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Abstract

We construct an upper bound on the limiting distributions of the identi�ca-

tion robust GMM statistics for testing hypotheses that are speci�ed on subsets of

the parameters. The upper bound corresponds to the limiting distribution that

results when the unrestricted parameters are well identi�ed. The upper bound

only applies when the unrestricted parameters are estimated using the continuous

updating estimator. The critical values that result from the upper bound lead

to conservative tests when the unrestricted parameters are not well-identi�ed.
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1 Introduction

Many economic models can be cast into the framework of the generalized method of

moments (GMM) of Hansen (1982). This facilitates statistical inference in these models

because we can use the extensive set of econometric tools available for GMM, see e.g.

Newey and McFadden (1994). GMM is particularly appealing for structural economic

models under rational expectations. Over the last decade or so, a number of studies

have shown that the assumption of identi�cation of the parameters in such models may

be too strong, and that when it fails, conventional inference procedures break down,

see e.g. Stock et: al: (2002). In forward-looking models, such as the new Keynesian

Phillips curve (a popular model of in�ation dynamics), Mavroeidis (2004, 2005) showed

that identi�cation problems are pervasive. Another example where identi�cation might

fail is in models of unemployment, where identi�cation problems plague the estimation

of wage equations, see e.g., Bean (1994) and Malcomson and Mavroeidis (2006).

Fortunately, statistics for testing hypotheses on the parameters in GMM have been

developed whose limiting distributions do not require the identi�cation assumption of

a full rank value of the expected Jacobian of the moment conditions with respect to the

parameters, see Stock and Wright (2000) and Kleibergen (2005). These statistics yield

more reliable inference than the traditional statistics since they do not become size-

distorted when the Jacobian is relatively close to being of reduced rank. However, the

robustness of these statistics to failure of identi�cation of the parameters has only been

established for the case when we test the full parameter vector. This is an important

limitation in their use because researchers are often interested in hypotheses on subsets

(or functions) of the parameters. For the limiting distributions of the statistics to

remain valid in such cases, one has to impose the identifying assumption of a full rank

value of the Jacobian with respect to the parameters that are left unrestricted under the

null. Even though this condition is milder than the identi�cation of the full parameter

vector, it can often be too strong, as it is, for example, when testing hypotheses on

the coe¢ cients of exogenous regressors in a model with endogenous regressors, or on

the coe¢ cients of forcing variables in forward-looking rational expectations models, see

Mavroeidis (2006). Hence, it is important to assess whether the existing methods are

reliable even when some of the identi�cation assumptions on the untested parameters

fail to hold.

The outline of the paper is as follows. In the second section, we brie�y discuss

the properties of statistics that test hypotheses speci�ed on a subset of the structural

parameters in the linear instrumental variables (IV) regression model without making
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an identifying assumption on the unrestricted structural parameters. The properties

that we discuss and illustrate, which are derived in Kleibergen (2006), are the size and

power of these subset statistics and their behavior when the number of instruments is

large. Since the linear IV regression model is a special case of GMM, these properties

indicate what properties we can expect to hold as well for the subset statistics in GMM.

In the third section, we discuss GMM. We show and prove that one key property from

the linear IV regression model, which concerns the size of subset statistics, extends to

GMM. Further extensions are discussed in the conclusions.

Throughout the proposal we use the notation: Im is the m � m identity matrix,

PA = A(A0A)�1A0 for a full rank n �m matrix A and MA = In � PA: Furthermore,

�
p!�stands for convergence in probability, � d!�for convergence in distribution, �

a

��
indicates that the limiting distribution of the statistic on the left-hand side is bounded

by the limiting distribution on the right-hand side of the �
a

��sign, E is the expectation
operator.

2 Linear Instrumental Variables

A number of statistics that test hypotheses that are speci�ed on the structural pa-

rameters in a linear instrumental variables (IV) regression model have been proposed

whose limiting distributions are robust to identi�cation failure. The most commonly

used of these statistics are the Anderson-Rubin (AR) statistic, see Anderson and Ru-

bin (1949), Kleibergen�s Lagrange Multiplier (KLM) statistic, see Kleibergen (2002)

and Moreira�s conditional likelihood ratio (MLR) statistic, see Moreira (2003). The

performance of these statistics is reviewed in Andrews et: al: (2006). These identi�-

cation robust statistics test hypotheses that are speci�ed on all structural parameters

of the linear IV regression model. Many interesting hypotheses are, however, speci�ed

on subsets of the structural parameters and/or on the parameters associated with the

included exogenous variables. When we replace the structural parameters that are not

speci�ed by the hypothesis of interest by estimators, the limiting distributions of the

robust statistics extend to tests of such hypotheses when a high level identi�cation

assumption on these remaining structural parameters holds, see e:g: Stock and Wright

(2000) and Kleibergen (2004). This high level assumption is rather arbitrary and its

validity is typically unclear. It is needed to ensure that the parameters whose values

are not speci�ed under the null hypothesis are replaced by consistent estimators so the

limiting distributions of the weak instrument robust statistics remain unaltered. When
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the high level assumption is not satis�ed, the limiting distributions are unknown.

2.1 Conservative subset tests

A suitable approach for testing hypotheses on subsets of the structural parameters

without the identi�cation assumption on the unrestricted structural parameters is to

use a projection argument, see Dufour and Taamouti (2005a,2005b). The projection

approach amounts to evaluating the instrument quality robust statistics for testing

hypotheses on all structural parameters at parameter values that coincide with the

hypothesized values for the parameters of interest and all possible values of the un-

restricted parameters. The critical values for the projection approach stem from the

limiting distribution of the joint test. The above shows that the projection approach

has two disadvantages:

1. The limiting distribution results from a joint test on all structural parameters so

the projection approach wastes degrees of freedom since we only test a subset of

the parameters.

2. All possible values of the partialled out parameters have to be evaluated as for

some statistics the minimizer of the joint test is not directly available.

Kleibergen (2006) shows that a plug-in approach which uses the limited informa-

tion maximum likelihood estimator for the unrestricted structural parameters over-

comes the above two problems associated with the projection approach. Kleibergen

(2006) shows that the (conditional) limiting distributions of the resulting instrument

quality robust subset statistics are bounded from above by the (conditional) limiting

distribution that are obtained when we impose the identi�cation assumption on the

unrestricted structural parameters and from below by the (conditional) limiting distri-

butions that are obtained when the unrestricted structural parameters are completely

unidenti�ed. Under the identi�cation assumption on the unrestricted structural para-

meters, the degrees of freedom parameter of the limiting distribution is smaller than

the one which results in case of the joint test so the plug-in approach using the lim-

ited information maximum likelihood estimator does not waste degrees of freedom of

the limiting distribution. Because of the computational ease of obtaining the limited

information maximum likelihood estimator, it is obvious that the plug-in approach

overcomes the second disadvantage of the projection approach. Hence, usage of the

(�2) critical values that apply under the identi�cation assumption on the unrestricted

structural parameters results in tests which are never oversized.
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Figure 1: �2(1) distribution function (solid line) and lower bound on the limiting
distribution of the KLM statistic in case of two endogenous variables and a number of
instruments equal to 2 (dotted), 5 (dashed-dotted), 20 (dashed) and 100 (pointed).

2.2 Many instruments

The lower bound on the (conditional) limiting distributions of the instrument quality

robust subset statistics is attained when the unrestricted structural parameters are

completely unidenti�ed. This lower bound has an unknown functional form but con-

verges to the upper bound (�2) distribution in case of the subset KLM statistic when

the number of instruments becomes large, see Kleibergen (2006). Figure 1 illustrates

this convergence and shows the lower bound on the limiting distribution for various

numbers of instruments. Since the limiting distribution of the subset KLM statistic

lies between the lower and upper bound and the lower bound converges to the upper

bound when the number of instruments becomes large, the subset KLM statistic has

better size properties for large numbers of instruments.

The bounds on the limiting distributions of the other subset statistics do not reveal

any kind of convergence to a standard distribution when the number of instruments

becomes large.
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Figure 2: Power curves of AR(�0) (dash-dotted), KLM(�0) (dashed) and MLR(�0)

(solid) for testing H0 : � = 0 (left-hand side) and 
 = 0 (right-hand side) with

5% signi�cance.
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Figure 2.1: �11 = 10; �22 = 3: Figure 2.2: �11 = 10; �22 = 3:
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Figure 2.3: �11 = 10; �22 = 5: Figure 2.4: �11 = 10; �22 = 5:
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Figure 2.5: �11 = 10; �22 = 7: Figure 2.6: �11 = 10; �22 = 7:

6



2.3 Power at distant values of the parameter of interest

For hypothesized values of the structural parameter of interest that are distant from

the true value which one of the structural parameters is tested becomes irrelevant since

the value of a speci�c subset statistic at a distant value of the hypothesized structural

parameter is the same as the value of that statistic when it tests for a distant value of

any other structural parameter (or combinations thereof). At such distant values, the

subset statistics for testing a structural parameter are identical to statistics that test for

the identi�cation of all structural parameters, see Kleibergen (2006). For example, the

AR statistic is equal to Anderson�s canonical correlation rank statistic, see Anderson

(1951), that tests for a reduced rank value of the matrix of parameters of the reduced

form equations and the MLR statistic is approximately equal to this rank statistic.

To illustrate the behavior of the subset statistics at distant values, Figure 2 contains

the power curves for separately testing if one of the two structural parameters in a linear

IV regression model is equal to zero. Di¤erent values of the matrix concentration

parameter are used which are such that the parameter that is tested in the left-hand

side column of Figure 2 is well identi�ed and the identi�cation of the parameter in

the right-hand side column varies over the di¤erent rows of Figure 2. The correlation

between the disturbances of the di¤erent equations is equal to zero as well as the o¤-

diagonal elements of the 2 � 2 matrix concentration parameter �0�. The number of
instruments is equal to twenty. More details are provided in Kleibergen (2006) and in

section 4.

A striking feature of the power curves in Figure 2 is that the power curves of the

same statistic in the left and right-hand side columns converge to an identical value

of the rejection frequency at distant values. This results from the equality of the

respective statistic for testing di¤erent structural parameters at distant values from

the truth. Another important feature of the power curves in Figure 2 is that the AR

statistic is the most powerful statistic at distant values and that the power of the MLR

statistic is slightly smaller than that of the AR statistic at distant values. This results

as the MLR statistic is approximately equal to the AR statistic at such distant values.

Around the hypothesis of interest the power of the MLR statistic exceeds that of the

AR statistic.

Figure 2 shows the conservativeness of the subset statistics since the statistics are

undersized in Figure 2.1 where the unrestricted structural parameter is weakly identi-

�ed. The subset statistics are size correct in all other Figures where the unrestricted

structural parameters are reasonably well identi�ed.
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Since the linear IV regression model is a special case of GMM, it is of interest to

study which of the above properties extend to GMM.

3 GMM

We consider the estimation of a p-dimensional parameter vector � whose parameter

region � is a subset of the Rp: There is a unique value of �; �0; for which the kf � 1
dimensional moment equation

E(ft(�0)) = 0; t = 1; : : : ; T; (1)

holds. The kf � 1 dimensional vector function ft(�) is a continuous di¤erentiable

function of data and parameters. Let fT (�) =
PT

t=1 ft (�) and

Vff (�) = lim
T!1

var
�
T�1=2fT (�)

�
: (2)

The objective function for the continuous updating estimator (CUE) of Hansen et: al:

(1996) is

ST (�) = T�1fT (�)
0 V̂ff (�)

�1 fT (�) (3)

where V̂ff (�) is an estimator of Vff (�).

We make the following high level assumptions, which are a slight extension of those

in Kleibergen (2005, Assumption 1):

Assumption 1 The derivative of ft (�)

qi;t (�) =
@ft (�)

@�i
; i = 1; :::; p; (4)

is such that the large sample behavior of �ft (�) = ft (�) � E(ft (�)) and �qt (�) =�
�q1;t (�)

0 :::�qp;t (�)
0�0 : k� � 1; with �qi;t (�) = qi;t (�)�E(qi;t (�)) and k� = kf � p; satis�es

 T (�) �
1p
T

TX
t=1

 
�ft(�)

�qt(�)

!
d!
 
 f (�)

 �(�)

!
(5)

where  (�) =
� f (�)
 �(�)

�
is a (kf + k�)� 1 dimensional Normal distributed random process

with mean zero and positive semi-de�nite (kf + k�)� (kf + k�) dimensional covariance
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matrix

V (�) =

 
Vff (�) Vf� (�)

V�f (�) V�� (�)

!
(6)

with V�f (�) = Vf� (�)
0 =

�
V�f;1 (�)

0 : : : V�f;p (�)
0�0 ; V�� (�) = V��;ij (�) ; i; j = 1; : : : ; p

and Vff (�) ; V�f;i (�) ; V��;ij (�) are kf �kf dimensional matrices for i; j = 1; : : : ; p; and

V (�) = lim
T!1

var

"
1p
T

 
fT (�)

vec [qT (�)]

!#
(7)

with qT (�) = @fT (�) =@�
0 =
PT

t=1 (q1;t (�) :::qp;t (�)) :

To estimate the covariance matrix, we use the covariance matrix estimator V̂ (�)

which consists of V̂ff (�) : kf�kf ; V̂�f (�) : k��kf and V̂�� (�) : k��k�:We assume that
the covariance matrix estimator is a consistent one and, because we use the derivative of

the CUE objective function, we also make an assumption with respect to the derivative

of the covariance matrix estimator.

Assumption 2 V̂ff (�0)
p! Vff (�0) and @vec

h
V̂ff (�0)

i
=@�

p! @vec [Vff (�0)] =@�:

We use an estimator of the unconditional expectation of the Jacobian, J(�) =

E(limT!1
1
T
qT (�)) which is independent of the average moment vector fT (�0) under

H0 : � = �0:
D̂T (�0) = [q1;T (�0)� V̂�f;1(�0)V̂ff (�0)

�1 fT (�0) : : :

qp;T (�0)� V̂�f;p(�0)V̂ff (�0)
�1 fT (�0)];

(8)

where V̂�f;i (�) are kf � kf dimensional estimators of the covariance matrices V�f;i (�) ;

i = 1; : : : ; p; V̂�f (�) =
�
V̂�f;1 (�)

0 : : : V̂�f;p (�)
0
�0
:

Since @ST (�)
@�

= 2sT (�) ; sT (�) = D̂T (�0)
0 V̂ff (�0)

�1 fT (�0) ; we obtain a Lagrange

multiplier (LM) statistic that is based on the objective function of the CUE from:

KLMT (�) :=
1
T
sT (�)

0 IT (�)�1 sT (�) ; (9)

where IT (�) = D̂T (�)
0 V̂ff (�)

�1 D̂T (�). Using the KLM statistic and the S-statistic

from Stock and Wright (2000), which is equal to the CUE objective function (3), we

can also de�ne an over-identi�cation statistic:

JKLMT (�) := ST (�)�KLMT (�) : (10)
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Theorem 1 Under Assumptions 1, 2 and H0 : � = �0, the limiting distributions of the

S, KLM and JKLM statistics are such that

ST (�0)
d! �2 (kf )

KLMT (�0)
d! �2 (p)

JKLMT (�0)
d! �2 (kf � p)

(11)

and the limiting distributions of KLMT (�0) and JKLMT (�0) are independent.

Proof. See Kleibergen (2005).

The minimal value of the CUE objective function is attained at the CUE, �̂; so

KLMT (�̂) = 0 since it equals a quadratic form of the derivative of the CUE objective

function. Theorem 1 shows that the convergence of the S, KLM and JKLM statistics

towards their limiting distributions is uniform since it holds for all possible values of

J(�): The limiting distribution of the CUE objective function evaluated at the CUE is

therefore bounded by the limiting distribution of the JKLM statistic under H0 : � = �0:

Theorem 2 When Assumptions 1 and 2 hold:

ST

�
�̂
� a

� �2 (kf � p) : (12)

Proof. see the Appendix.

The objective function evaluated at the CUE equals the J-statistic of Hansen (1982),

which tests for misspeci�cation, when evaluated at the CUE. Thus Theorem 2 shows

that the �2 (kf � p) distribution bounds the limiting distribution of the J-statistic when

we use the CUE to compute it.

3.1 Subset tests

Instead of conducting tests on the full parameter vector �; we often want to test just

some of the parameters. We can use the above statistics for such purposes as well. For

example, if � = (�0
... �0)0; with � : p� � 1 and � : p� � 1; p = p� + p�; we can test a

hypothesis that is speci�ed on � only, H�
0 : � = �0; in which case � becomes a nuisance

parameter. We can then estimate � using the CUE under H�0; e�(�0):
Theorem 3 When Assumptions 1 and 2 hold and under H�0 : � = �0,

ST (e�(�0); �0) a

� �2 (kf � p�) : (13)
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Proof. If ~ST (�) = ST (�; �0) ; we can de�ne the KLM statistic that tests H� :

� = �0 which equals a quadratic form of the derivative of ~ST (�) with respect to � so
~ST (�) = K̂LMT (�) + ^JKLMT (�): Under H� and Assumptions 1, 2, it follows from

Theorem 1 that the limiting distribution of this KLM statistic is �2(p�): Theorem 2

then implies that ~ST (e�) a

� �2 (kf � p�) and since ~ST (e�) = ST (e�(�0); �0) ; the result
follows.

Theorem 3 implies that the subset S-test is conservative when we use critical values

that result from a �2 (kf � p�) distribution. Theorem 4 shows that the conservativeness

of the subset S-statistic extends to subset KLM and JKLM statistics.

Theorem 4 Let e� (�0) = argmin� ST (�; �0). When Assumptions 1 and 2 hold and

under H�0 : � = �0,

KLMT (e� (�0) ; �0) a

� �2 (p�)

JKLMT (e� (�0) ; �0) a

� �2 (kf � p) :
(14)

Proof. see the Appendix.

The conservativeness of the KLM and JKLM statistic further extends to statistics

that are functions of them like, for example, the GMM extension of the MLR statistic.

Theorem 5 When Assumptions 1 and 2 hold and under H�0 : � = �0, the conditional

limiting distribution of the GMM extension of the MLR statistic:

GMM-MLRT (e� (�0) ; �0) := [ST (e� (�0) ; �0)� rk(e� (�0) ; �0)+q
(ST (e� (�0) ; �0) + rk(e� (�0) ; �0))2 � 4JT (e� (�0) ; �0) rk(e� (�0) ; �0)� (15)

with rk(�0) a statistic that tests the hypothesis of a lower rank value of E(qt(�0));

Hr :rank(E(qt(�0))) = p�1; and is a function of D̂T (�0; Y ) and the (generalized) inverse

of V̂��:f (�0) = V̂��(�0)� V̂�f (�0)V̂ff (�0)
�1V̂f�(�0); given rk(e� (�0) ; �0) is bounded by"

'p� + 'k�p� � rk(e� (�0) ; �0) +r�'p� + 'k�p�

�2
� 4'k�p�rk(e� (�0) ; �0)

#
; (16)

where 'p� and 'k�p� are independent �
2(p�) and �2(k � p�) distributed random vari-

ables.

Proof. Given rk(e� (�0) ; �0); the GMM-MLR statistic is just a function of the

KLM and JKLM statistics. The derivative of the GMM-MLR statistic with respect

11



to both the KLM and JKLM statistics is positive so the bounding properties of the

limiting distributions of these statistics imply the bounding property of the conditional

limiting distribution of the GMM-MLR statistic.

The bounding results on the (conditional) limiting distributions of the subset S,

KLM, JKLM and GMM-MLR statistics imply that we do not need to make any iden-

tifying assumption on the unrestricted parameters since the (conditional) limiting dis-

tributions that we would obtain when the unrestricted parameters are well identi�ed

provide upper bounds on the (conditional) limiting distributions in general. Hence,

we have established that the aforementioned subset tests are correctly sized in large

samples without making any assumptions about identi�cation of the parameters of the

model.

3.2 Nonlinear restrictions

The bounding results of the previous section extend to general nonlinear restrictions

of the kind studied for instance by Newey and West (1987). Let h : � 7! <r be a
continuous di¤erentiable function with r � p; and p is the number of parameters in �.

We are interested in testing the hypothesis

H0 : h (�) = 0; against H1 : h (�) 6= 0: (17)

Let e�T = argmin� fST (�) : h (�) = 0g denote the minimizer of ST (�) subject to the
restrictions implied by the null hypothesis. Then, we have the following result.

Theorem 6 When Assumptions 1 and 2 hold and under H0 : h (�) = 0,

ST

�e�T� �a �2 (kf � p+ r) :

KLMT

�e�T� �a �2 (r)

JKLMT

�e�T� �a �2 (kf � p) :

(18)

Proof. First, reparametrize � into (�; �) = g (�) := [g1 (�) ; h (�)] such that

g�1 (�; �) exists. Then, the restrictions become equivalent to � = 0 and the result

follows from Theorem 3, 4 and 5.
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4 Simulation results on size and power

We conduct three sets of simulation experiments to investigate the size and power of

the di¤erent test statistics analyzed in the previous section.

4.1 Linear IV model

The �rst experiment is based on a prototypical IV regression model with two endoge-

nous variables, which is identical to the one studied by Kleibergen (2006). The model

is given by

y = X� +W
 + "

X = Z�X + VX

W = Z�W + VW

where y;X;W;Z are T�1; T�1; T�1; T�k respectively, vec
�
"
...VX

...VW

�
� N (0;�
 IT ) ;

� is 3�3, �; 
 are scalars and �X ;�Z are k � 1. In the simulations, we set T = 500;

 = 1 k = 20 and � = I3. The latter is assumption is used in order to abstract from en-

dogeneity and make the problem exactly symmetric, as explained in Kleibergen (2006).

Z is drawn from a multivariate standard normal distribution and kept �xed in repeated

samples. The quality of the instruments is governed by the 2�2 concentration matrix
�0�: In this speci�c example, � = (Z 0Z)1=2

�
�X
...�W

�
; and we set all elements of

the k � 2 matrix � to zero except for �11 and �22: These govern the quality of the

instruments for estimating � and 
 respectively. Each experiment is carried out with

2500 replications.

The null hypothesis is H0 : � = 0; each for all statistics except W2S, 
 is set

at the restricted CUE, e
CUE. The tests statistics that we simulate are S, KLM,

JKLM, CJKLM (a combination of the KLM and JKLM), and two Wald statistics:

W uses e
CUE. and W2S uses 2-step GMM to estimate 
: The GMM estimators

uses the White (1980) Heteroskedasticity Consistent covariance estimator of Vff and

Vf�: bVff = 1
T

P
t

�
ft � �f

� �
ft � �f

�0
; ft = Zt (yt �Xt� �Wt
), �f = 1

T

P
ft andbVf� = 1

T

P�
ft � �f

�
(qt � �q)0 ; qt � @ft

@�0 =

 
�ZtXt

�ZiWt

!
; �q = 1

T

P
qt.

The results are reported in �gure 2. We observe that the results look essentially

identical to the results reported by Kleibergen (2006, Panel 2) and partly reproduced
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Figure 2: Power curves in the linear IV model, computed using White�s covarinace
estimator. 5% signi�cance level.
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in Figure 2 above. This shows that the conclusions concerning the conservativeness of

the S,KLM and JKLM subset tests and their power against distant alternatives extends

from the IV to the linear GMM setting.

This experiment was based on iid data. We next turn to a situation with dependent

observations. For this purpose, we look at a prototypical dynamic stochastic general

equilibrium (DSGE) model of the kind that is typically used in macroeconomics.

4.2 DSGE model

A prototypical DSGE model of monetary policy looks like, see Woodford (2003):

�t = �Et�t+1 + �xt (19)

yt = Etyt+1 + � (rt � Et�t+1) + gt (20)

rt = �rt�1 + (1� �) (�Et�t+i + 
Etxt+j) + "r;t (21)

xt = yt � zt

where Et denotes the expectation conditional on information up to time t, �t; yt; rt; xt
denote in�ation, output, nominal interest rates and output gap, respectively, and zt
and gt represent technology and taste processes, while "t;t is a monetary policy shock..

This model was recently used by Clarida, Galí, and Gertler (2000) and Lubik and

Schorfheide (2004) to study the postwar monetary policy history of the US.

The parameters of the model can be estimated by full- or limited-information meth-

ods. Here, we focus on the single-estimation GMM approach that is based on replacing

expectations with realizations and using lags of the variables as instruments. This is

the method used in seminal papers by Galí and Gertler (1999) for the new Keyne-

sian Phillips curve (19) and by Clarida, Galí, and Gertler (2000) for the Taylor rule

(21). Both equation have two parameters and two endogenous variables, so they are

well-suited for our simulation experiments on subset tests.

The simplest model to simulate is the Taylor rule (21) with � = i = j = 0: This is

simply an IV regression model but with dependent data.

15



4.2.1 Taylor rule

To keep the model simple and symmetric, we assume that �t and xt follow AR(1)

processes

�t = ���t�1 + v�;t (22)

xt = �xxt�1 + vx;t (23)

The version of equation (21) with � = i = j = 0 is the original Taylor (1993) rule:

rt = ��t + 
xt + "r;t: (24)

The strength of the identi�cation of � and 
 is governed by �� and �x respectively. In

particular, the signal-noise ratio (concentration) in the autoregressions (22) and (23)

is

�ii = T
�2i

1� �2i
; i = �; x

so

�i =
�iip
T +�2ii

; i = �; x

The innovations are simulated from independent Gaussian white noise processes

with unit variance, and the sample size is set to 1000. Equation (24) is estimated

by GMM using 10 lags of �t and xt as instruments, so that k = 20 as in the previ-

ous experiment. Apart from serial dependence, the other di¤erence from the previous

experiment is that the we use the Newey-West (1987) heteroskedasticity and autocor-

relation consistent estimator of Vff and Vf�:

The power curves for various instrument qualities are reported in �gure 3. The

power curve look remarkably similar to the linear IV model, and show that the conclu-

sions extend to the case of dependent data and the use of a HAC covariance estimator.

(Note that we have renormalized the � to make it�s range comparable to the range of

� in �gures 1 and 2),
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Figure 3: Power curves for the Taylor rule, computed using the Newey-West covariance
estimator. 5% signi�cance level.
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4.2.2 New Keynesian Phillips curve

Equation (19) is a model of in�ation with sticky prices based on ?). Assume the

unobservable exogenous processes zt and gt follow

zt = �zzt�1 + "z;t

gt = �zgt�1 + "g;t

This is a standard assumption (see, e.g., Lubik and Schorfheide 2004). It can be shown

(see Woodford, 2003) that the determinate solution for xt must satisfy:

xt = axzzt + axggt + axr"r;t

for some constants axz, axg and axr Hence, the law of motion for �t is determined by

solving the model (19) forward by repeated substitution:

�t = �
1X
j=0

�jEt (xt+j)

=
�axz
1� ��z

zt +
�axg
1� ��g

gt + �axr"r;t

The limited information approach estimates the following equation by GMM using

the moment conditions Et�1ut = 0:

�t = �xt + ��t+1 + ut (25)

ut = �� (�t+1 � Et�t+1) :

The endogenous regressors are xt and �t+1 and the instruments are lags of xt and

�t. The key di¤erence from the Taylor rule is that the error term ut exhibits serial

correlation, which is typical of forward-looking Euler equation models. Thus, the use

of a HAC covariance estimator is imperative.

As it may be anticipated, the identi�ability of � and � depends on �z and �g.

In particular, the model is partially identi�ed when �z = 0; or �g = 0; or �z = �g:

Measuring the quality of the instruments is possible, using a generalization of the

concentration matrix for non-iid data, but the resulting expression is not analytically

tractable. Moreover, in order to simulate data from equations (19) through (21) we

need to specify all the remaining parameters � ; �; �; 
 and the covariance matrix of the

innovations "z;t; "g;t and "r;t. Thus, instead of trying to set the parameters in order to

18



control the degree of identi�cation, we take them from the literature. In particular,

we set them to the posterior means reported by Lubik and Schorfeide (2004, table

3).estimated using quarterly US data from 1982 to 1997. The estimated values of �z
and �g are 0.85 and 0.83 respectively.

1

The null hypothesis for the subset test is chosen as follows. A key parameter in the

Calvo model is the probability a price remains �xed, �; which is linked to � and � by:

� =
(1� �) (1� ��)

�
:

So, we consider tests of H0 : � = 1=2, which is a nonlinear restriction on the parameters

�; �. The instruments include four lags of �t and xt; i.e., k = 8:

The results are reported in Figure 4. We report power curves both for the case

�z = 0:85; �g = 0:83 (left panel) and for the case �z = 0:1; �g = 0:05 (right panel)

in which both � and � are nearly unidenti�ed. The identi�cation-robust tests have

virtually no power, and are even conservative over some region of the parameter space.

In contrast, the two Wald statistics are dramatically over-sized. These results are

remarkable, in view of the fact that the parameters have been set to their estimated

values. The pictures look extremely similar if, instead of the estimates of Lubik and

Schorfheide (2004), we used the estimates reported by Clarida, Galí, and Gertler (2000),

so the latter results are omitted. Notice also that the tests are conservative in the case

when the model is partially identi�ed (left panel), as well as in the case in which both

parameters are weakly identi�ed (right panel), in accordance to the theory.

5 Conclusions

The above analysis shows that the upper bounds on the (conditional) limiting distri-

butions of the subset statistics extend from the linear IV regression model to GMM.

Hence, the conservativeness of the subset tests extends from linear IV to GMM. The

lower bound on the (conditional) limiting distribution of the subset statistics in the

linear IV regression model is of lesser importance. The power at distant values of the

parameter of interest is, however, of importance and we will extend this result from

the linear IV regression model towards GMM in future work.

1Clarida, Galí, and Gertler (2000) set �z = �g = 0:9 in their simulations. When we use these values
instead, the results are virtually identical.
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Figure 4: Power curves for tests of the null hypothesis � = 1=2 in the Calvo model,
computed using a Newey-West covariance estimator and 5% signi�cance level. The
data are simulated from the DSGE model in Lubik and Schorfheide (2004). In the left
panel: �z = 0:85; �g = 0:83; in the right panel: �z = 0:1; �g = 0:05

Since the parameters on the included exogenous variables can be partialled out

analytically in the linear IV regression model, the results on the subset statistics in

linear IV regression models are only important for testing the structural parameters in

models with more than one included endogenous variable and for testing the parame-

ters of the included exogenous variables. Since many linear IV regression models used

in applied work only have one included endogenous variable, the results on the subset

statistics are not relevant for all empirical studies that use the linear IV regression

model. However, in GMM it is typically not possible to partial out any of the para-

meters so the results of the proposed research are of importance for almost all models

that are estimated by GMM. They therefore provide a solution to a long-standing

problem of inference in models in which any identi�cation assumptions are usually too

strong. An important class of such models are dynamic stochastic general equilibrium

(DSGE) models, e.g., the New Keynesian monetary policy models described in Wood-

ford (2003). These models are currently at the center stage of empirical macroeconomic

research, especially with regards to monetary policy, see Galí and Gertler (1999), Clar-

ida, Galí, and Gertler (2000), Lubik and Schorfheide (2004), Christiano, Eichenbaum,

and Evans (2005). Empirical macroeconomists and central bank sta¤ use such models

to study macroeconomic �uctuations, to o¤er policy recommendations and to forecast
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indicators of economic activity. Unlike other rational expectations models to which

identi�cation-robust methods have recently been applied, for instance, the stochastic

discount factor model in Stock and Wright (2000) and Kleibergen (2005), the current

generation of DSGE models are su¢ ciently rich to match several aspects of the data.

Thus these models present a more natural application of the proposed methods, and,

as a result, this paper provides an important methodological contribution to applied

macroeconomic research.
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Appendix

Lemma 1.For a : k � 1; A : k �m; it holds that

(a
 a)0
�
@vec(PA)
@vec(A)0

�
= 2(a
 a)0(A(A0A)�1 
MA)

(a
 a)0
�
@vec(PA)
@vec(A0)0

�
= 2(a
 a)0(MA 
 A(A0A)�1):

Proof.

@vec(PA)
@vec(A)0 = (A(A0A)�1 
 Ik)

@vec(A)
@vec(A)0 � (A
 A)((A0A)�1 
 (A0A)�1)@vec(A

0A)
@vec(A)0 +

(Ik 
 A(A0A)�1)@vec(A
0)

@vec(A)0

= (A(A0A)�1 
 Ik)� (A
 A)((A0A)�1 
 (A0A)�1)h
(Im 
 A) @vec(A)

@vec(A)0 + (A
 Im)
@vec(A0)
@vec(A)0

i
+ (Ik 
 A(A0A)�1)Kkm

= (A(A0A)�1 
MA) + (MA 
 A(A0A)�1)Kkm;

where Kkm is the km � km dimensional commutation matrix which is such that

Kkmvec(A) =vec(A0); vec(A0) = K 0
kmvec(A): Similarly,

@vec(PA)
@vec(A0)0 = (A(A0A)�1 
 Ik)

@vec(A)
@vec(A0)0 � (A
 A)((A0A)�1 
 (A0A)�1)@vec(A

0A)
@vec(A0)0 +

(Ik 
 A(A0A)�1) @vec(A
0)

@vec(A0)0

= (A(A0A)�1 
 Ik)K
0
km � (A
 A)((A0A)�1 
 (A0A)�1)h

(Im 
 A) @vec(A)
@vec(A0)0 + (A
 Im)

@vec(A0)
@vec(A0)0

i
+ (Ik 
 A(A0A)�1)

= (A(A0A)�1 
MA)K
0
km + (MA 
 A(A0A)�1);

so for a k dimensional vector a; it then holds that

(a
 a)0 [(A(A0A)�1 
MA) + (MA 
 A(A0A)�1)Kkm] = 2(a
 a)0(A(A0A)�1 
MA)

(a
 a)0 [(A(A0A)�1 
MA)K
0
km + (MA 
 A(A0A)�1)] = 2(a
 a)0(MA 
 A(A0A)�1)

for which we used the property of the commutation matrix that Krk(A 
 B)Kmq =

(B 
 A) for B : r � q:

Proof of Theorem 2: The minimal value of ST (�) is attained at �̂ so
@ST (�̂)
@�0 = 0:

Since KLMT (�) is a quadratic form of sT (�) and sT
�
�̂
�
= 0; @KLMT (�̂)

@�0 = 0 and since

ST (�) = KLMT (�) + JKLMT (�) also
@JKLMT (�̂)

@�0 = 0: Hence

ST

�
�̂
�
= JKLMT (�̂) = min� JKLMT (�) � JKLMT (�0)

d! �2 (kf � p) ;
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so ST
�
�̂
� a

� �2 (kf � p) since the convergence of the JKLM statistic to its limiting

distribution is uniform.

To prove that the JKLM statistic attains its minimum at �̂; we construct its deriv-

ative. For this we use that f �T (�) = V̂ff (�)
� 1
2fT (�); D̂

�
T (�) = V̂ff (�)

� 1
2 D̂T (�); such that

JKLMT (�̂) = f �T (�)
0PD̂�

T (�)?
f �T (�); with D̂

�
T (�)? : k�(k�m); D̂�

T (�)
0
?D̂

�
T (�) � 0: Using

Lemma 1, we then obtain that:

@JKLMT (�)
@�0 = 2f �(�)0PD̂�(�)?

@f�(�)
@�0 + (f �(�)
 f �(�))0

@vec(PD̂�(�)?
)

@vec(D̂�(�)0?)
0
@vec(D̂�(�)0?)

0

@�0

= 2(f �(�)0MD̂�(�)?

 f �(�)0D̂�(�)?(D̂

�(�)0?D̂
�(�)?)

�1)
@vec(D̂�(�)0?)

@�0

= 2(f �(�)0PD̂�(�) 
 f �(�)0D̂�(�)(D̂�(�)0?D̂
�(�)?)

�1)
@vec(D̂�(�)0?)

@�0 ;

where we used that @f�(�)
@�0 = D̂�(�) so PD̂�(�)?

@f�(�)
@�0 = 0: Since D̂�(�)0?D̂

�(�) � 0;

(Im 
 D̂�(�)0?)
@vec(D̂�(�))

@�0 + (D̂�(�)0 
 Ik�m)
@vec(D̂�(�)0?)

@�0 � 0,
(Im 
 D̂�(�)0?)

@vec(D̂�(�))
@�0 = �(D̂�(�)0 
 Ik�m)

@vec(D̂�(�)0?)

@�0 ;

and the derivative of the JKLM statistic is identical to

@JKLMT (�)
@�0 = �2(f �(�)0D̂�(�)

�
D̂�(�)0D̂�(�)

��1

 f �(�)0PD̂�(�)?

)@vec(D̂
�(�))

@�0 :

Hence, the derivative of the JKLM statistic is equal to zero when:

1. f �(�)0D̂�(�) = 0 which occurs when the FOC for the S-statistic holds.

2. f �(�)0D̂�(�)? = 0 which occurs when f �(�) = D̂�(�)� for some m � 1 vector �:
This implies that the model is not globally identi�ed since the moment equations

are spanned by their derivative.

3. (Im
D̂�(�)0?)
@vec(D̂�(�))

@�0 = 0 which also implies that
�
D̂�(�)0 
 Ik�m

�
@vec(D̂�(�)0?)

@vec(�)0 =

0: This implies that D�(�) or D̂�(�)? are identical to zero which also implies that

the model is not identi�ed.

4. (f �(�)0D̂�(�)(D̂�(�)0D̂�(�))�1 
 f �(�)0PD̂�(�)?
)@vec(D̂

�(�))
@�0 = 0 while the previous

conditions do not hold.

We analyze the fourth point for the case that m = 1 for which we can specify the

derivative of the JKLM statistic as

@JKLMT (�)
@�0 = �2f �(�)0PD̂�(�)?

@D̂�(�)
@�0

�
D̂�(�)0D̂�(�)

��1
D̂�(�)0f �(�):
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The derivative of the JKLM statistic can be equal to zero at other values of � than

those for which the FOC for the S-statistic holds when f �(�)0PD̂�(�)?
@D̂�(�)
@�

can be equal

to zero. The second and third point deal with PD̂�(�)?
@D̂�(�))
@�0 = 0 and PD̂�(�)?

f �(�) = 0:

The only other possibility for f �(�)0PD̂�(�)?
@D̂�(�))
@�

to be equal to zero is therefore that

the parts of f �(�) and @D̂�(�)
@�

that lie in the span of D̂�(�)? are orthogonal to one

another with respect to
�
D̂�(�)0D̂�(�)

��1
: We can specify f �(�) as

f �(�) = D̂�(�)� +G(�);

with G(�) : k� 1 and @G(�)
@�

= �@D̂�(�)
@�

� in order to satisfy that @f�(�)
@�

= D̂�(�): Because

of this speci�cation, f �(�)0PD̂�(�)?
= G(�)0PD̂�(�)?

: Since @G(�)
@�

= �@D̂�(�)
@�

�; it holds that

f �(�)0PD̂�(�)?
@D̂�(�)
@�

6= 0: A similar argument can be constructed for the case where m
exceeds one.

Thus the derivative of the JKLM statistic is only zero at those values of � where

the derivative of the S statistic is zero as well. Since the KLM statistic is equal to zero

at these values of �; the values of the JKLM and S statistics coincide and the minimal

value of the S statistic corresponds with the minimal value of the JKLM statistics.

Proof of Theorem 4. For D̂T (�; �) =

�
D̂�;T (�; �)

... D̂�;T (�; �)

�
; D̂�;T (�; �) : k�p�;

D̂�;T (�; �) : k � p�; it results from Assumption 1 that under H�
0 : � = �0; that

D̂�;T (�1; �0) is independent of fT (�1; �0) in large samples even for values of �1 that are

not equal to the true value �0. The CUE of � underH�
0 ; e�(�0); is obtained from fT (�; �)

and D̂�;T (�; �) (and V̂ff (�; �)); since D̂�;T (e�(�0); �0)0V̂ff (e�(�0); �0)�1fT (e�(�0); �0) =
0; without the involvement of D̂�;T (�; �): For all values of e�(�0); it therefore holds
that fT (e�(�0); �0) is independent of D̂�;T (e�(�0); �0): Theorem 3 shows that the limiting
distribution of fT (e�(�0); �0)0V̂ff (e�(�0); �0)�1fT (e�(�0); �0) is bounded from above by a
�2(k� p�) distribution. The KLM statistic KLMT (e� (�0) ; �0) results from projecting
V̂ff (e�(�0); �0)� 1

2fT (e�(�0); �0) ontoMV̂ff (e�(�0);�0)� 1
2 D̂�;T (e�(�0);�0)D̂�;T (e�(�0); �0) which is

independent of it. Hence, the bounding argument for the S-statistic extends with an

appropriate degrees of freedom correction to the KLM statistic. A similar argument

can be constructed for the JKLM statistic.
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