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The effect of chemotherapy innovation on cancer survival, 1991-2003: 
state-level evidence from the SEER-Medicare Linked Database 

 
Abstract 

 
This study investigates the effect of chemotherapy innovation and other factors on 

the hazard rate of cancer patients using longitudinal, state-level data on four major types 
of cancer (colorectal, lung, breast, and prostate) in nine states during the period 1991-
2003.  We estimate 3 types of models: difference-in-differences models for the four 
major cancer sites combined; difference-in-difference models, by major cancer site; and 
difference-in-differences-in-differences models, for the four major cancer sites combined.  

Estimates of almost all of the models are consistent with the hypothesis of a 
significant impact of chemotherapy innovation on hazard rates, although they provide 
varying evidence about the lag structure, and we fail to detect a link for colorectal cancer.  
The two states with the largest increases in chemotherapy vintage had the largest 
reductions in hazard rates. 

 Life expectancy of cancer survivors in 1991 was about 8.2 years.  Our estimates 
imply that the 12.7-year increase in chemotherapy vintage that occurred during the period 
1991-2002 increased the life expectancy of cancer survivors by 8-12 months, or about 
10%.  In 2003 Medicare spent about $475 on chemotherapy per cancer survivor, so 
expected lifetime (undiscounted) chemotherapy expenditure per cancer patient was 
$4372.  This includes the cost of old as well as new chemotherapy treatments.  Hence 
$6246 is an upper bound estimate of the average cost per life-year gained from using 
newer chemotherapy drugs.  This is a small fraction of some leading economists’ 
estimates of the value of a U.S. statistical life-year. 
 
Frank R. Lichtenberg 
Columbia University and National Bureau of Economic Research 
frank.lichtenberg@columbia.edu 
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Many clinical studies have compared the effects of newer and older drugs on 

cancer survival rates.1  The findings of these studies have been mixed.  Some studies (e.g. 

Richardson et al (2005), Kantarjian et al (2005)) have found that use of newer cancer 

drugs increased survival rates.  Other studies (e.g. von der Maase et al (2005)) have found 

that use of newer cancer drugs did not increase survival rates.   

This study will seek to determine the effect of pharmaceutical innovation—the 

use of newer drugs—in general on the survival of breast, colorectal, lung and prostate 

cancer patients.2  A reliable estimate of this effect can’t be obtained by simply surveying 

previous clinical studies of specific drugs and cancer sites, for several reasons.  First, 

there is considerable variation in the methodology and metrics used in these studies, 

rendering comparison and aggregation difficult.  Second, these studies may not provide a 

complete or representative picture; there may be little or no published evidence about the 

survival impact of some drugs.3   

Third, evidence from clinical trials cannot necessarily be extrapolated to real-

world experience.  As noted in the Harvard Mental Health Letter (2007), the issue often 

raised by the favorable outcome of a formal clinical trial is, will the treatment work in the 

real world?  There may be a “gap between efficacy and effectiveness”—efficacy meaning 

proof in a carefully controlled trial, and effectiveness meaning success in the 

circumstances of everyday life.  Wieringa et al (2000) examined discrepancies between 

co-morbidity of patients included in pre-marketing clinical trials of cardiovascular drugs 

and patients from daily practice, representing the actual users after marketing.  Phase III 

trials testing cardiovascular drugs included patients with concomitant cardiovascular, 

endocrine and metabolic diseases, but discrepancies were present with patients in daily 

practice. 

 

                                                 
1 A PubMed search for (("Survival Rate") AND ("Antineoplastic Agents")) AND ("Comparative Study")) 
yields 387 items.   
2 In principle, this approach could be applied to data on other cancer sites.  We applied it to just four major 
cancer sites because our analysis is based on the National Cancer Institute (NCI)’s SEER-Medicare Linked 
Database, and it is the NCI’s policy that “investigators may not request the entire data set.”  
http://healthservices.cancer.gov/seermedicare/obtain/requirements.html  
3 Johnson et al (2003) reported that only one-fourth of  the oncology drug marketing applications approved 
by the FDA during the period January 1, 1990 to November 1, 2002 were based on direct evidence of 
survival benefits; 75% of approvals were based on surrogate end points (e.g. reduction in tumor size). 
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Central hypothesis 
 
 

We hypothesize that, in general and ceteris paribus, newer chemotherapy drugs 

are more effective than older drugs, and therefore that increases in the mean vintage of 

chemotherapy treatments will reduce the hazard rate of cancer patients.  We define the 

vintage of a drug as the year in which it was first approved by the FDA.  For example, the 

vintage of docetaxel is 1998 since it was first approved by the FDA on June 22 of that 

year.   

Economists believe that the development of new products is the main reason why 

people are better off today than they were several generations ago.  Grossman and 

Helpman (1993) argued that “innovative goods are better than older products simply 

because they provide more ‘product services’ in relation to their cost of production.”  

Bresnahan and Gordon (1996) stated simply that “new goods are at the heart of economic 

progress.” Jones (1998) argues that “technological progress [is] the ultimate driving force 

behind sustained economic growth” (p.2), and that “technological progress is driven by 

research and development (R&D) in the advanced world” (p. 89).  Bils (2004) makes the 

case that “much of economic growth occurs through growth in quality as new models of 

consumer goods replace older, sometimes inferior, models.” 

The best way to measure utilization of medical innovations (embodied 

technological change) is to measure the mean vintage of medical goods and services 

used.  We seek to test the hypothesis that, ceteris paribus, people using newer, or later 

vintage, medical goods and services will be in better health, and will therefore live 

longer.  This hypothesis is predicated on the idea that these goods and services, like other 

R&D intensive products, are characterized by embodied technological progress.4   

A number of econometric studies (Bahk and Gort (1993), Hulten (1992), 

Sakellaris and Wilson (2001, 2004)) have investigated the hypothesis that capital 

equipment employed by U.S. manufacturing firms embodies technological change, i.e. 

                                                 
4 Solow (1960, p 91): argued that “many if not most innovations need to be embodied in new kinds of 
durable equipment before they can be made effective.  Improvements in technology affect output only to 
the extent that they are carried into practice either by net capital formation or by the replacement of old-
fashioned equipment by the latest models…”  We hypothesize that innovations may be embodied in 
nondurable goods (e.g. drugs) and services as well as in durable equipment. 
 



 5

that each successive vintage of investment is more productive than the last.   Equipment is 

expected to embody significant technical progress due to the relatively high R&D-

intensity of equipment manufacturers.  The method that has been used to test the 

equipment-embodied technical change hypothesis is to estimate manufacturing 

production functions, including (mean) vintage of equipment as well as quantities of 

capital and labor.  These studies have concluded that technical progress embodied in 

equipment is a major source of manufacturing productivity growth.   

 Although most previous empirical studies of embodied technical progress have 

focused on equipment used in manufacturing, embodied technical progress may also be 

an important source of economic growth in health care.  One important input in the 

production of health—pharmaceuticals—is even more R&D-intensive than equipment.  

According to the National Science Foundation, the R&D intensity of drugs and medicines 

manufacturing is 74% higher than the R&D intensity of machinery and equipment 

manufacturing.  Therefore, it is quite plausible that there is also a high rate of 

pharmaceutical-embodied technical progress.   

 

General approach 

 

We will investigate the effect of chemotherapy innovation and other factors on the 

hazard rate of cancer patients using longitudinal, state-level data on four major types 

(primary sites) of cancer in nine states during the period 1991-2003.5  While analysis at 

the individual level would be feasible with the available data, nonrandom assignment of 

drugs to patients may cause substantial biases at the individual level.  Patients receiving 

newer treatments may be sicker (or healthier) than patients receiving older treatments.6  

Unobserved heterogeneity of illness severity is less likely to pose a problem at the state 

level than it is at the individual level.  Whereas we have only a single observation on each 

individual, we have repeated observations on each state.  This allows us to estimate 

models with state and year fixed effects, which control for unobserved determinants of 

                                                 
5 Lichtenberg (2006) examined the effect of increased utilization of HIV drugs on the hazard rate of 
HIV/AIDS patients using aggregate U.S. time-series data. 
6 Duggan and Evans (2005) found that individuals with HIV/AIDS taking new antiretroviral drugs had 
substantially higher baseline mortality probabilities than did their counterparts who did not take the drugs. 
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cancer mortality (such as disease severity) that vary across states but not over time, or 

that change over time but don’t vary across states. 

 Our research design is depicted by the following chart. 
 

 
 

Our primary objective is estimation of the effect of chemotherapy vintage on the 

hazard rate of cancer survivors.  The mean vintage of chemotherapy treatments 

administered to a group of patients in year t (chemo_vintt) is  

 
chemo_vintt = Σa n_chemoat vinta  
           Σa n_chemoat 

 
where  
 

n_chemoat = the number of chemotherapy treatments administered to patients in year 
t that contained active ingredient a  

vinta = the vintage (initial FDA approval year) of active ingredient a 
 

The hazard rate is defined as the probability of dying during year t, conditional on 

surviving until the beginning of year t: 

hazardt = n_diedt / n_alivet  

 = n_diedt / Σj=1
t-1 (n_diagj – n_diedj) 

where 
 

Hazard rate 

Drug vintage 
• Chemotherapy drugs 
• Other drugs 

Attributes of previously-diagnosed patients 
• Number of patients diagnosed 
• Mean age at time of diagnosis 
• Percent of patients having surgery 

and radiation 

Fixed effects 
• State and year fixed effects, or 
• State/year, state/cancer-site, and 

year/cancer-site fixed effects 
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n_diedt = the number of deaths during year t 
n_alivet = the number of people alive at the beginning of year t 
n_diagt = the number of people diagnosed during year t 

 
Under certain assumptions (i.e., that the distribution of survival times is exponential, so 

that the hazard rate is constant), mean survival time (e.g. life expectancy at time of 

diagnosis) is equal to the reciprocal of the hazard rate.  For example, if the hazard rate is 

10%, life expectancy at time of diagnosis is 10 years.  Under these assumptions, we can 

easily determine the effect of chemotherapy innovation on the life expectancy of cancer 

patients from estimates of the effect of chemotherapy innovation on hazard rates.   

For this approach to be successful there must be nontrivial variation across states 

in the rate of increase in drug vintage.  The summary data shown in Figure 1 suggest that 

this is indeed the case.   In 1991, Connecticut’s chemotherapy treatments were the oldest; 

in 2003 they were the newest.  Hawaii had the newest treatments in 1995, and the oldest 

in 1997.  Michigan ranked first in 1994 but ranked second to last in 2003.   

This variation across states in the rate of increase in drug vintage may primarily 

be due to medical practice variation.  Medical practice variation is a well-documented 

phenomenon: there are 2514 citations for this term in the PubMed database.  The 

Dartmouth Atlas of Health Care Project (Wennberg (2006)) has demonstrated “glaring 

variations in how health care is delivered across the United States.”  Skinner and Staiger 

(2005) argue that medical practice variation may be partly due to variation in the 

frequency and likelihood of informational exchanges through networks or other social 

activities, which may in turn be related to both average educational attainment and other 

measures of social capital.  They compared the adoption of several important innovations 

during the 20th century, ranging from advances at mid-century in hybrid corn and tractors, 

to medical innovations in the treatment of heart attacks at the end of the century. They 

found a very strong state-level correlation with regard to the adoption of new and 

effective technology, and this correlation held across a variety of industries and time 

periods. These results are suggestive of state-level factors associated with barriers to 

adoption.  These barriers may be related to information or network flows, given that 

farmers, physicians, and individual computer users conduct their business in often small 
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and isolated groups, and therefore are most vulnerable to potential information 

asymmetries. 

 The hazard and survival rates of cancer patients are likely to depend on a number 

of factors, including the intensity of cancer screening.  The goal of screening is to 

diagnose a disease earlier than it would be without screening. Without screening, the 

disease may be discovered later once symptoms appear.  Even if in both cases a person 

will die at the same time, because the disease was diagnosed early with screening, the 

survival time since diagnosis is longer with screening. No additional life has been gained 

(and indeed, there may be added anxiety as the patient must live with knowledge of the 

disease for longer).  Looking at raw statistics, screening will appear to increase survival 

time (this gain is called lead time). If we do not think about what survival time actually 

means in this context, we might attribute success to a screening test that does nothing but 

advance diagnosis. 

 If increases in screening intensity were positively correlated across states with 

increases in chemotherapy vintage, then failure to control adequately for screening would 

result in overestimation of the effect of chemotherapy vintage on survival.  We will 

attempt to control for screening intensity by including several characteristics of 

previously-diagnosed patients.  The first is the number of patients diagnosed.  States with 

greater increases in screening are likely to have larger increases in the number of people 

diagnosed.  The second is mean age at time of diagnosis.  States with greater increases in 

screening are likely to have smaller increases (or even declines) in mean age at time of 

diagnosis.  We will also control for the percent of patients having surgery and radiation as 

part of their initial course of therapy; these variables may also be indicative of disease 

progression at time of diagnosis.  For example, a patient whose cancer is localized at time 

of diagnosis may be more likely to undergo surgery than a patient whose cancer has 

metastasized.   

 
Econometric model 
 

We will estimate 3 types of models, all based on state-level data: 
• difference-in-differences, four major cancer sites combined 
• difference-in-differences, by major cancer site 



 9

• difference-in-differences-in-differences, four major cancer sites combined7 
 
The first two models are of the form: 
 

log(hazardst) = β chemo_vintst + γ Zst + αs + δt + εst   (1) 
 
where 
 

hazardst = the probability that patients previously diagnosed with cancer in state s 
(s = 1,…,9) died during year t (t = 1991,…, 2003), conditional on 
surviving until the beginning of year t 

chemo_vintst  = the mean vintage of the active ingredients in chemotherapy treatments 
administered to cancer patients in state s in year t 

Zst  = other potential determinants of the hazard rate in year t of people 
previously diagnosed with cancer in state s 

αs = a fixed effect for state s 
δt = a fixed effect for year t 

 
The third model is of the form: 
 

log(hazardist) = β chemo_vintist + γ Zist + αis + δit + πst + εist  (2) 
 
where 
 

hazardist = the probability that patients previously diagnosed with cancer at site i (i 
= 1,…,4) in state s died during year t, conditional on surviving until the 
beginning of year t 

chemo_vinti

st  
= the mean vintage of the active ingredients in chemotherapy treatments 
administered to patients with cancer at site i in state s in year t 

Zist  = other potential determinants of the hazard rate in year t of people 
previously diagnosed with cancer at site i in state s 

αis = a fixed effect for cancer site i in state s 
δit = a fixed effect for cancer site i in year t 
πst = a fixed effect for state s in year t 

 
All models will be estimated via weighted least-squares, weighting by the number of 

people previously diagnosed with cancer who have survived until the beginning of year t.   

To simplify notation, the models specified above implicitly assume that the 

hazard rate depends solely on contemporaneous chemotherapy vintage.  However, 

treatment innovations could reduce the lagged hazard rate, as opposed to (or in addition 

to) the current hazard rate.  Also, due to delays in the establishment by CMS of procedure 
                                                 
7 Dee et al (2005), Racine et al (1998), and Zavodny (2000) use difference-in-differences-in-differences 
estimators. 
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codes for new chemotherapy procedures, our measure of chemotherapy vintage is likely 

to be a “lagging indicator” of the true increase in chemotherapy treatment vintage.  The 

following table shows the FDA approval dates and HCPCS code establishment dates for 

five cancer drugs approved by the FDA in 1996.   

 

Drug 

FDA 
approval 

date 

HCPCS code 
establishment 

date 
Lag 

(months) 
daunorubicin liposomal 4/8/1996 1/1/1999 33 
docetaxel 5/14/1996 1/1/1998 20 
gemcitabine 5/15/1996 1/1/1998 20 
topotecan 5/28/1996 1/1/1998 19 
irinotecan 6/14/1996 1/1/1998 19 

FDA, Listing of Approved Oncology Drugs with Approved Indications, 
http://www.fda.gov/cder/cancer/druglistframe.htm 
CMS, 2007 Alpha-Numeric HCPCS File, 
http://www.cms.hhs.gov/HCPCSReleaseCodeSets/downloads/anweb07.zip 

 
 
HCPCS codes for these five drugs were established 19-33 months after FDA approval.  

These drugs were administered to patients prior to the establishment of their HCPCS 

codes.  The following table shows unpublished IMS Health data for four of these drugs 

on the number of “standard units” sold in the U.S. via retail and hospital channels in the 

years 1996-1998. 

 1996 1997 1998 
docetaxel 36,962 115,191 211,728
gemcitabine 185,237 508,379 763,405
topotecan 88,987 150,492 170,665
irinotecan 117,510 371,832 439,420

 

According to one Medicare carrier, “J9999 [not otherwise classified, antineoplastic 

drugs] is the code that should be used for chemotherapy drugs that do not already have an 

assigned code.”8  16% of chemotherapy treatments for patients with colorectal cancer 

used code J9999 in 2004.   

                                                 
8 
http://www.palmettogba.com/palmetto/providers.nsf/44197232fa85168985257196006939dd/85256d58004
3e75485256db3004fe953 
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 To account for the possibility that chemotherapy vintage may affect the lagged 

hazard rate, and that measured vintage may lag true vintage, we will estimate models in 

which the hazard rate depends on vintage in the following, current, and previous years.  

When several values of chemo_vint are included (e.g. chemo_vintt and chemo_vintt-1), 

the sum of their coefficients is an estimate of the (long-run) effect of a sustained increase 

in chemotherapy vintage on the hazard rate. 

 As indicated, the models we estimate will control for other potential determinants 

of the hazard rate (Z).  These other determinants are: 

• the mean vintage of the active ingredients in other (non-chemotherapy) drug 
treatments (other_drug_vint) 

• the log of the number people diagnosed in year t-5 (log(n_diagt-5)) 
• the mean age of people diagnosed in year t-5 (age_diagt-5) 
• the percent of people diagnosed in year t-5 whose initial course of treatment 

included surgery (surgery%t-5) 
• the percent of people diagnosed in year t-5 whose initial course of treatment 

included radiation (radiation%t-5) 
 
Data construction and sources 
 
 We will make use of the following definitions: 
 

hazardist = n_diedist / n_aliveist = the probability of dying during year t, 
conditional on surviving until the beginning of year t 

n_diedist = the number of deaths in year t of people previously diagnosed with 
cancer at site i in state s 

n_aliveist = Σj=1
t-1 (n_diagisj – n_diedisj) = the number of people diagnosed with 

cancer at site i in state s before year t who survived until the 
beginning of year t 

n_diagist = the number of people diagnosed with cancer at site i in state s in 
year t 

chemo_vintist  = Σa n_chemoaist vinta  
      Σa n_chemoaist 

n_chemoaist = Σp n_procpist dpa = the number of chemotherapy treatments 
administered to patients with cancer at site i in state s in year t that 
contained active ingredient a  

n_procpist = the number of times chemotherapy treatment p was administered to 
patients with cancer at site i in state s in year t 

dpa = 1 if chemotherapy treatment p contains active ingredient a 
= 0 if chemotherapy treatment p does not contain active ingredient a9 

                                                 
9 Σa dpa = 1 if chemotherapy treatment p contains a single ingredient; Σa dpa > 1 if it contains multiple 
ingredients.  
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vinta = the vintage (initial FDA approval year) of active ingredient a 
Zist  = other potential determinants of the hazard rate in year t of people 

previously diagnosed with cancer at site i in state s 
 
The 1973-2003 SEER 9 Public Use File10  was used to calculate the following variables:  

n_died, n_diag, mean age at time of diagnosis, and the percent of patients having surgery 

and radiation.  We selected all records for colorectal (21041 < site recode < 21052), lung 

& bronchus (site recode=22030), breast (site recode=26000), and prostate (site 

recode=28010) cancer. 

 We used the SEER 9 Public Use File (PUF) rather than the Patient Entitlement 

and Diagnosis Summary File (PEDSF) because the latter is censored—it contains 

diagnosis and treatment data only for those patients who had Medicare claims during the 

period 1991-2004—while the former is not.  Cancer survivors of all ages will be included 

in our sample.  The NCI estimates that in 2003, 60% of cancer survivors were at least 65 

years old.11  Moreover, data from MEDSTAT indicate that chemotherapy treatments 

administered to non-Medicare patients (employees and their dependents) are generally 

similar to those administered to Medicare patients.12   

The variable n_proc was calculated using data in the NCH 100% 

physician/supplier data file in the SEER-Medicare Linked Database.13  Since 1991, CMS 

has collected physician/supplier (Part B) bills for 100 percent of all claims. These bills, 

known as the National Claims History (NCH) records, are largely from physicians 

although the file also includes claims from other non-institutional providers such as 

physician assistants, clinical social workers, nurse practitioners, independent clinical 

laboratories, ambulance providers, and stand-alone ambulatory surgical centers. The 

claims are processed by carriers working under contract to CMS. Each carrier claim must 

include a Health Care Procedure Classification Code (HCPCS) to describe the nature of 

the billed service.  

                                                 
10 http://seer.cancer.gov/publicdata/  The SEER 9 registries are Atlanta, Connecticut, Detroit, Hawaii, Iowa, 
New Mexico, San Francisco-Oakland, Seattle-Puget Sound, and Utah. In this data set, cases diagnosed 
from 1973 through 2003 are available for all registries except Seattle-Puget Sound (1974+) and Atlanta 
(1975+). The database contains one record for each of 3,260,176 tumors. 
11 http://cancercontrol.cancer.gov/ocs/prevalence/prevalence.html#age  
12 Unfortunately, state-level data on chemotherapy treatments administered to non-Medicare patients are 
not available. 
13 http://healthservices.cancer.gov/seermedicare/medicare/claims.html  
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The HCPCS is divided into two principal subsystems, referred to as level I and 

level II of the HCPCS. Level I of the HCPCS is comprised of CPT (Current Procedural 

Terminology), a numeric coding system maintained by the American Medical 

Association (AMA). The CPT is a uniform coding system consisting of descriptive terms 

and identifying codes that are used primarily to identify medical services and procedures 

furnished by physicians and other health care professionals. These health care 

professionals use the CPT to identify services and procedures for which they bill public 

or private health insurance programs. Decisions regarding the addition, deletion, or 

revision of CPT codes are made by the AMA. The CPT codes are republished and 

updated annually by the AMA. Level I of the HCPCS, the CPT codes, does not include 

codes needed to separately report medical items or services that are regularly billed by 

suppliers other than physicians. 

Level II of the HCPCS is a standardized coding system that is used primarily to 

identify products, supplies, and services not included in the CPT codes, such as 

ambulance services and durable medical equipment, prosthetics, orthotics, and supplies 

(DMEPOS) when used outside a physician's office. Because Medicare and other insurers 

cover a variety of services, supplies, and equipment that are not identified by CPT codes, 

the level II HCPCS codes were established for submitting claims for these items. The 

development and use of level II of the HCPCS began in the 1980's. Level II codes are 

also referred to as alpha-numeric codes because they consist of a single alphabetical letter 

followed by 4 numeric digits, while CPT codes are identified using 5 numeric digits. 

Each HCPCS code on the carrier bill must be accompanied by an ICD-9 diagnosis 

code, providing a reason for the service. In addition each bill has the fields for the dates 

of service, reimbursement amount, encrypted provider numbers (e.g., UPIN), and 

beneficiary demographic data.  For every billed procedure (using a HCPCS code), there 

should be a corresponding ICD-9 diagnosis code (often called the line item diagnosis) 

that provides the reason for the billed service.  

We extracted all claims in the NCH 100% physician/supplier data file where the 

Berenson-Eggers Type of Service (BETOS) code14 was O1D (chemotherapy) or O1E 

                                                 
14 The BETOS coding system was developed primarily for analyzing the growth in Medicare expenditures. 
The coding system covers all HCPCS codes; assigns a HCPCS code to only one BETOS code; consists of 
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(other drugs), and where the first 3-digits of the beneficiary’s principal diagnosis code 

(pdgns_cd) were 153 or 154 (colorectal cancer), 162 (lung & bronchus), 174 (breast), or 

185 (prostate).  Table 1 shows the top chemotherapy treatments in 2004, by cancer site. 

The Medicare data are subject to certain limitations.  Prior to January 2006, 

Medicare did not cover most oral prescription drugs.  The Medicare claims data do not 

include claims for HMO enrollees, claims for care provided in other settings, such as the 

Veterans Administration, and (in some cases) claims for care for persons with Medicare 

as the secondary payer.   

Data on dpa were obtained from the ndc_denorm table in the Multum Lexicon 

database (http://www.multum.com/Lexicon.htm).  Data on vinta were obtained from the 

Drugs@FDA database, produced by the FDA Center for Drug Evaluation and Research 

(http://www.fda.gov/cder/drugsatfda/datafiles/default.htm).  This database includes 

several tables.  The product table enumerates properties of the products included in each 

application, including their active ingredient(s).   The supplements table provides the 

approval history for each application, including dates of approval.  We define vinta as the 

earliest approval date of any product that contains active ingredient a. 

 Descriptive statistics are shown in Table 2.  All statistics are weighted by the 

number of surviving, previously-diagnosed sample patients. The hazard rate declined by 

about a third, from 12.3% in 1991 to 8.3% in 2003.  The number of surviving, 

previously-diagnosed sample patients almost doubled, from 327 thousand in 1991 to 614 

thousand in 2003.  The mean vintage of chemotherapy treatments increased by 15.4 

years, and the mean vintage of other drug treatments increased by 11.6 years.  Mean age 

at diagnosis declined from 66.8 years to 65.6 years.  The fraction of previously-diagnosed 

patients who had surgery declined, but the fraction who had radiation increased. 

 

Empirical results 
 
A.  Difference-in-differences, four major cancer sites combined 
 

                                                                                                                                                 
readily understood clinical categories (as opposed to statistical or financial categories); consists of 
categories that permit objective assignment; is stable over time; and is relatively immune to minor changes 
in technology or practice patterns.  http://www.cms.hhs.gov/HCPCSReleaseCodeSets/20_BETOS.asp  
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Estimates of the difference-in-differences model (eq. (1)), for the four major 

cancer sites combined, are shown in Table 3.  The first column shows the regression of 

the hazard rate on contemporaneous chemotherapy vintage and other variables.  The 

chemotherapy vintage coefficient is not significantly different from zero.  The second 

column shows the regression of the hazard rate on chemotherapy vintage in the previous 

year and other variables.  The chemotherapy vintage coefficient is negative and highly 

significant (p-value = .0045).  This is consistent with the hypothesis that above-average 

increases in chemotherapy vintage led to above-average declines in the hazard rate a year 

later.  Figure 2 shows the relationship across the nine states between the 1991-2002 

change in chemotherapy vintage and the 1992-2003 reduction in the hazard rate.  The two 

states with the largest increases in chemotherapy vintage had the largest reductions in 

hazard rates. 

As shown in Table 2, between 1991 and 2002 chemotherapy vintage increased by 

12.7 years.  The estimates imply that this increase in vintage reduced the log hazard rate 

by .081 (= .0064 * 12.7), which is 24% of the total observed 1992-2003 reduction in the 

log hazard rate (.338).  This suggests that about a quarter of the increase in cancer 

survival was due to use of newer chemotherapy drugs. 

The only other regressor whose coefficient is statistically significant is lagged 

incidence.  States with larger increases in lagged incidence tended to have larger declines 

in the hazard rate of cancer survivors.  As discussed earlier, this may merely reflect 

differential rates of growth of the intensity of cancer screening. 

 
B.  Difference-in-differences, by major cancer site 
 

Estimates of the difference-in-differences model, by major cancer site, are shown 

in Table 4.  We estimated two versions of the model for each cancer site.  In the first 

version, we include chemotherapy drug vintage and other drug vintage in years t and t-1.  

In the second version, we include chemotherapy drug vintage and other drug vintage in 

years t+1 and t, to account for the fact that measured vintage is likely to lag actual 

vintage.  To conserve space, we will report only estimates of the sums of the coefficients, 

which capture the long-run effects of drug vintage on hazard rates. 
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Estimates of the first version of the model indicate that use of newer 

chemotherapy drugs has reduced the hazard rate for lung and breast cancer, but not for 

colorectal and prostate cancer.  They also indicate that use of newer non-chemotherapy 

drugs is associated with an increased hazard rate of lung cancer survivors.15  Perhaps this 

reflects increased use of new palliative drugs in more advanced lung cancer cases. 

Estimates of the second version of the model indicate that use of newer 

chemotherapy drugs has reduced the hazard rates for 3 of the 4 cancer sites: lung, breast 

and prostate cancer.  States that had above-average increases in chemotherapy drug 

vintage had above-average declines in the hazard rates of lung, breast, and prostate 

cancer survivors, but not of colorectal cancer survivors.  None of the non-chemotherapy 

drug vintage estimates are significant at the 5% level. 

 

C.  Difference-in-differences-in-differences, four major cancer sites combined 
 

Estimates of the difference-in-differences-in-differences model (eq. (2)), for the 

four major cancer sites combined, are shown in Table 5.  Once again, we estimated two 

versions of the model.  In the first version, we include chemotherapy drug vintage and 

other drug vintage in years t and t-1.  In the second version, we include chemotherapy 

drug vintage and other drug vintage in years t+1 and t. 

In both versions, the sum of the chemotherapy vintage coefficients is negative and 

highly significant.  The sum of the chemotherapy vintage coefficients in the first version 

is virtually identical to the chemotherapy vintage coefficient in column 2 of Table 3.  

Thus, the estimate of the long-run effect of chemotherapy vintage from the pooled DD 

model with a 1-year lag is virtually identical to the estimate from the pooled DDD model 

with contemporaneous and lagged vintage.  However, in contrast to the DD model, the 

latter model implies that contemporaneous vintage matters more than lagged vintage. 

Estimates of the second DDD model in Table 5 indicate that the hazard rate 

depends even more on measured chemotherapy vintage in the following year than it 

                                                 
15 Lung cancer chemotherapy drug vintage increased more than lung cancer other drug vintage, so these 
estimates imply that, overall, use of newer drugs slightly reduced the lung cancer hazard rate. 
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depends on current measured chemotherapy vintage.16  As discussed above, measured 

chemotherapy vintage is likely to lag true chemotherapy vintage by 1 or 2 years due to 

delays in assigning codes to new cancer drugs.  The sum of the year t+1 and year t 

chemo_vint coefficients is almost 50% larger than the sum of the year t and year t-1 

chemo_vint coefficients.  The estimates of the second model in Table 5 imply that a 12.7-

year increase in chemotherapy vintage (which occurred during the period 1991-2002) 

would reduce the log hazard rate by .119—35% of the observed decline in the hazard rate 

during that period.  The estimates of the second model also indicate that the hazard rate is 

inversely related to lagged incidence and directly related to lagged mean age at diagnosis.   

The 1.24-year decline in mean age at diagnosis also reduced the log hazard rate, but by 

only 1/6 as much as the increase in chemotherapy vintage. 

Now we will use the estimates of the chemo_vint coefficients in the hazard rate 

equations to estimate the increase in life expectancy of cancer survivors attributable to 

the increase in chemotherapy vintage that occurred during the period 1991-2002.  The 

calculations are shown in the following table.   

  lower 
estimate 

higher 
estimate 

HAZARD1991 12.3% 12.3% 
LE1991 = 1 / HAZARD1991 8.2 8.2 
ln(HAZARD1991) -2.098 -2.098 

chemo_vint2002 1981.1 1981.1 

chemo_vint1991 1968.5 1968.5 

β = Δ ln(HAZARD) / Δ chemo_vint -0.0064 -0.0094 
ln(HAZARD2002) = ln(HAZARD1991) + β (chemo_vint2002 - 
chemo_vint1991) -2.179 -2.217 
HAZARD2002 11.3% 10.9% 
LE2002 = 1 / HAZARD2002 8.8 9.2 
Δ LE due to increase in chemotherapy vintage (in years) 0.7 1.0 
Δ LE due to increase in chemotherapy vintage (in months) 8 12 
 

                                                 
16 In a DDD regression of log(hazardist) on chemo_vintist, chemo_vintis,t+1, and chemo_vintis,t+2, the  
coefficient on chemo_vintis,t+2 is not significant, and the sum of the chemo_vint coefficients is virtually the 
same as it is in model 2 of Table 5. 
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The (baseline) hazard rate in 1991 was 12.3%.  This implies that life expectancy of 

cancer survivors in 1991 was about 8.2 years.  The lower estimate of the long-run effect 

of chemotherapy vintage on the hazard rate (Model 1 in Table 5) implies that the 12.7-

year increase in drug vintage increased life expectancy by about 8 months.  The higher 

estimate (Model 2 in Table 5) implies that the 1991-2002 increase in drug vintage 

increased life expectancy by about 12 months.  

The National Cancer Institute estimates that there were about 6.25 million cancer 

survivors age 65 and over on January 1, 2003.17  CMS reports that in calendar year 2003, 

Medicare payments for chemotherapy were $2.97 billion.18  This means that in 2003 

Medicare spent about $475 (= $2.97 billion / 6.25 million) on chemotherapy per cancer 

survivor.  If the life expectancy of a cancer survivor were 9.2 years, expected lifetime 

(undiscounted) chemotherapy expenditure per cancer patient would be $4372 (= 9.2 * 

$475).  This includes the cost of old as well as new chemotherapy treatments.  Our lower 

estimate of the 1991-2002 increase in life expectancy attributable to use of newer 

chemotherapy treatments is 8 months (0.7 years).  Hence $6246 (= $4373 / 0.7) is an 

upper bound estimate of the average cost per life-year gained from using newer 

chemotherapy drugs.  This is a small fraction of some leading economists’ estimates of 

the value of a U.S. statistical life-year (Murphy and Topel (2005), Nordhaus (2002)). 

 

Summary 

 

This study has investigated the effect of chemotherapy innovation and other 

factors on the hazard rate of cancer patients using longitudinal, state-level data on four 

major types of cancer (colorectal, lung, breast, and prostate) in nine states during the 

period 1991-2003.  We estimated 3 types of models: difference-in-differences models for 

the four major cancer sites combined; difference-in-difference models, by major cancer 

site; and difference-in-differences-in-differences models, for the four major cancer sites 
                                                 
17 Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov). Prevalence 
database: "US Estimated Complete Prevalence Counts on 1/1/2003". National Cancer Institute, DCCPS, 
Surveillance Research Program, Statistical Research and Applications Branch, released April 2006, based 
on the November 2005 SEER data submission.   http://srab.cancer.gov/prevalence/canques.html  I assume 
that 50% of cancer survivors in the 60-69 year age group are 65 and over.  
18 CMS, Medicare Part B Physician/Supplier Data by BETOS, Calendar Year 2003, 
http://www.cms.hhs.gov/MedicareFeeforSvcPartsAB/Downloads/BETOS03.pdf  
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combined.  Estimates of almost all of the models were consistent with the hypothesis of a 

significant impact of chemotherapy innovation on hazard rates, although they provided 

varying evidence about the lag structure, and we failed to detect a link for colorectal 

cancer.  The two states with the largest increases in chemotherapy vintage had the largest 

reductions in hazard rates. 

 Life expectancy of cancer survivors in 1991 was about 8.2 years.  Our estimates 

imply that the 12.7-year increase in chemotherapy vintage that occurred during the period 

1991-2002 increased the life expectancy of cancer survivors by 8-12 months, or about 

10%.  In 2003 Medicare spent about $475 on chemotherapy per cancer survivor, so 

expected lifetime (undiscounted) chemotherapy expenditure per cancer patient was 

$4372.  This includes the cost of old as well as new chemotherapy treatments.  Hence 

$6246 is an upper bound estimate of the average cost per life-year gained from using 

newer chemotherapy drugs.  This is a small fraction of some leading economists’ 

estimates of the value of a U.S. statistical life-year. 
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Figure 1
Mean vintage of chemotherapy treatments, by state, 1991-2003
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Figure 2
Relationship across states between the 1991-2002 increase in chemotherapy vintage and the 

1992-2003 reduction in the log hazard rate
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J9170-Docetaxel 16%
J1260-Dolasetron Mesylate 15%
J9265-Paclitaxel Injection 14%
J9390-Vinorelbine Tartrate/10 Mg 12%
J9201-Gemcitabine HCl 11%
J9045-Carboplatin Injection 6%
J9190-Fluorouracil Injection 5%

J9190-Fluorouracil Injection 40%
J9999-Chemotherapy Drug 16%
J9206-Irinotecan Injection 14%
J9263-oxaliplatin injection/0.5 Mg 14%
J1260-Dolasetron Mesylate 11%

J9201-Gemcitabine HCl 15%
J1260-Dolasetron Mesylate 15%
J9045-Carboplatin Injection 14%
J9265-Paclitaxel Injection 13%
J9390-Vinorelbine Tartrate/10 Mg 11%
J9170-Docetaxel 10%

J9202-Goserelin Acetate Implant 52%
J9217-Leuprolide Acetate Suspnsion 30%
J9170-Docetaxel 7%

Source: author's calculations based on NCH 100% 
physician/supplier data file.

Table 1
Top chemotherapy procedures in 2004, by cancer site

lung & bronchus (N = 31,274)

prostate (N = 83,296)

breast (N = 29,562)

colon & rectum (N = 57,203)



year n_alivet hazardt chemo_v
intt

other_drug_
vintt

log(n_
diagt-5)

age_diagt-5 surgery%t-5 radiation%t-5

1991 326,926 12.3% 1968.5 1959.6 2057.2 66.8 80% 23%
1992 353,170 11.7% 1969.4 1959.0 2058.6 66.9 79% 23%
1993 381,741 11.3% 1969.4 1965.4 2185.9 66.9 79% 25%
1994 406,309 10.9% 1970.2 1967.7 2367.2 66.9 78% 27%
1995 427,916 10.5% 1971.0 1966.8 2476.2 66.8 76% 29%
1996 448,831 10.2% 1971.7 1966.0 2396.6 66.6 75% 29%
1997 469,903 10.0% 1971.7 1966.6 2344.9 66.4 75% 30%
1998 493,020 9.8% 1973.5 1968.0 2360.5 66.2 74% 31%
1999 516,907 9.4% 1978.0 1966.8 2409.6 66.0 74% 33%
2000 542,299 9.2% 1979.5 1967.4 2527.7 66.0 73% 34%
2001 565,764 8.9% 1980.7 1968.1 2636.5 65.9 73% 37%
2002 590,201 8.7% 1981.1 1967.9 2708.3 65.7 73% 37%
2003 614,358 8.3% 1983.9 1971.1 2695.8 65.6 72% 38%

Table 2
Summary statistics, by year



PARAMETER 1 2

chemo_vintst -0.0026
t-stat -1.11
p-value 0.2681

chemo_vints,t-1 -0.0064
t-stat -2.92
p-value 0.0045

other_drug_vintst 0.0002
t-stat 0.11
p-value 0.9139

other_drug_vints,t-1 -0.0003
t-stat -0.15
p-value 0.8778

log(n_diags,t-5) -0.1469 -0.1787
t-stat -2.7 -3.06
p-value 0.0082 0.003

age_diags,t-5 -0.0074 -0.0057
t-stat -0.76 -0.6
p-value 0.4493 0.5532

surgery%s,t-5 -0.1242 -0.0913
t-stat -0.43 -0.31
p-value 0.6687 0.76

radiation%s,t-5 0.1730 0.2155
t-stat 1.22 1.6
p-value 0.2272 0.1125

The dependent variable is log(hazardst).
Both models include state and year fixed effects.

Model

Table 3
Estimates of difference-in-differences model (eq. (1)), 4 cancer sites combined



cancer site ESTIMA
TE

T-
VALUE

PROB>T ESTIMA
TE

T-
VALUE

PROB>T

colon & rectum 0.0007 0.23 0.8177 0.0002 0.06 0.9547

lung & bronchus -0.0096 -3.51 0.0007 -0.0063 -2.14 0.0356

breast -0.0069 -2.87 0.0053 -0.0063 -2.40 0.0185
prostate -0.0095 -1.04 0.3000 -0.0210 -2.08 0.0403

colon & rectum -0.0039 -1.13 0.2630 -0.0014 -0.40 0.6924

lung & bronchus 0.0098 4.39 <.0001 0.0041 1.74 0.0861

breast -0.0034 -1.38 0.1715 -0.0031 -1.16 0.2508
prostate 0.0020 0.95 0.3470 0.0033 1.42 0.1595

Table 4
Estimates of selected parameters of difference-in-differences model (eq. (1)), by major cancer site

other drug vintage other drug vintage

sum of coefficients in year t 
and year t-1

sum of coefficients in year t+1 
and year t

chemotherapy drug vintage chemotherapy drug vintage



PARAMETER ESTIMATE T-
VALUE

PROB>
T

ESTIMATE T-
VALUE

PROB>
T

sum of chemo_vint -0.0064 -3.22 0.0014 -0.0094 -4.45 <.0001
sum of 
other_drug_vint

-0.0023 -1.76 0.0797 -0.0019 -1.35 0.1789

chemo_vintis,t+1 -0.0066 -3.33 0.001
chemo_vintis,t -0.0043 -2.31 0.0215 -0.0027 -1.42 0.1556
chemo_vintis,t-1 -0.0020 -1.13 0.2606

other_drug_vintis,t+1 -0.0014 -1.15 0.2494
other_drug_vintis,t -0.0014 -1.21 0.2288 -0.0005 -0.41 0.6852
other_drug_vintis,t-1 -0.0009 -0.84 0.3999

log(n_diagis,t-5) -0.2530 -6.72 <.0001 -0.2279 -5.59 <.0001
age_diagis,t-5 0.0201 3.40 0.0008 0.0152 2.42 0.0164
surgery%is,t-5 0.0080 0.06 0.9533 -0.0956 -0.65 0.5137
radiation%is,t-5 0.0230 0.25 0.8004 -0.0869 -0.89 0.3723

Estimates of the difference-in-differences-in-differences model (eq. (2)), for four major 
cancer sites combined

Table 5

These models include fixed effects for each cancer-site/year pair, each cancer-site/state pair, and 
each state/year pair.

Model 1 Model 2




