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Abstract

We present an equilibrium asset pricing model in which intermediaries are marginal in setting prices.

The intermediaries we model are hedge funds, mutual funds, banks, or insurance companies. We calibrate

the model to a hedge fund crisis episode where parameters are chosen so that the marginal investor

resembles a hedge fund with leverage. We are able to qualitatively and quantitatively match the behavior

of risk premia and interest rates in a financial crisis. Moreover, the model captures the slow mobility of

capital during a crisis and can replicate observed crisis recovery times. We also calibrate our model to a

broad intermediation scenario where parameters are chosen so that the marginal investor is an amalgam

of the intermediaries we observe in practice. We show that the intermediation effects help to generate a

volatile pricing kernel and a market risk premium matching the empirically observed equity premium.
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1 Introduction

This paper presents an equilibrium asset pricing model in which intermediaries are marginal in setting prices.

The intermediaries we model are most naturally thought of as hedge funds, mutual funds, banks, or insurance

companies. Although over 50% of financial wealth in the U.S. is invested through these types of intermediaries

(Allen, 2001), traditional approaches to asset pricing ignore intermediation by invoking the assumption that

intermediaries’ actions reflect the preferences of their client-investors. With this assumption, the traditional

approach treats intermediaries as a “veil,” and instead posits that a representative household is marginal in

pricing all assets.

We deviate from the traditional approach for two reasons. First, it is by now widely accepted that shocks

to financial intermediaries are at the heart of most financial crises episodes (e.g., the current subprime crisis

or the 1998 hedge fund crisis). In the 1998 episode, large shocks to hedge funds and other sophisticated

intermediaries forced them to liquidate positions in several asset markets, driving up risk premia on these

assets (see Xiong, 2001, Kyle and Xiong, 2001, Gromb and Vayanos, 2002, Brunnermeier and Pedersen, 2006,

He and Krishnamurthy, 2006, or Gabaix, Krishnamurthy, and Vigneron, 2007). It was intermediaries that

were affected rather than a representative household, suggesting that the marginal investor in the affected

asset markets during this episode was an intermediary.1

Second, as is well known, the traditional approach has some shortcomings. In particular, since the

marginal investor is assumed to be a household whose consumption is equal to NIPA aggregate consumption,

variability in the marginal pricing condition for assets – the pricing kernel – is tied to variability in aggregate

consumption growth. However, as the volatility of aggregate consumption growth is low and consumption

growth and asset payoffs are only weakly correlated, it is hard to understand the size of risk premia and

volatility on financial assets under the representative household approach. In our approach, the pricing

kernel for assets is affected by fluctuations in the financial position of intermediaries, which is plausibly an

order of magnitude more volatile than household consumption. Factors such as the volatility of asset values,

the leverage of intermediaries, and the ability of intermediaries to raise capital, all contribute to determining

the intermediary pricing kernel. We show that with a realistic calibration, the model can match empirically

1There is a growing body of empirical evidence documenting the effects of intermediation constraints (such as capital or

collateral constraints) on asset prices. These studies include, research on mortgage-backed securities (Gabaix, Krishnamurthy,

and Vigneron, 2005), corporate bonds (Collin-Dufresne, Goldstein, and Martin, 2001), default swaps (Berndt, et. al., 2004),

catastrophe insurance (Froot and O’Connell, 1999, 2001), and index options (Bates, 2003; Garleanu, Pedersen, and Poteshman,

2005).
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observed risk premia and Sharpe ratios.

The contribution of our paper is to work out an equilibrium model of intermediation that is dynamic,

parsimonious, and can be realistically calibrated. While there is a prior body of work that studies the effect

of intermediation on asset prices, the models employed have almost exclusively been static and designed

to highlight qualitative effects. Allen and Gale in a number of papers show how the financial structure

of intermediaries plays an important role in financial crises (see Allen and Gale, 2005).2 Holmstrom and

Tirole (1997) show how capital constraints in intermediation can affect the equilibrium interest rate as well

as interest rate spreads. Shleifer and Vishny (1997) argue that the tendency for investors to withdraw

funds from intermediaries following negative performance limits the ability of intermediaries to exploit high

returns.3 Our paper draws on the ideas from this prior literature, incorporating these ideas into a fully

dynamic and quantitative general equilibrium model.

Section 2 of the paper presents the model. It consists of a household sector that cannot directly invest

in a risky “intermediated” asset, and an intermediary sector that can invest in the risky asset on behalf of

the households. This modeling captures the idea that the intermediary investment requires some expertise

that only the intermediaries possess. The modeling also borrows from the literature on limited participation

and immediately implies that the household is not marginal in pricing the intermediated asset. The inter-

mediaries, whose investment decisions are taken by a class of agents who we call specialists, are marginal in

pricing the risky asset.

Our key assumption is that the supply of intermediation to households may be constrained. In particular,

we assume that when the specialists (who manage the intermediaries) have low current wealth, households

are reluctant to invest with intermediaries and instead hold their savings in a riskless bond. We offer two

interpretations of the wealth constraint on intermediation. First, we can think of the specialist as the

insiders of a hedge fund, and the specialist’s wealth as the “capital” of the hedge fund. Then states with

low wealth/capital in the model are states where hedge funds are capital constrained (as in Holmstrom and

Tirole, 1997). A second interpretation is that the wealth of a specialist is a summary of the past investment

decisions and realized returns of the specialist. Then we can think of low wealth states as states in which

2The work of Allen and Gale builds on the Diamond and Dybvig (1983) framework. See also Diamond (1997) and Diamond

and Rajan (2005) for models with linkages between the asset market and financial intermediaries.
3Other papers in the literature on asset pricing and intermediation include Allen and Gorton (1993), Allen and Gale (1994),

Brennan (1993), Grossman and Zhou (1996), Holmstrom and Tirole (1997), Shleifer and Vishny (1997), Dasgupta, Prat and

Verardo (2005), and Vayanos (2005).
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households pull out of mutual funds because they have delivered low past returns, and mutual funds in turn

are forced to liquidate their asset holdings (as in Shleifer and Vishny, 1997). In both cases, the key dynamic

of the model is that low specialist wealth states lead households to withdraw funds from intermediaries and

indirectly reduce their participation in the risky asset market. This dynamic then drives up the risk premium

on the risky asset.

We calibrate our model to two scenarios. As noted above, intermediaries are thought to play an important

role in financial crises. The first scenario we present is a hedge-fund crisis episode where we parameterize the

model so that the marginal investor during a crisis resembles a hedge fund with leverage. This calibration

is explained in Section 4.

The striking feature of financial crises is the sudden and dramatic increase of risk premia. For example, in

the hedge fund crisis of the fall of 1998, many credit spreads and mortgage-backed security spreads doubled

from their pre-crisis levels. Our baseline calibration can replicate this dramatic behavior. We find that when

the intermediation capital constraint does not bind, risk premia are not very sensitive to the state. On

the other hand, when constraints bind, risk premia and Sharpe ratios increase more than linearly with the

tightness of constraints. Simulating the model, we find that the average risk premium conditional on the

capital constraint not binding is 4.9%. The conditional average Sharpe ratio is 40%. Using these numbers

to reflect a pre-crisis normal level, we find that the probability of the risk premium exceeding 7.5% is 4%.

The probability of the risk premium exceeding 10%, which is twice the “normal” level, is 1%. The 1998

episode saw risk premia and Sharpe ratios rise considerably, in the range of 1.5X to 2X. Our model puts

the probability of such an event between 1% and 4%.

Another important feature of financial crises is the pattern of recovery of spreads. In the 1998 crisis, most

spreads took about 10 months to halve from their crisis-peak levels to pre-crisis levels. As we discuss later in

the paper, half-lives of between 6 months and extending over a year have been documented in a variety of asset

markets and crisis situations. We note that these types of recovery patterns are an order of magnitude slower

than the daily mean reversion patterns documented in the market microstructure literature (e.g., Campbell,

Grossman, and Wang, 1993). A common wisdom among many observers is that this recovery reflects the slow

movement of capital into the affected markets (Froot and O’Connell, 1999, Berndt, et. al., 2004, Mitchell,

Pedersen, and Pulvino, 2007). Our baseline calibration of the model can replicate these speeds of capital

movement. In a crisis state, risk premia are high and the specialists hold leveraged positions on the risky

asset. Over time, profits from this position increases the capital base of the intermediaries, thereby relaxing
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the intermediation constraint. Households mirror the rise in intermediary capital by increasing the allocation

of their own capital to the intermediaries. Together these forces lead to increased risk-bearing capacity and

lower risk premia. In our baseline calibration, we show that simulating the model starting from an extreme

crisis state (risk premium of 20%), the half-life of the risk premium back to the unconditional average risk

premium is about 5.5 months. From a risk premium of 10%, which is about twice the unconditional average

risk premium, the half-life is close to 19 months.

The second exercise we perform with our model is an aggregate asset pricing calibration. At heart our

model is a heterogeneous agent one where, because of a friction, the marginal investor’s consumption is more

volatile than that of the average investor. In the literature, heterogeneous agent models building on a similar

mechanism have been proposed to explain the equity premium puzzle (for example, see Mankiw and Zeldes

(1991) and Vissing-Jorgensen (2002)).4 Thus, it is interesting to see how our model fares in this regard.

We suppose that the risky asset of the model encompasses all risky financial assets including stocks,

mortgages, etc., and that all investment in these assets is made by intermediaries. While clearly in practice

there are investments in risky assets that do not require the expertise of an intermediary, the exercise provides

a benchmark for our intermediation model. As noted above, over 50% of financial assets are held through

intermediaries.

We parameterize the model so that the marginal investor looks like an amalgam of all intermediaries,

including hedge funds, mutual funds, banks and insurance companies. In this scenario, our parameter

choices lead to a more muted effect of the constraint than in the crisis scenario. On the other hand, the

parameters have the economy almost always in a state where the constraint has an effect on the intermediaries’

investments.

Simulating the model, we find that the unconditional average risk premium is 5.63%. This number is

within the range of estimates of the equity risk premium, which is one guide as to the expected return

on risky assets. The Sharpe ratio on the risky asset is 0.44. The risk premium also varies depending on

economic conditions. For example, variation in the intermediation constraint may be driven by changes in

the financial health of the intermediation sector over the business cycle. If we start from the mean state in

the simulation, and move one standard deviation towards a more constrained state the risk premium rises

to 6.38%. Moving one standard deviation towards a less constrained states, the risk premium falls to 4.32%.

4The aggregate asset pricing literature on the equity premium puzzle falls into one of two branches. One looks to solve

the puzzle by investigating alternative preference formulations for a representative household (Campbell and Cochrane (1999),

Barberis, Huang, and Santos (2001)). The other branch of the literature studies heterogeneous agent models.
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This 206 bps variation provides a gauge as to the business cycle variation in risk premia induced by the

model.

From a theoretical standpoint, the intermediation approach of this paper offers an avenue to introduce

liquidity effects into a general equilibrium asset pricing model. In our two asset model, the risky asset is

illiquid in the sense that only a subset of the agents in the economy can directly trade this asset. The riskless

asset is liquid since all agents participate in the market. From this standpoint, the risk premium of our model

is at least partly a liquidity premium. This notion of liquidity, deriving from market segmentation, is most

similar to Allen and Gale (1994). Many of our results can likewise be viewed as liquidity effects. The main

result of the analysis that changes in intermediary capital endogenously affects asset prices traces a connection

between disintermediation, participation, and the liquidity premium on the risky asset. Particularly in the

calibration of scenario 1, we show that when intermediary capital falls low enough the model can replicate

a liquidity crisis event. We also argue that the liquidity factor of Pastor and Stambaugh (2003) and Sadka

(2006) may proxy for intermediary capital. Since the pricing kernel in the model is a function of intermediary

capital, our model helps to understand why liquidity may be a priced factor. Finally, we study an extension

of the model where we introduce a government that maintains a positive supply of the riskless bond. We

show that increases in the supply of the riskless bond, by expanding the supply of liquid assets, lowers the risk

premium on the risky asset. This exercise helps to explain the liquidity effect documented by Krishnamurthy

and Vissing-Jorgensen (2007) that increases in the supply of Treasury bonds lowers the liquidity premium

on other assets relative to Treasury bonds.

The paper is organized as follows. Sections 2 and 3 outline the model and its solution. Section 4 explains

how we calibrate the model. Section 5 presents the results of the hedge-fund crisis calibration. Section 6

presents the aggregate asset pricing calibration. Section 7 studies the extension with government bonds in

positive supply. Section 8 concludes and is followed by an Appendix with further details of the derivation of

the model solution.

2 The Model: Intermediation and Asset Prices

Our model is a variant of a traditional endowment economy, along the lines of the Lucas (1978) tree model.

The economy is infinite-horizon, continuous-time, and has a single perishable consumption good, which we

will use as the numeraire. There are two assets, a riskless bond in zero net supply, and a stock that pays a
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risky dividend. We normalize the total supply of stocks to be one unit.

The stock pays a dividend of Dt per unit time, where {Dt : 0 ≤ t < ∞} follows a geometric Brownian

motion,

dDt

Dt

= gdt + σdZt given D0. (1)

g > 0 and σ > 0 are constants. Throughout this paper {Z} = {Zt : 0 ≤ t < ∞} is a standard Brownian

motion on a complete probability space (Ω,F ,P) with an augmented filtration {Ft : 0 ≤ t < ∞} generated

by the Brownian motion {Z}. We denote the progressively measurable processes {Pt : 0 ≤ t < ∞} and

{rt : 0 ≤ t < ∞} as the stock price and interest rate processes, respectively. We also define the total return

on the stock as,

dRt =
Dtdt + dPt

Pt

. (2)

To this standard setting, we introduce heterogeneity among agents and a need for intermediation. There

are two classes of agents in the economy, households and specialists. We assume that the households cannot

invest directly in the risky asset, while the specialists can directly invest in the risky asset. The riskless

asset is available to all agents. While households are restricted from directly investing in the risky asset, we

assume that the specialists manage intermediaries that raise funds from households and invest these funds

in the risky asset on behalf of the households. In our model, the households demand intermediation services

while the specialists supply these services.

The restriction on the households’ investment choices is similar to assumptions made in the literature on

limited market participation (e.g., Mankiw and Zeldes, 1991, Allen and Gale, 1994, Basak and Cuoco, 1998,

Vissing-Jorgensen, 2002). Unlike this literature, we allow the agents who do participate in the market (the

specialists) to invest in the risky asset on behalf of the households. In our context, this modeling captures

the idea that the investment in the risky asset requires some expertise which only the specialists possess.

Figure 1 depicts the main blocks of the economy. Households face a portfolio choice decision of allocating

funds between the intermediaries and the riskless bond. The intermediaries accept Ht of the household funds

and then allocate their total funds under management between the risky asset and the riskless bond. We

elaborate on each of the blocks in the next subsections, beginning the specialists/intermediaries.

2.1 Specialists and intermediation

There is a unit mass of identical specialists who manage the intermediaries in which the households invest.

The specialists represent the insiders/decision-makers of a hedge fund or a mutual fund. We collapse all
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Figure 1: The Economy

This figure depicts the agents in the economy and their investment opportunities.

of an intermediary’s insiders into a single agent, following the device of modeling entrepreneur-managers of

firms in the corporate finance literature (e.g. Holmstrom and Tirole, 1997).

Formally, we assume that the specialists are infinitely-lived and maximize an objective function,

E

[∫ ∞

0

e−ρtu(ct)dt

]
ρ > 0; (3)

where ct is the date t consumption rate of the specialist. We consider a CRRA instantaneous utility function

with parameter γ for the specialists, u(ct) = 1
1−γ

c1−γ
t .

Each specialist manages one intermediary. We denote the date t wealth of specialists as wt and assume

that this is wholly invested in the intermediary. We think of wt as the specialist’s “stake” in the intermediary,

possibly capturing financial wealth at risk in the intermediary. Although outside the scope of the model,

we may imagine that wt also captures reputation that is at stake in the intermediary and the future income

from being an insider of the intermediary.

We envision the following to describe the interaction between specialists and households. At every t,

each specialist is randomly matched with a household to form an intermediary. These interactions occur

instantaneously and result in a continuum of (identical) bilateral relationships.5 The household allocates

5Why the matching structure instead of a Walrasian intermediation market? In the Walrasian case, when intermediation is
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some funds Ht to the intermediary. Specialists then execute trades for the intermediary in a Walrasian stock

and bond market, and the household trades in only the bond market. At t + dt the match is broken, and

the intermediation market repeats itself.

Consider one of the intermediary relationships between specialist and household. The specialist manages

an intermediary whose total assets under management are the sum of the specialist’s wealth, wt, and the

wealth that the household allocates to the intermediary, Ht. The specialist makes all investment decisions on

these funds and faces no portfolio restrictions in buying or short-selling either the risky asset or the riskless

bond. Suppose that the specialist chooses to invest a fraction αI
t of the portfolio in the risky asset and 1−αI

t

in the riskless asset. Then, the return delivered by the intermediary is,

d̃Rt = rtdt + αI
t (dRt − rtdt), (4)

where dRt is the total return on the risky asset.

2.2 Intermediation constraint

The key assumption of our model is that the household is unwilling to invest more than mwt of funds in

the intermediary (m > 0 is a constant). That is, if the specialist has one dollar of wealth invested in the

intermediary, the household will only invest up to m dollars of his own wealth in the intermediary. He and

Krishnamurthy (2006) derive this sort of capital constraint by assuming moral hazard by the specialist. In

their model, the household requires that the specialist have a sufficient stake in the intermediary to prevent

shirking.6 Here we adopt the constraint in reduced form.

The wealth requirement implies that the supply of intermediation facing a household is at most,

Ht ≤ mwt. (5)

If either m is small or wt is small, the household’s ability to indirectly participate in the risky asset market

will be restricted.

supply constrained, specialists charge the households a fee for managing the intermediary that depends on the tightness of the

intermediation constraint. In the matching structure the fee is always zero which makes solving the model somewhat easier.
6The He and Krishnamurthy (2006) model is adapted from Holmstrom and Tirole (1997). One feature of the contract

derivation in He and Krishnamurthy worth noting is that it assumes that the household cannot observe and dictate the

specialist’s portfolio choice within the intermediary. Without this assumption, it is possible that the household will bribe the

specialist to make a particular portfolio choice. Of course, such a strategy violates the spirit of the model: namely that only the

specialist has the expertise to invest in the risky asset. In this paper, we also make the assumption that the specialist cannot

observe and dictate the specialist’s portfolio choice within the intermediary.
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We may interpret the wealth requirement in two ways. First, as noted above, we can think of wt as

the specialist’s stake in the intermediary, and this stake must be sufficiently high for household’s to feel

comfortable with their investment in the intermediary. Thus, one interpretation is that wt reflects the

capital base of a hedge fund. The managers of a hedge fund typically have some of their wealth tied up

in the investments of the hedge fund. Such an arrangement ensures that the incentives of the hedge fund’s

managers and investors are aligned. However, if a hedge fund loses a lot of money then the capital of the

hedge fund will be depleted. In this case, investors will be reluctant to contribute money to the hedge

fund, fearing mismanagement or further losses. A hedge fund “capital shock” is one phenomena that we can

capture with our model.

Another interpretation, which is more in keeping with regularities in the mutual fund industry, is that the

wealth of a specialist summarizes his past success in making investment decisions. Low wealth then reflects

poor past performance by a mutual fund, which makes households reluctant to delegate investment decisions

to the specialist. The relation between past performance and mutual fund flows is a well-documented

empirical regularity (see, e.g., Warther (1995)). As wt falls, reflecting poor past performance, investors

reduce their portfolio allocation to the mutual fund. Shleifer and Vishny (1997) present a model with a

similar feature: the supply of funds to an arbitrageur in their model is a function of the previous period’s

return by the arbitrageur.

Since we adopt constraint (5) in reduced form, we do not take a stand on the interpretation of the

constraint. Indeed, in our calibration scenarios, we match the specialist-intermediary to the entire interme-

diary sector – including hedge funds, banks, and mutual funds. From this standpoint, it is useful that the

constraint may be appropriate across a variety of intermediaries.

The novel feature of our model is that wt, and the supply of intermediation, evolve endogenously as a

function of shocks and the past decisions of specialists and households. In both the hedge fund and the

mutual fund example, if the intermediation constraint (5) binds, a fall in wt causes households to reduce

their allocation of funds to intermediaries and invest in the riskless bond. Of course, the risky asset still

has to be held in equilibrium. As households indirectly reduce their exposure to the risky asset, via market

clearing, the specialist increases his exposure to the risky asset. To induce the specialist to absorb more risk,

the risky asset price falls and its expected return rises. This dynamic effect of wt on the equilibrium is the

central driving force of our model. We think it arises naturally when considering the equilibrium effects of

intermediation.
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We note that both the household and specialist receive the return d̃Rt (see (4)) on their contributions to

the intermediary; that is, both household and specialist invest in the equity of the intermediary. Constraint

(5) limits the equity contribution by the household to the intermediary as a function of the specialist’s equity

contribution. It is important to point out that this constraint is not the usual constraint in the literature

on corporate investment and credit rationing (see as an example, Holmstrom and Tirole, 1997). In that

literature, firms face a restriction on the quantity of funds they can borrow using either equity securities or

debt securities. Constraint (5) in our model does not restrict the amount of debt issued by an intermediary

and therefore does not restrict the total funds that an intermediary can raise. Intermediaries can short an

instantaneous (maturity dt) bond in our model in the Walrasian bond market. There is no default on such

debt contracts in our continuous time model. Constraint (5) restricts how risk is shared between specialists

and households. It is the dynamics of risk sharing that drives the behavior of asset prices in our model.7

To close this section, we write the decision problem of the specialist. The specialist chooses his consump-

tion rate and the portfolio decision of the intermediary to solve,

max
{ct,αI

t
}
E

[∫ ∞

0

e−ρtu(ct) dt

]
s.t. dwt = −ctdt + wtrtdt + wt

(
d̃Rt

(
αI

t

)
− rtdt

)
. (6)

We can also rewrite the budget constraint in terms of the underlying return:

dwt = −ctdt + wtrtdt + αI
t wt (dRt − rtdt) .

Note that αI
t is effectively the specialist’s portfolio share in the risky asset.

2.3 Households: The demand for intermediation

We model the household sector as an overlapping generation (OG) of agents. This keeps the decision

problem of the household fairly simple.8 On the other hand, we enrich the model to include household labor

7In practice, hedge funds use the repo market to borrow funds via debt contracts. They also borrow from investors via

equity contracts. It is plausible that during crisis episodes hedge funds are also restricted in their debt borrowings through

tighter margin requirements or haircuts. Brunnermeier and Pedersen (2007) for example study a model in which agents face a

constraint on the amount of debt financing available to an agent, where the constraint is a function of wt. In that paper, by

assumption, agents are unable to raise funds via equity contracts. For simplicity, we choose to only model restrictions on the

equity borrowing based on the following rationale: because equity is junior to debt any constraints are likely to be tighter on

equity than debt. At a general level, all of the models in the literature that emphasize intermediary capital effects draw a link

between the intermediary’s asset demand and its net worth (wt), with contracts and specifics varying across models.
8Note the specialists are infinitely lived while households are modeled using the OG structure. As we will see, specialists

play the key role in determining asset prices. Our modeling ensures that their choices reflect the forward-looking dynamics of
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income and introduce heterogeneity within the household sector. Both enrichments are useful in realistically

calibrating the model.

For the sake of clarity in explaining the OG environment in a continuous time model, we index time as

t, t + δ, t + 2δ, ... and consider the continuous time limit when δ is of order dt. A unit mass of generation t

agents are born with wealth wh
t and live in periods t and t + δ. They maximize utility:

ρδ ln ch
t + (1 − ρδ) Et[ln wh

t+δ]. (7)

ch
t is the household’s consumption in period t and wh

t+δ is a bequest for generation t + δ. Note that both

utility and bequest functions are logarithmic.

In addition to wealth of wh
t , we assume that generation t households receive labor income at date t of

l Dt δ. l > 0 is a constant and Dt is the dividend on the risky asset at time t. Labor income is assumed

proportional to dividends in order to preserve some useful homogeneity properties of the equilibrium. We

introduce labor income to more realistically match the consumption-savings profile of households. Providing

the households some labor income also ensures that the economy never reaches a state where households

“die” out, as often happens in two-agent models (see, for example, Dumas (1989) and Wang (1996)).

It is easy to verify that as δ → dt in the continuous time limit, the household’s consumption rule is,

ch
t = ρwh

t . (8)

In particular, note that the labor income does not affect the consumption rule because the labor income flow

is of order dt. Interpreting ρ > 0 as the household’s rate of time preference, we note that this is the standard

consumption rule for logarithmic agents. The household is “myopic” and his rule does not depend on his

investment opportunity set.

A household invests its wealth from t to t + δ in financial assets. As noted earlier, households are not

directly able to save in the risky asset and can only directly access the riskless bond market. We assume

that the household can choose any positive level of bond holdings when saving in the riskless bond (note

that short-selling of the bond is rule out). The household must use an intermediary when accessing the risky

asset market.

We consider a further degree of heterogeneity in the intermediation investment restriction. We assume

that a fraction λ of the households can ever only invest in the riskless bond. The remaining fraction, 1− λ,

the economy. We treat households in a simpler manner for tractability reasons. We deem the cost of the simplification to be

low since households play a secondary role in the model.
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may enter the intermediation market and save a fraction of their wealth with intermediaries which indirectly

invest in the risky asset on their behalf. We refer to the former as “debt households” and the latter as “stock

households.”9

The heterogeneity among households is realistic. Clearly, there are many households that only save in

a bank account. In the literature cited earlier on limited market participation, all households are “debt

households.” The demand for intermediation in our model stems from the stock households. Introducing

this degree of heterogeneity allows for a better model calibration.

2.4 Household decisions

To summarize, a debt and stock household are born at generation t with wealth of wh
t . The households

receive labor income and choose a consumption rate of ρwh
t . They also make savings decisions, respecting

the restriction on their investment options.

The debt household’s consumption decision, given wealth of wh
t , is described by (8). The savings decision

is to invest wh
t in the bond market at interest rate of rt.

The stock household’s consumption is also described by (8). His portfolio decision is how much wealth to

allocate to intermediaries. We denote αh
t ∈ [0, 1] as the fraction of the household’s wealth in the intermediary

and recall that the intermediary’s return is d̃Rt. The remaining 1−αh
t of household wealth is invested in the

riskless bond and earns the interest rate of rtdt. The stock household chooses αh
t to maximize (7). Given

the log objective function, this decision solves,

max
αh

t
∈[0,1]

αh
t Et[d̃Rt] −

1

2

(
αh

t

)2
V art[d̃Rt] s.t. αh

t (1 − λ)wh
t ≡ Ht ≤ mwt. (9)

Note the constraint here, which corresponds to the intermediation constraint we have discussed earler.

Given the decisions by the debt household and the stock household, the evolution of wh
t across generations

is described by,

dwh
t = (lDt − ρwh

t )dt + wh
t rtdt + αh

t (1 − λ)wh
t

(
d̃Rt − rtdt

)
. (10)

9The wealth of the debt household and stock household evolve differently between t and t + δ. We assume that this wealth

is pooled together and distributed equally to all agents of generation t + δ. The latter assumption ensures that we do not need

to keep track of the distribution of wealth over the households when solving for the equilibrium of the economy.
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2.5 Equilibrium

Definition 1 An equilibrium is a set progressively measurable price processes {Pt} and {rt}, and decisions

{ct, c
h
t , αI

t , α
h
t } such that,

1. Given the price processes, decisions solve the consumption-savings problems of the debt household, the

stock household (9) and the specialist (6);

2. Decisions satisfy the intermediation constraint of (5);

3. The stock market clears:

αI
t (wt + αh

t (1 − λ)wh
t )

Pt

= 1; (11)

4. The goods market clears:

ct + ch
t = Dt(1 + l). (12)

Given market clearing in stock and goods markets, the bond market clears by Walras’ law. The market

clearing condition for the stock market reflects that the intermediary is the only direct holder of stocks and

has total funds under management of wt + αh
t (1 − λ)wh

t , and the total holding of stock by the intermediary

must equal the supply of stocks.

Finally, an equilibrium relation that proves useful when deriving the solution is that,

wt + wh
t = Pt.

That is, since bonds are in zero net supply, the wealth of specialists and households must sum to the value

of the risky asset.

2.6 Example

Before diving into the mathematical details of the solution, it is worth going through an example to clarify

the effect of constraint (5), which is the main novelty of our model relative to a standard model.

Suppose that m = 1 and λ = 0. Moreover, suppose we are in a state where wt = 100 and wh
t = 200.

Then it is clear that since mwt < wh
t , this is a state where intermediation is constrained by (5). Since the

riskless asset is in zero net supply, the value of the risky asset is equal to the sum of wt and wh
t (i.e. 300).

Suppose that households saturate the intermediation constraint by investing 100 in intermedaries. Then

intermediaries have total equity contributions of 200 (the households’ 100 plus the specialists’ wt). Since
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intermediaries hold all of the risky asset worth 300, their portfolio share in the risky asset must be equal

to 150%. Their portfolio share in the bond is −50%. That is, the intermediary holds a levered position in

the risky asset. The household’s portfolio shares are 0.5 × 150% = 75% in risky asset; and, 25% in debt.

The households and specialists have different portfolio exposures to the risky asset. But since the specialist

drives the pricing of the risky asset, risk premia must adjust to make the 150% portfolio share optimal.

From this situation, suppose that dividends on the risky asset fall. Then, since the specialists are more

exposed to the risky asset than households, wt falls relative to wh
t . The shock then further tightens the

intermediation constraint, which can create an amplified response to the shock.

Contrast this situation with one in which there is no intermediation constraint. Suppose that households

invest all of their wealth with the intermediaries. Since intermediaries now have 300 and the risky asset is

worth 300, the portfolio share of both specialists and households is equal to 100%.

3 Solution

We derive the equilibrium by conjecturing a candidate pricing function and price process and then solving

agents’ decision problem given these prices. We then verify that given agent decisions, market clearing

conditions recover the conjectured pricing function and price process.

The next subsections outline the main steps in deriving the solution. We present detailed derivations of

these steps in Appendix A.

3.1 State variables and candidate price functions

We look for a stationary Markov equilibrium where the state variables are (yt, Dt), where yt ≡
wh

t

Dt
is the

dividend scaled wealth of the household. Our economy with only specialists is a standard CRRA/GBM

economy that has been fully analyzed in the literature. It is well known that in that setting, the only state

variable is Dt and the economy scales linearly with Dt. We thereby guess that in our problem Dt is a state

variable, and that our economy is homogeneous in Dt.

Intermediation frictions imply that the distribution of wealth between households and specialists affects

equilibrium. For example, whether constraint (5) binds or not depends on the relative wealth of households

and specialists. We have some freedom in choosing how to define the wealth distribution state variable. It

turns out that using the scaled households’ wealth y is convenient for the analysis.
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We conjecture that the equilibrium evolution of yt may be written as an Ito process which solves the

following Stochastic Differential Equation,

dyt = µydt + σydZt. (13)

We will derive expressions for µy and σy.

Due to the homogeneity of the economy with respect to dividends, we conjecture that the equilibrium

stock price is,

Pt = DtF (yt) (14)

where F : R → R is twice continuously differentiable on its relevant domain. F (y) is the price/dividend

ratio of the stock.

We derive relations for the three unknown functions, F (y), µy and σy.

3.2 Marginal investor and specialist consumption

While the household faces investment restrictions on his portfolio choices, the specialist (intermediary) is

unconstrained in his portfolio choices. This is an important observation about our model because it implies

that the specialist is always the marginal investor in determining asset prices, while the household may

not be. Standard arguments then tell us that we can express the pricing kernel in terms of the specialist’s

equilibrium consumption process.

We have noted in (8) that the household’s optimal consumption given wh
t is ch

t = ρwh
t , which we can

rewrite as ch
t = ρytDt. Now the market clearing condition for goods (from (12)) is,

ct + ρytDt = Dt(1 + l).

Thus, in equilibrium, the specialist consumes:

ct = Dt(1 + l − ρyt). (15)

We thereby express specialist consumption as a function of the state variables Dt and yt.

Optimality for the specialist gives us the standard consumption-based asset pricing relations (Euler

equation):10

−ρdt − γEt

[
dct

ct

]
+

1

2
γ(γ + 1)V art

[
dct

ct

]
+ Et [dRt] = γCovt

[
dct

ct

, dRt

]
(16)

10The Euler equation is a necessary condition for optimality. In Appendix B, we prove sufficiency.
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We apply Ito’s Lemma to (15) to write dct

ct
as a function of µy and σy. We can also apply Ito’s Lemma to

(14) to express dRt as a function of the derivatives of F (y) and the unknown drift and diffusion of yt. Then

we arrive at a differential equation that must be satisfied by µy, σy, and F (y):

Proposition 1 The equilibrium Price/Dividend ratio F (y) satisfies the ordinary differential equation (ODE),

g +
F ′

F
µy +

1

2

F ′′

F
σ2

y +
1

F
+

F ′

F
σyσ = ρ + γg −

γρh

1 − ρhy
(µy + σyσ) (17)

+γ

(
σ −

ρh

1 − ρhy
σy

)(
σ +

F ′

F
σy

)
−

1

2
γ(γ + 1)

(
σ −

ρh

1 − ρhy
σy

)2

Proof: See Appendix.

3.3 Dynamics of household wealth

µy and σy are unknown functions in the ODE and describe the dynamics of the households’ scaled wealth

along the equilibrium path.

Recall that we have previously derived the wealth dynamics of the household in (10), which we reproduce

below as:

dwh
t = (lDt − ρwh

t )dt + wh
t rtdt + αh

t (1 − λ)wh
t

(
d̃Rt − rtdt

)
.

Wealth dynamics are a function of the portfolio choice αh
t as well as the interest rate and the return on

intermediaries. Since the intermediary, in turn, holds αI
t of the risky asset, we rewrite the wealth dynamics

as function of the primitive return dRt:

dwh
t = (lDt − ρwh

t )dt + wh
t rtdt +

(
αh

t αI
t

)
(1 − λ)wh

t (dRt − rtdt) .

We noted above that dRt can be expressed in terms of F (y), µy and σy. The interest rate, rt, can also be

derived from the specialist’s Euler equation. Since the price of a short-term bond is always one, the Euler

equation gives,

rtdt = ρdt + γEt

[
dct

ct

]
−

γ(γ + 1)

2
V art

[
dct

ct

]
. (18)

The only variable that remains to complete the description of wealth dynamics is
(
αh

t αI
t

)
(1 − λ), which is

the household sector’s exposure to the risky asset return.

We first note that in any state where the intermediation constraint of equation (5) binds, the household

chooses,

αh
t (1 − λ)wh

t = mwt.
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That is, the binding constraint pins down the household’s portfolio share in the intermediary. To find the

household’s exposure to the risky asset we only need to solve for the fraction of the intermediary’s portfolio

in the risky asset, αI
t . Since all stocks are held through the intermediary, the equilibrium market clearing

condition (11) gives,

αI
t (wt + mwt)

Pt

= 1

We rewrite this expression using the fact that wt + wh
t = Pt to find,

αI,const
t =

1

1 + m

F (y)

F (y) − y
(19)

Equation (19) reveals an important property of the model: shocks that reduce F (y) increase αI
t leading the

intermediary to hold a more risky portfolio. That is, if asset values fall, the intermediation constraint tightens

and causes households to reduce wealth allocated to intermediaries. In equilibrium, the intermediaries still

hold the risky asset. They do this by increasing their borrowing and holding a larger fraction of the risky

asset in their portfolio.

As an intermediary’s portfolio becomes more risky, the specialist, who has all of his wealth exposed to the

intermediary’s return, owns a more risky portfolio. However since the specialist makes the intermediary’s

portfolio choices, equilibrium prices must be such that the specialist is induced to choose the more risky

portfolio. As we will see in the next sections, this factor drives up risk premia and influences the determination

of asset prices in the model.

When the intermediation constraint does not bind, the household is unconstrained in choosing αh
t . We

make an assumption that ensures that αh
t = 1 in this case:

Parameter Assumption 1 We focus on parameters of the model such that in the absence of any portfolio

restrictions, the stock household will choose to have at least 100% of his wealth invested in the intermediary.11

Under this parameter restriction, the stock household allocates all of his wealth to the intermediary (αh
t = 1)

when intermediation is not constrained. Recall that as we assume that the household cannot short bonds,

the household cannot allocate more than 100% of his wealth to the intermediary.

11Although we are unable to provide a precise mathematical condition for this parameter restriction, in our calibration it

appears that γ > 1 is a sufficient condition. Loosely speaking, if γ > 1 the specialist is more risk averse than the household,

suggesting that the household will hold more risky assets than the specialist. But given market clearing in the stock market,

the specialist always holds more than 100% of his wealth in the risky asset.
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We now characterize the conditions under which the intermediation constraint binds. Setting αh
t = 1 in

(5) yields that the constraint binds when,

(1 − λ)wh
t ≥ mwt.

Using the knowledge that wh
t + wt = Pt, we rewrite the inequality to find an expression that gives a cutoff

for the constrained states:

yc =
m

1 + m− λ
F (yc).

This equation has a unique solution in all of our parameterizations. For y > yc, intermediation is constrained

by the specialist’s wealth. Thus in equation (19) we note that when y is larger, the intermediaries’ portfolio

share in the risky asset is also larger, increasing the risk premium effect we highlighted above. In our

numerical solutions, we find that over most of the state space F (·) is decreasing in y. Thus, the effect of y

on αI
t is reinforced through the effect of y on F (y).

When y < yc, the household is unconstrained in allocating funds to the intermediary. The stock household

chooses αh
t = 1. Using the market clearing condition for stocks, we find,

αI,unconst
t =

F (y)

F (y) − λy
.

To summarize, we have expressed αI
t , the household’s equilibrium exposure to the risky asset, as a

function of y and F . Then it is straightforward to substitute back into the equation for household wealth

dynamics, (10), to find expressions for µy and σy as a function of y and F . Substituting back into the ODE

in Proposition 1, this gives a final ODE to solve for F (y). Further mathematical details of the derivation

are provided in the Appendix.

3.4 Boundary condition

The model has a natural upper boundary condition on y that is determined by the goods market clearing

condition. Since

ct = Dt (1 + l − ρyt) ,

and the specialist’s consumption ct must be positive, yt has to be bounded by

yb ≡
1 + l

ρ
.

In Appendix B, we show that yb is an entrance-no-exit boundary, and that yt never reaches yb.
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On an equilibrium path in which y approaches yb, the specialist’s equilibrium consumption c goes to zero.

Since the specialist’s wealth is D (F (y) − y), one natural guess for the boundary condition at this singular

point yb is

F
(
yb

)
= yb. (20)

In words, when the specialist’s scaled consumption approaches zero, his scaled wealth (F (y) − y) also

converges to zero. In the argument for verification of optimality of the specialist’s equilibrium strategy

which is detailed in Appendix B, we see that this condition translates to the transversality condition for the

specialist’s budget equation. Therefore the boundary condition (20) is sufficient for the equilibrium presented

in this paper to be well-defined.

4 Calibration

4.1 m and λ

We model the intermediation sector’s pricing of assets, and how constraints in intermediation affect asset

prices. Table 1 provides data on the main intermediaries in the US economy. Households hold wealth through

a variety of intermediaries. The numbers suggest that the main intermediaries are banks, retirement funds,

mutual funds, and hedge funds.12 This subsection explains how we think about mapping the institutions of

Table 1 into our model, and how we calibrate m and λ.

Table 1: Intermediation Dataa

Group Assetsb Debt Leverage

Commercial Banks 9,156 8,240 0.90
Savings & Loans 1,749 1,670 0.95
Property & Casualty Insurance 1,242 803 0.65
Life Insurance 4,351 4,076 0.94
Private Pensions 4,527 0 0.00
State & Local Ret Funds 2,661 0 0.00
Federal Ret Funds 1,037 0 0.00
Mutual Funds (excluding Money Funds) 5,882 0 0.00
Closed End Funds and ETFs 273 0 0.00

Hedge Funds 3,406 2,433 0.71
a

Most data is from the Flow of Funds Q3 2005 Levels Tables. The Hedge Fund data is based on
an estimate of total hedge fund capital of $973 billion from Fung and Hsieh (2006) and an estimate
that the average fund leverages up its capital base 3.5 times (taken from McGuire, Remolona and
Tsatsaronis (2005))

b
Assets and Debt are in billions of Dollars

12We need to be careful in interpreting these numbers because there is some amount of double counting – i.e. pension funds

invest in hedge funds.
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Our model treats the entire intermediary sector as a group of identical institutions, while it is clear from

Table 1 that there is heterogeneity across the modes of intermediation. The model takes a broad-brush

approach at the effects of intermediation on asset prices. One aspect of intermediary heterogeneity which is

worth discussing further is that some of the intermediaries have no debt positions and never take on debt

while other do take on debt (see the last column in Table 1).

In our model, when the intermediation constraint (5) binds, losses among intermediaries lead households

to reduce their equity exposure to these intermediaries. If the intermediaries scale down their asset holdings

proportionately, the asset market will not clear – i.e. the intermediary sector’s assets still have to be held in

equilibrium. In our model, the equilibrium is one where the [identical] intermediaries take on debt and hold

a riskier position in the asset. In practice, if households withdraw money from mutual funds, then mutual

funds don’t take on debt. Rather, they reduce their holdings of financial assets and some other entity buys

their financial assets. The other entity may be a hedge fund that temporarily provides liquidity to the mutual

fund, or it may be another mutual fund that buys the liquidated assets. If the buyers have difficulty raising

equity to fund the purchase – e.g., they themselves have suffered losses and had withdrawals – then they

have to raise the funds via debt. In practice, such buyers will likely be hedge funds who temporarily increase

leverage rather than a mutual fund that does not operate through leverage. Thus, mapping our model to

practice, we see that heterogeneity plays a role in dictating who among the intermediary sector increases

their exposure to the risky asset during a period of liquidation. However, we note that when (5) binds, the

marginal investor, both in the model and practice, prices assets based on concentrated risk exposure/leverage

considerations. In this sense, our model captures the marginal investor’s preferences well despite omitting

heterogeneity.13

The preceding discussion highlights the mapping between the intermediation constraint of the model

and constraints in the world. Our choice of the intermediation multiplier m parameterizes the intermedi-

ation constraint in our model. We note that m has two effects on the model. First, m determines where

13It is worth pausing and also considering the effect of debt constraints on the dynamic we describe. In 1998, when LTCM

ran into trouble, their credit lines were reduced, preventing them from increasing leverage to hold risky assets. Of course, their

risky assets still had to be held by someone in equilibrium. In practice, the investment banking community and trading desks

absorbed these assets; risk exposures became more concentrated and levered in the few players that remained, exactly as in our

model. In 1998, AIG and Warren Buffet offered to buy LTCM’s portfolio. Presumably their bid prices were dictated by the

next best bid for the assets represented by the investment banking community.
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intermediation constraints bind in the state space. That is, we found earlier that the constraint binds when,

yc =
m

1 + m− λ
F (yc).

As F (yc) is decreasing in yc, a larger m leads to a larger yc thereby making intermediation constraints less

likely to bind. The second effect of m is that, conditional on intermediation constraints binding, a higher m

leads to a greater sensitivity of intermediated funds to the specialist’s stake. That is,

αh
t (1 − λ)wh

t = mwt,

so that a one dollar fall in wt leads to an m dollars fall in intermediated funds.

What constitutes a reasonable value of m across the many modes of intermediation represented in our

model? On the one hand, if we focus on hedge funds, then a large value of m seems appropriate. The only

major hedge fund crisis we have witnessed is during the fall of 1998; and, the crisis during that period was

dramatic. On the other hand, if we think of intermediation more broadly, mutual fund flows are moderately

sensitive to performance. The effect is always present, and not just during extreme events, suggesting that

yc and m are low.

SCENARIO 1: Hedge Fund Crisis

We calibrate our model to two scenarios based on the preceding discussion. In one scenario, we choose m

to be 4 and 6. With this choice of m, the economy spends most of the time (59− 68%) in the unconstrained

region, but once in the constrained region, leverage rises quickly. In the constrained region, we interpret

the marginal investor as being a hedge fund and choose m to match parameters of hedge funds. We note

that m also measures the specialist’s inside stake in the intermediary relative to the household’s. Hedge

fund contracts typically pay the manager 20% of the fund’s return in excess of a benchmark, plus 1 − 2%

of funds under management (Fung and Hsieh, 2006). A value of m = 4 implies that the specialist’s inside

stake is 1/5 = 20%. The 20% is an option contract so it is not a full equity stake. The 1% is on funds under

management and therefore grows as the fund is succesful and garners more inflows. Thus, a 20% stake is in

the range of parameters that may reasonably capture a hedge fund manager’s inside stake. We also show an

m = 6 case to provide a sense as to the sensitivity of the results to the choice of m.

Our choice of m affects the dynamics of leverage and risk concentration conditional on being in the

constrained region. In practice, we can see from Table 1 that the intermediary sector always has some
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leverage. m does not directly affect the leverage in the unconstrained region.

We choose the parameter λ to match leverage in the unconstrained region. In the unconstrained region,

we interpret the marginal investor as being an amalgam of all intermediaries. Within the model, when λ > 0

some households only demand debt, and the intermediaries supply the debt and thereby achieve leverage

even when intermediation is not constrained.

Across all of the intermediaries of Table 1, the Total Debt/Total Assets ratio is 0.50. However, Banks and

Savings & Loans do not only hold traded assets, which are the subject of our model; they hold non-traded

assets (e.g., commercial loans) as well as traded assets (e.g., mortgage backed securities). If we say that

Banks and Savings & Loans have 50% of their assets in traded or securitized assets and compute aggregate

leverage based on 50% of the debt and assets of Banks and Savings & Loans, the aggregate leverage is 0.43.

If we exclude Banks and Savings & Loans completely, the aggregate leverage is 0.31.

In our simulations, we consider λ = 0.5 when we consider the m = 4, 6 cases. This value of λ produces

leverage in the unconstrained region around 0.42, and an unconditional average leverage ratio around 0.49.

Scenario 1, based on hedge funds, is used to replicate asset market behavior around a financial crises,

such as that of the fall of 1998. The second scenario in our calibration is a broad intermediation scenario

where we ask how well our model can explain aggregate asset market measures such as the equity premium.

SCENARIO 2: Broad Intermediation and Aggregate Asset Prices

In the second scenario, we calibrate the model so that the intermediation constraint almost always affects

asset prices, but in a less severe manner than the hedge fund scenario. For this scenario, we envision the asset

of the model to encompass a large class of assets held through intermediaries, and envision the intermediaries

of the model to include mutual funds, banks, etc. We suppose that across this large class of intermediaries,

there is always some feedback between the returns of the intermediaries and the funds that households

allocate to intermediaries.

We choose m to be 1 and 0.5; therefore, substantially smaller than the m for the hedge fund case. When

m = 1, the economy spends 98% of the time in the constrained region. We consider the performance-flow

relation among mutual funds to arrive at m = 1. When the intermediation constraint binds, m measures

the sensitivity of the household’s fund contribution to innovations in wt. The stock household’s contribution

to the intermediary is equal to mwt; normalized by total assets of the intermediary, the stock household
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contributes m
1+m

% of funds to the intermediary. Then, a 1% fall in wt leads to a m
1+m

% fall in the household’s

contribution, relative to total assets under management of the intermediary. With m = 1, this calculation

translates to 0.5% sensitivity of the household contribution. When m = 0.5, the sensitivity is 0.33%. Warther

(1995) documents that a 1% fall in the aggregate market equity return is correlated with a 0.2% outflow of

funds from equity mutual funds. Remolona, Kleiman, and Gruenstein (1997) present similar mutual fund

evidence in extreme events (Table 7 of the paper). They document that the stock market crash of 1987 led

to a fall of 37.7% in net asset values of growth stock funds and a fund outflow of 4.6%, giving a ratio of 0.12.

They also document that the fallout in the junk bond market in 1989 led to a fall of 1.6% in net asset values

of high yield bond funds and a fund outflow of 2.9% (ratio of 1.8). Our 0.33% to 0.5% numbers are in the

range of these measurements.

We choose a lower value of λ = 0.4 when we consider the m = 0.5, 1 cases. Since in these cases the

economy spends almost all of the time in the constrained region and the effect of the constraint is to raise

leverage in the constrained region, choosing a smaller value of λ = 0.4 produces an unconditional average

leverage ratio of 0.46.

4.2 σ and g

The asset payoffs we price are ones where investment requires some expertise. To be concrete, these inter-

mediated payoffs may stem from mutual-fund/hedge-fund trading of individual stocks, mutual-fund/hedge-

fund/bank investments in mortgage-backed securities, mutual-fund/hedge-fund/bank/insurance company

investments in corporate debt or credit derivatives, hedge-fund trading of portfolios of stocks based on

statistical analysis, or intermediaries’ provision of short-term liquidity to financial markets.

We use the aggregate stock market to benchmark this amalgam of payoffs and set σ = 12% and g = 1.84%.

These values are fairly standard, e.g. see Barberis, Huang, and Santos (2001). In the aggregate asset pricing

exercise of Scenario 2, benchmarking to the stock market seems appropriate. In the hedge fund case of

Scenario 1, the stock market is a less obvious benchmark. As another benchmark, Chan, et. al. (2005)

report the volatility of returns on different categories of hedge funds, finding standard deviations ranging

between 3% to 17%. They also note that these numbers underestimate the true volatility of returns because

the underlying assets of hedge funds are illiquid and because there is evidence that hedge funds smooth

reported returns. The choice of σ = 12% produces an equilibrium return volatility in our model between

12% and 13%.
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We note that our choice of σ = 12% is an order of magnitude higher than aggregate consumption

volatility of close to 3%. In standard general equilibrium approaches to asset pricing, exemplified by Campbell

and Cochrane (1999) or Barberis, Huang, and Santos (2001), models assume a representative agent whose

consumption is equal to NIPA aggregate consumption and price a payoff with a dividend stream that matches

properties of aggregate stock market dividends.

The marginal investor in our model is the specialist-intermediary rather than a representative agent

because intermediaries are not a veil. As our analysis shows, the specialist’s marginal utility is endogenously

affected by fluctuations in the value of assets that the specialist holds. Thus, we do not exogenously specify

the marginal investor’s consumption process based on aggregate consumption, but endogenously derive the

joint behavior of specialist consumption and the prices of intermediated assets. For this reason, we choose

the volatility of the risky asset’s dividends to match those of financial payoffs rather than that of aggregate

consumption. Indeed, we see the endogenous relationship between financial wealth fluctuations and the

pricing kernel as an important reason to model intermediaries rather than treat them as a veil.

Finally, in principle it seems possible to reconcile the low aggregate consumption volatility we observe

in practice with the 12% dividend volatility of the model by assuming that the household sector’s labor

income is weakly correlated with dividends (as in the data). Unfortunately, such a model will no longer be

homogeneous with respect to dividends which will considerably complicate the analysis.

Table 2: Parameters

Panel A: Intermediation
Scenario 1 Scenario 2

m Intermediation multiplier 4, 6 0.5,1
λ Debt ratio 0.5 0.4
Panel B: Preferences and Cashflows
g Dividend growth 1.84%
σ Dividend volatility 12%
ρ Time discount rate 8% SAME

γ RRA of specialist 2
l Household labor income ratio 1

4.3 l, γ, and ρ

We choose l to match the income profile of typical household. In our model, households receive expected

capital income of E
[
wtrtdt + (1 − λ)αh

t

(
d̃Rt − rtdt

)]
and expected labor income of E[lDtdt]. In NIPA

data, capital income as a share of GDP is about 30%. Malloy, Moskowitz, and Vissing-Jorgenson (2006)
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report that for the top one-third of households in terms of wealth, the share of capital income in total income

in 2001 was 34%. We choose l based on these considerations. We set l = 1 which produces a capital income

to total income share around 35%.

We choose γ = 2 as risk aversion of the specialist. As noted earlier, the household has logarithmic

preferences. Allowing for γ > 1 for the specialist allows us to capture dynamic hedging effects that would

be absent if we set γ = 1. We choose ρ to match an average riskless interest rate of between 0% and 1%.

This leads us to a value of ρ equal to 0.08. These numbers are all typical in the literature. Finally, our

parameter choices are also dictated by the restriction that, ρ+g(γ−1)− γ(γ−1)σ2

2
− lγρ

1+l
> 0. This restriction

is necessary to ensure that the economy is well-behaved at t = ∞.

4.4 Numerical method

We are able to find a closed form solution of the ODE only for the case where γ = 1 (the log case for which

F (·) = 1+l
ρ

). Rather than restricting attention to that special case, we present numerical solutions based on

the calibration of Table 2. We use one of MATLAB ’s built-in ODE solvers to derive solutions for F (y), µy,

and σy. Further details are provided in the Appendix.

With these solutions in hand, we numerically simulate the model to obtain the steady state distribution

of the state variable y as well as a number of asset price measurements that we report in the next sections.

We begin the economy at a state (y0 = yc, D0 = 1) and simulate the economy for 5000 years. That is

we obtain a sequence of independent draws from the normal distribution and use these draws to represent

innovations in our shock process Zt. The path of Zt can then be mapped into a path of the state variable.

We compute the time-series averages of a number of relevant asset price measurements from years 1000 to

5000 of this sample. The simulation unit is monthly, and based on those monthly observations we compute

annual averages. We repeat this exercise 5000 times, averaging across all of the simulated Zt paths. We

find that changing the starting value y0 does not affect the computed distribution or any of the asset price

measurements, indicating that the distribution truly represents the steady state distribution of the economy.
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Figure 2: Risk Premium and Sharpe Ratio
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Risk premium (left panel) and Sharpe ratio (right panel) are graphed against scaled-specialist wealth (w/D). Param-

eters are m = 4, λ = 0.5 and m = 6, λ = 0.5 and those given in Table 2. The cutoff for the constrained region for the

two cases are 2.8 (m = 4 case) and 1.9 (m = 6) case.

5 Crisis Episode: Scenario 1

5.1 Risk premium and Sharpe ratio

Figure 2 graphs the risk premium and Sharpe ratio for the two hedge fund calibrations (m = 4, 6) as a

function of the scaled specialist-wealth (w/D). We plot these measures against w/D rather than a function

of the household’s scaled wealth, y = wh/D, in order to more clearly discuss the effects of the intermediation

constraint.14 w/D can be interpreted as the capital of the intermediation sector.

The prominent feature of our model, clearly illustrated by the graphs, is the asymmetric behavior of the

risk premium and Sharpe ratio. The right hand side of the graphs represent the unconstrained states of the

economy, while the left hand side represent the constrained states. The cutoff for the constrained region for

the two cases are 2.8 (m = 4 case) and 1.9 (m = 6) case. Risk premia and Sharpe ratio rise as specialist

wealth falls in the constrained region, while being relatively constant in the unconstrained region.

14It is easy to check that the boundary condition (20) F
`

yb
´

= yb implies that F ′
`

yb
´

= 1, and if F
`

yb
´

> yb we have

F ′
`

yb
´

> 1 (see Appendix A for details). Because in our numerical solutions we have F ′ (0) < 0, (20) ensures that the scaled

intermediation wealth w/D = F (y) − y is strictly decreasing in the scaled household’s wealth y. Thus we present our results

as functions of w/D to highlight the effect of specialist wealth.
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This asymmetric behavior is intuitively what one would expect from the model: the model’s interme-

diation constraint is by its nature asymmetric, binding only when specialist wealth is low. To sharpen

understanding of the mapping between the constraint and risk premia, consider the following calculation.

As noted above, the pricing kernel in our model can be expressed in terms of the specialist’s consumption.

Thus, the risk premium on the risky asset is equal to:

γ covt

(
dct

ct

, dRt

)

To a first approximation, the volatility of the specialist’s consumption growth process is equal to the volatility

of his wealth return process (the approximation is exact if γ = 1). Thus,

vart

(
dct

ct

)
≈

(
αI

t

)2
vart(dRt),

where αI
t is the portfolio exposure to the risky asset in the intermediary’s (and specialist’s) portfolios.

Therefore, the risk premium is approximately,

γαI
t vart (dRt) .

In our model, the variance of returns is roughly constant as a function of state (see the discussion of this

point below). Most of the action in the risk premium comes from the changing αI
t . We have noted before

that in the constrained region, as households withdraw from intermediaries and limit their participation in

the risky asset market, the specialists increase their exposure to the risky asset (see equation (19)). This

dynamic, driven through αI
t , explains the behavior of the risk premium. Figure 3 graphs αI as a function of

specialist wealth. We note the close correspondence between this graph and those in Figure 2.

Figures 2 and 3 are graphed for the two cases, m = 4 and m = 6. The cutoff for the constrained region

for these two cases are 2.8 (m = 4 case) and 1.9 (m = 6) case. Thus, as expected, the larger m leads to a

narrower constrained region. Comparing the slopes of the risk premium graph, in the constrained region,

for the m = 4 and m = 6 cases, the higher m case resembles a “convex” transformation of the lower m case.

In particular, deep into the constrained region, the risk premium is more sensitive to changes in specialist

wealth when m is larger.

5.2 Discussion: Leverage and Asymmetry

Figure 3 may also be read as showing that the rise in the risk premium in the constrained region is closely

related to the rise in leverage. Precisely, our model says that states in which the intermediaries are more
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Figure 3: Portfolio Holdings
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The intermediary’s portfolio share in the risky asset (αI) is graphed in the left panel against the scaled-intermediary

wealth (w/D). Parameters are m = 4, m = 6 and those given in Table 2.

leveraged are states in which the pricing kernel is more volatile, and as a result, the equilibrium risk premium

is higher. This association seems counterintuitive when viewed in light of the financial press, where crises

typically accompany reports of financial institutions deleveraging and selling assets at fire-sale prices. Both

Kiyotaki and Moore (1997) and Brunnermeier and Pedersen (2008) develop models in which deleveraging

accompanies falling asset prices.15

The reason for this discrepancy is that our model operates under the logic that in equilibrium the risky

asset must be held by the intermediary sector. Moreover, since our model has identical intermediaries,

market clearing implies that these identical intermediaries increase leverage to hold the risky asset, after a

negative shock.16

Both Kiyotaki and Moore (1997) and Brunnermeier and Pedersen (2008) posit a second-best buyer,

modeled as a downward sloping demand function, for the agent’s liquidated assets. Thus, deleveraging does

15See also Adrian and Shin (2008) on these points.
16Alternatively, a tightening of the constraint does, ceteris paribus, induce a reduction in the portfolio position of the

intermediary. However, since the risky asset must in equilibrium be held by the intermediary sector, this reduction cannot

occur, and prices must adjust.
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take place in equilibrium and sales of the assets to the second-best buyer result in prices falling. While these

models can account for deleveraging, the modeling approach suffers the shortcoming that the second-best

buyer is left unmodeled and yet is central to price determination.

In a sense, the ideal model is one in which there is heterogeneity within the intermediary sector. With

such heterogeneity, it is likely that constraints bind more tightly for some institutions than others. The

institutions with the tight constraints deleverage and sell (and the financial press writes a story), with other

institutions buying the sold assets. Note that if one is primarily interested in the pricing of assets, it is the

marginal condition for the buyers that needs to be analyzed. Our paper focuses on this marginal pricing

condition and links it to leverage and concentrated risk exposure. In practice, leverage surely must rise when

an institution such as J.P. Morgan takes over Bear Sterns, or when Goldman Sachs invests some resources to

bailout one of their funds. Of course, as is widely appreciated, precisely measuring the economic leverage of

a financial institution is difficult. Nevertheless, the theoretical logic that someone in the intermediary sector

has to hold the assets in equilibrium is hard to counter in a general equilibrium model.

Another point of difference between our model and those of Kiyotaki and Moore (1997) and Brunnermeier

and Pedersen (2008) is that the constraint in our model is on the equity investment in the intermediary.

In other papers, a low w restricts the amount of debt that the agent can contract. Thus the models imply

that low w leads to less debt and therefore lower leverage. Note that these models implicitly rule out equity

contracts – debt is the only margin that adjusts with w. Again, it is worth imagining an ideal model with

both debt and equity contracts. Borrowing through both contracts are affected by negative shocks to w.

However, since equity is junior to debt, it is likely that the equity constraint is more severely affected than

the debt constraint. If the intermediary sector has to hold the risky asset, it is likely in equilibrium that

adjustment occurs on the less constrained margin. Since the equity constraint is more adversely affected

than the debt constraint, this logic implies that intermediaries raise leverage in equilibrium. Our model

studies the extreme case of no constraint on debt borrowing and only constraints on equity borrowing, and

leverage rises following negative shocks.

Finally, an interesting point of comparison for our results is to the literature on state-dependent risk

premia, notably, Campbell and Cochrane (1999), Barberis, Huang, and Santos (2001), and Kyle and Xiong

(2001). In these models, as in ours, the risk premium is increasing in the adversity of the state. In Campbell

and Cochrane, the state dependence arises because marginal utility is dependent on the agent’s consumption

relative to his habit stock. In Barberis, Huang, and Santos, the state dependence comes about because
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risk aversion is modeled directly as a function of the previous period’s gains and losses. Relative to these

two models, we work with a standard CRRA utility function, but generate state dependence endogenously

as a function of the frictions in the economy. For empirical work, our approach suggests that measures of

intermediary capital/capacity will help to explain risk premia. In this regard, our model is closer in spirit

to Kyle and Xiong who generate a risk premium that is a function of “arbitrageur” wealth. The main

theoretical difference between Kyle and Xiong and our model is that the wealth effect in their model comes

from assuming that the arbitrageur has log utility, while in our model it comes because the intermediation

constraint is a function of intermediary capital. One clear difference across these models is revealed in the

sharp asymmetry of our model’s risk premia: a muted dependence on capital in the unconstrained region

and a strong dependence in the constrained region. In Kyle and Xiong, the log utility assumption delivers a

risk premium that is a much smoother function of arbitrageur wealth. Plausibly, to explain a crisis episode,

one needs the type of asymmetry our model delivers.

5.3 Steady State Risk Premia

Quantitatively, as one can see from Figure 2, the calibration produces a risk premium in the unconstrained

region of around 5%. The numbers for the risk premium are higher in the constrained region; however,

without knowing the probability that a given specialist-wealth state may occur, it is not possible to interpret

a statement about how much higher. To provide some sense for the values of the risk premium we may

be likely to observe in practice, we need to simulate the model and compute the equilibrium probability of

each state. We simulate the model as described in Section 4.4. The resulting steady state distribution over

specialist wealth is graphed in Figure 4 (for the m = 4 case). Also superimposed on the figure in dashed

lines is the risk premium from the previous graph.

Table 3 provides a number of statistics from this simulation. First note the leverage and income ratio

that we have used to pin down l and λ. The average income ratio from the data was between 30 − 35%;

our numbers in the table are closer to 37% and 40%. The leverage ratio suggested by the data was around

0.43. This number is close to the leverage ratio conditional on being in the unconstrained region. Clearly,

leverage rises in the constrained region.

The economy spends most of the time in the unconstrained region (59% and 68% for the two cases).

We may think of the unconstrained region as a “normal” non-crisis period. The average risk premium and

Sharpe ratio, conditional on being in the unconstrained region, is around 4.9% and 40% for each of the cases.
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Figure 4: Steady State Distribution
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The steady state distibution of w/D is graphed for the m = 4 case. The dashed line graphs the risk premium in order

to illustrate the actual range of variation of the risk premium.

In the constrained region, the risk premium rises. The probability that the risk premium will exceed 7.5%

is around 4%. For the risk premium to exceed 10%, which is about double the unconstrained region average

in terms of both risk premium and Sharpe ratio, the probability is 1%. An extreme crisis that increases risk

premia and Sharpe ratio about 4.5X to 20% is very unlikely. Our model puts this probability around 0.05%.

Table 3 also provides a sense as to the effect of varying m, by comparing the two cases represented.

There are two, almost offsetting effects of m. Raising m lowers the probability of the constrained region

from 41% to 32%. However it increases the probability that the risk premium will exceed 5% from 34% to

63%, while leaving the probabilities at the more extreme points relatively unaffected. The constrained region

gets smaller, but the probability mass becomes concentrated at a slighly larger value of the risk premium.

The net effect is almost a wash as the average risk premium across the two cases is within two basis points.

To put these numbers in perspective, consider the 1998 crisis. Figure 5 graphs the behavior of the high

grade credit spread (AAA bonds minus Treasuries), the spread on FNMA mortgage backed securities relative

to Treasuries, and the option adusted spread on volatile interest-only mortgage derivative securities (data

are from Gabaix, Krishnamurthy, and Vigneron, 2007). The spreads are graphed over a period from 1997 to

1999 and includes the fall of 1998 hedge fund crisis. During 1997 and upto the middle of 1998 spreads move

in a fairly narrow range. If we interpret the unconstrained states of our model as this “normal” period, then
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Table 3: Measurements for Scenario 1

Panel A: Constrained and Unconstrained Regions
This panel presents a number of average measurements for the economy, broken down into conditional
on being in the constrained region, conditional on being in the unconstrained region, and unconditional
average. Parameters for the two cases reported are given in Table 2.

m = 4 Case m = 6 Case
Avg. Unconst. Const. Avg. Unconst. Const.

Probability 59.09 40.91 67.75 32.25
Risk Premium (%) 5.34 4.87 6.01 5.32 4.97 6.03
Sharpe Ratio (%) 42.91 39.22 48.24 43.06 40.34 48.97
Interest Rate (%) 0.50 0.88 −0.045 0.50 0.79 −0.099
Leverage Ratio (%) 47.56 41.43 56.42 47.67 42.86 57.72
Income Ratio (%) 36.89 40.58 31.55 40.07 41.76 36.36

Panel B: Measures at Different Risk Premia
The different risk premia at which we compute the various measures are given in the first row (denoted π).
The second row reports the probability that the economy will ever reach a value of risk premium greater
than the given π. The rest of the rows report measures at the given π.

m = 4 m = 6
Risk Premium (%) ≡ π 5% 7.5% 10% 20% 5% 7.5% 10% 20%

Prob (Risk Premium> π) 34.37 4.35 1.04 0.05 63.31 3.33 0.81 0.04
Sharpe Ratio at π 40.35 59.93 80.60 170.82 40.75 60.76 81.21 169.63
Interest Rate at π 0.84 −1.36 −3.71 −13.82 0.84 −1.46 −3.81 −13.92
Leverage Ratio at π 47.55 70.02 79.92 92.24 48.56 70.94 80.33 92.10

the muted response of risk premia to the state can capture this pre-crisis period. In a short period around

October 1998 spreads on these securities increase sharply. The credit spreads and MBS spreads double from

their pre-crisis level. There is manifold increase on the mortgage derivative spread. Although it is hard to

estimate precisely how much Sharpe ratios increase during the episode, a doubling is plausibly within the

range of estimates. Certainly from the standpoint of standard representative household models, even a 50%

increase during the 1998 event is difficult to understand as aggregate consumption was barely at risk. In

our model, the asymmetry in the intermediation constraint calibrated to hedge fund data can generate the

dramatic increase in risk premia around crises. Many observers comment on the reduction in intermediation

capital in the fall of 1998 crisis, and refer to the episode as a tail event. Both statements make sense from

our calibration.

5.4 Flight to quality

Figure 6 graphs the interest rate as a function of specialist wealth. As in previous graphs, there is an asym-

metric effect evident: a relatively constant interest rate in the unconstrained region, and a falling interest rate

in the constrained region. There are two intuitions behind the interest rate effect in the constrained region.

33



Figure 5: Crisis Spreads
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The spreads between the Moody’s index of AAA corporate bonds and the 10 year Treasury rate (grey line), the

spreads between FNMA 6% TBA mortgage-backed securities and the 10 year Treasury rate (black line), and the

option-adjusted spreads on a portfolio of interest-only mortgage-backed securities relative to Treasury bonds (dashed

line) are graphed monthly from 1997 to 1999.

First, as the specialist’s consumption volatility rises with the tightness of the intermediation constraint, the

precautionary savings effect increases specialist demand for the riskless bond. Second, as specialist wealth

falls, households withdraw equity from intermediaries, increasing their demand for the riskless bond. To

clear the bond market, the equilibrium interest rate has to fall.

Both the behavior of the interest rate and the disintermediation-driven demand for bonds is consistent

with a flight to quality. Since the total funds under intermediation is equal to (1 + m)wt in the constrained

region, a fall in wt leads to m times larger fall in household funds invested in intermediaries. Moreoever, since

the intermediary holds a levered position in the risky asset, the sensitivity of fund flows to the risky asset

price increases with the tightness of the intermediation constraint. Formally, we can compute the percentage

outflow of household funds,
dwh

t

(1+m)wt
, as a function of the percentage change in risky asset price as:

dwh
t

(1 + m)wt

=
m

1 + m

dP

P
αI . (21)

We note that the elasticity is proportional to αI which is increasing in the tightness of constraints.

The row in Table 3 corresponding to the interest rate provides a quantitative sense for the variation in

the interest rate from the simulations. The unconditional average interest is 0.50% which is consistent with
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Figure 6: Interest Rate
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Interest rate is graphed against scaled-specialist wealth (w/D). Parameters are m = 4 and m = 6 and those given in

Table 2.

empirical estimates. However, the interest rate is over-sensitive to the state in our model. At the 7.5% risk

premium state, the interest rate is around −1.40%, falling to −3.7% at the 10% risk premium state (for the

m = 4 case). The intuition offered in the previous paragraphs helps to explain why. Both agents increase

their demand for bonds in the constrained region; but since the bond is in zero net supply, the interest rate

has to adjust dramatically. In practice, the bond that investors fly-to during a crisis episode (i.e. government

bonds) is not in zero net supply, which may be one reason why the interest rate effect in our model is at

odds with the data. Later in this paper we will explore an extension of the model with government bonds

in positive supply and the interest rate effects will be dampened.

5.5 Volatility

The left-hand panel of Figure 7 graphs the price/dividend ratio as a function of specialist wealth. Con-

sistent with intuition, over most of the range, F (·) falls as specialist wealth falls. However, there is a

non-monotonicity that arises when w/D is very small.

This effect arises because interest rates diverge to negative infinity when w/D approaches zero. There

are two forces affecting the discount rates applied to dividends in determing F (·): On the one hand, the risk
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Figure 7: P/D Ratio and Volatility
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Price/Dividend ratio (left panel) and stock return volatility (right panel) are graphed against scaled specialist wealth

(w/D). Parameters are m = 4 and m = 6 and those given in Table 2.

premium is high when w/D is small; on the other hand, the interest rate is low when w/D is high. These

two effects combine to produce the non-monotonicity of F (·) when w/D is small.

The right-hand panel of Figure 7 graphs the stock return volatility as a function of specialist wealth.

The volatility is close to constant and actually falls in the constrained region. The latter effect is driven by

the non-monotonicity in F (·). The stock price is equal to Dt × F (yt). The non-monotonicity means that a

shock that causes a fall in Dt leads to a rise in F (yt is negatively correlated with Dt). This is a failure of

the model: we are unable to replicate the observed increase in conditional volatility accompanying a crisis

period.

It is worth pointing out that despite the fall in conditional volatility in the crisis region, the risk premium

rises. This highlights that the risk premium is driven largely by the endogenous increase in the volatility of

the pricing kernel (γσ(dc
c

)) in our model.

5.6 Capital movement and recovery from crisis

Referring to Figure 5, the corporate bond spread and MBS spread widen from 90 bps in July 1998 to a high of

180 bps in October 1998 before coming down to 130 bps in June 1999. Thus, the half-life — that is, the time

it takes the spread to fall halfway to the pre-crisis level — is about 10 months. The interest-only mortgage

36



derivative spread, which is very sensitive to market conditions, widens from 250 bps in July 1998 to a high

of 2000 bps before coming back to 500 bps in June 1999. We note that this timescale for mean reversion,

on the order of months, is much slower than the daily mean-reversion patterns commonly addressed in the

market micro-structure literature (e.g., Campbell, Grossman, and Wang, 1994).

A common wisdom among many observers is that this pattern of recovery reflects the slow movement of

capital into the affected markets (Froot and O’Connell, 1999, Berndt, et. al., 2004, Mitchell, Pedersen, and

Pulvino, 2007, Duffie, Garleanu, and Pedersen, 2007). Our model captures this slow movement. We will

show in this section that our baseline calibration can also replicate these speeds of capital movement.

In the crisis states of our model, risk premia are high and the specialists hold leveraged positions on

the risky asset. Over time, profits from this position increase wt, thereby increasing the capital base of

the intermediaries. The increase in specialist capital is mirrored by an m-fold increase in the allocation of

households’ capital to the intermediaries, as the intermediation constraint is relaxed. Together these forces

reflect a movement of capital back into the risky asset market and lead to increased risk-bearing capacity

and lower risk premia. Note, however, that one dimension of capital movement that plausibly occurs in

practice but is not captured by our model is the entry of “new” specialists into the risky asset market.

We can use the model simulation to gauge the length and severity of a crisis within our model. Table 4

presents data on how long it takes to recover from a crisis in our model. We fix a state (y, D) corresponding to

an instantaneous risk premium in the “Transit from” row. Simulating the model from that initial condition,

we compute and report the first passage time that the state hits the risk premium corresponding to the

“Transit to” column. The time is reported in years. If we start from the extreme crisis state of 20% and

compute how long it takes to recover to 12.5% — i.e. halfway back to the unconditional average levels we

report earlier of around 5% — the time is 0.46 years (5.5 months) for the m = 4 case. The transit times are

uniformly faster for the m = 6 case because as specialist capital increases, households react more strongly

in bringing their own capital back to intermediaries.

From the 10% crisis state to the 7.5% state takes 1.6 years in the m = 4 case. For the fall of 1998 episode,

the half-life we suggested was around 10 months. The model half-life from 10% is larger, but is in the order

of magnitude of the empirical observation. It is worth keeping in mind that it is difficult to measure exactly

how high risk premia or Sharpe ratios were at the peak of the crisis. For example, if we judge that the peak

risk premia corresponded to 13% in our model, then the half-life down to 8% is close to 10 months (not

reported in the table).
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Table 4: Crisis Recovery

This table presents transition time data from simulating the model for the m = 4
and m = 6 cases. The rest of the parameters are those given in Table 2. We fix
a state corresponding to an instantaneous risk premium of 20% (“Transit from”).
Simulating the model from that initial condition, we compute and report the first
passage time that the state hits the risk premium corresponding to that in the
“Transit to” column. Time is reported in years. The column “Increment time”
reports the time between incremental “Transit to” rows.

m = 4 m = 6
Transit from 20 Increment time Transit from 20 Increment time

Transit to

15 0.23 0.23 0.21 0.21
12.5 0.46 0.23 0.43 0.22
10 1.02 0.56 0.93 0.5
7.5 2.62 1.6 2.48 1.55
6 5.91 3.29 5.46 2.98
5 12.88 7.1 12.56 6.97

One failing of the model that we see from Table 4 is the extremely slow recovery from 6% to 5%. Our

simulations put these numbers around 7 years. Essentially, the specialist profits when the risk premium is 6%

are so small that specialist capital does not grow very fast and hence our model predicts a correspondingly

slow recovery time. In practice, the final stages of recovery from crisis may also lead to other “specialists”

moving into the affected market. Our model does not capture such an effect. It is also worth noting that

in practice, statistically distingushing a 6% risk premium from a 5% risk premium is difficult, so that the

recovery time from 6% to 5% may not be a meaningful measurement.

The slow adjustment of risk premia, in timescales of many months, during the 1998 episode is also

consistent with other studies of crisis episodes. Berndt, et. al. (2005) study the credit default swap market

from 2000 to 2004 and note a dramatic market-wide increase in risk premia (roughly a quadrupling) in

July 2002 (see Figures 1 and 2 of the paper). Risk premia gradually fall over the next two years: From

the peak in July 2002, risk premia halve by April 2003 (9 months). The authors argue that dislocations

beginning with the Enron crisis led to a decrease in risk-bearing capacity among corporate bond investors.

Mirroring the decreasing risk-bearing capacity, risk premia rose before slowly falling as capital moved back

into the corporate bond market and expanded risk bearing capacity. Gabaix, Krishnamurthy, and Vigneron

(2007) note a dislocation in the mortgage-backed securities in late 1993 triggered by an unexpected wave of

consumer prepayments. A number of important hedge fund players suffered losses and went out of business

during this period, leading to a reduction in risk bearing capacity. Figure 3 in the paper documents that

risk premia reached a peak in December 1993 before halving by April 1994 (5 months). Froot and O’Connell
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(1999) study the catastrophe insurance market and demonstrate similar phenomena. When insurers suffer

losses that deplete capital they raise the price of catastrophe insurance. Prices then gradually fall back to

long-run levels as capital moves back into the catastrophe insurance market. Froot and O’Connell show that

the half-life in terms of prices can be well over a year.17

Each of these markets are intermediated markets that fit our model well. Investors are institutions who

have specialized expertise in assessing risk in their markets. Our theory explains the slow movement of risk

bearing capacity and risk premia documented in these case-studies. The calibrated model also captures the

frequency of the slow adjustment of risk premia.

6 Aggregate Asset Pricing: Scenario 2

The second exercise we perform with our model is an aggregate asset pricing calibration. Our model is

closely related to heterogeneous agent models that have been proposed in the literature to explain the equity

premium puzzle (for example, see Mankiw and Zeldes (1991) and Vissing-Jorgensen (2002)). In these models,

as in ours, the marginal investor’s consumption is more volatile than that of the average investor. Thus,

these models are able to generate a pricing kernel that is more volatile than that of the aggregate endowment,

which is the useful property in explaining the equity premium puzzle.

We suppose that the risky asset of the model encompasses all risky financial assets including stocks,

mortgages, etc., and that all investment in these assets is made by intermediaries. While clearly in practice

there are investments in risky assets that do not require the expertise of an intermediary, the exercise provides

a benchmark for our intermediation model. Allen (2001) notes that over 50% of financial assets are held

through intermediaries. He also observes that many investment decisions over the remaining 50% of financial

wealth are made with the advice of professional advisors. Plausibly, investors will place less weight on the

advice of a specialist whose own wt has been falling. Then, if wt is falling, households withdraw from the

risky market, so that risk is concentrated among the specialists – reflecting the main dynamic of our model.

17Mitchell, Pedersen, and Pulvino (2007) document similar effects in the convertible bond market in 1998 and again in 2005.

In both cases, crisis recovery times are in the order of months. They also note that spreads in merger arbitrage strategies took

several months to recover following the October 1987 stock-market crash.
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6.1 m = 1 case

The left-panel of Figure 8 graphs the steady state distribution of w/D for the m = 1 case. Contrasting

this figure with Figure 4 we see that most of the probability mass is in the left side of the graph, which

corresponds to the constrained region, but the probability mass in the extreme crisis region is small. The

probability mass in the constrained region is 98% for this case, suggesting that there is almost always some

feedback from intermediary capital to household participation. The right-panel of Figure 8 graphs the risk

premium for the m = 1 case. We also graph the risk premium for the earlier m = 4 case as constrast. The

risk premium for the m = 1 case rises more gradually as w/D falls, capturing a more muted response to the

state.

Figure 8: Steady State Distribution and Risk Premium
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The left panel graphs the steady state distibution of w/D for the m = 1, λ = 0.4 case. The right panel graphs the

risk premium for both m = 1, λ = 0.4 and m = 4, λ = 0.5 cases.

6.2 Asset Price Measurements

Table 5 presents the results from simulating the model and computing a number of unconditional moments

for the m = 1 case, as well as a variation with m = 0.5. Let us focus on the m = 1 case first. Our choice of

λ produces a leverage ratio of 0.46. The data on which we based our choices of λ suggested a leverage ratio

in this range. Our choice of l = 1 produces the financial to total income ratio for the household of 0.32. The

data we cited earlier suggests numbers between 0.30 and 0.35.
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Table 5: Measurements for Scenario 2

m = 1 m = 0.5
λ = 0.4 λ = 0.4

Risk Premium (%) 5.63 5.91
std[Risk Premium] (%) 12.89 13.46
Interest Rate (%) 0.29 0.05
std[Interest Rate] (%) 1.14 1.02
Sharpe Ratio (%) 44 43.40
Intermediary Leverage (%) 46 45
Household Financial Income/Total Income (%) 32 22.59
Prob of Constraints (%) 97.7 99.91

The average risk premium for the m = 1 case is 5.63%. There are many points of comparison for this

risk premium. First, this number is within the range of estimates of the equity risk premium, which is one

guide as to the expected return on aggregate wealth. Second, from a model standpoint if the risky asset

of our model was priced by a representative agent who consumes NIPA aggregate consumption and has a

coefficient of relative risk aversion of two, then the highest risk premium that such an agent would require to

hold the risky asset would be 2×0.12×0.038. That is, if the risky asset is perfectly correlated with aggregate

consumption, and using consumption growth volatility of 3.8%, we would compute a risk premium of 0.91%.

It is likely that the payoff on the typical intermediated asset is less than perfectly correlated with NIPA

consumption growth (Campbell and Cochrane (1999) estimate a 0.15 correlation of stock market dividends

with aggregate consumption), so in the representative household model the risk premium is even smaller.

Moving from a representative household analysis to one which recognizes that intermediaries are marginal

in pricing intermediated assets immediately means that the pricing kernel is perfectly correlated with in-

termediated payoffs and has volatility corresponding to those of intermediated payoffs. That is, consider a

standard Lucas-tree model with dividend volatility of 12% and a representative agent with risk aversion of

two. The risk premium in such a model is 2 × 0.12× 0.12 = 2.88%.

Our model produces a higher risk premium than each of these benchmarks. It does so by additionally

incorporating leverage and constraints in intermediation that lead intermediaries to increase leverage and

have a more concentrated exposure to the returns on intermediated payoffs, when constraints bind.

The volatility of the excess return on the risky asset is 12.89%. As a benchmark, note that dividends

are calibrated to 12% volatility, so that in a standard model we would expect to see volatility of close to

12%. Our model produces more volatility than the 12% benchmark, but not much more. Since the model

yet produces a high risk premium, it is clear that the model works through a volatile pricing kernel. The
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Sharpe ratio in the model is around 44%.

Finally, the model’s riskless interest rate averages 0.29% is close to that observed empirically. The riskless

rate volatility ranges is 1.14% which is similar to numbers reported in Campbell (1999).

Table 5 presents results for the m = 1 case as well as a variation with m = 0.5 case to give a sense as

to the sensitivity of the simulation to varying m. The risk premium and Sharpe ratios are higher for the

lower m case. Note that the probability of the constrained region rises to 99.91 percent for the m = 0.5

case. Lowering m tightens the intermediation constraint and reduces participation for every level of specialist

wealth. Thus, lowering m, on average raises the risk premium. Note the contrast between this effect and

one we find in the hedge fund scenario: we show there that, conditional on being constrained, the economy

recovers faster if m is larger.

6.3 Liquidity and time varying expected returns

There is a great deal of evidence in finance for time variation in investors’ required returns on risky assets.

In the model, despite dividends being i.i.d., there is time variation in risk premia. This is because specialist

wealth varies over time and the risk premium is a function of specialist wealth. The following computation

provides a quantitative sense of the time variation in risk premia generated by the model. If we take the

mean state in the simulation, and move one standard deviation towards a more constrained state the risk

premium rises to 6.38%. Moving one standard deviation towards a less constrained state causes the risk

premium to fall to 4.32%. Thus, 2.06% variation in total.

In principle, if we can empirically measure “specialist wealth,” these measurements can be used to predict

asset returns. Mapping our model to practice, specialist wealth most naturally corresponds to the financial

health of the intermediation sector, so that the conditioning variable should be constructed from the balance

sheets of the intermediation sector. Unfortunately, we are unaware of any empirical research that has

specifically pursued this link.

The closest research in this vein are papers that document a role for a liquidity factor in explaining

asset returns. Pastor and Stambaugh (2003) and Sadka (2006) report high Sharpe ratios of around 0.75

from a strategy of going long “low liquidity” stocks and short “high liquidity” stocks (see also Amihud,

2002, and Acharya and Pedersen, 2003). Low (high) liquidity stocks are measured to be stocks whose

returns covary positively (negatively) with marketwide illiquidity conditions. Their results have received

considerable attention in the literature and raise the possibility that liquidity may be a priced factor. The
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factor that these papers construct is based on a micro-structure measure of price impact. One natural

interpretation of this measure is in terms of the capacity of market makers and other financial market

specialists to provide liquidity to markets. In particular, if financial market specialists have the capacity to

absorb non-informational trade then price impact will be low. However, if financial market specialists are

capital constrained or extremely risk averse then price impact will be high.

Our model applies to intermediaries pricing intermediated payoffs. Although our model does not have a

micro-structure element, providing liquidity to markets is the principal function of intermediaries. Thus we

may interpret our model to say that when intermediation constraints are tight, markets will be illiquid in

the sense of Pastor and Stambaugh (2003) and Sadka (2006). That is, the micro-structure based liquidity

measures of Pastor and Stambaugh (2003) and Sadka (2006) should reflect variation in wt.

Our results thus offer one explanation for the findings in these papers. In turn, this research also suggests

that one way to measure intermediation constraints may be to look to asset market liquidity measures. In

the next section of the paper, we more explicitly draw a connection between our model and liquidity.

7 Debt and Market Liquidity

The risky asset in the model is illiquid in the sense that only the specialists participate in the risky asset

market. The riskless asset is liquid since all agents participate in the market. From this standpoint, the

risk premium of our model is at least partly a liquidity premium. This notion of liquidity, deriving from

market segmentation, is similar to Allen and Gale (1994) or models of the liquidity of money in the monetary

economics literature (e.g., Alvarez, Atkeson, and Kehoe, 2002). So far we have shown how changing interme-

diary capital endogenously affects participation and the liquidity premium on the risky asset. Particularly in

the calibration of scenario 1, we have shown that when w falls low enough the model can replicate a liquidity

crisis event.

In this section, we consider a different experiment that alters the liquidity of the risky asset. We allow

for the riskless asset to be in positive supply, and ask how changing the supply of the riskless asset affects

the premium on the risky asset. Since the riskless asset is the liquid asset, this experiment is akin to “adding

liquidity” to the market.

This experiment is useful for two reasons. First, by demonstrating that altering the supply of the riskless

asset affects the risk premium on the risky asset, we clarify that the risk premium on the risky asset is
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in part a liquidity premium. Krishnamurthy and Vissing-Jorgensen (2007) present empirical evidence that

changes in the supply of government debt have a causal effect on the spread between corporate bond yields

and Treasury bond yields. They interpret their results as showing that part of the corporate-Treasury

spread is a liquidity premium. Our theoretical results help to shed light on their empirical findings. Second,

the crisis-intermediation literature (e.g., Holmstrom and Tirole, 1998, or Diamond and Rajan, 2005) and

the monetary economics literature (e.g., Alvarez, Atkeson, and Kehoe, 2002) commonly study how adding

“liquidity” to the economy alters asset prices and allocations. In the existing literature, adding liquidity

lowers the liquidity premia on less liquid assets. As we show, our model can replicate this effect.

Formally, we introduce a government into the model that rolls over a short-term riskless government

bond, whose interest cost is financed partly by levying lumpsum taxes on the households. Since the model

assumes an overlapping generation structure for households, the model is not Ricardian, and this type of

government bond policy can affect the equilibrium.

We assume that at date t the government has bonds outstanding of B(yt, Dt) on which it pays the interest

rate of rt. Then, the flow budget constraint for the government is,

dBt − rtBtdt + τtdt = 0.

In this equation, dBt is the net increase in bond issuance (i.e., moneys received from issuance in excess of

moneys paid to redeem the existing issue), rtBt is the interest cost on the outstanding stock of debt, and τt is

the lumpsum taxes raised on households. The tax affects the wealth dynamics for the households. Equation

(10) is altered to,

dwh
t = (lDt − ρwh

t )dt + wh
t rtdt + αh

t (1 − λ)wh
t

(
d̃Rt − rtdt

)
− τtdt.

We consider the following class of bond policies that are mathematically easy to analyze in our setting,

B(yt, Dt) = Dtmax[0, b(yt − y∗)]

for constants, b and y∗. The policy scales the bond issue linearly with dividends. Scaling with respect to an

endogenous variable is obviously important in order that the bond policy does not either dominate or vanish

from the economy. In addition, since the key dynamic of the model occurs in the constrained region when yt

is high (and wt is low), it is interesting to study a policy whereby more bonds are issued when the economy

is more constrained. Thus we additionally scale the bond issue with the variable yt − y∗.

With these policies, the ODE of Proposition 1 remains the same. The coefficents on the dynamics of

scaled household wealth, µy and σy, are altered due to taxes. We derive the new µy and σy in the Appendix.
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The boundary condition for the economy also changes. Previously, at the upper boundary for y we have:

yb = F (yb).

That is, the household owns all of the wealth of the economy, amounting to F (y). With the introduction of

government bonds, this boundary changes to:

yb = F (yb) + B(yb)/D. (22)

We note that increasing B(yb) causes F (yb) to fall. Loosely speaking, we may think of this as a “crowding

out” effect.

In Table 6, we present results for different values of y∗ and b, and for the m = 4 baseline case. To normalize

across these different cases, we also report the average simulated value of government bonds divided by total

wealth (risky asset plus government bonds). As a benchmark, currently in the US, total wealth is around

$50tn and total government debt is $5tn, giving a ratio of 10%.

Table 6: Debt and Liquidity

This panel presents a number of average measurements illustrating the effect of introducing government
debt into the economy. The measures are broken down into conditional on being in the constrained region,
conditional on being in the unconstrained region, and unconditional average. Parameters are the m = 4
case and those given in Table 2. Debt parameters are given in the first column of the table

Risk Premium (%) Interest Rate (%)

Avg. Unconst. Const. Avg. Unconst. Const. Prob(Const.) E
[

B
P+B

]

b = 0 5.34 4.87 6.01 0.50 0.88 −0.045 0.41 0
b = 0.20, y∗ = 10 5.22 4.61 5.67 1.10 1.56 0.77 0.58 0.10
b = 0.30, y∗ = 10 5.14 4.45 5.50 1.49 1.94 1.25 0.65 0.176
b = 0.15, y∗ = 5 5.19 4.56 5.64 1.12 1.61 0.78 0.58 0.10
b = 0.35, y∗ = 15 5.32 4.82 5.85 1.11 1.32 0.87 0.49 0.10

Comparing across the first two rows of the table we see that adding debt raises interest rates and lowers

the risk premium. The interest rate effect should be expected since the model is not Ricardian. We also

note that having the debt security in positive supply softens the fall in the interest rate in the constrained

region. The constrained average interest rate is 0.77% rather than −.045% in the b = 0 case.

The risk premium falls on average by 12 bps. The effect is larger if we condition on a given level of

the constraint. For example, the constrained average risk premium falls by 34 bps, while the unconstrained

average premium falls by 26 bps. Figure 9 graphs the risk premium and interest rate as a function of scaled

specialist wealth for the no debt case (b = 0) and the debt case corresponding to the second row of Table

6. The figure shows that the risk premium is uniformly lower when debt is in the model. Although not
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Figure 9: Debt, Interest Rate, and Risk Premium
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Interest rate (left panel) and risk premium (right panel) are graphed against scaled-specialist wealth (w/D). Two

curves are plotted in panel, corresponding to the cases of no government debt and a debt/wealth ratio of 10%. The

rest of the parameters are m = 4 and those given in Table 2.

apparent from the figure, the difference in the two risk premia curves is about 50 bps around the point wc/D.

To understand why the average risk premium falls less than 50 bps, note the differences in the probability

of the constrained region, given in the penultimate column of the table. This probability rises from 0.41

to 0.58. Adding debt shifts the entire steady state distribution of the economy more into the constrained

region. This occurs because government debt raises the interest rate, and since the specialist is on average

borrowing in the debt market, the higher interest rate lowers his wealth on average. Hence, the economy is

more likely to fall into the constrained region. These two effects of debt work against each other, but the

net effect reduces the average risk premium by 12 bps.

Row 3 of Table 6 presents the results for the case of a 17.6% debt ratio. The risk premium falls by 8 bps

relative to the 10% debt case, which suggests that the marginal effect of debt on the risk premium falls as

the level of debt rises.

The last two rows of the Table consider variations on y∗. We consider values of y∗ of 5 and 15, adjusting

b so that the average level of debt in the economy remains at 10%. The case of y∗ = 5 is almost identical to

the case of y∗ = 10. The economy spends little time at these values of y so that altering debt in this region

has limited effects on the equilibrium. The case of y∗ = 15 looks closest to the b = 0 case, with a small risk

premium effect. This result can be understood be returning to the boundary condition (22). Since the value
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of b is highest for the y∗ = 15 case, and our debt policy is equal to b(yb − y∗), the y∗ = 15 case also leads

to the highest value of B(yb, D). From (22) we see that a large value of B(·) lowers the boundary value of

F (yb). In turn, the lower boundary value causes F (y) to fall faster for every value of y, leading to higher

price and return volatility. This factor tends to drive the risk premium up, and the net effect is that the risk

premium does not fall as much relative to the b = 0 case.

Taken together, these results show that adding liquid debt to the economy lowers the risk premium on

the risky asset. This result is consistent with other theoretical and empirical work and is therefore a success

of the model. The current debt/wealth ratio in the US is approximately 10%. Across the various rows of

Table 6 we see that adding debt to match a 10% debt/wealth ratio lowers the risk premium by between

10 and 15 bps. This suggests that the liquidity premium produced by the calibrated model is between 10

and 15 bps. A failure of the model is that, quantitatively, this number is too small. Krishnamurthy and

Vissing-Jorgensen (2007) suggest a liquidity premium of closer to 70 bps. Clearly more study is required to

bring the empirical and theoretical measurements closer together.

8 Conclusion

TO BE ADDED
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A ODE Solution

In this appendix, we detail the solution of the ODE that characterizes the equilibrium. We analyze our ODE based on

state variable y, i.e., the scaled households wealth. Since under our parameterization the equilibrium scaled specialists

wealth w/D = F (y) − y is a monotone transform of y, in the main text we plot F (·) against w/D to highlight the

effect of specialist wealth.

A.1 Derivation of µy and σy

We rewrite equation (10) which describes the wealth dynamics (budget constraint) of the household sector as:

dwh = θsdP +Dθsdt+ rθ̂bdt+ lDtdt− ρwhdt. (23)

In this equation,

θs = αIαh(1 − λ)
wh

P
(24)

are the number of shares that the stock household owns, and

θ̂bD = wh − θsP (25)

is the amount of funds that the stock and debt households together have invested in the riskless bond. αh and αI

are defined in the text and depends on whether the economy is constrained or not.

We apply Ito’s Lemma to P = DF (y) to find expressions for the drift and diffusion of dP . We can then substitute

back into equation (23) to find expressions for the drift and diffusion of dwh.

Now, we have defined wh = Dy. We apply Ito’s Lemma to this equation to arrive at a second expression for the

drift and diffusion of dwh. Matching the drift and diffusion terms from these two ways of writing dwh, we solve to

find µy and σy .
The result of this algebra is that:

σy = − θ̂b

1 − θsF ′
σ.

and,

µy =
1

1 − θsF ′

„
θs + l + (r + σ2 − g)θ̂b − ρy +

1

2
θsF

′′σ2
y

«
.

A.2 ODE

Because ct = Dt (1 + l− ρyt), we have

dct

ct

=
dDt

Dt

− ρdy

1 + l− ρy
− ρ

1 + l− ρy
Covt

»
dy,

dD

D

–

=

„
g − ρ

1 + l − ρy
(µy + σyσ)

«
dt+

„
σ − ρσy

1 + l− ρy

«
dZt.

We also have

dRt =
dPt +Dtdt

Pt

=

»
g +

F ′

F
µy +

1

2

F ′′

F
σ2

y +
1

F
+
F ′

F
σyσ

–
dt+

„
σ +

F ′

F
σy

«
dZt.
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Substituting these expressions into (16) we obtain,

g +
F ′

F
µy +

1

2

F ′′

F
σ2

y +
1

F
+
F ′

F
σyσ = ρ+ γg − γρ

1 + l − ρy
(µy + σyσ)

+γ

„
σ − ρ

1 + l − ρy
σy

«„
σ +

F ′

F
σy

«
− 1

2
γ(γ + 1)

„
σ − ρ

1 + l − ρy
σy

«2

which is equation (17) in Proposition 1.
Substituting for µy derived in (A.1), we find,

„
F ′

F
+

γρ

1 + l − ρy

«„
1

1 − θsF ′

«“
θs + l + θ̂b(r − g) − ρy

”
+

1

F

+
1

2
F ′′σ2

y

„
1

1 − θsF ′

«„
1

F
+ θs

γρ

1 + l − ρy

«

= ρ+ g(γ − 1) + γ

„
σ − ρ

1 + l − ρy
σy

«„
σ +

F ′

F
σy

«

−1

2
γ(γ + 1)

„
σ − ρ

1 + l − ρy
σy

«2

where,

r = ρ+ gγ − ργ

1 + l − ρy

θs + l+ (r − g) θ̂b − ρy + σ2

2 θsF
′′ θ̂2

b

(1−θsF ′)2

1 − θsF ′

−γ (γ + 1)σ2

2

 
1 +

ρθ̂b

1 + l− ρy

1

1 − θsF ′

!2

We define a function, G(y) ≡ 1
1−θsF ′

; with this definition, we can write G′ = θsG
2F ′′, and

σy = − θ̂b

1 − θsF ′
σ = −θ̂bσG.

Therefore we have

G′ (θ̂bσ)2

2
G

„
1

θsF
+

γρh

1 + l − ρy

«
= ρ+ g(γ − 1) − 1

F

+
1

2
γσ2

„
1 +

ρ

1 + l − ρy
θ̂bG

«0
@

2
“
y −Gθ̂b

”

θsF
− (1 + γ)

1 + l − ρy + ρGθ̂b

1 + l − ρy

1
A

−
„
G− 1

θsF
+

γρh

1 + l − ρy
G

«“
θs + l+ θ̂b(r − g) − ρy

”

and

r =
ρ+ gγ − ργG

1+l−ρy

“
θs + l− gθ̂b − ρy + σ2

2
G′θ̂2b

”
− γ(γ+1)σ2

2

“
1 + ρθ̂bG

1+l−ρy

”2

1 + ργGθ̂b

1+l−ρy

.

We combine these two pieces, using the relation, θ̂b

“
G−1
θsF

+ γρhG

1+l−ρy

”
= − y−Gθ̂b

θsF
+ 1+l−ρy+γρhGθ̂b

1+l−ρy
, and arrive at a

final expression of the ODE:

G′ (θ̂bσ)2

2

G

θsF

„
1 + l + ρy(γ − 1)

1 + l − ρy + ργGθ̂b

«
(26)

= ρ + g(γ − 1) − 1

F
+
γ (1− γ)σ2

2

 
1 +

ρGθ̂b

1 + l− ρy

!
y − Gθ̂b

θsF

"
1 + l − ρy − ρGθ̂b

1 + l − ρy + ργGθ̂b

#

−
„

(1 + l − ρy) (G− 1)

θsF
+ γρhG

«
θs + l + θ̂b(g(γ − 1) + ρ) − ρy

1 + l − ρy + ργGθ̂b

.
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The expressions for the bond holding θ̂b and stock holding θs depend on whether the economy is constrained or

not. In the unconstrained region, as shown in Section 3.3, αh = 1, and αI = F
F−λy

. Utilizing (25) and (24), we have

θs = (1−λ)y
F−λy

, and bθb = λy F−y

F−λy
. In the constrained region αh = m(F−y)

(1−λ)y
, αI = 1

1+m
F

F−y
, therefore θs = m

1+m
, and

bθb = y − m
1+m

F . Finally, as illustrated in Section 3.3, the cutoff for the constraint satisfies yc = m
1−λ+m

F (yc), and

the economy is in the unconstrained region if 0 < y ≤ yc.

A.3 Boundary conditions and technical parameter restriction

As described in the text an upper boundary for y occurs when yb = 1+l
ρ

. The boundary condition is that F (yb) = yb.

In Appendix B, we show that the condition F (yb)− yb = 0 is required in order to satisfy the transversality condition

in the specialist’s budget equation; with this transversality condition we are able to show that the equilibrium is

well-defined.

Also, a straightforward calculation yields that F ′
`
yb
´

= 1 if F (yb) = yb. This result also ensures that the mapping

from the scaled household’s wealth y to the scaled specialist wealth w/D = F (y) − y is strictly decreasing in the

scaled household’s wealth y (this monotone relation clearly fails if F
`
yb
´
> yb.) As a result, it is equivalent to model

either agent’s wealth as our state variable.
A lower boundary condition occurs when y → 0. This case corresponds to one where specialists hold the entire

financial wealth of the economy. Using L’Hopital’s rule, it is easy to check that G−1
θsF

→ F ′(0)
F (0)

. Plugging this result

into (26), and noting that both θs and bθb go to zero as y goes to zero, we obtain,

F (0) =
1 + F ′ (0) l

ρ+ g(γ − 1) + γ(1−γ)σ2

2
− lγρ

1+l

. (27)

When l = 0, one can check that F (0) is the equilibrium Price/Dividend ratio for the economy with the specialists as
the representative agent. However because in our model the growth of the household sector affects the pricing kernel,
this boundary P/D ratio F (0) also depends on the household’s labor income l. As in the case where l = 0, for the
P/D ratio to be well defined we require that parameters satisfy,

ρ+ g(γ − 1) +
γ (1 − γ) σ2

2
− lγρ

1 + l
> 0. (28)

A.4 Numerical Method

In our ODE (26) both boundaries are singular, causing difficulties in directly applying the built-in ODE solver ode15s

in Matlab. To overcome this issue, we use a similar modification as in He and Krishnamurthy (2006). Specifically, we

approximate the upper-end boundary
`
yb, F

`
yb
´

= yb
´

by
`
yb − η, yb − η

´
(where η is sufficiently small), and adopt

a “forward-shooting and line-connecting” method for the lower–end boundary. Take a small ε > 0 and call eF as the

attempted solution. For each trial φ ≡ eF ′ (ε), we set eF ′ (0) = φ, solve eF (0) based on (27), and let eF (ε) = eF (0)+φε.
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Since
“
ε, eF (ε)

”
is away from the singularity, by trying different φ’s we apply the standard shooting method to

obtain the desired solution F that connects at
`
yb − η, yb − η

´
. For y < ε, we simply approximate the solution by a

line connecting (0, F (0)) and (ε,F (ε)). In other words, we solve F on
ˆ
ε, yb

˜
with a smooth pasting condition for

F ′ (ε) = F (ε)−F (0)
ε

and a value matching condition for F
`
yb
´

= yb.

We use ε = 0.1 and η = 0.001 which give ODE errors bounded by 3 × 10−5 for y > ε. Different ε’s and η’s

deliver almost identical solutions for y > 1. Because we are mainly interested in the solution behavior near yc (which

takes a value of 14 even in the m = 1 case) and onwards, our main calibration results are free of the approximation

errors caused by the choice of ε and η. Finally we find that, in fact, these errors are at the same magnitude as those

generated by the capital constraint around yc (3.5 × 10−5).

B Verification of optimality

In the section we take the equilibrium Price/Dividend ratio F (y) as given, and verify that the specialist’s consumption

policy c = Dt (1 + l − yt) is optimal subject to his budget constraint.

Our argument is a variant of the standard one: it uses the strict concavity of u (·) and the specialist’s budget

constraint to show that the specialist’s Euler equation is necessary and sufficent for the optimality of his consumption

plan.
Specifically, fixing t = 0 and the starting state (y0,D0), define the pricing kernel as

ξt ≡ e−ρtc−γ
t = e−ρtD−γ

t (1 + l− ρyt)
−γ .

Consider another consumption profile bc which satisfies the budget constraint E
R

∞

0
bctξtdt ≤ ξ0D0 (F0 − y0) (recall that

the specialist’s wealth is D0 (F0 − y0); here we require that the specialist’s feasible trading strategies be well-behaved,
e.g., his wealth process remains non-negative). Then we have

E

Z
∞

0

e−ρtu (ct) dt ≥ E

Z
∞

0

e−ρtu (bct) dt+ E

Z
∞

0

e−ρtu′ (ct) (ct − bct) dt

= E

Z
∞

0

e−ρtu (bct) dt+ E

Z
∞

0

ξtctdt −E

Z
∞

0

ξtbctdt.

If the specialist’s budget equation holds in equality for the equilibrium consumption process c, i.e., if

E

Z
∞

0

ξtctdt = ξ0D0 (F0 − y0) ,

then the result follows. Somewhat surprisingly, for our model this seemingly obvious claim requires an involved

argument because of the singularity at yb = 1+l
ρ

.
One can easily check that, for ∀T > 0, we have

ξ0D0 (F0 − y0) =

Z T

0

ctξtdt +

Z T

0

σ (Dt, yt) dZt + ξTDT (FT − yT ) , (29)

where σ (Dt, yt) corresponds to the specialist’s equilibrium trading strategy (which involves terms such as (1 + l − ρy)−γ−1

and is NOT uniformly bounded as y → yb). Our goal in the following steps is to show that in expectation, the latter

two terms vanishes when T → ∞.
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Step 1: Limiting Behavior of y at yb The critical observation regarding the evolution of y is that when y

approaches yb, it approximately follows a Bessel process with a dimension δ = γ + 2 > 2. (Given a δ-dimensional

Brownian motion Z, a Bessel process with a dimension δ is the evolution of ‖Z‖ =
qPδ

i=1 Z
2
i , which is the Euclidean

distance between Z and the origin.) According to standard results on Bessel processes, yb is an entrance-no-exit point,

and is not reachable if the starting value y0 < yb (if δ > 2). Intuitively, when y is close to yb, the dominating part of

µy is proportional to 1
y−yb

< 0, while the volatility σy is bounded— therefore a drift that diverges to negative infinity

keeps y away from the singular point yb. This result implies that our economy never hits yb.
To show that for y close to yb, y’s evolution can be approximated by a Bessel Process, one can easily check that

when y → yb,

r ' − (γ + 1) σ2

2

ρhθ̂bG

1 + l − ρhy
, µy ' − (γ + 1) σ2

2

ρhθ̂2bG
2

1 + l − ρhy
, σy = −Gσθ̂b;

and therefore

dy = − (γ + 1)σ2

2

ρθ̂2bG
2

1 + l − ρy
dt− Gσθ̂bdZt.

Utilizing the result F ′
`
yb
´

= 1 established in Section A.3, we know that when y → yb, θ̂b ' F − θsy ' 1
1+m

yb =
1

1+m
1+l
ρ

, and G ' 1 +m. Let
xt = 1 + l − ρyt;

then it is easy to show that q = x

Gσθ̂bρ
= x

σ(1+l)
evolves approximately according to

dq = − 1

Gσθ̂b

dy =
(γ + 1)

2q
dt+ dZt,

which is just a standard Bessel process with a dimension δ = γ + 2. Therefore, x is also a scaled version of a Bessel

process, and can never reach 0 (or, y cannot reach yb). In the following analysis, we focus on the limiting behavior

of x.

Step 2: Localization Note that in (29), due to the singularity at x = 0 (or, y = yb), both the local martingale

part
R T

0
σ (Dt, yt) dZt and the terminal wealth part ξTDT (FT − yT ) are not well-behaved. To show our claim, we

have to localize our economy, i.e., stop the economy once y is sufficiently close to yb (or, once D is sufficiently close
to 0). Specifically, we define

Tn = inf


t : xt =

1

n
or Dt =

1

nh

ff

where h is a positive constant (as we will see, the choice of h, which is around 1, gives some flexibility for γ other

than 2). Since y and x have a one-to-one relation (x = 1 + l − ρy), for simplicity we localize x instead.

Clearly this localization technique ensures that the local martingale part
R Tn

0
σ (Dt, yt) dZt is a martingale (one

can check that σ (Dt, yt) is continuous in Dt and yt, in turn Dt and xt; therefore σ (Dt, yt) is locally bounded). As
Tn → ∞ when n→ ∞, for our claim we need to show

lim
n→∞

E [ξTn
DTn

(FTn
− yTn

)] = 0

We substitute from the definition of ξ:

E
h
e−ρTnD1−γ

Tn
x−γ

Tn
(F (yTn

) − yTn
)
i
≤ E

h
e−ρTnnh(γ−1)x−γ

Tn
(F (yTn

) − yTn
)
i
.

Since the analysis will be obvious if x−γ (F (y) − y) is uniformly bounded (notice here x = 1+ l−ρy), it is sufficient to

consider xTn
= 1

n
. Because F

`
yb
´

= yb and F ′
`
yb
´

= 1, by Taylor expansion we know that F
“
yb − 1

nρ

”
−
“
yb − 1

nρ

”

56



can be written as ψ (n) 1
n

when n is sufficiently large, and ψ (n) → 0 as n→ ∞. Therefore we have to show that, as
n→ ∞,

E
h
e−ρTnn(γ−1)(1+h)

i
ψ (n) → 0

and a sufficient condition is that,

E
h
e−ρTn

i
n(γ−1)(1+h) → K

where K is bounded.
We apply existing analytical results in the literature to show our claim. To do so, we have to separate our two

state variables. We define

TD
n = inf


t : Dt =

1

nh

ff
, Tx

n = inf


t : xt =

1

n

ff
.

We want to bound E
ˆ
e−ρTn

˜
by the sum of E

h
e−ρTD

n

i
and E

h
e−ρTx

n

i
; note that they are Laplace transforms of the

first-hitting time distribution of a GBM and Bessel processes, respectively. The Laplace transform of Tn is simply

E
h
e−ρTn

i
=

Z
∞

0

e−ρTdF (T ) = ρ

Z
∞

0

e−ρT
F (T ) dT,

where the bold F denotes the distribution function of Tn. The similar relation also holds for TD
n or Tx

n . Denote FD (·)
(or Fx (·)) as the distribution function for TD

n (or Tx
n ), and notice that

1 −F (T ) = Pr (Tn > T ) = Pr
“
TD

n > T, Tx
n > T

”
> Pr

“
TD

n > T
”

Pr (Tx
n > T )

= 1− F
D (T ) −F

x (T ) + F
D (T ) F

x (T ) ,

because 1{TD
n

>T} and 1{Tx
n

>T} are positively correlated (both take the value 1 when Z is high).18 Therefore

F (T ) < FD (T ) + Fx (T ), or

E
h
e−ρTn

i
n(γ−1)(1+h) < E

h
e−ρTD

n

i
n(γ−1)(1+h) +E

h
e−ρTx

n

i
n(γ−1)(1+h)

Using the standard result of the Laplace transform of the first-hitting time distribution for a GBM process, we can

easily verify that as n → ∞, the first term E
h
e−ρTD

n

i
n(γ−1)(1+h) vanishes under our parameters when h = 0.9 (in

fact, this relates to the parameter restriction for a standard GBM/CRRA economy).

Step 3: Regulated Bessel Process The challenging task is the second term. Notice that our economy (i.e.,

evolution of x) differs from the evolution of a Bessel process when x is far away from 0; therefore an extra care needs

to be taken. We consider a regulated Bessel process which is reflected at some positive constant x. Intuitively, by

doing so, we are putting an upper bound for E
h
e−ρTx

n

i
, as the reflection makes xt to hit 1

n
more likely (therefore, a

larger Fx). Also, for a sufficiently small x > 0, when x ∈ (0, x], x can be approximated by a Bessel process with a

dimension γ + 2− ε. Therefore, Fx must be bounded by the first-hitting time distribution of a Bessel process with a

dimension δ, where δ takes value from γ+2− ε to γ+2, where ε is sufficiently small. Finally, note that by considering

18Technically, using the technique of Malliavian derivatives, we can show that both xs and Ds have positive
diffusions in the martingale representations for all s. Then, the running minimum xT = min{xt : 0 < t < T} and
DT = min{Dt : 0 < t < T} have positive loadings always on the martingale representations (using the technique in
Methods of Mathematical Finance, Karatzas and Shreve (1998), Page 367). The same technique can be applied to
1{Tx

n
>T} = 1{x

T
>T} and 1{TD

n
>T} = 1{D

T
>T}, as an indicator function can be approximated by a sequence of

differentiable increasing functions.
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a Bessel process we are neglecting certain drift for x. However, one can easily check that when x is close to 0, the

adjustment term for µy is − 1+l
ρ
γσ2 < 0. This implies that we are neglecting a positive drift for x—which potentially

makes hitting less likely—thereby yielding an upper-bound estimate.

We have the following Lemma from the Bessel process.

Lemma 1 Consider a Bessel process x with δ > 2 which is reflected at x > 0. Let ν = δ
2 − 1. Starting from x0 ≤ x,

we consider the hitting time Tx
n = inf

˘
t : xt = 1

n

¯
. Then we have

E
h
e−ρTx

n

i
∝ n−2ν

as n→ ∞

Proof. Due to the standard results in Bessel process and the Laplace transform of the hitting time (e.g., see Borodin
and Salminen (1996), Chapter 2), we have

E
h
e−ρTx

n

i
=
ϕ (x0)

ϕ
`

1
n

´ ,

where
ϕ (z) = c1z

−νIv

“p
2ρz
”

+ c2z
−νKv

“p
2ρz
”
,

and Iv (·) (and Kv (·)) is modified Bessel function of the first (and second) kind of order v. Because R is a reflecting
barrier, the boundary condition is

ϕ′ (x) = 0,

which pins down the constants c1 and c2 (up to a constant multiplication; notice that this does not affect the value

of E
h
e−ρTx

n

i
). Therefore the growth rate of E

h
e−ρTx

n

i
is determined by nνKv

`√
2ρn−1

´
as Kv dominates Iv near

0. Since Kv (x) has a growth rate x−ν when x→ 0, the result is established.
For any y0, redefine starting point as x0 = min (1 + l − y0, x); clearly this leads to an upper-bound estimate for

E
h
e−ρTx

n

i
. However, since for all δ ∈ [γ + 2 − ε, γ + 2], the above Lemma tells us that for any ε ∈ [0, ε], when n→ ∞,

n(γ−1)(1+h)E
h
e−ρTx

n

i
∝ n(γ−1)(1+h)n−2ν = n(γ−1)(1+h)−γ+ε → 0

uniformly if γ = 2 and h = 0.9 (and for some sufficiently small ε > 0). Therefore we obtain our desirable result.

Finally ctξt > 0 implies that
R

∞

0
ctξtdt converges monotonically, and therefore the specialist’s budget equation

lim
T→∞

E
R T

0
ξtctdt = ξ0D0 (F0 − y0) holds for all stopping times that converge to infinity. Q.E.D.

C Government Debt

Goverment debt outstanding at t is Bt = max (0, bDt (yt − y∗)). In the region of yt > y∗, Bt = bwh
t − bDty

∗, and the
tax paid by households is

τt = bwh
t rtdt− bDty

∗rtdt − bd
“
wh

t

”
+ by∗dDt.

Substituting into the household’s budget equation, dwh = θsdP +Dθsdt+ rtθbdt+ lDdt− ρwh
t dt − τt, we find:

σy = −
bθb − b (y − y∗)

1− b− θsF ′
σ

µy =
1

1 − b− θsF ′

„
θs + l +

`
r + σ2 − g

´ “bθb − b (y − y∗)
”
− ρy +

1

2
θsF

′′σ2
y

«
.
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The ODE remains the same as before (equation (17)); after substituting for µy and σy, and collecting the terms, we
arrive at the final ODE:

G′ (θ̂b − b (y − y∗))2σ2

2

G

θsF

0
@ (1 + l) (1 − b) + ρy(γ − 1) (1 − b) + ργby∗

1 + l− ρy + ργG
“
θ̂b − b (y − y∗)

”

1
A

= ρ+ g(γ − 1) − 1

F
+

γ (1 − γ) σ2

2

0
@1 +

ρG
“
θ̂b − b (y − y∗)

”

1 + l − ρy

1
A

(1 − b) y − (1 − b)G
“
θ̂b − b (y − y∗)

”
+ by∗

θsF

2
4

1 + l− ρy − ρG
“
θ̂b − b (y − y∗)

”

1 + l− ρy + ργG
“
θ̂b − b (y − y∗)

”

3
5

−
„

(1 + l − ρy) ((1− b)G− 1)

θsF
+ γρG

« θs + l+
“
θ̂b − b (y − y∗)

”
(g(γ − 1) + ρ) − ρy

1 + l − ρy + ργG
“
θ̂b − b (y − y∗)

” ,

where G(y) ≡ 1
1−b−θsF ′

again. Clearly this is for y > y∗; when y < y∗, we can simply set b = 0.
Now we derive the boundary conditions. For y = 0, the same boundary condition (20) as without government

debt applies. When y = 1+l
ρ

, the specialist’s wealth is zero, and we must have

1 + l

ρ
= F

„
1 + l

ρ

«
+ b

„
1 + l

ρ
− y∗

«
,

where the LHS is the total wealth in this economy. This implies that F
“

1+l
ρ

”
= 1+l

ρ
(1 − b) + by∗.

Finally, in the numerical solutions we focus on the case where yc > y∗, i.e., the government issue some public
debt before the capital constraint is binding. Therefore, the capital constraint binds when (1 − λ)wh = mw =
m
`
P − wh + b

`
wh −Dy∗

´´
, and this implies,

yc =
m (F c − by∗)

1 − λ+m (1 − b)
.
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