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Abstract

The history of Daylight Saving Time (DST) has bdeng and controversial. Throughout its
implementation during World Wars | and I, the eifnbargo of the 1970s, and more regular
practice today, the primary rationale for DST hlhgags been to promote energy conservation.
Nevertheless, there is surprisingly little eviderthat DST actually saves energy. This paper
takes advantage of a natural experiment in the sihtindiana to provide the first empirical
estimates of DST effects on electricity consumpiiorthe United States since the mid-1970s.
Focusing on residential electricity demand, we cahdhe first-ever study that uses micro-data
on households. The dataset consists of more thaitlidn observations on monthly billing data
for nearly all households in southern Indiana foeé years. Our main finding is that—contrary
to the policy’s intent—DST increases residentiacgicity demand. Estimates of the overall
increase range from 1 to 4 percent, but we find ttha effect is not constant throughout the DST
period. There is some evidence of electricity sgviduring the spring, but the effect lessens,
changes sign, and appears to cause the greatesisedn consumption near the end of the DST
period in the fall. These findings are consisterthvgimulation results that point to a tradeoff
between reducing demand for lighting and increadimmgand for heating and cooling. Based on
the dates of DST practice before the 2007 extesse estimate a cost of increased electricity
bills to Indiana households of $8.6 million per yé&e also estimate social costs of increased
pollution emissions that range from $1.6 to $5.8iom per year.

" This draft was prepared for discussion at the NEERironmental and Energy Economics Program Meaeting
Stanford University on February 8, 2008. We aragjthto Dick Stevie and Monica Redman of Duke Eyefor
generously providing data and assistance through@hile presenting early results from this reseaved benefited
from helpful discussions with Matt White and comfece participants at the UC Energy Institute arel @t
Environmental Economics Workshop. We gratefullyremkledge financial support from the UC Energy liusé.



1. Introduction

The well-known mnemonic of “spring-forward, fall-ddd describes the annual ritual of Daylight
Saving Time (DST): turn clocks forward one houthe spring and turn them back one hour in
the fall. Less well known is the primary rationdle® DST as a policy to conserve energy.
Benjamin Franklin (1784) first proposed the idete@bbserving that people were sleeping
during sunlit hours in the early morning and bughaandles for illumination in the evening. He
argued that if we simply pushed the clocks forwardertain times of the year, an immense sum
of tallow and wax could be saved by the “economysihg sunshine rather than candles.” It
took more than 130 years for Franklin’s idea tcethkld during World War I, when the need for
energy prompted Germany to institute the first O®icy in 1916. By taking advantage of
sunlight for an additional hour each day, the aiaswo reduce demand for electrical lighting so
that more coal could be diverted to the war effdhte United States soon followed Germany’s
lead, but then repealed DST after World War | end@ecades later, a more ambitious, year-
round DST was reinstated for three years duringl®@ar 11.

The Uniform Time Act of 1966 was the first fedeB$T law in the United States that
was not part of a wartime initiative. The Act edigtied that DST would begin on the last
Sunday in April and end on the last Sunday in CetbiThe Arab oil embargo of the early 1970s
prompted further changes to federal DST policy, wkige Emergency Daylight Saving Time
Energy Conservation Act of 1973 imposed year-roD&I for 15 months. A more enduring
change, again with the intent of energy consermatacurred in 1986, when the start date was
moved forward by three weeks. Most recently, thergy Policy Act of 2005 extended DST yet
again; as of 2007, DST begins three weeks eaolirethe second Sunday in March, and lasts one
week longer, until the first Sunday in November.

In debates leading up to Act's passage, member€afgress speculated that the
extension would save the equivalent of 100,000etmmf oil per day (Congressional Record

2005a, 2005b). But the Act requires that researehcbnducted to estimate the actual

! While individual states could choose to be exeroply Arizona, Hawaii, Indiana, and a few U.S. iteries have
done so in various ways over time.



conservation benefits, and Congress retains the ta repeal the extensions if the intended
benefits are not realized. Despite the long historgt current practice of DST as a conservation
policy—in the United States and more than 70 otwintries worldwide—surprisingly little
research has been conducted to determine whethiEmBt8ally saves energyEven among the
few studies that do exist, which we review in tlegtrsection, the evidence is inconclusive.

In this paper, we investigate whether DST doesakt tave energy, with a focus on
residential electricity consumptidrOur research design takes advantage of the uhigt@y of
DST in the state of Indiana, combined with a data$emonthly billing cycles for nearly all
households in the southern portion of the statetieryears 2004 through 2006. While some
counties in Indiana have historically practiced D8E majority have not. This changed with a
state law that required all counties to begin pcagy DST in 2006. The initial heterogeneity of
DST among Indiana counties and the policy chan@®06 provides unique opportunities—with
treatment and control groups of counties—to emgliydadentify the relationship between DST
and residential electricity demand.

Our results provide the first empirical estimatéD8T effects on electricity demand in
the United States since the mid-1970s. The studysis the first to use residential micro-data to
estimate an overall DST effect and date-specifiece$ throughout the DST period. Another
contribution of the study is that we estimate clen@ pollution emissions due to DST and
guantify the associated social costs and/or bemnefit

We find that the overall DST effect on electricippnsumption runs counter to
conventional wisdom: DST results in an overall @age in residential electricity demand, and
the effect is highly statistically significant. Bas on two distinct identification strategies—a

difference-in-differences approach for 2004-2008 annatural experiment in 2006—we find

2 Other effects of DST have been studied in moraibiéthese include studies that investigate theatéf on safety
(e.g., Coate and Markowitz 2004, Sullivan and Fégan 2002, Coren 1996a 1996b), economic coordmatio
(Hamermeslet al 2006), and stock market performance (Kamata 2000 2002, Pinegar 2002).

% Although we focus exclusively on residential eleity consumption, it is likely to be the portimf aggregate
electricity demand that is most sensitive to DSHa@es in the timing of sunrise and sunset occemvgeople are
more likely to be at home, where and when behalvadpstments might occur. Commercial electricigndand, in
contrast, is likely to be greatest at inframargiivaks of the day and generally less variable tingles in the timing
of daylight.



estimates for the overall effect of DST that rarfigen a 1-percent to a 4-percent increase in
consumption. We also find that the effect is nabstant throughout the DST period. There is
some evidence of electricity savings during thengprbut the effect lessens, changes sign, and
appears to cause the greatest increase in consumm@ar the end of the DST period in the fall.
To help interpret these results, we simulate tfecebf DST for an Indiana household with the
U.S Department of Energy model for residential wieity demand (eQuest). Consistent with
Benjamin Franklin’s original conjecture, DST is fal to save on electricity used for
illumination, but there are increases in electyidiised for heating and cooling. Both the
empirical and simulation results suggest that #itel effect is larger than the former. A final
component of our analysis is calculation of thet€associated with DST. We find that the
policy costs Indiana households an average of §3etYear in increased electricity bills, which
aggregates to approximately $8.6 million over thgre state. We also calculate the social costs
in terms of increased pollution emissions, anddtesimates range from $1.6 to $5.3 million per

year.

2. Existing Evidence

The most widely cited study of the DST effect oecélicity demand is the U.S. Department of
Transportation (1975) report that was requiredhey Emergency Daylight Saving Time Energy
Conservation Act of 1973. The most compelling péthe study is its use of the ‘equivalent day
normalization technique,’” which is essentially &etence-in-differences (DD) approach. Using
hourly electricity load data from 22 different utés for a period of days before and after
transitions in and out of DST, days are partitionethb DST-influenced periods (morning,
evening) and uninfluenced periods (midday, nigtitjs then assumed that differences in the
difference between influenced and uninfluencedagass;i before and after the transition are due to
the DST effect. The results indicate an average teduction of approximately 1 percent during
the spring and fall transition periods, but a sgobsat evaluation of the study, conducted by the
National Bureau of Standards (cited in Gurevitz @0@oncludes that the energy savings are

insignificant.



The California Energy Commission (CEC 2001) consluctsimulation-based study to
estimate the effects of DST on statewide elecyricbnsumption. A system of equations is
estimated to explain hourly electricity demand asfuaction of employment, weather,
temperature, and sunlight. The Commission then lsit@s! electricity use under different DST
practice regimes. The results indicate that prangievinter DST reduces consumption by 0.5
percent, and DST as currently practiced leavestradgg consumption virtually unchanged
between May and September, but may reduce consumipgitween 0.15 and 0.3 percent during
April and Octobef. More recently, the CEC modeling approach is usedonsider the actual
extensions to DST that occurred in 2007 (CEC 20B@sed on the spring and fall extensions,
the simulation predicts a decrease in electriattgstimption of 0.56 percent, but the 95-percent
confidence interval includes zero and ranges frae@ease of 2.2 percent to an increase of 1.1
percent.

Kellogg and Wolff (2007) take advantage of a quagieriment that occurred in Australia
with the extension of DST in conjunction with thei®&y Olympic Games in 2000. Using a
comparison of electricity load data from two di#fat states, where only one experienced the
extension of DST, they find that DST increases demfor electricity in the morning and
decreases demand in the evening. While in somes ¢hsenet effect is an increase in demand,
the combined results are not statistically difféersam zero. Kellogg and Wolff also apply the
CEC simulation technique to determine whether @somably predicts what actually occurred
with the Australian DST extension. They find thae tsimulation fails to predict the morning
increase in consumption and overestimates the megeatecrease. Their study thus provides the
first empirical study that brings into question whex DST policies actually produce the
intended effect of reducing electricity demand.

Using an engineering simulation model, Rock (198%p finds evidence that DST might

increase, rather than decrease, electricity consampHe calibrates a model of energy

* The Indiana Fiscal Policy Institute (2001) attesniot replicate the CEC approach and estimate ttenpial effects
of DST in Indiana; however, the results are notctasive. While the statistical models are reporssdvery
preliminary, and to our knowledge have never beenpeted, the results indicate that DST in Indiaoald either
increase or decrease electricity consumption.



consumption for a typical residence using actudlityutrecords, while accounting for
construction, residential appliances, heating aodlicg systems, lighting requirements, and
number of occupants. In order to account for défifees in weather and geographic location, the
model is used to simulate DST scenarios for 22# @it locations within the United Sates. The
results indicate that DST, as it is currently piced, increases electricity consumption by 0.244
percent when averaged over the different locati@tber results indicate that extending DST
year-round would save an average of 0.267 pertentthe overall effect of year-round DST
compared to no DST would leave electricity consuamptirtually unchanged.

A similar methodology is employed in two recentdsés that take place in Japan, where
DST is continually debated but not currently presti. Fonget al. (2007) use a simulation model
to investigate the effects of DST on householdtirgh and they find a reduction in electricity
consumption that differs by region. Shimoetaal. (2007) conduct a similar exercise, with the
added consideration of DST’s effect on residerdgaling. When considering both effects, they
find that implementing DST results in a 0.13-petcemcrease in residential electricity
consumption. The underlying mechanism for the tasuhat residential cooling is greater in the
evening than in the morning, and implementing D&Rates an additional hour of higher outdoor
air temperature and solar radiation during the arintooling times of the evening.

This review of existing studies suggests that thidemce to date is inconclusive about
the effect of DST on electricity consumption. Noofethe empirical studies finds an overall
effect that is statistically different from zeramdathe simulation-based studies find mixed results.
Hence, given the widespread practice of DST, itsseovation rationale, and the recent changes
to policy, there is a clear need for more resedhelt informs the question of whether DST

actually saves energy.

3. Research Design and Data Collection
Our study takes advantage of the unique histo®®T in the state of Indiana. The practice of
DST has been the subject of long-standing contsyvén Indiana, due in large part to the

importance of agriculture in the state, and todndis location at the border between the Eastern



and Central Time ZonesFor more than 30 years prior to 2006, the resak heen three
different time scenarios within the statg: {7 counties on Eastern Standard Time (EST) tidat d
not practice DST,if) 10 counties clustered in the north- and southtevascorners of the state on
Central Standard Time (CST) that did practice D&Td (ii) 5 counties in the south-eastern
portion of the state on EST that did practice DS e different time scenarios changed in 2006
when the entire state began practicing DST as redjliy a vote that passed the state legislature
in 2005. Also beginning in 2006, a handful of coesswitched from EST to CST.

Let us now be more precise about time and timmghe southern portion of Indiana,
which is the geographic focus of our study. Figurdistinguishes four sets of counties. The SE
and SW counties experienced no change; they babtiped DST prior to 2006 and have
remained on EST and CST, respectively. The NE eesibegan practicing DST for the first time
in 2006, but remained on EST. The NW counties bigan practicing DST for the first time in
2006, but changed time zones from EST to CST sanatiusly at the spring transition into DST.
In effect, the NW counties did not advance clocks bour in April 2006, but did turn them back
one hour at the end of October 2006.

Given the pattern of time and timing in figurewle have two main empirical strategies
for identifying the effect of DST on residentialeetricity consumption. Both rely on having
monthly billing data for households located witHime different sets of counties. The first
strategy uses only data for years prior to 2006 iarithsed on a comparison between DST and
non-DST periods of the year, between counties dhtand did not practice DST. This is a
standard difference-in-differences (DD) approaclongider the difference in electricity
consumption between the DST and non-DST periodsthef year, after controlling for
observables such as differences in climate. Ifieneilling to assume that this difference would

have been the same for the set of north (NE, NW) south (SE, SW) counties in figure 1—

® |t is a common misperception that DST is an adpical policy. Farmers have historically been orighe most
organized groups against the practice of DST, esgjtires them to work in the morning darknessafolextra hour
in order to coordinate with the timing of marke®ge Prerau (2005) for an extended discussion.

® These differences in the practice of DST were iptesdecause of a 1972 amendment to the UniformeTAmt of

1966 (15 U.S.C. 260-67). The amendment was a diesgfonse to Indiana’s ongoing time regime delzaid, it

permitted states with multiple time zones to alexemptions from the practice of DST.



were it not for the practice of DST in the southumiies—then the effect of DST can be
identified from the empirical DD in electricity demd between the DST and non-DST periods
of the year.

The second identification strategy takes advantdgbe natural experiment created by
the policy change in 2006. Considering only theTDfriods of each year, we can partition
electricity demand into pre-2006 and 2006 peridasong the different counties, we thus have
treatment and control groups for the before andrgfieriods. The NE counties serve as a
treatment group because they began practicing @81he first time in 2006. The other sets of
counties serve as a control group because theik ¢time never changed during the DST period
of the year, before and after the policy chahgrethis case, the key identification assumption is
that, after controlling for changes in observaldesh as weather and the practice of DST,
changes from year to year in electricity demand l[d/@therwise be the same for the treatment
and control groups of counties. With this assummptidentification of the DST effect comes
from a DD estimate between the two groups, befoteadter the policy change.

Table 1 shows selected variables from the 2000 OeBsus by the four sets of counties.
Comparisons among the counties are of interestugecaur empirical strategy relies on
comparisons among them based on electricity consamphe majority of people in our study
area live in the eastern sets of counties. Thehaort counties have a larger fraction of the
population classified as rural and farm, althouggh dverall proportion of people living on farms
in small. All four sets of counties are similar witespect to median age and average household
size. Electric heat is more common in the easteumties, and income is higher in the southern
counties, where average commute times are alsoveloatdigher.

We obtained data on residential electricity constionpfrom Duke Energy, which
provides electrical service in southern Indianaa¢arly all households in the sets of counties

shown in figure . The dataset consists of monthly billing informatior all households in the

" Recall that clock time did not change for the ¢hsets of counties in the control group, but fdfedént reasons.
The policy had no effect on the SE and SW countigsgclock time did not change for the NW countiesause the
first practice of DST and the switch in time zowesurred simultaneously.

8 Cinergy formerly provided electrical service irutitern Indiana but was acquired by Duke Energy0ids2



study area from January 2004 through December 28068ouseholds in the service area faced
the same standard residential rate, and there n@reate changes between 2004 and 2006.
Several variables are important for our analyskee Meter position is a unique number for each
electric meter that is read for billing purposes® W¥fer to these positions as residences, and for
each one, we have data for @ code and county. For each monthly observation at each
residence, we also have codes that identify whigésdelong to the santenant. This enables

us to account for the fact that people move anuleatify the observations that belong to the
same tenant within each residefidach observation includesage amount, which is electricity
consumption in kilowatt-hours (kWh), amdmber of days, which is the number of calendar days
over which the usage amount accumulated. With th&sevariables, we are able to calculate
average daily consumption (ADC). Finally, each monthly observation includadransaction
date, which is the date that the usage amount was dedoin the utility company’s centralized
billing system.

The actual read-date of each meter occurs roughtyye30 days and is determined
according to assigned billing cycles. Residencesgaouped into billing cycles and assigned a
cohort number for one of 21 monthly read-dates, (ilee weekdays of a given month). Meters
are read for billing cycle 1 on the first weekddyeach month, billing cycle 2 on the second
weekday, and so forth throughout the month. Tlaggtred system allows the utility company to
collect billing information and provide 12 bills mustomers on an annual basis. In a separate
file, we obtained data on the assigned billing eyidr each meter position. We then merged
these datasets so that each monthly observatidd beuassociated with its assignedd-date,
according to Duke Energy’s billing-cycle schedule.

We also collected and merged data on weather apdedgth. Data on average daily
temperature were obtained from the National ClimBéata Centel’ We collected these data for

every day in 2004 through 2006 from 60 differentather stations in southern Indiana and

° The data does not permit us to follow tenants farme residence to another, but this is not a lifitafor our
analysis here.
9 These data are available online at the Nationah&lc Data Center webpage: www.ncdc.noaa.gov/ak/heml.



neighboring Kentucky. For each day and all 60 weattations, we calculated heating and
cooling degree days, as these provide standardcsédr explaining and forecasting electricity
demand. The reference point for calculating degiags is 65° Fahrenheit (F). When average
daily temperature falls below 65° F, the differensghe number of heating degrees in a day.
When average daily temperature exceeds 65° F,itleeethce is the number of cooling degrees
in a day. We then matched each residence to a telistation using a nearest-neighbor GIS
approach, and for each observation, we collecteegxiact days corresponding to the dates of the
billing cycle. Heating degrees in each day were raech over the days in the billing cycle to
yield the heating degree days variable for eachthtpmbservation. A parallel procedure was
used to create the cooling degree days variablethéfe used used the number of days for each
observation to calculate variables &werage heating degree days (AHDD) andaverage cooling
degree days (ACDD). This approach gives nearly residence-dpegieather data corresponding
to each billing cycle.

The variable for average day length correspondingach billing cycle at each residence
was created with similar precision. We calculated fatitude and longitude at the centroid of
each county in the dataset. At each of these pow@obtained sunrise and sunset times for each
day of the year from the Astronomical Applicatiddepartment of the U.S. Naval Observatbry.
We then calculated day length for each day in eacimty, matched the exact days with billing
cycles for each residence by its county, and caled| the correspondingverage day length
(ADL) for each billing cycle at each residence.

The original dataset included 7,949,207 observati@29,818 residences, and 413,802
tenants; however, several steps were taken, iruttatisn with technical staff at Duke Energy, to
clean and prepare the data. In order to focus enntbst regular bills, we first dropped all
observations that had a number of days less thaand7greater than 35 (2.7 percent of the

data)'? We also dropped all of the observations for whteh transaction date did not align with

" These data are available online at aa.usno.nakfatzsi/docs/RS_OneYear.php.

12 A consequence of focusing on the most regulas Blithat we lose observations that are associgitectenants
moving in or moving out. These may be observatiwith fewer than 27 days. Although we do not expéet it
will have a large impact on our results, we argentty in the process of redoing much of the analys include



the scheduled billing cycle. The vast majority r@insaction dates fall within 0 to 3 days after the
scheduled read-date, as meter readers typicallgr ef#ta into the system on the following
workday. Those with transaction dates that wereentban one day earlier than the scheduled
read date or more than 5 days later were deemegduiar and dropped (and additional 4.9
percent of the data). Finally, we considered irfagand dropped all observations that had less
than 1 kWh for average daily consumption (an addél 2.1 percent of the data). The final
dataset includes 7,181,877 observations, 223,8&i8emrces, and 374,186 tenants.

Table 2 reports descriptive statistics disaggrefate the different sets of counties and
combined. The majority of data come from the NEnt@ms, followed by those in the SE, with
fewer in the western counties. Average daily corsion—at approximately 35 kWh/day—is
very similar among all sets of counties. Averagating degree days is higher in the north
counties, while average cooling degree days isdnigh the south counties. Not surprisingly,

average day length is virtually identical for adunties.

4. Empirical Analysis

We report the methods and results of our empiacallysis in three parts. First we consider the
estimates of the overall effect of DST on residdrgiectricity consumption that comes from a
DD approach using data from 2004 and 2005, thahes,years before DST policy changed in
Indiana. Then we report comparable estimates tbatecfrom an alternative identification
strategy: the natural experiment caused by theyachange in 2006. Finally, we investigate how
the effect of DST on electricity demand varies tigioout the year, with estimates that differ by

month, are broken down into billing cohorts, arkktplace at the spring and fall transitions.

Difference-in-Differences Estimates 2004-2005
As described briefly in the previous section, oppraach for estimating the effect of DST relies

on a comparison between the “north” and “south”ntms in figure 1 for the years 2004 and

these “movers.” We plan to set the cutoff at 15siayhich has been used in other research (see RuilsgVhite
2003).
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2005. Recall that while the south counties pradtido&T for both of these years, the NE counties
did not, and the NW counties effectively did notéease of the simultaneous change in DST
practice and time zone. Within a DD framework, #fere, the north and south counties can
serve as “control” and “treatment” groups, respetyi Identification of the DST effect comes
from the assumption that, after controlling for ihas in other observables, the difference in
electricity demand between non-DST and DST penwalsid be the same between tenants in the
north and south counties, were it not for the pecacof DST in the south counties. With this
assumption, any difference in the difference betwtbe two groups is attributable to the effect
of DST.

We begin with a graphical display of the data.uFég2 plots the natural log of ADC for
the north and south counties separately. The figlse plots AHDD and ACDD for each month
and both groups of counties. The first thing toenawhich is to be expected, is the close
correspondence between ADC and the weather vasiablectricity demand is greater in months
with high AHDD and ACDD. Of greater interest for ropurposes here, however, are the
differences between the two groups of countiepdason of the trends for ADC reveals that the
south counties tend to have greater electricityateinduring the DST periods, while the north
counties tend to have greater electricity demandnguhe non-DST periods. It appears that
differences in HDD and CDD influence this patteas, the south counties tend to be hotter
during the DST periods, and the north counties terize colder during the non-DST periods.

In order to compare the trend in electricity dethbetween the north and south counties
controlling for differences in weather, we appl tfollowing procedure. For each of the 24

month-years, we estimate the following regression:

(1)  InADC, = a+ BACDD; + BAHDD; + ¢ .

We then calculater + & for all observations in each month-year and report them separately for
those in the north and south counties. These eeatdt plotted in figure 3 and can be interpreted

as weather-detrended ADC. These trends follow e#fobr more closely than those in figure 2,
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but there still appears to be a difference betwbemon-DST and DST periods. While the north
and south counties have very similar ADC in the-B@&T periods, the south counties still appear
to have somewhat greater electricity demand dutiegDST periods. Under our identification
assumption, this suggests that DST may increastriely demand.

To formally estimate the overall effect of DST electricity demand, we estimate models

with the following general specification:

(2) INADCi; = dDSTperiod; x South; + yDSTperiod; + /L ACDD;; + SAHDD;¢

+ BADLii + 6+ U + &t

where subscripts denote tenantf)STperiod; is a dummy variable for whether the observation
occurs during the DST perio8puth; is a dummy variable for whether the residence isne of
the south countiess; is a time-specific intercept, and is a tenant-specific intercept. The
estimate ofd is of primary interest, as it indicates how theutiocounties differ in their
difference between non-DST and DST periods. Whémasng equation (2), we include only
observations that are entirely contained withiheitthe DST or non-DST period of the year. In
other words, we dropped all monthly bills that dttie the transition date in or out of D&T.

Table 3 reports the fixed-effects estimates ac#ation (2). We report three models
that account for the time trend differently: an ragge year effect, month and year dummies, and
month-year dummies. Note that we include averageletath only in the model that does not
have monthly controls. The variable is omitted fréne other models with month controls
because average day length is identical for a gmenth from year to year. All standard errors
are clustered as the tenant level to account feenp@l serial correlation. The estimate dfis
similar across all three specifications and higsitigtistically significant. The estimate ofat
roughly 3.3 percent is very similar in models (afgc). Based on the identification strategy

employed here, these estimates imply that DST tesula 3.3-percent increase in electricity

13 Later in this section we use these dropped obsensato estimate the DST effect at the transitionand out of
DST in the spring and fall.
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demand over the whole DST period. Model (b) produc@igher estimate of 4.2 percent, but the
three estimates are not statistically differentrfreach other according to the overlapping 95-
percent confidence intervals (not reported).

The finding here—that DST results in more than-pe&ent increase in residential
electricity demand—depends crucially on the assionghat, after controlling for differences in
weather and average day length, the difference detwion-DST and DST period electricity
demand would have been the same in the north auth smunties in the absence of DST
practice in the south. While this assumption maydasonable, there are potential concerns. One
potentially confounding effect could be more widesa adoption of air-conditioners in the
south counties, which we have seen tend to be orban. If this were the case, our estimate of
the DST effect might be an overestimate becauseoilld also capture the effect of air-
conditioner use. While we do not have data on tiesgnce of air-conditioners, we can look to
figure 3 for evidence that the air-conditioner effenay not be very large. If air-conditioners
were having a large effect, one might expect tifferéince between the trend lines to be greatest
during the hottest summer months of June throughusu But the difference appears to be at
least as great, or greater, during September anob@g when air-conditioner use is far lower
and DST is still in effect.

There are, of course, other potentially confougdiariables, for which we do not have
data, that could imply over- or under-estimatethef DST effect. Nevertheless, these results are
highly suggestive. If one is willing to make thiarpcular identifying assumption, we find that
DST results in more than a 3-percent increasedotrtity demand over the entire DST period
from the first Sunday in April until the last Suryden October. We now turn to an alternative

identification strategy that produces comparabtemades.

Natural Experiment 2006
Indiana’s 2006 change to DST policy provides a ratexperiment and entirely different
approach for identifying the effect of DST on resital electricity consumption. The approach

is once again based on a comparison between & seatment and control counties, but the two
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groups differ somewhat from those used for the iptesvestimates. Referring back to in figure 1,
recall that the NE counties began practicing DSTtie first time in 2006. The other sets of
counties either practiced DST for all the yearsf@@ough 2006, or had no change in clock
time in 2006 due to the offsetting effects of DSl @he change in time zone. Our identification
strategy thus comes from a DD comparison betweertvtlo groups, before and after the DST
policy change. The key assumption here is thagtr @ibntrolling for differences in weather, the
difference between before an after electricity detnaould have been the same in the two sets
of counties were it not for the change in DST pplic

We begin with a simple comparison of means foraye daily consumption. Consider
first only the DST periods of the year. The firsbtcolumns of table 4 repdnADC for both the
treatment and control groups, before and afteptiiey change. These means are calculated by
first averaging within tenants and then averagiegveen tenants in order to account for the
unbalanced panel. We also report the before-aitiarehce and the DD between groups. Based
on this simple comparison of means, we find thattekity demand increased in the treatment
group (NE counties) by approximately 1.8 percenngared to the control group (all other
counties). As a point of comparison, we conductgame procedure for the non-DST periods
and also report the results in table 4. This cathbeaght of as a quasi-counterfactual because it
provides an estimate of how the two groups diffethieir difference before and after 2006, but
during the non-DST period of the year. With thisngarison, we find that the treatment group of
counties decreased, rather than increased, elgctiemand by 1.2 percent. While these results
provide preliminary evidence that DST increasestgl@ty demand, the simple comparison of
means is not a formal test, nor does it control dtner variables that may be changing
differentially over time between the two groupsyedy weather.

Turning now to a DD regression analysis, we es&ématodels with the following

specification:

(3)  INADC; = JYear2006, xNE; + BACDD; + BAHDD; + BADL + O+ U + &,
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where o is the coefficient of primary interest. It capsarthe average DD of electricity demand
in 2006 between the treatment and control groupgarinties. In parallel with the simple

comparison of means, we estimate equation (3)dsstg only data from the DST period for all

years, and then using only data from the non-DSiog@dor all years. In each case, we once
again drop the monthly observations that straddleldte of transition in or out of the DST

period.

Table 5 reports the fixed-effects estimates ofatign (3). We again estimate models that
account for the time trend in three different wagsd we excludéDL from the models with
monthly controls. The estimates @ffor all three DST period models are positive, high
statistically significant, and of nearly identigalagnitudes of 0.009. The interpretation is that
DST caused approximately a 1-percent increase entradity demand over the whole DST
period. These estimates are smaller in magnituae tihose from the previous section, but both
provide strong evidence that DST increases elé@gtionsumption. We consider these natural-
experiment estimates to be more conservative draht®n what is perhaps a more reasonable
assumption. The estimates in the previous sectien based on the assumption that the
comparison groups would have the same differen@teiciricity consumption between different
times of the year. The natural-experiment estimatesontrast, are based on the assumption that
the comparison groups would have the same differ@mconsumption between different years
at the same time of year. Essentially we think thas more reasonable to assume that the
comparison groups would have the same trend froam i@ year rather than within different
times of the year.

Table 5 also reports the non-DST period model$. okl these quasi-counterfactual
estimates oD are negative, have relatively small magnitudes, @e not statistically different
from zero. These results provide support for theniification assumption that the trend in
electricity demand is similar between the treatnsartt control groups of counties, other than for
the change in DST policy. For the negative redhls we find here occur despite having close to

2.3 million observations upon which to estimaterti@els.
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Disaggregated Natural Experiment 2006
Our estimates thus far have focused on the ovBx@ll effect on electricity consumption. We
now examine the extent to which the effect of DSffes throughout the DST period. As
discussed above, we prefer the identification stpathat exploits the natural experiment of 2006
and therefore proceed with this identification &gy in what follows.

We begin with a model specification that is a splecase of equation (3) and can be

written as

(4)  InADC;; = dYear2006, xNE; + B ACDD; + ZAHDD;; + )4 Year 2005,

+ pYear2006; + vV + ¢it,

where we estimate a separate equation for eachhmwtitin both the DST and non-DST periods
of the year. Following the same practice, we exeloobnthly observations that straddle the DST
transitions, meaning that we do not have monthlyete for April or November. Rather than
report each of the 10 equations, we focus on thienaes of & We illustrate these results
graphically in figure 4, along with the 95-perceonfidence intervals. The findings suggest that
DST decreases electricity consumption in May, waitmagnitude of approximately 0.5 percent.
The effect is not statistically different from zemJune, but for all of the other DST monthssit i
positive and statistically significant, with magnies ranging between 1 and 2 percent. In the
non-DST (i.e., quasi-counterfactual) months theatffs not statistically different from zero for 3
out of the 4 months.

The fact that monthly billing data is structurewand billing cycles—with consistent
read-dates within each month—allows us to decomfizsestimates even further. We separate
the observations into billing cohorts where the thae divided into three segments: those with
read-dates in the first third of the month, theosekcthird of the month, and the last third of the

month!* We then estimate equation (4) for each cohort ahemonth. In effect, this

14 Because there are 21 billing cycles in each mahik, procedure means that there are 7 billingesydh each

16



disaggregates the monthly estimates in third-oft#mastimates. These results are shown in
figure 5. We again find some evidence for a de@easelectricity consumption for the early
May read-dates, but through the DST period, theeedlear upward trend. In the later half of the
DST period, nearly every estimate indicates thatT D&uses an increase in electricity
consumption, with the effect appearing to be steshgluring the October read-dates, when one
estimate is approximately 4 percent. In the non-p&fiods, most of the coefficients are not
statically different from zero, and this is whabald be expected if we are in fact identifying the
effect of DST.

The final set of models that we estimate take athge of the monthly observations that
straddle the transition dates in and out of the eTiod. We have thus far dropped these
observations from the analysis, but we now use tteefocus on estimates of the DST effect at
the time of transition. In parallel with specificat (4), we estimate models for the spring and

fall transitions that have the following form:

(5) INADC;i; = dDSTfrac xYear2006; x NE; + //ACDD;; + SAHDD;; + )4 Year 2005;

+ pYear2006; + vV + ¢it,

where the only difference is the interaction widSTfrac in the treatment effect variable. This
new term is the fraction of the number of dayshe billing cycle that are in the DST period.
Once again, the coefficiemt is of primary interest, and its interpretatiomesns the same: the

percentage change in average daily consumptionialtlee practice of DST. But here the effect
is identified off of one day’s change within thdlibhg cycle. Table 6 reports the fixed-effects
estimates of equation (5) for both the spring aidnfiodels. For the spring transition, we find a
positive and statistically significant effect, withmagnitude of approximately 1 percent. The

coefficient estimate for the fall transition modelalso positive, but has a very small magnitude

cohort. In principle, we could estimate the DSTeefffor each billing cycle separately, rather thambining them
into cohorts. But there is a tradeoff between hgwvirore precisely timed estimates and having lets ufaon which
to estimate the effect. We thus follow the segmémain Reiss and White (2003), whereby 7 billingcles are
combined into one cohort.
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and is not statistically different from zero. Whbeth of these transition results are of interest,
they should be interpreted with caution becausg #ne based on an attempt to extract a daily
effect out of inherently monthly data. This, of ceei makes it difficult to precisely estimate the
effect. The same caution does not apply, howewdhe estimates reported previously, where the
models are based on data for which all days inribathly billing cycle are subject to the same

treatment effect.

5. Discussion

In this section we consider two questions. Firdiatvare the underlying mechanisms that give
rise to the estimates of the DST effect on residemdectricity consumption? To answer this
guestion we provide evidence from an engineeringuktion model. Second, given that DST
causes an overall increase in electricity conswnptwhat are the costs? We answer this
guestion in terms of increased residential eletyricosts and the social costs of increased

pollution emissions.

Engineering Smulations

We ran simulations on eQuest, an interface progrased on a versatile U.S. Department of
Energy simulation model of a building’s energy decancluding electricity The program has
standardized design parameters for various builtipgs, but all parameters can be altered by
the user. We modeled a single-family residenceylsigtory, wood-frame construction, front and
rear entry points with appropriate square footamgeaffamily of four (~2000 sq ft). Heating in
the residence is forced-air electric, and coolsgypical Freon-coil air conditioning. We kept all
other pre-specified parameters. The software irrdudourly weather data for the specified
location and year of analysis. We report simulaitor southern Indiana in 2005, and our aim is

to demonstrate the simulated changes in electri@tyand due to DST.

!5 The program description and download can be faindww.doe2.com. eQuest has the complete DOE-3iorer
2.2) building energy use simulation program embddd®ock (1997) uses an older version of DOE-2.
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We ran simulations for the DST periods of the yeatth and without implementation of
DST. The first column of table 7 reports the sineda percentage change in electricity
consumption by month. Electricity consumption irases in 5 out of the 7 months. The only
months associated with a savings are June andahdythe magnitudes are both just under 2
percent. The increased consumption that occurserspring months of April and May are both
under 1 percent. The magnitudes in the late sunameifall are larger, especially in September
and October, where the increased consumption s$2d¢w4 and 3 percent, respectively. Note that
the pattern of these results is similar in manypeets to our estimates in the previous section.
Referring back to figure 5, we find evidence of soatectricity savings in early summer, and the
largest increases in consumption occur in the fallparticular, the October read-dates, which
reflect half of September’s consumption, have magies of increased electricity consumption
that are very similar to the predictions of the @iaion model.

Beyond corroboration of our findings, the valudlw simulation exercise is that we can
decompose electricity consumption into its compornmnts. The last three columns in table 7
report the simulated change in average daily copsiom by month for lighting, heating, and
cooling separately. In all months, other than OetpDST saves on electricity used for lighting;
therefore, it appears that the “Benjamin Franklifea” is occurring. But when it comes to
heating and cooling, the clear pattern is that [@80ses an increase in electricity consumption.
The changes in average daily consumption are &ater for cooling, which follows because air-
conditioning tends to draw more electricity and D&Turs during the hotter months of the year.
These results indicate that the findings of Shimetda. (2007) for Japan apply to Indiana as
well. Moving an hour of sunlight from the early morg to the evening (relative to clock time)
increases electricity consumption for cooling beea{) demand for cooling is greater in the
evening andi{) the build-up of solar radiation throughout they daeans that the evening is
hotter. In some months, the cooling effect out Weighe Benjamin Franklin effect. There is also
some evidence for a heating effect that causesmemase in electricity consumption. When
temperatures are such that heating is necessarnyghan additional hour of darkness in the

morning, which is the coldest time of day, increaskectricity consumption. Kellogg and Wolff
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(2006) find evidence for the heating effect in theudy of DST extensions in Australia. While
the magnitude of the heating effect does no apjoelae a large in our Indiana simulation results,
it is likely to be more substantial when considgrextensions to DST, which push further into

the colder times of year when the days are alsdeho

Costs of DST in Indiana

To begin calculating the costs of DST in Indiana meed to establish the baseline of what
electricity consumption would be without the praetof DST. We take advantage of all the data
during the DST period to establish the baseline. dloobservations that were subject to DST,
we subtract the conservative estimate of 0.93 péert&at comes from the models in table 5.
Average daily consumption is then calculated frbese adjusted observations and all others that
were not subject to DST, yielding an overall estenaf 30.15 kWh/day. It follows that the effect
of DST—under the pre-2007 dates of practice—isrameiase in consumption for the average
residence of 59.16 kWh/year (i.e., 0.00930.15 kWh/day< 211 days/year). Extrapolating this
estimate to all 2,724,429 households in the sthtediana implies that DST increases statewide
residential electricity consumption by 161,177 nveg hours per year (MWh/year).

With this estimate, it is straightforward to derive increased residential electricity costs
per year. The average price paid for residentgdtacity service from Duke Energy in southern
Indiana is $0.054/kWh. Multiplying this price byetlchange in a household’s consumption
implies a residential cost of $3.19 per year. Epdfating once again to the entire state yields a
cost of $8,690,928 per year in residential eleitjriaills due to the practice of DS¥.

The statewide increase in electricity consumptibh61,177 MWh/year also provides the
basis for calculating the social costs of polluteanissions. We follow the general approach used
in Kotchenet al. (2006). The first step is to determine the fuék for electricity generation.
According to the Energy Information Administrati@BIA 2006), the fuel mix for generation in

Indiana is 94.8 percent coal, 2 percent natural @dspercent petroleum, and 4.9 percent from

6 A more precise estimate, which we are in the B®oé obtaining, would account for price differende different
areas of the state.
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other sources (gases, hydroelectric, and othemaies). We assume the change in generation
due to DST comes entirely from coal, as it accodatssuch a vast majority of the state’s
electricity generatioft’ Emission rates—in tons of emissions per MWh otteleity generation
from coal—are taken from Ecobilan’s Tool for Enwvirobental Analysis and Management
(TEAM) model, which is a life-cycle assessment aegring model (Ecobilan 1996). The first
column in table 8 reports the marginal emissionscirbon dioxide, lead, mercury, methane,
nitrogen oxides, nitrous oxide, particulates, anllus dioxide. The second column reports the
change in emissions for each pollutant, which mspdy the product of marginal emissions and
the change in overall electricity generation.

The next step is to quantify the marginal damadesach pollutant. For this we use a
benefits transfer methodology and report low- amghimarginal damage scenarios where
possible. The two exceptions are mercury and sulfoxide. We have only one estimate for
mercury, and the values for sulfur dioxide are tilaglable permit price in 2007, rather than the
marginal damages. The reason for using the suditmp price is that total emissions are capped,
so the marginal costs are reflected in the permtepas the increase in emissions due to DST
must be abated somewhere because of the bindingrabfe 8 reports the range of values in
2007 dollars for all pollutants, and we refer read® Kotchenret al. (2006) for details on the
specific references for each estimate.

The final step is to simply multiply the marginardages by the change in emissions for
each pollutant. The last two columns of table &refhese total damage costs for each pollutant,
for the low and high scenarios. After summing tesuits across all pollutants, the low and high
estimates for the social costs of emissions areoappately $1.6 million and $5.3 million per
year. In the low scenario, increases in carbonideyparticulates, and sulfur dioxide account for

the vast majority of the costs. In the high scemancreases in carbon dioxide account for a

" This assumption could be important because emisdiiffer substantially for different fuel sourcesid coal is
the dirtiest. If, for example, electric utilitiea indiana meet peak demand with natural gas, rdttear coal, we
would be overestimating the change in emissionghasges in electricity demand due to DST are tilosly to
occur during peak times. While we are currentlykiog into this, the fact that 95 percent of theestageneration
comes from coal suggests that coal is also beiad tsmeet peak demand.
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much greater share of the costs, with the diffezerflecting uncertainty about the economic
impacts of climate change. In both scenarios tlstscof increases in lead, mercury, and methane

are negligible.

6. Conclusion

The history of DST has been long and controverdiitoughout its implementation during
World Wars | and Il, the oil embargo of the 1978s8d more regular practice today, the primary
rationale for DST has always been to promote en@gyservation. Nevertheless, there is
surprisingly little evidence that DST actually savenergy. This paper takes advantage of a
natural experiment in the state of Indiana to pteuine first empirical estimates of DST effects
on electricity consumption in the United Statescsithe mid-1970s. We focus on residential
electricity demand and conduct the first study tre®s micro-data on households.

Our main finding is that—contrary to the policy’stent—DST results is an overall
increase in residential electricity demand. Estewaif the overall increase in consumption range
from 1 to 4 percent. We also find that the effschot constant throughout the DST period, with
evidence for electricity savings in the spring ancreases that are greatest in the fall. These
findings are generally consistent with simulatiesults that point to a tradeoff between reducing
demand for lighting and increasing demand for Imgaéind cooling. According to the dates of
DST practice prior to 2007, we estimate a coshtbana households of $8.6 million per year in
increased electricity bills. Estimates of the sbciasts due to increased pollution emissions
range from $1.6 to $5.3 million per year.

The results of this research should inform ongalabate about the recent extensions to
DST that took place in 2007. The Energy Policy 8icR005 requires that research be conducted
to evaluate whether the extensions yield consemdienefits. While our results suggest that the
extensions to DST are most likely to increase, eratihan decrease, demand for residential
electricity, further research is necessary to eranthe effects of the extensions themselves.
Future research should also investigate whethefitliéngs here generalize to other locations

throughout the United States. While we find thaé tlongstanding rationale for DST is
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guestionable, and that if anything the policy seémbave the opposite of its intended effect,
there are other arguments made in favor of DSTs@hange from increased opportunities for
leisure, enhanced public health and safety, andaoa growth. In the end, a full evaluation of
DST should account for these multiple dimensions the evidence here suggests that continued

reliance on Benjamin Franklin’s old argument albas become misleading.
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Figure 1: Sets of Indiana counties in the study area witfieidint time zones and differential
practice of daylight saving time.
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Figure 2: 2004-2005 average daily consumption, averagengalegree days, and average
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Table 1: U.S. Census data for different sets of countie®uthern Indiana

Set of counties

Census variable SE SW NE NW Total
Number of counties 3 3 14 4 24
Total population 176,906 111,944 506,932 92,282 ,&5B
Proportion of population rural 0.461 0.456 0.493 530 0.466
Proportion of population rural and farm 0.023 0.029 0.032 0.063 0.031
Median age 36.4 37.6 35.9 37.4 36.4
Number of households 68,500 42,490 195,597 35,74869,836
Average household size 2.5 2.6 2.5 2.5 2.5
Proportion households with electric heat 0.322 .28 0.334 0.218 0.311
Median household income in 1999 $42,613 $43,505 0B $33,717  $39,553
Average per capita commute time (minutes) 12.63 1811. 10.58 9.56 10.92

Notes: All data taken from the 2000 U.S. Census. Celidgivted appropriately by either population or numbie
households.

Table 2: Descriptive statistics for different sets of caestin the dataset

Set of counties

Variable SE SW NE NW Total
Number of counties 3 3 14 4 24
Observations 1,278,519314,598 5,036,552 552,208 7,181,877
Residences 39,646 9,595 157,469 17,173 223,878
Tenants 64,230 14,086 269,315 26,555 374,186
Average daily consumption (kwWh/day) 35.21 35.99 35.98 35.09 35.77
(25.28) (26.09) (29.02) (26.96) (28.11)
In average daily consumption 3.30 331 3.29 3.27 3.29
(0.79) (0.82) (0.83) (0.82) (0.82)
Average heating degree days 11.20 11.86 12.94 12.47 12.54
(11.30) (11.81) (12.44) (12.31) (12.23)
Average cooling degree days 401 3.88 3.13 3.60 3.36
(5.09) (4.92) (4.17) (4.54) (4.43)
Average day length (hours) 12.25 12.24 12.25 12.24 12.25

(1.81)  (1.79)  (1.83)  (1.82)  (1.83)

Notes: Standard deviations are reported in parentheses.
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Table 3: Fixed-effects models for difference-in-differerestimates 2004-2005

Model
(@) (b) (€)
DSTperiodx South counties 0.0325** 0.0421** 0.0334**
(0.0028) (0.0028) (0.0028)
DSTperiod -0.0777* - --
(0.0015)
Average cooling degree days 0.0578** 0.0509** 0.0566**
(0.0001) (0.0002) (0.0003)
Average heating degree days 0.0116** 0.0124** 0.0123**
(0.0001) (0.0001) (0.0001)
Average day length -0.0132** - --
(0.0002)
Year 2005 -0.0012* 0.0042** -
(0.0006) (0.0006)
Month dummies - Yes -
Month-year dummies -- -- Yes
Number of observations 3,843,759 3,843,759 3,848,75
Number of residents 315,251 315,251 315,251
R-squared (within) 0.152 0.154 0.154

Notes: The left-hand side variables liSADC for each resident. Standard errors, clusteretheatenant level, are
reported in parentheses. ** and * indicate staitsignificance at the 99- and 95-percent levelspectively.

Table 4: Differences in average daily consumption betwe@i22005 and 2006

DST period Non-DST period
Treatment: Control: Treatment: Control:
NE SE, SW, NW NE SE, SW, NW
Years 2004-2005 3.1395 3.2402 3.2841 3.2142
Year 2006 3.1864 3.2695 3.2983 3.2404
Difference 0.0469 0.0292 0.0142 0.0262
Difference-in-difference (DD) 0.0176 -0.0120

Notes: Average daily consumption reportedla8DC. Difference is interpreted as the percentage ahang
from years 2004-2005 to year 2006. Difference-iifedénce is the percentage difference in the
treatment group compared to the control group.
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Table 5. Fixed-effects models for changed average dailggomption in 2006, DST and Non-DST periods

DST period models | Non-DST period models
(a) (b) (©) (d) (e) (f)
Year 2006x Treatment group 0.0097** 0.0093** 0.0093** -0.0019 -0.0014 -0.0023
(0.0014) (0.0014) (0.0014) (0.0015) (0.0015) (0.0015)
Average cooling degree days 0.0505** 0.0465** 0.0487** -0.0170** -0.0072 0.0038
(0.0001) (0.0001) (0.0001) (0.0058) (0.0059) (0.0063)
Average heating degree days 0.0013** 0.0039** 0.0034** 0.0132** 0.0140** 0.0144**
(0.0001) (0.0001) (0.0002) (0.0000) (0.0001) (0.0001)
Average day length -0.0076** - - -0.0316** - --
(0.0002) (0.0003)
Year 2005 -0.0072** -0.0019 - 0.0144** 0.0134** -
(0.0007) (0.0007) (0.0007) (0.0007)
Year 2006 -0.0236** -0.0246** - 0.0193** 0.0194** -
(0.0013) (0.0013) (0.0014) (0.0014)
Month dummies - Yes - - Yes -
Month-year dummies -- - Yes - -- Yes
Number of observations 3,623,370 3,623,370 3,628,37 2,289,640 2,289,640 2,289,640
Number of residents 335,509 335,509 335,509 332,032 332,032 332,032
R-squared (within) 0.312 0.313 0.314 0.075 0.075 78.0

Notes: The left-hand side variables IBADC. Standard errors, clustered at the tenant level r@ported in parentheses. ** and * indicate stiagl
significance at the 99- and 95-percent levels,eetyely.
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Table 6: Fixed-effects models for the spring and fall traass in and out of DST

Transition model

Spring Fall
Fraction DST days Year 2006x Treatment group 0.0106** 0.0014
(0.0028) (0.0032)
Average cooling degree days 0.0360** 0.0537**
(0.0022) (0.0028)
Average heating degree days 0.0118** 0.0132**
(0.0004) (0.0004)
Year 2005 0.0112** 0.0036**
(0.0011) (0.0016)
Year 2006 0.0131** 0.0261**
(0.0025) (0.0032)
Number of observations 574,821 578,430
Number of residents 279,893 278,078
R-squared (within) 0.007 0.035

Notes: The left-hand side variables IBADC. Standard errors, clustered at the tenant level, a
reported in parentheses. ** and * indicate staf#dtisignificance at the 99- and 95-percent levels,
respectively.

Table 7: Simulation results for changes in monthly eledyidemand with and without DST

Difference in average daily consumption (no DSDST)

DST Effect Lighting Heating Cooling
April 0.22% -10 1 9
May 0.98% -18 7 14
June -1.84% -19 1 11
July -1.97% -20 0 12
August 1.03% -16 0 20
September 3.92% -5 3 14
October 2.93% 5 -2 8
Overall 0.32%

Notes. Simulation results based on 2005 weather in swothndiana. Quantities reported in the last three
columns are differences in average daily consumptar the category and month indicated. DST effect
percent differences do not exactly reflect the petage change in light, heating, and cooling bexdhsy
capture relatively small changes in electricity semption due to DST in other categories as well.
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Table 8: The social costs to Indiana of pollution emissibosn DST

Emissions A emissions  Marginal damages Total damages

(tons/MWh) (tons) Low High Low High
Carbon dioxide  1.134E-00 182774.72 $2.82 $20.55 587D $3,755,143
Lead 6.752E-07 0.11 $572.52  $2,457.32 $62 $267
Mercury 2.490E-08 0.00 $58.90 $58.90 $0 $0
Methane 1.336E-05 2.15 $79.96 $343.16 $172 $739
Nitrogen oxides  5.275E-03 850.21 $77.20 $179.41 , G355 $152,534
Nitrous oxide 4.868E-05 7.85 $853.54  $7,690.35 $6,6 $60,339
Particulates 8.540E-04 137.65 $954.91 $3,282.86 1488 $451,869
Sulfur dioxide 1.060E-02 1708.48 $518.98 $518.98  86H365 $886,665
Total $1,606,038 $5,307,557

Notes: Emissions (tons/MWh) taken from Ecobilan’s TEAMdel, copyright 20062 emissions are the product of
emissions and the DST change in electricity congiompf 161,177 MWh/year. All dollars values ar@oeed in

2007 dollars.
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