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1 Introduction

This paper uses option prices to estimate the risk of the stock market as it is perceived ex

ante by investors. We consider two types of risk in stock prices: diffusion risk and jump

risk.1 As argued by Merton (1980), diffusion risk can be accurately measured from the

quadratic variation of the realized price process. In contrast, since even high-probability

jumps may fail to materialize in sample, the ex-ante jump risk perceived by investors may

be quite different from the ex-post realized variation in prices. Therefore, studying measures

of realized volatility and realized jumps from the time series of stock prices will give us a

limited picture of the risks feared by investors. Fortunately, since options are priced on the

basis of ex-ante risks, they give us a privileged view of the risks perceived by investors. Using

option data solves the “Peso problem” in measuring jump risk from realized stock returns.

In our model, both the volatility of the diffusion shocks and the intensity of the jumps

vary over time following separate stochastic processes.2 Our model is quadratic in the state

variables. This allows the covariance structure of the shocks to the state variables to be

unrestricted, which proves to be important in the empirical analysis. Despite this flexibility,

we are still able to solve for the European option prices in a manner similar to the affine

case of Duffie, Pan, and Singleton (2000). In the empirical application, the model is shown

to produce pricing errors of the order of magnitude of the bid-ask spread in option prices.

When we calibrate the model to S&P 500 index option prices from the beginning of 1996 to

the end of 2002, we obtain time series of the implied diffusive volatility and jump intensity.

We find that the innovations to the two risk processes are not very correlated with each other

although both are negatively correlated with stock returns. The two components of risk vary

substantially over time and show a high degree of persistence. The diffusive volatility process

varies between close to zero and 36 percent per year, which is in line with the level of ex-post

risk measured from the time series of stock returns. The jump intensity process shows even

wider variation. Some times the probability of a jump is zero, while at other times it is more

than 99 percent.3 We estimate that the expected jump size is -9.8 percent. Interestingly, we

1There is ample empirical evidence for this kind of specification. See for example Jorion (1989), Bakshi,
Cao, and Chen (1997), and Bates (2000).

2In contrast, other jump-diffusion models impose a constant jump intensity (e.g., Merton (1976) and
Bates (1996)) or make it a deterministic function of the diffusive volatility (e.g., Bates (2000), Duffie, Pan,
and Singleton (2000), and Pan (2002)). The empirical analysis shows that the jump intensity varies a lot
and that, although related to the diffusive volatility, it has its own source of shocks.

3We calculate this probability as 1 − e−λ, where λ is the instantaneous jump intensity. This calculation
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do not observe such large jumps in the time series of the S&P 500 index in our sample, not

even around the times when the implied jump intensity is very high. These were therefore

cases in which the jumps that were feared did not materialize. However, the perceived risks

are still likely to have impacted the expected return in the stock market at those times.

To investigate the impact of ex-ante risk on expected returns, we solve for the stock market

risk premium in a simple economy with a representative investor with power utility for final

wealth. We find that the equilibrium risk premium is a function of both the stochastic

volatility and the jump intensity. Given the implied stochastic volatility and jump intensity

processes, together with the estimated coefficient of risk aversion for the representative

investor, we estimate the time series of the ex-ante equity premium. This is the expected

excess return demanded by the investor to hold the entire wealth in the stock market when

facing the diffusion and jump risks implicit in option prices. We also decompose the ex-ante

equity premium into compensation for diffusive risk and compensation for jump risk. We

find the ex-ante equity premium to be quite variable over time. In our sample, the equity

premium demanded by the representative investor varies between as low as 0.3 percent and

as high as 54.9 percent per year! The compensation for jump risk is on average more than

half of the total premium. Moreover, in times of crisis, the jump risk may command a

premium near 45.4 percent per year and can be close to one hundred percent of the total

premium.4

The ex-ante premium evaluated at the average levels of diffusive volatility and jump intensity

implied from the options in our sample is 11.8 percent. In contrast, the same investor would

require a premium of only 6.8 percent as compensation for the realized volatility during

the same sample period. Therefore, the required compensation for the ex-ante risks is more

than 70% higher than the compensation for the realized risks! This finding supports the Peso

explanation of the equity premium puzzle proposed by Rietz (1988), Brown, Goetzmann, and

Ross (1985), and Barro (2006). According to this explanation, there is a risk of a substantial

crash in the stock market that has not materialized in sample but which justifies a larger

risk premium than what has traditionally been thought reasonable along the lines of Mehra

and Prescott (1985).

assumes that the jump intensity remains constant for an entire year. Since the process we estimate for the
jump intensity is strongly mean reverting, this figure overstates the probability of a jump during the year.

4This variation in the equity premium is extreme and may be due to over fitting a very particular
equilibrium model. It also assumes that option prices reflect accurately investors’ expectations. These
potential limitations are further discussed in section 5.2.
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To show that the equity premium implied from the options market is indeed related to stock

prices, we run predictive regressions of stock returns on the lagged implied equity premium.

We find that the regression coefficient is significant for different predictability horizons. For

one-month returns, the R2 is 4.1%, and it becomes 6.6% for three-month returns. The

regression coefficient is close to 1 for the three-month horizon as expected for an unbiased

forecast. Finally, we examine the relation between the option implied equity premium and

three variables related to financial crises: the T-bill rate, the spread of bank commercial

paper over T-bills, and the spread of high-yield bonds over Treasuries. Intuitively, the jump

risk we uncover in options should be related to large-scale financial crises in which the Fed

lowers interest rates, inter-bank loans dry up and become more expensive, and corporations

are more likely to default. We find significant relations between these variables and the

implied equity premium, with R2 as high as 13.9% for the high-yield spread.

The paper closest to ours is Pan (2002).5 She estimates a jump-diffusion model from both

the time series of the S&P 500 index and its options from 1989 to 1996. She uses the

pricing model proposed by Bates (2000) which has a square-root process for the diffusive

variance and jump intensity proportional to the diffusive variance. The jump risk premium

is specified to be linear in the variance. Pan finds a significant jump premium of roughly

3.5 percent, which is of the same order of magnitude of the volatility risk premium of 5.5

percent. The main difference between our paper and hers is that in Pan’s framework it is

hard to disentangle the diffusion and jump risks and risk premia since they are all driven by

a single state variable, the diffusive volatility.

Finally, a word of caution. Our analysis relies on option prices and, of course, options

may be systematically mispriced. That would bias our ex-ante risk measures. Coval and

Shumway (2001) and Driessen and Maenhout (2003) report empirical evidence that some

option strategies have unusually high Sharpe ratios, which may indicate mispricing. Indeed,

Santa-Clara and Saretto (2004) show that transaction costs and margin requirements impose

substantial limits to arbitrage in option markets which may allow mispricings to persist.

The paper proceeds as follows. In section 2, we present the dynamics of the stock market

index under the objective and the risk-adjusted probability measures, and we derive an

option pricing formula. In section 3, we discuss the data and the econometric approach.

The model estimates and its performance in pricing the options in the sample are covered in

5Other related work includes Ait-Sahalia, Wang, and Yared (2001), Bates (2001), Bliss and Panigirtzoglou
(2004), Chernov and Ghysels (2000), Engle and Rosenberg (2002), Eraker (2004), and Jackwerth (2000).
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section 4. Section 5 contains the main results of the paper, the analysis of the risks implied

from option prices and what they imply for the equity premium. Section 6 concludes.

2 The Model

In this section we introduce a new model of the dynamics of the stock market return that

displays both stochastic diffusive volatility and jumps with stochastic intensity. We derive

the equilibrium stock market risk premium in a simple economy with a representative investor

with CRRA utility. This risk premium compensates the investor for both volatility and jump

risks. We also obtain the risk-adjusted dynamics of the stock, volatility, and jump intensity

processes and use them to price European options.

2.1 Stock Market Dynamics

We model the dynamics of the stock market index with two sources of risk: diffusive risk,

captured by a Brownian motion, and jump risk, modeled as a Poisson process. The diffusive

volatility and the intensity of the jump arrivals are stochastic and interdependent. We

parameterize the processes as:

dS = (r + φ − λµQ)Sdt + Y SdWS + QSdN, (1)

dY = (µY + κY Y ) dt + σY dWY , (2)

dZ = (µZ + κZZ) dt + σZdWZ , (3)

ln(1 + Q) ∼ N
(

ln(1 + µQ) − 1

2
σ2

Q, σ2
Q

)
, (4)

Prob(dN = 1) = λdt, where λ = Z2, (5)

Σ =




1 ρSY ρSZ

ρSY 1 ρY Z

ρSZ ρY Z 1


 . (6)

WS, WY , and WZ are Brownian motions with constant correlation matrix Σ, and N is a

Poisson process with arrival intensity λ. Q is the percentage jump size and is assumed to

follow a displaced lognormal distribution independently over time. This guarantees that the

jump size cannot be less than -1 and therefore that the stock price remains positive at all
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times. We assume that N and Q are independent of each other and that Q is independent

of the Brownian motions. The instantaneous variance of the stock return is V = Y 2. r is

the risk-free interest rate, assumed constant for convenience. We also assume that the stock

pays no dividends, although it would be trivial to accommodate them by adding a term in

the drift of the stock price. φ is the risk premium on the stock, which we show below to be

a function of Y and Z. Finally, the term λµQ adjusts the drift for the average jump size.

In our model, the stock price, the stochastic volatility, and the jump intensity follow a joint

quadratic jump-diffusion process6 where the stochastic processes of V and λ are the squares

of linear (Gaussian) processes of Y and Z respectively. Applying Ito’s lemma, we can write

down the processes followed by V and λ:

dV =
(
σ2

Y + 2µY Y + 2κY Y 2
)
dt + 2σY Y dWY , (7)

dλ =
(
σ2

Z + 2µZZ + 2κZZ2
)
dt + 2σZZdWZ . (8)

The drift and diffusion terms in (7) and (8) depend on the signs of the Gaussian state

variables Y and Z. Note that the instantaneous correlation between dS and dV is constant,

ρSY , while the instantaneous correlation between dS and dY is sgn(Y )ρSY where sgn(.) is

the sign function, since
√

V = sgn(Y )Y and
√

λ = sgn(Z)Z.7

Without the jump component, our model collapses to a stochastic volatility model similar

to that of Stein and Stein (1991).8 It can easily be seen that the model does not belong to

the affine family of Duffie, Pan, and Singleton (2000), in that the drifts and the covariance

terms in V and λ are not linear in the state variables. For instance, the covariance between

dV and dλ is ρY ZσY σZY Z.

6Cheng and Scaillet (2007) also study quadratic option pricing models. Ahn, Dittmar, and Gallant
(2002), Chen, Filipovic, and Poor (2004), and Leippold and Wu (2002) present quadratic models of the term
structure.

7In our model, the correlation between dS and dλ, as well as the correlation between dV and dλ can
change signs, whereas the correlation between dS and dV always has the sign of ρSY . The negative correlation
between dS and dV is well documented in the literature as the leverage effect. This gives us a strong prior
on the sign of ρSY . However, our intuition about the signs of the other two correlations and whether they
should or should not change over time is much weaker. Our specification allows the correlations to be freely
estimated without having to make assumptions about their signs and even allowing the signs to change over
time. In the empirical sections, we estimate this model and find that Y and Z end up taking negative values
(very close to zero in all cases) in only 4 out of the 366 weeks of our sample. Therefore, there is little evidence
of changing signs in the correlations between the state variables.

8In Stein and Stein (1991),
√

V follows an Ornstein-Uhlenbeck process whereas, in our model, V = Y 2

with Y following an Ornstein-Uhlenbeck process. Since the square-root function is not globally invertible,
the two are not the same. See also Ball and Roma (1994) and Schobel and Zhu (1999).
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Our model belongs to the family of linear-quadratic jump-diffusion models. It is the first

model in which the jump intensity λ follows explicitly its own stochastic process. In contrast,

existing jump-diffusion models either assume that the jump intensity is constant or make

it a deterministic function of other state variables such as the stochastic volatility.9 For

instance, Pan (2002) assumes that λ is a linear function of V . It is of course an empirical

issue whether the jump intensity is completely driven by volatility or whether it has its own

separate source of uncertainty. The empirical sections shed some light on this matter.

We do not include jumps in volatility as do Eraker, Johannes, and Polson (2003) and

Broadie, Chernov, and Johannes (2007). After a large movement in stock prices, other

large movements are likely to follow. To capture this feature of the data with stochastic

volatility alone (in a model with no jumps or with only i.i.d. jumps), volatility needs to

jump up (and stay up) following the large movement in the stock. In our model, the effect

above is captured by an increase in jump intensity (instead of a jump in volatility), after

which jumps tend to cluster together.10

We now turn our attention to finding the risk premium φ. Consider a representative investor

that has wealth W and allocates it entirely to the stock market.11 For simplicity, we assume

that there is no intermediate consumption so the investor chooses an optimal portfolio to

maximize utility of terminal wealth:

max
w

Et [u(WT , T )] , (9)

where Et(·) is the conditional expectation operator, w is the fraction of wealth invested in

the stock, T is the terminal date, and u is the utility function. Define the value function of

the investor as:

J(Wt, Yt, Zt, t) ≡ max
w

Et [u(WT , T )] . (10)

Following Merton (1973) and using subscripts to denote the partial derivative of J , a solution

to (9) satisfies the Bellman equation:

0 = max
w

[Jt + L(J)] , (11)

9Some of these models can be transformed to allow the jump intensity to evolve separately from the
volatility. For example, the two-factor jump-diffusion model in Bates (2000) admits such a transform for
extreme values of one of the state variables and for some model parameters.

10Although we do not have a formal analysis, it doesn’t seem easy to identify a model with jumps in
volatility and time-varying jump intensity.

11Naik and Lee (1990) offer a related general equilibrium model for pricing options.
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with:

L(J) = WJW (r + wφ − wλµQ) + JY (µY + κY Y ) + JZ (µZ + κZZ)

+
1

2
w2W 2JWW Y 2 +

1

2
JY Y σY

2 +
1

2
JZZσZ

2

+wWJWY ρSY σY Y + wWJWZρSZσZY + JY ZρY ZσY σZ + Z2EQ [∆J ] , (12)

where EQ(·) is the expectation with respect to the distribution of Q. The term ∆J ≡
J(W (1 + wQ), Y, Z, t)− J(W,Y,Z, t) captures jumps in the value function. In equilibrium,

the risk-free asset is in zero net supply. Therefore, the representative investor holds all the

wealth in the stock market, that is, w = 1. Differentiating (11) with respect to w and

substituting in w = 1, we obtain the risk premium on the stock:

φ = −JWW

JW
WY 2 − ρSY σY

JWY

JW
Y − ρSZσZ

JWZ

JW
Y − E

[
∆JW

JW
Q

]
Z2, (13)

where ∆JW ≡ JW (W (1 + Q), Y, Z, t) − JW (W,Y,Z, t). The stock risk premium contains

four components: the variance of the marginal utility of wealth, and the covariances of the

marginal utility of wealth with the diffusive volatility, the jump intensity, and the jump size,

respectively.

For tractability, we concentrate our attention on the case of power utility:

u =
W 1−γ

T

1 − γ
, (14)

where γ > 1 is the constant relative risk aversion coefficient of the investor. In the Appendix,

we show that the risk premium on the stock consistent with equilibrium in this economy is
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a function of Y and Z:

φ(Y,Z, τ ) = γY 2 − ρSY σY (BY + 2CY Y Y + 2CY ZZ)Y − ρSZσZ (BZ + 2CY ZY + 2CZZZ)Y

−
[
e−γ ln(1+µQ)+ 1

2
γ(γ−1)σ2

Q

(
1 + µQ − eγσ2

Q

)
− µQ

]
Z2 (15)

= γY 2 −
(
ρSY σY ρSZσZ

)
BY − 2

(
ρSY σY ρSZσZ

)(CY Y

CY Z

)
Y 2

−2
(
ρSY σY ρSZσZ

)(CY Z

CZZ

)
Y Z

−
[
e−γ ln(1+µQ)+ 1

2
γ(γ−1)σ2

Q

(
1 + µQ − eγσ2

Q

)
− µQ

]
Z2, (16)

where we define τ ≡ T − t, B(τ ) =
(

BY
BZ

)
is a 2 × 1 matrix function, and C(τ ) =

(
CY Y CY Z
CY Z CZZ

)

is a 2× 2 symmetric matrix function. B and C solve the following system of ODEs with the

initial conditions B(0) = ( 0
0 ) and C(0) = ( 0 0

0 0 ):

B′ =
(
Λ> + 2CΓ

)
B + 2CΠ, (17)

C ′ = Θ + CΛ + Λ>C + 2CΓC, (18)

where “>” denotes the transpose of a matrix (or the complex transpose in the case of a

complex matrix), and the constant matrices Θ, Π, Λ, and Γ are defined as:

Θ ≡
(
−1

2
γ(γ − 1) 0

0 e−γ ln(1+µQ)+ 1
2
γ(γ−1)σ2

Q

[
γ (1 + µQ) − (γ − 1)eγσ2

Q

]
− 1

)
, (19)

Π ≡
(

µY

µZ

)
, (20)

Λ ≡
(

κY 0

0 κZ

)
, (21)

Γ ≡
(

σ2
Y ρY ZσY σZ

ρY ZσY σZ σ2
Z

)
. (22)

For a given value of the risk aversion coefficient γ, the ODEs (17)-(18) can be quickly

solved numerically. In the special case where there is no stochastic volatility and jumps, the

equity premium (15) collapses to the first term, γY 2 = γV , as shown by Merton (1973). In

the special case where there is no stochastic volatility and the jump intensity is constant,
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(15) collapses the first term and the last term. The other two terms in (15) involving

B and C capture the effects of shifting investment opportunities when both Y and Z are

stochastic. The first three terms in (16) involve Y only and thus correspond to compensation

for stochastic volatility, and the last term compensates the investor for jump risk as it involves

Z only. The interaction between the volatility and jump intensity risks is captured by the

cross term involving Y Z.

In related work, Liu and Pan (2003) derive the optimal portfolio of a CRRA investor who

can hold the stock, an option on the stock, and a risk-free asset. In their model, the stock

market has stochastic diffusive volatility and jumps of deterministic size with the jump

intensity driven by the stochastic volatility. In contrast to our paper, theirs is a partial

equilibrium analysis that takes the price of risk as given.

2.2 Option Pricing

We can price European options in this economy. In the Appendix we show that the risk-

adjusted dynamics of the stock price can be written as:12

dS =
(
r − λ∗µ∗

Q

)
Sdt + Y SdW ∗

S + Q∗SdN∗, (23)

dY = (µ∗
Y + κ∗

Y Y Y + κ∗
Y ZZ∗) dt + σY dW ∗

Y , (24)

dZ∗ = (µ∗
Z + κ∗

ZY Y + κ∗
ZZZ∗) dt + σ∗

ZdW ∗
λ , (25)

ln(1 + Q∗) ∼ N
(

ln(1 + µ∗
Q) − 1

2
σ2

Q, σ2
Q

)
, (26)

Prob(dN∗ = 1) = λ∗dt, where λ∗ = Z∗2, (27)

Σ =




1 ρSY ρSZ

ρSY 1 ρY Z

ρSZ ρY Z 1


 , (28)

12The stock price should be interpreted as being ex-dividend since we are interested in pricing options
that are not dividend protected.
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with the following simple relations between the model parameters under the objective and

risk-adjusted probability measures:13

(
µ∗

Y

µ∗
Z

)
=

(
1 0

0 b

)
(Π + ΓB) , (29)

(
κ∗

Y Y κ∗
Y Z

κ∗
ZY κ∗

ZZ

)
=

(
1 1/b

b 1

)
◦
[
Λ − γ

(
ρSY σY 0

ρSZσZ 0

)
+ 2ΓC

]
, (30)

σ∗
Z = bσZ, (31)

Z∗ = bZ, (32)

µ∗
Q = (1 + µQ) e−γσ2

Q − 1, (33)

b = (1 + µQ)−
1
2
γe

1
4
γ(γ+1)σ2

Q, (34)

where Π, Λ, and Γ are defined as before, and “◦” is the element-by-element product of

two matrices. The risk-adjusted coefficients on the left-hand sides of the equations above

are related to the coefficients under the objective probability measure by the risk aversion

coefficient γ. Note that the compensation for the jump risk is reflected in the changed jump

intensity as well as the changed distribution of the jump size. In contrast, the compensation

for the diffusive risk requires only a change in the drift of the processes.14

In contrast to the complete market setting of Black and Scholes (1973), the added random

jump sizes makes the market incomplete with respect to the risk-free asset, the underlying

stock, and any finite number of option contracts. Consequently, the change of probability

measure is not unique. We use the equilibrium pricing condition from the endowment

economy with a CRRA representative investor to identify the change of probability measure.

It turns out that this particular change of probability measure involves changing the jump

size and intensity.

The price f of a European call option with strike price K and maturity date T is:15

f(S, Y, Z∗, t;K,T ) = S − e−rτ

2π

∫ i
2
+∞

i
2
−∞

K ik+1

k2 − ik
e−ik(rτ+lnS)+A∗(τ)+B∗(τ)>U∗+U∗>C∗(τ)U∗

dk, (35)

13Note that Y and Z∗ now appear in the drift terms of each other while Y and Z do not under the
objective probability measure.

14Note that, in general, all the parameters governing the jump process may change when the probability
measure changes. However, in the case of a representative investor with power utility function, the volatility
of jump size σQ does not change.

15Although it contains a complex integral, the result is real.
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where i =
√
−1, k is the integration variable, U∗ ≡ ( Y

Z∗ ), A∗(τ ) is a scalar function,

B∗(τ ) =
(

B∗
Y

B∗
Z

)
is a 2 × 1 matrix function, and C∗(τ ) =

(
C∗

Y Y C∗
Y Z

C∗
Y Z C∗

ZZ

)
is a 2 × 2 symmetric

matrix function. A∗, B∗, and C∗ solve the following system of ODEs with initial conditions

A∗(0) = 0, B∗(0) = ( 0
0 ), and C∗(0) = ( 0 0

0 0 ):

A∗′ = Π∗>B∗ +
1

2
B∗>Γ∗B∗ + tr(Γ∗C∗), (36)

B∗′ =
(
Λ∗> + 2C∗Γ∗

)
B∗ + 2C∗Π∗, (37)

C∗′ = Θ∗ + C∗Λ∗ + Λ∗>C∗ + 2C∗Γ∗C∗, (38)

where “tr” is the trace of a matrix, and the matrices Θ∗, Π∗, Λ∗ and Γ∗ are defined as:

Θ∗ ≡
(
−1

2
(k2 − ik) 0

0 ikµ∗
Q + e−ik ln(1+µ∗

Q)− 1
2
(k2−ik)σ2

Q − 1

)
, (39)

Π∗ ≡
(

µ∗
Y

µ∗
Z

)
, (40)

Λ∗ ≡
(

κ∗
Y Y − ikρSY σY κ∗

Y Z

κ∗
ZY − ikρSZσ∗

Z κ∗
ZZ

)
, (41)

Γ∗ ≡
(

σ2
Y ρY ZσY σ∗

Z

ρY ZσY σ∗
Z σ∗

Z
2

)
. (42)

This formula involves the inverse Fourier transform of an exponential of a quadratic form of

the state variables, Y and Z∗. The ODEs that define A∗, B∗, and C∗ can be easily solved

numerically. Again, the Appendix presents the gruesome algebra.

3 Estimation

In this section we discuss the data and the econometric method used to estimate the model

and imply the time series of diffusive volatility and jump intensity.
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3.1 Data

For our econometric analysis, we use the European S&P 500 index options traded on the

Chicago Board Options Exchange (CBOE) in the period of January of 1996 to December of

2002 obtained from OptionMetrics. The S&P 500 index and its dividends are obtained from

Datastream. The interest rates are LIBOR (middle) rates also obtained from Datastream.

Since the stocks within the S&P 500 index pay dividends whereas our model does not account

for payouts, we adjust the index level by the expected future dividends in order to compute

the option prices. Realized dividends are used as a proxy for expected dividends. The

dividend-excluded stock price corresponding to the maturity of a given option is derived by

subtracting the present value of the future realized dividends until maturity from the current

index level. Interest rates are interpolated to match the maturities of the options.

We estimate our model at weekly frequency. We collect the index level, interest rates, and

option prices on Wednesday of each week.16 To ensure that the options we use are liquid

enough, we choose contracts with maturity shorter than a year and moneyness between 0.85

and 1.15. We exclude options with no trading volume and options with open interest of less

than 100 contracts. We only use put options in our study as they are more liquid than call

options and since using both option types would be redundant given put-call parity. For each

contract, we use the average of the bid and ask prices as the value of the option. We exclude

options with time to maturity less than 10 days and prices less than $1/8 to mitigate market

microstructure problems. Finally, we check for no-arbitrage violations in option prices. We

end up with 366 trading days and 14,416 option prices in our sample, or roughly 40 options

per day.

Table 1 reports the average implied volatility of the options in the sample. Rather than

tabulating the option prices, we show the Black-Scholes implied volatilities since they are

easier to interpret.17 We divide all options into nine buckets according to moneyness (stock

price divided by the strike price) and time to maturity: moneyness less than 0.95, between

0.95 and 1.05, and above 1.05; time to maturity less than 45 days, between 45 and 90 days,

16If Wednesday is not a trading day, we obtain prices from, in order of preference, Tuesday, Thursday,
Monday, or Friday.

17Here, we use the Black-Scholes model to invert option prices for implied volatilities. This does not mean
that the options are priced in the market according to that model and, indeed, we will use our model with
stochastic volatility and jumps to price the options in the empirical section below. The Black-Scholes formula
is used as a device to translate option prices into volatilities which are easier to interpret.
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and greater than 90 days. Note that when moneyness is greater than 1, the put options

are out of the money. The average implied volatility across all options in our sample was

22.77 percent. The first panel of Figure 1 plots the time series of the implied volatility

of the short-term (maturity less than 45 days and as close as possible to 30 days) option

with moneyness closest to S/K = 1 (at-the-money). We can see that the implied volatility

changes substantially over time. The spike in the implied volatilities observed in the Fall of

1998 corresponds to the Russian default crisis and Long Term Capital Management debacle.

For a fixed maturity, we can observe that the implied volatilities decrease and then increase

with the strike price. This is the well-known “volatility smirk”. The second panel plots

the time series of the “smirk”, defined as the difference between the Black-Scholes implied

volatilities of two short-term put options with moneyness closest to S/K = 1.025 (out-of-

the-money) and S/K = 1 (at-the-money), respectively. It shows that the smirk is positive

all the time and there are changes in the steepness of the smirk over time. The third panel

of Figure 1 plots the time series of the “term slope”, defined as the difference between the

Black-Scholes implied volatilities of the two at-the-money put options with two maturities:

short term (defined as above) and long term (shorter than 45 days and as close as possible

to 60 days), respectively. It shows that there is some variation in the slope of the term

structure through time. During our sample period, the term slope was on average close to

flat.

3.2 Econometric Method

We adopt an implied-state quasi maximum likelihood (IS-QML) estimation method that

is similar to the implied-state generalized method of moments (IS-GMM) of Pan (2002).

Our approach combines information from stock and option prices, taking advantage of the

existence of an analytical option pricing formula. In Pan (2002), volatility is the only latent

state variable that has to be implied. We extend Pan’s method to our setting where both

volatility and jump intensity are latent and have to be implied. We estimate the model

parameters by maximizing the joint likelihood function of a discrete approximation of the

continuous time transition densities of the state variables and the density of the cross-

sectional option pricing errors. One advantage of the QML method is that we do not need

to choose the moment conditions, which is always a sensitive choice in GMM.

Our modeling of the quasi likelihood function is inspired by Duffee (2002) who estimates a
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dynamic term structure model. We assume that some options are observed without error to

imply the state variables while others are observed with error. Our quasi likelihood function

combines the time-series distribution of the implied state variables and the cross-sectional

distribution of the pricing errors. In contrast, Pan (2002) only use the time-series data of

the implied state variables to define her moment conditions.

For estimation, we use weekly data for the stock index and four put option contracts

{St, P
1
t , P 2

t , P 3
t , P 4

t }, where P 1
t and P 2

t have the shortest maturity, and P 3
t and P 4

t have

the second shortest maturity. P 1
t and P 3

t are closest to at-the-money; P 2
t and P 4

t are closest

to moneyness (S/K) of 1.05. The maturity of the first two options is greater than 15 days

and as close as possible to 30 days while the maturity of the last two options is greater than

45 days and as close as possible to 60 days.18 All four contracts are actively traded. We use

P 1
t and P 2

t to imply the state variables Yt and Zt, and use P 3
t and P 4

t to compute the pricing

errors.

Note that the i-th put option price can be expressed as P i
t = f(St, Yt, Zt;Ki, Ti, θ) where

f(.) is given by (35) together with put-call parity, Ki and Ti are the strike price and time

to maturity of the i-th option, and θ = (µY , κY , σY , µZ , κZ, σZ, µQ, σQ, ρSY , ρSZ, ρY Z, γ) is

the vector of model parameters under the objective probability measure. Given θ, proxies

Y θ
t and Zθ

t for unobserved Yt and Zt can be obtained by inverting the system of equations

P 1
t = f(St, Y

θ
t , Zθ

t ;K1, T1, θ) and P 2
t = f(St, Y

θ
t , Zθ

t ;K2, T2, θ).
19

Given Y θ
t and Zθ

t , the model-based option prices P 3,θ
t and P 4,θ

t for the 3rd and 4th options can

be calculated using the option pricing formula. We then compute the Black-Scholes implied

volatilities σ3,θ
t and σ4,θ

t for these two options based on the model prices. The measurement

errors are defined as εi,θ
t = σi,θ

t − σi
t, where i = 3 and 4, and σi

t is the Black-Scholes implied

volatility of the i-th option based on the observed market price. Let εθ
t =

(
ε
3,θ
t

ε4,θ
t

)
denote the

vector of measurement errors.

18Using two maturities helps in identifying Y and Z since jumps and stochastic volatility have different
effects on short and long term options. We are constrained in using options with longer maturities than a
few months since they are not liquid. The results are robust to choosing options with moneyness 0.95, 0.975,
or 1.025.

19It is not always the case that Y and Z can be inverted for a given vector of parameters θ. The intuition
is that bi-variate quadratic equations do not always have real solutions. We impose the constraint that the
vector of parameters θ allows inversion of Y and Z.
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For week t, the log likelihood under the objective probability measure is defined to be:

lt(θ) = log fX(Xθ
t |Xθ

t−1) + log fε(ε
θ
t ), (43)

where fX(.) is the conditional density function of the vector of state variables Xθ
t =

(St, Y
θ
t , Zθ

t )>, and fε(.) is the density function of the vector of pricing errors εθ
t . This

specification implicitly assumes that the pricing errors are independent of the state variables.

Generalizing the approach of Ball and Torous (1983), we use the truncated Poisson-Normal

mixture distribution to approximate fX(.) for the jump-diffusion model in (1)-(3). Let ∆t

be the time interval of discretization, which is 1/52 for our weekly frequency data. We

approximate (1)-(3) by the following discrete system:

∆ lnSt = (r + φt−1 − λt−1µQ) ∆t + Yt−1

√
∆tεS,t + QtBt, (44)

∆Yt = (µY + κY Yt−1)∆t + σY

√
∆tεY,t, (45)

∆Zt = (µZ + κZZt−1)∆t + σZ

√
∆tεZ,t, (46)

where (εS,t, εY,t, εZ,t) ∼ iid N (0,Σ), Qt ∼ iid N
(
µQ, σ2

Q

)
, Qt and εt’s are independent,

Bt ∼ iid P̂(λt−1∆t) where P̂(.) is the truncated Poisson distribution with truncation taken

at M , the maximum number of jumps that may occur during a time interval.20 We fix M to

be 5 in our paper. Our discrete model (44)-(46) allows multiple (up to M) jumps in a time

interval while Ball and Torous (1983) only consider at most one jump during a time interval.

We approximate fX(.) by the likelihood function of (44)-(46), which is a mixture of truncated

Poisson and normal distributions.21 We examine the precision of the approximation at the

end of this section.

To model fε(.), we assume that the option pricing error vector εθ
t has an iid bivariate normal

distribution with constant covariance matrix. Given the definition of the log likelihood

function lt(θ), the QML parameter vector θ is obtained from the optimization program:

max
θ

L(θ) = max
θ

T∑

t=1

lt(θ). (47)

20The density function of P̂(λ∆t) is proportional to f(x) = e−λ∆t(λ∆t)x/x! for x = 0, 1, 2, ..., M.
21It is well known that the log likelihood function for a mixture of normal distributions is unbounded, but

it is still possible to obtain consistent and asymptotically normal distributed estimates by constraining the
maximum likelihood algorithm (see for example, Hamilton (1994)).
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We employ an optimization algorithm similar to that of Duffee (2002). In step 1, we generate

starting values for the parameter vector θ. In step 2, we use the formula (35) and option

prices P 1
t , P 2

t to derive the implied state variables Y θ
t and Zθ

t . In step 3, we use the nonlinear

Simplex algorithm to obtain a new parameter vector that improves the QML value. We then

repeat the above steps until convergence is achieved. The standard errors of the parameter

estimates are obtained from the last QML optimization step. The estimation time for the

SV-SJ model ranges from two to four hours depending on the choice of the initial parameter

values.

In addition to the general model (SV-SJ), we also estimate two restricted cases: the stochastic

volatility model (SV) and the constant jump intensity model (SV-J). For the restricted

models, volatility is the only latent state variable that needs to be implied. Therefore, in

those cases, we invert just the short-term at-the-money option P 1
t to imply the state variable

Yt.

It is important to point out that the options are priced under the risk-adjusted probability

measure while the transition densities of the state variables are specified under the objective

probability measure. The fact that the likelihood function combines information from both

the objective and the risk-adjusted distribution of the state variables has a crucial role in

the estimation of the risk aversion parameter γ. A necessary identification condition is

that the transformation between the objective and the risk-adjusted probability measure be

monotonic in terms of γ. In our framework, this transformation is given by equations (29)-

(34), which depends on γ. For the SV model, the difference between κ∗
Y Y and κY is −γρSY σY ,

which is clearly monotonic in γ.22 For the SV-SJ model, the difference between κ∗
Y Y and κY

is more complex but can still be shown to be monotonic in γ using the parameter estimates

reported in Table 3. Intuitively, the identification of γ comes from the mean reversion speed

observed in the implied state variables coupled with the mean reversion speed implicit in

the option prices. The mean reversion speeds of Y and Z under the objective probability

measure enter the likelihood function through the transition density fX(Xθ
t |Xθ

t−1) while the

same coefficients under the risk-neutral probability measure enter the likelihood function

through the density of the pricing errors fε(ε
θ
t ). Since the transformation between the mean

reversion speeds under the two probability measures is monotonic, the QML algorithm finds

a unique value of γ that maximizes the combined likelihood function.23

22In some studies of the SV models −γρSY σY is called the market price of risk. Using the parameter
estimates reported in Table 3, this market price of risk is positive.

23We thank an anonymous referee for this explanation.
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Another potential problem in our QML approach is that the approximation of the conditional

likelihood function fX(.) by the truncated Poisson-Normal mixture distribution may bias the

estimates of the model parameters. We conduct the following exercise to verify the precision

of the approximation. Fixing the time horizon, ∆t, to be 1 week as in our sample, we

compare the conditional density functions of continuously-compounded weekly stock returns

using the model (1)-(3) and the approximation (44)-(46). The true density function of model

(1)-(3) is constructed by Monte-Carlo simulations. To be specific, we set the time increment

in simulations to be 1/10 days and use a Euler approximation of the continuous time model

to simulate 100,000 sample paths of S, Y , and Z. In simulations, the model parameters are

those estimated by the QML method in the next section and the starting values of Y and Z

are the sample averages of the implied time series of state variables.

The empirical density function of the simulated stock returns is plotted in Figure 2 together

with the density function of the truncated Poisson-Normal mixture distribution. It is obvious

from the plots that the two density functions are very close. We conclude that the model

(44)-(46) provides a good approximation of the jump-diffusion model.

We next examine if the QML estimation of the approximation model biases the parameters.

We simulate samples of S, Y , and Z at weekly frequency for 366 weeks (matching the length

of our sample). The time increment in simulations is again 1/10 days and we simulate

10,000 samples.24 For each sample, we perform the QML estimation of the model using the

approximation (44)-(46). Table 2 reports the sample statistics of the estimated parameters.

Overall, the QML estimates are close to the true parameters (used for the simulations)

indicating that there is no significant bias in our estimation approach.

4 Empirical Results

In this section we discuss the empirical results. We present the model estimates and discuss

the performance of the model in pricing options.

24Note that the each of these optimizations takes substantially less time than the estimation (47) since we
do not take into account the pricing error density.
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4.1 Model Estimates

The SV-SJ model of stochastic volatility and stochastic jump intensity contains the pure

stochastic volatility model (SV) and the constant jump intensity model (SV-J) as special

cases. In the SV model, we restrict µQ = σQ = µZ = κZ = ρSZ = ρY Z = 0. In the SV-J

model, we restrict µZ = κZ = ρSZ = ρY Z = 0, and λt = λ̄ is a constant.25

Table 3 reports the estimated parameters for the three models. We can compare to some

extent the parameter estimates for the SV model with the estimates reported by Bakshi,

Cao, and Chen (1997) and Pan (2002). However, notice that their SV model is the square-

root model of Heston (1993) whereas ours is similar to (but different from) the model of

Stein and Stein (1991). Also, their sample periods are different from ours. Bakshi, Cao,

and Chen use S&P 500 index options data from 1988 to 1991 and Pan uses S&P 500 index

options data from 1989 to 1996.

In Bakshi, Cao, and Chen (1997) and Pan (2002), the square-root of the estimated long-run

mean of V is 18.7 percent and 11.7 percent, respectively. Our estimate of the long-run mean

of
√

V (= |Y |), given by µY /κY , is a bit higher, at 21.0 percent. These differences are mainly

due to the difference in sample periods. The estimates of mean-reversion speed are 1.15 and

7.10 in their papers, whereas it is 9.20 in our paper, implying stronger mean-reversion.26

The volatility of volatility is 0.39 and 0.32 in their papers, and it is 0.31 in our paper.27 The

correlation between the stock and volatility processes is estimated to be -0.64 and -0.57 in

their papers, and it is -0.73 in our paper.

Bakshi, Cao, and Chen and Pan also estimate an SV-J model. In this case, the square-root of

their estimated long-run mean of V is 18.7 percent and 11.6 percent in their papers, whereas

our estimate is 19.0 percent. The mean-reversion speed is estimated as 0.98 and 7.10 in their

papers, and 9.22 in our paper. The volatility of volatility is 0.42 and 0.28 in their papers,

25Note that option pricing formula for the SV-J model cannot be obtained from that of the SV-SJ model
by restricting the corresponding parameters. A similar option pricing formula can be derived using the same
approach as for the SV-SJ model.

26Our estimate of mean reversion speed is much faster than those of some early studies. One explanation
is that previous studies generally use an early sample period. As a check, we examined the at-the-money
nearest-to-maturity implied volatility for the period of 1990-1995 (from CBOE data since Option Metrics
is not available for that period). The first order autocorrelation coefficients are 0.911 and 0.822 for the
1990-1995 and 1996-2002 periods, respectively, indicating faster mean reversion in the more recent period.

27According to Ito’s lemma, the volatility of volatility in Heston’s model is half of that in our model. So
our estimate of volatility of volatility is about twice of those in Bakshi, Cao, and Chen (1997) and Pan
(2002). But this higher volatility is offset by a much faster rate of mean reversion.
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and 0.31 in our estimate. The correlation between volatility and the stock is -0.76 and -0.52

in their papers and -0.73 in ours. Finally, they estimate the mean jump size to be -5 percent

and -0.3 percent respectively, whereas we estimate it to be -7 percent. In summary, our

estimates for the restricted SV and SV-J models are comparable with the findings in other

studies despite the differences in the datasets and models.

We next concentrate our attention on the SV-SJ model. All the coefficients of the model are

significant at any conventional level of significance. Table 5 reports summary statistics for

the implied time series of
√

Vt and λt which are plotted in Figure 3.

The average level of volatility is 15.6 percent and the average level of jump intensity, loosely

speaking the expected number of jumps over the next year, is 0.80. The average jump size

is -9.8 percent, which is forty percent higher than the average jump size in the SV-J model.

Both the volatility and jump intensity series exhibit substantial variation through time. The

diffusive volatility varies between 1.9 and 35.6 percent. The jump intensity varies from

less than 0.01 to over 5 during the 1998 financial crisis. Interestingly the two risk sources,

although correlated, can display very different behavior: from times of high diffusive and

jump risks as in the second half of 2002, to times when jump risk is high but diffusive risk

is low as in the Fall of 1998, to times when both risks are low as in the beginning of 1996.

The implied time series of volatility from the SV-SJ model is different from those of the other

two models. The average implied volatility, 15.6 percent, is much lower in the SV-SJ model

than in the SV model since the stochastic volatility in the latter model needs to account for

all the risk, including the jump risk.

The estimated volatility process in the SV-SJ model is mean reverting at about twice the

speed as in the SV and SV-J models. The implied time series of stochastic volatility and

jump intensity show auto-correlations of 0.66 and 0.79 respectively.

The estimated correlation between the increments of the diffusive volatility and jump

intensity is quite low, 0.17. This is evidence that the two processes are largely uncorrelated

and does not support models that make jump intensity vary with the level of diffusive

volatility. Increments of the diffusive volatility are negatively correlated with stock returns,

-0.50, which is smaller than that in the SV and SV-J models. Changes in jump intensity are

also negatively correlated with stock returns at a higher absolute value, -0.60.

Overall, our results are also consistent with the recent literature on multi-factor variance
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models (Alizadeh, Brandt, and Diebold (2002), Chacko and Viceira (2003), Chernov, Gallant,

Ghysels, and Tauchen (2002), Engle and Lee (1999), and Ghysels, Santa-Clara, and Valkanov

(2004)) which finds reliable support for the existence of two factors driving the conditional

variance. The first factor is found to have high persistence and low volatility, whereas the

second factor is transitory and highly volatile. The evidence from estimating jump-diffusions

with stochastic volatility points in a similar direction (Jorion (1989), Anderson, Benzoni, and

Lund (2002), Chernov, Gallant, Ghysels, and Tauchen (2002), and Eraker, Johannes, and

Polson (2003)). For example, Chernov, Gallant, Ghysels, and Tauchen (2002) show that the

diffusive component is highly persistent and has low variance, whereas the jump component

is by assumption not persistent and is highly variable.

The second panel of Table 5 reports Jarque-Bera and Ljung-Box statistics for the innovations

of the state variables Y and Z. The Jarque-Bera statistics are significant indicating non-

normality of the innovations. The Ljung-Box statistics are also significant, implying serial

correlation in the innovations. Both diagnostic tests indicate misspecification of the SV-

SJ model. Pan (2002) also finds that her jump-diffusion model is misspecified. Since her

model is similar to the SV-J model in our paper, the sources of misspecification are likely

to be similar. Pan argues that the misspecification shows evidence of jumps in volatility, as

modeled in Duffie, Pan, and Singleton (2000), and empirically studied in Eraker, Johannes,

and Polson (2003).

4.2 Option Pricing Performance

We evaluate the option pricing performance of the model in terms of the root mean squared

error (RMSE) of Black-Scholes implied volatilities. The implied volatility error of a given

option is the difference between the implied volatilities calculated from market price and

model price. Allowing the jump intensity to vary stochastically proves to be quite important

for options pricing. As reported in Table 4, the RMSE of the SV-SJ model for all options

in our dataset is 2.13% in terms of implied volatility. This is smaller than the RMSEs of

the SV and SV-J models, which are 3.35% and 2.73% respectively. Standard t-tests show

that the RMSEs are significantly different from each other. For example, the t-statistic

for a difference between the SV-J and SV-SJ models is 14.75. Despite the improvement in

fitting the option prices, significant pricing errors remain as the RMSE of the SV-SJ model

is still about twice the average bid-ask spread in our sample which is 1.01% (with a standard
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deviation of 0.66%), again in units of Black-Scholes implied volatility. Table 4 also reports

average RMSEs of S&P 500 index options divided into nine buckets according to moneyness

and time to maturity. The SV-SJ model improves fitting of the implied volatility surface

over the SV and SV-J models for all ranges of moneyness and maturities. The improvements

are more significant for short maturity at- and out-of-the-money (in-the-money) puts (calls).

Figure 4 plots the market implied volatilities of options with the shortest maturity together

with the fitted implied volatilities of the three alternative pricing models in four different

dates of the sample. We find that the SV-SJ model does a much better job at pricing the

cross section of options than the other two models for these four days when the implied

volatilities are high. Figure 5 focuses on a single day of the sample, November 12, 1997, and

compares the market implied volatilities with the model fitted implied volatilities for options

of different maturities and strikes. Again, the gains from having both stochastic volatility

and jumps are apparent, even in fitting the smile of long-term options.

Having established that our model can effectively capture the time series and cross section

properties of option prices, we now try to improve our understanding of the model. In

particular, we want to understand the relative roles of the diffusive volatility and jump

intensity in pricing options. Figure 6 shows the plots of implied volatility smiles at different

maturities produced by our model, using the estimated parameters and different values of

volatility and jump intensity. In the first two cases, the diffusive volatility,
√

V , is fixed at its

sample average while the state variable for jump intensity, Z, is either at its sample average

or one standard deviation above or below it. In the next two cases, the state variable for

jump intensity, Z, is fixed at its sample average while the diffusive volatility,
√

V , is either

at its sample average or one standard deviation above or below it. The time to maturity is

either 30 days or 90 days. We find that both volatility and jump intensity impact the level of

implied volatilities. Furthermore, the persistence in both risk components guarantees that

their effects are felt at long horizons. But the two state variables have different impacts on

the shape of the implied volatility smile. Jump intensity has a large impact on the prices

of all short-term options but it affects out-of-the-money puts (high S/K) more than in-the-

money puts (low S/K). The volatility has a larger impact on the prices of near-the-money

options than those of away-from-the-money options. The longer the maturity, the flatter the

volatility smiles, reflecting mean reversion in the volatility and jump intensity processes.
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5 Option-Implied Risks and the Equity Premium

In this section we study the equilibrium equity premium implied by the parameter estimates

and the implied state variables.

5.1 The Equity Premium

The estimate of γ in Table 3 for the SV-SJ model is 1.917, which seems quite reasonable.

In an economy without jumps and with constant volatility, Merton (1973) shows that the

equity premium demanded by an investor who holds the stock market is equal to γ times

the market’s variance. Since the realized volatility in our sample was 18.8 percent, using the

estimated risk aversion coefficient we obtain an unconditional equity premium of 6.8 percent

(1.917 × 0.1882). This premium approximately matches the historic average excess stock

market return of between 4 and 9 percent (depending on the sample period) reported by

Mehra and Prescott (2003). Note that we are studying the portfolio choice of an investor

who derives utility from next period’s wealth, not utility from lifetime consumption. In the

latter case, it is well know from Mehra and Prescott (1985) and much subsequent work that

a much higher level of risk aversion is needed to match the historic equity premium.

In what follows, we keep the horizon of the representative investor at 1 month, T =

1/12.28 The choice of a short horizon abstracts away from hedging demands, making the

interpretation of the results simpler.29 Given the relatively strong mean reversion in the

risk processes, it is unlikely that horizons longer than one month would generate hedging

demands strong enough to change the results.30

Equation (16) gives us the equity premium as a function of the diffusive volatility and jump

28The results are robust to this choice of time horizon. We tried T for up to 10 years and the main results
do not change quantitatively. All the coefficients of B and C converge quickly to a limit as T increases and,
after one month, they are virtually constant. Moreover, these coefficients are small in magnitude. Their
impact on the equity premium is correspondingly small. The component of the equity premium that involve
B and C are generally negative with small magnitude (bounded by 2% and on average less than 0.5%) in
comparison to the average size of the equity premium which is over 10%. It is reasonable to say that B and
C are not critical in determining the size and variation of the implied equity premium that we find.

29Note that we are considering preferences for terminal consumption. A given horizon in our model should
be compared with the “duration” of utility in a model with intermediate consumption (which is necessarily
less than the terminal date).

30Chacko and Viceira (2005) find that the hedging demands induced by stochastic volatility are tiny due
to the strong mean reversion.
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intensity. With the estimated parameters of the model, we can evaluate the coefficients of

that function:

φ = 1.917Y 2 − 0.008Y − 0.009Y 2 − 0.022Y Z + 0.087Z2. (48)

Given the implied series of the diffusive volatility variable Y and jump intensity variable Z,

we can compute the average of the equity premium in our sample. This gives us an estimate

of the unconditional equity premium of 11.8 percent. Note that this is different than putting

the average level of the implied series of the diffusive and jump risks in the above equation

because of the nonlinearity of the equity premium in Y and Z. Note also that this calculation

does not match the average excess return of the S&P 500 index in our sample, which is only

2 percent. The reason is that we did not use stock returns in the calculation but only the

measures of risk implied from option prices together with the estimated level of risk aversion.

Remember that the premium demanded by an investor with the same preferences in an

economy without jumps and with constant volatility was 6.8 percent. Therefore the

unconditional equity premium we computed with the risk inferred from option prices is

more than 70% higher than the premium for realized risk.

These findings have some bearing on the discussion of the equity premium puzzle first

investigated by Mehra and Prescott (1985) and recently surveyed in Mehra and Prescott

(2003). The equity premium puzzle is typically stated as the historic average stock market

return far exceeding the compensation for its risk that would be required by an investor

with a reasonable level of risk aversion. It should be noted that the literature on the

equity premium puzzle usually measures risk by the covariance of stock market returns with

aggregate consumption growth. However, none of our calculations involves consumption

and there is no way we can obtain the implied covariances between stock market returns

and consumption growth from option prices. What we do show is that the risk premium

demanded by an investor with utility for wealth living in an economy with the realized level

of market volatility is only slightly more than half the premium demanded by the same

investor when taking into account the risks assessed in option markets.

The puzzle is that the historic stock market premium of, say, six percent is much higher

than the approximately one percent excess return warranted by the covariance of the stock

market returns with consumption growth (for reasonable levels of risk aversion). Our point

is that the realized covariance of the stock market returns with consumption growth is likely
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to understate the true risk of the market by as much as the realized volatility understates

the risk implicit in option prices. In our simple calculation above, we found that the ex-ante

risk premium almost doubles when we use the option implied risks instead of the realized

volatility. If the same factor were to apply to the consumption-based risk measure, the equity

premium puzzle would be considerably lessened.31

These results confirm that there is a substantial Peso problem when measuring the riskiness

of the stock market with realized volatility. The risks investors perceive ex ante and that are

therefore embedded in option prices far exceed the realized variation in stock market returns.

If investors price the stock market to deliver returns that compensate them for the perceived

level of risk, the equity premium can easily be twice what is justifiable from the level of

realized risk. This is the fundamental idea of Brown, Goetzmann, and Ross (1985): ex-post

measured returns include a premium for some bad states of the world that investors deemed

probable but that did not materialize in the sample. Similarly, Rietz (1988) proposed a

solution for the equity premium puzzle based on a very small probability (about 1 percent)

of a very large drop in consumption (25 percent). That is not far from the risks perceived by

investors in the option market. Barro (2006) recently extended the analysis of Rietz to show

that rare events can explain a variety of asset pricing regularities. Goetzmann and Jorion

(1999) provide empirical evidence that large jumps have occurred in a variety of countries

in the twentieth century and that the United States was an outlier, both with few crashes

and the highest realized average return.

Of course, this discussion only shifts the equity premium puzzle to a puzzlingly large

difference between the level of perceived risk and the level of realized risk: the option market

predicted a lot more market crashes than the number that actually occurred. For example,

given the average jump size and average intensity estimated in Tables 3 and 5, the stock

market should experience market crashes with a magnitude of -9.8 percent once every 1.26

years. This is obviously very different from the observed frequency and magnitude of stock

market jumps. The interesting finding is that the puzzlingly high risks implicit in option

markets match the puzzlingly high equity premium for very reasonable preferences.

31Especially if we consider the estimates of the equity premium of around three percent instead of six
percent that have been provided by Claus and Thomas (2001), Fama and French (2002), and Welch (2001).
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5.2 Time Variation in the Equity Premium

The previous section discussed the unconditional equity premium. We now discuss the time

variation in the equity premium. Figure 7 plots the time series of the risk premium demanded

by the investor in our economy, shown in equation (48).

We decompose the premium in equation (48) into the compensation for the diffusive volatility

which encompasses the first three terms that depend only on Y , and the compensation for

the jump risk involving the last term that depends only on Z. There is a small term that

depends on the product of Y and Z which shows up in the total premium but that we do

not assign to the components.

The plot of the time series of the equity premium shows high variability. Its standard

deviation in our sample is 8.9 percent, roughly three quarters the unconditional premium

of 11.8 percent. The premium ranges from 0.3 to 54.9 percent. Furthermore, the first-order

serial correlation (at monthly frequency) of the premium is 0.82 which shows persistence but

is far from a unit root. However, we should note that all the first 10 serial correlations are

positive and add up to 5.044. There is therefore memory in the equity premium that is not

easily captured by a simple auto-regression.

The jump component is on average 6.9 percent, or a bit more than half of the total equity

premium. Its standard deviation is of the same order of magnitude, 6.2 percent. The jump

premium varies between zero and 45.4 percent and represents at times nearly the entire

equity premium. The jump component of the equity premium is also more persistent than

the volatility component, with first-order serial correlations of 0.80 and 0.63, respectively.

The sum of the first ten serial correlations is also higher, 4.88 versus 4.37.

We stress that these numbers obtain under very strong assumptions. A conditional equity

premium which is as strongly time-varying as the one reported here implies an economy

in which the investors have significant ability to time the market. Our model will likely

overstate the variability of the equity premium due to in-sample overfitting and due to the

very specific nature of our parametric model.

However, note that the recent literature on stock market predictability implies that all the

variation in market valuation multiples corresponds to changes in expected excess returns,

i.e. the equity premium, and none corresponds to news about future dividend growth.

Cochrane (2006) estimates that the standard deviation of market expected returns is about
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5 percentage points (the same magnitude as the premium itself) using only the dividend

yield as a predicting variable. When more variables are used (and many have been identified

in the literature), the volatility of the equity premium increases. This is still an order of

magnitude less than the equity premium we estimate but it is remarkable that such volatility

is found from regressions with ex-post returns. Using ex-ante information like we do should

lead to an equity premium that is even more variable.

5.3 Forecasting Stock Returns with the Implied Equity Premium

As discussed above, the model implied equity premium varies over time. We next investigate

if this variation is reflected in the realized stock returns. In particular, we conduct the

following predictive regression analysis:32

Rt,t+k = α + βxt + εt,t+k, (49)

where Rt,t+k is the annualized average stock returns from week t to week t+ k, and xt is the

predictive variable observed at t. We consider values of k to be 1, 4, 8, and 13, corresponding

to horizons of 1 week, 1 month, 2 months, and 3 months. We choose the predictor, xt, to

be the SV-SJ model implied state variables Yt and Zt, and the equity premium φt. If our

model is right, then when using φt to forecast stock returns, a significant positive coefficient

estimate of β is expected. In fact, this coefficient should be close to one. To increase

statistical power, we use overlapping samples for multi-period regressions. To adjust for

heteroskedasticity and serial correlation in the regression residuals, the standard errors are

calculated using the Newey-West method.

Table 6 reports the results of the predictive regression.33 From the first column, Y , the

implied state variable for the diffusive volatility is positively related to future stock returns,

but is not significant. From the second column, Z, the implied state variable for the jump

intensity is also positively related to future stock returns. More interestingly, the t-statistics

are much higher than those for Y . The R2 is also much larger. When both Y and Z are

used as in column 3, Y remains insignificant while Z is significant for horizons of 2 and 3

32Note that we have used the full sample to obtain the model implied state variables and equity premium.
This introduces some forward-looking bias in our predictive regressions.

33Related evidence if provided by Doran, Peterson, and Tarrant (2006) who show that the put volatility
skew has strong predictive power in forecasting short-term market declines. This is consistent with our
model, where the volatility skew is strongly correlated with jump risk and its corresponding risk premium.
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months. As seen in the fourth column, the estimated regression coefficient on φ decreases

from 2.139 for 1-week returns to 1.001 for 3-month returns, and it is always significant at

the 90% confidence level. The t-statistic is highest for 2-month returns. The R2 initially

increases from 0.020 for 1-week returns to 0.076 for 2-month returns, and then decreases to

0.066 for 3-month returns. These results suggest that the model implied equity premium

has significant predictive power of future stock returns for horizon up to 3 months. The

predictive power seems to be coming from the stochastic jump intensity.

Of course, this analysis has several limitations. First, we have a limited sample to run the

predictive regressions. It is remarkable that we obtain significant estimates at all. Second,

the problem of relating the equity premium from option prices to the realized equity returns

is precisely the peso problem. We argue that options capture a risk that is perceived as likely

by the investors even if it doesn’t materialize in the realized returns. This should bias the

estimates of our regressions.

5.4 Relation between the Implied Equity Premium and Financial

Crisis Variables

We have argued that the implied equity premium may capture the stock market crash risk,

which may be caused by liquidity shocks and crisis in the financial system. It is therefore

interesting to examine the relation between the implied equity premium with financial

variables that are often regarded as correlated with financial crisis. We consider three such

variables for the period of 1996 - 2002: the 3-month T-bill rate (Tbill), the commercial paper

spread (CPS), which is the difference between the rates of 3-month financial commercial

paper and the 3-month T-bill, and the high-yield spread (HYS), which is the difference

between the average yield of the Merrill Lynch high yield corporate bond index and the

yield of the 10-year Treasury bond.34 The CPS is only available since 1997. All data are

obtained from Datastream.

The top panel of Table 7 reports summary statistics for the three variables. Figure 8 shows

the plots of the three financial crisis variables together with the implied equity premium.

34The Fed cut interest rates after the stock market crash of October 1987, the Russian financial crisis of
1998, the collapse of technology stocks in 2000, and the 2007 subprime mortgage debacle. During credit
crisis, investors refuse to roll over commercial papers and instead turn to other short-term safe havens, such
as the T-bills.
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The equity premium seems to move in the opposite direction of the Tbill and in the same

direction of the CPS and the HYS.

We examine the relation between our model implied equity premium (and state variables)

and the financial crisis variables by considering the following regression:

∆yt = α + β∆xt + εt, (50)

where the dependent variable yt is the Tbill, CPS, or HYS, and xt is Vt, λt, or φt.

The second panel of Table 7 reports the results of the above regressions. The change in

Tbill is negatively related to changes in V , λ, and φ but only significantly so for λ and φ. In

contrast, the changes in CPS and HYS are positively and significantly related to changes in V ,

λ, and φ. This implies that when diffusive volatility and jump intensity increase (decrease)

the commercial paper spread and the high yield spread tend to widen (narrow). The R2

for the CPS and HYS regressions are generally higher than those for the Tbill regressions.

These results indirectly suggest that our implied equity premium captures a risk perceived

by investors that financial markets may collapse.

More informally, we can look at the largest crisis in our sample. In the fall of 1998, following

the Asian crisis, at the time of the Russian default and the LTCM blow up, the option-

implied equity premium rose from 2% to 55% per year within a couple of months. With such

a dramatic increase in the equity premium, we should expect a sharp drop in stock prices.

The stock market decline during that period was on the order of 20%. The sign of this

change is consistent with a large increase of the equity premium but perhaps quantitatively

smaller than what the actual change in the equity premium would justify. Note that here

the peso problem becomes very apparent. In the fall of 1998 there was widespread fear of a

financial crisis that might lead to bank defaults. Had that occurred, the stock market would

have fallen much more. As it turned out, the Fed was able to engineer a bail-out of LTCM

and the banking crisis was avoided.

6 Conclusion

We imply the times series of diffusive volatility and jump intensity from S&P 500 index

options. These are the ex-ante risks in the stock market assessed by option investors. We
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find that both components of risk vary substantially over time, are quite persistent, and

correlate with each other and with the stock index. Using a simple general equilibrium

model with a representative investor, we translate the implied measures of ex-ante risk into

an ex-ante risk premium.

We find that the average premium that compensates the investor for the risks implicit in

option prices, 11.8 percent, is about 40% higher than the premium required to compensate

the same investor for the realized volatility in stock market returns, 6.8 percent. These

results support the Peso explanation advanced by Rietz (1988), Brown, Goetzmann, and

Ross (1985), and Barro (2006) for the equity premium puzzle of Mehra and Prescott (1985).

We also find that the ex-ante equity premium is highly volatile, taking values between 0.3

and 54.9 percent, with the component of the premium that corresponds to the jump risk

varying between 0 and 45.4 percent. The option implied equity premium is shown to forecast

subsequent stock returns.

In summary, we are able to partially explain the equity premium puzzle by using measures

of risk implied from option prices which far exceed measures of realized risk. We are still

left with a puzzle: like Aesop’s boy, the option markets cry wolf a lot more often than the

wolf actually shows up! However, it is interesting that we can link, using reasonable levels of

risk aversion, the puzzlingly high equity premium observed historically with puzzlingly high

risks implicit in option markets.

29



Appendix

Stock Market Risk Premium

First, substitute (13) into (11) and use the fact that in equilibrium w = 1 to get the following

PDE satisfied by the value function, J :

0 = Jt + rWJW − 1

2
W 2JWW Y 2 − Z2WEQ [JW (W (1 + Q), Y, Z, t)Q] + JY (µY + κY Y )

+
1

2
JY Y σ2

Y + JZ (µZ + κZZ) +
1

2
JZZσ2

Z + JY ZρY ZσY σZ + Z2EQ [∆J ] . (A.1)

In general there is no analytical solutions to this PDE. However, in the case of power utility

function we can find one. Next, guess a solution of the following form:

J(W,Y,Z, t) = er(1−γ)τg(Y,Z, τ )
W 1−γ

1 − γ
, (A.2)

where g(Y,Z, τ ) is a function independent of W . Substituting (A.2) into (A.1) to get:

gτ =

(
−1

2
γ(γ − 1)Y 2 + Z2EQ

[
(1 + γQ)(1 + Q)−γ − 1

])
g + (µY + κY Y ) gY

+
1

2
σ2

Y gY Y + (µZ + κZZ) gZ +
1

2
σ2

ZgZZ + ρY ZσY σZgY Z, (A.3)

with the initial condition g(Y,Z, 0) = 1. (A.3) is a hyperbolic PDE whose coefficients are

quadratic functions of Y and Z. Again we make a guess of g of the form:35

g(Y,Z, τ ) = eA(τ)+B(τ)>U+U>C(τ)U , (A.4)

where we define U ≡ ( Y
Z ), and A(τ ) is a function with initial condition A(0) = 0. Substitute

(A.4) into (A.3) and collect terms with the same powers of Y and Z. Since (A.3) holds for

any values of Y and Z, all the coefficients must equal zero. And this leads to the system of

ODEs (17)-(18) together with:

A′ = Π>B +
1

2
B>ΓB + tr(ΓC). (A.5)

35This trick has been frequently used. See for example Ingersoll (1987) and Heston (1993).
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Equation (16) is then obtained from (13), (A.2), and (A.4).

Option Pricing

Under the risk-adjusted probability measure the price, f , of a European call option with

strike price K and maturity date T is a function of the state variables and time, (S, Y, Z∗, t).

Letting the subscripts of f represent partial derivatives, then f(S, Y, Z∗, t) satisfies the

following PDE:36

−ft = −rf +
(
r − Z∗2µ∗

Q

)
SfS +

1

2
Y 2S2fSS + (µ∗

Y + κ∗
Y Y Y + κ∗

Y ZZ∗) fY +
1

2
σ2

Y fY Y

+(µ∗
Z + κ∗

ZY Y + κ∗
ZZZ∗) fZ∗ +

1

2
σ∗

Z
2fZ∗Z∗ + ρSY σY Y SfSY + ρSZσ∗

ZY SfSZ∗

+ρY ZσY σ∗
ZfY Z∗ + Z∗2EQ∗ [f(S(1 + Q∗), Y, Z∗, t)− f(S, Y, Z∗, t)] , (A.6)

where EQ∗ is the expectation with respect to the distribution of Q∗ and the boundary

condition is:

f(S, Y, Z∗, T ) = (S − K)+. (A.7)

To simplify, define x ≡ lnS. Then f(x, Y, Z∗, T ) satisfies:

−ft = −rf +

(
r − Z∗2µ∗

Q − 1

2
Y 2

)
fx +

1

2
Y 2fxx + (µ∗

Y + κ∗
Y Y Y + κ∗

Y ZZ∗) fY +
1

2
σ2

Y fY Y

+(µ∗
Z + κ∗

ZY Y + κ∗
ZZZ∗) fZ∗ +

1

2
σ∗

Z
2fZ∗Z∗ + ρSY σY Y fxY + ρSZσ∗

ZY fxZ∗

+ρY ZσY σ∗
ZfY Z∗ + Z∗2EQ∗ [f(x + ln(1 + Q∗), Y, Z∗, t)− f(x, Y, Z∗, t)] . (A.8)

We now use the Fourier transform of f to further simplify the above equation.37 Let

f̂(k, Y, Z∗, t) be the Fourier transform of f with respect to x, that is:

f̂(k, Y, Z∗, t) ≡
∫ ∞

−∞
eikxf(x, Y, Z∗, t)dx. (A.9)

36A version of Ito’s lemma for jump-diffusions is used in deriving the PDE. See for example Protter (1990).
37This technique is used in Heston (1993), Bates (1996), and Duffie, Pan, and Singleton (2000) among

others. The pricing formulas derived in these papers generally involve two integrals. Our approach here is
similar to Lewis (2000) in that we only need one integral.
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The boundary condition f(x, Y, Z∗, T ) = (ex −K)+ changes to:

f̂(k, Y, Z∗, T ) = − K ik+1

k2 − ik
.

If we write k = kr + iki where kr and ki are the real and imaginary parts of k respectively,

then f is recovered via the inverse Fourier transform:

f(x, Y, Z∗, t) =
1

2π

∫ iki+∞

iki−∞
e−ikxf̂(k, Y, Z∗, t)dk. (A.10)

Differentiating (A.9), integrating by parts, and changing the order of expectation and Fourier

transform in the last term, (A.8) becomes:

−f̂t = −(1 + ik)rf̂ + ikZ∗2µ∗
Qf̂ − 1

2
Y 2(k2 − ik)f̂ + (µ∗

Y + κ∗
Y Y Y − ikρSY σY Y + κ∗

Y ZZ∗) f̂Y

+
1

2
σ2

Y f̂Y Y + (µ∗
Z + κ∗

ZY Y − ikρSZσ∗
ZY + κ∗

ZZZ∗) f̂Z∗ +
1

2
σ∗

Z
2f̂Z∗Z∗

+ρY ZσY σ∗
Z f̂Y Z∗ + Z∗2EQ∗

[
(1 + Q∗)−ik − 1

]
f̂ . (A.11)

Notice that the jump variable Q∗ is now separated from f̂ . If we define:

h ≡ e(1+ik)rτ f̂ ,

then (A.11) changes to:

−ht =

[
−1

2
Y 2(k2 − ik) + ikZ∗2µ∗

Q

]
h + (µ∗

Y + κ∗
Y Y Y − ikρSY σY Y + κ∗

Y ZZ∗)hY

+
1

2
σ2

Y hY Y + (µ∗
Z + κ∗

ZY Y − ikρSZσ∗
ZY + κ∗

ZZZ∗)hZ∗ +
1

2
σ∗

Z
2hZ∗Z∗

+ρY ZσY σ∗
ZhY Z∗ + Z∗2EQ∗

[
(1 + Q∗)−ik − 1

]
h, (A.12)

with the initial condition:

h(k, Y, Z∗, 0) = − K ik+1

k2 − ik
. (A.13)

To solve (A.12) with the initial condition (A.13), it is enough to solve the same equation

with the initial value equal to one and then scale the solution by the r.h.s. of (A.13). Given
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the solution to (A.12) with the initial condition h(k, Y, Z∗, 0) = 1, the option price is:38

f(S, Y, Z∗, τ ) = S − e−rτ

2π

∫ i
2
+∞

i
2
−∞

e−ik(rτ+lnS) K ik+1

k2 − ik
h(k, Y, Z∗, τ )dk. (A.14)

Now the problem is to find a solution to (A.12) with initial value of one. Recognizing the

similarity between (A.3) and (A.12), we use the same trick by guessing a solution as:

h(Y,Z∗, τ ) = eA∗(τ)+B∗(τ)>U∗+U∗>C∗(τ)U∗
. (A.15)

Then by a similar calculation as before we can derive the system of ODEs (36)-(38).

Relation Between Probability Measures

Assume that, under the objective probability measure, the option price, f(S, Y, Z, t), follows

the process:

df =
(
r + φf − λµQf

)
fdt + σfS

fdWS + σfY
fdWY + σfZ

fdWZ + QffdN, (A.16)

where Qf ≡ [f(S(1 + Q), Y, Z)− f(S, Y, Z)] /f is the percentage jump in the option price

and µQf
is the average jump size. φf is the risk premium on the option.

In the presence of the option market, the representative investor allocates his wealth

in the stock, the option, and the risk free asset with the portfolio weights denoted by

(w,wf , 1 − w − wf). Investor’s wealth, W , then follows the process:

dW = (r + wφ + wfφf − λµQW
)Wdt + wWY dWS

+wfσfS
WdWS + wfσfY

WdWY + wfσfZ
WdWZ + QW WdN, (A.17)

where QW = wQ + wfQf is the percentage jump in wealth and µQW
= wµQ + wfµQf

is the

average jump size in wealth. The value function J now solves the Bellman equation:

0 = max
w,wf

[Jt + A(J)] , (A.18)

38This can be shown by using the inverse Fourier transform and the Residue theorem as in Lewis (2000).
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with:

A(J) = WJW

(
r + wφ + wfφf − Z2µQW

)
+ JY (µY + κY Y ) + JZ (µZ + κZZ)

+
1

2
W 2JWW

[
w2Y 2 + 2wwfY (σfS

+ ρSY σfY
+ ρSZσfZ

) + w2
f

(
σ2

fS
+ σ2

fY
+ σ2

fZ

)

+2w2
f (ρSY σfS

σfY
+ ρSZσfS

σfZ
+ ρY ZσfY

σfZ
)
]

+
1

2
JY Y σY

2 +
1

2
JZZσZ

2

+WJWY σY [wρSY Y + wf (ρSY σfS
+ σfY

+ ρSZσfZ
)]

+WJWZσZ [wρSZY + wf (ρSZσfS
+ ρY ZσfY

+ σfZ
)]

+JY ZρY ZσY σZ + Z2EQW
[J(W (1 + QW ), Y, Z, t)− J(W,Y,Z, t)] . (A.19)

Differentiating (A.18) with respect to wf and substitute in w = 1, wf = 0, we obtain the

risk premium on the option:

φf = −W
JWW

JW

Y (σfS
+ ρSY σfY

+ ρSZσfZ
) − JWY

JW

σY (ρSY σfS
+ σfY

+ ρSZσfZ
)

−JWZ

JW
σZ (ρSZσfS

+ ρY ZσfY
+ σfZ

) − Z2EQ

[
∆JW

JW
Qf

]
. (A.20)

On the other hand, by Ito’s lemma the drift and the diffusion terms of df are:

φff = −rf + ft +
(
r + φ − Z2µQ

)
SfS + (µY + κY Y ) fY + (µZ + κZZ) fZ

+
1

2
Y 2S2fSS +

1

2
σ2

Y fY Y +
1

2
σ2

ZfZZ + ρSY σY Y SfSY + ρSZσZY SfSZ

+ρY ZσY σZfY Z + Z2EQ [f(S(1 + Q), Y, Z, t)− f(S, Y, Z, t)] , (A.21)

σfS
= SY fS/f, (A.22)

σfY
= σY fY /f, (A.23)

σfZ
= σZfZ/f. (A.24)
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Combining equations (A.20)-(A.24) leads to the following PDE satisfied by the option price:

−ft = −rf +

(
r − Z2EQ

[
J∗

W

JW
Q

])
SfS

+

(
µY + κY Y + W

JWW

JW
ρSY σY Y +

JWY

JW
σ2

Y +
JWZ

JW
ρY ZσY σZ

)
fY

+

(
µZ + κZZ + W

JWW

JW

ρSZσZY +
JWY

JW

ρY ZσY σZ +
JWZ

JW

σ2
Z

)
fZ

+
1

2
Y 2S2fSS +

1

2
σ2

Y fY Y +
1

2
σ2

ZfZZ + ρSY σY Y SfSY + ρSZσZY SfSZ

+ρY ZσY σZfY Z + Z2fEQ

[
J∗

W

JW
Qf

]
, (A.25)

where we define J∗
W ≡ JW (W (1+Q), Y, Z, t). In the case of power utility function, the value

function J has an analytical solution given by (A.2) and (A.4). Substitute this solution into

(A.25) to get:

−ft = −rf +
(
r − Z2EQ

[
(1 + Q)−γQ

])
SfS +

[
µY + κY Y − γρSY σY Y

+σ2
Y (BY + 2CY Y Y + 2CY ZZ) + ρY ZσY σZ (BZ + 2CZZZ + 2CY ZY )

]
fY

+
[
µZ + κZZ − γρSZσZY + ρY ZσY σZ (BY + 2CY Y Y + 2CY ZZ)

+σ2
ZZ (BZ + 2CZZZ + 2CY ZY )

]
fZ +

1

2
Y 2S2fSS +

1

2
σ2

Y fY Y +
1

2
σ2

ZfZZ

+ρSY σY Y SfSY + ρSZσZY SfSZ + ρY ZσY σZfY Z +Z2fEQ

[
(1 + Q)−γQf

]
. (A.26)

On the other hand, under the risk-adjusted probability measure, f(S, Y, Z, t) satisfies

equation (A.6). Then relations (29)-(34) are verified by substituting them into (A.6) to

get (A.26).

35



References

Ahn, Dong-Hyun, Robert F. Dittmar, and A. Ronald Gallant, 2002, Quadratic term

structure models: Theory and evidence , Review of Financial Studies 15, 243–288.

Ait-Sahalia, Yacine, Yobo Wang, and Francis Yared, 2001, Do option markets correctly

price the probabilities of movement of the underlying asset?, Journal of Econometrics

102, 67–110.

Alizadeh, Sassan, Michael W. Brandt, and Francis X. Diebold, 2002, Range-based estimation

of stochastic volatility models, Journal of Finance 57, 1047–1091.

Anderson, Torben, Luca Benzoni, and Jesper Lund, 2002, An empirical investigation of

continuous-time equity return models, Journal of Finance 57, 1239–1284.

Bakshi, Gurdip, Charles Cao, and Zhiwu Chen, 1997, Empirical performance of alternative

option pricing models, Journal of Finance 52, 589–667.

Ball, Clifford A., and Antonio Roma, 1994, Stochastic volatility option pricing, Journal of

Financial and Quantitative Analysis 29, 589–667.

Ball, Clifford A., and Walter N. Torous, 1983, A simplified jump process for common stock

returns, Journal of Financial and Quantitative Analysis 18, 53–65.

Barro, Robert J., 2006, Rare disasters and asset markets in the twentieth century, Quarterly

Journal of Economics 121, 823–866.

Bates, David, 1996, Jumps and stochastic volatility: Exchange rate processes implicit in

Deutsche Mark options, Review of Financial Studies 9, 69–107.

, 2000, Post-’87 crash fears in the S&P 500 futures option market, Journal of

Econometrics 94, 181–238.

, 2001, The market for crash risk, Working paper, University of Iowa.

Black, Fischer, and Myron Scholes, 1973, The pricing of options and corporate liabilities,

Journal of Political Economy 81, 637–654.

Bliss, Robert R., and Nikolaos Panigirtzoglou, 2004, Option-implied risk aversion estimates,

Journal of Finance 59, 407–446.

36



Broadie, Mark, Mike Chernov, and Michael Johannes, 2007, Model specification and risk

premia: Evidence from S&P 500 futures options market, Journal of Finance 62, 1453–

1490.

Brown, Stephen J., William N. Goetzmann, and Stephen A. Ross, 1985, Survival, Journal

of Finance 50, 853–873.

Chacko, George, and Luis Viceira, 2003, Spectral GMM estimation of continuous-time

processes, Journal of Econometrics 116, 259–292.

, 2005, Dynamic consumption and portfolio choice with stochastic volatility in

incomplete markets, Review of Financial Studies 18, 1369–1402.

Chen, Li, Damir Filipovic, and H. Vicent Poor, 2004, Quadratic term structure models for

risk-free and defaultable rates, Mathematical Finance 14, 515–536.

Cheng, Peng, and Olivier Scaillet, 2007, Linear-quadratic jump-diffusion modelling,

Mathematical Finance 17, 575–598.

Chernov, Mikhael, A. Ronald Gallant, Eric Ghysels, and George Tauchen, 2002, Alternative

models for stock price dynamics, Journal of Econometrics 116, 225–257.

Chernov, Mikhael, and Eric Ghysels, 2000, A study towards a unified approach to the joint

estimation of objective and risk neutral measures for the purpose of options valuation,

Journal of Financial Economics 56, 407–458.

Claus, James, and Jacob Thomas, 2001, Equity premia as low as three percent? Evidence

from analysts earnings forecasts for domestic and international stocks, Journal of Finance

56, 1629–1666.

Cochrane, John, 2006, The dog that did not bark: A defense of return predictability, Review

of Financial Studies forthcoming.

Coval, Joshua D., and Tyler Shumway, 2001, Expected option returns, Journal of Finance

56, 983–1009.

Doran, James, David Peterson, and Brian Tarrant, 2006, Is there information in the volatility

skew?, Working paper, Florida State University.

37



Driessen, Joost, and Pascal Maenhout, 2003, A portfolio perspective on option pricing

anomalies, Working paper, INSEAD.

Duffee, Gregory R., 2002, Term premia and interest rate forecasts in affine models, Journal

of Finance 57, 405–443.

Duffie, Darrell, Jun Pan, and Kenneth Singleton, 2000, Transform analysis and asset pricing

for affine jump-diffusions, Econometrica 68, 1343–1376.

Engle, R.F., and G. Lee, 1999, A long-run and short-run component model of stock return

volatility, in R. F. Engle, and H. White, ed.: Cointegration, Causality and Forecasting -

A Festschrift in Honour of Clive W. J. Granger. Oxford University Press.

Engle, Robert F., and Joshua Rosenberg, 2002, Empirical pricing kernels, Journal of

Financial Economics 6, 341–372.

Eraker, Bjorn, 2004, Do stock prices and volatility jump? Reconciling evidence from spot

and option prices, Journal of Finance 59, 1367–1403.

, Michael S. Johannes, and Nicholas Polson, 2003, The impact of jumps in returns

and volatility, Journal of Finance 58, 1269–1300.

Fama, Eugene, and Kenneth French, 2002, The equity premium, Journal of Finance 57,

637–659.

Ghysels, Eric, Pedro Santa-Clara, and Rossen Valkanov, 2004, There is a risk-return tradeoff

after all, Journal of Financial Economics forthcoming.

Goetzmann, William N., and Philippe Jorion, 1999, Global stock markets in the twentieth

century, Journal of Finance 54, 953–980.

Hamilton, James D., 1994, Time Series Analysis (Princeton University Press: New Jersey).

Heston, Steven L., 1993, A closed-form solution for options with stochastic volatility with

applications to bond and currency options, Review of Financial Studies 6, 327–343.

Ingersoll, Jonathan E., 1987, Theory of Financial Decision Making (Rowman & Littlefield:

New York).

Jackwerth, Jans C., 2000, Recovering risk aversion from options prices and realized returns,

Review of Financial Studies 13, 433–451.

38



Jorion, Philippe, 1989, On jump processes in the foreign exchange and stock markets, Review

of Financial Studies 4, 427–445.

Leippold, Markus, and Liuren Wu, 2002, Asset pricing under the quadratic class, Journal of

Financial and Quantitative Analysis 37, 271–295.

Lewis, Alan L., 2000, Option Valuation under Stochastic Volatility (Finance Press: Newport

Beach).

Liu, Jun, and Jun Pan, 2003, Dynamic derivative strategies, Journal of Financial Economics

69, 401–430.

Mehra, Rajnish, and Edward C. Prescott, 1985, The equity premium: A puzzle, Journal of

Monetary Economics 15, 145161.

, 2003, The equity premium in retrospect, NBER working paper.

Merton, Robert C., 1973, An intertemporal capital asset pricing model, Econometrica 41,

867–887.

, 1976, Option pricing when the underlying stock returns are discontinuous, Journal

of Financial Economics 4, 125–144.

, 1980, On estimating the expected return on the market: An exploratory

investigation, Journal of Financial Economics 8, 323–361.

Naik, Vasant, and Moon Lee, 1990, General equilibrium pricing of options on the market

portfolio with discontinuous returns, Review of Financial Studies 3, 493–521.

Pan, Jun, 2002, The jump-risk premia implicit in options: Evidence from an integrated

time-series study, Journal of Financial Economics 63, 3–50.

Protter, Philip, 1990, Stochastic Integration and Differential Equations (Springer Verlag:

New York).

Rietz, Thomas A., 1988, The equity premium puzzle: A solution?, Journal of Monetary

Economics 22, 117–131.

Santa-Clara, Pedro, and Alessio Saretto, 2004, The risk and return of option strategies,

Working paper, UCLA.

39



Schobel, Rainer, and Jianwei Zhu, 1999, Stochastic volatility with an Ornstein Uhlenbeck

process: An extension, European Finance Review 3, 23–46.

Stein, Elias M., and Jeremy C. Stein, 1991, Stock price distributions with stochastic

volatility: An analytic approach, Review of Financial Studies 4, 727–752.

Welch, Ivo, 2001, The equity premium consensus forecast revisited, Working paper, Yale

University.

40



Table 1: Implied Volatilities of S&P 500 Index Options
This table reports summary statistics of Black-Scholes implied volatilities of the S&P 500
index options traded on CBOE that are used in the econometric analysis. The sample
consists of weekly put options with time to maturity greater than 10 days but less than
a year and moneyness between 0.85 and 1.15 for the period between January of 1996 and
December of 2002. The options are divided into nine buckets according to moneyness (S/K)
and time to maturity (T ). We report average implied volatility, the standard deviation of
implied volatilities (in parentheses), and the number of options (in brackets) within each
moneyness-maturity bucket.

Days to Expiration

Moneyness T ≤ 45 45 < T ≤ 90 T > 90

S/K < 0.95 23.83 21.39 20.7
(4.67) (4.14) (3.88)
[193] [262] [466]

0.95 ≤ S/K < 1.05 20.68 20.75 21.32
(4.95) (4.62) (4.26)
[3155] [2928] [2211]

S/K ≥ 1.05 27.43 25.54 24.3
(5.67) (5.22) (4.63)
[2029] [1924] [1317]
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Table 2: Monte-Carlo Analysis
This table reports the statistics of the quasi maximum likelihood (QML) parameter estimates
for simulated samples. We use the parameters reported in Table 3 (shown in the first column
for comparison purpose) as the true model parameters to simulate sample paths of S, Y ,
and Z of length 366 weeks. We fix the time increment in simulations to be 1/10 days. For
each simulated sample, we perform the QML estimation to the model of truncated Poisson-
Normal mixture distribution of (44)-(46). We repeat this 10,000 times. We report the mean
and standard deviation of parameter estimates.

θ Mean Std.

µY 2.841 2.569 0.333
κY -18.079 -16.356 2.002
σY 0.334 0.290 0.011
µZ 7.745 7.782 1.436
κZ -9.436 -9.474 1.596
σZ 1.529 1.427 0.053
µQ -0.098 -0.108 0.077
σQ 0.160 0.136 0.109
ρSY -0.495 -0.440 0.170
ρSZ -0.597 -0.527 0.193
ρY Z 0.168 0.167 0.051
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Table 3: Estimated Parameters
This table reports the estimated parameters and the standard errors (in parentheses) under
the objective probability measure for the three models: stochastic volatility model (SV),
constant jump intensity model (SV-J), and stochastic jump intensity model (SV-SJ). The
parameters are estimated by the implied-state quasi maximum likelihood method.

SV SV-J SV-SJ

µY 1.929 1.756 2.841
(0.340) (0.314) (0.346)

κY -9.201 -9.218 -18.079
(1.541) (1.545) (2.065)

σY 0.306 0.315 0.334
(0.008) (0.009) (0.010)

µZ 7.745
(1.396)

κZ -9.436
(1.567)

σZ 1.529
(0.045)

µQ -0.070 -0.098
(0.012) (0.013)

σQ 0.283 0.160
(0.013) (0.013)

ρSY -0.731 -0.728 -0.495
(0.014) (0.014) (0.025)

ρSZ -0.597
(0.022)

ρY Z 0.168
(0.045)

γ 1.977 1.984 1.917
(0.391) (0.369) (0.352)
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Table 4: Pricing Errors
This table reports average root mean squared errors of S&P 500 index options divided into
nine buckets according to moneyness (S/K) and time to maturity (T ). The pricing error
is defined as the difference between the Black-Scholes implied volatilities of the observed
option price and the price computed from each of the three models. We use the estimated
parameters reported in Table 3 to compute the model implied volatilities.

Model

Moneyness Maturity SV SV-J SV-SJ

S/K < 0.95 T ≤ 45 3.950 2.200 2.086
45 < T ≤ 90 4.077 2.793 2.275
T > 90 3.673 3.107 3.002

0.95 ≤ S/K < 1.05 T ≤ 45 3.365 1.833 1.622
45 < T ≤ 90 2.939 2.390 2.046
T > 90 3.260 3.562 2.813

S/K ≥ 1.05 T ≤ 45 3.612 2.136 1.860
45 < T ≤ 90 3.299 2.728 2.289
T > 90 3.180 3.601 2.648

All 3.348 2.730 2.131
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Table 5: Implied Diffusive Volatility and Jump Intensity
The first panel of the table reports the summary statistics of the implied diffusive volatility
(
√

Vt = |Yt|) and jump intensity (λt = Z2
t ) under the objective probability measure.

√
Vt

and λt are obtained simultaneously with the model parameters in Table 3. The second
panel reports the Jarque-Bera statistic, and the Ljung-Box statistics Qk of lags 1, 5, and
10 respectively for the innovations in the processes of Y and Z, εY and εZ, respectively,
obtained from the implied-state quasi maximum likelihood estimation of the SV-SJ model.
The corresponding p-values are reported in parentheses.

Model Mean Std. Skew. Kurt. Max. Min. Autocorr. Corr
(√

Vt, λt

)

SV
√

Vt 0.207 0.075 1.013 4.531 0.540 0.067 0.822
λt

SV-J
√

Vt 0.188 0.077 0.943 4.416 0.520 0.034 0.821
λt 0.143

SV-SJ
√

Vt 0.156 0.061 0.446 3.174 0.356 0.019 0.656 0.583
λt 0.795 0.714 2.061 9.188 5.240 0.000 0.795

J-B Q1 Q5 Q10

εY 13.298 12.061 34.530 56.227
(0.001) (0.001) (0.000) (0.000)

εZ 29.904 9.631 18.283 25.528
(0.000) (0.002) (0.003) (0.004)
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Table 6: Predicting Stock Returns Using the Option Implied Equity Premium
This table reports regression results of stock returns on lagged SV-SJ model implied state
variables Y and Z, and the implied equity premium φ. The stock returns are annualized
returns of the S&P 500 index with horizons of 1, 4, 8, and 13 weeks. We use Newey-West
method to compute standard errors. t-statistics are reported in parentheses.

1 week

Y 1.438 0.008
(1.026) (0.006)

Z 0.386 0.386
(1.566) (1.483)

φ 2.139
(1.863)

R2 0.004 0.011 0.011 0.020

1 month

Y 0.850 -0.300
(0.965) (-0.333)

Z 0.279 0.310
(1.746) (1.791)

φ 1.456
(2.126)

R2 0.007 0.026 0.026 0.041

2 months

Y 0.789 -0.547
(1.197) (-0.722)

Z 0.305 0.360
(2.387) (2.434)

φ 1.360
(2.655)

R2 0.012 0.065 0.068 0.076

3 months

Y 0.158 -1.154
(0.251) (-1.689)

Z 0.250 0.362
(1.941) (2.676)

φ 1.001
(1.868)

R2 0.001 0.074 0.101 0.066
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Table 7: Financial Crisis Variables
The first panel of this table reports summary statistics of weekly series of three financial
crisis variables during 1996-2002: 3-month T-bill rate (Tbill), financial commercial paper
spread (CPS), which is the difference between the rates of 3-month financial commercial
paper and 3-month T-bill, and high yield spread (HYS), which is the difference between
the average yield of the Merrill Lynch high yield corporate bond index and the yield of
the 10-year Treasury bond. The CPS is only available from 1997. The data are obtained
from Datastream. The second panel reports regression results of changes of financial crisis
variables on changes of V , λ, and φ. We use the Newey-West method to compute standard
errors. t-statistics are reported in parentheses.

Mean Std. Skew. Kurt. Max. Min. Autocorr.

Tbill 0.044 0.014 -1.077 2.866 0.064 0.012 0.990
CPS 0.003 0.002 0.914 3.964 0.012 -0.001 0.840
HYS 0.052 0.020 0.368 1.921 0.103 0.026 0.993

∆Tbill ∆CPS ∆HYS

∆V -0.373 0.778 1.537
(-1.114) (2.127) (4.424)

R2 0.014 0.050 0.078

∆λ -0.023 0.025 0.060
(-2.288) (2.300) (4.282)

R2 0.034 0.031 0.074

∆V -0.325 0.736 1.421
(-1.005) (2.088) (4.569)

∆λ -0.022 0.022 0.055
(-2.222) (2.187) (4.130)

R2 0.045 0.076 0.140

∆φ -0.228 0.326 0.705
(-2.097) (2.654) (5.935)

R2 0.044 0.074 0.139

47



Figure 1: Time Series of Implied Volatilities
The top panel plots the time series of the “implied volatility”, defined as the Black-Scholes
implied volatility of short-term (time to maturity less than 45 days and as close as possible
to 30 days) put option with moneyness closest to S/K = 1 (at-the-money). The sample
consists of weekly S&P 500 index put options in the period of January of 1996 to December
of 2002. The second panel plots the time series of the “smirk”, defined as the difference
between the Black-Scholes implied volatilities of two short-term put options with moneyness
closest to S/K = 1.025 (out-of-the-money) and S/K = 1 (at-the-money), respectively. The
bottom panel plots the time series of the “term slope”, defined as the difference between the
Black-Scholes implied volatilities of the two at-the-money options with two maturities: short
term and long term (greater than 45 days and as close as possible to 60 days), respectively.
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Figure 2: Monte-Carlo Simulations
This figure shows the plots of the density functions of the approximate truncated Poisson-
Normal mixture distribution and the empirical distribution of Monte-Carlo simulations for
continuously compounded weekly stock returns. The model parameters are those reported
in Table 3, and the starting values for Y and Z are those of the sample averages reported
in Table 5. For the simulations, the time step is chosen to be 1/10 days, and the simulation
horizon is five trading days. We repeat this 100,000 times.
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Figure 3: Implied Diffusive Volatility and Jump Intensity
The top panel plots the time series of the implied diffusive volatility (

√
Vt) for the SV-SJ

model. The bottom panel plots the time series of the implied jump intensity under the
objective probability measure (λt) for the SV-SJ model.

√
Vt and λt are obtained by the

implied-state quasi maximum likelihood estimation method.
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Figure 4: Market and Fitted Implied Volatilities
The four panels show the plots of the market implied volatilities as a function of moneyness
for the S&P 500 index options with shortest maturity together with the fitted implied
volatilities of the three alternative pricing models in four different dates of the sample:
November 12, 1997, October 7, 1998, December 20, 2000, and September 18, 2002,
respectively. We use the estimated parameters of the three models reported in Table 3
to compute the fitted implied volatilities. The plus signs “+” represent the market implied
volatilities. The fitted implied volatilities of the SV, SV-J, and SV-SJ models are represented
by the dotted, dashed, and solid lines respectively. “•” is the implied volatility of the near-
the-money option that is fitted exactly by all three models, and “⊕” is the implied volatility
of the out-of-the-money option that is fitted exactly by the SV-SJ model.

0.95 1 1.05 1.1
0.2

0.25

0.3

0.35

0.4
11/12/1997

 S/K

IV

SV
SV−J
SV−SJ

0.95 1 1.05 1.1
0.3

0.35

0.4

0.45

0.5
10/7/1998

 S/K

IV

SV
SV−J
SV−SJ

0.95 1 1.05 1.1
0.2

0.25

0.3

0.35

0.4
12/20/2000

 S/K

IV

SV
SV−J
SV−SJ

0.95 1 1.05 1.1
0.3

0.35

0.4

0.45

0.5
9/18/2002

 S/K

IV

SV
SV−J
SV−SJ

51



Figure 5: Market and Fitted Implied Volatilities on November 12, 1997
The two panels show the plots of the market implied volatilities as a function of moneyness
for the S&P 500 index options with times to maturity closest to two months and four
months respectively, together with the fitted implied volatilities of the three alternative
pricing models on November 12, 1997. We use the estimated parameters of the three models
reported in Table 3 to compute the fitted implied volatilities. The plus signs “+” represent
the market implied volatilities. The fitted implied volatilities of the SV, SV-J, and SV-SJ
models are represented by the dotted, dashed, and solid lines respectively.
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Figure 6: Volatility Smile of the SV-SJ Model
The four panels show the plots of the Black-Scholes implied volatility smiles at different
maturities produced by the SV-SJ model, using the estimated parameters reported in Table
3 and for different values of volatility (

√
V ) and jump intensity (λ). In the top two panels,√

V is fixed at its sample average (0.156) while λ (= Z2) is chosen so that Z is at its sample
average and that value plus or minus one standard deviation. In the bottom two panels, λ is
fixed so that Z is at its sample average (0.812) while

√
V is at its sample average and that

value plus or minus one standard deviation. The maturities are 30 and 90 days for the left
and right panels respectively.
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Figure 7: Equity Premium
This figure shows the plot of the time series of the total risk premium demanded by the
investor shown in equation (48) together with the plots of the time series of the volatility
and jump components of the risk premium. The volatility component encompasses the first
three terms in equation (48) that depend only on Y , and the jump component involves the
last term in equation (48) that depends only on Z. The volatility component is represented
by the grey area while the jump component is represented by the white area.
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Figure 8: Financial Crisis Variables
In each panel, the thin line plots the time series of a financial crisis variable and the thick
line plots the time series of the risk premium demanded by the investor shown in equation
(48). The right hand y-axis is for the risk premium.
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