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Abstract

By reinterpreting the symbols, one-period mean-variance portfolio theory can apply to
dynamic intertemporal problems in incomplete markets, with non-marketed income. In-
vestors first hedge non-traded income and preference shocks. Then, their optimal payoffs are
split between an indexed perpetuity and a “long-run mean-variance efficient” payoff, which
avoids variation over time as well as variation across states of nature. In equilibrium, the
market payoff and the average outside-income hedge payoff span the long-run mean-variance
frontier, and long-run expected returns are linear functions of long-run market and outside-
income-hedge betas. State variables for investment opportunities and outside income are
conveniently absent in these characterizations.
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1 Introduction

This paper studies long-horizon portfolio problems. I allow asset return dynamics, dynamic
trading, non-market income, and preference shocks. Markets are incomplete, meaning that
investors may not be able completely to hedge outside income or state-variable shocks. I mix
three ingredients: First, I focus on the optimal stream of final payoffs or dividends, rather than
focusing on the dynamic trading strategy that delivers those payoffs. Second, I characterize
available asset payoffs by first constructing a discount factor or contingent claims price vector,
following Cox and Huang (1989), or, ultimately, Arrow and Debreu (1954). Most importantly,
I use the mean-variance approach that is so useful in one-period problems to characterize the
dynamic problem with incomplete markets.

The basic idea is simply to treat time and probability symmetrically. I define an “expecta-
tion” that sums over time as well as states of nature, for example

E(x) ≡ 1− β

β
E

∞X
t=1

βtxt. (1)

Thus, I write the price of a security given a scaled discount factor mt and a payoff (dividend
and purchase or sale) stream xt

p(x) = E
∞X
t=1

βtmtxt =
β

1− β
E(mx).

With this notation, we can transparently apply all of asset pricing and portfolio theory that
naturally flows from p = E(mx) in two-period models to a multi-period environment, by simply
replacing E with E and reinterpreting the symbols.

Applying this idea to portfolio theory, the familiar ideas from two-period mean-variance
analysis apply to the optimal payoff stream in a dynamic intertemporal setting. With no
outside income, the investor obtains a payoff on the “long-run mean-variance frontier.” The
long-run frontier is defined using E and payoffs to a one dollar investment in the place of E and
one-period returns. Long-run variance prizes stability over time as well as stability across states
of nature.

If all investors are of this type, the market payoff, which is a claim to the aggregate consump-
tion stream, is also on the long-run mean-variance frontier. Then, each investor’s optimal payoff
is a linear combination of an indexed perpetuity and the market payoff, weighted more to the
former if the individual’s risk aversion is small relative to average risk aversion and vice-versa.
A long-run CAPM holds: each assets’ long-run expected return is proportional to its long-run
beta.

This characterization is particularly simple because state variables do not appear, even
though there are time-varying investment opportunities and unspanned shocks. The dynamic
portfolio that achieves a long-run mean-variance payoff may have such loadings. It may load
more heavily on securities at times when they have high average returns, just as the one period
portfolio loads more heavily on securities with higher average returns, and it may load on se-
curities that can hedge such shifts in investment opportunities. But this variation in portfolio
weights is just a means to the end, the long-run mean-variance efficient payoff, not the end
itself.
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When investors have outside income, we can define an outside-income hedge payoff by a
long-run regression, i.e. using moments E , of the outside-income stream on the set of available
payoffs. Then, the investor wants a long-run mean-variance efficient “total payoff,” composed
of his asset market payoff and the hedge payoff he holds implicitly by his ownership of the
outside income stream. Equivalently, he holds a short position in the hedge payoff, plus a long-
run mean-variance efficient asset payoff, or he distorts his asset payoffs away from the long-run
mean-variance efficient payoff in a way that that recognizes the riskfree, priced, and idiosyncratic
components of his outside-income hedge payoff.

In a market of such investors, each individual holds a payoff that combines the market payoff,
and a payoff consisting of the difference between his and the average outside-income hedge payoff.
Investors with average outside income and risk aversion just hold the market, despite dynamics
in returns and the presence of outside income. Investors with no outside income sell the average
outside income hedge payoff. A long-run multifactor model emerges: long-run expected returns
are proportional to long-run market betas and long-run betas of the asset payoff with respect
to the average outside-income hedge payoff.

Again, this characterization is simple because of all the things that are absent. State
variables for individual or aggregate outside income streams are absent, for the same reasons
that state variables for investment opportunities are absent. Such state variables can matter
in constructing the portfolios that support the hedge payoffs, but they do not matter in this
characterization of the actual optimal payoffs. Outside income itself, of course, remains in the
description of the optimal payoff, but in a simple way. We just add or subtract its hedge payoff,
constructed by long-run regression. Background risk effects are absent. Agents who have to
hold an unspanned component of outside income risk may, in general, act in a more risk-averse
manner. This effect is absent in this long-run mean-variance setting as it is absent in one-period
mean-variance settings.

Why is this interesting?

Dynamic portfolio theory is important. The fact that returns are not i.i.d. means that “long-
run” and “short-run” investors may opt for different strategies, that asset demands may reflect
hedging motives, and that investors may follow dynamic strategies to exploit time-variation as
well as cross-sectional variation in asset return moments. These effects are potentially large.

Dynamic portfolio theory is hard. To cite one example, consider the question of how one
should optimally invest in a stock index vs. a riskfree rate, given that index returns are pre-
dictable from variables such as dividend-price ratios. This classic simple Merton (1969, 1971a)
problem has been attacked by Kim and Omberg (1996), Brennan, Schwartz and Lagnado (1997),
Campbell and Viceira (1999), Barberis (2000), Brennan and Xia (2000, 2002), Wachter (2002),
Sangvinatsos and Wachter (2005), Liu (2007), and many others. These papers are technically
complex, and yet there is no closed-form solution for the simple benchmark case of power utility,
an infinitely lived investor and imperfect hedging of the forecasting variable shock.

In this context, we can still very easily characterize optimal payoffs, as above, without
deriving the portfolio strategy that supports those payoffs. The standard dynamic-programming
approach must solve both problems at once, and the strategy problem is typically much harder.
In addition, the dynamic-programming approach requires us to re-solve the whole problem every
time a different asset is added to the mix.
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Separating the economic characterization of the final payoffs from the technical or financial-
engineering problem of constructing a portfolio that achieves those payoffs is really a central
success of classical portfolio analysis. Though Markowitz (1952) derived the mean-variance
frontier more than 50 years ago, we still have no settled way to actually compute that frontier.
It is a difficult problem, resulting from the difficulty of estimating large covariance matrices,
saying anything at all about mean returns, and dealing with parameter uncertainty and drift.
Computation is approached differently for different asset classes, trading restrictions, data sets,
time horizons, conditioning information sets, parameter knowledge, and all the other peculiarities
of a given application. Much of the alpha-touting high-fee money management industry amounts
to selling one or another solution to this problem. Classical mean-variance analysis brilliantly
declares victory and goes home just before this hard part begins. My aim is simply to extend
the same useful conceptual framework to intertemporal problems.

The final-payoff view of portfolio theory can also offer clearer intuition. For example, when
one examines payoffs it is immediately obvious that a 10 year zero-coupon real bond is the riskless
asset for an investor with a 10 year horizon, or that an indexed perpetuity is the riskless asset for
an infinitely-lived investor. In the standard Merton (1969, 1971a) intertemporal approach we
instead think of these as assets that just happen to hedge changes in their investment opportunity
sets: long bond prices go up when interest rates go down. It takes work for Campbell and Viceira
(2001) and Wachter (2003) to prove what seems obvious by inspection of the payoffs.

The final-payoff view of dynamic intertemporal portfolio theory, the analogy between static
and dynamic optimization emphasized by my notation E(x) in (1), and the potential to charac-
terize final payoffs quickly without solving for the dynamic strategy that supports them, are of
course well known in finance since the work of Cox and Huang (1989), He and Pearson (1991),
He and Pagès (1993), Schroder and Skiadas (1999), and many others. The theoretical advan-
tages of this approach have not as yet been of widespread practical use in incomplete-market
setups, however, because of the difficulty of finding which of the infinite number of potential
discount factors results in a tradeable payoff. (Sangvinatsos and Wachter (2005) is a notable
exception.) Restricting attention to linear marginal utility underlying mean-variance analysis
avoids this central problem. Portfolio formation is a linear operation, so once we find a traded
discount factor, which is on the long-run mean-variance frontier, we know it is the correct dis-
count factor for the portfolio problem. Classical mean-variance analysis has always handled
market incompleteness transparently, and my extension handles it transparently in the same
way.

Expressing portfolio theory in terms of the market payoff is an especially useful discipline.
Most portfolio theory seems to apply to everyone. But the average investor must hold the
market, so any advice given to A must be mirrored in the opposite advice given to B. If not, the
market equilibrium underlying the advice must change as soon as any measure of A investors
take the advice. Investors can’t all be smarter than average either. Phrasing portfolio advice in
terms of deviations from the market portfolio, driven by deviations of the investor from average,
along a described dimension of heterogeneity, helps to preserve portfolio advice from this Catch-
22. It also may be of practical use. Investors may not be able to answer well “what’s your risk
aversion?” but they may be able to answer “are you more or less risk averse than the average
investor?”

Incorporating outside income into portfolio theory is important. Real investors have houses,
jobs, businesses, or other non-market income and assets. These investors should start by
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hedging non-marketed risks. They should short the zero-price, zero-premium payoff closest to
non-marketed income, reducing overall risk for free. Then, they should adjust their asset payoffs
to reflect the priced components of non-marketed income. The classic case that labor income
looks like a bond moves the optimal asset portfolio to stocks, at least until retirement. Investors
whose human capital is correlated with value returns should shun value stocks, despite their
premium. Fama and French (1996) attribute the value premium to this effect.

Strangely, though it has been included almost from the start in portfolio theory, hedging
non-market income is as rare as hedging state variables in practice. Steel workers, and their
pension funds, do not short the Steel industry portfolio, or even the Auto industry. One would
expect a class of money managers to have emerged that developed expertise in this hedging,
understanding portfolios of traded assets that can hedge common sources of outside income,
and selling these individual-specific tailored-portfolio services for fees. This has not happened.
Academic research in asset pricing has focused almost entirely on finding “priced” factors, alphas
for the one investor who has no outside income, and has ignored finding and characterizing non-
priced factors that, by providing free insurance, are potentially the most important for typical
investors.

Incorporating outside income is also hard, especially when markets are incomplete, and
perhaps this is why it is overlooked. Outside income not likely to be i.i.d., so state variables
need to be hedged. The optimal portfolio is peculiar to each investor, and we have to find
asset portfolios that reliably hedge a useful fraction of outside-income volatility. Most of all,
we can observe the stream of outside income, but we cannot easily observe its value. To apply
standard return-based portfolio theory, one has to turn the income stream into a price. For
example, Jagannathan and Wang (1996) assume an AR(1) labor income process and a constant
discount rate, so that labor income growth measures human capital returns. However, price
changes dominate high-frequency asset returns, and most asset price changes result from discount
rate changes or changes in otherwise unobserved earnings forecasts. This procedure would not
do a very good job of estimating stock returns from the stock dividend stream, so one may
question whether it does a good job for labor income. (The AR(1) is not the only procedure of
course. Campbell (1996) uses multivariate forecasts and assumes that the labor income stream
is discounted at the stock expected return. Heaton and Lucas (2000b) and Davis, Kubler and
Willen (2006) include labor income and variables that forecast labor income as Mertonian state
variables in a dynamic portfolio theory, solved by dynamic programming. Still, fitting a labor
income stream into a portfolio theory based on high-frequency returns remains difficult.)

These difficulties notwithstanding, a large literature addresses the incorporation of outside
income or assets such as housing into portfolio theory. Mirroring the difficulties of dynamic
portfolio theory, we do not have an analytic solution to the most basic problem, power utility,
lognormal i.i.d. returns, and a lognormal diffusion for outside income. (Koo (1998) and Duffie,
Fleming, Soner, and Zariphopoulou, (1997) characterize this problem.) A bit more progress
has been made with CARA utility (Svensson and Werner (1993), Teplá (2000), Henderson
(2005)), which alas is not much more realistic than quadratic. Most of the applied literature
studies numerical solutions to particular calibrations, or approximations that require numerical
evaluation in a calibrated environment to see any basic patterns. Highlights include Heaton
and Lucas (2000a), (2000b), Davis and Willen (2000), Munk (2000), Lynch (2001), Viceira
(2001), Flavin and Yamashita (2002), Yao and Zhang (2005), Lynch and Tan (2008), Benzoni,
Collin-Dufresne, and Goldstein (2007). Even here, most attention is still devoted to the simple
stock/bond and long/short bond split; characterization of which risky portfolios hedge the risky
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components of outside income is still in its infancy.

In this context, the simple long-run mean-variance benchmark can allow one to include non-
market income very easily. We can compute the required long-run covariance matrix with no
information on the values of non-market income streams, and we can construct a hedge payoff
for labor income by the long-run analogue to a simple regression. One may hope for better
performance: asset market payoffs or dividend streams may be better correlated with outside
income streams, and that correlation easier to measure, than income growth rates or imputed
values are correlated with asset returns.

Characterizing optimal dividend streams may eventually suggest a reason why stocks pay
dividends and bonds pay coupons. Consumers could in principle synthesize such securities from
dynamic trading of stocks that repurchase shares instead of paying dividends and zero-coupon
bonds. But if dividends and coupons reflect the optimal final payouts many consumers desire,
it may be less surprising that these are the basic marketed securities.

Of course mean-variance analysis is only a first step. We eventually want to know how the
nonlinearities of marginal utility and non-normality of available returns affect optimal payoffs.
Nonetheless, classical one-period mean-variance analysis continues to dominate most academic
application or extension of portfolio theory, and it dominates all practical and industry analysis,
even when long-term investors are making dynamic investment decisions involving non-normal
payoffs, such as in actively-managed mutual and hedge funds. Perhaps there is some wisdom
in the old joke about the drunk who looks for his car keys under the streetlight. My hope is
that the long-run mean-variance frontier can form an analogous simple conceptual benchmark
for dynamic intertemporal portfolio theory with incomplete markets.

As in the one-period (discrete-time) case, however, mean-variance analysis is a “benchmark,”
not an “approximation.” Long-horizon returns are potentially far from normally distributed,
and even power utility with lognormal returns can lead to optimal payoffs substantially different
from the long-run mean-variance frontier. More importantly, the long-run mean-variance char-
acterization also does not help much to compute optimal portfolios in the standard challenging
environments. Finding a traded discount factor sounds easy, but in fact it can be a problem of
the same order of complexity as solving the dynamic programs or minimax problems. This is
not its purpose. As in one-period analysis, the point of mean-variance analysis is that we are
able quickly and intuitively to characterize portfolio choice, and think about the choice between
large “funds,” even though construction of those funds remains challenging.

Additional Literature

The basic idea of treating a discounted sum as an expectation in (1) comes from Hansen
(1987), which includes an extensive analysis of asset pricing with quadratic utility. Magill and
Quinzii (2000) is the most recent paper in this line, and the one most directly related to this
paper. Magill and Quinzii also specify a quadratic utility investor, they characterize the optimal
payoff in terms of a “least variable income stream,” a concept similar to my “long-run mean-
variance frontier,” and they derive a similar long-run CAPM. Hansen and Sargent (2004) argue
in a wide variety of circumstances for the approach of this paper: study exact solutions to
problems with linear-quadratic preferences, rather than approximate or numerical solutions to
problems with more realistic preferences. Hansen and Sargent also show how to extend quadratic
specifications to include habits, recursive utility and so forth. My approach to the mean-variance
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frontier comes from Hansen and Richard (1987), also summarized in Cochrane (2004).

This work falls into two larger-scale trends in financial research. First, and at a most basic
level, the empirical finding that returns are not i.i.d., and that discount rate news rather than
cashflow news drives much price variation, requires a rewriting of most procedures in finance,
including asset pricing, corporate finance such as cost-of-capital calculations, as well as portfolio
theory. If returns and outside income were i.i.d. there would be no need for dynamic, or
long-run, portfolio theory.

Second, the focus on the payoff stream in portfolio theory mirrors a renewed interest in payoff
streams and long-run analysis in asset pricing more generally, for example Menzly, Santos and
Veronesi (2004), Bansal and Yaron (2004), Hansen Heaton and Li (2005), Bansal, Dittmar and
Lundblad (2005), Lettau and Wachter (2007), Gabaix (2007) and many others. Return betas
are driven by the comovement of tomorrow’s price with factor prices, and we now attribute much
price movement to discount rates rather than cash flows. Beta is therefore largely endogenous,
and so makes less sense as the central explanatory variable. These authors try instead to
account for prices based on long-run cash flow streams. One can foresee a day when prices are
our central endogenous variable, not an ad-hoc sorting characteristic (book/market ratio), in
which the stream of cashflows is the central exogenous variable, and when one-period returns
are barely mentioned; that we will treat stocks as we now do bonds. This approach is nothing
new from a pure theory point of view; we have been able to write pt = Et

P∞
j=1mt+jDt+j as

long as we have been able to write 1 = Et(mt+1Rt+1). The challenge these authors are facing,
and to which this paper makes a small contribution, lies in specifying workable applications.

2 Asset pricing environment

This section sets up notation to think about dynamic intertemporal portfolio problems in analogy
to one-period problems, by treating date and state symmetrically, and interprets the resulting
quantities.

2.1 Payoffs, prices, and discount factor

x denotes a payoff. In a one-period setting, the payoff is the amount x1 that an investor receives
at date 1, in each state of nature, for a time-zero price p0. In an intertemporal setting, the payoffs
are the streams of dividends {x1, x2, ...}, or {xtdt} in continuous time, resulting from an initial
purchase. (The appendix summarizes notation.)

Returns are price-one payoffs. We can form returns by dividing a payoff by its initial price,

yt = xt/p({xt}),

where p(·) means “price of.” In the intertemporal setting, the “return” to a particular date —
the dividends or coupons accruing to a one-dollar purchase — has the units of a yield, or coupon
rate; it is a number like 0.04 not 1.04. I use the notation y and the word “yield” rather than
the word “return” to help keep the typical units in mind.

In a one period model, the risk free asset pays one unit in each state. The natural risk free
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payoff is thus one in all states and dates, a perpetuity,

xft = 1.

The risk free yield is then naturally,

yft = 1/p({1}).

The riskfree yield is also a number like 0.01, not a number like the 1.01.

Excess yields are zero-price payoffs, which we can construct by differencing any two yields
or returns,

zt = y1t − y2t ; p ({zt}) = 0.

When not required for clarity, I’ll drop the time subscripts, e.g. y ≡ yt and sequence notation,
e.g. p ({xt}) = p(x).

I use the notation E(x) to denote different operations, depending on context.

one period: E(x) ≡ 1

β
E(βx1)

intertemporal, discrete: E(x) ≡ 1− β

β
E

∞X
t=1

βtxt

infinite period, continuous: E(x) ≡ ρE

Z ∞
0

e−ρtxtdt.

One can similarly write environments with a terminal date T and with a separate terminal
payment.

The E operator takes a sum over time, weighted by βt or e−ρt, as well as a sum over states,
weighted by probability. Weighting is not essential, but it allows us to produce finite values
for a larger set of payoff processes in an infinite-period environment. It will be useful, but not
necessary, to pick β or ρ as an agent’s subjective discount factor. One can substitute more
general weighting functions. With the square-integrable assumption (2) below, E(xy) is an
inner product, defining a Hilbert space as in Hansen and Richard (1987) and Magill and Quinzii
(2000). Then, we can think of dividend streams x as vectors and E(xy) as an inner product.

I call E(x) the “long run mean” and I call σ̃2(x) ≡ E(x2)− [E(x)]2 = E
£
(x− E(x))2

¤
the

“long run variance” of the payoff stream xt. The “variance” concept prizes stability over time
as well as stability across states of nature. A variable xt that varies deterministically over time
still has long-run variance.

With this notation, I write the fundamental pricing equation as p = kE(mx), meaning

one period: p0 = βE(m1x1) = E(βm1x1)

intertemporal, discrete: p =
β

1− β
E(mx) = E

∞X
t=1

βtmtxt

intertemporal, continuous : p =
1

ρ
E(mx) = E

Z ∞
0

e−ρtm(t)x(t)dt,

where mt is a stochastic discount factor. (More precisely, it is the discount factor scaled by
the weighting function; mt is u0(ct) not βtu0(ct).) The appearance of the constant k in the
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fundamental pricing equation is inelegant. However, we gain more in convenience by defining
“long run mean” with weights that sum to one than we lose by introducing this constant in the
pricing equation. Nothing essential is affected by the choice of notation.

X denotes the payoff space of all payoff streams that investors can buy, Y denotes the set of
price-one returns or yields, and Z denotes the set of price-zero excess returns or yields,

Y ≡ {y ∈ X : p(y) = 1} ,

Z ≡ {z ∈ X : p(z) = 0} .

In many circumstances, I limit the payoff space X to include only square-integrable payoffs

E(x2) <∞, (2)

In an infinite-period model, this requirement limits us to payoffs that do not grow too fast, i.e.
that do not vary too much over time, as well as limiting variance in the usual sense.

I let investors buy any portfolio of payoffs, which means that X and Z are closed under
linear combinations,

x1, x2 ∈ X → ax1 + bx2 ∈ X. (3)

In an intertemporal context, we also want to allow dynamic trading, or equivalently we want
to allow entrepreneurs to sell payoffs to managed portfolios. If {xt} ∈ X, we also allow

{x0, ..., xt−1, xt + pt(x)} ∈ X (4)

{0, ....− pt(x), xt+1, xt+2...} ∈ X. (5)

In continuous time, with a set of assets with excess return process dret and riskfree rate r
f
t we

allow payoffs xt generated by

dVt =
³
rft Vt − xt

´
+ w0tdr

e
t .

As usual, I limit dynamic trading so that the investor cannot generate arbitrage opportunities.
The time-zero value of wealth must tend to zero, limT→∞ p(WT ) = 0, and the size of trading
weights must be limited. (See for example Duffie (2001).) The restriction (2) can further limit
dynamic trading. Since the limitations on dynamic trading do not appear in any of my analysis,
this discussion intentionally omits the substantial technical details.

I do not assume that the payoff space X is complete, meaning that every random variable
x, or even every variable with E(x2) < ∞, can be traded. I explicitly allow for two sources of
incompleteness: the investor may have a labor or business income stream that cannot be com-
pletely hedged with traded assets, and there may be state variables for investment opportunities
whose shocks cannot be spanned by those of traded assets.

I assume that prices and payoffs follow the law of one price, or linearity,

p(ax1 + bx2) = ap(x1) + bp(x2). (6)

It is useful to construct a stochastic discount factor that is also a traded payoff. The standard
conditions (Hansen and Richard 1987) on the payoff space X that guarantee the existence of
such a discount factor can apply in this context as well. First, payoffs must have finite long-run
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variance as in (2). Second, we need to assume that investors can form arbitrary payoffs (3) and
that the law of one price or linearity of the pricing function (6) holds. Third, the payoff space
must be “complete” in the sense that if a sequence of payoffs is in X and converges, its limit
point must also be in X. (“Convergence” here uses E(x2) as a norm.) With these assumptions,
we can guarantee that there is a unique discount factor x∗ in the payoff space, i.e.

∃x∗ ∈ X : p = kE (x∗x) .

x∗ is a dividend stream that acts as a discount factor process, i.e.

p(x) = E
∞X
t=1

βtx∗txt or p(x) = E

Z ∞
0

e−ρtx∗txtdt.

The standard proof1 by Riesz representation theorem then applies.

The conditions for this theorem are actually somewhat restrictive, and the conclusion and
web-appendix explore some common setups in which they are violated. (Most of the trouble
involves growth in infinite-period settings.) However, these are only sufficient, not necessary
conditions for a traded discount factor. For example, short sale constraints imply a violation
of the portfolio assumption (3) and the completeness assumption. A discount factor that is a
linear function of asset payoffs may require negative weights and thus may not be tradeable.
But then again, it might not require negative weights; we might get lucky and we might be
able to construct a traded discount factor anyway, perhaps for a restricted range of parameters.
Similar luck can happen in the infinite-period settings that cause problems here.

When there is a finite vector of basis payoffs x with prices p, and ignoring dynamic trading
beyond what is included in the basis assets (the basis payoffs may themselves be payoffs from
managed payoffs), so the payoff space is X = {c0x}, the usual discount factor construction
applies. The payoff

x∗ =
1

k
x0E(xx0)−1p (7)

is a discount factor, i.e. it satisfies p = kE(x∗x).

As the notation suggests, we can use the E operator to define long-run projections proj(·|X)
and long-run regressions. A long run regression y = xb+ ε; b = E(xx0)−1E(yx) is a regression of
one dividend stream against another, and prizes a fit over time as well as across states of nature.

2.2 Mean-Variance Frontier

The long-run mean-variance frontier consists of payoffs that solve

min
{y∈Y }

E(y2) s.t. E(y) = μ.

I follow the Hansen-Richard (1987) approach (see also Cochrane (2004)), which makes clear the
intimate link between marginal utility, mean-variance frontiers, and discount factors, but the
familiar Lagrangian minimization works just as well when the payoffs are created from a finite
set of basis assets. The frontier is generated as

ymv = y∗ + wz∗. (8)

1Ross (1976) first proved the basic theorem, and Cochrane (2004) presents a simple textbook discussion. See
Hansen and Richard (1987) for the completeness assumption, which turns out to matter in these applications.
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Here, y∗ is defined by

y∗ =
x∗

p(x∗)
=

x∗

kE(x∗2) , (9)

and z∗ is defined by
z∗ = proj(1|Z). (10)

z∗ is the excess return “closest” to the perpetuity payoff.

y∗ and z∗ have the usual properties from the one period case, suitably reinterpreted. y∗ is
the discount-factor mimicking yield. For any discount factor m, we have x∗ = proj(m|X) and
then (9). y∗ is the minimum long-run second moment yield,

y∗ = arg min
{y∈Y }

E(y2).

Since y∗ is proportional to x∗ it can be used to price other payoffs—any mean-variance efficient
return carries pricing information:

E(y∗y) = E(y∗2) ∀y ∈ Y .

An explicit formula for the finite-basis case follows from (7) and mimics the standard formulas
for one-period mean-variance frontier returns:

y∗ =
10E(yy0)−1y
10E(yy0)−11 . (11)

z∗ generates long-run means in the same way that x∗ generates prices,

E(z) = E(z∗z) ∀ z ∈ Z. (12)

Since z∗ is a price-zero excess yield, y∗ and z∗ are orthogonal, E(y∗z∗) = 0. If a riskfree yield is
traded (1 ∈ X) then z∗ is simply

z∗ =
yf − y∗

yf
. (13)

One can avoid risk-free rate and inflation issues by focusing on the mean-variance frontier of
excess yields,

min
{z∈Z}

E(z2) s.t. E(z) = μ.

This frontier is generated simply by

zmv = wz∗, w ∈ <.

When there is a riskfree rate, we can compute z∗ by (13). With a finite set of basis assets,
we can also calculate z∗ analogously to the calculation (7) of y∗:

z∗ = E(z)0E (zz)−1 z (14)

where z is a vector of excess yields.

All of these results can be derived by following exactly the Hansen-Richard (1987) approach
in two-period models, but using E in the place of E. We show that any yield (return) can be
written as yi = y∗ + wiz∗ + ηi, with E(ηi) = 0, E(ηiy∗) = 0, E(ηiz∗) = 0. The mean-variance
frontier is then the set of yields with ηi = 0.

Of course one can span the frontier with any other two returns as well, and one can extend any
standard characterization of the mean-variance frontier to the long-run mean variance frontier
by using moments E in the place of moments E.
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2.3 Expected returns and betas

As in one-period asset pricing, we can connect discount factors, asset pricing, mean-variance
frontiers, and expected return-beta models. I write here the case with a traded risk-free yield.
First, we can write the fact that x∗ is a discount factor as a single-beta representation for
long-run expected yields. For any yield i,

E(yi)− yf = β̃i,x∗λx∗ ; or E(zi) = β̃i,x∗λx∗

Second, we can use any long-run mean-variance efficient yield ymv in such a representation, i.e.,

E(yi)− yf = β̃i,mv

h
E(ymv)− yf

i
. (15)

β̃ denotes a long-run regression coefficient, i.e. defined using long-run moments E . Of course,
the numbers, units and definition of moments are entirely different in the long run case.

Derivation. The derivation simply parallels standard derivations in one-period mod-
els. Denote zi = yi − yf . Then,

0 = E(x∗zi) = E(x∗)E(zi) +gcov(x∗, zi)
E(zi) =

gcov(x∗, zi)
σ̃2(x∗)

µ
− 1

E(x∗) σ̃
2(x∗)

¶
= β̃i,x∗λx∗ .

Second, decompose any yield into three orthogonal components,

yi = yf + wi
³
yf − y∗

´
+ ηi; E(ηi) = 0; p(ηi) = 0; E(ηiy∗) = 0 (16)

Choose any mean-variance efficient yield except yf as reference,

ymv = yf + wmv
³
yf − y∗

´
.

Now we can can rewrite (16) as

yi = yf +
wi

wmv

³
ymv − yf

´
+ ηi

The residual is orthogonal to the right hand variable, so this is a long-run regression
with

β̃i,mv = wi/wmv.

Equation (15) follows.

3 Portfolio problems

An investor has initial wealth W , a stream of labor or business income e = {et}, and he can buy
payoffs x = {xt} ∈ X at prices p. I assume no arbitrage in the available prices and payoffs, so
there is a discount factor m that satisfies p = kE(mx). The investor’s problem is then

max
{x∈X}

E [u(c)] s.t. W = kE(mx), c = e+ x. (17)

12



As a reminder, we interpret these familiar-looking symbols as long-run portfolio problems,
for example

max
{xt∈X}

E
∞X
t=1

βtu(ct) s.t. W = p({xt}) = E
∞X
t=1

βtmtxt; ct = et + xt,

or

max
{xt∈X}

E

Z ∞
t=0

e−ρtu(ct)dt s.t. W0 = p({xt}) = E

Z ∞
t=0

e−ρtmtxtdt; ct = et + xt.

I have simplified the notation by using the subjective discount factor as the time-weighting
function in E , but clearly nothing essential hinges on this choice.

The first-order conditions state that at an optimum x̂,

u0(x̂+ e) = λm. (18)

Marginal utility is proportional to a discount factor, i.e. for all x ∈ X,

p = kE
∙
u0(x̂+ e)

λ
x

¸
.

Inverting (18), the solution to the portfolio problem is characterized by

x̂ = u0−1(λm)− e. (19)

The payoff (19) has a simple intuition: The investor consumes more c = x̂+ e in “cheap” (low
m) states and dates, and less in “expensive” (high m) states and dates, with u0−1 dictating
how much or little to respond to this relative date- and state-price. The traded payoff x̂ simply
offsets the effects of outside income e. The Lagrange multiplier scales consumption up and down
to match initial wealth W .

If markets are complete, the discount factor m = x∗ ∈ X is unique, traded, and therefore
often easy to find. Every payoff is traded, so the construction (19) satisfies the constraint x̂ ∈ X.
Hence, all we have to do is find the Lagrange multiplier λ to satisfy the initial wealth constraint.

I focus on the more interesting case that markets are not complete. Now, condition (19) is
necessary, but not sufficient. There are many discount factors that price assets, and for only one
of them is the inverse marginal utility in the space of traded payoffs X. To solve this problem,
I specialize to quadratic utility, so that marginal utility is linear. The payoff space X is closed
under linear transformations (portfolio formation, equation (3)), so once we construct the traded
discount factor x∗, we know that the inverse image of x∗ ∈ X is guaranteed also to be in the
space of payoffs X, and this is the optimal payoff. Though stated with no outside income, this
logic extends to outside income, as we’ll see in a moment.

Analytically, I specialize to

u(ct) = −
1

2
(cbt − ct)

2. (20)

cbt is a potentially time-varying stochastic bliss point. A time-varying or stochastic preference
shift, represented here by a bliss point, may help to provide more realistic answers, for example
by accommodating growth, life-cycle and household-composition effects, or to give a better
approximation to nonlinear utility functions.

13



The optimal portfolio is then characterized by

Proposition 1. The optimal payoff for the investor (20) is given by

x̂ =
³
ĉb − ê

´
−
h
p(ĉb − ê)−W

i
y∗, (21)

where the hedge payoffs ĉb, ê are the projections of the preference shock and outside income on
the set of traded payoffs, e.g.

ĉb ≡ proj
³
cb|X

´
, ê ≡ proj (e|X) (22)

W is initial financial wealth, y∗ is the discount-factor mimicking and minimum second-moment
yield (9).

Derivation. With the quadratic utility function (20), the first order condition (18)
reads

cb − x̂− e = λm.

Solving for x̂ and projecting both sides on the set of traded assets X yields

x̂ = −λx∗ + ĉb − ê. (23)

The wealth constraint states

W = p(x̂) = −λp(x∗) + p(ĉb − ê).

Solving for λ, substituting λ in (23), and using the definition y∗ = x∗/p(x∗) we
obtain the optimal payoff (21).

The expression (21) offers a simple interpretation. (Many more will follow). The investor
starts by buying a payoff ĉb − ê that gets him as close to the bliss point as traded assets allow.
We can also think of the payoff ĉb − ê as the optimal hedge for preference shocks and labor
income risk. It is formed by a “long-run” regression of the streams cb and e on the yields or
dividend streams of the traded assets.

Typically, complete hedging is not possible. Wealth W is lower than the cost p(ĉb− ê) of the
hedge payoff. Thus, the investor shorts an optimal risky payoff y∗ in order to buy the individual
hedge payoff. y∗ is proportional to contingent claims prices, so by shorting y∗ the investor is
shorting the “most expensive” payoff, in order to generate the largest funds possible at minimum
risk. y∗ is of course on the mean-variance frontier.

In sum, each investor’s optimal portfolio is a combination of a labor income and preference
shock hedge payoff, plus an investment in a long-run mean-variance efficient yield.
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4 Yields and the market

Equation (21) is an unusual statement of a familiar result, and intuition is most of the point of
the paper, so I focus instead on the long-run version of standard statements of mean-variance
analysis. I cast results in terms of the yield (return) of the optimal portfolio; I characterize
preferences by risk aversion rather than by a bliss point; I express the optimal payoff in reference
to a mean-variance efficient payoff on the upper part of the frontier, rather than the minimum
second moment yield y∗ which is on the lower part of the frontier; I express the optimal portfolio
as a set of distortions to mean-variance efficiency induced by nontraded income and preference
shocks; and I express the optimal portfolio relative to a market yield.

4.1 No outside income or preference shocks

I start with the following special case: The preference-shock hedge payoff ĉb is constant, the
outside-income hedge payoff ê is zero, and a risk free yield yf is traded. (This case is slightly
more general than a constant bliss point and no outside income. The bliss point may vary and
there may be outside income, so long as their hedge payoffs are constant and absent, respectively.)
This classic special case simplifies the formulas a great deal, and shows the structure of the main
ideas. The more interesting case with outside income and preference shocks follows.

4.1.1 Mean-variance frontier

Proposition 2 offers a more familiar statement of a mean-variance frontier:

Proposition 2. The yield of the optimal payoff is on the long-run mean-variance frontier, with
a greater investment in risky assets for investors with lower risk aversion

ŷ = yf +
1

γ

³
yf − y∗

´
, (24)

where γ is the investor’s coefficient of risk aversion,

1

γ
≡ ĉb − yfW

yfW
. (25)

Derivation. Since ĉb is constant and a riskfree rate is traded, p(ĉb) = ĉb/yf . Then,
from (21),

x̂ = ĉb −
"
ĉb

yf
−W

#
y∗

ŷ =
x̂

W
=

ĉb

yfW
yf −

"
ĉb

yfW
− 1

#
y∗

ŷ = yf +

"
ĉb

yfW
− 1

# ³
yf − y∗

´
,

and (24) follows.
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Since y∗ as minimum long-run second-moment yield is on the lower portion of the mean-
variance frontier, expression (24) places the reference mean-variance efficient payoff on the more
familiar, upper, portion of the frontier. We see a greater investment in this risky payoff for
investors with lower risk aversion.

For quadratic utility, the risk aversion coefficient is

1

γ
≡ u0(c)

−cu00(c) =
cb − c

c
.

Thus, we interpret γ as defined by (25) as the local risk aversion coefficient, evaluated at a value
of consumption in which the investor invests all wealth in the riskfree rate. In expression (24),
risk aversion is constant through time. Only ŷ and y∗ (really, ŷt and y∗t ) vary over time. I later
define a “time-varying” risk aversion coefficient, depending analogously on wealth at time t, and
for other purposes, but this one does not vary.

With a finite set of basis assets, (14) gives us a very traditional expression of the optimal
payoff,

ŷ = yf +
yf

γ
E(z)0E

¡
zz0
¢−1

z.

In the one period case, yf = Rf ≈ 1, and E(Re2) = σ2(Re) + E(Re)2 ≈ σ2(Re) so the numbers
are similar to the continuous-time result that the risky share is Σ−1μ/γ. For long-horizons, yf

is a number near zero, and means are as or more important than variances in forming long-run
second moments, so the numbers can be quite different.

This is a result about long-horizon portfolio theory, in an environment with time-varying
investment opportunities and incomplete markets. Yet the intensive dynamic trading, the
usual rules for allocating wealth to securities based on state variables, and “hedging demands” for
shocks to those state variables are absent from this representation. These demands can appear,
in the construction of the mean-variance efficient payoff. In a static context, we construct mean-
variance efficient portfolios by optimally allocating wealth across securities, trading mean return
against variance and covariance. In this dynamic context, we may also optimally allocate wealth
to securities as their means and variances change over time, as allocating wealth over time is
fundamentally just like allocating wealth across assets; we may optimally hedge such changes
in the investment opportunity set, and we may correctly retrieve payoffs from accumulated
wealth. All this construction and financial engineering is hidden in a long-run mean-variance
characterization, just as it is hidden in the classical one-period mean-variance characterization.
That’s the point — the hard part is producing a mean-variance efficient yield y∗. Once that is
done, we can simply characterize the investor’s choice between funds, just as we do in one-period
models.

For this reason, the investor may not have to do all this dynamic portfolio allocation and
payout construction. It would be perfectly natural for firms and fund managers to do the “hard
part,” and market long-run mean-variance efficient securities. If the investors’ optimization takes
place over an asset space that for this reason already contains long-run mean-variance efficient
funds, the investor’s job is very simple.
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4.1.2 Market payoff

As this discussion suggests, constructing long-run mean-variance efficient payoffs may be diffi-
cult. However, as in the one-period case, the average investor must hold the market portfolio.
This deep insight can offer a great simplification in applying portfolio theory: rather than think
about your absolute level of risk aversion and explicit models of asset payoff moments, think
only about how you are different than everyone else, and adjust your position in simple indices
accordingly. As I argued in the introduction, thinking in relative terms can also avoid the pitfall
that portfolio advice can’t apply to everyone.

Following this insight, we want to express the optimal payoff relative to the market payoff,
in an equilibrium in which investors have limited and described forms of heterogeneity.

Proposition 3. If all investors are of this type, the yield of the investor’s optimal portfolio is
split between the riskfree yield and the market yield, which is a claim to aggregate consumption,

ŷi = yf +
γa
γi

³
ŷa − yf

´
, (26)

where the yield on the market payoff is

ŷa ≡
P

j Wj ŷjP
j Wj

=

P
j x̂jP
j Wj

=
x̂a
Wa

,

and aggregate risk aversion is defined as a wealth-weighted average of individual risk aversions,

1

γa
≡
P

j Wj
1
γjP

j Wj
.

Derivation. Start with (24), sum over investors, and divide by wealth,

ŷi = yf +
1

γi

³
yf − y∗

´
P

j Wj ŷjP
j Wj

= yf +

P
j Wj

1
γjP

j Wj

³
yf − y∗

´
ŷa = yf +

1

γa

³
yf − y∗

´
(27)

yf − y∗ = γa
³
ŷa − yf

´
.

Substitute this result in the right hand side of (24).

This result can help a lot in thinking about portfolios. Keep in mind that we still have
time-varying portfolio opportunities described by unspanned state variables. In this case,
the infinitely risk averse investor holds the perpetuity yf , as pointed out by Campbell and
Viceira (2001) and Wachter (2003). An investor whose risk aversion is the same as that of the
average investor just holds the market payoff, as he must, despite any time-varying investment
opportunities, and that market payoff pays aggregate consumption as its dividend. The novelty
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is that investors with risk aversion (say) greater than the market now can simply purchase a
payoff that is a linear combination of the market and the real perpetuity.

The yield that is halfway between those of the market and the index perpetuity is not gen-
erated by a portfolio that constantly rebalances to 50/50 weights. Constant rebalancing gives
rise to payoffs that are nonlinear functions of underlying payoffs. Constructing the dynamic
portfolio rule to achieve the 50/50 payoff is not that easy. In an i.i.d. environment, one can
construct the 50/50 payoff either by shorting a portfolio that itself shorts a mean-variance effi-
cient portfolio, or by a strategy with suitable time-varying portfolio and payout weights. These
are characterized in the web-appendix. The problem is even harder in a non-i.i.d. environment.
Once again, characterizing the optimal payoff can be a lot easier than constructing it, which is
one of my main points.

4.1.3 A long-horizon CAPM

In an equilibrium of investors who are all of the same type, but vary by risk aversion, we naturally
can write a CAPM-like result:

Proposition 4. For each asset i, the long-run expected yield follows a long-run CAPM,

E(yi)− yf = β̃i,a
h
E(ŷa)− yf

i
where β̃i,a is a long-run regression coefficient of yield i on the market yield.

This proposition follows simply from (15) and the fact (27) that the market payoff is long-
run mean-variance efficient. Thus, in pricing as in portfolio behavior, Mertonian state variables
disappear from long-run expected returns. Even though there can be a complex ICAPM
representation of one-period returns, long-run returns obey the long-run CAPM. Again, time-
series variation in expected returns is, from this perspective, no different from cross-sectional
variation in returns. (MacGill and Quinzii (2000) derive a similar representation).

4.2 Outside income and preference shocks

Next, I allow outside income and preference shocks, while retaining a traded risk-free yield. To
incorporate preference shocks, I separate the preference-shock hedge payoff into a constant and
a variable component,

ĉb = c̄b × 1 + c̃b; E
³
c̃b
´
= 0.

Equation (21) now reads

x̂ =
³
c̄b + c̃b − ê

´
−
h
p(c̄b + c̃b − ê)−W

i
y∗ (28)

The variable part c̃b of the bliss point hedge payoff and the outside income hedge payoff ê enter
together in everything that follows from this equation, so to save some space I combine them in
what follows; I use the symbol ê to denote the quantity ê − c̃b and I say only “outside income
hedge payoff” to refer to both components.
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4.2.1 Mean-variance frontier and risk aversion

The mean-variance characterization now applies to the “total payoff,” consisting of the asset
payoff and the outside income hedge payoff:

Proposition 5. The total yield, including the yield of the outside-income hedge payoff, is on
the long-run mean-variance frontier,

ŷT = yf +
1

γ

³
yf − y∗

´
. (29)

The total yield and risk aversion are defined here by

ŷT ≡ x̂+ ê

W + p(ê)
(30)

1

γ
≡ c̄b − yf [W + p(ê)]

yf [W + p(ê)]
. (31)

Derivation. Since c̄b is constant and a riskfree rate is traded, p(c̄b) = c̄b/yf . Then,
from (28),

x̂ =
³
c̄b − ê

´
−
h
p(c̄b − ê)−W

i
y∗

x̂+ ê

W + p(ê)
=

c̄b

yf [W + p(ê)]
yf −

"
c̄b

yf [W + p(ê)]
− 1

#
y∗

ŷT = yf +

"
c̄b

yf [W + p(ê)]
− 1

# ³
yf − y∗

´
,

and (29) follows.

The “total” payoff consists of the assets x̂ actually held, and the outside-income hedge payoff
that the investor holds implicitly. The investor calculates the “payoff equivalent” of his outside
income and adjusts his asset payoff x̂ accordingly.

For this representation, we interpret γ as defined by (31) as the local risk aversion coefficient,
evaluated at a constant bliss point c̄ and a value of consumption in which the investor invests all
wealth, including the proceeds from selling the hedge payoff for outside income, in the riskfree
rate. Again, this is just a sensible point on the utility function at which we take derivatives.

As in the simple case, time-varying investments and “hedging demands” for shocks to state
variables are absent, now including state variables for time-varying and stochastic outside income
as well as state variables for time-varying investment opportunities, though they appear in the
dynamic strategies required to construct the mean-variance efficient and hedge payoffs. Outside
income itself, represented in ê, does appear in the payoff, as it appears in one-period mean-
variance problems.
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4.2.2 Portfolio distortions

It is useful to characterize the distortions of the asset payoff, relative to the mean-variance
frontier, induced by the presence of outside income and preference shocks.

We have the result already of course; we can just say “construct a long-run mean-variance
efficient payoff, then subtract the hedge payoff for outside income.” In equations, we can write
from (29) and (30)

sW ŷ = yf +
1

γ

³
yf − y∗

´
− seye,

where ye denotes the yield of the outside-income hedge payoff

ye ≡
ê

p(ê)
,

and the wealth shares sW , se are defined as

sW ≡
W

W + p(ê)
; se ≡

p(ê)

W + p(ê)
.

(We do not have p(e) = p(ê); we do not know how to assign prices for nontraded payoffs. Hence,
though I callW+p(ê) “total wealth,” it really is only “asset wealth plus the value of the outside-
income hedge payoff.”) Even more simply, we can multiply by total wealth, and express the
asset payoff as an investment of total wealth in the mean-variance efficient payoff, plus sale of
the outside-income hedge payoff.

x̂ = [W + p(ê)]

∙
yf +

1

γ

³
yf − y∗

´¸
− ê (32)

However, the outside income hedge payoff ê will usually contain some riskfree yield yf and

some of the mean-variance yield
³
yf − y∗

´
. Buying something just to sell it again is a messy way

to describe a portfolio, especially in a real world with short selling constraints and transactions
costs. It is therefore interesting to describe the asset market yield ŷ or payoff x̂ directly,
subtracting out the components of ê that affect the riskfree and mean-variance investment.
There are many ways to do this, depending on how one characterizes the frontier. I have
characterized the frontier as an investment in the riskfree yield and a zero-cost payoff on the
positive side of the mean-variance frontier, so I will characterize the distortions here in terms of
the same two payoffs.

Proposition 6: Break the outside-income hedge yield into three components, defined by long-run
regression

ye = yf + β̃e
³
yf − y∗

´
+ ηe. (33)

Then the asset yield can be expressed as

ŷ = yf +

∙
1

sW

1

γ
− se

sW
β̃e

¸ ³
yf − y∗

´
− se

sW
ηe (34)
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Derivation: From Proposition 5,

x̂+ ê

p(ê) +W
= ŷsW + yese = yf +

1

γ

³
yf − y∗

´
ŷ =

1

sW

∙
yf +

1

γ

³
yf − y∗

´¸
− ye

se
sW

ŷ =
1

sW

∙
yf +

1

γ

³
yf − y∗

´¸
−
h
yf + β̃e

³
yf − y∗

´
+ ηe

i se
sW

And with se + sW = 1, (34) follows.

To see what (34) means, suppose first that the outside-income hedge payoff is constant across
time and states. Then ye = yf so (34) becomes

ŷ = yf +
1

sW

1

γ

³
yf − y∗

´
.

We get the familiar result that an investor with a large “bond-like” outside income stream and
hence low sW should shift his portfolio more toward risky assets, or behave in a less risk averse
manner. His effective risk aversion is reduced by the asset wealth share. (We can also express
this result that the investor holds less of the riskfree asset and does not change the risky asset
investment.)

In the more general case, the risky (priced) asset position is also modified. If the investor
holds an outside income stream with a large beta on the mean-variance efficient yield, he sensibly
reduces his risky asset investment. The sW and se terms adjust a simple addition of total payoffs
to the more familiar units of yield.

Finally, the investor sells the idiosyncratic component of the outside-income hedge payoff
ηe. This payoff, as defined in (33), has zero price since E(y∗ηe) = 0, and zero mean since
E(yfηe) = yfE(1×ηe) = 0. It constitutes free insurance against outside income risks. Selling (or
buying) this payoff ought to be the first thing every investor does, since it provides something for
nothing. Characterizing such payoffs ought to be the first task of academic portfolio advice. As I
speculated in the introduction, perhaps it is often ignored because returns on outside income are
difficult to compute. The decomposition (33) may help in this regard, since this is a long-run,
cashflow regression. We do not need a time series of values of the outside income stream to
compute it.

The idiosyncratic component ηe can capture variation over time as well as states of nature.
For example, if the investor has a certain wage stream and retires at a given date with certainty,
then ηe goes from a positive to a negative loading on the indexed perpetuity on the retirement
date, and “short ηe” generates the usual shift from stocks to bonds at that date.

As in equation (32), we get an even clearer result if we multiply (34) by W to express how
the values of the various components add up to the optimal asset payoff,

x̂ =Wyf +

½
[W + p(ê)]

1

γ
− p(ê)β̃e

¾³
yf − y∗

´
− p(ê)ηe.

Since we are normalizing our mean-variance representation to the riskfree yield as the only non-
zero cost payoff, the investor starts by putting all market wealth in that payoff. Then, he invests
in the zero-cost long-run mean-variance efficient payoff according to his risk aversion and total
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wealth, including the tradeable component of outside income wealth, but reduced in accordance
to the mean-variance exposure he already implicitly owns by owning the outside income stream.
Finally, (or, again, initially) he shorts the idiosyncratic component of his outside income stream.

The nontradeable component of outside income appears nowhere in these expressions. In
general, “background risk” affects investment decisions, for example by making the investor
behave in a more risk averse manner. This effect is avoided with quadratic utility. Background
risk lowers utility but does not affect linear marginal utility, so does not affect decisions. Again,
the point of a simple benchmark is to avoid complex, though potentially important, refinements.

4.2.3 Market payoff

Again, we want to express the optimal portfolio relative to the market payoff. We consider
a market of investors who are all of the same type (quadratic utility), but with varying risk
aversion (bliss point, initial wealth) and also varying outside income streams. Now investors
will think about how their outside income stream differs from the market average, as well as
how their risk aversion differs from the market average. Unsurprisingly, our basic result mirrors
Proposition 3, but using the long-run mean-variance efficient total payoff yield.

Proposition 7. The investor’s total payoff is proportional to the aggregate total payoff, which
is a claim to the traded component of aggregate consumption.

ŷTi = yf +
γa
γi

³
ŷTa − yf

´
, (35)

where the yield on the total aggregate payoff is

ŷTa ≡
P

j [Wj + p(êj)] ŷ
T
jP

j [Wj + p(êj)]
=

P
j x̂j + êjP

j [Wj + p(êj)]
=

x̂a + êa
Wa + p(êa)

,

and aggregate risk aversion is defined as a wealth-weighted average of individual risk aversion,

1

γa
≡
P

j [Wj + p(êj)]
1
γjP

j [Wj + p(êj)]
.

Derivation. Start with (29), sum and divide by wealth,

ŷTi = yf +
1

γi

³
yf − y∗

´
(36)P

j [Wj + p(êj)] ŷ
T
jP

j [Wj + p(êj)]
= yf +

P
j [Wj + p(êj)]

1
γjP

j [Wj + p(êj)]

³
yf − y∗

´
ŷTa = yf +

1

γa

³
yf − y∗

´
yf − y∗ = γa

³
ŷTa − yf

´
.

Substitute this result in the right hand side of (36). The interpretation as a claim
to the traded component of aggregate consumption follows from the definition, ŷTa =
(x̂a + êa) /(Wa + p(êa)) = proj(ca|X)/p(proj(ca|X)).
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This advice is harder to implement when there is outside income. Now the investor’s total
portfolio, accounting for the outside income hedge portfolio he implicitly holds, is split between
the index perpetuity (easy) and the market’s total portfolio ŷTa , accounting for the outside income
hedge portfolio of the average investor. The latter quantity is hard to observe, of course, so
it is convenient to reexpress the optimal portfolio with respect to the traded market portfolio,
which is easy to observe.

Proposition 8. The investor’s asset portfolio can be written in terms of the market asset yield,
the market average outside-income hedge yield, and the individual outside-income hedge yield as

ŷi = yf +
sWaγa
sWiγi

³
ŷa − yf

´
+

sWaγa
sWiγi

sea
sWa

³
yea − yf

´
− sei

sWi

³
yei − yf

´
(37)

where

yea ≡ êa
p(êa)

; yei ≡
êi

p(êi)

sWa =
Wa

Wa + p(êa)
; sWi =

Wi

Wi + p(êi)

sea =
p(êa)

Wa + p(êa)
; sWi =

p(êi)

Wi + p(êi)

Derivation. From (35),

ŷTi = yf +
γa
γi

³
ŷTa − yf

´
γi
³
sWiŷi + seiyei − yf

´
= γa

³
sWaŷa + seayea − yf

´
γi
h
sWi

³
ŷi − yf

´
+ sei

³
yei − yf

´i
= γa

h
sWa

³
ŷa − yf

´
+ sea

³
yea − yf

´i
.

Equation (37) follows.

To digest this result, start with the case that both individual and average outside income is
a constant over time and states. Now, ye = yf , so (37) reduces to

ŷi = yf +
sWaγa
sWiγi

³
ŷa − yf

´
.

We see the same result as in Proposition 7 (35), except that “effective” risk aversion in asset
markets is actual risk aversion times the share of wealth. Even an investor who is temperamen-
tally of average risk aversion should invest his asset portfolio in a riskier manner, if he has a
larger than average outside income.

The remaining terms of Proposition 8 direct the investor to think about the outside-income
hedge portion of his portfolio in relative terms as well. If the investor has average shares and
risk aversion γi = γa, sWi = sWa, and also the same outside income hedge payoff as the average
investor, êi = êa, then the last two terms cancel and once again he holds the market payoff ŷi = ŷa
ignoring outside income. If only the individual and average hedge portfolios are different, (37)
reduces to

ŷi = ŷa +
sea
sWa

(yea − yei) .
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The investor starts with the market portfolio, then holds only the difference between aggregate
and individual outside income hedge portfolio. He sells to the average investor the payoff that
that investor would like to short, and shorts the payoff that best hedges his own outside income.

In the fully general case the term sWaγa
sWiγi

in front of yea adjusts for larger or smaller effective
risk aversion of individual and average. An individual who is very risk averse, either intrin-
sically or because he has a very large share of asset wealth in his portfolio, will provide less
outside-income insurance to the market. The se/sW terms adjust for the difference between
each investor’s desire to insure the actual flow of income, and our expression in terms of yields,
which divide by prices.

As in Proposition 6, it is interesting to orthogonalize the payoffs. The interesting order
of orthogonalization in this case is, first, the market asset portfolio, then the market average
hedge portfolio, and finally the individual’s hedge portfolio. (This is more interesting than
orthogonalizing in the order y∗, z∗ and η, or yf , (yf − y∗) and η.) Thus, define components by
successive long-run regressions

yea − yf = β̃ea,a
³
ŷa − yf

´
+ εa,

yei − yf = β̃ei,a
³
ŷa − yf

´
+ β̃ei,eaεa + ηei.

The three payoffs
³
ŷa − yf

´
, εa, and ηei are all zero cost. In addition, E(ηei) = 0. ηei is

again a zero-price, zero-mean, “idiosyncratic” component of the outside income hedge payoff.
Substituting in (37), we obtain

ŷi = yf +

∙
sWaγa
sWiγi

+
sWaγa
sWiγi

sea
sWa

β̃ea,a −
sei
sWi

β̃ei,a

¸ ³
ŷa − yf

´
(38)

+

∙
sWaγa
sWiγi

sea
sWa

− sei
sWi

β̃ei,ea

¸
εa −

sei
sWi

ηei.

This expression appears formidable, because of the wide variety of differences between indi-
vidual and average that it accommodates, so it is best examined with special cases. First, verify
that an average investor, with β̃ia = β̃a, β̃iea = 1, ηei = 0 holds the market asset yield ŷa.

Second, consider an investor who is just like the average in risk aversion and shares, but has
a different outside income process. He holds

ŷi = yf +

∙
1 +

sea
sWa

³
β̃ea,a − β̃ei,a

´¸ ³
ŷa − yf

´
+

sea
sWa

h
1− β̃ei,ea

i
εa −

sea
sWa

ηei.

The first term directs him to hold more or less of the market portfolio depending on how
differently correlated his income is to the market payoff from that of the average investor. If his
outside income is uncorrelated with the market, β̃ei,a = 0, for example, and the average outside
income is so correlated, then he will hold more of the market payoff than average, selling outside
income insurance to the average investor. If his outside income responds more to the market
than that of the average investor, he will hold less of the market, as part of his outside-income
hedge strategy. The second term directs the investor to hold more or less of the orthogonalized
aggregate outside income payoff. If the non-market component of the investor’s outside-income
hedge payoff is uncorrelated with the non-market component of the average outside-income hedge
payoff, the investor buys the average hedge payoff, again selling insurance to the market and

24



earning the second factor risk premium. Vice versa, agents whose outside-income hedge payoff
moves more than average will sell that payoff, despite losing its factor risk premium. Finally, as
always, the investor sells the completely idiosyncratic, zero-price, zero-mean component of his
outside-income hedge payoff.

4.2.4 A long-horizon multifactor model

In an equilibrium of investors, all of this type, but with varying outside income streams as well
as varying risk aversion, we obtain a multifactor model:

Proposition 9. The expected long-horizon yield of each asset i follows a multifactor model,
with the market payoff and average outside income hedge payoff as factors,

E(yi)− yf = β̃i,a
h
E(ŷa)− yf

i
+ β̃i,e

h
E(yea)− yf

i
, (39)

where β̃i,a and β̃i,e are long-run multiple regression coefficients.

Derivation. Since the total yield ŷTa is long-run mean-variance efficient, we have by
(15) a single-factor model

E(yi)− yf = β̃i,T
h
E(ŷTa )− yf

i
. (40)

Since the total yield is composed of asset and outside income hedge portfolio yields,
ŷTa = swŷa+seyea, I can show that this single-factor model is equivalent to the stated
multifactor model. The multifactor long-run regression is

yi − yf = αi + β̃i,a
³
ŷa − yf

´
+ β̃i,e

³
yea − yf

´
+ ηi.

Our goal is to show αi = 0. The following long-run multiple regressions are equiv-
alent, i.e. their intercepts and errors are equivalent, since the right hand variables
span the same space. The β̃ coefficients are not the same across regressions, which
is why I distinguish them with additional symbols.

yi − yf = αi + β̃∗i,T
³
ŷTa − yf

´
+ β̃∗i,e

³
yea − yf

´
+ ηi

yi − yf = αi + β̃+i,T

³
ŷTa − yf

´
+ β̃+i,e

h³
yea − yf

´
− α− β̃ea,T

³
ŷTa − yf

´i
+ ηi.

In the last regression, α and β̃ea,T are single regression coefficients of yea − yf on
ŷT −yf . By (40), this α = 0. Since the right hand variables are now orthogonal, β̃+i,T
is also the single regression coefficient β̃i,T of y

i−yf on ŷT −yf . Taking expectations,
then,

E
³
yi − yf

´
= αi + β̃i,TE

³
ŷTa − yf

´
+ β̃+i,e

h
E
³
yea − yf

´
− β̃ea,TE

³
ŷTa − yf

´i
By (40) again, though,

E
³
yi − yf

´
= β̃i,TE

³
ŷTa − yf

´
E
³
yea − yf

´
= β̃ea,TE

³
ŷTa − yf

´
,

so we are left with αi = 0.
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In pricing as in portfolios, Mertonian state variables for outside income as well as investment
opportunities disappear, but outside income itself remains. (State variables for outside income
are present and potentially important in the traditional one-period ICAPM. Why they have
been ignored for 40 years is an interesting question.) When the tradeable component of outside
income does not average to zero, a second factor emerges. Assets have higher long-run expected
returns if their cashflows have a higher long-run covariance with the dividend stream of the
aggregate outside-income portfolio. For example, if as Fama and French (1996) speculate, the
outside income of the average investor is correlated with the payouts of a class of “distressed”
securities, then those securities will require higher long-run expected returns, and they will
receive lower prices. We see a “value” effect in prices and a “value factor” in expected long-run
returns.

We also can represent pricing with orthogonalized factors, which are possibly more interest-
ing. Define again εa by a long-run regression.

yea − yf = β̃ea,a
³
ŷa − yf

´
+ εa

Then, our multifactor model becomes:

E(yi)− yf = β̃i,a
h
E(ŷa)− yf

i
+ β̃i,ε

h
E(εa)− yf

i
(41)

Comparing the pricing results (39) and (41) to the portfolio expressions (37) and (38), we see
the same right hand variables. The portfolio expressions (37) and (38) tell the investor how much
to put in to the “priced assets” corresponding to the aggregate market portfolio and aggregate
outside-income-hedge portfolio, and then to perfectly hedge residual, zero-price, mean-zero, risk.
The portfolio shares advocated by (37) and (38) are given by “risk aversions” which combine
true risk aversion, and aversions induced by the character of outside income.

5 Concluding comments

I do not present illustrative calculations. Interesting calculations require nontrivial modeling
and data choices, whose solution rises far above the “illustrative” category. I can, however,
discuss some of the challenges. The web-appendix includes details of some calculations I report.

Lognormal i.i.d.

The lognormal i.i.d. case is a natural first environment for examining any portfolio theory,

i.e. a constant riskfree rate rf and risky assets that follow dr =
³
μ+ rf

´
dt + σdB. The web-

appendix finds the long-run mean-variance frontier, and contrasts the portfolios that support
optimal payoffs for power utility and quadratic utility in this environment. To form a long-run
mean-variance efficient yield, The quadratic utility investor still holds a conditionally mean-
variance efficient portfolio with weights w = 1/γtΣ

−1μ, and consumes more as wealth rises. The
difference is that local risk aversion γt varies over time in the quadratic case, declining as wealth
rises, and the consumption-wealth relation has an intercept.

Alas, this calculation is not quantitatively realistic, because the long right tail of lognormal
returns and mean-variance analysis do not mix well. Discrete-time returns in the lognormal i.i.d.
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environment have arithmetic Sharpe ratios that go to zero as the horizon increases, while the
maximum arithmetic Sharpe ratio available from dynamic trading goes to infinity. (It’s tempting
to take logs first, but mean-variance analysis applies to arithmetic, not log, returns.) As a result
of this behavior, long-run mean-variance frontiers and quadratic utility are poorly behaved for
the large risk premia we observe in the data. When 2rf−ρ−μ0Σ−1μ ≤ 0, finitely-lived quadratic
utility investors finance early consumption by disastrous falls in consumption late in life or when
markets fall; as the lifetime increases, this repayment is indefinitely extended, which means the
investor exceeds any borrowing limit. The limit point seems to violate arbitrage. To solve the
quadratic-utility infinite-horizon economy with large risk premia, we need to impose borrowing
and arbitrage constraints, and they will bind, losing much of the simplicity which is the whole
reason for examining the rather unrealistic utility function. At the same time x∗ ceases to be
tradeable, as its price goes to infinity, and E(x∗2) <∞ is violated.

This is not a “fatal flaw” for quantitative application (as opposed to merely useful conceptual
benchmark) of these ideas. As I document in the web-appendix, actual index returns are far
from lognormal. The long right tail predicted by the lognormal is missing, while the fat left
tail of short horizon returns also disappears. Even at a 10 year horizon, index returns are better
described by a normal rather than lognormal distribution. This finding is not that surprising:
we know that there is some mean-reversion in returns, and that volatility decreases when the
market rises. Both effects cut off the large troublesome right tail of the lognormal. However, it
does mean that a quantitatively realistic calculation (one that violates 2rf − ρ − μ0Σ−1μ > 0)
must incorporate at least stochastic volatility and potentially mean-reversion, to say nothing of
additional state variables, exceeding by far the back of any envelope.

Related, quadratic utility investors in equilibrium choose a market return that is not lognor-

mal. When we specify dr =
³
μ+ rf

´
dt+σdz, we are specifying the underlying technologies. As

wealth rises, investors individually and collectively rebalance away from risky technologies, and
the market becomes less risky, so the market portfolio return endogenously loses the large right
tail of a lognormal. If one takes the equilibrium point of view, or makes any calculations of
portfolios relative to the market index, it does not make theoretical sense to specify a lognormal
distribution for the market index.

Time-varying returns with unspanned state variables

Long-run mean-variance calculations with time-varying investment opportunities and incom-
plete markets are also harder than they may appear. For example, a typical environment might
be a constant risk free rate rf and risky returns that follow

drt =
h
rf + μ(zt)

i
dt+ σ(zt)dB1t

dzt = μz(zt)dt+ σz1(zt)dB1t + σz2(zt)dB2t.

The discount factor in this situation must be of the form

dΛt
Λt

= −rfdt− μ(zt)

σ(zt)
dB1t + σΛ2tdB2t

where σΛ2t is arbitrary. Choosing correctly σΛ2t so that e
−ρtu0(xt) = λΛt produces a tradeable

xt is precisely the central difficulty of applying the discount-factor approach in this situation.
One might think that the traded discount factor is simply σΛ2t = 0, cutting through the central
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difficulty for quadratic utility. After all, the resulting discount factor is the only one whose
shocks are spanned by the shock dB1t to the traded assets.

Alas, this is a subtle mistake. “Traded” means “an achievable payoff from a valid dynamic
trading strategy.” Having shocks spanned by the asset return shocks σΛ2t = 0 is neither necessary
or sufficient for Λt or x

∗
t = eρtΛt to be achievable as the dividend process of a trading strategy.

Typically, in fact, traded discount factors will have dB2 loadings, σΛ2t 6= 0.

As a very simple example in which to see this point, suppose the interest rate varies over
time,

drf = μ(rft )dt+ σ(rft )dBt,

and there are no other assets. The marginal utility of a quadratic utility investor moves imme-
diately when there is news about investment opportunities dBt. Loosely, if investment opportu-
nities improve, the investor increases consumption immediately so that the first order condition
and the wealth constraint both continue to be satisfied. Yet the discount factors are

dΛt
Λt

= −rft dt− σΛtdBt,

so the choice σΛt = 0 means that marginal utility does not move when there is interest rate
news. If marginal utility followed such a discount factor, either the first order condition or the
wealth constraint would have to be violated — this is not a tradeable discount factor.

To see the point a little more formally in this example, consider a finite-horizon version with
payoffs from 0 to T and specialize to drft = σdBt. A “traded payoff” is an {xt} that results from
the trading strategy

dV =
³
rft Vt − xt

´
dt (42)

with VT = 0. Now you can see how a traded payoff xt can load on unspanned shocks: you can
choose to draw down xt out of wealth in a way that responds to any variable. However, not
every payoff is traded. Most obviously, if xt draws down wealth based on some non-traded shock,
some future x must pay back the debt. In this way, looking backwards, i.e. accumulating wealth
by (42), an arbitrary payoff xt will violate the terminal wealth constraint VT = 0. Looking
forwards, the time-t value of an arbitrary payoff,

Vt = Et

Z T

s=t

Λs
Λt

xsds,

may result in dVt that loads on dBt, while a tradeable {xt} must result in a dVt implementable
by (42), with no loading on the unspanned shock dBt.

We can see therefore in this simple example that a traded discount factor must load on dBt

in this way, by supposing the contrary and showing that the corresponding value process does
load on dB. Try σΛ = 0. Then, the value of the portfolio that delivers {Λt} as a payoff is, at
any point in time,

Vt =
1

Λt
Et

Z T

s=t
Λ2sds = ΛtEt

Z T

s=t
e−2

R s
τ=t

rfτ dτds.

Differentiating takes a little work, relegated to the appendix, but the result is

dVt = (r
f
t Vt − Λt)− 2σΛt

"Z T

s=t
(s− t)e−2(s−t)r

f
t +

2
3
σ2(s−t)3ds

#
dBt (43)
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This value loads on dBt, so cannot be traded.

Finite basis

In conventional mean-variance analysis, as in one-period return based asset pricing more
generally, we typically do not try directly to compute mean-variance frontiers of 8000 US stocks,
let alone the plethora of other available assets. Instead, we typically form a much smaller
number of portfolios first. Implicitly, we assume that the interesting variation in the larger set
of securities is spanned by the much smaller number of portfolios.

The same approach may be valuable in addressing dynamic issues. Rather than try to find
the exact optimum in an infinite-dimensional space of portfolio weights and payout rules, as I
have done in the discussion so far, we can simply include a finite number of well-chosen dynamic
trading strategies — a few well-chosen rules for portfolio weights wt and payout rules xt as a
function of state variables — and then consider a static maximization over those options. (Brandt
and Santa-Clara (2006) advocate and implement this strategy.) If we make this simplification,
most of the technical difficulties vanish. With a finite vector of well-behaved basis payoffs x,
we can easily find a traded discount factor x∗ = 1

kp
0E(xx0)−1x and the optimal payoffs, which

will be of the form c0x. Since mean-variance analysis is really a benchmark rather than an
approximation, this approach may also be useful when it is a poor approximation to the exact
optimum, by forcing a choice among sensible options when that exact optimum exploits heavily
the peculiarities of quadratic utility. However, as in conventional mean-variance analysis, the set
of underlying portfolios, dynamic trading rules, and dynamic payout rules, must all be artfully
chosen to capture the important variation in the assets at hand, rendering this approach as well
one that takes more than back-of-the envelope work.

Outside income

Finally, the most interesting calculations in this setup may well be the calculations of hedge
payoffs for outside income. A quick look at the fundamental expectation

E(x) = ρ

Z ∞
0

e−ρtxtdt

reveals the obvious issues. Handling trends is particularly important, since time trends are a
large part of “long-run variance.” Estimating directly means and variances of this sort, like
estimating spectral densities near zero, is obviously difficult with “short” datasets. It is attrac-
tive to estimate these quantities based on time-series models rather than simply substituting in
data realizations. However, imputing long-run implications of short-run models has always been
a dicey affair, and short-run model performance statistics can be misleading. At a minimum,
specifying trends and cointegrating relationships is vital.

Bottom line.

Again, the difficulty of calculating long-run mean-variance frontiers in interesting applied
situations is, in a sense, a feature not a bug, as is the difficulty of calculating one-period mean-
variance frontiers. Both ideas are primarily useful as conceptual benchmarks, for the analysis
that follows given a mean-variance efficient payoff or portfolio, for characterizing investor choices
given a well-constructed set of funds, and for directing efforts at the hard, technical, financial-
engineering task to the kinds of payoffs that investors desire.
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7 Appendix

7.1 Notation

E(x): Long-term mean, e.g. E(x) = ρE
R∞
0 e−ρtxtdt.

σ̃2(x) ≡ E(x2)− [E(x)]2: Long-term variance.

β̃,gcov: Long-term regression coefficient and covariance, gcov(x, y) = E(xy)− E(x)E(y); β̃x,y =gcov(x, y)/σ̃2(x).
β, ρ: Discount rate and weighting function.

x, xt, {xt}: Stream of payoffs (dividends plus purchase-sales).

p(x): Price of the stream {xt} .

mt: Scaled discount factor, e.g. p(x) = E
P∞

t=1 β
tmtxt.

y, yt: Yield, payoff to a one dollar investment, yt = xt/p(x).

xf , yf : Riskfree payoff and yield, xf = 1, yf = 1/p(xf ).

z: Excess yield, payoff to costless investment, e.g. z = y − yf .

X, Y ,Z: Sets of available payoffs, yields, excess yields.

x,y, z: Vectors of N basis payoffs, yields, or excess yields.

x∗: Discount-factor mimicking payoff, i.e. x∗ ∈ X, p(x) = kE(x∗x).

y∗ = x∗/p(x∗): Minimum long-run second moment yield.

z∗ =
³
yf − y∗

´
/yf : Mean-generating excess yield.

ymv, zmv: Mean-variance efficient yield, excess yield.

η: Idiosyncratic component of a yield, y = y∗ + wz∗ + η, and p(η) = 0, E(η) = 0.

xi, yi, zi: Generic ith asset.

x̂, ŷ: Optimal payoff, yield of optimal payoff.

ŷi, ŷa: Yield on investor i’s optimal payoff, and market average.

ye, yei, yea: Yield on outside income hedge payoff, ye = ê/p(ê), individual value, and market
average.

ŷT , ŷTi , ŷ
T
a : Optimal total payoff, including asset and hedge payoff ŷT ≡ (x̂ + ê)/(W + p(e)),

individual value, and market average.

W,Wt: Initial wealth and wealth at time t.

e, et: Stream of outside labor or business income.
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ê: Hedge payoff for outside income , ê = proj(e|X). (Includes preference shocks as well,
ê = ê− c̃b.)

ηe, ηei: Idiosyncratic, zero-price, zero-mean component of outside-income hedge yield.

εa: Residual in long run regression, and orthogonalize outside-income hedge factor payoff,

yea − yf = β̃ea,a
³
ŷa − yf

´
+ εa.

sW , se: Share of asset and outside wealth, sW =W/ [W + p(ê)] , se = p(ê)/ [W + p(ê)] .

sWa, sea, sWi, sei: Market average and individual shares.

cb: Bliss point of quadratic utility, u(c) = −1/2
³
cb − c

´2
.

ĉb: Hedge payoff for the bliss point, ĉb = proj(cb|X).

c̄b, c̃b: Constant and variable components of the preference shock hedge payoff, ĉb = c̄b × 1 +
c̃b; E

³
c̃b
´
= 0.

γ: Relative risk aversion coefficient, defined locally at c, 1/γ = (cb − c)/c.

γi, γa: Investor i’s risk aversion, and wealth-weighted market average risk aversion.
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7.2 Algebra

This appendix derives equation (43).

Vt = ΛtEt

Z T

s=t
e−2

R s
τ=t

rfτ dτds.

= Λt

Z T

s=t
e−2(s−t)r

f
t +2σ

2
t

¡R s
τ=t

rfτ dτ
¢
ds

= Λt

Z T

s=t
e−2(s−t)r

f
t +2σ

2
t (
R s
τ=t

dτ
R τ
u=t

dBu)ds

= Λt

Z T

s=t
e−2(s−t)r

f
t +2σ

2
t (
R s
τ=t

(s−τ)dBτ)ds

= Λt

Z T

s=t
e−2(s−t)r

f
t +2σ

2(
R s
τ=t

(s−τ)2dτ)ds

= Λt

Z T

s=t
e−2(s−t)r

f
t +

2
3
σ2(s−t)3ds.

Remembering dΛ/Λ = −rfdt, we have

dVt = −rft Vtdt+ Λtd
"Z T

s=t
e−2(s−t)r

f
t +

2
3
σ2(s−t)3ds

#
. (44)

To evaluate the second term,

d

"Z T

s=t
e−2(s−t)r

f
t +

2
3
σ2(s−t)3ds

#

= −1dt+
Z T

s=t

³h
2rft − 2σ2(s− t)2

i
dt− 2(s− t)drf + 2(s− t)2drf2

´
e−2(s−t)r

f
t +

2
3
σ2(s−t)3ds

= −1dt+
Z T

s=t

³h
2rft − 2σ2(s− t)2

i
dt− 2(s− t)σdBt + 2(s− t)2σ2dt

´
e−2(s−t)r

f
t +

2
3
σ2(s−t)3ds

= −1dt+ Vt
Λt
2rft dt−

"Z T

s=t
(s− t)e−2(s−t)r

f
t +

2
3
σ2(s−t)3ds

#
2σdBt. (45)

Substituting, (45) in (44), we obtain (43).
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