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Abstract

This paper extends the analytical results for reduced form realized volatility based forecasting in Andersen,

Bollerslev and Meddahi (2004) to allow for market microstructure frictions and deviations from the basic

semi-martingale assumption in the observed high-frequency returns underlying the realized measures. Our

results builds directly on the powerful eigenfunction representation of the general stochastic volatility class

of models originally developed by Meddahi (2001). In addition to the traditional realized volatility measure

and the role of the underlying sampling frequencies, we also explore the forecasting performance of several

alternative volatility measures explicitly designed to mitigate the impact of the market microstructure

noise. Our analysis of these alternative robust measures is facilitated by a simple unified quadratic form

representation. Our results suggest that the detrimental impact of the noise in terms of the accuracy of

the forecasts can be substantial, and that in empirically realistic situations the linear forecasts based on a

simple-to-implement ’average’ estimator defined by averaging across several sparsely sampled traditional

realized volatility measures generally performs on par with best alternative robust measures.
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1 Introduction

Over the last few decades, the notion that mean returns as well as return variances and

covariances are time-varying has become widely accepted. It is also broadly recognized that

direct inference regarding the conditional mean asset return without additional asset pricing

assumptions is near impossible due to the amount of idiosyncratic return variation in most

financial price series. There is simply too much noise in the data to infer the signal, i.e.,

the mean return, with any precision over even relatively long annual samples. However,

the return variation and covariation are directly linked to the strength of the idiosyncratic

return components and, to the extent these are dominant in the data, it should be feasible to

measure their fluctuations over time with much better precision than for mean returns. This

basic intuition is presented more formally in, e.g., Merton (1980). In particular, if the asset

price and the associated return volatility process follow pure diffusions and price observations

are available continuously, then it is trivial to determine the instantaneous return volatility

at any point in time although it is impossible to pin down the corresponding instantaneous

mean return.

In recent years, the increased availability of complete transaction and quote records

for financial assets has spurred a literature seeking to exploit this additional source of

information in estimating the current level of return variation. Inspired by the results

discussed above, one may expect estimation of return variation to be straightforward given

the abundance of data from active financial markets. However, practical implementation

presents a number of significant challenges. First, even for very liquid assets, where lots of

intraday price data are available, we do not have continuous observations of the underlying

asset price but instead observe prices at frequent, yet intermittent, discrete points in time

over the trading day. This induces an inevitable discretization error into estimates of

current volatility. Second, and more importantly, the recorded prices do not reflect direct

observations of a frictionless diffusive price process. Market prices are invariably quoted on a

discrete price grid, there is a gap between buying and selling prices or quotes, i.e., a bid-ask

spread, and different prices may be quoted by different market makers simultaneously due to

heterogeneous beliefs, information and inventory positions. The latter set of complications

is referred to jointly as market microstructure effects. Consequently, any observed intraday

price does not correspond to a unique market price at a precise point in time but instead

represents the underlying ideal theoretical price confounded by an error term reflecting the

impact of market microstructure frictions, or ”noise.”

The early literature seeks to accommodate microstructure noise by sampling the prices

sparsely relative to data availability. The guiding principle is the semi-martingale property

of the underlying price process implied by a natural no-arbitrage condition. This property

ensures that price increments over short intervals are approximately serially uncorrelated. As
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a result, the realized volatility estimator, computed by cumulating intraday squared returns,

provides a near unbiased realized return variation measure; see, e.g., Andersen, Bollerslev,

Diebold and Labys (2000). Moreover, as emphasized in the early work by Andersen and

Bollerslev (1998), Andersen, Bollerslev, Diebold and Labys (2001) and Barndorff-Nielsen

and Shephard (2001), in the pure diffusion case with no microstructure noise present,

this estimator is consistent for the underlying cumulative (integrated) return variance

over the measurement horizon as the sampling interval shrinks towards zero. Thus, by

sampling relatively sparsely, one may proceed as if microstructure noise is absent, yet the

resulting estimator should in theory prove reasonably accurate. Importantly, the realized

volatility approach represents a paradigm shift from estimation of instantaneous volatility

to estimation of the (average) realization of the volatility process over a non-trivial interval,

implicitly acknowledging that meaningful model-free measurement of instantaneous volatility

simply is not feasible with actual transaction prices and price quotes that necessarily embody

microstructure distortions.

The main disadvantage of the realized volatility estimator constructed from sparsely

sampled data is that the discretization error can be substantial; see Barndorff-Nielsen and

Shephard (2002a, 2002b) and Meddahi (2002a). This naturally raises the issue of how to

potentially improve on the estimator by sampling more frequently, thus exploiting more of

the available price data, without incurring excessive biases from the cumulative impact of

microstructure noise. An entire literature has developed to address this topic, and it is now

evident that improved realized return variation measures may be obtained through several

alternative approaches. Important contributions include the first-order autocorrelation

adjustment originally proposed by Zhou (1996), the notion of an optimal sampling frequency

as discussed by Bandi and Russell (2005a, 2005b) and Aı̈t-Sahalia, Mykland and Zhang

(2005a), the average and two-scale estimator developed by Zhang, Mykland and Aı̈t-Sahalia

(2005), the multi-scale estimator of Zhang (2006), as well as the general kernel type estimator

of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006); a recent insightful survey is

provided by Hansen and Lunde (2006).

Meanwhile, another key issue concerns the use of the realized return variation measures

in support of financial decision making. Real-time asset allocation, derivatives pricing and

risk management is conducted given current expectations regarding the return volatility,

or more generally the entire return distribution, over the planning horizon. The available

realized volatility estimates at the decision point represent measures of the ex-post realized

return variation over the preceding periods rather than the conditional variance over the

planning horizon. Hence, even if the sequence of past realized volatility measures provide

an accurate indication of recent return variation, it must be mapped into a predictor of

the expected return variance over a future period, or some other quantity related to the
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application at hand, to be directly useful. In contrast to the construction of optimal or

robust ex-post realized return variation measures, this critical forecasting step is inevitably

model dependent.

The realized volatility literature is unfortunately less developed on this important forecast

dimension. A number of empirically oriented studies have compared the performance of

forecasts based on relatively simple reduced form models for the realized variation measures

to more traditional daily return based forecast procedures as well as market based predictions

such as option-implied volatility forecasts; see, e.g., Andersen, Bollerslev, Diebold and Labys

(2003), Deo, Hurvich and Lu (2006), Koopman, Jungbacker and Hol (2005), and Pong,

Shackleton, Taylor and Xu (2004), among many others. It is generally found that the realized

variation forecasts clearly dominate the standard stochastic volatility model forecasts based

on daily data and they also appear to perform at least on par with the options based

measures. In terms of a more analytic assessment of the potential of the procedures to

improve performance the initial evidence was mainly generated from a handful of simulation

based studies, which aside from being tied to a specific model, generally also ignored practical

market microstructure features.1

The model specific nature of these earlier studies was largely circumvented by the

subsequent approach of Andersen, Bollerslev and Meddahi (henceforth ABM)(2004, 2005)

who utilize the so-called eigenfunction stochastic volatility (ESV) framework of Meddahi

(2001) in the development of analytic expressions for forecast performance spanning the

entire class of stochastic volatility diffusions commonly used in the literature. In particular,

the set-up delivers expressions for the optimal linear forecasts based on the history of

past realized volatility measures and it allows for direct performance comparisons as the

underlying sampling frequency of the intraday returns varies or the relevant measurement

horizon changes.2 It also facilitates analysis of the degree of artificial deterioration

in forecast performance due to the reliance of (feasible) realized volatility measures as

ex-post benchmarks for return variation in lieu of the true underlying integrated volatility.

Nonetheless, the studies do not account for the fact that microstructure noise invariably also

will impact practical measurements and forecast performance. In fact, there does not appear

to be any direct way to analytically assess this issue within the existing literature.3

1For example, Andersen and Bollerslev (1998) and Andersen, Bollerslev and Lange (1999) study the
extent to which realized volatility forecasts improve on standard GARCH forecasts under correct model
specification through the use of simulations from an underlying GARCH diffusion model, with their results
indicating rather substantial potential gains.

2This same approach has also recently been adopted by Corradi, Distaso and Swanson (2005) in analyzing
the entire predictive density for integrated volatility, as explored more generally in Corradi, Distaso and
Swanson (2006).

3Bandi, Russell and Zhu (2006) provide empirical evidence that the use of properly chosen sampling
frequencies in the construction of realized volatility measures may have important economic benefits in
practical dynamic portfolio choice.
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This paper provides an extension to the ABM studies by explicitly accounting for

empirically realistic microstructure noise in the analytic derivation of realized volatility based

forecasts. As noted, the literature on this topic is sparse and, apart from concurrent work

by Aı̈t-Sahalia and Mancini (2006) and Ghysels and Sinko (2006), basically non-existent.

The latter papers may be seen as complementary to ours in the sense that they resort

to numerical simulation methods or direct comparative empirical assessment in order to

rank the various forecasting procedures and also study return generating processes and

forecast not addressed here.4 For example, Aı̈t-Sahalia and Mancini (2006) include long

memory and jump diffusions among the scenarios explored, while Ghysels and Sinko (2006)

consider nonlinear forecasting techniques based on the MIDAS regression approach. Finally,

a preliminary review of some results originally derived for the current project can also be

found in Garcia and Meddahi (2006).

The remainder of the paper unfolds as follows. We begin in the next section by a brief

discussion of the general theoretical framework, including the basic ESV model assumptions

and realized volatility definitions, followed by the explicit analytical expressions for all

of the requisite moments underlying our subsequent theoretical results. In Section 3 we

present the optimal linear forecasting rules for the integrated volatility when the traditional

realized volatility measure used in the construction of the forecasts are contaminated by

market microstructure noise. We also quantify the deteriorating impact of the noise for

the performance of the forecasts and directly analyze the notion of an ”optimal” sampling

frequency in plausible empirical situations. Moreover, we show how optimally combining

the intraday squared returns in the construction of the integrated volatility forecasts does

not materially improve upon the forecasts constructed from the realized volatilities based

on equally weighted intraday squared returns. In Section 4 we demonstrate how many

of the robust realized volatility measures explicitly designed to mitigate the impact of

market microstructure noise may be conveniently expressed as a quadratic form in the

highest possible intraday returns. This representation, in turn, facilitates direct derivation of

analytical expressions for the corresponding optimal linear integrated volatility forecasts. We

find that a relatively simple estimator constructed by averaging over several sparsely sampled

traditional realized volatility measures generally performs among the best in a forecasting

sense. Moreover, the differences among the competing realized volatility estimators can be

quite substantial, thus directly highlighting the importance of considering the impact of the

noise in actually observed prices. We also show that practically feasible realized volatility

forecasting regressions based on the ”wrong” realized volatility measure may falsely suggest

almost no predictability, when in fact more than fifty percent of the day-to-day variation in

the (latent) integrated volatility is predictable. In Section 5 we briefly discuss some potential

4We became aware of these projects some time after initiating our own work on these issues.
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generalizations of the underlying model assumptions, while Section 6 concludes. All proofs

are deferred to a Technical Appendix.

2 Theoretical Framework

2.1 General Setup and Assumptions

We focus on a single asset traded in a liquid financial market. We assume that the sample-

path of the corresponding (latent) price process, {S∗t , 0 ≤ t}, is continuous and determined

by the stochastic differential equation (sde)

d log(S∗t ) = σtdWt, (2.1)

where Wt denotes a standard Brownian motion, and the instantaneous, or spot, volatility

process σt is predictable with continuous sample path. Initially we assume that the σt and Wt

processes are uncorrelated, ruling out so-called leverage effects, but we discuss this extension

along with the impact of including a drift term in the specification in Section 5 below. For

notational simplicity we henceforth refer to the unit time interval as a day.

Our primary interest centers on forecasting the (latent) integrated volatility over daily

and longer inter-daily horizons. Specifically, we define the one-period integrated volatility,

IVt+1 ≡
∫ t+1

t

σ2
τdτ, (2.2)

and the corresponding multi-period measure,

IVt+1:t+m =
m∑

j=1

IVt+j, (2.3)

where m is an integer. As discussed at length in Andersen, Bollerslev, and Diebold (2006) and

Andersen, Bollerslev, Christoffersen and Diebold (2006), the integrated volatility provides

the natural measure of the ex-post return variability.5

The integrated volatility is, of course, not directly observable. However, as highlighted

in the work by Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold and Labys

(2001, 2003), Barndorff-Nielsen and Shephard (2001, 2003), Meddahi (2002a), the realized

volatilities defined by the summation of high-frequency squared returns from the diffusion

in (2.1),

RV ∗
t (h) ≡

1/h∑
i=1

r
∗(h)2
t−1+ih, (2.4)

5The integrated volatility also figures prominently in the option pricing literature; see, e.g., Hull and
White (1987) and Garcia, Lewis, Pastorello and Renault (2004).
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where

r
∗(h)
t ≡ log(S∗t )− log(S∗t−h), (2.5)

and 1/h is assumed to be an integer, may in theory be used in the construction of arbitrarily

accurate estimates of IVt for sufficiently small values of h. That is, RV ∗
t (h) is uniformly

consistent for IVt as h → 0, or the sampling frequency of the intraday returns underlying

the realized volatility measure goes to infinity. Moreover, ABM (2004) have formally shown

that simple autoregressive models for RV ∗
t (h) based on high values of h, or a large number

of high-frequency returns, may be used in the construction of simple-to-implement and, for

many of the stochastic volatility models employed in the literature, remarkably close to

efficient forecasts for IVt+1 and IVt+1:t+m.6

In practice, of course, the prices of even the most liquid assets are invariably affected by

a host of market microstructure frictions, and as such do not adhere to the stylized diffusion

model in equation (2.1) when observed at ultra-high frequencies. In response to this issue

the studies above instead advocate using a moderately high but not ultra-high sampling

frequency, so that the model in (2.1) may still be considered an adequate approximation

to the observed price process (see, e.g., the discussion of the so-called volatility signature

plot in Andersen, Bollerslev, Diebold and Labys, 2000, used in informally determining an

appropriate value of h). Meanwhile, to better mimic actually observed prices when analyzing

the properties of realized volatility type measures based on increasingly finer sampled returns,

a number of recent studies have argued for the relevance of explicitly including an additional

term in the price process to properly reflect the impact of the market microstructure ”noise”

(Hansen and Lunde, 2006, provides an insightful recent survey). Following the common setup

in this literature, we will here assume that the actually observed price process, {St, 0 ≤ t},
is equal to the semi-martingale price process defined in (2.1) plus a noise component, ut,

log(St) = log(S∗t ) + ut, (2.6)

where ut is i.i.d. with mean zero, variance Vu, and kurtosis Ku = E[u4
t ]/V

2
u . In the numerical

calculations reported on below we will focus on Ku = 3, corresponding to a normally

distributed noise term, but our theoretical results are general and allow for any value of

Ku. Also, even though our initial derivations and corresponding numerical calculations are

based on the simplifying assumption of an i.i.d. noise component, we will briefly discuss

the implications of relaxing that assumption and allowing for correlated noise in Section 5

below.
6These theoretical results directly corroborate the empirical findings reported in Andersen, Bollerslev,

Diebold and Labys (2003), Areal and Taylor (2002), Corsi (2003), Deo, Hurvich and Lu (2006), Koopman,
Jungbacker and Hol (2005), Martens (2002), Pong, Shackleton, Taylor and Xu (2004), and Thomakos and
Wang (2003), among many others, involving the estimation of relatively simple reduced form time series
forecasting models for various realized volatility series.
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Assuming that St, but not S∗t , is observable, the observed h-period intraday returns is

correspondingly defined by,

r
(h)
t ≡ log(St)− log(St−h). (2.7)

Of course, the noise contaminated returns are directly related to the non-contaminated, or

ideal, returns in (2.5) by the equation,

r
(h)
t = r

∗(h)
t + e

(h)
t , (2.8)

where

e
(h)
t ≡ ut − ut−h. (2.9)

Under the assumption that ut is i.i.d., the noise therefore induces an MA(1) error structure

in the observed returns. Moreover, for very large values of h the variance of the noise term,

e
(h)
t , will tend to dominate the variance of the signal, or the true latent return r

∗(h)
t . In fact, as

shown by and Bandi and Russell (2005a, 2005b) and Zhang, Mykland and Aı̈t-Sahalia (2005)

the practically feasible realized volatility measure based on the contaminated high-frequency

returns,

RVt(h) ≡
1/h∑
i=1

r
(h)2
t−1+ih (2.10)

is formally inconsistent for IVt and diverges to infinity for h → 0. Of course, this does

not mean that RVt(h) can not be used in meaningfully forecasting IVt+1 and IVt+1:t+m

for moderately large values of h. Indeed, as we document below, by choosing the value

of h to appropriately balance the impact of the noise and the signal in empirically realistic

situations, remarkably accurate volatility forecasts based on simple autoregressive models for

RVt(h) are still feasible. However, as discussed further in Section 4, a number of alternative

robust realized volatility measures explicitly designed to account for the high-frequency

noise have recently been proposed in the literature. As part of our analysis we therefore

also compare and contrast the performance of reduced form forecasting models for these

alternative measures to the forecasts based on the traditional RVt(h) measure in equation

(2.10).

2.2 Eigenfunction Stochastic Volatility Models

To facilitate the derivation of our theoretical results we follow ABM (2004) in assuming that

the spot volatility process is a member of the Eigenfunction Stochastic Volatility (ESV) class

of models introduced by Meddahi (2001). This is a very general class of models that includes

most continuous-time diffusive stochastic volatility models in the existing literature.
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To illustrate, consider the situation in which the volatility process is driven by a single

(latent) state variable.7 The corresponding one-factor ESV representation then takes the

generic form,

σ2
t =

p∑
n=0

anPn(ft), (2.11)

where the integer p may be infinite, and the latent state variable ft is characterized by the

process,

dft = m(ft)dt +
√

v(ft)dW f
t , (2.12)

where the W f
t Brownian motion is independent of the Wt Brownian motion driving the price

in equation (2.1). Further, the an coefficients in the sum are real numbers and the Pn(ft)’s

denote the eigenfunctions of the infinitesimal generator associated with ft.
8 The power

and convenience of the ESV representation stems from the fact that the eigenfunctions are

orthogonal and centered at zero,

E[Pn(ft)Pj(ft)] = 0 E[Pn(ft)] = 0, (2.13)

and follow first-order autoregressive processes,

∀l > 0, E[Pn(ft+l) | fτ , τ ≤ t] = exp(−λnl)Pn(ft), (2.14)

where (−λn) denote the corresponding eigenvalues. These simplifying features jointly render

the calculation of analytical multi-step forecasts for σ2
t and the moments of discretely sampled

returns, r
(h)
t , from the model defined by equations (2.1), (2.8), (2.11) and (2.12), feasible.

The following proposition provides the relevant analytical expressions that we need in our

subsequent analysis.

Proposition 2.1 Let the discrete-time noise contaminated and non-contaminated returns,

r
(h)
t and r

∗(h)
t , respectively, be determined by an ESV model and equation (2.8), with

the corresponding one- and m-period integrated volatilities, IVt and IVt+1:t+m, defined by

equations (2.2) and (2.3), respectively. Then for positive integers i ≥ j ≥ k ≥ l, m ≥ 1, and

h > 0,

E[r
(h)
t+ih] = E[r

∗(h)
t+ih] = 0, (2.15)

7The one-factor ESV model may be extended to allow for multiple factors while maintaining the key
results discussed below; see Meddahi (2001) for further details. See also Chen, Hansen and Scheinkman
(2005) for a general approach to eigenfunction modeling for multivariate Markov processes.

8For a more detailed discussion of the properties of infinitesimal generators see, e.g., Hansen and
Scheinkman (1995) and Aı̈t-Sahalia, Hansen and Scheinkman (2006).
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E[r
(h)2
t+ih] = V ar[r

(h)
t+ih] = V ar[r

∗(h)
t+ih] + 2Vu = a0h + 2Vu, (2.16)

Cov[r
(h)
t+ih, r

(h)
t+jh] = −Vuδ(|i−j|,1), for i 6= j, (2.17)

E[r
(h)
t+ihr

(h)
t+jhr

(h)
t+khr

(h)
t+lh] = (2.18)

3a2
0h

2 + 6

p∑
n=1

a2
n

λ2
n

[−1 + λnh + exp(−λnh)] + 2V 2
u (Ku + 3) + 12a0Vuh if i = j = k = l,

− V 2
u (Ku + 3)− 3a0Vuh if i = j = k = l + 1 or i = j + 1 = k + 1 = l + 1,

a2
0h

2 +

p∑
n=1

a2
n

λ2
n

[1− exp(−λnh)]2 + V 2
u (Ku + 3) + 4a0Vuh if i = j = k + 1 = l + 1,

a2
0h

2 +

p∑
n=1

a2
n

λ2
n

[1− exp(−λnh)]2 exp(−λn(i− k − 1)h) + 4V 2
u + 4a0Vuh if i = j > k + 1, k = l,

2V 2
u if i = j + 1, j = k = l + 1,

− 2V 2
u − a0Vuh if i = j ≥ k + 1, k = l + 1, or i = j + 1, j ≥ k + 1, k = l,

V 2
u if i = j + 1, j ≥ k + 1, k = l + 1,

0 otherwise.

Cov[r
(h)
t−1+m+ihr

(h)
t−1+m+jh, r

(h)
t−1+khr

(h)
t−1+lh] =

p∑
n=1

a2
n

λ2
n

(1− exp(λnh))2 exp(−λn(m + (i− k − 1)h)) if m ≥ 2, i = j, k = l,

p∑
n=1

a2
n

λ2
n

(1− exp(λnh))2 exp(−λn(1 + (i− k − 1)h)) if m = 1, i = j, k = l, i 6= 1, k 6= 1/h,

p∑
n=1

a2
n

λ2
n

(1− exp(λnh))2 + (Ku − 1)V 2
u if m = 1, i = j, k = l, i = 1, k = 1/h,

0 otherwise.

(2.19)

E[IVtr
(h)
t−1+ihr

(h)
t−1+jh] =

a2
0h + 2a0Vu + 2

p∑
n=1

a2
n

λ2
n

(exp(−λnh) + λnh− 1)

+

p∑
n=1

a2
n

λ2
n

(2− exp(−λn(i− 1)h)− exp(−λn(1− ih))) (1− exp(−λnh)) if i = j,

− a0Vu if |i− j| = 1,

0 otherwise.

(2.20)
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E[IVt+1:t+mr
(h)
t−1+ihr

(h)
t−1+jh] =

a2
0hm + 2a0mVu

+

p∑
n=1

a2
n

λ2
n

(1− exp(−λnh))(1− exp(−λnm) exp(−λn(1− ih)) if i = j,

− a0mVu if |i− j| = 1,

0 otherwise.

(2.21)

Proof: See Appendix II.

In the numerical calculations reported on below, we focus on the same three models

previously analyzed in ABM (2004, 2005), namely a GARCH diffusion model, a two-factor

affine model, and a log-normal diffusion. These particular models are fairly representative of

the models and parameter values entertained in the broader literature. The corresponding

ESV representations for each of the models are given in Appendix I. Here, we simply state

the there models in the more familiar sde form.

Model M1 - GARCH Diffusion The instantaneous volatility in the GARCH diffusion

model is defined by the process,

dσ2
t = κ(θ − σ2

t )dt + σσ2
t dW

(2)
t , (2.22)

where κ = 0.035, θ = 0.636, and ψ = 0.296.

Model M2 - Two-Factor Affine The instantaneous volatility in the two-factor affine

model is given by,

σ2
t = σ2

1,t + σ2
2,t dσ2

j,t = κj(θj − σ2
j,t)dt + ηjσj,tdW

(j+1)
t , j = 1, 2, (2.23)

where κ1 = 0.5708, θ1 = 0.3257, η1 = 0.2286, κ2 = 0.0757, θ2 = 0.1786, and η2 = 0.1096,

implying a very volatile first factor and a much more slowly mean reverting second factor.

Model M3 - Log-Normal Diffusion The instantaneous volatility in the log-normal

diffusion follows the process,

d log(σ2
t ) = κ[θ − log(σ2

t )]dt + σdW
(2)
t , (2.24)

where κ = 0.0136, θ = −0.8382, and σ = 0.1148.

This completes our discussion of the general ESV model framework that underlie our main

results. In the next section, we move on to discuss the properties of integrated volatility

forecasts based on the traditional realized volatility measure in the presence of noise.
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3 Traditional Realized Volatility Based Forecasts

3.1 Optimal Linear Forecasts

ABM (2004) provide a detailed assessment of integrated volatility forecasts constructed

from the linear regression of IVt+1 and IVt+1:t+m on RV ∗
t (h) and a constant, as well as

longer regressions including additional lagged values of RV ∗
t (h). However, as discussed in

the previous section, the stylized semi-martingale price process in equation (2.1) breaks

down when prices are sampled at ultra-high frequencies, and the modified price process in

(2.6) arguably provides a more accurate description of real-world prices and finely sampled

returns. As such, theoretical results based on RVt(h) in place of RV ∗
t (h) for large values of

h, should provide better guidance for practical empirical work and afford a direct assessment

of the deteriorating impact of the market microstructure noise in terms of the accuracy of

the forecasts.

In order to derive analytical expressions for the corresponding linear forecasts of

IVt+1 and IVt+1:t+m based on RVt(h) and lagged values of RVt(h), we need to calculate

Cov[IVt+1, RVt−l(h)], V ar[RVt(h)], and Cov[RVt+1(h), RVt−l(h)], for l ≥ 0. To do so, note

that from equation (2.8) the contaminated and the ideal realized volatility measures are

directly related by the equation,

RVt(h) = RV ∗
t (h) +

1/h∑
i=1

e
(h)2
t−1+ih + 2

1/h∑
i=1

r
∗(h)
t−1+ihe

(h)
t−1+ih. (3.1)

Utilizing this decomposition the following general set of results for any pair of price processes

defined by equations (2.1) and (2.6) follow fairly easily.

Proposition 3.1 Let the discrete-time noise contaminated and non-contaminated returns,

r
(h)
t and r

∗(h)
t respectively, be determined by the diffusion in (2.1) and equation (2.8), with the

corresponding realized and integrated volatilities, RV ∗
t (h), RVt(h), IVt and IVt+1:t+m, defined

by equations (2.4), (2.10), (2.2) and (2.3), respectively. Then for integers m ≥ 1 and l ≥ 0,

and h > 0,

Cov[IVt+1:t+m, RVt−l(h)] = Cov[IVt+1:t+m, RV ∗
t−l(h)] = Cov[IVt+1:t+m, IVt−l], (3.2)

V ar[RVt(h)] = V ar[RV ∗
t (h)] + 2V 2

u

(
2Ku

h
−Ku + 1 + 4

E[σ2
t ]

Vu

)
, (3.3)

Cov[RVt+1(h), RVt(h)] = Cov[RV ∗
t+1(h), RV ∗

t (h)] + (Ku − 1)V 2
u , (3.4)

Cov[RVt+1(h), RVt−l(h)] = Cov[RV ∗
t+1(h), RV ∗

t−l(h)]. (3.5)

Proof: See Appendix II.
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This proposition expresses the variances and covariances for RVt(h) as explicit functions of

the corresponding counterparts for the ideal RV ∗
t (h) measure along with the variance and

kurtosis of the noise. Analytical expressions for the latter quantities valid across the ESV

class of stochastic volatility models, implicitly defined by equation (2.11), are derived in

ABM (2004). Specifically, adapting their notation, we have the following results,

V ar[IVt+1:t+m] = 2

p∑
n=1

a2
n

λ2
n

[exp(−λnn) + λnm− 1], (3.6)

Cov(IVt+1:t+m, IVt−l) =

p∑
n=1

a2
n

[1− exp(−λn)][1− exp(−λnm)]

λ2
n

exp(−λnl), (3.7)

V ar[RV ∗
t+1(h)] = V ar[IVt+1] +

4

h

(
a2

0h
2

2
+

p∑
n=1

a2
n

λ2
n

[exp(−λnh)− 1 + λnh]

)
, (3.8)

and

Cov[RV ∗
t+1(h), RV ∗

t−l(h)] = Cov[IVt+1(h), IVt−l(h)]. (3.9)

Combining these expressions with Proposition 3.1, we readily obtain the requisite variances

and covariances for the noise contaminated realized volatility based forecasts.

It is, of course, impossible to quantify the detrimental impact from market microstructure

noise on the precision of forecasts of future return variation based on the history of realized

volatility measures in general, as the appropriate loss function depends on the economic

application that the volatility forecasts is to be used for. Instead, we follow the literature

in focusing on the coefficient-of-determination, or R2, from the regression of the future

integrated variance on a constant and the associated forecast variables. This implicitly

corresponds to the use of mean-squared-forecast-error (MSE) criterion for the unconditional

bias-corrected return variation forecast. This is a common benchmark for performance

evaluation and it allows for direct comparison with prior results in the literature which

have been assessed within a similar setting.9

In particular, following ABM (2004), the R2 from the Mincer-Zarnowitz style regression

of IVt+1 onto a constant and the (l + 1) × 1 vector, (RVt(h), RVt−1(h), ..., RVt−l(h)), l ≥ 0,

may be succinctly expressed as,

R2(IVt+1, RVt(h), l) =

C(IVt+1, RVt(h), l)>(M(RVt(h), l))−1 C(IVt+1, RVt(h), l)/V ar[IVt].
(3.10)

where the typical elements in the (l+1)×1 vector C(IVt+1, RVt(h), l) and the (l+1)×(l+1)

matrix M(RVt(h), l) are given by,

C(IVt+1, RVt(h), l)i = Cov(IVt+1, RVt−i+1(h)) (3.11)

9Patton (2006) provides an interesting discussion concerning the choice of loss function for assessing the
performance of alternative volatility forecasts when the latent volatility is observed with noise.
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and,

M(RVt(h), l))ij = Cov(RVt(h), RVt+i−j(h)), (3.12)

respectively. The corresponding R2 for the longer-horizon integrated volatility forecasts is

simply obtained by replacing IVt+1 with IVt+1:t+m in the formulas immediately above. We

next turn to our discussion of the resulting numerical R2’s for the three specific ESV models

discussed in Section 2 when contaminated by different levels of noise.

3.2 Quantifying the Impact of Market Microstructure Noise

The impact of the microstructure noise is, of course, directly related to the magnitude of

the variation in the noise relative to the true daily return variation. In our setting, this

factor is conveniently captured by the noise-to-signal ratio, or λ ≡ Vu/E[IVt]. Hansen and

Lunde (2006) estimate this factor across thirty active U.S. stocks for the year 2000 and find

typical values to be around 0.1%, with most being slightly less. They also note that the

magnitude of the noise has generally decreased since then and now is substantially lower for

many actively traded stocks. Consequently, we use 0.1% as a reference point for a realistic,

and for liquid assets perhaps even inflated, value for the relative size of the noise component.

We also explore the impact of significantly higher levels of microstructure noise by reporting

results for noise-to-signal ratios of 0.5% and 1.0%.

Table 1 to be inserted here.

Table 1 summarizes the findings in terms of the population R2 in equation (3.10) from

the regression of future integrated volatility on the various realized measures across different

forecast horizons, data generating processes (models), levels of microstructure noise, and

sampling frequencies for the intraday returns. As a reference point, we also include in

the first row the R2’s for the optimal (infeasible) forecasts based on the exact value of the

(latent) volatility state variable(s) in the ESV models. Similarly, the next two rows report the

(infeasible) forecasts based on the past daily (latent) integrated volatility and the forecasts

exploiting an additional four lags, or a week, of the integrated volatility. The next eleven

rows then give the R2’s for different realized volatility based forecasts under the assumption

of no microstructure noise, or λ = 0, and sampling frequencies ranging from h = 1/1444 to

h = 1, corresponding to 1-minute to daily return observations in 24-hour market, and we

shall refer to them as such in our subsequent discussion. However, the highest h = 1/1440

frequency may equally well be interpreted as arising from 15-second sampling over a 6-hour

trading day. All of these reference scenarios were previously analyzed in ABM (2004) and
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represent a small subset of the findings discussed herein.10

From the first row, it is evident that Models 1 and 3 imply an inherently large degree

of predictability in return variation, while this is slightly less so for Model 2. The latter

embodies a second, less persistent, factor which limits the overall amount of serial correlation

in the return volatility process. From the second and third rows we see that there is only

a small loss of predictability associated with forecasts based on the last day’s integrated

volatility rather than the instantaneous volatility, and exploiting the last week’s worth of

daily integrated volatilities is at best only marginally helpful. Again, the decline in predictive

power is more pronounced for the less persistent process associated with model 2. Typically,

adding additional lags has no discernable impact on the results based on intraday returns so

we limit ourselves to the weekly window.

Moving on to the realized volatility based forecasts, albeit only for the ideal case without

any noise, associated with rows four to fourteen, we see that the drop in predictive power

is relatively small for the forecasts based on measures constructed from 1- and 5-minute

returns. Moreover, as we move down to lower sampling frequencies for which the return

variation measures are less precise, the addition of lagged daily realized volatility measures

start to become more valuable. The results reported for twenty daily lags (19 additional) in

row fourteen also closely mimic what would be achieved by a well-specified GARCH model,

as detailed in ABM (2004).

Turning to the new results concerning the forecasts based on realized volatilities

constructed from noisy return observations, we first observe that the degradation in

performance is relatively mild for the realistic case with λ = 0.1%. However, as the noise

variance is increased in the bottom part of the table, the performance deteriorates more

sharply, even if the addition of lagged values of the realized volatility measure now is critical

in boosting the predictive power. A second general finding is that, as anticipated, it is not

optimal to compute the realized volatility measures from returns corresponding to the very

highest frequencies. At the moderate noise level of λ = 0.1%, the performance is better for

5-minute rather than 1-minute sampling, and as λ grows further, sampling at the 15- and

30-minute levels, respectively, produce the highest coherence between forecasts and future

realizations. This is, of course, the qualitative results we would expect from theory when the

noise increasingly dominates the sampling variability as the main source of variation in the

realized measures. Further evidence along these lines is obtained by comparing the relative

decline in predictability from the λ = 0.1% to the λ = 1.0% scenarios for an underlying

5-minute (h = 1/288) versus 30-minute (h = 1/48) sampling frequency. One finds a drop in

the R2 from moderate to large noise and h = 1/288 at the one-day forecast horizon in Model

10Specifically, the figures reported in the first fourteen rows of Table 1 were extracted from Tables 1
through 6 in ABM (2004).
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1 of about 91% to 47% (92% to 72% if lags are exploited) compared to a corresponding

drop for h = 1/48 of about 82% to 65% (88% to 81% with lags). Third, we note that the

importance of exploiting the information in lagged daily realized volatility measures increases

sharply with the level of the noise. Even for λ = 0.1% the measures based on 30-minute

cumulative squared returns are quite competitive with those based on 5-minute sampling

once the lagged realized volatility measures are exploited. In fact, for the higher noise

levels, the 30-minute based measures dominate the 5-minute based ones for all our scenarios.

Hence, within the class of linear realized volatility based forecast procedures, the use of an

underlying 30-minute return horizon appears to provide a robust and reasonably efficient

choice as long as the series of past daily measures are incorporated into the construction of

the forecasts.

3.3 Optimal Sampling Frequency

The results in the preceding section immediately point to the notion of an optimal sampling

frequency for the high-frequency returns underlying RVt(h), in the sense of maximizing the

R2 associated with the linear forecasting regressions, or minimizing the MSE associated with

the forecast errors. In this section we consider two different ways of defining an approximately

optimal (unconditional) value of h. For concreteness, we focus our discussion on the one-

step-ahead forecasts, but the same results are readily extended to a multi-period setting, as

further illustrated in our numerical calculations.

Our first approach is based on the results of Bandi and Russell (2005a, 2005b) and Zhang,

Mykland and Aı̈t-Sahalia (2005). In particular, as showed therein, the optimal sampling

frequency in the sense of minimizing the MSE of RVt(h) conditional on the volatility sample

path is approximately given by,

h∗t ≈ (IQt/(4V
2
u ))−1/3, (3.13)

where the integrated quarticity is defined by,

IQt =

∫ t

t−1

σ4
τdτ. (3.14)

However, instead of attempting to estimate the optimal frequency on a period-by-period

basis, we follow Bandi and Russell (2005a) in replacing the hard-to-estimate one-period

integrated quarticity by its unconditional expectation. In particular, we consider the

following unconditional counterpart to h∗t ,

h1 = (E[IQt]/(4V
2
u ))−1/3, (3.15)

which is relatively easy to estimate and implement in practice.

15



In addition, we also consider the sampling frequency which minimizes the unconditional

variance of RVt(h). To motivate this alternative choice of h, consider the R2 from the

regression of IVt+1 on a constant and RVt(h),

R2 =
Cov[IVt+1, RVt(h)]2

V ar[IVt]V ar[RVt(h)]
=

Cov[IVt+1, IVt]
2

V ar[IVt]V ar[RVt(h)]
(3.16)

where the last equality follows from the result in Proposition 3.1. Consequently, maximizing

this R2 is equivalent to minimizing the variance of V ar[RVt(h)], as first noted out by Ghysels

and Sinko (2006). To minimize this variance, we follow Jacod and Protter (1998), Barndorff-

Nielsen and Shephard (2002), and Meddahi (2002a), in approximating the variance of the

corresponding non-contaminated realized volatility measure by,

V ar[RV ∗
t (h)] ≈ V ar[IVt] + 2hE[IQt]. (3.17)

Substituting this expression into the equation for V ar[RVt(h)] in equation (3.3) immediately

yields,

V ar[RV ∗
t (h)] ≈ V ar[IVt] + 2hE[IQt] + 2V 2

u

(
2Ku

h
−Ku + 1 + 4

E[σ2
t ]

Vu

)
. (3.18)

Minimizing this expression with respect to h result in our second approximate optimal

sampling frequency,

h2 = (E[IQt]/(2V
2
u Ku))

−1/2. (3.19)

The relative size of h1 versus h2 obviously depends on the magnitude and distribution of the

noise term as well as the volatility-of-volatility, or E[IQt]. Importantly, however, both h1

and h2 may be estimated in a model-free fashion by using the higher order sample moments

of RVt(h) based on very finely sampled returns, or large values of h, to assess Vu and Ku,

along with the use of lower frequency returns to estimate E[IQt]; see Bandi and Russell

(2005a, 2005b) for further discussion and empirical analysis along these lines.

Table 2 to be inserted here.

Table 2 reports the approximate optimal sampling frequencies, as represented by h1 and

h2, for the same scenarios analyzed in Table 1, along with the resulting population R2’s.

Given that the frequency h2 by construction optimizes this value, it is not surprising that

the associated forecasts uniformly perform better than those derived from the values of

h1. However, the size of the discrepancy is striking given the implicit claim in the existing

literature that h1 should be a sensible guide for practical applications. In some cases, the R2

increases by over 25% and there are always a few percent to be gained by adhering to the

choice of h2 rather than h1. The reason for these findings is readily apparent as h2 invariably
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involves sampling much more frequently than h1. This feature reflects the pronounced right

skew in the distribution of the integrated quarticity which is the main determinant for the

discretization error of the daily realized volatility measure. In particular, a high (estimated)

value of the daily integrated quarticity is associated with a higher optimal sampling frequency

for that day. Given the right skewed distribution, the average optimal sampling frequency

is thus much lower than the optimal frequency for the highest realization of daily integrated

quarticity, but the latter days are associated with much larger measurement errors than

experienced for the average day. Hence, simply averaging the optimal choice of sampling

frequency across trading days, as in the derivation of h1, ignores the disproportional losses

suffered on the most volatile days. In contrast, h2 directly minimizes the average squared

error and thus adjusts the choice of sampling frequency to accommodate the excessive errors

incurred on the more extreme days. Direct inspection of the formulas for (the inverse of) h1

and h2 also shows that the latter implies a sampling frequency that is more responsive to

the size of the (unconditional) integrated quarticity than the former.

Of course, if the loss of sticking with a constant sampling frequency is large, one may be

tempted to develop a strategy involving the choice of a time-varying sampling frequency

depending on some initial estimate of the daily integrated quarticity. However, direct

comparison of the performance of the forecasts associated with h2 and moderate noise of 0.1%

in Table 2 and the forecasts derived from realized volatility in the absence of microstructure

noise in rows four through seven in Table 1 shows that the loss, in fact, is quite small. In

summary, for the loss function and models considered here, it is generally more important

to pin down a sensible sampling frequency than it is to vary the size of the intraday return

interval from day to day in response to the perceived variation in the degree of precision

of the realized volatility measure. This is obviously a comforting finding from a practical

perspective.

These results are further corroborated by Figure 1, which shows the R2 for the one-step-

ahead forecasts for IVt+1 based on RVt(h) for different values of h, including h1 and h2,

for each of the two reference models. For the lowest, yet realistic, λ = 0.1% noise level in

Table 2 the results for h2 prescribe sampling somewhere between every five and one minute.

This same result is readily apparent from the corresponding R2 lines for the 5- and 1-minute

frequencies, or h = 1/288 and h = 1/1440, in Figure 1, which are both close to the upper

most envelope for values of the noise in that general range. This, of course, is also entirely

consistent with the results reported in Table 1. Meanwhile, as the noise level increases

the preferred sampling frequency obviously also decreases, and the detrimental impact of

sampling too often at say the 1-minute level for values of λ in excess of say 0.25% is quite

striking. Also, directly in line with the more detailed discussion above, the R2’s for h1 are

systematically below those for h2, and often quite considerably so.
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3.4 Optimally Combining Intra Day Returns

The basic realized volatility estimator utilizes a flat weighting scheme in combining the

information in intraday returns. This is primarily motivated by the consistency property of

the measure for the underlying return variation. Once microstructure noise is present, the

basic measures become inconsistent even if the sparse sampling estimators only suffer from

minor finite sample biases. Nonetheless, these inconsistent measures still provide a sensible

basis for predicting the future return variation through the forecast regressions discussed in

the preceding sections, which automatically correct for any systematic (unconditional) bias

through the inclusion of a constant term. In terms of forecasting, the issue for the regressors

included on the right-hand-side is not the extent of any bias but rather the ability to capture

relevant variation in current realized volatility, which then translates into improved predictive

performance. These considerations suggest that we may want to further loosen the link

between the regressors and realized volatility measures. A natural step is to have the daily

return variation proxy be a more flexible function of the observed intraday squared returns.

Hence, we next contrast the predictive ability of optimally combined, or weighted, intraday

squared returns to the usual realized volatility measure. The former may, for an optimal

choice of the α(h) and βi(h) coefficients, be represented by the regression

IVt+1 = α(h) +

1/h∑
i=1

βi(h)(r
(h)
t−1+ih)

2 + ηt+1(h). (3.20)

While this regression is difficult to implement in practice because of the large number of

parameters, 1 + 1/h, we can readily compute its population counterpart within the ESV

setting from the results in Proposition 2.1. The corresponding numerical results are presented

in Table 3. Given the similarity in findings for Models 1 and 3 throughout and the arguably

excessive noise level associated with λ = 1% we have, for the sake of brevity and clarity,

eliminated Model 3 as well as the λ = 1% scenario from this and all future tables.

Table 3 to be inserted here.

Comparing the results to the ones in the previous tables, the very small gains obtained

by an optimal weighting scheme for the intraday squared returns are striking. Even if the

improvements are slightly larger for Model 2 than the other models, they remain sufficiently

small that they surely will be negated, in practice, through the need to estimate the many

weighting scheme coefficients a priori. In short, the realized volatility estimator is not overly

restrictive in terms of the weighting scheme applied to the series of intraday squared returns.

Of course, this does not imply that alternative regressors constructed from the series of

intraday returns may not outperform the realized volatility estimators in this regard. The

above regression only allows for a linear weighting of the intraday squared returns, whereas
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many microstructure robust estimators involve more complex combinations of the leads

and lags of the intraday returns.11 In the following section, we provide a more detailed

investigation of these approaches in terms of their forecast potential.

4 Robust Realized Volatility Based Forecasts

In the this section we investigate the extent to which simple reduced form forecasting models

based on alternative noise robust realized variation measures improve upon the forecasts

constructed on the basis of the traditional realized volatility measures as discussed above.

In particular, we will consider the average and two-scale estimators of Zhang, Mykland and

Aı̈t-Sahalia (2005), the first-order autocovariance adjusted estimator of Zhou (1996), and the

general kernel type estimator of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006).

4.1 Quadratic Form Representation

We begin our analysis by developing a unified quadratic form representation for each of

the different estimators. In particular, let h denote the shortest possible intra-day return

interval and assume, without loss of generality, that 1/h is an integer. As before, let 1/h

denote the actual number of equally spaced intraday returns used in the construction of a

specific (sparsely sampled) realized volatility estimator. It is convenient to write each such

measures as a quadratic function of the 1/h×1 vector of the highest frequency returns. That

is,

RMt(h) =
∑

1≤i,j≤1/h

qijr
(h)
t−1+ihr

(h)
t−1+jh = V Rt(h)> Q V Rt(h). (4.1)

where the (1/h× 1) vector V Rt(h) is defined by,

V Rt(h) = (r
(h)
t−1+h, r

(h)
t−1+2h, ..., r

(h)
t )>. (4.2)

In order to study the interaction of a particular realized volatility measure with other realized

volatility measures as well as current and future values of the integrated variance, we need

analytical expressions for the corresponding means, variances and covariances. The following

proposition provides these quantities.

Proposition 4.1 Let the discrete-time noise contaminated returns be determined by the

diffusion in (2.1) and the relationship in equation (2.8). Let RM t(h) and RM t(h) denote

11Likewise, the so-called MIDAS scheme of Ghysels, Santa-Clara and Valkanov (2006) utilizes nonlinear
functions of past intraday absolute returns in the construction of volatility forecasts. These quantities are
fully divorced from the notion of consistent or unbiased return variation measures, and as such also fall
outside the ESV analytical framework and techniques explored in the present paper.
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two realized volatility measures as defined in equation (4.1) with corresponding quadratic

form weights qij and qij, respectively. Also, let the integrated volatilities, IVt and IVt+1:t+m,

be defined by equations (2.2) and (2.3), respectively. Then,

E[RMt(h)] =
∑

1≤i,j≤1/h

qijE[r
(h)
t−1+ihr

(h)
t−1+jh], (4.3)

E[RMt(h)2] =
∑

1≤i,j,k,l≤1/h

qijqklE[r
(h)
t−1+ihr

(h)
t−1+jhr

(h)
t−1+khr

(h)
t−1+lh], (4.4)

E[RMt(h)RM t(h)] =
∑

1≤i,j,k,l≤1/h

qijqklE[r
(h)
t−1+ihr

(h)
t−1+jhr

(h)
t−1+khr

(h)
t−1+lh], (4.5)

E[IVtRMt(h)] =
∑

1≤i,j≤1/h

qijE[IVtr
(h)
t−1+ihr

(h)
t−1+jh], (4.6)

E[IVt+1:t+mRMt(h)] =
∑

1≤i,j≤1/h

qijE[IVt+1:t+mr
(h)
t−1+ihr

(h)
t−1+jh]. (4.7)

Proof: Follows directly from the quadratic form representation.

Closed form expressions for all of the expectations on the right-hand-sides of the expressions

in the proposition are immediately available from the results for the general ESV class of

models previously presented in Proposition 2.1.

In the following section we explicitly define the (1/h × 1/h) matrix Q for each of the

alternative realized volatility measures that we consider.

4.2 Robust RV Estimators

4.2.1 The “all” RV Estimator

The “all” estimator is equal to the standard realized volatility applied to the highest sampling

frequency possible, i.e., the summation of the most finely sampled squared returns. The

quadratic form representation is obviously,

RV all
t (h) ≡ RVt(h) =

1/h∑
i=1

r
(h)2
t−1+ih = V Rt(h)> Qall(h) V Rt(h), (4.8)

where

qall
ij (h) = 1 for i = j

= 0 otherwise.
(4.9)

Of course, this estimator is not robust to market microstructure noise and, in fact, from the

discussion above we would expect it to behave very poorly as an estimator for IVt for small

values of h. However, the RV all
t (h) estimator serves an important role in the definition of

some of the alternative estimators that we consider below.

20



4.2.2 The Sparse RV Estimator

The sparse realized volatility estimator similarly equals the traditional realized volatility

estimator RVt(h), where h is assumed to be a multiple of h; i.e. h = hnh where nh is an

integer. The quadratic representation for this estimator takes the form,

RV sparse
t (h) =

1/h∑
i=1

r
(h)2
t−1+ih = V Rt(h)> Qsparse(h) V Rt(h), (4.10)

where

qsparse
ij (h) = 1 for i = j,

= 1 for i 6= j, (s− 1)nh + 1 ≤ i, j ≤ snh, s = 1, ..., 1/h,

= 0 otherwise.

(4.11)

As discussed in the previous section, by choosing h sufficiently large, this estimator can

by rendered robust to the noise but it comes at the cost of decreasing the accuracy of

the resulting estimate for IVt. However, a new more desirable volatility estimator may be

obtained by combining the RV all
t (h) and different RV sparse

t (h) estimators.

4.2.3 The Average RV Estimator

Following Zhang, Mykland and Aı̈t-Sahalia (2005), we define the average realized volatility

estimator as the mean of several sparse estimators. In particular, define the nh distinct

sparse estimators initiated respectively at 0, h, 2h, ... (nh − 1)h, through the equation,

RV sparse
t (h, k) =

Nk∑
i=1

(r
(h)
t−1+kh+ih)

2, k = 0, ..., nh − 1, (4.12)

where as before h = hnh, and

Nk =
1

h
if k = 0, Nk =

1

h
− 1 if k = 1, ..., nh − 1. (4.13)

In terms of the quadratic form representation we have,

RV sparse
t (h, k) =

Nk∑
i=1

(r
(h)
t−1+kh+ih)

2 = V Rt(h)> Qsparse(h, k) V Rt(h),

where

qsparse
ij (h, k) = 1 for k + 1 ≤ i = j ≤ Nk + k,

= 1 for i 6= j, (s− 1)nh + 1 + k ≤ i, j ≤ snh + k, s = 1, ..., Nk/nh,

= 0 otherwise.

(4.14)
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The average estimator is now simply defined by the mean of these sparse estimators,

RV average
t (h) =

1

nh

nh−1∑

k=0

RV sparse
t (h, k) = V Rt(h)> Qsparse(h, k) V Rt(h), (4.15)

where

qaverage
ij (h) =

1

nh

nh−1∑

k=0

qsparse
ij (h, k). (4.16)

Whereas the standard sparse estimator only directly uses part of the sample, the average

estimator more effectively exploits the data by extending the same estimator to each subgrid

partition while retaining the associated robustness to noise for appropriately large values of

h.

4.2.4 Two-Scale RV Estimator

The two-scale estimator of Zhang, Mykland and Aı̈t-Sahalia (2005) is obtained by combining

the RV average
t (h) and RV all

t (h) estimators. Specifically, let

n̄ ≡ 1

nh

nh−1∑

k=0

Nk =
1

nh

(
1

h
+ (nh − 1)

(
1

h
− 1

))
=

1

h
− 1 +

h

h
. (4.17)

The two-scale estimator may then be expressed as,

RV TS
t (h) = RV average

t (h)− n̄hRV all
t = V Rt(h)> QTS(h) V Rt(h), (4.18)

where

qTS
ij (h) = qavgerage

ij (h)− n̄hqall
ij (h). (4.19)

In contrast to all of the previously defined estimators, the two-scale estimator is formally

consistent for IVt as h → 0 under the noise assumptions discussed in Section 2.

4.2.5 The Adjusted Two-Scale RV Estimator

A simple correction for the number of terms entering into each of the sums defining the

two-scale estimator suggests the following adjusted version,

RV TS−adj(h) = (1− n̄h)−1 RV (TS)(h) = V Rt(h)> QTS−Adj(h) V Rt(h), (4.20)

where

qTS−adj
ij (h) = (1− n̄h)−1 qTS

ij (h). (4.21)

More elaborate multi-scale estimators have also been considered by Zhang (2006). However,

the basic principle of these is similar to that of the two-scale estimators discussed above,

and we do not analyze any of these further here.
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4.2.6 Zhou’s RV Estimator

The estimator originally proposed by Zhou (1996) essentially involves a correction for first-

order serial correlation in the high-frequency returns. Specifically,

RV Zhou
t (h) =

1/h∑
i=1

r
(h)2
t−1+ih +

1/h∑
i=2

r
(h)
t−1+ihr

(h)
t−1+(i−1)h +

1/h−1∑
i=1

r
(h)
t−1+ihr

(h)
t−1+(i+1)h

= V Rt(h)> QZhou(h) V Rt(h),

(4.22)

where

qZhou
ij (h) = 1 for i = j

= 1 for |i− j| = 1, (s− 1)nh + 1 ≤ i, j ≤ snh, s = 1, ..., 1/h

= 0 otherwise.

(4.23)

Note that on defining Zhou’s estimator for the highest frequency h, the expression for the

components in QZhou(h) reduces to,

qZhou
ij (h) = 1 if i = j or |i− j| = 1,

= 0 otherwise.
(4.24)

This is the version of the estimator that we use in the numerical results reported on below.

This estimator has also previously been analyzed by Zumbach, Corsi and Trapletti (2002).

4.2.7 The Kernel-Based RV Estimator

The estimator discussed in the previous section may be seen as a special case of the general

kernel type estimators developed by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006).

Specifically, let K(·) and L denote the kernel and the bandwith, respectively. The kernel-

based realized volatility estimator is then defined by,

RV Kernel
t (K(·), L) = RVt(h) +

L∑

l=1

K

(
l − 1

L

)
CRVt(l, h), (4.25)

where

CRVt(l, h) =

1/h∑

i=1+l

r
(h)
t−1+ihr

(h)
t−1+(i−l)h +

1/h−l∑
i=1

r
(h)
t−1+ihr

(h)
t−1+(i+l)h (4.26)

This estimator is readily expressed in quadratic form as,

RV Kernel
t (K(·), L) = V Rt(h)> QKernel(K(·), L) V Rt(h), (4.27)

where

qKernel
ij (K(·), L) = 1 for i = j

= K

(
l − 1

L

)
for |i− j| = l,

= 0 otherwise.

(4.28)
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In the specific calculations below, we use the modified Tukey-Hanning kernel advocated by

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006),

K(x) = (1 − cosπ(1− x)2)/2. (4.29)

However, the estimator that we actually use differs slightly from theirs, which in contrast to

equation (4.26) adds returns outside the [t− 1, t] time interval,

CRVt(l, h) =

1/h∑
i=1

r
(h)
t−1+ihr

(h)
t−1+(i−l)h +

1/h∑
i=1

r
(h)
t−1+ihr

(h)
t−1+(i+l)h.

Since our analysis is explicitly focused on forecasting, we purposely do not want to include

any returns beyond time t in the construction of the realized volatility for the [t − 1, t]

time-interval. Of course, this difference does not have any impact on the consistency and

asymptotic distribution of the estimator. Also, we did not implement the optimal bandwidth

selection procedure developed by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006),

but instead simply fixed L = h/h − 1, corresponding to the bandwidth implicitly used for

the two-scale estimators. It is possible that alternative bandwidth choices might improve

upon the performance measures reported below. Similarly, other kernels might work better

in a forecasting context. We will not explore these issues further here, but our general

analytical framework readily allows for such direct comparisons of different kernel-based

realized volatility estimators across both kernel and bandwidth choices.

This completes our discussion of the robust realized volatility estimators which we will

consider in the construction of the forecasts. However, before turning to a discussion of

the forecast performance, we initially present, in the next section, a brief summary of the

distributional characteristics of the different measures.

4.3 Distribution of Robust RV Measures

The analytical representation of the various cross-moments among the class of return

variation estimators for models within the ESV class renders it feasible to directly compare

their properties along various dimensions, even in the presence of noise. We continue to

focus on Model 1 and 2 for a moderate as well as somewhat higher level of noise.

Table 4 provides the mean, variance and mean-squared-error for the various measures of

integrated variance. The “all” estimator in principle entails using the about highest possible

sampling frequency. We here settle on h = 1/1440, or 1-minute sampling in a 24-hour

market, as a sensible choice for the shortest return interval. However, we also note that

since the noise is calibrated to the findings in Hansen and Lunde (2006) for the equity

market, the sampling may more appropriately be thought of as producing 15-second returns.
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As predicted, the associated “all” estimator is badly inflated by the effect of microstructure

noise. Even for moderate level of noise, the estimator on average attains a value almost

four times as large as the underlying integrated variance. For the larger noise level, the bias

produces an average estimates that is more than tenfold the true average return variation.

In essence, as a direct estimator for the integrated variance, the measure is useless. Moving

on to the sparse estimator based on h = 1/288, corresponding to 5-minute sampling in a

24-hour market, or 1-minute for a six hour equity trading day, we continue to see a significant

upward bias in the associated realized volatility measure, although it has dropped sharply

compared to the “all” estimator. A further reduction in sampling frequency would result

in a less biased estimator and this may certainly be a sensible strategy in practice. For

example, one could sample 78 times per day, corresponding to the relatively popular choice

of 5-minute sampling for equity return series. Nonetheless, we retain the high underlying

sampling frequency for the sparse estimator to explore more cleanly the implications of the

noise-induced bias for predictive ability of these measures compared to the largely unbiased

and robust measures discussed below. The last estimator constructed directly from the

standard realized volatility measure is the average estimator appearing in the third row.

The impact on the bias is negligible but, as expected, the averaging reduces the sampling

variability associated with the discretization error, and in turn provides a small improvement

in the overall mean-squared error compared to the regular sparse estimator.

Moving on to the estimators constructed with a view towards robustness to noise, we

first consider the basic two-scale estimator. It shows an appreciable downward average bias

in the associated realized variation estimates. The size of this bias is partially an artifact of

the choice of sampling frequency for the sparse estimator relative to the “all” estimator, and

would shrink if the sparse estimator is implemented for a lower sampling frequency. However,

this issue is not an inherent problem for the approach as it is readily fixed through the simple

multiplicative adjustment factor invoked by the adjusted two-scale estimator. In fact, the

latter estimator is close to unbiased. Finally, the Zhou estimator, specifically designed for

the type of noise analyzed here, and the kernel estimator are also practically unbiased. It is

also interesting to note that all estimators, except for the (unadjusted) two-scale estimator,

have about the same variance in the top panel, implying that the noise has little impact

on the sampling variability of the estimators but instead predominantly affects the levels of

the various measures differentially. Of course, this feature is not invariant to the level of

the noise as the variances are much more dispersed in the lower panel, reflecting the noisier

environment in effect there. In fact, the average estimator, the adjusted two-scale estimator

and the kernel estimator are generally more stable, while the Zhou and sparse estimators

appear to perform much worse in this regard.

Table 4 to be inserted here.
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Table 5 explores how correlated the various estimates of return variation are. Since the

actual integrated variance is also included in the table, this provides a first impression of

the potential forecast performance of each measure, as a high correlation with the current

volatility level, everything else equal, should translate into a good forecast. For the moderate

noise level, we find the measures separating into two distinct groups. The “all”, sparse and

Zhou estimators fail to match the performance of the remainder in terms of relatively close

replication of the ideal integrated variance measure. It is noteworthy that the average

estimator mimics the variation of the underlying return variation quite well in spite of

its sizeable bias. On the other hand, the Zhou estimator may be close to unbiased but

the increased sampling variability arising from adding two covariance terms to the sparse

estimator to bias-correct may well prove costly in terms of predictive accuracy which is an

issue we explore in the following sections.

For the considerably noisier environment with λ = 0.5% the discrepancies grow much

larger between the two groups, indicating the importance of using an appropriate estimator

that reflect the characteristics of the market setting. Moreover, within the poorer performing

group, we now find the Zhou estimator looking decidedly less attractive then the sparse

estimator. Another notable feature is that the kernel estimator starts performing less well

than the alternatives among the better performing measures. Since the kernel estimator

may be calibrated to closely replicate the two-scale estimator this simply reflects a less

than optimal implementation of the kernel estimator within this noisier setting. It serves

as a reminder that non-trivial performance gains may be achieved through careful choice of

bandwidth (and kernel) for the various estimators. However, we do not pursue this issue

any further given the relatively positive findings we are able to report in terms of general

forecast performance in the following section.

Table 5 to be inserted here.

Our final summary comparison of the alternative return variation measures is provided in

Table 6, which reports the population autocorrelations. Given the strong serial correlation of

the underlying integrated variance series in Models 1 and 2, one should expect the estimators

that more closely mimic this series to also exhibit a higher degree of persistence than the

inherently noisier measures of return variation. This is exactly what the table shows. The

ranking in terms of correlation with the integrated variance measure from Table 5 is preserved

in terms of the relative strength of persistence reported in Table 6.

Table 6 to be inserted here.
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4.4 True Forecasting Performance of Robust RV Measures

We now compare the actual forecast performance of the optimal linear forecasts constructed

from the alternative return variation measures. In a direct extension of the previous findings

for the regular realized volatility measures in Table 1, combining the results from Propositions

2.1 and 4.1, it is possible to analytically determine the true underlying population R2’s.

Given the wide variety of alternatives, we focus on only one version of each estimator.

Also, we do not claim that the results represent the best possible implementation for any

of the procedures, e.g., the sparse estimator may be improved by determining the optimal

sampling frequency rather than simply relying on h = 1/288, for the more noisy setting

the use of additional lags may provide further benefits, the two-scale estimator may well

be improved through different sampling frequencies for the “all” and sparse estimators,

as already previously noted, the kernel estimator can surely be improved through a more

suitable bandwidth choice. Nonetheless, the findings illustrate the power of the ESV

framework to summarize the performance of any specific forecasting design and compare

it to relevant alternatives. Moreover, the results reported below are sufficiently impressive

compared to the inherent predictability of the realized variation for each of the models,

established in the top three rows of Table 1, that further experimentation to provide a

marginal improvement in predictability will not alter the qualitative conclusions.

Table 7 to be inserted here.

Table 7 summarizes our results across horizons corresponding to an approximate daily,

weekly and monthly period. Given the comparative properties of the estimators described

in the previous section, the outcome is not particularly surprising. In all cases, the measures

most highly correlated with the true underlying return variation also provide the best basis

for forecasts. Hence, the forecasts generated by the average estimator are uniformly best,

but they are barely different from the forecasts based on the two-scale estimators and, for

the moderate noise scenario, the kernel estimator. Perhaps more striking is the relatively

strong performance of the forecasts associated with the sparse estimator within the moderate

noise setting. Likewise, the fall-off for any of the remaining forecasts is not dramatic under

the realistic moderate noise setting. In fact, comparing the R2 values with the degree of

inherent predictability in these models and what may be achieved with feasible estimators

under ideal noise-free conditions, as reported in Table 1, the performance of the entire range

of alternative forecasts based on sensible realized variation measures is quite impressive.

Of course, the performance for some of these forecasts deteriorates significantly when the

noise level increases and there is an obvious gain to construct forecasts from appropriate

integrated variance estimates in this situation. Nonetheless, the feasible gains for the sparse

estimator, obtained by reducing the sampling frequency to around h = 1/96 and exploiting
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lagged measures in the procedure, will again render forecasts based on the simpler estimator

relatively competitive. Even so, the evidence suggests that the comparatively simple average

estimator of daily return variation is an excellent starting point for volatility forecasting.

The superior performance of the average estimator may, of course, be an artifact of the

i.i.d. noise assumption, although we still expect it to be a good candidate for the dependent

noise case as well. The main difficulty in exploring this conjecture in a more systematic

manner is that there is currently little consensus in the literature regarding the type of

dependence in the noise process. It is also evident from prior research that the dependence

structure is very different across intraday return series constructed from transaction prices

versus bid-ask midpoint quotes, see, e.g., Hansen and Lunde (2006). On the other hand, once

a tractable representation for the noise structure has been provided, the current framework

offers a viable approach for exploring this scenario as well, as we briefly discuss below in

Section 5.

4.5 Practically Feasible Forecasting Performance of Robust RV
Measures

The integrated volatility appearing on the left-hand-side in the ideal Mincer-Zarnowitz

regressions discussed in the previous section is, of course, latent. In practice the integrated

volatility is typically replaced by some realized volatility measure, as in,

RM t+1:t+m(h) = a + bRMt(h) + ηt+m, (4.30)

where RM t(h) and RM t(h) denote two possibly different realized measures, resulting in the

regression R2,

R2 =
(Cov[RM t+1:t+m(h), RMt(h)])2

V ar[RM t+1:t+m(h)]V ar[RMt(h)]
. (4.31)

The following proposition provides closed form expressions for the requisite covariance term

which, when combined with the previous expressions for the variances, may be used in

numerically calculating the R2.

Proposition 4.2 Let the discrete-time noise contaminated returns be determined by an ESV

model and the relationship in equation (2.8). Let RM t(h) and RM t(h) denote two realized

volatility measures as defined in equation (4.1) with corresponding quadratic form weights qij

and qij, respectively. Then,

Cov[RM t+1(h), RMt(h)] =

1/h∑
i=1

1/h∑

k=1

qiiqkk

(
p∑

n=1

a2
n

λ2
n

(1− exp(λnh))2 exp(−λn(1 + (i− k − 1)h))

)

+ q11qh−1h−1(Ku − 1)V 2
u ,

(4.32)
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and for m > 1,

Cov[RM t+m(h), RMt(h)] =

1/h∑
i=1

1/h∑

k=1

qiiqkk

(
p∑

n=1

a2
n

λ2
n

(1− exp(λnh))2 exp(−λn(m + (i− k − 1)h))

)
.

(4.33)

Proof: See Appendix II.

Exploiting the above results along with the previous techniques for analytic computation

of the relevant R2 values, we now provide the actual feasible performance measures that,

ideally, may be obtained from the various forecast procedures discussed in the previous

section. The findings are summarized in Table 8. We only report the relevant figures

for the one-step-ahead forecasts due to the increased number of cross-comparisons that we

provide.12 As before, the relative rankings are preserved over the longer horizons. Table 8

conveys the now familiar picture. The average estimator dominates uniformly across all the

feasible future realized return variation measures explored as right-hand-side variables in the

predictive regressions. Moreover, the rankings from before are preserved everywhere across

the alterative return generating processes (models) and noise levels. It is also evident that

the use of more precise ex-post estimators for the integrated variance improves the measured

degree of predictability and allows the regressions to convey in a reasonable sense the true

underlying relationship as captured in Table 7. As a rather extreme example, consider Model

2 under the higher λ = 0.5% noise level. Using the average estimator as the basis for the

forecast and as the ex-post proxy for future return variation realizations, one obtains an

R2 of 41% compared to the actual one-step-ahead R2 of about 53% given in Table 7. In

contrast, exploiting the Zhou estimator in both capacities instead results in an R2 of less

than 4%. Obviously, the specific figures are dependent on the model specification and noise

structure assumed here, but it illustrates how the issue of observed versus underlying true

predictability is crucially important in properly interpreting empirical studies in this area.13

Table 8 to be inserted here.

5 Extensions

All results generated so far are based on a number of simplifying assumption about the

baseline diffusion in equation (2.1) and the structure of the noise in equation (2.8). In

12Also note that for the feasible regressions analyzed here minimizing the variance of the explanatory robust
measure is not equivalent to maximizing the R2 in the Mincer-Zarnowitz regression, as the numerator in the
R2 will also depend on h, and Cov[IVt+1, RMt(h)] 6= Cov[IVt+1, IVt] for qii 6= 1.

13As previously noted, ABM (2005) provide a technique for more formally converting the observed degree
of predictability into an estimate of the higher true predictability through a fairly simple and practical
procedure.
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this section we point towards potential directions for extensions which relax these basic

assumptions but retain the tractable analytical framework. Specifically, we provide, in turn,

suggestions for ways to accommodate correlated noise processes, a leverage effect, and a drift

term.

5.1 Correlated Noise

Our previous findings rest on the assumption that the noise in the observed price process

induced by the market microstructure frictions result in an i.i.d. error term. However, the

empirical evidence reported in Hansen and Lunde (2006) suggests that the noise may in fact

be serially correlated over time. This recognition also motivates the estimator developed by

Aı̈t-Sahalia, Mykland and Zhang (2005b) which is designed to be consistent in the presence

of serially correlated noise. Moreover, the kernel approach of Barndorff-Nielsen, Hansen,

Lunde and Shephard (2006) also explicitly allows for dependent noise structures.

One approach to accommodate a more general noise structure is to assume that the error

in the observed price process vis-a-vis the true latent price consists of the previously analyzed

i.i.d. component as well as a stationary continuous-time serially correlated process of finite

variation. Since the quadratic variation of the i.i.d. process is unbounded, the traditional

realized volatility estimator will necessarily be inconsistent in this setting. However, the

additional serially correlated components further complicate the analysis. In particular,

suppose that the second component, ũt, is determined by the process,

ũt =

∫ t

−∞
A(t− u)dW̃u, (5.1)

where W̃u denotes a standard Brownian motion, assumed to be independent of the other

stochastic processes in the system, i.e., the Brownian motions driving the price and volatility

as well as the i.i.d. noise, and A(·) denotes a bounded real function in the sense that∫∞
0

A2(u)du < ∞.14 The modified version of the discrete-time return equation (2.8) then

takes the form,

r
(h)
t = r

∗(h)
t + e

(h)
t + ẽ

(h)
t , (5.2)

where

ẽ
(h)
t ≡ ũt − ũt−h. (5.3)

It is readily apparent that unless A(·) is identically equal to zero, the discretely observed

returns will no longer adhere to a simple MA(1) correlation structure. However, following

14The Ornstein-Uhlenbeck (OU) process considered in Aı̈t-Sahalia, Mykland and Zhang (2005a), dũt =
−κ̃ũtdt + σ̃dW̃t, corresponds to the special case A(s) = σ̃ exp(−κ̃s).
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Feunou, Garcia, Meddahi, Tedongap (2006) the results in Proposition 2.1 may be extended

to allow for non-trivial A(·) functions and general ũt error structures. In particular, one may

show, for i ≥ j,

V ar[r
(h)
t−1+ih] = a0h + 2Vu +

∫ h

0

A2(u)du +

∫ ∞

h

[A(u)− A(u− h)]2du,

Cov[r
(h)
t−1+ih, r

(h)
t−1+jh] = − Vuδi−j,1

+

∫ ∞

0

(2A(u + (i− j)h)− A(u + (i− j + 1)h)− A(u + (i− j − 1)h))A(u)du.

We do not develop these ideas further here, but the formulas given above, along with related

expressions for the higher order moments, immediately set the set stage for investigating

(analytically) the impact of quite general error structures for the different realized volatility

measures and forecast regressions analyzed in the preceding sections.

5.2 Leverage Effect

Another simplifying assumption maintained in all of the analytical and numerical results

discussed above concerns the absence of any leverage effect; i.e., the assumption that the

Brownian motions driving the price and volatility processes are independent. Although this

may be a viable assumption for some financial asset returns, notably foreign exchange, it is

arguably not realistic for other series, e.g., equity index returns. Meanwhile, as shown in

Meddahi (2002b) the ESV setting may be extended to allow for the derivation of the relevant

moments of the non-contaminated returns, r
∗(h)
t−1+ih, in the presence of a non-zero leverage

effect. Merely to illustrate, we note that the unconditional fourth moment in this case may

be expressed as,

E[(r
∗(h)
t−1+ih)

4] = 3a2
0h

2 + 6

p∑
n=1

a2
n

λ2
n

(exp(−λnh) + λnh− 1) + 12ρ2C(h),

where the leverage coefficient, ρ, refers to the (instantaneous) correlation between the

Brownian motions driving the price and volatility process, and the C(h) function is explicitly

defined in Meddahi (2002b). Again, this formula, along with related expressions for other

conditional and unconditional moments of r
∗(h)
t−1+ih, could be adapted in exploring the impact

of leverage. However, we will not pursue these results any further here.

5.3 Drift

All of our previous results rules out any drift in the latent non-contaminated price process.

This simplifying assumption is unlikely to materially affect any of the results related to

the daily, weekly and monthly realized volatility measures and forecasts discussed above.
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Nonetheless, the aforementioned extensions of the basic ESV setup developed in Meddahi

(2000b) readily allows for a non-zero constant drift. For instance, including both leverage

and a constant drift term, µdt, the fourth unconditional moment takes the form

E[(r
∗(h)
t−1+ih)

4] = 3a2
0h

2 + 6

p∑
n=1

a2
n

λ2
n

(exp(−λnh) + λnh− 1) + 12ρ2C(h)

+ µ4h4 + 6µ2a0h
2 + 12µρh

p∑
n=1

anen,0

λn

(exp(−λnh) + λnh− 1),

where en,0 is again explicitly defined in Meddahi (2002b).

Other generalizations of our basic framework are, of course, possible. However, we believe

the most interesting extensions from a practical empirical perspective relate to the impact

of correlated noise and leverage effects. The suggested representations along with the tools

developed in the preceding sections provide a starting point for a direct analytical exploration

and quantification of such effects in future work.

6 Conclusion

This paper extends existing analytic methods to the construction and assessment of volatility

forecasts for continuous-time diffusion models to the empirically important case of market

microstructure noise. The procedures work generally within the broad ESV class of models,

which includes most of the popular volatility diffusion in current use, and may be adapted

to accommodate many other empirically relevant features. We illustrate the techniques by

applying them to a few representative specifications for which we compare the performance

of feasible linear forecasts constructed from alternative realized variation measures in the

presence of varying degrees of noise with the theoretical upper bounds for the degree of

predictability based on optimal (infeasible) forecasts. Under realistic scenarios, we find that

it is feasible to produce quite precise forecasts but many aspects of the implementation of

the forecasting schemes require careful evaluation of the underlying market structure and

data availability in order to design the most effective procedures.

Given the enormous diversity in potential models, sampling frequencies, levels of

microstructure noise, realized variation estimators and potential forecasting schemes, the

costs associated with careful and comprehensive simulation studies of the issues pursued

here are quite formidable. Instead, the analytical tools developed here enables us to study

the relevant issues succinctly across many alternative designs within a coherent framework,

thus providing accurate assessments of general performance and robustness. As such, we

expect the approach to provide many additional useful insights in future work concerning

the design of alternative return variation measures and their practical application in volatility

forecasting.
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Appendix I: ESV Representations
This appendix provides a brief summary of the ESV representation for each of the three benchmark volatility
models; more detailed discussions are available in Meddahi (2001) and ABM (2004).

Model M1 - GARCH Diffusion The GARCH diffusion in equation (2.22) is readily expressed as an
ESV model by defining the state variable,

dft = κ(θ − ft)dt + σftdW
(2)
t ,

and the function g(x) = x. Assuming that the variance of σ2
t is finite, it follows that

σ2
t = a0 + a1P1(ft),

where a0 = θ, a1 = θ
√

ψ/(1− ψ), ψ = σ2/2κ, and the first eigenfunction for ft is affine,

P1(x) =
√

1− ψ

θ
√

ψ
(x− θ),

with corresponding eigenvalue λ1 = κ.

Model M2 - Two-Factor Affine The two-factor affine model in (2.23) may be written in the form of an
ESV model by defining the state variables,

dfj,t = κj(αj + 1− fj,t)dt +
√

2κj

√
fj,tdW

(j+1)
t , j = 1, 2,

where αj = (2κjθj/η2
j )− 1, and the fj,t’s are related to the σj,t’s by,

fj,t =
2κj

η2
j

σ2
j,t, j = 1, 2.

The eigenfunctions associated with fj,t are given by the Laguerre polynomials L
(αj)
n (fj,t), n = 0, 1, ..., with

corresponding eigenvalues λj,n = κjn. Moreover,

σ2
j,t = ãj,0 + ãj,1L

(αj)
1 (fj,t)

where ãj,0 = θj and ãj,1 = −√
θjηj/

√
2κj , so that,

σ2
t = a0,0 + a1,0L

(α1)
1 (f1,t) + a0,1L

(α2)
1 (f2,t),

with a0,0 = ã1,0 + ã2,0, a1,0 = ã1,1 and a0,1 = ã2,1.

Model M3 - Log-Normal Diffusion The log-normal diffusion in (2.24) may be expressed in the form
of an ESV model by defining the state variable,

dft = −κftdt +
√

2κ dW
(2)
t ,

where,

ft =
√

2κ

σ
(log σ2

t − θ).

The eigenfunctions associated with ft are given by the Hermite polynomials Hn(ft), n = 0, 1, ..., with
corresponding eigenvalues λn = κn, so that,

σ2
t =

∞∑
n=0

anHn(ft),

where,

an = exp(θ +
σ2

4κ
)
(σ/

√
2κ)n

√
n!

.
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Appendix II: Technical Proofs
Proof of Proposition 2.1. In the absence of any drift, E[r∗(h)

t+ih] = 0 and V ar[r∗(h)
t+ih] = a0h (see, e.g.,

Meddahi, 2002b). Now give the i.i.d. assumption for the noise ut, (2.15) and (2.16) follws readily from (2.8).
Likewise, the non-contaminated returns r

∗(h)
t+ih are uncorrelated (see, e.g., Meddahi, 2002b), while e

(h)
t is an

MA(1) process. Hence, the observed returns r
(h)
t+ih will also follow an MA(1) process with

Cov[r∗(h)
t+ih, r

∗(h)
t+(i−1)h] = Cov[e(h)

t+ih, e
(h)
t+(i−1)h] = −V ar[ut] = −Vu,

i.e., (2.17). We will now prove (2.18). As a short-hand notation, let ri, r∗i , and ei refer to r
(h)
t+ih, r

∗(h)
t+ih, and

e
(h)
t+ih. We then have

rirjrkrl = (r∗i + ei)(r∗j + ej)(r∗k + ek)(r∗l + el)

= r∗i r∗j r∗kr∗l + r∗i r∗j ekr∗l + r∗i r∗j r∗kel + r∗i r∗j ekel + r∗i ejr
∗
kr∗l + r∗i ejekr∗l + r∗i ejr

∗
kel + r∗i ejekel

+ eir
∗
j r∗kr∗l + eir

∗
j ekr∗l + eir

∗
j r∗kel + eir

∗
j ekel + eiejr

∗
kr∗l + eiejekr∗l + eiejr

∗
kel + eiejekel.

The returns are independent with the noise. In addition, the mean of the noise and returns are zero. This
implies that quantities like E[r∗i r∗j ekr∗l ] and E[r∗i ejekel] equal zero. Therefore,

E[rirjrkrl] = E[r∗i r∗j r∗kr∗l ] + E[r∗i r∗j ]E[ekel] + E[r∗i r∗l ]E[ejek] + E[r∗i r∗k]E[ejel]

+ E[eiek]E[r∗j r∗l ] + E[eiel]E[r∗j r∗k] + E[eiej ]E[r∗kr∗l ] + E[eiejekel].
(A.1)

We will now compute the elements that appear in (A.1). We start with the first term. Given the path of
the volatility, the returns are independent. Therefore (see, e.g., Meddahi, 2002b),

E[r∗i r∗j r∗kr∗l ] = E[(r∗i )4] if i = j = k = l,

= Cov[(r∗(h)
t−1+ih)2, (r∗(h)

t−1+kh)2] + (E[(r∗i )2])2 if i = j > k = l,

= 0 otherwise.

Equations (3.7) and (3.10) in Meddahi (2002b) now imply

E[r∗i r∗j r∗kr∗l ] = 3a2
0h

2 + 6
p∑

i=1

a2
i

λ2
i

[−1 + λih + exp(−λih)] if i = j = k = l,

=
p∑

n=1

a2
n

λ2
n

[1− exp(−λkh)]2 exp(−λn(i− k − 1)h) + a2
0h

2 if i = j > k = l,

= 0 otherwise.

(A.2)

To compute the last term in (A.1) note that

eiejekel = (ui − ui−1)(uj − uj−1)(uk − uk−1)(ul − ul−1)
= uiujukul − uiujukul−1 − uiujuk−1ul + uiujuk−1ul−1

− uiuj−1ukul + uiuj−1ukul−1 + uiuj−1uk−1ul − uiuj−1uk−1ul−1

− ui−1ujukul + ui−1ujukul−1 + ui−1ujuk−1ul − ui−1ujuk−1ul−1

+ ui−1uj−1ukul − ui−1uj−1ukul−1 − ui−1uj−1uk−1ul + ui−1uj−1uk−1ul−1.

Now, using the i.i.d. structure of the ut process it follows that

E[eiejekel] = 2V 2
u (Ku + 3) if i = j = k = l,

= −V 2
u (Ku + 3) if i = j = k = l + 1 or i = j + 1 = k + 1 = l + 1,

= V 2
u (Ku + 3) if i = j = k + 1 = l + 1,

= 4V 2
u if i = j > k + 1, k = l,

= 2V 2
u if i = j + 1, j = k = l + 1,

= −2V 2
u if i = j ≥ k + 1, k = l + 1 or i = j + 1, j ≥ k + 1, k = l,

= V 2
u if i = j + 1, j ≥ k + 1, k = l + 1,

= 0 otherwise.

(A.3)
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Denote the remaining terms that appear in ((A.1)),

Aijkl ≡ E[r∗i r∗j ]E[ekel] + E[r∗i r∗l ]E[ejek] + E[r∗i r∗k]E[ejel]

+ E[eiek]E[r∗j r∗l ] + E[eiel]E[r∗j r∗k] + E[eiej ]E[r∗kr∗l ].

From above

E[r∗i r∗j ] = δi,jE[(r∗i )2] = δi,ja0h, and E[eiej ] = δi,jE[e2
i ]− δ|i−j|,1Vu = 2δi,jVu − δ|i−j|,1Vu.

Therefore,

Aijkl = 6E[(r∗i )2]E[e2
i ] = 12a0Vuh if i = j = k = l,

= 3E[(r∗i )2]E[eiei−1] = −3a0Vuh if i = j = k = l + 1 or i = j + 1 = k + 1 = l + 1,

= 2E[(r∗i )2]E[e2
k] = 4a0Vuh if i = j = k + 1 = l + 1,

= 2E[(r∗i )2]E[e2
k] = 4a0Vuh if i = j > k + 1, k = l,

= 0 if i = j + 1, j = k = l + 1,

= E[(r∗i )2]E[ekek−1] = −a0Vuh if i = j ≥ k + 1, k = l + 1 or i = j + 1, j ≥ k + 1, k = l,

= 0 if i = j + 1, j ≥ k + 1, k = l + 1,

= 0 otherwise.

(A.4)

Now combining (A.2), (A.3), and (A.4) results (2.18).
The proof of (2.19) proceeds similarly to one for (2.18). The main difference stems from the fact that

t− 1+ m+ jh > t− 1+ kh, so that several terms that appear in (2.18) are now zero. In particular, by using
the MA(1) structure of e

(h)
t , it follows that

Cov[r(h)
t−1+m+ihr

(h)
t−1+m+jh, r

(h)
t−1+khr

(h)
t−1+lh]

= Cov[r∗(h)
t−1+m+ihr

∗(h)
t−1+m+jh, r

∗(h)
t−1+khr

∗(h)
t−1+lh] + Cov[e(h)

t−1+m+ihe
(h)
t−1+m+jh, e

(h)
t−1+khe

(h)
t−1+lh]

= δi,jδk,lCov[(r∗(h)
t−1+m+ih)2, (r∗(h)

t−1+kh)2] + δm,1δi,jδk,lδi,1δk,1/hCov[e(h)
t+he

(h)
t+h, e

(h)
t e

(h)
t ]

= δi,jδk,lCov

[∫ t−1+m+ih

t−1+m+(i−1)h

σ2
udu,

∫ t−1+kh

t−1+(k−1)h

σ2
udu

]
+ δm,1δi,jδk,lδi,1δk,1/hCov[u2

t , u
2
t ]

= δi,jδk,l

p∑
n=1

a2
n

λ2
n

[1− exp(−λnh)]2 exp(−λn(m + (i− k − 1)h)) + δm,1δi,jδk,lδi,1δk,1/h(Ku − 1)V 2
u ,

where the first part in the last equation is a consequence of Lemma A.1 given below. The last equation
achieves the proof of (2.19).
Lemma A.1. Let a, b, c, d be real numbers such that a ≤ b ≤ c ≤ d. Then, for any h > 0,

Cov

[∫ b

a

σ2
udu,

∫ d

c

σ2
udu

]
=

p∑
n=1

a2
n

λ2
n

[1− exp(−λn(b− a))][1− exp(−λn(d− c))] exp(−λn(c− b)). (A.5)

Proof of Lemma A.1. We have

Cov

[∫ b

a

σ2
udu,

∫ d

c

σ2
udu

]
=

∑

1≤n,m≤p

anamE

[∫ b

a

Pn(fu)du

∫ d

c

Pm(fu)du

]

=
∑

1≤n,m≤p

anamE

[∫ b

a

Pn(fu)du

∫ d

c

E[Pm(fu) | fτ , τ ≤ b]du

]

=
∑

1≤n,m≤p

anam

∫ b

a

E[Pn(fu)Pm(fb)]du

∫ d

c

exp(−λm(u− b))du

=
∑

1≤n,m≤p

anam

∫ b

a

exp(−λn(b− u))δn,mdu
[1− exp(−λm(d− c))]

λm
exp(−λm(c− b))

=
∑

1≤n,m≤p

anamδn,m
[1− exp(−λn(b− a))]

λn

[1− exp(−λm(d− c))]
λm

exp(−λn(c− b)),
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i.e., (A.5).
In order to prove (2.20) note that the independence of the noise with the volatility process implies that

E[IVtr
(h)
t−1+ihr

(h)
t−1+jh] = E[IVtr

∗(h)
t−1+ihr

∗(h)
t−1+jh] + E[IVt]E[e(h)

t−1+ihe
(h)
t−1+jh]

= E[IVtr
∗(h)
t−1+ihr

∗(h)
t−1+jh] + a0(2Vuδi,j − Vuδ|i−j|,1).

(A.6)

We will now prove

E[IVtr
∗(h)
t−1+ihr

∗(h)
t−1+jh] =

p∑
n=1

a2
n

λ2
n

[2− exp(−λn(i− 1)h)− exp(−λn(1− ih))][1− exp(−λnh)]

+ a2
0h + 2

p∑
n=1

a2
n

λ2
n

[exp(−λnh) + λnh− 1] if i = j,

= 0 otherwise,

(A.7)

which, combined with (A.6), leads to (2.20).
Given the path of the volatility, the returns are independent. Hence,

E[IVtr
∗(h)
t−1+ihr

∗(h)
t−1+jh] = E[IVtE[r∗(h)

t−1+ihr
∗(h)
t−1+jh | στ , τ ≤ t]] = δi,jE

[
IVt

∫ t−1+ih

t−1+(i−1)h

σ2
udu

]
. (A.8)

On the other hand, Lemma A.1 implies

E

[
IVt

∫ t−1+ih

t−1+(i−1)h

σ2
udu

]
= E

[(∫ t−1+(i−1)h

t−1

σ2
udu +

∫ t−1+ih

t−1+(i−1)h

σ2
udu +

∫ t

t−1+ih

σ2
udu

)∫ t−1+ih

t−1+(i−1)h

σ2
udu

]

=
p∑

n=1

a2
n

λ2
n

[2− exp(−λn(i− 1)h)− exp(−λn(1− ih))][1− exp(−λnh)] + a2
0h(1− h)

+ E




(∫ t−1+ih

t−1+(i−1)h

σ2
udu

)2

 .

Equations (12) and (15) in ABM (2004) imply

E




(∫ t−1+ih

t−1+(i−1)h

σ2
udu.

)2

 = a2

0h
2 + 2

p∑
n=1

a2
n

λ2
n

[exp(−λnh) + λnh− 1].

Consequently,

E

[
IVt

∫ t−1+ih

t−1+(i−1)h

σ2
udu

]
=

p∑
n=1

a2
n

λ2
n

[2− exp(−λn(i− 1)h)− exp(−λn(1− ih))][1− exp(−λnh)]

+ a2
0h + 2

p∑
n=1

a2
n

λ2
n

[exp(−λnh) + λnh− 1].

(A.9)

Combining (A.8) and (A.9) results in (A.7), which completes the proof of (2.20).
Similar arguments used in the proof of (2.20) lead to

E[IVt+1:t+mr
(h)
t−1+ihr

(h)
t−1+jh] = E[IVt+1:t+mr

∗(h)
t−1+ihr

∗(h)
t−1+jh] + E[IVt+1:t+m]E[e(h)

t−1+ihe
(h)
t−1+jh]

= δi,jE

[
IVt+1:t+m

∫ t−1+ih

t−1+(i−1)h

σ2
udu

]
+ a0m(2Vuδi,j − Vuδ|i−j|,1).

(A.10)

By using Lemma A.1 it follows that

E

[
IVt+1:t+m

∫ t−1+ih

t−1+(i−1)h

σ2
udu

]
= a2

0hm +
p∑

i=1

a2
i

λ2
i

[1− exp(−λnh)][1− exp(−λnm)] exp(−λn(1− ih)),
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(A.11)

which, combined with (A.10), lead to (2.21).¥
Proof of Proposition 3.1. To begin, it follows readily from (2.8) that

RVt(h) = RV ∗
t (h) +

1/h∑

i=1

e
(h)2
t−1+ih + 2

1/h∑

i=1

r
∗(h)
t−1+ihe

(h)
t−1+ih. (A.12)

Equation (A.12) and the independence of the noise with the volatility process implies that

Cov[IVt+1:t+m, RVt−l(h)] = Cov[IVt+1:t+m, RV ∗
t−l(h)],

i.e., the first equation in (3.2). The second equation in (3.2) is a direct consequence equation (32) in ABM
(2004).

To prove (3.3), note that the independence assumption for the noise ut and the {log(St), σt} processes,
along with the zero mean return, imply that

V ar[RVt(h)] = V ar[RV ∗
t (h)] + V ar




1/h∑

i=1

e
(h)2
t−1+ih


 + 4V ar




1/h∑

i=1

r
∗(h)
t−1+ihe

(h)
t−1+ih


 . (A.13)

Similarly,

V ar




1/h∑

i=1

e
(h)2
t−1+ih


 =

1
h

V ar[e(h)2
t−1+ih] + 2

∑

1≤i<j≤1/h

Cov[e(h)2
t−1+ih, e

(h)2
t−1+jh].

On the other hand,

V ar[e(h)2
t−1+ih] = V ar[e(h)2

h ] = 2(Ku + 1)V 2
u

while

Cov[e(h)2
t−1+ih, e

(h)2
t−1+jh] = Cov[e(h)2

ih , e
(h)2
jh ] = δi,(j−1)(Ku − 1)V 2

u .

Therefore,

V ar




1/h∑

i=1

e
(h)2
t−1+ih


 =

1
h

2(Ku + 1)V 2
u + 2

(
1
h
− 1

)
(Ku − 1)V 2

u = 2V 2
u

(
2Ku

h
−Ku + 1

)
. (A.14)

The noise process e
(h)
t and the returns {r∗(h)

t−1+ih} are independent and the returns are uncorrelated. Hence,

V ar




1/h∑

i=1

r
∗(h)
t−1+ihe

(h)
t−1+ih


 =

1
h

V ar
[
r
∗(h)
t−1+ihe

(h)
t−1+ih

]
=

1
h

E[r∗(h)2
t−1+ih]E[e(h)2

t−1+ih] = 2E[σ2
t ]Vu, (A.15)

given that E[r∗(h)2
t−1+ih] = hE[σ2

t ]. Combining (A.13), (A.14), and (A.15), achieves (3.3).
We will now prove (3.4) and (3.5). The same arguments used in the proof of (A.13 ) imply that

∀m ≥ 1, Cov[RVt+m(h), RVt(h)] = Cov[RV ∗
t+m(h), RV ∗

t (h)] + Cov




1/h∑

i=1

e
(h)2
t+m−1+ih,

1/h∑

i=1

e
(h)2
t−1+ih




+ 4Cov




1/h∑

i=1

r
∗(h)
t+m−1+ihe

(h)
t+m−1+ih,

1/h∑

i=1

r
∗(h)
t−1+ihe

(h)
t−1+ih


 .

(A.16)

But, it follows also that

∀i, j, Cov
[
r
∗(h)
t+m−1+ihe

(h)
t+m−1+ih, r

∗(h)
t−1+jhe

(h)
t−1+jh

]
= E

[
r
∗(h)
t+m−1+ihe

(h)
t+m−1+ihr

∗(h)
t−1+jhe

(h)
t−1+jh

]

= E
[
r
∗(h)
t+m−1+ihr

∗(h)
t−1+jh

]
E

[
e
(h)
t+m−1+ihe

(h)
t−1+jh

]

= 0.
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Therefore,

Cov




1/h∑

i=1

r
∗(h)
t+m−1+ihe

(h)
t+m−1+ih,

1/h∑

i=1

r
∗(h)
t−1+ihe

(h)
t−1+ih


 = 0. (A.17)

We also have

Cov




1/h∑

i=1

e
(h)2
t+m−1+ih,

1/h∑

i=1

e
(h)2
t−1+ih


 = δm,1Cov

[
e
(h)2
t+h , e

(h)2
t

]
= δm,1Cov

[
e2
t , e

2
t

]
= δm,1(Ku − 1)V 2

u .

(A.18)

Combining (A.16), (A.17), and (A.18), results in

∀m ≥ 1, Cov[RVt+m(h), RVt(h)] = Cov[RV ∗
t+m(h), RV ∗

t (h)] + δm,1(Ku − 1)V 2
u ,

i.e., (3.4) when m = 1 and (3.5) when m > 1. This achieves the proof of Proposition 3.1.¥
Proof of Proposition 4.2. We have

Cov[RM t+m(h), RMt(h)] =
∑

1≤i,j,k,l≤1/h

qijqklCov[r(h)
t+m+ihr

(h)
t+m+jh, r

(h)
t+khr

(h)
t+lh]. (A.19)

When m > 1, (A.19) combined with the first part of (2.19) leads to (4.33). When m = 1, (A.19) combined
with the second and third parts of (2.19) leads to (4.32). This achieves the proof of Proposition 4.2.¥
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Table 1: R2 for Integrated Variance Forecasts

λ 1/h Model M1 M2 M3
Horizon 1 5 20 1 5 20 1 5 20
R2(Best) 0.977 0.891 0.645 0.830 0.586 0.338 0.989 0.945 0.807
R2(IVt) 0.955 0.871 0.630 0.689 0.445 0.214 0.977 0.934 0.796
R2(IVt, 4) 0.957 0.874 0.632 0.698 0.446 0.227 0.979 0.936 0.797

0% 1440 R2(RV ∗
t (h)) 0.950 0.867 0.627 0.679 0.439 0.211 0.974 0.931 0.793

R2(RV ∗
t (h), 4) 0.951 0.868 0.627 0.685 0.450 0.224 0.974 0.931 0.793

288 R2(RV ∗
t (h)) 0.932 0.851 0.615 0.641 0.414 0.199 0.960 0.918 0.781

R2(RV ∗
t (h), 4) 0.934 0.852 0.616 0.642 0.429 0.216 0.963 0.920 0.784

96 R2(RV ∗
t (h)) 0.891 0.813 0.588 0.563 0.364 0.175 0.927 0.886 0.754

R2(RV ∗
t (h), 4) 0.908 0.829 0.599 0.580 0.395 0.202 0.946 0.904 0.770

48 R2(RV ∗
t (h)) 0.836 0.762 0.551 0.476 0.307 0.148 0.881 0.843 0.717

R2(RV ∗
t (h), 4) 0.883 0.805 0.582 0.519 0.360 0.186 0.929 0.889 0.757

1 R2(RV ∗
t (h)) 0.122 0.111 0.081 0.031 0.020 0.010 0.157 0.150 0.128

R2(RV ∗
t (h), 4) 0.360 0.329 0.238 0.072 0.054 0.029 0.452 0.432 0.369

R2(RV ∗
t (h), 19) 0.493 0.450 0.325 0.092 0.074 0.043 0.639 0.611 0.523

0.1% 1440 R2(RVt(h)) 0.896 0.817 0.591 0.547 0.353 0.170 0.936 0.895 0.762
R2(RVt(h), 4) 0.911 0.831 0.601 0.569 0.388 0.199 0.950 0.908 0.773

288 R2(RVt(h)) 0.908 0.828 0.599 0.581 0.375 0.181 0.943 0.901 0.767
R2(RVt(h), 4) 0.917 0.837 0.605 0.594 0.402 0.205 0.953 0.911 0.776

96 R2(RVt(h)) 0.873 0.797 0.576 0.525 0.339 0.163 0.914 0.874 0.744
R2(RVt(h), 4) 0.899 0.821 0.593 0.553 0.379 0.195 0.941 0.900 0.766

48 R2(RVt(h)) 0.821 0.749 0.541 0.450 0.291 0.140 0.870 0.832 0.708
R2(RVt(h), 4) 0.877 0.800 0.578 0.501 0.349 0.182 0.926 0.885 0.754

1 R2(RVt(h)) 0.122 0.111 0.081 0.031 0.020 0.010 0.157 0.150 0.127
R2(RVt(h), 4) 0.360 0.328 0.237 0.071 0.053 0.029 0.452 0.432 0.368
R2(RVt(h), 19) 0.492 0.449 0.325 0.091 0.074 0.042 0.638 0.611 0.522

0.5% 1440 R2(RVt(h)) 0.446 0.407 0.294 0.123 0.080 0.038 0.554 0.529 0.451
R2(RVt(h), 4) 0.711 0.649 0.469 0.222 0.164 0.088 0.811 0.776 0.661

288 R2(RVt(h)) 0.719 0.656 0.474 0.300 0.194 0.093 0.800 0.765 0.651
R2(RVt(h), 4) 0.837 0.764 0.552 0.395 0.283 0.149 0.903 0.864 0.736

96 R2(RVt(h)) 0.772 0.704 0.509 0.365 0.236 0.113 0.839 0.802 0.683
R2(RVt(h), 4) 0.858 0.782 0.566 0.443 0.313 0.165 0.915 0.875 0.746

48 R2(RVt(h)) 0.750 0.684 0.495 0.349 0.225 0.108 0.817 0.781 0.665
R2(RVt(h), 4) 0.849 0.775 0.560 0.431 0.306 0.161 0.909 0.869 0.740

1 R2(RVt(h)) 0.121 0.110 0.080 0.031 0.020 0.010 0.155 0.149 0.126
R2(RVt(h), 4) 0.357 0.326 0.236 0.070 0.052 0.028 0.449 0.430 0.366
R2(RVt(h), 19) 0.491 0.448 0.324 0.090 0.073 0.042 0.637 0.610 0.521

1.0% 1440 R2(RVt(h)) 0.178 0.163 0.118 0.037 0.024 0.012 0.249 0.238 0.203
R2(RVt(h), 4) 0.458 0.418 0.302 0.084 0.063 0.034 0.586 0.560 0.478

288 R2(RVt(h)) 0.466 0.425 0.308 0.133 0.086 0.041 0.574 0.548 0.467
R2(RVt(h), 4) 0.723 0.660 0.477 0.234 0.172 0.092 0.820 0.784 0.669

96 R2(RVt(h)) 0.620 0.566 0.409 0.222 0.143 0.069 0.714 0.683 0.581
R2(RVt(h), 4) 0.798 0.728 0.526 0.329 0.238 0.127 0.875 0.837 0.713

48 R2(RVt(h)) 0.648 0.591 0.428 0.248 0.160 0.077 0.735 0.702 0.598
R2(RVt(h), 4) 0.810 0.739 0.534 0.352 0.254 0.135 0.882 0.844 0.719

1 R2(RVt(h)) 0.119 0.109 0.079 0.030 0.019 0.009 0.154 0.147 0.125
R2(RVt(h), 4) 0.354 0.323 0.234 0.069 0.052 0.028 0.446 0.427 0.364
R2(RVt(h), 19) 0.488 0.445 0.322 0.089 0.072 0.041 0.635 0.608 0.519
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Table 2: R2 for ’Optimally’ Sampled Intraday Returns

λ 1/h1 1/h2 Horizon 1 5 20
Model M1
0.1% 70.8 487 R2(RVt(h1)) 0.854 0.779 0.563

R2(RVt(h1), 4) 0.891 0.813 0.588
R2(RVt(h2)) 0.911 0.832 0.601
R2(RVt(h2), 4) 0.919 0.839 0.607

0.5% 24.2 97.3 R2(RVt(h1)) 0.684 0.624 0.451
R2(RVt(h1), 4) 0.824 0.752 0.544
R2(RVt(h2)) 0.772 0.704 0.509
R2(RVt(h2), 4) 0.858 0.782 0.566

1.0% 15.3 48.7 R2(RVt(h1)) 0.567 0.517 0.374
R2(RVt(h1), 4) 0.775 0.707 0.511
R2(RVt(h2)) 0.648 0.591 0.428
R2(RVt(h2), 4) 0.810 0.739 0.534

Model M2
0.1% 65.3 431 R2(RVt(h1)) 0.487 0.315 0.151

R2(RVt(h1), 4) 0.527 0.364 0.188
R2(RVt(h2)) 0.585 0.378 0.182
R2(RVt(h2), 4) 0.597 0.404 0.206

0.5% 22.3 86.2 R2(RVt(h1)) 0.285 0.184 0.089
R2(RVt(h1), 4) 0.383 0.275 0.146
R2(RVt(h2)) 0.365 0.236 0.113
R2(RVt(h2), 4) 0.443 0.314 0.165

1.0% 14.1 43.1 R2(RVt(h1)) 0.199 0.128 0.062
R2(RVt(h1), 4) 0.307 0.223 0.119
R2(RVt(h2)) 0.249 0.161 0.077
R2(RVt(h2), 4) 0.353 0.255 0.135

Model M3
0.1% 74.0 520 R2(RVt(h1)) 0.901 0.861 0.733

R2(RVt(h1), 4) 0.936 0.895 0.762
R2(RVt(h2)) 0.946 0.905 0.770
R2(RVt(h2), 4) 0.955 0.913 0.777

0.5% 25.3 104 R2(RVt(h1)) 0.762 0.728 0.620
R2(RVt(h1), 4) 0.891 0.852 0.726
R2(RVt(h2)) 0.839 0.802 0.683
R2(RVt(h2), 4) 0.916 0.875 0.746

1.0% 16.0 52.0 R2(RVt(h1)) 0.657 0.628 0.535
R2(RVt(h1), 4) 0.855 0.817 0.696
R2(RVt(h2)) 0.735 0.703 0.598
R2(RVt(h2), 4) 0.882 0.844 0.719
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Table 3: R2 for Optimally Combined Intraday Squared Returns
Model M1 M2

λ 1/h Horizon 1 5 20 1 5 20
0.1% 1440 R2(RVt(h)) 0.896 0.817 0.591 0.547 0.353 0.170

R2(Optimal) 0.897 0.819 0.592 0.562 0.359 0.171
288 R2(RVt(h)) 0.908 0.828 0.599 0.581 0.376 0.180

R2(Optimal) 0.910 0.830 0.600 0.600 0.382 0.182
96 R2(RVt(h)) 0.873 0.797 0.576 0.525 0.339 0.163

R2(Optimal) 0.874 0.798 0.577 0.537 0.343 0.164
48 R2(RVt(h)) 0.821 0.749 0.541 0.450 0.290 0.140

R2(Optimal) 0.821 0.749 0.542 0.457 0.293 0.140
1 R2(RVt(h)) 0.122 0.111 0.080 0.031 0.020 0.010

R2(Optimal) 0.122 0.111 0.080 0.031 0.020 0.010
0.5% 1440 R2(RVt(h)) 0.446 0.407 0.294 0.123 0.080 0.038

R2(Optimal) 0.446 0.407 0.294 0.124 0.080 0.038
288 R2(RVt(h)) 0.719 0.656 0.474 0.300 0.194 0.093

R2(Optimal) 0.719 0.656 0.475 0.303 0.195 0.093
96 R2(RVt(h)) 0.772 0.704 0.509 0.365 0.235 0.113

R2(Optimal) 0.772 0.705 0.510 0.369 0.237 0.114
48 R2(RVt(h)) 0.750 0.684 0.495 0.349 0.225 0.108

R2(Optimal) 0.750 0.684 0.495 0.353 0.227 0.109
1 R2(RVt(h)) 0.121 0.110 0.080 0.030 0.020 0.009

R2(Optimal) 0.121 0.110 0.080 0.030 0.020 0.009
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Table 4: Mean, Variance and MSE of RV Measures
Model M1 M2

Mean Variance MSE Mean Variance MSE
IVt 0.636 0.168 0.168 0.504 0.0263 0.0263
λ = 0.1%
RV all

t 2.47 0.179 3.53 1.96 0.033 2.14
RV sparse

t 1.002 0.177 0.311 0.795 0.031 0.116
RV average

t 1.000 0.171 0.303 0.793 0.028 0.111
RV TS

t 0.507 0.110 0.127 0.402 0.018 0.029

RV TS−Adj
t 0.634 0.172 0.172 0.503 0.027 0.027

RV Zhou
t 0.637 0.178 0.178 0.505 0.032 0.032

RV Kernel
t 0.637 0.173 0.173 0.506 0.029 0.029

λ = 0.5%
RV all

t 9.79 0.360 84.2 7.77 0.147 52.9
RV sparse

t 2.47 0.223 3.58 1.96 0.060 2.17
RV average

t 2.46 0.180 3.51 1.95 0.034 2.13
RV TS

t 0.507 0.117 0.133 0.402 0.023 0.033

RV TS−Adj
t 0.634 0.182 0.182 0.503 0.035 0.035

RV Zhou
t 0.642 0.303 0.303 0.509 0.111 0.111

RV Kernel
t 0.642 0.194 0.194 0.509 0.042 0.042
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Table 5: Correlations of RV Measures

IVt RV all
t RV sparse

t RV average
t RV TS

t RV Zhou
t RV Kernel

t

Model M1
λ = 0.1%
IVt 1.00 0.969 0.975 0.989 0.986 0.971 0.986
RV all

t - 1.00 0.958 0.972 0.956 0.932 0.954
RV sparse

t - - 1 0.986 0.984 0.962 0.981
RV average

t - - - 1.00 0.998 0.976 0.995
RV TS

t - - - - 1.00 0.978 0.996
RV Zhou

t - - - - - 1.00 0.983
RV Kernel

t - - - - - - 1.00
λ = 0.5%
IVt 1.00 0.684 0.868 0.964 0.958 0.745 0.932
RV all

t - 1.00 0.690 0.766 0.601 0.335 0.551
RV sparse

t - - 1.00 0.901 0.878 0.667 0.838
RV average

t - - - 1.00 0.974 0.740 0.930
RV TS

t - - - - 1.00 0.802 0.963
RV Zhou

t - - - - - 1.00 0.816
RV Kernel

t - - - - - - 1.00
Model M2
λ = 0.1%
IVt 1.00 0.891 0.918 0.965 0.954 0.900 0.953
RV all

t - 1.00 0.861 0.905 0.851 0.769 0.843
RV sparse

t - - 1.00 0.951 0.945 0.872 0.934
RV average

t - - - 1.00 0.994 0.916 0.981
RV TS

t - - - - 1.00 0.926 0.987
RV Zhou

t - - - - - 1.00 0.940
RV Kernel

t - - - - - - 1.00
λ = 0.5%
IVt 1.00 0.423 0.660 0.878 0.863 0.487 0.792
RV all

t - 1.00 0.460 0.613 0.243 -0.078 0.153
RV sparse

t - - 1.00 0.751 0.688 0.359 0.590
RV average

t - - - 1.00 0.915 0.477 0.787
RV TS

t - - - - 1.00 0.626 0.889
RV Zhou

t - - - - - 1.00 0.653
RV Kernel

t - - - - - - 1.00
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Table 6: Autocorrelations of RV Measures

Lag RV all
t RV sparse

t RV average
t RV TS

t RV Zhou
t RV Kernel

t

Model M1
λ = 0.1%
1 0.917 0.929 0.956 0.949 0.921 0.949
2 0.885 0.897 0.923 0.917 0.889 0.917
5 0.797 0.808 0.831 0.825 0.800 0.825
10 0.669 0.678 0.698 0.693 0.672 0.693
20 0.472 0.478 0.492 0.488 0.473 0.488
λ = 0.5%
1 0.457 0.736 0.907 0.896 0.542 0.849
2 0.441 0.711 0.876 0.865 0.523 0.819
5 0.397 0.640 0.789 0.779 0.471 0.737
10 0.333 0.537 0.662 0.654 0.395 0.619
20 0.235 0.378 0.466 0.461 0.279 0.436
Model M2
λ = 0.1%
1 0.659 0.700 0.773 0.756 0.673 0.521
2 0.516 0.548 0.606 0.592 0.527 0.408
5 0.320 0.340 0.376 0.367 0.327 0.253
10 0.203 0.215 0.238 0.232 0.207 0.160
20 0.094 0.100 0.111 0.108 0.096 0.089
λ = 0.5%
1 0.149 0.361 0.640 0.618 0.197 0.521
2 0.116 0.283 0.502 0.484 0.154 0.407
5 0.072 0.176 0.311 0.300 0.096 0.253
10 0.046 0.111 0.197 0.190 0.061 0.160
20 0.021 0.052 0.092 0.088 0.028 0.088
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Table 7: R2 for Integrated Variance Forecasts

λ Model M1 M2
Horizon 1 5 20 1 5 20

0.1% R2(RV all
t ) 0.896 0.817 0.591 0.547 0.353 0.170

R2(RV sparse
t ) 0.908 0.829 0.599 0.581 0.375 0.181

R2(RV average
t ) 0.934 0.852 0.616 0.642 0.415 0.199

R2(RV TS
t ) 0.927 0.846 0.612 0.628 0.405 0.195

R2(RV TS−Adj
t ) 0.927 0.846 0.612 0.628 0.405 0.195

R2(RV Zhou
t ) 0.900 0.821 0.593 0.559 0.361 0.174

R2(RV kernel
t ) 0.928 0.846 0.612 0.626 0.404 0.194

0.5% R2(RV all
t ) 0.446 0.407 0.294 0.123 0.080 0.038

R2(RV sparse
t ) 0.719 0.656 0.474 0.300 0.194 0.093

R2(RV average
t ) 0.886 0.809 0.585 0.532 0.343 0.165

R2(RV TS
t ) 0.876 0.799 0.578 0.513 0.331 0.159

R2(RV TS−Adj
t ) 0.876 0.799 0.578 0.513 0.331 0.159

R2(RV Zhou
t ) 0.529 0.483 0.349 0.163 0.106 0.051

R2(RV kernel
t ) 0.829 0.756 0.547 0.432 0.279 0.134
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Table 8: R2 for One-Step-Ahead RV Forecasts
Indp.Var. RV all

t RV sparse
t RV average

t RV TS
t RV Zhou

t RV Kernel
t

Model M1
λ = 0.1%
RV all 0.841 0.852 0.877 0.870 0.844 0.870
RV sp. 0.852 0.864 0.889 0.882 0.856 0.882
RV av. 0.877 0.889 0.914 0.908 0.880 0.901
RV TS 0.870 0.882 0.908 0.901 0.874 0.901
RV Zhou 0.844 0.856 0.880 0.874 0.848 0.874
RV Ker. 0.870 0.882 0.908 0.902 0.874 0.901
λ = 0.5%
RV all 0.208 0.336 0.414 0.409 0.247 0.387
RV sp. 0.336 0.542 0.668 0.659 0.399 0.624
RV av. 0.414 0.668 0.823 0.813 0.492 0.769
RV TS 0.409 0.659 0.813 0.803 0.486 0.760
RV Zhou 0.247 0.399 0.492 0.486 0.294 0.460
RV Ker. 0.387 0.624 0.769 0.760 0.460 0.720
Model M2
λ = 0.1%
RV all 0.434 0.461 0.510 0.498 0.444 0.497
RV sp. 0.461 0.490 0.541 0.529 0.471 0.528
RV av. 0.095 0.231 0.410 0.396 0.126 0.333
RV TS 0.498 0.529 0.585 0.572 0.509 0.570
RV Zhou 0.444 0.471 0.520 0.509 0.453 0.507
RV Ker. 0.497 0.528 0.583 0.570 0.507 0.568
λ = 0.5%
RV all 0.022 0.054 0.095 0.092 0.029 0.077
RV sp. 0.054 0.131 0.231 0.223 0.071 0.188
RV av. 0.095 0.231 0.410 0.396 0.126 0.333
RV TS 0.092 0.223 0.396 0.382 0.122 0.321
RV Zhou 0.029 0.071 0.126 0.122 0.039 0.102
RV Ker. 0.077 0.188 0.333 0.321 0.102 0.271
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