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Abstract 
 

The history of Daylight Saving Time (DST) has been long and controversial. Throughout its 
implementation during World Wars I and II, the oil embargo of the 1970s, and more regular 
practice today, the primary rationale for DST has always been to promote energy conservation. 
Nevertheless, there is surprisingly little evidence that DST actually saves energy. This paper 
takes advantage of a natural experiment in the state of Indiana to provide the first empirical 
estimates of DST effects on electricity consumption in the United States since the mid-1970s. 
Focusing on residential electricity demand, we conduct the first-ever study that uses micro-data 
on households. The dataset consists of more than 7 million observations on monthly billing data 
for nearly all households in southern Indiana for three years. Our main finding is that—contrary 
to the policy’s intent—DST increases residential electricity demand. Estimates of the overall 
increase range from 1 to 4 percent, but we find that the effect is not constant throughout the DST 
period. There is some evidence of electricity savings during the spring, but the effect lessens, 
changes sign, and appears to cause the greatest increase in consumption near the end of the DST 
period in the fall. These findings are consistent with simulation results that point to a tradeoff 
between reducing demand for lighting and increasing demand for heating and cooling. Based on 
the dates of DST practice before the 2007 extensions, we estimate a cost of increased electricity 
bills to Indiana households of $8.6 million per year. We also estimate social costs of increased 
pollution emissions that range from $1.6 to $5.3 million per year. 

                                                 
* This draft was prepared for discussion at the NBER Environmental and Energy Economics Program Meeting at 
Stanford University on February 8, 2008. We are grateful to Dick Stevie and Monica Redman of Duke Energy for 
generously providing data and assistance throughout. While presenting early results from this research, we benefited 
from helpful discussions with Matt White and conference participants at the UC Energy Institute and the CU 
Environmental Economics Workshop. We gratefully acknowledge financial support from the UC Energy Institute. 
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1.   Introduction 

The well-known mnemonic of “spring-forward, fall-back” describes the annual ritual of Daylight 

Saving Time (DST): turn clocks forward one hour in the spring and turn them back one hour in 

the fall. Less well known is the primary rationale for DST as a policy to conserve energy. 

Benjamin Franklin (1784) first proposed the idea after observing that people were sleeping 

during sunlit hours in the early morning and burning candles for illumination in the evening. He 

argued that if we simply pushed the clocks forward at certain times of the year, an immense sum 

of tallow and wax could be saved by the “economy of using sunshine rather than candles.” It 

took more than 130 years for Franklin’s idea to take hold during World War I, when the need for 

energy prompted Germany to institute the first DST policy in 1916. By taking advantage of 

sunlight for an additional hour each day, the aim was to reduce demand for electrical lighting so 

that more coal could be diverted to the war effort. The United States soon followed Germany’s 

lead, but then repealed DST after World War I ended. Decades later, a more ambitious, year-

round DST was reinstated for three years during World War II. 

The Uniform Time Act of 1966 was the first federal DST law in the United States that 

was not part of a wartime initiative. The Act established that DST would begin on the last 

Sunday in April and end on the last Sunday in October.1 The Arab oil embargo of the early 1970s 

prompted further changes to federal DST policy, when the Emergency Daylight Saving Time 

Energy Conservation Act of 1973 imposed year-round DST for 15 months. A more enduring 

change, again with the intent of energy conservation, occurred in 1986, when the start date was 

moved forward by three weeks. Most recently, the Energy Policy Act of 2005 extended DST yet 

again; as of 2007, DST begins three weeks earlier, on the second Sunday in March, and lasts one 

week longer, until the first Sunday in November. 

In debates leading up to Act’s passage, members of Congress speculated that the 

extension would save the equivalent of 100,000 barrels of oil per day (Congressional Record 

2005a, 2005b). But the Act requires that research be conducted to estimate the actual 

                                                 
1 While individual states could choose to be exempt, only Arizona, Hawaii, Indiana, and a few U.S. territories have 
done so in various ways over time. 
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conservation benefits, and Congress retains the right to repeal the extensions if the intended 

benefits are not realized. Despite the long history and current practice of DST as a conservation 

policy—in the United States and more than 70 other countries worldwide—surprisingly little 

research has been conducted to determine whether DST actually saves energy.2 Even among the 

few studies that do exist, which we review in the next section, the evidence is inconclusive. 

In this paper, we investigate whether DST does in fact save energy, with a focus on 

residential electricity consumption.3 Our research design takes advantage of the unique history of 

DST in the state of Indiana, combined with a dataset of monthly billing cycles for nearly all 

households in the southern portion of the state for the years 2004 through 2006. While some 

counties in Indiana have historically practiced DST, the majority have not. This changed with a 

state law that required all counties to begin practicing DST in 2006. The initial heterogeneity of 

DST among Indiana counties and the policy change in 2006 provides unique opportunities—with 

treatment and control groups of counties—to empirically identify the relationship between DST 

and residential electricity demand.  

Our results provide the first empirical estimates of DST effects on electricity demand in 

the United States since the mid-1970s. The study is also the first to use residential micro-data to 

estimate an overall DST effect and date-specific effects throughout the DST period. Another 

contribution of the study is that we estimate changes in pollution emissions due to DST and 

quantify the associated social costs and/or benefits. 

We find that the overall DST effect on electricity consumption runs counter to 

conventional wisdom: DST results in an overall increase in residential electricity demand, and 

the effect is highly statistically significant. Based on two distinct identification strategies—a 

difference-in-differences approach for 2004-2005 and a natural experiment in 2006—we find 

                                                 
2 Other effects of DST have been studied in more detail. These include studies that investigate the effects on safety 
(e.g., Coate and Markowitz 2004, Sullivan and Flannagan 2002, Coren 1996a 1996b), economic coordination 
(Hamermesh et al 2006), and stock market performance (Kamstra et al 2000 2002, Pinegar 2002).  
3 Although we focus exclusively on residential electricity consumption, it is likely to be the portion of aggregate 
electricity demand that is most sensitive to DST. Changes in the timing of sunrise and sunset occur when people are 
more likely to be at home, where and when behavioral adjustments might occur. Commercial electricity demand, in 
contrast, is likely to be greatest at inframarginal times of the day and generally less variable to changes in the timing 
of daylight. 



 3 

estimates for the overall effect of DST that range from a 1-percent to a 4-percent increase in 

consumption. We also find that the effect is not constant throughout the DST period. There is 

some evidence of electricity savings during the spring, but the effect lessens, changes sign, and 

appears to cause the greatest increase in consumption near the end of the DST period in the fall. 

To help interpret these results, we simulate the effect of DST for an Indiana household with the 

U.S Department of Energy model for residential electricity demand (eQuest). Consistent with 

Benjamin Franklin’s original conjecture, DST is found to save on electricity used for 

illumination, but there are increases in electricity used for heating and cooling. Both the 

empirical and simulation results suggest that the latter effect is larger than the former. A final 

component of our analysis is calculation of the costs associated with DST. We find that the 

policy costs Indiana households an average of $3.19 per year in increased electricity bills, which 

aggregates to approximately $8.6 million over the entire state. We also calculate the social costs 

in terms of increased pollution emissions, and these estimates range from $1.6 to $5.3 million per 

year.  

 

2.   Existing Evidence 

The most widely cited study of the DST effect on electricity demand is the U.S. Department of 

Transportation (1975) report that was required by the Emergency Daylight Saving Time Energy 

Conservation Act of 1973. The most compelling part of the study is its use of the ‘equivalent day 

normalization technique,’ which is essentially a difference-in-differences (DD) approach. Using 

hourly electricity load data from 22 different utilities for a period of days before and after 

transitions in and out of DST, days are partitioned into DST-influenced periods (morning, 

evening) and uninfluenced periods (midday, night). It is then assumed that differences in the 

difference between influenced and uninfluenced periods, before and after the transition are due to 

the DST effect. The results indicate an average load reduction of approximately 1 percent during 

the spring and fall transition periods, but a subsequent evaluation of the study, conducted by the 

National Bureau of Standards (cited in Gurevitz 2006), concludes that the energy savings are 

insignificant. 
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The California Energy Commission (CEC 2001) conducts a simulation-based study to 

estimate the effects of DST on statewide electricity consumption. A system of equations is 

estimated to explain hourly electricity demand as a function of employment, weather, 

temperature, and sunlight. The Commission then simulates electricity use under different DST 

practice regimes. The results indicate that practicing winter DST reduces consumption by 0.5 

percent, and DST as currently practiced leaves electricity consumption virtually unchanged 

between May and September, but may reduce consumption between 0.15 and 0.3 percent during 

April and October.4 More recently, the CEC modeling approach is used to consider the actual 

extensions to DST that occurred in 2007 (CEC 2007). Based on the spring and fall extensions, 

the simulation predicts a decrease in electricity consumption of 0.56 percent, but the 95-percent 

confidence interval includes zero and ranges from a decrease of 2.2 percent to an increase of 1.1 

percent. 

Kellogg and Wolff (2007) take advantage of a quasi-experiment that occurred in Australia 

with the extension of DST in conjunction with the Sidney Olympic Games in 2000. Using a 

comparison of electricity load data from two different states, where only one experienced the 

extension of DST, they find that DST increases demand for electricity in the morning and 

decreases demand in the evening. While in some cases the net effect is an increase in demand, 

the combined results are not statistically different from zero. Kellogg and Wolff also apply the 

CEC simulation technique to determine whether it reasonably predicts what actually occurred 

with the Australian DST extension. They find that the simulation fails to predict the morning 

increase in consumption and overestimates the evening decrease. Their study thus provides the 

first empirical study that brings into question whether DST policies actually produce the 

intended effect of reducing electricity demand. 

Using an engineering simulation model, Rock (1997) also finds evidence that DST might 

increase, rather than decrease, electricity consumption. He calibrates a model of energy 

                                                 
4 The Indiana Fiscal Policy Institute (2001) attempts to replicate the CEC approach and estimate the potential effects 
of DST in Indiana; however, the results are not conclusive. While the statistical models are reported as very 
preliminary, and to our knowledge have never been completed, the results indicate that DST in Indiana could either 
increase or decrease electricity consumption. 
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consumption for a typical residence using actual utility records, while accounting for 

construction, residential appliances, heating and cooling systems, lighting requirements, and 

number of occupants. In order to account for differences in weather and geographic location, the 

model is used to simulate DST scenarios for 224 different locations within the United Sates. The 

results indicate that DST, as it is currently practiced, increases electricity consumption by 0.244 

percent when averaged over the different locations. Other results indicate that extending DST 

year-round would save an average of 0.267 percent, but the overall effect of year-round DST 

compared to no DST would leave electricity consumption virtually unchanged. 

A similar methodology is employed in two recent studies that take place in Japan, where 

DST is continually debated but not currently practiced. Fong et al. (2007) use a simulation model 

to investigate the effects of DST on household lighting, and they find a reduction in electricity 

consumption that differs by region. Shimoda et al. (2007) conduct a similar exercise, with the 

added consideration of DST’s effect on residential cooling. When considering both effects, they 

find that implementing DST results in a 0.13-percent increase in residential electricity 

consumption. The underlying mechanism for the result is that residential cooling is greater in the 

evening than in the morning, and implementing DST creates an additional hour of higher outdoor 

air temperature and solar radiation during the primary cooling times of the evening.  

This review of existing studies suggests that the evidence to date is inconclusive about 

the effect of DST on electricity consumption. None of the empirical studies finds an overall 

effect that is statistically different from zero, and the simulation-based studies find mixed results. 

Hence, given the widespread practice of DST, its conservation rationale, and the recent changes 

to policy, there is a clear need for more research that informs the question of whether DST 

actually saves energy. 

 

3.  Research Design and Data Collection 

Our study takes advantage of the unique history of DST in the state of Indiana. The practice of 

DST has been the subject of long-standing controversy in Indiana, due in large part to the 

importance of agriculture in the state, and to Indiana’s location at the border between the Eastern 
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and Central Time Zones.5 For more than 30 years prior to 2006, the result has been three 

different time scenarios within the state: (i) 77 counties on Eastern Standard Time (EST) that did 

not practice DST, (ii) 10 counties clustered in the north- and south-western corners of the state on 

Central Standard Time (CST) that did practice DST, and (iii) 5 counties in the south-eastern 

portion of the state on EST that did practice DST.6 The different time scenarios changed in 2006 

when the entire state began practicing DST as required by a vote that passed the state legislature 

in 2005. Also beginning in 2006, a handful of counties switched from EST to CST. 

 Let us now be more precise about time and timing in the southern portion of Indiana, 

which is the geographic focus of our study. Figure 1 distinguishes four sets of counties. The SE 

and SW counties experienced no change; they both practiced DST prior to 2006 and have 

remained on EST and CST, respectively. The NE counties began practicing DST for the first time 

in 2006, but remained on EST. The NW counties also began practicing DST for the first time in 

2006, but changed time zones from EST to CST simultaneously at the spring transition into DST. 

In effect, the NW counties did not advance clocks one hour in April 2006, but did turn them back 

one hour at the end of October 2006. 

 Given the pattern of time and timing in figure 1, we have two main empirical strategies 

for identifying the effect of DST on residential electricity consumption. Both rely on having 

monthly billing data for households located within the different sets of counties. The first 

strategy uses only data for years prior to 2006 and is based on a comparison between DST and 

non-DST periods of the year, between counties that did and did not practice DST. This is a 

standard difference-in-differences (DD) approach. Consider the difference in electricity 

consumption between the DST and non-DST periods of the year, after controlling for 

observables such as differences in climate. If one is willing to assume that this difference would 

have been the same for the set of north (NE, NW) and south (SE, SW) counties in figure 1—

                                                 
5 It is a common misperception that DST is an agricultural policy. Farmers have historically been one of the most 
organized groups against the practice of DST, as it requires them to work in the morning darkness for an extra hour 
in order to coordinate with the timing of markets. See Prerau (2005) for an extended discussion. 
6 These differences in the practice of DST were possible because of a 1972 amendment to the Uniform Time Act of 
1966 (15 U.S.C. 260-67). The amendment was a direct response to Indiana’s ongoing time regime debate, and it 
permitted states with multiple time zones to allow exemptions from the practice of DST. 
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were it not for the practice of DST in the south counties—then the effect of DST can be 

identified from the empirical DD in electricity demand between the DST and non-DST periods 

of the year. 

The second identification strategy takes advantage of the natural experiment created by 

the policy change in 2006.  Considering only the DST periods of each year, we can partition 

electricity demand into pre-2006 and 2006 periods. Among the different counties, we thus have 

treatment and control groups for the before and after periods. The NE counties serve as a 

treatment group because they began practicing DST for the first time in 2006. The other sets of 

counties serve as a control group because their clock time never changed during the DST period 

of the year, before and after the policy change.7 In this case, the key identification assumption is 

that, after controlling for changes in observables such as weather and the practice of DST, 

changes from year to year in electricity demand would otherwise be the same for the treatment 

and control groups of counties. With this assumption, identification of the DST effect comes 

from a DD estimate between the two groups, before and after the policy change. 

Table 1 shows selected variables from the 2000 U.S. Census by the four sets of counties. 

Comparisons among the counties are of interest because our empirical strategy relies on 

comparisons among them based on electricity consumption. The majority of people in our study 

area live in the eastern sets of counties. The northern counties have a larger fraction of the 

population classified as rural and farm, although the overall proportion of people living on farms 

in small. All four sets of counties are similar with respect to median age and average household 

size. Electric heat is more common in the eastern counties, and income is higher in the southern 

counties, where average commute times are also somewhat higher. 

We obtained data on residential electricity consumption from Duke Energy, which 

provides electrical service in southern Indiana to nearly all households in the sets of counties 

shown in figure 1.8 The dataset consists of monthly billing information for all households in the 

                                                 
7 Recall that clock time did not change for the three sets of counties in the control group, but for different reasons. 
The policy had no effect on the SE and SW counties, but clock time did not change for the NW counties because the 
first practice of DST and the switch in time zones occurred simultaneously. 
8 Cinergy formerly provided electrical service in southern Indiana but was acquired by Duke Energy in 2005. 
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study area from January 2004 through December 2006. All households in the service area faced 

the same standard residential rate, and there were no rate changes between 2004 and 2006. 

Several variables are important for our analysis. The meter position is a unique number for each 

electric meter that is read for billing purposes. We refer to these positions as residences, and for 

each one, we have data for its zip code and county. For each monthly observation at each 

residence, we also have codes that identify which ones belong to the same tenant. This enables 

us to account for the fact that people move and to identify the observations that belong to the 

same tenant within each residence.9 Each observation includes usage amount, which is electricity 

consumption in kilowatt-hours (kWh), and number of days, which is the number of calendar days 

over which the usage amount accumulated. With these two variables, we are able to calculate 

average daily consumption (ADC). Finally, each monthly observation includes a transaction 

date, which is the date that the usage amount was recorded in the utility company’s centralized 

billing system. 

The actual read-date of each meter occurs roughly every 30 days and is determined 

according to assigned billing cycles. Residences are grouped into billing cycles and assigned a 

cohort number for one of 21 monthly read-dates (i.e., the weekdays of a given month). Meters 

are read for billing cycle 1 on the first weekday of each month, billing cycle 2 on the second 

weekday, and so forth throughout the month. This staggered system allows the utility company to 

collect billing information and provide 12 bills to customers on an annual basis. In a separate 

file, we obtained data on the assigned billing cycle for each meter position. We then merged 

these datasets so that each monthly observation could be associated with its assigned read-date, 

according to Duke Energy’s billing-cycle schedule. 

We also collected and merged data on weather and day-length. Data on average daily 

temperature were obtained from the National Climatic Data Center.10 We collected these data for 

every day in 2004 through 2006 from 60 different weather stations in southern Indiana and 

                                                 
9 The data does not permit us to follow tenants from one residence to another, but this is not a limitation for our 
analysis here. 
10 These data are available online at the National Climatic Data Center webpage: www.ncdc.noaa.gov/oa/ncdc.html. 
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neighboring Kentucky. For each day and all 60 weather stations, we calculated heating and 

cooling degree days, as these provide standard metrics for explaining and forecasting electricity 

demand. The reference point for calculating degree days is 65° Fahrenheit (F). When average 

daily temperature falls below 65° F, the difference is the number of heating degrees in a day. 

When average daily temperature exceeds 65° F, the difference is the number of cooling degrees 

in a day. We then matched each residence to a climate station using a nearest-neighbor GIS 

approach, and for each observation, we collected the exact days corresponding to the dates of the 

billing cycle. Heating degrees in each day were summed over the days in the billing cycle to 

yield the heating degree days variable for each monthly observation. A parallel procedure was 

used to create the cooling degree days variable. We then used used the number of days for each 

observation to calculate variables for average heating degree days (AHDD) and average cooling 

degree days (ACDD). This approach gives nearly residence-specific weather data corresponding 

to each billing cycle. 

The variable for average day length corresponding to each billing cycle at each residence 

was created with similar precision. We calculated the latitude and longitude at the centroid of 

each county in the dataset. At each of these points, we obtained sunrise and sunset times for each 

day of the year from the Astronomical Applications Department of the U.S. Naval Observatory.11 

We then calculated day length for each day in each county, matched the exact days with billing 

cycles for each residence by its county, and calculated the corresponding average day length 

(ADL) for each billing cycle at each residence.  

The original dataset included 7,949,207 observations, 229,818 residences, and 413,802 

tenants; however, several steps were taken, in consultation with technical staff at Duke Energy, to 

clean and prepare the data. In order to focus on the most regular bills, we first dropped all 

observations that had a number of days less than 27 and greater than 35 (2.7 percent of the 

data).12 We also dropped all of the observations for which the transaction date did not align with 

                                                 
11 These data are available online at aa.usno.navy.mil/data/docs/RS_OneYear.php. 
12 A consequence of focusing on the most regular bills is that we lose observations that are associated with tenants 
moving in or moving out. These may be observations with fewer than 27 days. Although we do not expect that it 
will have a large impact on our results, we are currently in the process of redoing much of the analysis to include 
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the scheduled billing cycle. The vast majority of transaction dates fall within 0 to 3 days after the 

scheduled read-date, as meter readers typically enter data into the system on the following 

workday. Those with transaction dates that were more than one day earlier than the scheduled 

read date or more than 5 days later were deemed irregular and dropped (and additional 4.9 

percent of the data). Finally, we considered irregular and dropped all observations that had less 

than 1 kWh for average daily consumption (an additional 2.1 percent of the data). The final 

dataset includes 7,181,877 observations, 223,878 residences, and 374,186 tenants. 

Table 2 reports descriptive statistics disaggregated into the different sets of counties and 

combined. The majority of data come from the NE counties, followed by those in the SE, with 

fewer in the western counties. Average daily consumption—at approximately 35 kWh/day—is 

very similar among all sets of counties. Average heating degree days is higher in the north 

counties, while average cooling degree days is higher in the south counties. Not surprisingly, 

average day length is virtually identical for all counties. 

 

4.   Empirical Analysis 

We report the methods and results of our empirical analysis in three parts. First we consider the 

estimates of the overall effect of DST on residential electricity consumption that comes from a 

DD approach using data from 2004 and 2005, that is, the years before DST policy changed in 

Indiana. Then we report comparable estimates that come from an alternative identification 

strategy: the natural experiment caused by the policy change in 2006. Finally, we investigate how 

the effect of DST on electricity demand varies throughout the year, with estimates that differ by 

month, are broken down into billing cohorts, and take place at the spring and fall transitions. 

 

Difference-in-Differences Estimates 2004-2005 

As described briefly in the previous section, one approach for estimating the effect of DST relies 

on a comparison between the “north” and “south” counties in figure 1 for the years 2004 and 

                                                                                                                                                             
these “movers.” We plan to set the cutoff at 15 days, which has been used in other research (see Reiss and White 
2003).  



 11 

2005. Recall that while the south counties practiced DST for both of these years, the NE counties 

did not, and the NW counties effectively did not because of the simultaneous change in DST 

practice and time zone. Within a DD framework, therefore, the north and south counties can 

serve as “control” and “treatment” groups, respectively. Identification of the DST effect comes 

from the assumption that, after controlling for changes in other observables, the difference in 

electricity demand between non-DST and DST periods would be the same between tenants in the 

north and south counties, were it not for the practice of DST in the south counties. With this 

assumption, any difference in the difference between the two groups is attributable to the effect 

of DST. 

 We begin with a graphical display of the data. Figure 2 plots the natural log of ADC for 

the north and south counties separately. The figure also plots AHDD and ACDD for each month 

and both groups of counties. The first thing to note, which is to be expected, is the close 

correspondence between ADC and the weather variables. Electricity demand is greater in months 

with high AHDD and ACDD. Of greater interest for our purposes here, however, are the 

differences between the two groups of counties. Inspection of the trends for ADC reveals that the 

south counties tend to have greater electricity demand during the DST periods, while the north 

counties tend to have greater electricity demand during the non-DST periods. It appears that 

differences in HDD and CDD influence this pattern, as the south counties tend to be hotter 

during the DST periods, and the north counties tend to be colder during the non-DST periods. 

 In order to compare the trend in electricity demand between the north and south counties 

controlling for differences in weather, we apply the following procedure. For each of the 24 

month-years, we estimate the following regression: 

 

(1) lnADCi = α + βiACDDi + β2AHDDi + εi . 

 

We then calculate α + εi for all observations i in each month-year and report them separately for 

those in the north and south counties. These results are plotted in figure 3 and can be interpreted 

as weather-detrended ADC. These trends follow each other more closely than those in figure 2, 
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but there still appears to be a difference between the non-DST and DST periods. While the north 

and south counties have very similar ADC in the non-DST periods, the south counties still appear 

to have somewhat greater electricity demand during the DST periods. Under our identification 

assumption, this suggests that DST may increase electricity demand. 

 To formally estimate the overall effect of DST on electricity demand, we estimate models 

with the following general specification: 

 

(2) lnADCit = δDSTperiodt × Southi + γDSTperiodt + β1ACDDit + β2AHDDit  

+ β3ADLit + θt + νi +  εit , 

 

where subscripts i denote tenants, DSTperiodt is a dummy variable for whether the observation 

occurs during the DST period, Southi is a dummy variable for whether the residence is in one of 

the south counties, θt is a time-specific intercept, and νi is a tenant-specific intercept. The 

estimate of δ is of primary interest, as it indicates how the south counties differ in their 

difference between non-DST and DST periods. When estimating equation (2), we include only 

observations that are entirely contained within either the DST or non-DST period of the year. In 

other words, we dropped all monthly bills that straddle the transition date in or out of DST.13 

  Table 3 reports the fixed-effects estimates of specification (2). We report three models 

that account for the time trend differently: an average year effect, month and year dummies, and 

month-year dummies. Note that we include average day length only in the model that does not 

have monthly controls. The variable is omitted from the other models with month controls 

because average day length is identical for a given month from year to year. All standard errors 

are clustered as the tenant level to account for potential serial correlation. The estimate of δ  is 

similar across all three specifications and highly statistically significant. The estimate of δ at 

roughly 3.3 percent is very similar in models (a) and (c). Based on the identification strategy 

employed here, these estimates imply that DST results in a 3.3-percent increase in electricity 

                                                 
13 Later in this section we use these dropped observations to estimate the DST effect at the transitions in and out of 
DST in the spring and fall. 
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demand over the whole DST period. Model (b) produces a higher estimate of 4.2 percent, but the 

three estimates are not statistically different from each other according to the overlapping 95-

percent confidence intervals (not reported). 

 The finding here—that DST results in more than a 3-percent increase in residential 

electricity demand—depends crucially on the assumption that, after controlling for differences in 

weather and average day length, the difference between non-DST and DST period electricity 

demand would have been the same in the north and south counties in the absence of DST 

practice in the south. While this assumption may be reasonable, there are potential concerns. One 

potentially confounding effect could be more widespread adoption of air-conditioners in the 

south counties, which we have seen tend to be more urban. If this were the case, our estimate of 

the DST effect might be an overestimate because it would also capture the effect of air-

conditioner use. While we do not have data on the presence of air-conditioners, we can look to 

figure 3 for evidence that the air-conditioner effect may not be very large. If air-conditioners 

were having a large effect, one might expect the difference between the trend lines to be greatest 

during the hottest summer months of June through August. But the difference appears to be at 

least as great, or greater, during September and October, when air-conditioner use is far lower 

and DST is still in effect. 

 There are, of course, other potentially confounding variables, for which we do not have 

data, that could imply over- or under-estimates of the DST effect. Nevertheless, these results are 

highly suggestive. If one is willing to make this particular identifying assumption, we find that 

DST results in more than a 3-percent increase in electricity demand over the entire DST period 

from the first Sunday in April until the last Sunday in October. We now turn to an alternative 

identification strategy that produces comparable estimates. 

 

Natural Experiment 2006 

Indiana’s 2006 change to DST policy provides a natural experiment and entirely different 

approach for identifying the effect of DST on residential electricity consumption. The approach 

is once again based on a comparison between a set of treatment and control counties, but the two 
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groups differ somewhat from those used for the previous estimates. Referring back to in figure 1, 

recall that the NE counties began practicing DST for the first time in 2006. The other sets of 

counties either practiced DST for all the years 2004 through 2006, or had no change in clock 

time in 2006 due to the offsetting effects of DST and the change in time zone. Our identification 

strategy thus comes from a DD comparison between the two groups, before and after the DST 

policy change. The key assumption here is that, after controlling for differences in weather, the 

difference between before an after electricity demand would have been the same in the two sets 

of counties were it not for the change in DST policy. 

 We begin with a simple comparison of means for average daily consumption. Consider 

first only the DST periods of the year. The first two columns of table 4 report lnADC for both the 

treatment and control groups, before and after the policy change. These means are calculated by 

first averaging within tenants and then averaging between tenants in order to account for the 

unbalanced panel. We also report the before-after difference and the DD between groups. Based 

on this simple comparison of means, we find that electricity demand increased in the treatment 

group (NE counties) by approximately 1.8 percent compared to the control group (all other 

counties). As a point of comparison, we conduct the same procedure for the non-DST periods 

and also report the results in table 4. This can be thought of as a quasi-counterfactual because it 

provides an estimate of how the two groups differ in their difference before and after 2006, but 

during the non-DST period of the year. With this comparison, we find that the treatment group of 

counties decreased, rather than increased, electricity demand by 1.2 percent. While these results 

provide preliminary evidence that DST increases electricity demand, the simple comparison of 

means is not a formal test, nor does it control for other variables that may be changing 

differentially over time between the two groups, namely weather.  

Turning now to a DD regression analysis, we estimate models with the following 

specification: 

 

(3) lnADCit = δYear2006t × NEi + β1ACDDit + β2AHDDit + β3ADLit + θt + νi +  εit , 
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where δ  is the coefficient of primary interest. It captures the average DD of electricity demand 

in 2006 between the treatment and control groups of counties. In parallel with the simple 

comparison of means, we estimate equation (3) first using only data from the DST period for all 

years, and then using only data from the non-DST period for all years. In each case, we once 

again drop the monthly observations that straddle to date of transition in or out of the DST 

period. 

 Table 5 reports the fixed-effects estimates of equation (3). We again estimate models that 

account for the time trend in three different ways, and we exclude ADL from the models with 

monthly controls. The estimates of δ for all three DST period models are positive, highly 

statistically significant, and of nearly identical magnitudes of 0.009. The interpretation is that 

DST caused approximately a 1-percent increase in electricity demand over the whole DST 

period. These estimates are smaller in magnitude than those from the previous section, but both 

provide strong evidence that DST increases electricity consumption. We consider these natural-

experiment estimates to be more conservative and reliant on what is perhaps a more reasonable 

assumption. The estimates in the previous section are based on the assumption that the 

comparison groups would have the same difference in electricity consumption between different 

times of the year. The natural-experiment estimates, in contrast, are based on the assumption that 

the comparison groups would have the same difference in consumption between different years 

at the same time of year. Essentially we think that it is more reasonable to assume that the 

comparison groups would have the same trend from year to year rather than within different 

times of the year.    

 Table 5 also reports the non-DST period models. All of these quasi-counterfactual 

estimates of δ  are negative, have relatively small magnitudes, and are not statistically different 

from zero. These results provide support for the identification assumption that the trend in 

electricity demand is similar between the treatment and control groups of counties, other than for 

the change in DST policy. For the negative results that we find here occur despite having close to 

2.3 million observations upon which to estimate the models. 
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Disaggregated Natural Experiment 2006 

Our estimates thus far have focused on the overall DST effect on electricity consumption. We 

now examine the extent to which the effect of DST differs throughout the DST period. As 

discussed above, we prefer the identification strategy that exploits the natural experiment of 2006 

and therefore proceed with this identification strategy in what follows. 

We begin with a model specification that is a special case of equation (3) and can be 

written as 

 

(4) lnADCit = δYear2006t × NEi + β1ACDDit + β2AHDDit + γ1Year2005t  

+ γ2Year2006t + νi +  εit , 

 

where we estimate a separate equation for each month within both the DST and non-DST periods 

of the year. Following the same practice, we exclude monthly observations that straddle the DST 

transitions, meaning that we do not have monthly models for April or November. Rather than 

report each of the 10 equations, we focus on the estimates of δ. We illustrate these results 

graphically in figure 4, along with the 95-percent confidence intervals. The findings suggest that 

DST decreases electricity consumption in May, with a magnitude of approximately 0.5 percent. 

The effect is not statistically different from zero in June, but for all of the other DST months, it is 

positive and statistically significant, with magnitudes ranging between 1 and 2 percent. In the 

non-DST (i.e., quasi-counterfactual) months the effect is not statistically different from zero for 3 

out of the 4 months. 

 The fact that monthly billing data is structured around billing cycles—with consistent 

read-dates within each month—allows us to decompose the estimates even further. We separate 

the observations into billing cohorts where the month is divided into three segments: those with 

read-dates in the first third of the month, the second third of the month, and the last third of the 

month.14 We then estimate equation (4) for each cohort in each month. In effect, this 

                                                 
14 Because there are 21 billing cycles in each month, this procedure means that there are 7 billing cycles in each 
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disaggregates the monthly estimates in third-of-month estimates. These results are shown in 

figure 5. We again find some evidence for a decrease in electricity consumption for the early 

May read-dates, but through the DST period, there is a clear upward trend. In the later half of the 

DST period, nearly every estimate indicates that DST causes an increase in electricity 

consumption, with the effect appearing to be strongest during the October read-dates, when one 

estimate is approximately 4 percent. In the non-DST periods, most of the coefficients are not 

statically different from zero, and this is what should be expected if we are in fact identifying the 

effect of DST. 

 The final set of models that we estimate take advantage of the monthly observations that 

straddle the transition dates in and out of the DST period. We have thus far dropped these 

observations from the analysis, but we now use them to focus on estimates of the DST effect at 

the time of transition. In parallel with specification (4), we estimate models for the spring and 

fall transitions that have the following form: 

 

(5) lnADCit = δDSTfrac × Year2006t × NEi + β1ACDDit + β2AHDDit + γ1Year2005t  

+ γ2Year2006t + νi +  εit , 

 

where the only difference is the interaction with DSTfrac in the treatment effect variable. This 

new term is the fraction of the number of days in the billing cycle that are in the DST period. 

Once again, the coefficient δ  is of primary interest, and its interpretation remains the same: the 

percentage change in average daily consumption due to the practice of DST. But here the effect 

is identified off of one day’s change within the billing cycle. Table 6 reports the fixed-effects 

estimates of equation (5) for both the spring and fall models. For the spring transition, we find a 

positive and statistically significant effect, with a magnitude of approximately 1 percent. The 

coefficient estimate for the fall transition model is also positive, but has a very small magnitude 

                                                                                                                                                             
cohort. In principle, we could estimate the DST effect for each billing cycle separately, rather than combining them 
into cohorts. But there is a tradeoff between having more precisely timed estimates and having less data upon which 
to estimate the effect. We thus follow the segmentation in Reiss and White (2003), whereby 7 billing cycles are 
combined into one cohort. 
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and is not statistically different from zero. While both of these transition results are of interest, 

they should be interpreted with caution because they are based on an attempt to extract a daily 

effect out of inherently monthly data. This, of course, makes it difficult to precisely estimate the 

effect. The same caution does not apply, however, to the estimates reported previously, where the 

models are based on data for which all days in the monthly billing cycle are subject to the same 

treatment effect. 

 

5.   Discussion 

In this section we consider two questions. First, what are the underlying mechanisms that give 

rise to the estimates of the DST effect on residential electricity consumption? To answer this 

question we provide evidence from an engineering simulation model. Second, given that DST 

causes an overall increase in electricity consumption, what are the costs? We answer this 

question in terms of increased residential electricity costs and the social costs of increased 

pollution emissions.  

 

Engineering Simulations 

We ran simulations on eQuest, an interface program based on a versatile U.S. Department of 

Energy simulation model of a building’s energy demand, including electricity.15 The program has 

standardized design parameters for various building types, but all parameters can be altered by 

the user. We modeled a single-family residence: single-story, wood-frame construction, front and 

rear entry points with appropriate square footage for a family of four (~2000 sq ft). Heating in 

the residence is forced-air electric, and cooling is typical Freon-coil air conditioning. We kept all 

other pre-specified parameters. The software includes hourly weather data for the specified 

location and year of analysis. We report simulations for southern Indiana in 2005, and our aim is 

to demonstrate the simulated changes in electricity demand due to DST.  

                                                 
15 The program description and download can be found at www.doe2.com. eQuest has the complete DOE-2 (version 
2.2) building energy use simulation program embedded.  Rock (1997) uses an older version of DOE-2.  
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We ran simulations for the DST periods of the year, with and without implementation of 

DST. The first column of table 7 reports the simulated percentage change in electricity 

consumption by month. Electricity consumption increases in 5 out of the 7 months. The only 

months associated with a savings are June and July, and the magnitudes are both just under 2 

percent. The increased consumption that occurs in the spring months of April and May are both 

under 1 percent. The magnitudes in the late summer and fall are larger, especially in September 

and October, where the increased consumption is close to 4 and 3 percent, respectively. Note that 

the pattern of these results is similar in many respects to our estimates in the previous section. 

Referring back to figure 5, we find evidence of some electricity savings in early summer, and the 

largest increases in consumption occur in the fall. In particular, the October read-dates, which 

reflect half of September’s consumption, have magnitudes of increased electricity consumption 

that are very similar to the predictions of the simulation model.  

Beyond corroboration of our findings, the value of the simulation exercise is that we can 

decompose electricity consumption into its component parts. The last three columns in table 7 

report the simulated change in average daily consumption by month for lighting, heating, and 

cooling separately. In all months, other than October, DST saves on electricity used for lighting; 

therefore, it appears that the “Benjamin Franklin effect” is occurring. But when it comes to 

heating and cooling, the clear pattern is that DST causes an increase in electricity consumption. 

The changes in average daily consumption are far greater for cooling, which follows because air-

conditioning tends to draw more electricity and DST occurs during the hotter months of the year. 

These results indicate that the findings of Shimoda et al. (2007) for Japan apply to Indiana as 

well. Moving an hour of sunlight from the early morning to the evening (relative to clock time) 

increases electricity consumption for cooling because (i) demand for cooling is greater in the 

evening and (ii) the build-up of solar radiation throughout the day means that the evening is 

hotter. In some months, the cooling effect out weights the Benjamin Franklin effect. There is also 

some evidence for a heating effect that causes an increase in electricity consumption. When 

temperatures are such that heating is necessary, having an additional hour of darkness in the 

morning, which is the coldest time of day, increases electricity consumption. Kellogg and Wolff 
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(2006) find evidence for the heating effect in their study of DST extensions in Australia. While 

the magnitude of the heating effect does no appear to be a large in our Indiana simulation results, 

it is likely to be more substantial when considering extensions to DST, which push further into 

the colder times of year when the days are also shorter. 

 

Costs of DST in Indiana 

To begin calculating the costs of DST in Indiana, we need to establish the baseline of what 

electricity consumption would be without the practice of DST. We take advantage of all the data 

during the DST period to establish the baseline. For all observations that were subject to DST, 

we subtract the conservative estimate of 0.93 percent that comes from the models in table 5. 

Average daily consumption is then calculated from these adjusted observations and all others that 

were not subject to DST, yielding an overall estimate of 30.15 kWh/day. It follows that the effect 

of DST—under the pre-2007 dates of practice—is an increase in consumption for the average 

residence of 59.16 kWh/year  (i.e., 0.0093 × 30.15 kWh/day × 211 days/year). Extrapolating this 

estimate to all 2,724,429 households in the state of Indiana implies that DST increases statewide 

residential electricity consumption by 161,177 megawatt hours per year (MWh/year).  

With this estimate, it is straightforward to derive the increased residential electricity costs 

per year.  The average price paid for residential electricity service from Duke Energy in southern 

Indiana is $0.054/kWh. Multiplying this price by the change in a household’s consumption 

implies a residential cost of $3.19 per year. Extrapolating once again to the entire state yields a 

cost of $8,690,928 per year in residential electricity bills due to the practice of DST.16 

 The statewide increase in electricity consumption of 161,177 MWh/year also provides the 

basis for calculating the social costs of pollution emissions. We follow the general approach used 

in Kotchen et al. (2006). The first step is to determine the fuel mix for electricity generation. 

According to the Energy Information Administration (EIA 2006), the fuel mix for generation in 

Indiana is 94.8 percent coal, 2 percent natural gas, 0.1 percent petroleum, and 4.9 percent from 

                                                 
16 A more precise estimate, which we are in the process of obtaining, would account for price differences in different 
areas of the state.  
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other sources (gases, hydroelectric, and other renewables). We assume the change in generation 

due to DST comes entirely from coal, as it accounts for such a vast majority of the state’s 

electricity generation.17 Emission rates—in tons of emissions per MWh of electricity generation 

from coal—are taken from Ecobilan’s Tool for Environmental Analysis and Management 

(TEAM) model, which is a life-cycle assessment engineering model (Ecobilan 1996). The first 

column in table 8 reports the marginal emissions for carbon dioxide, lead, mercury, methane, 

nitrogen oxides, nitrous oxide, particulates, and sulfur dioxide. The second column reports the 

change in emissions for each pollutant, which is simply the product of marginal emissions and 

the change in overall electricity generation. 

The next step is to quantify the marginal damages of each pollutant. For this we use a 

benefits transfer methodology and report low- and high-marginal damage scenarios where 

possible. The two exceptions are mercury and sulfur dioxide. We have only one estimate for 

mercury, and the values for sulfur dioxide are the tradable permit price in 2007, rather than the 

marginal damages. The reason for using the sulfur permit price is that total emissions are capped, 

so the marginal costs are reflected in the permit price, as the increase in emissions due to DST 

must be abated somewhere because of the binding cap. Table 8 reports the range of values in 

2007 dollars for all pollutants, and we refer readers to Kotchen et al. (2006) for details on the 

specific references for each estimate. 

The final step is to simply multiply the marginal damages by the change in emissions for 

each pollutant. The last two columns of table 8 report these total damage costs for each pollutant, 

for the low and high scenarios. After summing the results across all pollutants, the low and high 

estimates for the social costs of emissions are approximately $1.6 million and $5.3 million per 

year. In the low scenario, increases in carbon dioxide, particulates, and sulfur dioxide account for 

the vast majority of the costs. In the high scenario, increases in carbon dioxide account for a 

                                                 
17 This assumption could be important because emissions differ substantially for different fuel sources, and coal is 
the dirtiest. If, for example, electric utilities in Indiana meet peak demand with natural gas, rather than coal, we 
would be overestimating the change in emissions, as changes in electricity demand due to DST are most likely to 
occur during peak times. While we are currently looking into this, the fact that 95 percent of the state’s generation 
comes from coal suggests that coal is also being used to meet peak demand. 
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much greater share of the costs, with the difference reflecting uncertainty about the economic 

impacts of climate change. In both scenarios the costs of increases in lead, mercury, and methane 

are negligible. 

 

6.   Conclusion 

The history of DST has been long and controversial. Throughout its implementation during 

World Wars I and II, the oil embargo of the 1970s, and more regular practice today, the primary 

rationale for DST has always been to promote energy conservation. Nevertheless, there is 

surprisingly little evidence that DST actually saves energy. This paper takes advantage of a 

natural experiment in the state of Indiana to provide the first empirical estimates of DST effects 

on electricity consumption in the United States since the mid-1970s. We focus on residential 

electricity demand and conduct the first study that uses micro-data on households. 

Our main finding is that—contrary to the policy’s intent—DST results is an overall 

increase in residential electricity demand. Estimates of the overall increase in consumption range 

from 1 to 4 percent. We also find that the effect is not constant throughout the DST period, with 

evidence for electricity savings in the spring and increases that are greatest in the fall. These 

findings are generally consistent with simulation results that point to a tradeoff between reducing 

demand for lighting and increasing demand for heating and cooling. According to the dates of 

DST practice prior to 2007, we estimate a cost to Indiana households of $8.6 million per year in 

increased electricity bills. Estimates of the social costs due to increased pollution emissions 

range from $1.6 to $5.3 million per year. 

The results of this research should inform ongoing debate about the recent extensions to 

DST that took place in 2007. The Energy Policy Act of 2005 requires that research be conducted 

to evaluate whether the extensions yield conservation benefits. While our results suggest that the 

extensions to DST are most likely to increase, rather than decrease, demand for residential 

electricity, further research is necessary to examine the effects of the extensions themselves. 

Future research should also investigate whether the findings here generalize to other locations 

throughout the United States. While we find that the longstanding rationale for DST is 
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questionable, and that if anything the policy seems to have the opposite of its intended effect, 

there are other arguments made in favor of DST. These range from increased opportunities for 

leisure, enhanced public health and safety, and economic growth. In the end, a full evaluation of 

DST should account for these multiple dimensions, but the evidence here suggests that continued 

reliance on Benjamin Franklin’s old argument alone has become misleading.         
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NW EST and no DST CST (Fall start) and DST 
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Figure 1: Sets of Indiana counties in the study area with different time zones and differential 
practice of daylight saving time.
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Figure 2: 2004-2005 average daily consumption, average cooling degree days, and average 
heating degree days by month for the north and south counties separately 
 
 
 

 
Figure 3: Weather-detrended average daily consumption by month for the north and south 
counties separately 
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Figure 4: Monthly estimates and 95-percent confidence intervals for the DST effect and the 
quasi-counterfactual 
 
 
 
 

 
 
 
Figure 5: Third-of-month estimates and 95-percent confidence intervals for the DST effect and 
the quasi-counterfactual 
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Table 1: U.S. Census data for different sets of counties in southern Indiana 
 
 Set of counties  
Census variable SE SW NE NW Total 
Number of counties 3 3 14 4 24 
Total population 176,906 111,944 506,932 92,282 958,887 
Proportion of population rural 0.461 0.456 0.493 0.537 0.466 
Proportion of population rural and farm 0.023 0.029 0.032 0.063 0.031 
Median age 36.4 37.6 35.9 37.4 36.4 
Number of households 68,500 42,490 195,597 35,748 369,846 
Average household size 2.5 2.6 2.5 2.5 2.5 
Proportion households with electric heat 0.322 0.284 0.334 0.218 0.311 
Median household income in 1999 $42,613 $43,505 $38,076 $33,717 $39,553 
Average per capita commute time (minutes) 12.63 11.18 10.58 9.56 10.92 
Notes: All data taken from the 2000 U.S. Census. Cells weighted appropriately by either population or number of 
households. 
 
 
Table 2: Descriptive statistics for different sets of counties in the dataset 
 
 Set of counties  
Variable SE SW NE NW Total 
Number of counties 3 3 14 4 24 
Observations 1,278,519 314,598 5,036,552 552,208 7,181,877 
Residences 39,646 9,595 157,469 17,173 223,878 
Tenants 64,230 14,086 269,315 26,555 374,186 
      
Average daily consumption (kWh/day) 35.21 

(25.28) 
35.99 

(26.09) 
35.98 

(29.02) 
35.09 

(26.96) 
35.77 

(28.11) 
ln average daily consumption 3.30 

(0.79) 
3.31 

(0.82) 
3.29 

(0.83) 
3.27 

(0.82) 
3.29 

(0.82) 
Average heating degree days 11.20 

(11.30) 
11.86 

(11.81) 
12.94 

(12.44) 
12.47 

(12.31) 
12.54 

(12.23) 
Average cooling degree days 4.01 

(5.09) 
3.88 

(4.92) 
3.13 

(4.17) 
3.60 

(4.54) 
3.36 

(4.43) 
Average day length (hours) 12.25 

(1.81) 
12.24 
(1.79) 

12.25 
(1.83) 

12.24 
(1.82) 

12.25 
(1.83) 

Notes: Standard deviations are reported in parentheses. 
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Table 3: Fixed-effects models for difference-in-difference estimates 2004-2005 
 
 Model 
 (a) (b) (c) 
DSTperiod × South counties 0.0325** 

(0.0028) 
0.0421** 
(0.0028) 

0.0334** 
(0.0028) 

DSTperiod -0.0777** 

(0.0015) 
-- -- 

Average cooling degree days 0.0578** 
(0.0001) 

0.0509** 
(0.0002) 

0.0566** 
(0.0003) 

Average heating degree days 0.0116** 
(0.0001) 

0.0124** 
(0.0001) 

0.0123** 
(0.0001) 

Average day length -0.0132** 
(0.0002) 

-- -- 

Year 2005 -0.0012* 
(0.0006) 

0.0042** 
(0.0006) 

-- 

Month dummies -- Yes -- 
Month-year dummies 
 

-- -- Yes 

Number of observations 3,843,759 3,843,759 3,843,759 
Number of residents 315,251 315,251 315,251 
R-squared (within) 0.152 0.154 0.154 
Notes: The left-hand side variables is lnADC for each resident. Standard errors, clustered at the tenant level, are 
reported in parentheses. ** and * indicate statistical significance at the 99- and 95-percent levels, respectively. 
 
 
 
 
 
Table 4: Differences in average daily consumption between 2004-2005 and 2006 
 
 DST period Non-DST period 
 Treatment: 

NE 
Control: 

SE, SW, NW 
Treatment: 

NE 
Control: 

SE, SW, NW 
Years 2004-2005 3.1395 3.2402 3.2841 3.2142 
Year 2006 3.1864 3.2695 3.2983 3.2404 
Difference 0.0469 0.0292 0.0142 0.0262 
Difference-in-difference (DD) 0.0176  -0.0120  
Notes: Average daily consumption reported as lnADC. Difference is interpreted as the percentage change 
from years 2004-2005 to year 2006. Difference-in-difference is the percentage difference in the 
treatment group compared to the control group.   
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Table 5: Fixed-effects models for changed average daily consumption in 2006, DST and Non-DST periods 
 
 DST period models Non-DST period models 
 (a) (b) (c) (d) (e) (f) 
Year 2006 × Treatment group 
 

0.0097** 

(0.0014) 
0.0093** 
(0.0014) 

0.0093** 
(0.0014) 

-0.0019 
(0.0015) 

-0.0014 
(0.0015) 

-0.0023 
(0.0015) 

Average cooling degree days 
 

0.0505** 
(0.0001) 

0.0465** 
(0.0001) 

0.0487** 
(0.0001) 

-0.0170** 
(0.0058) 

-0.0072 
(0.0059) 

0.0038 
(0.0063) 

Average heating degree days 
 

0.0013** 
(0.0001) 

0.0039** 
(0.0001) 

0.0034** 
(0.0002) 

0.0132** 
(0.0000) 

0.0140** 
(0.0001) 

0.0144** 
(0.0001) 

Average day length 
 

-0.0076** 
(0.0002) 

-- -- -0.0316** 
(0.0003) 

-- -- 

Year 2005 
 

-0.0072** 
(0.0007) 

-0.0019 
(0.0007) 

-- 0.0144** 
(0.0007) 

0.0134** 
(0.0007) 

-- 

Year 2006 
 

-0.0236** 
(0.0013) 

-0.0246** 
(0.0013) 

-- 0.0193** 
(0.0014) 

0.0194** 
(0.0014) 

-- 

Month dummies -- Yes -- -- Yes -- 
Month-year dummies 
 

-- -- Yes -- -- Yes 

Number of observations 3,623,370 3,623,370 3,623,370 2,289,640 2,289,640 2,289,640 
Number of residents 335,509 335,509 335,509 332,032 332,032 332,032 
R-squared (within) 0.312 0.313 0.314 0.075 0.075 0.076 
Notes: The left-hand side variables is lnADC. Standard errors, clustered at the tenant level, are reported in parentheses. ** and * indicate statistical 
significance at the 99- and 95-percent levels, respectively. 
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Table 6: Fixed-effects models for the spring and fall transitions in and out of DST  
 
 Transition model 
 Spring Fall 
Fraction DST days × Year 2006 × Treatment group 
 

0.0106** 
(0.0028) 

0.0014 
(0.0032) 

Average cooling degree days 
 

0.0360** 
(0.0022) 

0.0537** 
(0.0028) 

Average heating degree days 
 

0.0118** 
(0.0004) 

0.0132** 
(0.0004) 

Year 2005 
 

0.0112** 
(0.0011) 

0.0036** 
(0.0016) 

Year 2006 
 

0.0131** 
(0.0025) 

0.0261** 
(0.0032) 

   
Number of observations 574,821 578,430 
Number of residents 279,893 278,078 
R-squared (within) 0.007 0.035 
Notes: The left-hand side variables is lnADC. Standard errors, clustered at the tenant level, are 
reported in parentheses. ** and * indicate statistical significance at the 99- and 95-percent levels, 
respectively. 
 
 
 
 
Table 7: Simulation results for changes in monthly electricity demand with and without DST  
 
  Difference in average daily consumption (no DST – DST) 
 DST Effect Lighting Heating Cooling 
April 0.22% -10 1 9 
May 0.98% -18 7 14 
June -1.84% -19 1 11 
July -1.97% -20 0 12 
August 1.03% -16 0 20 
September 3.92% -5 3 14 
October 2.93% 5 -2 8 
Overall 0.32%    
Notes: Simulation results based on 2005 weather in southern Indiana. Quantities reported in the last three 
columns are differences in average daily consumption for the category and month indicated. DST effect 
percent differences do not exactly reflect the percentage change in light, heating, and cooling because they 
capture relatively small changes in electricity consumption due to DST in other categories as well.  
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Table 8: The social costs to Indiana of pollution emissions from DST 
 
 Emissions ∆ emissions Marginal damages Total damages 
 (tons/MWh) (tons) Low High Low High 
Carbon dioxide 1.134E-00 182774.72 $2.82 $20.55 $515,370 $3,755,143 
Lead 6.752E-07 0.11 $572.52 $2,457.32 $62 $267 
Mercury 2.490E-08 0.00 $58.90 $58.90 $0 $0 
Methane 1.336E-05 2.15 $79.96 $343.16 $172 $739 
Nitrogen oxides 5.275E-03 850.21 $77.20 $179.41 $65,633 $152,534 
Nitrous oxide 4.868E-05 7.85 $853.54 $7,690.35 $6,697 $60,339 
Particulates 8.540E-04 137.65 $954.91 $3,282.86 $131,438 $451,869 
Sulfur dioxide 1.060E-02 1708.48 $518.98 $518.98 $886,665 $886,665 
Total     $1,606,038 $5,307,557 
Notes: Emissions (tons/MWh) taken from Ecobilan’s TEAM model, copyright 2006. ∆ emissions are the product of 
emissions and the DST change in electricity consumption of 161,177 MWh/year. All dollars values are reported in 
2007 dollars.  
 


