticulate and incompetent candidates. 

Now each hypothesis has four possible frames, each consisting of a combination f 

 

                         f good team,  
blunder 

bad team, 
blunder 

good team, 
homerun 

bad team, 
homerun 

1/3 5/7 2/7 2/3 Pr( )incomp f  
2/3 2/7 5/7 1/3 Pr( )comp f  

 

 

In this 

competent candidate as an articulate one delivering homeruns and an incompetent candidate as an 

case, without observing the candidate’s speech, a local thinker with b = 1 represents a 

inarticulate one making blunders.  As a result, the local thinker assesses: 

)(Pr incompL )25.025.0/(25.0 += =1/2, 

which is identical to the correct prior probability of a candidate being incompetent.  Data 

provision in the form of observing the candidate’s blunder induces a bias in favour of the 

ias turns to favour the hypothesis of 

compete un.  Below we discuss the reaso
 

the local thinker inflates the odds of incompetence, exaggerating the predictive power of 

blunders.  Crucially, such over-reaction occurs because the blunder is inconsistent with 

the “articulate” frame used by the local thinker to represent competent candidates, and 

thus reduces the perceived likelihood of such an “articulate” frame.  By representing a 

hypothesis of incompetence.  It is easy to see that the b

nce if the agent observes a homer n for this result. ◘ 

The above Example shows how local thinkers over-react to data.  After a blunder, 
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competent candidate’s as the oc istake of an articulate candidate, the 

local thinker disregards that ompetent candidates are inarticulate and make 

blunders, causing him to grossly over-estim petence. 

The general lesson is th ision can exacerbate biases by reducing the 

likelihood of the frame with which one o  the t y theses resented.  In this case, 

which occurs when data are negatively c  with the frame used to represent one of 

he 

informa

e likelihood-reducing effect of data.   

We now illustrate this reasoning wit pl  by rimental 

evidence on subjects’ insensitivity to low predictability.  In one study, subjects were 

the lesson, other subjects were asked to predict the standing of each student-teacher five 

 blunder casional m

some c

ate the odds of incom

at data prov

f wo h po is rep

orrelated

the two hypothesis, the narrow focus effect becomes stronger.  Ironically, in this case 

scarcely informative data can greatly affect the agent’s assessments by increasing t

tional loss associated with local thinking.  The conjunction rule violation of 

Section 4.2.1 was due to the sam

h an exam e inspired  the expe

presented with several paragraphs, each describing the performance of a student-teacher 

during a particular practice lesson.  Some subjects were asked to evaluate the quality of 

years after the practice lesson.  The judgements made under the two conditions were 

identical, irrespective of subjects’ awareness of the limited predictability of teaching 

competence five years later on the basis of a single trial lesson.   

To see how local thinking may be responsible for this bias, consider the similar 

example of a candidate giving a job talk in an academic department.  A subject is asked 

to assess the quality of the candidate (or the probability that the candidate is tenured in 

the department) based on the quality of the talk.  As usual, suppose there are three 

dimensions, the first is the quality of the candidate which can be high or low, the second 
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is the quality of the talk, which can be good or bad, while the third is the training of 

candidate, which can be good or poor.  Suppose that the mental space is as follows:   
 

good talk Poor train Good train 
high quality 0 1/4 
low quality ε 1/4 – ε 

 

Table 8.A 
 

bad talk Poor train Good train 
high quality 1/4 - ε ε 
low quality 1/4 0 

 

Here ε > 0 is assumed to be small.  In this example, the quality of the talk is completely 

uninformative about the candidate’s quality [as Pr(high quality| good talk) = Pr(high 

quality| bad talk) = 1/2].  This is admittedly extreme, but it highlights

Table 8.B 

 the mechanism by 

which u

his or her quality as Pr(high quality| good training) = 

ninformative data can affect judgement.  The two key features of the above table 

are the following.  First, the candidate’s training is highly correlated with the quality of 

the talk: the bulk of bad talks are given by poorly trained candidates, while the bulk of 

good talks by well trained ones. Second, the candidate’s training is mildly informative of 

1/4 +  
1/ 2

ε > Pr(high quality| poor 

training) = 1/4 -  
1/ 2

ε .   

Consider now how a full local thinker (i.e. b =1) reacts to uninformative data such 

as the quality of the talk.  Since poorly trained candidates tend to be of lower quality than 

well trained ones, poor training is diagnostic for low quality, inducing the local thinker to 

represent a high quality candidate as a well trained one and a low quality candidate as a 

poorly trained one.  As a consequence, conditional on observing a good talk or a bad talk 

the local thinker assesses: 
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Pr ( ) Pr( , , ) 1/ 4
Pr ( ) Pr( , , )

L

L

highquality goodtalk highquality goodtalk goodtrain
lowquality goodtalk lowquality goodtalk poortrain

Pr ( ) Pr( , , )
Pr ( )

L

L

highquality badtalk highquality badtalk goodtrain
lowqualit

ε
= =

y baddtalk
=

Pr( ) 1/ 4ba rain
ε

=

The local thinker grossly over-estimates the  after a good talk and 

ates the quality of the candidate after a bad talk, even when the quality of the 

talk is completely unin out the te’s true ality. 

After hearing a good talk, the local thinker argues that a low quality candidate is 

 

In the job talk example, the assessment bias is much stronger than in the electoral 

xample.  The intuition is that now the data and the frame are highly 

correla

e data is consistent with the way one hypothesis is framed and 

 

,lowquality ,dtalk poort

quality of the candidate

under-estim

formative ab candida qu

poorly trained and would have thus delivered a bad talk, and forgets that many well 

trained candidates giving good talks are of low quality.  Upon hearing a bad talk, the 

local thinker believes that a high quality candidate is well trained and would have thus 

delivered a good talk, and forgets that a few poorly trained candidates giving bad talks 

are of high quality.   

As discussed above, this judgement bias is due to the fact that, although per se 

uninformative, the data are inconsistent with the way one of the two hypotheses is 

framed, in the sense that the data reduce the likelihood of one of the hypotheses’ frame.  

campaign e

ted.  The bulk of bad talks are given by poorly trained candidates and the bulk of 

good talks are given by well trained ones, irrespective of the candidates’ quality.  In this 

case, data sharply separate the diagnosticity and the likelihood of frames for one of the 

hypotheses, thereby greatly exacerbating assessment biases.   

To summarize, we have seen that in our model the agent over-reacts to 

uninformative data when th
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inconsistent with the way its alternative is framed.  The extent of such over-reaction is 

especially strong when the data and the frame are highly correlated.   

 

d by Kahneman and 

Tversk

esumably would generally yield a different recall order than 

diagnos

rk. 

5.  Conclusion.   

 Incorporating some features of representativeness into a nearly Bayesian model of 

decision making can account for many of the biases documente

y.  Most importantly, both the conjunction and the disjunction fallacies emerge 

quite naturally from our model.  

 Our analysis raises the question of whether other features of representativeness, as 

well as the other key heuristics, namely availability and anchoring, can be incorporated 

into our model.   Our model clearly does not cover them.  Availability focuses on the ease 

of recall, which pr

ticity.  With anchoring, recall is shaped by irrelevant factors priming the mind.   

At the same time, it is worth pointing out that these additional heuristics, at a 

broad level, share some crucial similarities with representativeness as we model it.   

Specifically, these heuristics share with our model the feature that something other than 

the data primes the decision maker’s model of the world, as well as the feature that 

memory is imperfect.  In our model, it is the hypothesis itself that primes the frame, and a 

local thinker ignores some of the alternative frames.  With anchoring, the priming is done 

by an irrelevant anchor.   And of course limited memory is central to availability.  We 

hope to pursue these similarities among heuristics in future wo
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6.  Proofs  

Proof of Proposition 1.  The proof immediately follows from the fac
 

t that the condition 
)()( 21 dhbFdhbF ∩>∩  which ensures that the odds of  relative to  are over-

stimated for every  effectively says that 
1h 2h

Mb < )( 2 d∩hbF  first order stochastic e

)()( 12 d∩hkEdhkE ≥ .    ∩dominates )d∩ , which is in turn equivalent to ( 1hbF
 
Proof of Proposition 2.  By definition, at any given b < M the hypothesis 1h  is 
represented with frames ( ) bk

kf ≤1  while hypothesis 2h  is represented with frames 
( ) bk≤1 1

kMf −+1 . As such, the odds of  are over-estimated at  if and only if h b

∑∑
=

−+

=

b
kM

b

k

k 1

1
1 ∩≥∩

k

dhfdhf
1

211 )Pr()Pr(                                    (19) 

Suppose now that )Pr( 11 dhf k ∩  and )Pr( 21 dhf k ∩  strictly decrease in k.  Then, one can 

certain b* < M the above condition is not met.  That is, suppose that  
easily show that the above condition is met for every b < M.  Suppose in fact that for a 

∑∑
=

−+

=

**

1
2

1
1

1
11

b

k

kM
b

k

k ∩<∩ )Pr()Pr( dhfdhf                                   (20) 

Then, at some b** ≤ b* it must be the case that )Pr()Pr( 2111

****

then, since 

1 dhfdhf bMb ∩<∩ −+ .  But 

)Pr( dhf k ∩  and 11 )Pr( dhf k ∩  strictly decrease in k, it must also be the 

case that 
21

)Pr()Pr( 2
1

111 dhfdhf bMb ∩<∩ −+  for all b ≤ b*.  The same property implies 

that )Pr()( 2111 dhfdhf ∩<∩  for all b > b .  But then, this implies that (20) 
*

Pr 1 bMb −+ *

must hold for all b > b , including b = M, which is inconsistent with the fact that: 

1)Pr()Pr(
1

1

1

=∩=∩ ∑∑
=

−+

=

M

k

kM
M

k

k dhfdhf                                (21) 

must necessarily hold.  Hence, if 

2111

)Pr( dhf k ∩  and 11 )Pr( dhf k ∩  strictly decrease in k 
condition (19) must always hold and the odds of 1h  are always (weakly) overestimated.  

2

overestimated when 

21

By using the same logic, it is immediate to show that the odds of  are always (weakly) h
)Pr( 11 dhf k ∩  and )Pr( 21 dhf k ∩  strictly increase in k.    

 
Proof of Corollary 1.  Take the set of distributions  such that )Pr(x )Pr( 11 dhf k ∩  and 

)Pr( 21 dhf k ∩  decrease in k.  Then, Proposition 1 implies that in this class of 
distributions the odds of 1h  are over-estimated at any b < M.  In particular, the factor of 
over-estimation for a local thinker at b = 1 is equal to )Pr(/)Pr( 2111 dhfdhf M ∩∩ .  

Then, consider a distribution whereby 

1

⎥
⎦

⎤
⎢
⎣

⎡
−

−
−∩=∩ )d∩

−

ε
εε

1
11)Pr(Pr(

1
2

11
1

1

M

dhhf  and 
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 for all k≥2 and )2(2
111 )Pr() −∩= kdhd εPr( ∩∩k hf ⎥

⎦⎣ − ε1
and )2()Pr()Pr( −∩=∩∩ kk dhdhf ε  for all k≥2, where 0 < ε < 1.  Under this distribution, 

re diagnostic of 1h  because the probability of bundles 
belonging to h  decays  faster with k than that of bundles belonging to h .  Under 
both hypotheses, however, the probability of bundles plies

⎤
⎢
⎡ −
−∩=∩∩

−ε11)Pr()Pr(
1

22
1

1

M

dhdhf  

decreases in k, which im  that 
tion belongs to the class where 

221

lower indexed frames are mo

1  much

is probability distribu

2

)Pr( 11 dhf k ∩  and )Pr( 21f
k dh ∩  th

decrease in k.   Notice that when b =1 the odds of 1h  relative to 2h  are equal to: 

2

1
2

11
1

2 ∩
1

1Pr( ∩hf

For given true odds ratio 
2

1

1

Pr() −∩ Mhd ε
1

1
)Pr()Pr(

−

⎥
⎦

⎤
⎢
⎣

⎡
−

−
−

∩
=

∩∩

M

dhdhf ε
εε

 
)d

)d

Consider part b) of the corollary.  If 
Pr(
Pr(

2

1

h
h
∩
∩ )d , the estimated odds ratio becomes infinite as ε → 0.  

)Pr( 11 dhf k ∩  and )Pr( 2
1

1 dhf kM ∩−+  (weakly) 
decrease in k, the two hypotheses are represented with their most likely frames.  Thus, the 

 relative to  is reached when greatest over estimation of 1h 2h 1Pr( 1
1 )1 =∩ dhf  and 

Mdhf M /1)Pr( 21 =∩ .  That is, when ted on  representation while the 
l mes.  In  case, the nt

 

1h

M. 

 is conc

Ac

entra
a

 its
thisdistribution of 2h  is fully dispersed among a  over 

estimates the odds of cordingly, when 
l fr  age

1h  by a factor of Mdhf /1)Pr( 1
1

1 =∩  and 

1) =d
tice

aruc

Pr( 21 hf M ds of 1h  by a factor of M.  To 
concl ons it is indeed the case that k indicates the recall 
order for 1h  because in both cases the diagnosticity of a frame for 1h  falls in k.    
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, the agent under es
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