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Abstract

We present a tractable, static, general equilibrium model with multiple sectors in
which firms offer workers incentive contracts and simultaneously raise capital in stock
markets. Workers optimally invest in the stock market and at the same time hedge labor
income risk. Firms rationally take agents’ portfolio decisions into account. In equilib-
rium, the cost of capital of each sector is endogenous. We compare the first-best, in
which workers’ effort levels are observable, to an economy in which workers’ effort is ob-
served with noise. In the presence of moral hazard, the CAPM fails because firms, by
choosing optimal incentive contracts, transfer risk both through wages and through the
stock market. This leads to several cross-sectional asset pricing “anomalies,” such as size
and value effects. As we characterize optimal contracts, we present empirical predictions
relating workers’ compensation, firm productivity, firm size and financial market abnor-
mal returns. We also demonstrate some general equilibrium implications of endogenous
contracts; for example the ex ante value of human capital can be higher in an economy
with moral hazard.
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1 Introduction

In the United States, labor accounts for about two thirds of national income and there is
a great deal of heterogeneity in the source of this income. Each worker is typically tied to
one industry, be it a hedge fund in New York or almond production in California, and all
workers differ in the marginal productivity of their labor. Further, households with labor
income are three times more likely to own financial assets than those without.1 Given that
workers supply human and investment capital to firms, how do firms optimally compensate
workers and what effect does this have on production?

Understanding the cross-sectional implications of labor supply is important both to un-
derstand capital market equilibrium and labor market equilibrium. First, there is empirical
evidence that human capital can help explain returns both in the time series and in the cross–
section.2 However, there are few theoretical predictions on how the cross section of returns
should relate to labor productivity. Second, few labor papers explicitly take into account the
fact that workers can trade in financial markets. Given that workers are also investors, how
do workers in different industries optimally invest and how is capital and labor priced?

To answer these questions we present a two period general equilibrium model with a
continuum of workers and many firms that are organized into different sectors. In the first
period, workers endowed with wealth accept employment contracts offered by firms and their
effort is used as an input into production. Firms in different sectors have different labor
productivity and therefore elicit different effort levels from their employees. Firms’ production
is uncertain in that each sector is subject to a common revenue shock. Workers and firms
simultaneously trade in the stock market: Workers with CARA utility functions trade to lay
off wage income risk and to transfer wealth across time, while firms raise investment capital.

A distinctive feature of our paper is that we induce heterogeneity across investors by ex-
plicitly modeling the relationship between firms and workers. Specifically, firms offer workers
an optimal wage contract. We first consider complete markets in which effort is observ-
able and the optimal incentive contracts are risk free. We then consider the case in which
firms observe the employees’ effort with noise that is both systematic and idiosyncratic. We
demonstrate an optimal incentive contract in the presence of moral hazard that includes some
systematic risk. (Relative performance evaluation is irrelevant because workers have access
to capital markets and therefore firms and employees have the same valuation of systematic
risk.)

We fully characterize equilibrium in both cases. At the firm level, the endogenous variables
are the wage contract (and attendant employee effort) and the initial investment level (which
is just firm size). Economy–wide, we solve for the equilibrium size of each sector and its cost
of capital. We also determine the endogenous effort–free wage: the minimum wage required
to induce a worker to join a firm. This is the equilibrium, ex ante value of human capital.

If there are no frictions in the labor market then the CAPM holds. However, if there is
moral hazard then stock market returns do not reflect the simple CAPM. This is because

1According to the 2004 survey of consumer finances, approximately 60% of households with labor income
own financial assets, while approximately 20% of households with no labor income own financial assets.

2The seminal time series paper is due to Jagannathan and Wang (1996), while using micro data, Malloy,
Moskowitz and Vissing-Jorgenson (2005) find evidence that labor income risk (through a firing decision) can
explain the value effect. Further use of human capital proxies have improved the performance of the conditional
CAPM, as in, for example, Palacios-Huerta (2005).
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labor compensation and dividends are two channels through which a firm can distribute its
total value. If less risk is paid out in the stock market, then the price of the traded claims
reflects this.

The same real variables drive both returns and wage contracts. In equilibrium, firms with
different characteristics pay out a different percentage of their factor risk in the wage bill. This
has implications for well known cross-sectional asset pricing anomalies. For example, a size
effect naturally occurs in our model (Fama and French 1993). Further, the characteristics of
firms’ wage bills should be correlated with abnormal returns in the data. Indeed, we provide
explicit predictions on the relationship between compensation (either wage or profit sharing),
and asset market returns.

We embed an optimal contract in general equilibrium. However, the novel aspect is not
the contract per se, but rather the properties of the minimum wage required to entice a worker
to join a firm (in addition to the cross–sectional differences in the contracts). Even under
first best the contracts are not unique: a continuum of contracts elicit first best behavior.
Under moral hazard, if effort is unobservable, workers retain some systematic risk in their
contract. However, workers can trade in financial markets and therefore lay off any untoward
systematic risk but retain idiosyncratic risk. Frictionless access to capital markets renders
the equilibrium tractable, but the contract not unique. However, irrespective of the form of
the optimal contract, the minimum wage is unique (the workers are all driven down to this
level) and we examine its properties. For example, one can construct economies in which the
ex ante value of human capital is higher in the presence of moral hazard.

We interpret our results in light of the Roll (1977) critique of the CAPM. Roll’s critique,
that the only test of the CAPM is whether the market portfolio is efficient, follow from the
fact that the true market portfolio is unobservable. In our model, risky labor income is the
main source of the discrepancy between the observed and true market portfolio, and drives the
failure of the CAPM to price assets correctly. The consumption CAPM (Breeden 1979), on
the other hand, does hold in our model. In the context of these models, our analysis suggests
that a supply-side proxy for the true market portfolio is given by stock returns together with
firms’ risky labor expenses. Empirically, while we do not frequently observe labor contracts,
we do observe the returns to human capital. These reflect the risk paid out to workers in
the form of wages. An empirical literature has tried to proxy for the investments that agents
make through their human capital. For example, Jagannathan and Wang (1996) finds that
a labor factor improves predictability of expected returns.

Following the insights of Telmer (1993), and Heaton and Lucas (1996), idiosyncratic labor
income and incomplete markets do not seem to fully resolve asset pricing anomalies in the
time series. We take a different approach, namely that labor income is related to the real
economy and therefore might help with cross–sectional predictions. Specifically, in our model,
labor income is tied to a particular sector of the economy and therefore generates a particular
hedging demand which affects firms’ cost of capital. A literature has developed to analyze
the effect of labor income in explaining cross sectional asset prices. Most recently, Santos
and Vieronesi (2006) demonstrates how including stochastic labor income in a representative
agent economy generates return predictability. They find that the labor to consumption ratio
is predictor of long run returns. Danthine and Donaldson (2002) demonstrates in a dynamic
model that the implicit leverage implied by wage payments combined with uninsurable labor
income risk generate realistic equity premia.

3



Our model is simple compared with their work in that we model the productive sector
in a static (two-period) economy. This allows us to study, cross-sectionally, the close link
between wage compensation and returns in capital markets. In this respect, we are closer to
Bodie, Merton and Samuelson (1993), who assume perfect correlation between human capital
and stock return in a one asset portfolio choice model, and also to Qin (2003) who introduces
a similar model. However, compared with these two papers, our analysis goes further, by
endogenizing firms’ labor compensation decisions and the industry cost of capital.

Ou-Yang(2005) presents an equilibrium model of asset pricing and moral hazard. Our
work is similar in that we both exploit the tractability of the normal–exponential framework
pioneered by Holmstrom and Milgrom (1987). A key difference between our frameworks is
that in our model, workers are also the investors and can trade on any systematic risk in
their compensation package. This obviates the need for relative performance evaluation. It
further ensures that the objective function of the firm is well defined (i.e., all investors agree
on profit maximization). We also fully endogenize agents’ participation wages.

These differences also distinguish our work from Zame (2007) who considers a general
equilibrium model in which firms, firm organization and the prices of inputs and outputs for
all the consumption goods are endogenous. In his model, state contingent profit–sharing plans
are part of the description of the firm, the prices of which are determined in equilibrium. In
other words, intra–firm transfers replace an external asset market. By contrast, to distinguish
between wage payments and asset market returns, we restrict attention to the particular
utility function for which the objective function of the firm is well defined, i.e., all shareholders
agree on the “positive NPV” rule. Further, by explicitly allowing all agents to trade in
securities markets we can relate asset market returns to our endogenous wage contract.

We establish the general framework in Section 2 and analyze the case with observable
effort levels in the following, Section 3. We completely characterize the equilibrium in this
framework. In Section 4, we introduce unobservable effort levels and develop the equilibrium
theory for this case and also compare the two equilibria. We present our predictions and
implications in Section 5: these demonstrate how prices and allocations change in the economy
as a result of a productivity shock (Subsection 5.1), show how asset pricing “anomalies” can
arise (Subsection 5.2); and present cross-sectional labor market predictions (Subsection 5.3).
After a brief conclusion, all proofs are presented in the first appendix. In the second appendix
we establish the utility equivalence of contracts under moral hazard.

2 Model

Consider the following two period economy populated by firms and workers. At time t = 1,
workers sign employment contracts with firms and trade in financial markets. Simultaneously,
firms raise money in the financial markets and make investment decisions. At t = 2, firms’
cash flows are realized and all claims pay out. We describe the decisions of agents who
consume and work, the real production sector, and the financial sector in more detail below.
Throughout the paper we adhere to the convention that a boldface letter presents a vector,
the superscript T denotes a transpose and the operator ()i selects the ith element of a vector.
For an arbitrary vector, a, we use the notation diag(a) to denote the diagonal matrix with a
on its diagonal.

The economy is populated by a continuum of ex ante identical workers, each indexed by
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m with total mass M > 0. Each agent has a CARA utility function

Um = U(Wm, em) = −e−ρ(Wm− ke2m
2

),

over t = 2 wealth denoted by Wm and effort, em, expended by the agent between t = 1 and
t = 2. The cost per unit effort expended by a worker is k > 0. We interpret the continuous
effort variable em ≥ 0 as an investment in firm–specific human capital. The t = 2 wealth of
agent m, Wm, is made up of his wage income, wm, and the payoff of his investment portfolio,
which we describe below. At t = 1, all agents have initial wealth W .

Firms transform human capital and investment capital into wealth with industry specific
production risk and labor productivity. A continuum of firms, each indexed by �, is divided
into n = 1, . . . , N sectors (also called industries). Each firm in the same industry is identical.
Thus there are many workers within each firm and many firms within each industry. This
will allow us to apply the law of large numbers both to diversify human capital specific risk
within a firm and firm specific risk within an industry.

In each industry, one unit of investment requires one unit of workers. Thus, if firm � in
industry n chooses a nonnegative level of investment, In,�, it must hire a mass In,� of workers.
It offers to each worker a wage contract, wn,�

m , and workers decide how much effort to expend.
All contracts are written on a performance report generated by the worker’s effort. The

report of agent m employed in sector n in firm � is denoted ηn,�
m . We consider two types

of contracting regimes that differ in the information content of the report and specify them
in more detail below. First, a frictionless economy in which workers and firms write wage
contracts contingent on the effort level (observable effort); and second, an economy impaired
by a moral hazard problem in which workers and firms contract on a noisy signal of effort
(unobservable effort). However, in both cases the effort that each worker exerts is endogenous,
rendering the effective labor per unit capital endogenous.

If each worker, m, chooses an effort level em, the revenue of firm � in industry n is

R̃n,� = αn
∫ In,�

0
en,�
m dm + x̃nIn,�.

The productivity of workers differs across industries. In sector n each unit of human capital
increases revenues by αn > 0. Without loss of generality, we assume that α1 ≤ α2 ≤ · · · ≤ αN .

Production is also uncertain; each industry is subject to a shock to productive capital,
x̃n, where x̃n, n = 1, . . . , N , are jointly normally distributed, x̃n ∼ N(1, σ2

x). Economy
wide, these multivariate real risk factors are the N × 1 vector, x̃ = (x̃1, . . . , x̃N )T , where
x̃ ∼ N(1,Σ), and 1 is an N × 1 vector of ones.3 In what follows, we assume that the N ×N
covariance matrix, Σ, is nonsingular; throughout most of the paper we will allow for arbitrary
covariance matrices.

Capital in this economy does not depreciate, however, firms face a convex investment
cost, κ+γαn(In,l)2, where κ > 0 and γ > 0 are constants.4 These costs capture the fact that
physical capital and financial capital are not perfectly fungible. We specifically interpret the
costs as payments for research and development. This functional form is motivated by two
stylized facts. First, marginal investment costs are increasing in investment level. Second,

3It is straightforward to generalize the model to arbitrary means, x̃ ∼ N(x̄, Σ).
4The model is easy to generalize to industry specific κ’s and γ’s.
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R&D costs per unit of investment are higher in high productivity industries than in low
productivity ones.5 Mechanically, the R&D cost renders the production function concave.

If the risk-adjusted cost of capital in industry n is rn, then the economic profits of a firm
are:

π̃n,� = αn

(∫ In,�

0
en,�
m dm

)
+ x̃nIn,�

︸ ︷︷ ︸
Revenues

−
∫ In,�

0
wn,�

m dm︸ ︷︷ ︸
Cost of wages

− (κ + γαn(In,l)2)︸ ︷︷ ︸
Production costs

− rnIn,�︸ ︷︷ ︸
Cost of capital

.(1)

We note in passing that because all agents can trade in financial markets the objective of the
firm is well defined and all shareholders agree on economic profit maximization.

Prices in the financial market are determined by the interaction of workers who hedge
consumption risk and firms who raise capital. The financial market opens at time t = 1.
Agents may trade securities which are claims to the firms’ profits. As risk within each
industry is perfectly correlated, without loss of generality, we can assume that there are N
representative stocks. Stock n has price Sn(t) at t = 1, 2. The return of stock n is denoted
μ̃n, i.e., Sn(2) = (1 + μ̃n)Sn(1). The random market returns can then be summarized by
μ̃ ∼ N(μ̄,Σμ), where μ̃ is an N × 1 vector of returns with typical element μn, and Σμ is the
N × N covariance matrix. We assume that Σμ is invertible.6 We define σμ,n = cov(μ̃, x̃n).
There is also a risk-free asset in perfectly elastic supply, with excess return normalized to
zero.

Each investor working in industry n chooses a portfolio of dollar amounts in each industry
denoted by qn, which is an N × 1 vector describing his investment in each industry. At
t = 2 his portfolio has value θ̃n = μ̃T qn. For later convenience, we introduce the matrix
Q = [q1, . . . ,qN ].

In what follows, we focus on symmetric outcomes, so that all firms within the same
industry offer the same contract to their employees and all employees in a particular industry
invest in the same way. The exogenous parameters in the frictionless economy are given
by the tuple E0 = (M,κ, γ,Σ, k, ρ,α). Here, economy–wide human capital productivity is
characterized by the vector α = (α1, . . . , αN )T . An equilibrium is characterized by the tuple
of endogenous quantities: X0 = (w0,L, I,e, μ̄,Q). The first four elements of X0 constitute
the real part of the economy.

The variable w0 in an economy is the ex ante value of a worker’s human capital. Specif-
ically, it is the difference between the certainty equivalent of earned labor income and the
disutility of working. As we demonstrate below, in the optimal contract, the worker retains
no surplus and therefore w0 can be thought of as the wage a worker would earn at a hypo-
thetical firm that requires no effort from its workers. We will also refer to w0 as the effort-free
wage or the participation wage.7

5Growth firms — which are usually in high-productivity industries — tend to be R&D intensive even when
adjusted for size, see e.g., Chan, Lakonishok and Sougiannis (2000), hence the αn-term in γαn(IN,l)2.

6It will become clear that the equilibrium distribution of returns is normal, and that in equilibrium,
invertibility of Σ is equivalent to invertibility of Σμ.

7In constructing equilibrium, workers are indifferent between remaining in their sector and going elsewhere
including this effort free alternative.
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The vector L = (L1, . . . , LN )T , summarizes the distribution of firms across all sectors.
The initial size of each firm, or alternatively investment in physical capital is given by I =
(I1, . . . , IN )T , and the workers’ supply of human capital by e = (e1, . . . , eN )T . For a given
technology and exogenous structure of risk, the amount of risk generated will depend on
these production choices and is therefore endogenous. The last two elements in X0 are the
equilibrium financial variables: the expected return of each asset (μ̄) and agents’ portfolio
choices (Q). We restrict attention to equilibria that are feasible: In ≥ 0, Ln ≥ 0, en ≥ 0 for
all n = 1, . . . , N . Further, we focus on equilibria that are interior: those that are feasible and
for which all the previous inequalities are strict.

Definition 1 General equilibrium of the frictionless economy E0 is characterized by X0 in
which:
(i) Each firm optimally chooses an investment level and a wage contract to maximize expected
profits leading to I.
(ii) Given a wage contract, each worker optimally chooses his effort level and stock-market
investment to maximize expected utility, leading to e and q.
(iii) Asset markets clear: Mq = diag(I)L.
(iv) Labor markets clear: M = IT L.
(v) For each sector n = 1, . . . , N , the expected return on financial assets equals the cost of
capital in the real economy, so that μ̄n = rn.

Part (iv), the labor market clearing condition, reflects our assumption that each worker
is paired with a unit of capital, irrespective of the amount of effort he exerts. Thus, while the
“effective labor” supplied by each worker is endogenous, this market clearing condition on
bodies reduces the dimensionality of the general equilibrium problem to permit a solution.

An implication of the last condition (v), that the expected return in each sector of the
financial market equals the cost of capital of that sector in the real economy, is that firms
earn zero economic profits. In this two-period world, a return higher than the cost of capital
is equivalent to positive profits. Such rents are incompatible with general equilibrium as firms
would enter into industries in which there are positive profits, driving rents to the fixed entry
costs (κ) and thus generating zero economic profits.

Notice that there are no frictions to prevent agents from trading. In particular, an agent
trades at time t = 1 against his labor income which will be realized at time t = 2. Also,
each agent may trade in the securities issued by his industry. To summarize, the sequence of
events is presented in Figure 1.

3 Equilibrium in the Frictionless Economy

Suppose that an employee m in firm � in industry n generates a performance report of the
form:

η̃n,�
m = R̃n,�/In,l + αn(em − en).

This is increasing in the average revenue of the firm and also in the amount of effort the em-
ployee exerts. In equilibrium, the firm knows the effort it elicits from all the other employees
(en) and (ex post) how much revenue it has garnered. Therefore, it effectively observes the
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t=1 t=2

Firms offer contracts to workers
Workers trade in financial markets
Firms raise capital and invest
R&D costs are realized
 

Performance reports are realized
Firms pay wages
Firm profits are realized and paid out to investors
 

Figure 1: Summary of events with observable effort level.

actions of employee m. If effort is observable and contractible, the optimal wage contract
is simply a take–it or leave–it offer that makes the worker indifferent between accepting the
firm’s offer and rejecting it for the next best outside employment alternative. While all firms
offer the same type of contract, as firms are characterized by different labor productivity,
they elicit different effort levels. To do so, they compensate workers for the cost of exerting
higher effort. However, in any equilibrium, workers must be indifferent between remaining in
their current employment or moving to another industry, else the firm is overpaying.

Recall, that w0 ≥ 0 is the equilibrium effort–free wage. The firm that wishes to induce a
worker to exert effort e, offers a contract w(e) that recompenses the agent for the effort he
undertakes and makes him indifferent to the outside opportunity.

Lemma 1 If the effort levels are observable and contractible, then a firm wishing to elicit
effort level ẽ offers a worker

w0 + kẽ2/2 if e = ẽ

0 otherwise.

We note in passing that this contract is not unique. In particular, any promised payment
off the equilibrium path (i.e., if the worker shirks) less than w0 is optimal and induces an
effort level of ẽ. Irrespective of the “shirking” payment, the wage for satisfactory performance
is paid ex post to the worker, conditional on the effort that he puts into the firm. Therefore,
the firm incurs no wage bill until after the production process has been completed. In the
next section, in which we consider the case in which effort is not contractible, firms optimally
offer part of the wage contract ex ante to workers (before the production risk is realized).

Given the wage contract, a representative, price–taking firm in industry n chooses en and
In to solve:

max
en,In

E [π̃n] = αnenIn + In − (w0 + k(en)2/2)In − (κ + γαn(In)2) − rnIn. (2)

Therefore, necessary conditions satisfied by the firm’s optimal choice of en and In are:

αnen + 1 − (w0 +
k(en)2

2
) − 2γαnIn − rn = 0 (3)

αn − ken = 0. (4)
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As the wage is deterministic and there are no wealth effects, the decision to provide labor
and how the agent invests in the stock market are independent. In other words, agents make
effort and stock investment decisions separately.

Lemma 2 Every agent in the benchmark economy chooses an identical portfolio investment,
q = Σ−1

μ
μ̄
ρ . The certainty equivalent of this stock market participation is A/2ρ, where A is

the squared Sharpe ratio of the market, so that A
def= μ̄T Σ−1

μ μ̄.

To ensure the existence of general equilibrium, we impose two technical conditions. Let

vn = 1 + (αn)2/2k − 2
√

κγαn, n = 1, . . . , N

and v = (v1, . . . , vN )T . We assume that vn > 0, n = 1, . . . N . After we have characterized
equilibrium we provide a natural economic interpretation of vn.

Assumption 1 (i) The risk aversion of investors is bounded above. Specifically,

ρ < 1T Σ−1v,

(ii) The risk aversion of investors is bounded below. Specifically,

ρΣ−11 > (1T Σ−1v)Σ−11− (1T Σ−11)Σ−1v. (5)

The first part of Assumption 1 ensures that all workers are employed in equilibrium.
Or, equivalently, that the endogenous participation constraint is nonnegative, w0 ≥ 0. If
this condition does not hold, then investors are too risk-averse to want to absorb the risk
inherent in a full-employment equilibrium. Thus, they are better off at lower production and
concomitant risk levels. The condition is always satisfied if there is at least one sector with
very low risk. In this case, workers can always contribute to total surplus by working in a
low-risk sector.

The second part of the assumption guarantees that agents are sufficiently risk averse
so that they will not wish to hold negative positions in any of the assets in equilibrium.
Equivalently, in general equilibrium this assumption ensures that investment in all firms is
strictly positive. If this condition were violated (suppose that all agents were risk neutral)
each would optimally invest arbitrary large amounts in the asset with the highest mean return
and short all assets with lower returns. In this case, the markets for physical investment would
not clear.

Using Lemma 2 and firms’ optimal investment choices, we can characterize equilibrium
in the real economy. From Equation (1), that specifies the objective function of the firm,
variability in the profits comes from x̃In. Therefore, μ̃ is also normally distributed, and
Σμ = Σ, so invertibility of Σ carries over to Σμ. Also, recall, vn = 1 + (αn)2/2k − 2

√
κγαn,

n = 1, . . . , N and v = (v1, . . . , vN )T .

Proposition 1 In an economy that satisfies Assumption 1, there is a unique general equi-
librium which is feasible, interior, and Pareto efficient. The real economy has the following
properties:
(i) Investment in human capital is en = αn/k,
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(ii) Investment in physical capital is In =
√

κ
γαn ,

(iii) The effort-free wage is w0 = 1T Σ−1v−ρ
1T Σ−11

,
(iv) The size of each sector is such that Ln = M(q)n/In,
(v) Agents’ certainty equivalent is W + w0 + (v − w01)T Σ−1(v − w01)/2ρ.

Not surprisingly, the equilibrium human capital investment is increasing in a firm’s pro-
ductivity as evinced by (i). Firms and sectors that are more productive will elicit higher
effort levels from their workers. However, from (ii) physical investment is decreasing in pro-
ductivity. Alternatively, as the investment determines the size of the firm in this two period
economy, more productive firms are smaller. This is a general equilibrium effect.

To see this, consider the optimal investment decision of a firm in partial equilibrium,
holding fixed workers’ participation constraints (w0) and the industry cost of capital (rn).
Specifically, partial differentiation of the first order condition of the firm from Equation (2)
yields

∂In

∂αn
=

1
2kγ

+
w0 + rn − 1

(αn)2γ
.

Hence, ∂In

∂αn > 0 if 1
2k > 1−rn−w0

(αn)2 . Therefore, in partial equilibrium, a firm with an unexpected
increase in productivity (∂αn) could either increase or decrease its size, depending on the
minimum wage, cost of capital, and the productivity level. For low productivity sectors,
a shock may lead to smaller firms, whereas it leads to larger firms in high-productivity
industries. It also always leads to larger firms in economies where the participation constraint
is high enough, or alternatively, where the cost of capital is sufficiently low i.e., when w0 >
1 − minn rn.

By contrast, in general equilibrium (from (ii) above), higher productivity always leads
to smaller firms. This is because higher productivity sparks competition and the subsequent
entry of new firms. Total investment in that sector typically increases, leading to a higher
industry cost of capital (as risk averse investors value this investment less). Further, due to
the concave production function, firm sizes are smaller.

That the equilibrium size of each industry (Ln) in our economy is also endogenous is
readily seen from (iv) above, in which total investment in an industry is equal to the total
demand by investors. The dollar amount that each identical investor is willing to put into
an industry (recall that (q)n selects the nth element of the vector) depends on how investors
value the risk in each industry relative to the whole economy. Risk averse investors are willing
to supply more capital to an industry that has a low correlation with other sectors. It is their
willingness to invest that drives industry size.

In this economy the CAPM holds; not surprising as there are no frictions.

Proposition 2 In an economy that satisfies Assumption 1, expected returns are μ̄n = vn−w0

and are described by the Capital Asset Pricing Model:

μ̄n = βnE[μ̃market], where βn =
cov(μ̃n, μ̃market)

var(μ̃market)
, and μ̃market = M−1

N∑
n=1

InLnμ̃n.
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The expected returns (or equivalently, the cost of capital) are just the excess of vn over the
participation wage, w0. The characterization of the real economy in Proposition 1, combined
with the equilibrium cost of capital admits an economic interpretation of vn. By inspection
of the first order condition for investment capital (Equation 3) evaluated at the equilibrium
effort level, the equilibrium value of the marginal product of investment capital is vn − w0.
Increasing investment has a direct effect on profits measured by vn, however in addition the
firm has to hire an extra worker which decreases profits by the minimum participation wage,
w0. Thus stock market returns reflect the productivity of a marginal dollar invested in an
industry. Notice that vn is the value of the marginal product of capital plus the participation
wage. In other words, it is the equilibrium marginal total productivity — the value generated
to all stakeholders (shareholders and workers) of an extra unit of investment capital.

Another important variable determined in general equilibrium is the effort free wage or
endogenous participation constraint, w0, described in part (iii) of Proposition 1. This is
set so that agents are indifferent between remaining in their sector or moving to another
one. It is also the ex ante value of human capital with which each worker is endowed. The
participation wage is affected by the aggregate risk structure. As workers both invest and
work, an increase in the size of a particular sector changes the distribution of risk in the
economy and therefore how much workers value such investment. To see this, consider the
capital market clearing condition. If another worker is added to the economy he will invest in
a financial portfolio so that q = Σ−1 μ̄

ρ . As we have demonstrated, in equilibrium, expected
returns are related to the marginal productivity of investment, less the participation wage.
Therefore, q = Σ−1(v−w01)

ρ . In full employment equilibrium, each worker is paired with one
unit of investment capital. Therefore, as capital markets clear, the sum across all investments
must be 1, or 1T q = 1. We stress that this reflects our simplifying assumption that each
worker is associated with one unit of productive investment capital.

Therefore, capital market clearing yields

1 =
1T Σ−1(v − w01)

ρ
,

which pins down the effort free wage. If this is too high, then the right hand size is too low,
and firms wish to disinvest. Whereas, if it is too low, then firms demand more labor.

The certainty equivalent,(v) in Proposition 1, will allow us to Pareto rank equilibria. It
can be decomposed into two parts: one due to initial wealth and an increase due to stock
and human capital investments. Specifically the equilibrium certainty equivalent can be
rewritten as W + ΔW , where ΔW = w0 + A/2ρ. The total welfare increase, ΔW , thus has
two components: the welfare gained in the labor market, w0, and the welfare gained in the
stock market, A/2ρ (Recall, that A is the squared market Sharpe ratio.)

Finally, note that all marginal investments in this economy are evaluated by a “positive
NPV” rule. In an economy in which the risk-free rate is normalized to zero, only loadings on x̃
risks generate a positive cost of capital. Specifically, under standard noarbitrage assumptions,
the linear pricing rule for investments q0 in bonds and qn in stock n is:

Pricet=1

(
N∑

n=1

qnSn(2) + q0

)
= Pricet=1(q0) +

N∑
n=1

qnPricet=1(Sn(2))
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= q0 +
N∑

n=1

qnSn(1).

This implies a linear pricing rule for x̃n risk, i.e.,

Pricet=1

(
q0 +

N∑
n=1

qnx̃n

)
= q0 +

N∑
n=1

qnPricet=1(x̃n)

= q0 +
N∑

n=1

qn

1 + zn
.

where zn is the required excess return per unit of x̃n risk. A firm’s cost of capital thus
depends on how much x̃ risk it represents. This observation will be useful as we turn to an
economy with frictions.

4 An Economy with Moral Hazard

In reality, effort is not observable and contracts are typically tied to the cash flows of the
firm. We therefore extend the model of the previous section to the case of unobservable effort
levels. Specifically, we assume that firms cannot perfectly observe the effort expended by
each agent; rather they receive a garbled performance report. A worker supplying effort level
em, for firm � in industry n generates a performance report of

η̃m = Rn,�/In,l + αn(em − en) + ε̃n,�
m ,

where ε̃n,�
m is independently drawn for each worker from N(0, σ2

ε,n). Thus, the firm observes
a worker’s true productivity with noise. In our formulation, workers in “more productive”
industries produce higher performance reports for the same effort level, and all performance
reports are noisy. Of course if σ2

ε,n = 0, then effort is contractible as in the frictionless case.
We assume that the performance report variances across all industries are summarized by the
vector σε = (σε,1, . . . , σε,N)T , however for the most part we take them to be constant across
industries.

The workers’ situation under moral hazard differs in an important way that affects the
equilibrium: The structure of the incentive contract offered to him by the firm differs. Under
the assumption of CARA utility, and normal performance reports, the optimal contract is
well-known to be linear. In particular, it is made up of a fixed wage that satisfies agents’
participation constraint plus a component that is sensitive to each agent’s performance. The
idiosyncratic risk inherent in the garbling of the performance report (σε) cannot be laid off
in the market and therefore is borne by the worker. As a risk averse agent, he deplores
this uncertainty and requires an ex ante compensation from the firm to participate in the
production process. As a consequence of these different contracts, and in particular because
the optimal incentive contract includes some systematic risk, an agent’s optimal portfolio
now depends on the industry in which he is employed.

If the agent is risk averse, the firm is risk neutral, and agents are constrained in asset
trades then as Holmstrom (1982) observed, the principal should design a relative perfor-
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mance contract.8 In our framework, by the law of large numbers, the firm could eliminate
the systematic risk by comparing any individual’s report with all the others’. However, in
equilibrium, it is not inefficient for the worker to bear systematic risk. Agents may short-sell
the stock of the company at which they are employed, and the firm and each agent has the
same valuation for each unit of systematic risk that is included in wage. (We demonstrate
this rigorously in the appendix).9

Given the structure of the optimal contract, an industry-n contract will take the form

w̃n
m = sn + bn × η̃m.

The contract can be interpreted as one with a fixed wage that recompenses the worker for
idiosyncratic risk, and a revenue sharing part. A natural assumption is that the fixed part of
the wage is paid out in the first time period, whereas the bonus part can not be paid out until
revenues have been realized, as described in Figure 2. When we discuss empirical results and
in our predictions we distinguish between wages (sn), incentives (bn) and total compensation
wn.

As the firm hires a continuum of workers, all the idiosyncratic worker risk εn,�
m cancels

out by the law of large number and the average performance report only depends on revenue
risk.10 Given that the contract offered in industry n is characterized by the pair (bn, sn),
which induces a mean effort level of en, the firm’s expected profit function is:

Eπ̃n = In(αnen + x̃n)︸ ︷︷ ︸
Revenue

(1 − bn) − Insn − rnIn −
(
κ + γαn(In)2

)
. (6)

t=1 t=2

Firms offer contracts to workers
Workers trade in financial markets
Firms raise capital and invest
R&D costs are realized
Firms pay fixed part of wage
 

Performance reports are realized
Firms pay bonus part of wage
Firm profits are realized and paid out to investors
 

Figure 2: Summary of events with unobservable effort level.

8The empirical evidence on this is that relative performance contracts are not pervasive as summarized by
Prendergast(1999). Garvey and Milbourn (2003) demonstrates that relative performance evaluation is more
likely in executives who are more constrained.

9We found qualitatively similar numerical results in a version in which workers are not allowed to short-sell
their own sector. Alternatively, if workers cannot short sell stock in their own company, but can short sell
industry risk, they could obtain hedge x̃ risk, but not η̃ risk. If workers coordinate their effort level, perhaps
due to peer pressure (see, e.g., Kandel and Lazear 1992), similar results obtain.

10By the law of large numbers for a continuum of random variables (see e.g., Judd 1985), the average
performance report of workers in industry n is η̄n = 1

InLn

∫
η̃mdm = R̃n/In.
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Observe that a portion of the firm’s revenue is paid out to workers. The wage bill acts as
“leverage,” on the revenue of the firm. In other words, part of the risks in the real economy
are transferred to the workers through their incentive contracts. This is captured by the
(1 − bn)-term.

4.1 Agents’ Optimal Portfolios and Effort levels

Agents choose their portfolios and effort levels given the incentive contracts offered by the
firms. To avoid possible confusion, we use a hat to distinguish variables that obtain in the
moral hazard economy. Because the performance part of the contract includes systematic
risk, the worker optimally chooses a portfolio that is correlated with the firm’s output. Faced
with a wage contract, the agent chooses a portfolio ˆ̃

θn (represented by the dollar portfolio
q̂n) and an effort level ên to maximize the certainty equivalent of the increase in her utility:

ΔŴ n = max
q̂n

,ên

[
E
(
w̃n + θ̃n

)
− k

2
(en)2 − ρ

2
var(w̃n + θ̃n)

]
. (7)

Lemma 3 If firm n offers a linear contract (sn, bn) then:
(i) The worker supplies effort ên = bnαn

k ,

(ii) The worker holds a portfolio position q̂n = Σ−1
μ̂

(
ˆ̄μ
ρ − bnσμ̂,n

)
.

It is immediate that if bn �= 1, then workers will not exert the same effort level as in
Section 3. Feasibility (firms cannot pay out more than the revenues of the firm) dictates that
b < 1 and therefore they will exert lower effort.

Workers hedge the risk that they are exposed to through the incentive contract: That
is, they also seek to eliminate exposure to x̃ risk by shorting claims correlated with the
industry in which they work (part ((ii)). This mirrors the argument made in Bodie, Merton
and Samuelson (1993) that even though human capital is not tradable, human capital risk
may be partly hedgeable in the market. If bn = 0, so that the firm does not offer an
incentive component, all workers are faced with idiosyncratic risk and hold the same portfolio,

q̂n = Σ−1
μ̂

ˆ̄μ
ρ , as in the case where effort is observable. Thus, the term bnΣ−1

μ̂ σμ̂,n in part (ii)
of Lemma 3 is the distortion in portfolio holdings that comes about because the firm transfers
wealth to the agent through labor income.11 The only risk that the agent is unable to trade
is the idiosyncratic risk that arises because he cannot perfectly communicate his effort level
to the firm.

As in the observable effort case, agents will not work for a firm unless they are at least as
well off as they would be if they worked in another industry or did not work at all. Therefore
they must be recompensed both for their effort and the idiosyncratic risk inherent in the
performance report. The former will depend on the performance report, the latter will be
the fixed wage. A firm offering an optimal contract ensures that each worker’s participation
constraint is binding or that it appropriates any surplus, i.e., E[Um] = −e−(W+ΔW ) for all
workers. Notice that the firms take into account the utility workers get from optimally trading

11That investments in such hedging portfolios arise when labor income risk is present was observed in Mayers
(1973) and in several subsequent papers.
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in financial markets, by offering contracts that drive workers down to their participation
constraint, including their portfolio holdings.

Lemma 4 A firm in sector n will offer the following fixed wage

sn(bn, În) = (bn)2
(
−(αn)2

2k
− ρ

2
(Cn − σ2

x,n) +
ρσ2

ε,n

2

)
+ bn(Bn − 1) + ΔŴ − Â

2ρ
,

where
Â = ˆ̄μT Σ−1

μ̂
ˆ̄μ, Bn = ˆ̄μT Σ−1

μ̂ σμ̂,n, Cn = σ′
μ̂,nΣ−1

μ̂ σμ̂,n.

We define the vectors b = (b1, . . . , bN ) and s = (s1, . . . , sn).

4.2 A Firm’s Partial Equilibrium Investment in Physical and Human Cap-
ital

In the economy with moral hazard, the cost of capital is reduced by the risk that will be paid
out to the workers. The risky cash flows are the part of the revenue that is not paid out to
the employees in compensation: R̃n(1 − bn). This implies a slightly different formulation of
the cost of capital. Suppose that in equilibrium, one unit of x̃n risk commands a required
rate of return, zn, then a unit investment in industry n generates a unit of x̃ risk of which
only (1 − bn) accrue to the shareholders. Therefore, the cost of capital in this industry is

r̂n = (1 − bn)zn.

Notice, that if firms pay out all their risky cash flows to workers, the firm is risk free and
the cost of capital falls to zero, the risk free rate. If the firm pays out no incentive bonuses,
then it retains the industry x̃ risk and the cost of capital is maximal. As individual firms take
zn as given, they choose physical investment and labor investment to maximize risk-adjusted
expected profits:

max
În,bn

E[π̃n] = max
În,bn

In
(
(αnen + 1)(1 − bn) − sn(bn, In) − (1 − bn)zn − αnγIn

)
− κ

= max
In,bn

In

((bn(αn)2

k
+ 1

)
(1 − bn) − sn(bn, In) − (1 − bn)zn − αnγIn

)
− κ. (8)

The first order condition for physical capital:

∂E[π̃n]
∂In

=
(bn(αn)2

k
+ 1

)
(1 − bn) − 2αnγÎn︸ ︷︷ ︸

value of the marginal product of capital

−

(
În ∂sn(bn, În)

∂In
+ sn(bn, În) + (1 − bn)zn

)
︸ ︷︷ ︸

change in cost

= 0,
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suggests that the firm equates the value of the marginal revenue product of capital (the first
term), with the change in costs it incurs if it increases capital (the second term). The change
in cost consists of three terms. The first is the effect on the wage bill of increasing investment.
If the firm increases investment then, ceteris paribus, the firm has to recompense existing
workers for the fact that the value of the workers’ shares is now lower. Secondly, an increase
in investment induces an increase in the labor force and therefore the firm pays out an extra
fixed wage. Finally, for every increase in investment, the firm pays the direct cost of x̃ risk
in the capital markets.

Solving the two first order conditions yields the firm’s optimal decision:

Lemma 5 Firms in sector n will choose

bn =
(αn)2/k + zn − Bn

(αn)2/k + ρ(σ2
x,n − Cn + σ2

ε,n)
,

În =
1

4αnγn

(
((αn)2/k + zn − Bn)2

2[(αn)2/k + ρ(σ2
x,n − Cn + σ2

ε,n)]
+

Â

2ρ
− ΔŴ + 1 − zn

)
,

if În > 0 and 0 < bn < 1.

Recall, that the optimal effort level is increasing in bn, but by a factor of αn

k . Thus,
Lemma 5 can also be viewed as a firm’s choice of human capital and physical capital. Notice
also that an increase in physical investment increases the aggregate x̃ risk in the economy.

4.3 General Equilibrium with Moral Hazard

We proceed along the same lines as in the case of observable effort level in Section 3. However,
in addition to the exogenous variables in the frictionless case we also include the noise inherent
in each agent’s performance report. Recall, the vector σε captures the extent of the moral
hazard problem industry by industry. We let E1, denote the parameters of the economy that
comprises E0 with the vector of “garbles.” The endogenous variables comprise all the ones
of the frictionless economy. However, in this case the optimal wage contract is a two part
payment. Finally, observe that, just as the cost of capital reflects the actual risks borne by
the shareholders of the firm, the covariance structure of returns also respects this. Thus,

[Σμ̂]i,j = (1 − bi)[Σ]i,j(1 − bj), and (σμ̂,i)j = [Σ]i,j(1 − bj). (9)

This follows from the linear pricing rule implied by noarbitrage. As the traded securities are
claims to the underlying firm, the real risk retained by the firm must be reflected in the asset
market. As in the observable case, multivariate normality of x̃ implies multivariate normality
of ˆ̃μ, and as long as bn < 1, n = 1, . . . , N , invertibility of Σ is equivalent to invertibility of
Σμ̂. In the presence of moral hazard, total marginal productivity of capital is

v̂n = 1 + bn(αn)2/2k − 2
√

κγαn, n = 1, . . . , N.

This is identical to the definition in the observable case, except for the factor bn that enters
before the (αn)2/2k term. The incentive problems under moral hazard reduce v̂n compared
to the observable case. We define the vector v̂ = (v̂1, . . . , v̂N )T .
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Finally, we need slightly different parameter restrictions to ensure the existence of an
interior equilibrium:

Assumption 2 (i) The risk aversion of investors is bounded above. Specifically,

ρ < 1T Σ−1v̂,

(ii) The risk aversion of investors is bounded below. Specifically,

ρΣ−11 > (1T Σ−1v̂)Σ−11− (1T Σ−11)Σ−1v̂. (10)

With these caveats and following a similar line of argument to that which established
Proposition 1, we can establish:

Proposition 3 In an economy, E1, that satisfies Assumption 2, there is a unique equilib-
rium. The equilibrium is feasible, interior, and strictly Pareto dominated by the equilibrium
in the observable economy E0, and
(i) Effort levels are ên = bnαn/k,
(ii) Investment is În =

√
κ

γαn ,

(iii) The optimal incentive part of the wage contract is bn = 1

1+
kρσ2

ε,n

(αn)2

,

(iv) The fixed part of the wage contract is sn = (1 − bn)ŵ0 + (bn)2ρσ2
ε,n

2 − 2bn√κγαn,
(v) The effort-free wage is ŵ0 = 1T Σ−1v̂−ρ

1T Σ−11
,

(vi) The number of firms in each sector is L̂ = Mρ−1Λ−1
Î

Σ−1(v̂ − ŵ01),
(vii) Agents’ certainty equivalent is W + ŵ0 + (v̂ − ŵ01)T Σ−1(v̂ − ŵ01)/2ρ.

By inspection of Proposition 3, the larger the moral hazard problem (as measured by σε)
the smaller the equilibrium value of b. This is quite natural as it becomes more expensive for
a firm to provide incentives to a risk averse agent and, therefore, firms in equilibrium provide
fewer. The fact that less effort is induced in economies with a moral hazard problem directly
leads to the welfare loss relative to the frictionless economy as evinced by the lower certainty
equivalent.

The contract in industry n is described by the pair (sn, bn). As ∂b/∂α > 0 (from (
iii)), higher productivity industries always offer steeper incentive contracts. The effects of
different productivity on the fixed part of the contract, s, (through (vii)) is, however, not as
clear. For industries with low αn, s ≈ (1 − bn)ŵ0 and is decreasing and approaches ŵ0 as
α approaches zero. Indeed, as long as bn < ŵ0

ρσ2
ε,n

, s is decreasing in α. Similarly, for high

α (i.e., αn >
ρ2σ4

ε,n

4κγ ), s is decreasing in α. Thus, for low productivity and high productivity
industries, the fixed wage contract is decreasing in productivity. For intermediate values of
α, however, the sign of ds/dα is ambiguous.

Firms with higher productivity, ceteris paribus, elicit higher levels of effort therefore, given
the optimal contract, offer higher levels of total compensation. Specific micro wage data is
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very difficult to obtain, but Abowd, Kramarz and Margolis (1999) use a French longitudinal
sample and find that firms with higher (total) wages are more productive.12

Other comparisons can be made between economies with and without moral hazard, that
satisfy assumptions 1 and 2. Notice that a sector’s equilibrium marginal total productivity,
v̂n is always lower in the economy with moral hazard than in the observable economy. In
fact, v̂n is strictly decreasing in σε,n. However, the investment in physical capital in each
sector is identical to the frictionless case. Therefore, the size of firms within sector are the
same and are unaffected by moral hazard.

Finally, we note that as the moral hazard problem vanishes, σε,n → 0, the equilibrium in
real economy E1 converges to the equilibrium in the economy without moral hazard, E0.

In our economy, agents differ in the industry in which they work, and therefore agents
choose different optimal portfolios. Thus, the CAPM (based on observations of the stock
market) does not hold. Instead, the following modification of CAPM explains cross-sectional
asset returns.

Proposition 4 In an economy that satisfies the assumptions of Proposition 3, expected re-
turns are ˆ̄μn = (1− bn)(v̂n − ŵ0). Moreover, assume that the value-weighted market portfolio
is q̂. Define the diagonal matrix Λ = diag(α1/σε,1, . . . , α

N/σε,N ). Then,

ˆ̄μ = β̂ν̂, (11)

where

β̂ =
Σμ̂(Ī + 1

kρΛ2)q̂

q̂T (Ī + 1
kρΛ2)Σμ̂(Ī + 1

kρΛ2)q̂
, and ν̂ = q̂T (Ī +

1
kρ

Λ2)ˆ̄μ, (12)

and Ī is the N × N identity matrix.

The first part of the proposition shows that the expected return in the case with moral
hazard is modified in three ways compared to the observable case. First, the factor bn enters
in the definition of v̂n, as workers’ effort levels are lower, leading to lower output. Second, the
factor 1 − bn enters, as the risk in capital markets per unit of capital investment, as some of
the risk is paid out through wages. Both these effects are firm-specific, i.e., they only depend
on a firm’s characteristics. Third, the participation constraint, ŵ0 differs from the frictionless
case, which will influence all sectors in general equilibrium.

The second part of the proposition has a CAPM interpretation. Equation (11) shows that
expected excess returns are given by the product of a market return and a “beta factor.”
However, the market portfolio and beta’s are defined with respect to a modified portfolio,

ν̃ =
q̂T (Ī + 1

kρΛ2)ˆ̃μ

q̂T (Ī + 1
kρΛ2)1

. (13)

This portfolio measures the true risk in the economy, taking into account the risk that is
paid out through wages. The return on the market portfolio is ˆ̃μmarket = M−1∑N

n=1 ÎnL̂n ˆ̃μ
n
.

12The proportion of Executive compensation from high productivity firms is found to be higher than in low
productivity firms. (See, for example Gaver and Gaver (1993,1995), Bizjak, Brickley and Coles (1993), Smith
and Watts (1992)). We observe, however, that our workers are not necessarily executives.
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In line with the argument in Roll (1977), we will see deviations from the CAPM when
we measure each industry’s expected return with respect to ˆ̄μmarket. Proposition 3 can be
rewritten in the CAPM-like form

ˆ̄μn = β̂nE[ν̃], where β̂n =
cov(ˆ̃μ

n
, ν̃)

var(ν̃)
. (14)

5 Comparative Statics and Predictions

Our framework yields three types of results: comparative statics, cross–sectional asset pricing
and cross–sectional labor implications. In addition, we can measure the effect of moral hazard
by comparing the equilibria of the two economies. We observe that the assumptions required
on risk aversion to establish equilibrium are somewhat different in the economies with and
without moral hazard. In the specific case of a symmetric one-factor economy (defined
precisely below), both the bounds are lower under moral hazard. However, the intervals do
overlap. We therefore consider comparative statics under levels of risk aversion that satisfy
both Assumptions 1 and 2.

5.1 Productivity Shocks

A standard intuition is that if a sector is (ceteris paribus) larger; in equilibrium, its expected
return must be higher to recompense risk averse investors for the increased undiversifiable
risk. Such an argument is the basis for the wealth puzzle documented in Bansal, Fang and
Yaron (2006). In our framework, as firm size, industry size and returns are endogenous, we
can also examine this intuition.

Sector sizes differ in our model because of different technological parameters. We thus
consider the effect of a productivity shock (∂αn) on industry size and returns. For simplicity,
we consider a simple one factor structure on risk. Specifically, if risks have a symmetric
one-factor structure, then the real risks in the economy can be expressed as Σ = c0Ī +c111T ,
c0 > 0, c1 > 0 and Ī is the identity matrix, while 1 is a vector of ones. In such a world,
covariances are positive and equal to c1, while variances are simply c0 + c1.

Simple derivation yields that the intuition of a Lucas tree economy goes through in our
frictionless benchmark.

Corollary 1 In a one factor economy with no moral hazard, productivity shocks in sector
n that increase the cost of capital in sector n, decrease the cost of capital in sector p �= n.
Further, a productivity shock that increases the cost of capital in sector n also increases the
size of sector n.

By contrast in the presence of moral hazard, the results are ambiguous. There are two
channels through which a productivity shock affects the cost of capital. First, directly,
through an effect on total productivity (v̂), secondly through an effect on the effort free
wage, w0. Through this channel, in general equilibrium, a change in the productivity of one
sector will also affect the cost of capital in other sectors. This is intuitive: If the ex ante value
of human capital is higher, this affects firms of different productivity to different degrees, and
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therefore the distribution of risk in the economy. A risk averse agent’s valuation for any risk
factor depends on the others to which he is exposed.

To see this, consider the effect on the sector p’s cost of capital of a change in the produc-
tivity of sector n.

Corollary 2 In a one factor model with moral hazard, a productivity shock in sector n affects
the cost of capital in sector n

dr̂n

dαn
= (1 − bn)

(
1 − 1

N

)
× ∂v̂n

∂αn
− ∂bn

∂αn
(v̂n − ŵ0) , (15)

and the cost of capital in sector p �= n

dr̂p

dαn
= −1 − b

N
× ∂v̂n

∂αn
p �= n. (16)

Notice that the sign of dr̂p/dαn is always opposite to that of ∂v̂n/∂αn. By contrast, the
effect of a productivity shock on the same sectors’ cost of capital (dr̂n/dαn) is ambiguous.
Indeed, if 1−bn

∂bn/∂αn < 1−1/N
v̂n−ŵ0

, then ∂r̂n/∂αn has the same sign as ∂v̂n/∂αn, otherwise it has
the opposite sign.13

A productivity shock affects the equilibrium total productivity of a firm positively (∂v̂n/∂αn >

0) if κγ < (bn)2(αn)3

k2 . This condition demands that the industry cost of entry be low relative
to productivity. Changes in relative productivity change the size of each sector as capital
flows to more productive sectors in the economy.

Corollary 3 In a one factor economy with moral hazard, the effect on own industry size of
a productivity shock is:

d(L̂nÎn)
dαn

=
(

1 − 1
N

)
× M

ρc0
× ∂v̂n

∂αn
,

and on other industries is

d(L̂pÎp)
dαn

= − 1
N

× M

ρc0
× ∂v̂n

∂αn
.

We show in the proof of Corollary 1 that the comparative statics for industry size in the
observable case are identical to Corollary 3, except that v replaces v̂.

Comparing Corollaries 2 and 3, situations can arise in which ∂r̂n

∂α > 0 (because ∂v̂n

∂αn < 0),
in which case

d(L̂nÎn)/dαn

dr̂n/dαn
< 0.

Thus, in the GE economy with moral hazard the intuition of the standard Lucas tree model,
(that if one sector increases its return, its size must increase), may not hold. The intuition
for this is clear: A productivity increase leads to a larger sector, but more risk is then paid
out through the wage channel, which decreases the cost of capital observed in the capital
market.

13The same argument can be made for Sharpe ratios, which is the focus of Bansal, Fang and Yaron (2006).
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5.1.1 Welfare Implications of Productivity Shocks

The frictionless economy Pareto dominates that with moral hazard. However, a natural ques-
tion is whether agents are better off if there is a productivity shock in one sector. Once again,
we perform comparative statics under the assumption of a symmetric one factor structure.
In both economies (with and without moral hazard), agents’ equilibrium certainty equivalent
is the sum of the effort free wage plus the value of investing in the stock market. Of course,
the value of both differs across the two economies. In the absence of moral hazard, agents are
better off if there is a productivity shock, as long as ∂v/∂α > 0. Even though all workers are
driven down to their endogenous participation constraint, they are all better off in aggregate
because employment is more productive; implicitly this increases the ex ante value of human
capital.

To show this, we use the equilibrium identity: ΔW = w0 + A
2ρ . Therefore,

ΔW = w0 +
A

2ρ

= w0 +
μ̄T Σ−1

μ μ̄

2ρ
.

Hence,

d(ΔW )
dαn

= dw0
dαn +

(
qT dμ

dαn

)
.

where the last line follows from the equilibrium identity that q = Σ−1
μ

μ̄
ρ .14 Observing that in

equilibrium, μ̄ = v − 1w0, allows us to write

d(ΔW )
dαn

=

(
1
N

+ (q)n − qT1
N

)
× ∂vn

∂αn

= (q)n
∂vn

∂αn
.

The 1/N factor enters through the effect an industry shock indirectly has on the participation
wage of workers. Notice also that qT1 = 1. That is, the sum of all dollar positions is one.
(This stems from our assumption that each firm requires a unit of investment capital for each
worker.)

On inspection, d(ΔW )
dαn is strictly positive if ∂vn

∂αn > 0. In the frictionless economy, the

condition is κγ < (αn)2

k2 . This is intuitive: If the cost of entering the market is low relative to
the productivity, then social welfare increases if there is a productivity shock as capital flows
easily into the newly more productive industries.

In the presence of moral hazard, the general form of the change in the certainty equivalent
is similar, however, equilibrium values of the market returns and the effort free wage differ.
Specifically, as above we obtain

14d(ΔW )/dαn = dw0/dαn + (2ρ)−1d(μ̄T Σ−1
μ μ̄)/dαn = dw0/dαn + 2(2ρ)−1μ̄T Σ−1

μ (dμ̄/dαn) = dw0/dαn +
qT dμ̄/dαn.
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dΔŴ

dαn
= (q̂)n

∂v̂n

∂αn
,

where q̂ = Σ−1(v̂ − ŵ01)/ρ is the portfolio of a hypothetical worker, working in a risk-free
industry. The difference between the two expressions is the adjustment for moral hazard, i.e.,
v̂n, rather than vn. Recall that a productivity shock increases equilibrium total productivity
under moral hazard ( ∂v̂n/∂αn > 0) if κγ < (bn)2(αn)3

k2 . Therefore, consider an industry with
entry costs so that

κγ ∈
(

αn

k

)2 [
(bn)2αn, 1

]
.

For these industries, a productivity shock decreases welfare, whereas in the frictionless
case a shock would increase welfare. Further, as bn is decreasing in the degree of moral
hazard measured by σε, the larger the moral hazard problem the more likely a productivity
shock is to lead to a decrease in welfare. Also, for a fixed level of moral hazard, because high
productivity industries have higher incentive pay (bn is higher), aggregate welfare is more
likely to be lower with a positive productivity shock amongst these firms.

Surprisingly, the ex ante value of human capital or effort-free wage in the economy with
moral hazard may be higher than that in the economy with observable effort levels. From
Propositions 1 and 2 it is clear that ŵ0−w0 > 0 is equivalent to 1T Σ−1(v̂−v) > 0. Consider
an economy in which the noisiness is very low in all industries but one, σε,i > 0, σε,j ≈ 0,
j �= i. In this economy [(v̂− v)]i < 0, and [(v̂−v)]j ≈ 0, for j �= i. We may interpret this as
an economy without moral hazard, X0, that is struck by a “noise shock” in sector i, leading
to a new equilibrium, X1. For example, a workforce deregulation in an industry may lead to
uncertainty about worker input. It is easy to see that∑

j

[Σ−1]i,j < 0 (17)

is a necessary and sufficient condition for ŵ0 − w0 > 0 in this economy.15

The productivity in the noisy sector is lower than in the observable case, which — all
else equal — leads to lower expected returns in that sector. For a sector in which condition
(17) is satisfied, however, lower expected returns lead to higher total dollar demand in the
stock market.16 In the “noisy” economy, demand for stocks is now higher than supply after
the shock, which leads firms to compete for labor, driving up wages. The wage increases
further decrease the return in sector i, which has a multiplicative effect on stock demand.
However, the wage increase also decreases expected returns in all other sectors, j �= i, which
decreases the demand pressure on stocks and more than offsets the effects in sector i. A new
equilibrium is reached, in which ŵ0 is higher than before the noise shock.

15A three-sector example, satisfying the condition is [Σ]11 = 3, [Σ]21 = 5, [Σ]31 = 4, [Σ]22 = 9, [Σ]32 = 7,
[Σ]33 = 6, for which (17) is satisfied for the second sector.

16The total dollar demand from an investor is D̂ = 1T q̂ = 1T Σ−1
μ̂

ˆ̄μ, which increases if there is a negative

shock in ˆ̄μ
i
, since ∂D̂/∂ ˆ̄μ

i
=
∑

j
[Σ−1

μ̂ ]i,j < 0.
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It may seem counterintuitive that the labor market actually provides more wealth in the
Pareto dominated economy than in the Pareto efficient observable economy. The total wealth
increase in the economy, however, also contains the wealth provided from the stock market,
ΔW = w0 + A/2ρ. As Propositions 1 and 2 show, the total wealth increase in the observable
economy is always higher than in the economy with moral hazard. Thus, in the cases where
ŵ0 −w0 > 0, the negative effects of the less efficient capital market more than outweighs the
wage increase in the labor market.

5.2 Moral hazard and Financial “Anomalies”

Our model also provides implications for the cross-section of expected returns. The key driver
behind the discrepancies between the CAPM and our model are the productivity parameters,
αn, and the unobservability of effort levels, measured by σn

ε . High-productivity firms pay out
a higher fraction of x̃-risk through wages, as they gain more from workers exerting high effort
levels. In other words, the industries of such firms look “too small”, and the firms earn excess
returns compared with CAPM. Specifically,

Corollary 4 Compared to the CAPM predictions:
i) Industries with high α will seem to be “too small,”
ii) Industries with low α will seem to be “too big,”
iii) Firms with high α have positive abnormal returns,
iv) Firms with low α have negative abnormal returns.

We have proved i-ii for general economies, whereas we have only proved iii-iv for the sym-
metric one-factor economy in which ∂v̂n/∂α > 0 in all industries (see appendix).

As high-productivity firms are small (Proposition 3:iii), this immediately implies the
following size-effect related result:17

Corollary 5 Size effect:
i) Small firms have higher expected returns than those predicted by the CAPM.
ii) Large firms have lower expected returns than those predicted by the CAPM.

A value-like effect can also arise within the model. The book-to-market ratio in an
industry is

1 − κ + γαn(În)2 + snÎn

În
.

This is the remaining capital in the firm at t = 1, divided by the market value of the firm
at that point (see Figure 2). The crucial condition that ensures a value effect for all firms is
that

Condition 1 For all α ∈ [α1, αN ], ds
dα < −

√
κγ
α .

17In the model, we make specific assumptions on firms’ production and cost functions. The corollary,
however, does not depend on the specific functional form, as long as the cost is an increasing function of
productivity. Any cost function of the form κ+γ(α)I2, where γ is increasing in α, will lead to a size anomaly.
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Intuitively, this condition ensures that firms with higher productivity decrease the fixed-wage
part of workers’ compensation more than enough to offset the increase in spending on R&D
(which will have an offsetting effect). Obviously, this condition is stronger than ds

dα just being
negative, which we discussed in Section 4.3. However, for large α, the R.H.S. of Condition 1
is small so the condition is only slightly more restrictive than the condition that ds/dα < 0.
In this case, high α firms have high book-to-market ratios and we immediately get

Corollary 6 Value effect: If Condition 1 is satisfied, then
i) Firms with high book-to-market ratios have expected returns greater than those predicted

by the CAPM.
ii) Firm with low book-to-market ratios have lower expected returns than those predicted

by the CAPM.

In Figure 3 below, we show an example with ten industries. Expected return as a function
of beta is shown as a solid line. It is convex, driven by the cross sectional differences of wage
risk. A regression of market beta versus expected return (shown by dotted line with circles)
will therefore not capture expected returns well. In this world, size (dotted line with pluses)
and book-to-market (dotted line with crosses) do a better job at capturing cross sectional
differences in expected returns.

5.3 Moral Hazard and the Labor Market

Our model links firm productivity, investments in R&D, labor compensation and stock returns
and is consistent with several observed phenomena in the literature on executive compensa-
tion. Recall that s is a proxy for fixed wage compensation, whereas b is a proxy for variable
compensation, e.g., stock and stock options or profit sharing. Mehran (1995) and later Frye
(2004) find that firms with higher relative investments in R&D (measured as R&D/Sales)
have higher employee equity compensation. Furthermore, Mehran reports a negative rela-
tionship between R&D/Sales and fixed wage compensation. Kedia and Mozundar (2002) find
that small firms grant more stock options than large firms and that firms that grant more
stock options earn abnormal returns. All these results are in line with our model. Kedia and
Mozundar (2002) also report that low book-to-market companies grant more stock options,
which is not consistent with our model.

If the model presented in this paper provides an accurate description, the type and size
of labor compensation that a firm offers is important to understand its stock returns. Our
predictions are based on the equilibrium result that compensation and firm size are driven
by the same parameter – α. Recall that b is increasing in α, but firm size is decreasing in α.
Therefore firms that are more productive offer a higher bonus component and are smaller.

Corollary 7 The smaller the firm, the larger the profit sharing.

Our model suggests that the total profit sharing portion of the wage bill (ex ante) should
be bnÎn, therefore bn measures the profit sharing normalized by firm size. This is consis-
tent with Kruse (1992) who finds that profit sharing and Employee Stock Ownership Plans
(ESOPs) Granger cause labor productivity.
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Figure 3: Expected returns. True expected returns are represented by solid line. Re-
gressed returns on market beta (dotted line with circles), on size (dotted line with pluses)
and on book-to-market ratio (dotted line with crosses) are also shown.
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Under the optimal contract we exhibit, employees are also paid a fixed wage; the total
wage bill is snÎn. Smaller firms pay out most of their compensation in profit sharing and
therefore we expect18 that

Corollary 8 Small firms will have lower wage per employee than large firms.

In the previous section, we demonstrated that cross–sectional asset pricing anomalies
follow from the existence of incentive contracts. Using the same logic that generated the
value effect in the previous section, since small firms offer wages with a larger incentive
component than large firms,

Corollary 9 Firms with low wages per employee will earn abnormal returns.

5.4 Conclusions

We have characterized a tractable general equilibrium model of production in which workers,
remunerated by firms, hedge labor income in financial markets. The CARA/Normal frame-
work admits both simple, optimal incentive contracts and closed form solutions for capital
market equilibrium.

More broadly, as investors are also workers, firm characteristics should help explain the
cross-section of returns. Specifically, asset pricing, firm balance sheet characteristics and
returns to human capital are jointly determined in equilibrium.

18Although, the effect may not be monotone for all α, in line with our discussion of ds/dα.
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6 Appendix I

Proof of Lemma 2

As a worker’s effort and investment decisions are separate, the solution is the standard mean variance
optimum, see, e.g., Ingersoll 1987, leading to the expression for q and the certainty equivalent.

To see that A is the squared Sharpe ratio, S2, we note that

S2 = (qT μ̄)2/(qT Σμq) = (μ̄T Σ−1
μ μ̄)2/(μ̄T Σ−1

μ ΣμΣ−1
μ μ̄) = A.

Proof of Proposition 1

Throughout the appendix, we prove more general versions of the proposition, namely with general
κn > 0, γn > 0 and x̄n > 0. The Propositions in the body of the text are obtained by choosing
κ = κ1 = · · · = κN , γ = γ1 = · · · = γN , x̄1 = · · · = x̄N = 1.

The first condition, (i), follows from the firms’ first order conditions (4).
For (ii), we use that (i) together with (2) implies that

π̄n = E[π̃n] = In
(
(αn)2/2k + x̄n − w0 − rn

)− αnγn(In)2 − κn. (18)

The zero economic profit condition and firm optimization condition implies that π̄n = ∂π̄n/∂In = 0.
For a general quadratic equation: f(x) = ax2 + bx + c, a necessary condition for f(x) = f ′(x) = 0 is
that x = ±√c/a, which in this case implies (ii),

In =
√

κn

γnαn
.

Clearly (18) implies that
2αnγnIn = (αn)2/2k + x̄n − w0 − rn,

which by the equilibrium condition on In and the definition of vn implies that

vi = ri + w0, (19)

i.e., as ri = μ̄i,
μ̄ = v − w01.

To prove (iii), we observe that the stock market clearing condition is

Mq = MΣ−1
μ μ̄/ρ = ΛIL ⇒ L = MΛ−1

I Σ−1
μ μ̄/ρ, (20)

i.e., (iv). By premultiplying with 1T , this also leads to

M1T Σ−1
μ μ̄/ρ = 1T ΛIL = M.

This in turns means that

1T Σ−1
μ (v − w01) = ρ ⇒ 1T Σ−1

μ v − ρ = w01T Σ−1
μ 1,

leading to (iii).
(v) follows from (19) and the fact that the certainty equivalent of the increase in expected utility

is the sum of the wage surplus w0 and the value-add from stock market participation, A/2ρ. The
solution thus constitutes an equilibrium.

Under Assumption 1:i, (iii) implies that w0 is strictly positive, and Assumption 1:ii together with
(19) implies that Ln > 0, n = 1, . . . , N . Thus, all variables are strictly positive so the equilibrium is
interior. Moreover, all equations in the derivation are unique, so the equilibrium is unique.

Finally, by solving the social planner’s problem, one easily checks that the equilibrium is indeed the
unique Pareto optimal solution, up to pure wealth distributions, i.e., any Pareto optimal equilibrium
will have the same value of e, I, L and q.
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Proof of Proposition 2

The condition μ̄n = vn − w0 is shown in (19). Returns are normal and the stock market is the only
source of risk, so the CAPM holds with respect to the market portfolio (see, e.g., Ingersoll 1987).
Moreover, by Proposition 1, the return of the market portfolio is M−1

∑N
n=1 InLnμ̃n.

Proof of Lemma 3

The agent’s optimization problem (7) takes the form

ΔŴn = max
ên,q̂n

V n =

max
ên,q̂n

[
sn + bnαnen + ˆ̄μT

qn − k

2
(en)2 −

−ρ

2
(
(bn)2σ2

x,n + (bn)2σ2
ε,n + (qn)T Σμ̂(qn) + 2bnσT

μ̂,nqn
) ]

.

The first order conditions are therefore

∂V n

∂en
: bnαn − kên = 0 ⇒ ên = αnbn

k , (21)

∂V n

∂qn
: ˆ̄μ − ρ (Σμ̂qn + bnσμ̂,n) = 0 ⇒ q̂n = Σ−1

μ̂

(
ˆ̄μ
ρ − bnσμ̂,n

)
. (22)

As the decision variables are separated over en and qn, and as the highest order terms in en and qn

are strictly negative definite quadratic forms, a solution to the f.o.c. is also global maximum.

Proof of Lemma 4

Equation (22) implies the following values:

ˆ̄μT
q̂n =

Â

ρ
− bnB,

(q̂n)T Σμ̂(q̂n) =
Â

ρ2
+ (bn)2Cn − 2bnBn

ρ
,

σT
μ̂,nq̂n =

Bn

ρ
− bnCn.

A worker in sector n, at his participation constraint will therefore have

ΔŴ = sn + bnx̄n + bnαn αnbn

k
+
( Â

ρ
− bnBn

)
− (αnbn)2

2k
−

−ρ

2

(
(bn)2σ2

x,n + (bn)2σ2
ε,n +

Â

ρ2
+ (bn)2Cn − 2bnBn

ρ
+ 2bn(

Bn

ρ
− bnCn)

)

= sn + (bn)2
(

(αn)2

2k
+

ρ

2
(Cn − σ2

x,n) − ρ

2
σ2

ε,n

)
− bn(Bn − x̄n) +

Â

2ρ
.

This leads to

sn(bn, În) = (bn)2
(
− (αn)2

2k
− ρ

2
(Cn − σ2

x,n) +
ρ

2
σ2

ε,n

)
+ bn(Bn − x̄n) + ΔŴ − Â

2ρ
.
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Proof of Lemma 5

From (6) a firm in sector n solves

max
În,bn

π̄n = E[π̃n] = In
(
(αnen + x̄n)(1 − bn) − sn(bn, In) − (1 − bn)zn − γnIn

)
− κn =

max
În,bn

In

((bn(αn)2

k
+ x̄n

)
(1 − bn) − sn(bn, In) − (1 − bn)zn − γnIn

)
− κn =

max
În,bn

In
((bn(αn)2

k
+ x̄n

)
(1 − bn) −

(
(bn)2

(
− (αn)2

2k
− ρ

2
(Cn − σ2

x,n)

+
ρ

2
σ2

ε,n

)
+ bn(Bn − x̄n) + ΔŴ − Â

2ρ

)
− (1 − bn)zn − γnIn

)
− κn =

max
În,bn

In
(
(bn)2

(
− (αn)2

2k
+

ρ

2
(Cn − σ2

x,n) − ρ

2
σ2

ε,n

)
+

+bn
( (αn)2

k
+ zn − Bn

)
+

Â

2ρ
− ΔŴ + x̄n − zn

)
− αnγn(In)2 − κn

def= In(Mn
2 (bn)2 + Mn

1 bn + Mn
0 ) − αnγn(In)2 − κn.

The first order conditions in bn is:

∂π̄n

∂bn
: 2Mn

2 bn + Mn
1 = 0 ⇒

bn = − Mn
1

2Mn
2

=
(αn)2/k + zn − Bn

(αn)2/k + ρ(σ2
x,n − Cn + σ2

ε,n)
. (23)

Cauchy-Schwarz’ inequality, Cov(x̃n, ỹ) ≤√V ar(x̃n)V ar(ỹ), ensures that Cn ≤ σ2
x,n: For the choice

ỹ = aT ˆ̃μ with a = Σ−1
μ̂ σμ̂,n the inequality leads to σT

μ̂,nΣ−1
μ̂ σμ̂,n ≤

√
σT

μ̂nΣ−1
μ̂ σμ̂,n × σ2

x,n, i.e., Cn ≤
√

Cn ×
√

σ2
x,n. This immediately implies that M2 is strictly negative, and in fact, M2 < −(αn)2/k.

The first-order conditions for În is:

∂π̄

∂I
: Mn

2 (bn)2 + Mn
1 bn + Mn

0 − 2γnÎn = 0 =⇒ În =
Mn

2 (bn)2 + Mn
1 bn + Mn

0

2αnγn
. (24)

From the f.o.c. on bn, (23), this is equivalent to:

În =
1

2αnγn

(
− (Mn

1 )2

4Mn
2

+ Mn
0

)
def=

T n

2αnγn
. (25)

We note that solution, (bn, În), to the first order condition is unique. We now prove that it is a
global maximum, as long as În > 0 and 0 < bn < 1: Plugging the solutions to the f.o.c. into the profit
function leads to

π̄ =
(T n)2

4αnγn
− κn =

1
4αnγn

(
((αn)2/k + zn − Bn)2

(αn)2/k + ρ(σ2
x,n − Cn + σ2

ε,n)
+

Â

2ρ
− ΔŴ + x̄n − zn

)2

− κn ≥ −κn,

so any strictly better strategy must lead to a profit greater than −κn.
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Clearly, the optimization problem is smooth, so an optimum will either be at a boundary (including
the extended boundary În = ∞), or satisfy the first order conditions. As the solution to the f.o.c.
is unique, we check the boundaries: 1. În = ∞: The Hessian of this optimization is on the form
H = [2Mn

2 In, Mn
1 ; Mn

1 ,−2γn], with characteristic equation (λ − 2Mn
2 In)(λ + 2γn) − (Mn

1 )2 = 0, i.e.,
λ2 +2(γn− ÎnMn

2 )λ−4γnInMn
2 − (Mn

1 )2 def= λ2 +a1λ+a0 = 0. Clearly, a1 > 0, a0 < a1 and, for large
enough În, a0 > 0, which implies that, for large enough În, both characteristic roots are negative.
Thus, there is always an În, such that π̄ is decreasing regardless of bn and the optimum can not be
reached at the (extended) boundary În = ∞.

Moreover, any bn ≥ 1 will lead to π̄ ≤ −κ, so no interesting solution can have bn ≥ 1, and the
boundary În = 0 will lead to π̄ = −κ. Thus, any noninterior optimum must lie on the boundary
bn = 0. On this boundary, the optimal investment level is În = Mn

0 /2γn, which is feasible if Mn
0 ≥ 0

(as otherwise In < 0), in this case leading to π̄ = M2
0 /4γn − κn. However, if Mn

0 ≥ 0, then this
boundary solution is obviously dominated by π̄ = (−(Mn

1 )2/4Mn
2 + M0)2/4γn − κn (as Mn

2 < 0), so
no solution on the boundary bn = 0 can dominate the interior solution.

Proof of Proposition 3

We construct an equilibrium satisfying (i)-(vii) and then show that it is unique. We define ΛI =
diag(Î1, . . . , ÎN ), Λα = diag(α1, . . . , αN ), Λb = diag(b1, . . . , bN) and Λ1−b = diag(1− b1, . . . , 1 − bN ).

First, from Lemma 3, an equilibrium with optimizing workers will satisfy (i).
We note that (9) implies that in equilibrium, Cn = [Σx]n,n = σ2

x,n and that Bn = ˆ̄μn
/(1−bn) = zn,

which in turn, through the relation r̂n = ˆ̄μn, implies (iii):

bn =
1

1 +
kρσ2

ε,n

(αn)2

∈ (0, 1).

Also, Mn
1 = (αn)2/k and Mn

2 = −((αn)2/k + ρσ2
ε,n)/2, where Mn

1 and Mn
2 were defined in the proof

of Lemma 5.
Moreover, (8) together with E[π̃n] = 0 implies (ii):

În =
√

κn

γnαn
,

which is strictly positive. However, we also have through (25):

2
√

γnκnαn +
(Mn

1 )2

4Mn
2

=
Â

2ρ
− ΔŴ − zn, (26)

which through the relations ΔŴ = ŵ0 + Â/2ρ and μ̂n/(1 − b) = zn leads to

ˆ̄μn = (1 − bn)
(

2
√

γnκnαn +
(Mn

1 )2

4Mn
2

− ŵ0

)
. (27)

The market clearing condition in the stock market now gives us

Q̂ΛIL̂ = ΛIL̂,

which implies that

(Ī − Q̂)ΛIL̂ = 0, (28)
(29)
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(where Ī is the identity matrix) i.e., 1 must be an eigenvalue to Q̂, with eigenvector λ. Given such
a λ, the vector of firm mass L̂ = M

1T λ
Λ−1

I λ will be a solution. Moreover, the labor market condition,

M = Î
T
L̂, can be rewritten as

1T ΛIL̂ = M.

We have

Q̂ = Σ−1
μ̂

( ˆ̄μ1T

ρ
− ΛbΣμ̂,x

)
, (30)

where Σμ̂,x = [σμ̂,1, . . . , σμ̂,n]. Since from (9), we know that Σμ̂ = (Ī − Λb)Σ(Ī − Λb) and Σμ̂,x =
Σ(Ī − Λb), (30) can be rewritten as

Q̂ = (Ī − Λb)−1Σ−1(Ī − Λb)−1

( ˆ̄μ1T

ρ
− ΛbΣ(Ī − Λb)

)
.

This in turn, using the definitions of v̂, and (27) means that (28) can be rewritten as:

Mŵ0ρ
(
Σ−1

μ̂ (Λ1−bv̂1T /ρ − Λ1−bΣμ̂,x) − Ī
)−1

Σ−1
μ̂ Λ1−b1 = λ = Mŵ0ρZ1, (31)

where Z =
(
Σ−1

μ̂ (Λ1−bv̂1T /ρ − Λ1−bΣμ̂,x) − Ī
)−1

Σ−1
μ̂ Λ1−b. Since 1T λ = M , we have

ŵ0 =
1

ρ1T Z1
.

Now, expanding Z through the definitions of Σμ̂ and Σμ̂,x leads to

Z =
( v̂1T

ρ
− Σ

)−1

,

which through the Sherman-Morrison-Woodberg formula,

(A + UV T )−1 = A−1 − A−1U(I + V T A−1U)−1V T A−1,

leads to (iv): ŵ0 = 1/(ρ1T Z1) = 1T Σ−1v̂−ρ

1T Σ−1
μ̂

1
.

From (31), and the relation L̂ = M

1T λ
Λ−1

I λ it follows that

L̂ = Mŵ0ρΛ−1
I Z1,

and another application of the Sherman-Morrison-Woodberg formula finally leads to (v).
Condition (vi), W + ŵ0 +(v̂− ŵ01)T Σ−1(v̂− ŵ01)/2ρ, follows from the relation ΔŴ = ŵ0 + Â/2ρ

and (27).
Condition (vii) follows immediately from plugging the derived values of variables into (8) of

Lemma (4).
A similar argument as in the proof of Proposition 1 shows that the equilibrium is unique and

interior if Assumption 2 is satisfied.
Finally, we observe that the resource allocation L̂ = Mρ−1Λ−1

I Σ−1(v̂− ŵ01) in economy E0 (with
observable effort level) is strictly Pareto dominated by the observable economy equilibrium outcome,
X0 (as the equilibrium is the unique Pareto optimal outcome from Proposition 1). This outcome, in
turn, strictly Pareto dominates the equilibrium outcome in E1, X1, as each worker will get additional
disutility from the noisiness of the performance report, and the value creation will decrease with the
factor (1 − b)α2/(2k). Therefore X0 strictly Pareto dominates X1.
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Proof of Proposition 4

The first part follows immediately from (27) and Mn
1 = (αn)2/k, Mn

2 = −((αn)2/k + ρσ2
ε,n)/2.

The value-weighted market portfolio is q̂ = diag(Î)L̂/(Î
T
L̂) = Σ−1(v̂ − ŵ01)/1T Σ−1(v̂ − ŵ01).

However, the mean-variance efficient portfolio in the financial market is q∗ = Σ−1
μ̂

ˆ̄μ/1T Σ−1
μ̂

ˆ̄μ =
(Ī − Λb)−1Σ−1(v̂ − ŵ01)/[1T (Ī − Λb)−1Σ−1(v̂ − ŵ01)]. The CAPM will hold with respect to this
portfolio (see, e.g., Ingersoll 1987), and obviously to any scaled version of this portfolio, for example

ν = (Ī − Λb)−1q̂.

Now,

bn =
1

1 + kρσ2
ε,n

(αn)2

∈ (0, 1),

and since
(Ī − Λb)−1 = diag(1/(1 − b1), . . . , 1/(1 − bN )),

and also
1

1 − bn
= 1 +

αn

kρσ2
ε,n

,

this leads to
ν =

(
I + k−1ρ−1Λ2

)
q̂.

Since the CAPM holds with respect to ν, we have μ̂ = β̂[νT ˆ̄μ], where β̂ = Σμ̂ν/νT Σμ̂ν, which,
plugging in the definition of ν, leads to (11-12).

Proof of Corollary 1

From Proposition 1, it follows that ∂rn/∂αp = ∂vn/∂αp−∂w0/∂αp. Since Σ = c0Ī +c111T , it follows
that

Σ−1 =
1
c0

(
Ī − c1

c0 + c1N
11′
)

,

which implies that

w0 =
1T v
N

− ρ ×
( c0

N
+ c1

)
.

Therefore, ∂rn/∂αn = (1 − 1/N)∂vn/∂αn, whereas ∂rn/∂αp = −N−1∂vp/∂αp, n �= p. Thus,

∂rn/∂αn

∂rp/∂αn
= −(N − 1) < 0, n �= p

which proves the first part of the corollary.
For the second part, we note that

d(LnIn)
dαp

=
M

ρ

[
Σ−1 ∂(v − w01)

∂αp

]
n

,

which equals M
ρc0

(1 − 1/N)(∂vn/∂αn) for n = p, and M
ρc0

(−1/N)(∂vp/∂αp), for n �= p. This implies
that

d(LnIn)/dαp

drn/drp
=

M

ρc0
> 0, ∀n, p.
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Proof of Corollary 2

Similar to the proof of Corollary 1, using the results of Proposition 3.

Proof of Corollary 3

Similar to the proof of Corollary 1, using the results of Proposition 3.

Proof of Corollary 4

We first show i-ii, that, for an arbitrary economy, the value-weighted market portfolio will seem to
be under-weighted on high-productivity firms and over-weighted on low-productivity firms. We define
z = v̂ − ŵ01. The value-weighted market portfolio is then q = Σ−1z/(1T Σ−1z). The portfolio that
the CAPM would predict, on the other hand, is q∗ = Σ−1

μ
ˆ̄μ/(1T Σ−1

μ
ˆ̄μ) = Λ−1

1−bΣ
−1z/(1T Λ−1

1−bΣ
−1z).

We therefore have

[q]i
[q∗]i

= c × (1 − bi), where c =
1T Λ−1

1−bΣ
−1z

1T Σ−1z
> 0,

(where the strict positivity of c is guaranteed by the strict positivity of all the elements of L, since
Σ−1z = M−1ρΛIL as showed by Proposition 3:vi) which is a decreasing functions of b, and therefore,
as b is an increasing function of α, a decreasing function of α.

Further, as 1T q∗ = 1T q = 1, and the portfolio weights are all nonnegative, it is clear that, as
long as there is dispersion of productivity, αi �= αj for some i, j, there is a ᾱ ∈ (α1, αN ), such that
for all industries, n, in which αn < ᾱ, [q∗]i < [q]i, and for all industries in which αn > ᾱ, [q∗]i > [q]i
(q �= q∗ (W.l.o.g., assume that there is a i such that [q]i < [q∗]i. Then, there has to be a j such
that [q]j > [q∗]j , as 1T q∗ = 1T q = 1). Thus, low productivity industries will indeed look “too big,”
whereas high-productivity industries will look “too small.” This general result is true regardless of the
parameters of the economy. We note that, as c/(1 − bi) > 1 for some i, c < 1.

We now turn to iii-iv. We prove the result for the case where Σ = c0Ī + c111T , c0 > 0, c1 > 0
and Ī is the identity matrix, while 1 is a vector of ones.

It is straightforward to show that the CAPM, based on the value-weighted market portfolio,
predicts a vector of expected returns of

z∗ = d × ΣΛ1−bΣ−1z, where d =
zT Λ1−bΣ−1z

zT Σ−1Λ1−bΣΛ1−bΣ−1z
,

whereas the true expected returns (per unit of x̃ risk) are z. However, using the definitions of q and
q∗, this is equivalent to

ri
def=

[z∗]i
[z]i

= d × c × [Σq∗]i
[Σq]i

.

Since Σ = c0Ī + c111T , this implies that

ri = d × [q]i/(1 − bi) + c × c1/c0

[q]i + c1/c0
.

Now, since c < 1, we have ri < d/(1 − bi) (This can for example be seen by defining R(q) =
q+c×(1−bi))c1/c0

q+c1/c0
, noting that R(0) = c(1 − bi) < (1 − bi) < 1, and dR/dq = (q + c × c1/c0(1 −

bi))−1(1 − R) > 0 iff R > 0, and limq→∞ R(q) = 1, so R(q) < 1 regardless of q, and, because
ri = d × R([q]i)/(1 − bi), the result follows).

For arbitrary i, j, such that bi < bj , we define the functions

Q(b) def= [Σq]i +
[Σq]j − Σ[q]i

bj − bi
(b − bi),

33



and
Z(b) def=

Q(b)/(1 − b) + c × c1/c0

Q + c1/c0
.

Clearly, Q(b) > 0, and Z(b) > 0. We first show that [Σq]i < [Σq]j . From Proposition 3, b is strictly
increasing in α. We have

Σq = (c0Ī + c111T )z = c0z + c1(1T z)1,

so
[Σq]j − [Σq]i = c0([z]j − [z]i) > 0,

as v̂j > v̂i when αj > αi and [z]j − [z]i = v̂j − v̂i.
We then have rj − ri = Z(bj) − Z(bi), so showing that Z ′(b) > 0, for bi < b < bj is enough to

ensure that rj > ri. It is easy to check that

Z ′(b) =
1

(1 − b)[q∗]i + c1/(c0 × c)
(Q′(b)(1 − c(1 − b)Z(b)) + Q(b)Z(b)) .

Moreover, since Z(b) > 0 and (1 − b)Z(b) < d (which is clearly the case since (1 − b)Z(b) = R(Q(b)),
and d(R(Q(b))/db = R′Q′ > 0, so (1 − b)Z(b) reaches its maximum at bj , at which point it is
rj(1 − bi) < d), if cd < 1, then Z ′(b) > 0. A similar argument to the one used in showing that c < 1,
indeed confirms that d < 1, so cd < 1, and indeed Z ′(b) > 0, and rj > ri. Thus, rn — the rate
of CAPM-predicted expected returns to true expected returns — is an increasing function of n. A
similar argument as that made when proving i-ii shows that for i’s such that αi < ᾱ, ri < 1, whereas
for i’s such that αi > ᾱ, ri > 1. This concludes the proof of Corollary 4.
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7 Appendix II: Utility Equivalence of Contracts

As noted in the main text, there are a continuum of optimal contracts. We demonstrate that all
choices lead to utility equivalent equilibria. This is not a priori clear, as the participation constraint is
endogenous in our GE framework. We also demonstrate that irrespective of the conditioning variables
that all equilibria are also “productively,” equivalent, specifically that the firm will elicit the same
investment in human capital from all employees. The intuition for this result stems from the ease
with which workers can access the capital markets. It is irrelevant to the contract if the firm offers
systematic risk in the incentive contract. The agent can lay off any unwanted risk in the stock market.
Exposure to this risk has a price in equilibrium, as agents can trade the risk. Therefore, the firm has
to “repay,” the worker by offering a larger fixed fee component. In general equilibrium, for any
compensation contract that includes a wage written on the systematic risk generated by the firm,
there is an equivalent economy in which it is not.

Proposition 5 Assume that firms can offer contracts of the following generalized form:

wn,�
m = sn,�

m + bn,p
m η̃m + vn,p

m x̃n,p − γnIn,p, (32)

where 0 ≤ vn,�
m < 1. Then, in equilibrium, the choices of vn,�

m are irrelevant for the real part of the
realization of the economy, i.e., regardless of choices, there is an equilibrium with the same ΔW , L,
I, and e as the equilibrium described in Proposition 3.

Proof: Intuitively, the Proposition should hold, as bn < 1, so x̃n-risk is a tradable asset that both
the firm and the worker will agree upon the price for. The new contract,

yn
m = sn + bnη̃m + vnx̃n − γnIn,

can be rewritten as the contract analyzed in the text plus an additional x̃n-risk term,

wn
m + φnx̃n,

where φn = vn−bn. By showing that expected excess profit (8) does not depend on φn, the irrelevance
result follows. The same derivation as in the proof of Lemma 4 shows that the new reservation wage,
sn
new is

sn
new = sn + (φn − b)2

ρ

2
(σx,n − C) + (φn − bn)B,

which in equilibrium reduces to
sn
new = sn + (φn − bn)B. (33)

Plugging this expression into (8), in exactly the same way as in the proof of Lemma 5, makes the
(φn−bn)Bn-terms cancel out against the changed opportunity cost which introduces an extra −(φn−
βn)zn term, as Bn = zn in equilibrium. Thus, expected excess profit does not depend on φ, so firms
are indifferent in their choice of φ. A similar argument shows that each agent is indifferent too, and
her effort level does not depend on φ so all real variables (ΔW, L, I, e) are the same regardless of φ.

In equilibrium, the price of traded assets are the same if they appear in the incentive contract or
in the stock markets. Therefore, the only source of risk that the firm can use to elicit effort is the
idiosyncratic risk which is non–traded. Notice however, that the amount of risk which agents receive
through wage contracts will affect equilibrium in the capital market. Suppose that no x̃ risk is paid
out to the employees. In this case, all employees hold the same portfolio position and the amount
of x̃ risk in the economy is determined by the productivity of firms (α). Now suppose, that a large
amount of x̃ risk is paid out to employees. In this case, agents in firms will lay off the risk in the
market, however the total amount of x risk and the total effort level elicited by firms will be the
same, although economies that differ in the amount of x̃ risk paid out to workers will have different
asset pricing implications, since different φ’s lead to different degrees of systematic risk being paid
out through the labor channel.
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