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Abstract

An active area of research in macroeconomics is to take DSGE models to the data. Much of
the focus has been on estimation and testing of models solved under specific assumptions about
how the exogenous variables grow over time. In this paper, we first show that if the trends
assumed for the model are incompatible with the observed data, or that the detrended data
used in estimation are inconsistent with the stationarity concepts of the model, the estimates
can be severely biased even in large samples. Linearly detrending a unit root process can
lead to non-standard inference as the regressors are not stationary, while the regression can be
spurious if the data are inappropriately filtered. We then suggest a quasi-differencing approach
that is robust to whether shocks in the model are assumed to be permanent or transitory.
Root-T consistent and asymptotically normally estimates can be obtained without requiring
the researcher to take a stand on the dynamic properties of the data. Simulations also show
that the methodology works well when the shock process is correctly assumed and is far more
accurate than standard estimators when the model parameter is near the unit circle. These
properties hold even when there are multiple shocks.
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are now accepted as the primary framework

for macroeconomic analysis. Until recently, counterfactual experiments were conducted by assigning

the parameters of the models with values that are loosely calibrated to the data. More recently,

serious efforts have been made to estimate the model parameters using classical and Bayesian

methods. This permits researchers to assess how well the models fit the data both in and out

of samples. Formal estimation also permits errors arising from sampling or model uncertainty to

be explicitly accounted for in counterfactual policy simulations. Arguably, DSGE models are now

taken more seriously as a tool for policy analysis because of such serious econometric investigations.

This paper points out two potential problems specific to the estimation of DSGE models when

either the data and/or the model variables are persistent or non-stationary. When one or more

forcing processes in a DSGE model are non-stationary, the model variables in level form have to

be first normalized by appropriate trending variables. The variables in the log-linearized model

are then interpreted as deviations from the steady state of the normalized variables. In order to

take the model to the data, a researcher must construct data analogs of the model concepts, and

in doing so, must choose a method for detrending the data. The first problem arises when the

method of detrending does not agree with the definition of the trends in the model. The second

problem arises when the data are detrended to match the model concepts but that the empirically

detrended data remain non-stationary or are over-differenced. Both issues can pose problems for

estimation and inference. Hereafter, we refer to these issues as Data Detrending (DD) and Model

Trend Specification (MTS) problems. A concise overview of the issues associated with estimating

DSGE models is as follows:

Step 1 Step 2 Step 3
Model Specification → Data Detrending → Estimation

Problems: MTS DD

Problem (DD) is concerned with how the observed data are filtered. The filtered data can

be stationary and yet the trends associated with the stationary component of the data can be

inconsistent with how the trends are defined in the model. Problem (DD) would most likely

arise when a researcher detrends the data to ensure that the deviation from a trend component

is stationary, but is unaware that the trends that accomplish this task are inconsistent with the

trends specified in the model. For example, the model may specify the trend as a random walk, but
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the data may be detrended by a two-sided symmetric filter. Whereas the stationary component in

the model is white noise, the filtered series can be serially correlated. In this case, the error term

associated with the empirical Euler equations can be serially correlated. The moment conditions

used to estimate the parameters will not be zero even in the population.

Problem (MTS) is concerned with whether the assumption about the trend in the model is

consistent with the trend in the data. Problem (MTS) is often related to whether the detrended

data are stationary. This issue can arise if, for example, the model assumes that technology is trend

stationary and thus the data are linearly detrended accordingly. However, the detrended data will

still be non-stationary if in fact the data contain stochastic trends. As is well known, classical

inference procedures can be misleading when the regressors are non-stationary or highly persistent,

and estimation of a spurious regression cannot be ruled out. An additional issue that confronts

researchers is that in finite samples, it is very difficult to ascertain whether the data are stationary

or not. Yet, existing estimators of DSGE models require that the researcher takes a stand on the

stationarity property of the data.

The two problems are not unrelated. For instance, a mistake in the first step (i.e., MTS problem)

can distort filtering and estimation results even if there is no Problem (DD), i.e., the researcher

uses a model consistent trend to detrend the data. In any case, an error in either model trend

specification or data detrending can seriously distort the results in the estimation step.

Table 1 is a non-exhaustive listing of how trends are treated in some notable papers. While

there are exceptions, the majority of the analysis assumes that non-stationarity in the models is

due to a deterministic trend. The empirical analysis then proceeds to estimate the models on

linearly detrended data. However, as Nelson and Plosser (1982) pointed out, the assumption of

trend stationarity for variables such as real output is questionable. Stochastic trends are assumed

in some studies and the first differenced data are then used in estimation. While much is known

about estimation and inference of linear models with non-stationary data, little is known about

how the treatment of trends affects estimation of DSGE models. This paper sheds some light on

this issue.

This paper is intimately related to previous literature investigating properties of filtered data.

From this literature we know that improper filtering can alter persistence and volatility of the series

(e.g., Cogley and Nason (1995)), induce spurious correlations in the filtered data (e.g., Harvey and

Jaeger (n.d.)), change error structure (e.g., Singleton (1988)), distort inference (e.g., Christiano

and den Haan (1996)) or even yield non-stationary series (e.g., Nelson and Kang (1981)). However,

much of this literature is focused on univariate analysis and relatively little is known about effects

of filtering on estimates of structural parameters in DSGE models. The systems approach provides
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a complete characterization of the model and thus the estimates are more efficient if the model is

correctly specified. But mis-specification in one equation can affect estimates in other equations. In

an early contribution, King and Rebelo (1993) simulate an RBC model and show that HP filtered

data are qualitatively different from the raw data. Although these authors do not estimate the

model on filtered data, they hint that estimates of structural parameters can be adversely affected

by filtering. From our non-exhaustive review of the literature, it appears that analysis of Problem

(DD) has been predominantly constrained to univariate framework or informal discussions about

possible effects in estimating DSGE models.

In a similar vein, analysis of Problem (MTS) has been generally conducted within the univariate

framework. In a study closely related to ours, Cogley (2001) investigates formally how Problem

(MTS) can affect the estimates of structural parameters. He shows that inappropriate choice of

trend (i.e., trend stationary versus difference stationarity forcing variables) can lead to strong biases

in the maximum likelihood estimates. He considers several possibilities to circumvent Problem

(MTS) and finds that using cointegration relationships in unconditional Euler equations works the

best since in this formulation moments used in GMM estimation remain stationary irrespective of

whether the data are trend or difference stationary. Our approach, which is based on estimating

covariance structures, is different from and complementary to Cogley’s approach.1 Instead of

comparing estimators, we study the properties of the covariance structure estimator alone to focus

on the sensitivity of the estimates to the model underlying the covariance structure as well as the

to the choice of sample analogues of the model variables.

Specifically, we propose a robust strategy to handle uncertainty as to whether the data are trend

or difference stationary. Under the proposed approach, the model is solved in a way that does not

require the researcher to take a stand on whether the shocks have permanent or transitory effects

on the model variables. The key is to solve the model in quasi-differenced form and proceed to

estimation using quasi-differenced data. The quasi-differencing approach is shown to be effective

even when there are multiple shocks, of which a subset of them may be permanent. Although our

analysis is motivated as classical estimator, it can be adapted into a Bayesian framework.

We use a stochastic growth model to illustrate the problems under consideration. When the

trends assumed for the model agree with the trends present in the data, the estimated parameters

are mean and median unbiased. Otherwise, the estimates can deviate significantly from the true

values. For instance, even though the HP filter can remove both linear and stochastic trends, the

detrended data no longer have the same dynamics as those implied by the model. As a result,
1Combination of these two approaches is straightforward and, although we do not investigate the benefits on

combining cointegration and quasi-differencing formally, one may expect that such a combination can be quite fruitful
in sharpening the estimates.
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the HP estimates can be severely biased. Estimates of parameters governing the propagation and

amplification mechanisms in the model can be greatly distorted or poorly identified.

The structure of the paper is as follows. In the next section, we lay out a standard neoclassical

growth model. We linearize the model and show how one can solve it under different assumptions

about trends in the forcing variables. We present the estimation procedure and illustrate Problems

(DD) and (MTS) with a few specific examples. In Section 3, we report simulation results. In par-

ticular, we demonstrate a superior performance of our robust approach and distortions in popular

estimators due to Problems (DD) and (MTS). We consider several extensions of the baseline growth

model to highlight the issues associated with estimation of endogenous propagation/amplification

mechanisms and estimation of models with multiple structural shocks. We also briefly contrast

statistical properties of our approach and popular alternatives. In Section 4, we develop a gen-

eral framework for using quasi-differencing to estimate structural parameters in linearized DSGE

models. We conclude in Section 5.

2 An Example: Neoclassical Growth Model

2.1 The General Setup

We use the stochastic growth model to highlight the problems under investigation. The problem

facing the central planner is:

max Et

∞∑
t=0

βt

(
lnCt − θ(Lt/Qt)

)
subject to

Yt = Ct + It = Kα
t−1(ZtLt)(1−α)

Kt = (1− δ)Kt−1 + It

Zt = exp(ḡt) exp(uz
t ), uz

t = ρzu
z
t−1 + ez

t , |ρz| ≤ 1

Qt = exp(uq
t ), uq

t = ρqu
q
t−1 + eq

t , |ρq| < 1.

where Yt is output, Ct is consumption, Kt is capital, Lt is labor input, Zt is the level of technology,

and Qt is a labor supply shock. In the general case, ρq and ρz can be on the unit circle. The first

order conditions are:

θCt = (1− α)Kα
t−1Z

(1−α)
t L−α

t Qt

EtCt+1 = βCt

(
αKα−1

t (Zt+1Lt+1)(1−α) + (1− δ)
)

Kα
t−1(ZtLt)(1−α) = Ct + Kt − (1− δ)Kt−1
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If ḡ = 0 and |ρz|, |ρq| < 1, then under regularity conditions, a solution for model log-linearized

around the steady state values exists. But once technology is allowed to grow over time, the model

solution as well as the estimation approach depends on the properties of Zt and Qt.

Let lower case letters denote the natural logarithm of the variables, e.g. ct = log Ct. Let c∗t ,

be such that in ct − c∗t is stationary; k∗t and z∗t are similarly defined. Note that c∗t and k∗t are

model concepts. Hereafter, we will use DT and ST to refer to the case when |ρz| < 1 and |ρz| = 1,

respectively. The assumption on |ρq| will vary depending on the context. Where appropriate, we

will drop Qt to simplify the analysis.

2.2 Solving the One Shock Model

To fix ideas, suppose for now that technology is the only shock in the system. Hence, Qt is

suppressed. We consider separately when |ρz| < 1 and when |ρz| = 1.

When |ρz| < 1, c∗t = k∗t = ḡt. The detrended variables in the model are then defined as

ĉt = ct − c∗t , k̂t = kt − k∗t and l̂t = lt.2 The log-linearized model in terms of ĉt, k̂t, l̂t is

DT Model

Et

0 0 0
1 0 A0

0 0 0

ĉt+1

k̂t+1

l̂t+1

 =

−1 0 −α
1 A0 0

A1 A2 α− 1

ĉt

k̂t

l̂t

 +

0 α 0
0 0 0
0 A4 0

ĉt−1

k̂t−1

l̂t−1


+

 0
−A0

0

uz
t+1 +

1− α
0

α− 1

uz
t (1)

where we suppress constant terms and define entries of the matrices in (1) as follows

A∗
0 = 1− β

1− δ

1 + ḡ
A0 = (α− 1)A∗

0

A4 = −α− (1− δ)A3,

A3 =
αβ

(1 + ḡ)A∗
0

,

A2 = (1 + ḡ)A3,

1 = A1 + A2 − (1− δ)A3.

We will refer to (1) as the trend stationary (DT) representation of the model. Let m̂t = (ĉt, k̂t, l̂t)′.

Since a shock to technology has temporary effects, m̂t is stationary. We can compactly write (1) as

EtΓD
2 m̂t+1 = ΓD

0 m̂t + ΓD
1 m̂t−1 + ΨD

1 uz
t+1 + ΨD

0 uz
t .

2Note that labor Lt is stationary for all |ρz| ≤ 1 and thus we do not need to scale it.
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The QZ decomposition or similar methods are used to solve the system of expectation equations

for the reduced form.

When |ρz| = 1, the log-linearized model is expressed in c̃t, k̃t, and k̃t, where

c̃t = ct − zt, k̃t = kt − zt, l̃t = lt.

The model is now represented by the following system of expectational equations:

ST Model

Et

0 0 0
1 0 A0

0 0 0

c̃t+1

k̃t+1

l̃t+1

 =

−1 0 −α
1 A0 0

A1 A2 α− 1

c̃t

k̃t

l̃t

 +

0 α 0
0 0 0
0 A4 0

c̃t−1

k̃t−1

l̃t−1

 +

 0
−A0

0

 ez
t+1 +

 1− α
0

α− 1

 ez
t (2)

We will refer to (2) as the stochastic trend (ST) representation of the model. Let m̃t = (c̃t, k̃t, l̃t)′

and compactly write the system as

EtΓS
2 m̃t+1 = ΓS

0 m̃t + ΓS
1 m̃t−1 + ΨS

1 ez
t+1 + ΨS

0 ez
t .

Now m̃t and m̂t are related as follows:

c̃t = ĉt − uz
t , k̃t = k̂t − uz

t , l̃t = l̂t.

Effectively, subtracting uz
t from appropriate variables as in the ST model changes the object of

interest in the model from m̂t (which would not be stationary under ST) to m̃t (which is stationary

under ST).

An alternative to solving the ST model in terms of m̃t is to consider the first-differenced repre-

sentation of the DT model.

∆1DT Model

Et

0 0 0
1 0 A0

0 0 0

∆1ĉt+1

∆1k̂t+1

∆1 l̂t+1

 =

−1 0 −α
1 A0 0

A1 A2 α− 1

∆1ĉt

∆1k̂t

∆1 l̂t

 +

0 α 0
0 0 0
0 A4 0

∆1ĉt−1

∆1k̂t−1

∆1 l̂t−1


+

 0
−A0

0

 ez
t+1 +

 1− α
0

α− 1

 ez
t (3)
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Here the superscript ”1” in ∆1 emphasizes that ρz is constrained to be equal to one. Clearly,

first differencing removes the permanent shock in m̂t, while m̃t subtracts the permanent shock from

m̂t. Not surprisingly, (2) and (3) both yield stationary solutions to the ST model.3

The system of equations (1), (2) and (3) both correspond to the same stochastic growth model.

Not surprisingly, the rational expectations solution (that is, QZ decomposition) for variables in

levels is the same irrespective of which model we solve. The models are distinguished only in what

variables we analyze. In other words, although the model is defined in terms of m̂t for DT, ∆m̂t for

∆1DT, and m̃t for ST, the solution for the unique rational expectations equilibrium is the same.

The distinction between m̃t, ∆m̂t, and m̂t is important because the former two are stationary

when ρz = 1 while m̂t is not. Although one can arrive at the ST system by solving the DT model

and re-defining variables even if ρz = 1, one should not use data analogue of m̂t in estimation

because m̂t is a non-stationary model variable with ρz = 1. Recall that classical estimation assumes

that the data are stationary and, thus, estimation requires stationary data analogues of the model

concepts. On the other hand, m̃t is stationary when ρz = 1 and thus is a model concept suitable

for estimation.

2.3 Filtering the Data

To take the model to the data, one needs stationary data analogue of the model concepts. Suppose

we observe the data for dt = (ct, kt, lt). Let dc
t = (cc

t , k
c
t , l

c
t ) = (ct − cτ

t , kt − kτ
t , lt − lτt ) denote the

data filtered to become stationary. We consider three possibilities.

• Linear Trend (LT):

cc
t = ct − ḡt, kc

t = kt − ḡt, lct = lt. (4)

• HP Trend (HP):

cc
t = HP (L)ct, kc

t = HP (L)kt, lct = lt. (5)

• First Difference (FD):4

cc
t = ∆ct − ḡ, kc

t = ∆kt − ḡ, lct = ∆lt. (6)
3One may also exploit cointegration relationships to construct stationary linear combinations of the non-stationary

variables. For example, ct − yt is stationary for all |ρz| ≤ 1. That is, the cointegration vector (-1, 1) nullifies the
deterministic and stochastic trends in ct and yt, if they exist. Although in our basic model using this vector in
estimation does not bring in new information since ct − yt ∝ lt, cointegration vectors (e.g., yt − kt) can enrich the
model and make it more robust to problems that can arise when ρz approaches one. This approach is exploited in
Cogley (2001) when he estimates Euler equations for cointegrated variables and variables in growth rates.

4Even though the model predicts that labor is stationary, we first difference all series in the data because we solve
the ∆1DT model in first differences for all variables.
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Ideally, linearly detrended data would replace the unobserved model variable m̂t when |ρz| < 1,

while the HP filtered and first differenced data would stand in for m̃t and ∆m̂t when ρz = 1. HP

filter can be and often is used in conjunction with m̂t when |ρz| < 1 because HP removes time

trends as well. It is well known that the Hodrick-Prescott (HP) filter can alter the gain and phase

of the cyclical components of the data (see e.g. Cogley and Nason (1995)) and change the error

structure (see e.g. Singleton (1988)) in the univariate or single-equation framework. We examine

formally how HP filter affects estimation in the DSGE context.

2.4 Estimation Procedure

Various non-Bayesian methods have been used to estimate the model as a system of equations.

Two-step minimum distance approach (e.g., Sbordone (2006)), GMM/covariance structure (e.g.,

Christiano and den Haan (1996), Christiano and Eichenbaum (1992)), as well as simulation esti-

mation (e.g., Altig et al. (2004)) can all be used. Ruge-Murcia (2005) provides a review of these

methods. We use a methods of moments estimator that minimizes the distance between data

moments and model-implied moments. Our estimation procedure can be summarized as follows:

1: Compute Ω̂d(0) = cov(dc
t), the covariance matrix of filtered series. Likewise, compute Ω̂d(1),

the first order sample auto-covariance.

2: Solve the rational expectations model (1), (2), or (3) for a guess of Θ, where Θ is the vector

of structural parameters. Use the solution to compute Ωm(0) and Ωm(1), the model implied

covariance and autocovariance matrix for model variables (which would be m̂t, m̃t, or ∆m̂t).

3: Let ω̂d = (vech(Ωd(0))′ vech(Ωd(1))′)′ and let ωm(Θ) = (vech(Ωm(0))′ vech(Ωm(1))′)′. Find

structural parameters Θ̂ = argminΘ

∥∥ω̂d − ωm(Θ)
∥∥.5

Before estimation, a researcher needs to take a stand on two issues. First, he/she must decide

whether the model is solved in terms of m̂t, which is stationary under DT but not ST, or m̃t,

which is stationary under ST. In doing so, the researcher is also making an assumption whether

the shocks in the model are permanent or transitory. Second, the researcher needs to map the

model variables (which are stationary) to the observed data and must decide how to filter the data.

Problem (DD) arises when the two steps are not mutually consistent. Problem (MTS) arises when
5One can use the values of the ratios or other first moments contained in the constant terms as additional moments

in estimation. However, since estimation of DSGE model is typically based on the second moments of the cyclical
component of the data, we do not consider these additional moments in our analysis. As Cogley (2001) observes,
”The RBC methodology is motivated by a desire to formulate estimators and tests that are not too distorted by
trend misspecification.” This separation of trend and cycle may be more problematic for general equilibrium models
with endogenous growth and models without balanced growth path.
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the data analogue of the model variables are not stationary or are over-differenced; that is, the

assumed trend in the model is different from the trend in the data.

To illustrate the problems, consider the following combinations of model variables and data

filtering techniques:

True Model Assumed Model and Variables Filtering Problems
1. DT DT, m̂t LT -
2. DT DT, m̂t HP (DD)
3. ST ST, ∆1m̂t FD -
4. ST ST, m̃t HP (DD)
5. DT ST, m̃t HP (DD),(MTS)
6. ST DT, m̂t LT (MTS)

Of the six configurations, (1) and (3) are correctly specified and the data are appropriately

filtered. In both cases, the assumed trend is identical to the trend in the data and, thus, there is no

Problem (MTS). Because the researcher applies the same filter to the model variables and the data

series, Problem (DD) is not an issue. In case (2), the assumed trend in the model is consistent with

the actual trend in the data (both are deterministic time trends) and there is no Problem (MTS).

However, the HP filter applied to the data series has different properties than the filter in the

model, which is the linear time trend. Since these two filters do not agree in general, the researcher

faces Problem (DD). A similar problem arises in case (4). In case (6), the assumed trend and the

choice of detrending technique are consistent; that is, the researcher applies an appropriate filter

given his or her assumption about the trend. Hence, Problem (DD) does not apply for this case.

On the other hand, because the researcher has to choose either DT or ST before estimation, his or

her choice of DT is not consistent with the true data generating process (ST) and, consequently,

Problem (MTS) applies to this case. Likewise, in case (5), the choice of the trend in the model (DT)

does not agree with the trend in the data (ST). In addition, the choice of the filtering technique in

the data is not consistent with the assumed trend in the model. It follows that Problem (MTS) is

further complicated by Problem (DD).

Two observations can be made. First, Problem (DD) involves only inconsistency between the

model and the data trend. One can always circumvent the problem by applying the same filtering

technique to the model variables and the data series. For example, the researcher can generate

m̂t, apply HP filter to generated m̂t and match the moments of filtered m̂t to the moments of HP

filtered data. Although this procedure does not have Problem (DD), it is much slower and less

efficient than alternative methods we describe below.

Second, Problem (MTS) arises only when the assumption about the trend in the model is

different from the actual trend in the data, and this assumption has to be made before estimation.
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A solution to Problem (MTS) is a flexible framework that nests DT and ST so that the researcher

does not have to take a stand on whether ρz < 1 or ρz = 1. These two observations suggest that to

address Problems (DD) and (MTS), the researcher needs an approach that i) transforms the data

and model variables in the same way and ii) yields stationary series for all |ρz| ≤ 1. In the next

section, we develop such a framework.

2.5 A Robust Approach

In this subsection, we consider an approach that is robust to whether shocks are permanent or

transitory. To begin, recall that the DT model solves the following system of equations:

EtΓD
2 m̂t+1 = ΓD

0 m̂t + ΓD
1 m̂t−1 + ΨD

2 uz
t+1 + ΨD

0 uz
t

where the Γ and Ψ matrices are defined in (1). We propose to solve an alternative representation

of the same model. Let ∆ρz = 1 − ρzL be the quasi-differencing operator. Then for a given ρz,

a quasi-differenced representation of the DT model can be obtained by multiplying both sides of

each equation in (1) by ∆ρz :

The Quasi-Differenced DT Model

Et

0 0 0
1 0 A0

0 0 0

∆ρĉt+1

∆ρk̂t+1

∆ρ l̂t+1

 =

−1 0 −α
1 A0 0

A1 A2 α− 1

∆ρĉt

∆ρk̂t

∆ρ l̂t

 +

0 α 0
0 0 0
0 A4 0

∆ρĉt−1

∆ρk̂t−1

∆ρ l̂t−1


+

 0
−A0

0

∆ρuz
t+1 +

 1− α
0

α− 1

∆ρuz
t . (7)

Since uz
t = ρzuz

t−1 + ez
t , we have

EtΓD
2 ∆ρzm̂t+1 = ΓD

0 ∆ρzm̂t + ΓD
1 ∆ρzm̂t−1 + ΨD

1 ez
t+1 + ΨD

0 ez
t

where ∆ρzm̂t = (∆ρzct,∆ρzkt,∆ρz lt). Note that the error term in (7) is an i.i.d. innovation and

therefore ∆ρzm̂t is stationary for all |ρz| ≤ 1. The appeal of the quasi-differenced representation

is that it is valid for all ρz less than or equal to one; (7) is just a special case of (2) at ρz = 1.

Partition Θ = (Θ−, ρz). The deep parameters can be estimated as follows:

The Quasi-Differenced (QD) Estimator: Initialize ρz.

1: Quasi difference the observed data at ρz to obtain

cc
t = ∆ρz(ct − ḡt), kc

t = ∆ρz(kt − ḡt), lct = ∆ρz lt, (8)
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and let ∆ρ
zdc

t = (cc
t , k

c
t , l

c
t ).

6

2: Compute Ω̂d
∆ρz (0) = cov(∆ρzdc

t), the covariance matrix of ∆ρzdc
t , and the autocovariance

matrix Ω̂d
∆ρz

(1). Define ω̂d
∆ρz = (vech(Ωd

∆ρz (0))′ vech(Ωd
∆ρz (1))′)′;

3: For a given ρz and Θ−, solve (7) and compute Ωm
∆ρz (0) and Ω̃m

∆ρz (1), the model implied

covariance and autocovariance matrices. Define ω̂m
∆ρz = (vech(Ωm

∆ρz (0))′ vech(Ωm
∆ρz (1))′)′;

4: Find the structural parameters Θ̂ = arg minΘ

∥∥ω̂d
∆ρz − ωm

∆ρz (Θ)
∥∥.

Note that ρz and Θ− are estimated simultaneously. The quasi-differenced estimator differs

from the covariance estimator of the previous section in one important respect. The parameter

ρz now affects both the moments of the model and the data since the latter are computed for

the quasi-transformed data. Conceptually, the crucial feature is that the quasi-transformed data

are stationary irrespective of ρz. Thus, the QD estimator resolves Problem (DD) by applying

the same transformation (filter) to the data and model and tackles Problem (MTS) by using

a transformation that yields stationary series for any |ρz| ≤ 1. Because ∆ρzmt is stationary,

the estimation problem can be studied under the assumptions of extremum estimation. Under

regularity conditions, standard
√

T asymptotic normality results hold (see Section 3.4).

At this point it is useful to highlight the difference between our and Cogley’s (2001) approaches.

Although both methods do not require the researcher to take a stand on the properties of the trend

dynamics before estimation, our approach has several advantages. First, quasi-differencing can

easily handle multiple I(1) or highly persistent shocks. In contrast, using cointegration relationships

works only for certain types of shocks. For example, if the shock to disutility of labor supply is

an I(1) process, there is no cointegration vector to nullify a trend in hours. Second, cointegration

often involves estimating identities and therefore the researcher has to add an error term (typically

measurement error) to avoid singularity. Our approach does not estimate specific equations and

hence does not need to augment the model with additional, atheoretical shocks. Finally, using

unconditional cointegration vectors may make estimation of some structural parameters impossible.

For instance, the parameters governing short-run dynamics such as adjustment costs may be not

estimated in this setting because the term arising due to adjustment costs is zero on average by

construction (i.e., adjustment cost is typically zero in steady state). In contrast, our approach

utilizes short-run dynamics in estimation and thus can estimate the parameters affecting short-run

dynamics of the variables. Overall, our approach can be used in a broader array of situations and

we exploit different properties of the model in estimation.
6Since projecting series on linear trend yields super-consistent estimates of the coefficient on the time trend, one

can ignore the error induced by removing the linear time trend when he or she applies standard asymptotic inference.
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Naturally, if elements of ∆ρzm̂t are stationary concepts when |ρz| ≤ 1, they are also stationary

when the data are quasi differenced at ρz = 1. This suggests that solving the first difference

representation of the DT model will also yield robust estimates:

∆DT Model

Et

0 0 0
1 0 A0

0 0 0

∆ĉt+1

∆k̂t+1

∆l̂t+1

 =

−1 0 −α
1 A0 0

A1 A2 α− 1

∆ĉt

∆k̂t

∆l̂t

 +

0 α 0
0 0 0
0 A4 0

∆ĉt−1

∆k̂t−1

∆l̂t−1


+

 0
−A0

0

∆uz
t+1 +

1− α
0

α− 1

∆uz
t . (9)

Observe that when ∆uz
t = (ρz − 1)uz

t−1 + ez
t , and ρz < 1, ρz remains a parameter of the model (3)

unless it is constrained to be one. To stress that ρz is a free parameter and contrast it with the

constrained specification, we do not put a superscript on the first difference operator. The difference

between the constrained ∆1DT and unconstrained ∆DT models is that the unconstrained model

is valid whether or not ρz = 1, while the constrained model is an alternative representation of the

ST model and is thus valid when ρz = 1. Note that the QD estimator and ∆DT estimator are

equivalent when ρz = 1. While the moments of ∆DT model are robust to whether ρz is on the

unit circle, it is less efficient relative to the quasi-differenced model since the data will be over-

differenced when the data are already stationary. The estimation procedure for the unconstrained

∆DT estimator is as follows:

1: First difference the observed data to obtain

cc
t = ∆ct − ḡ, kc

t = ∆kt − ḡ, lct = ∆lt. (10)

and let ∆dc
t = (cc

t , k
c
t , l

c
t ).

2: Compute Ω̂d
∆(0) = cov(∆dc

t), the covariance matrix of ∆dc
t , and the autocovariance matrix

Ω̂d
∆(1). Define ω̂d

∆ = (vech(Ωd
∆(0))′ vech(Ωd

∆(1))′)′;

3: For a given Θ, solve (9) and compute Ωm
∆(0) and Ω̃m

∆(1), the model implied covariance and

autocovariance matrices. Define ω̂m
∆ = (vech(Ωm

∆(0))′ vech(Ωm
∆(1))′)′;

4: Find the structural parameters Θ̂ = arg minΘ

∥∥ω̂d
∆ − ωm

∆ (Θ)
∥∥.

The two robust methods can be summarized as follows:
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True Model Assumed Model/ Variables Data Estimator

ST, DT QD, ∆ρzm̂t ∆ρzdc
t QD

ST, DT ∆DT, ∆m̂t ∆dc
t ∆DT.

Note that these methods do not require the researcher to take a stand on whether ρz < 1 or

ρz = 1 before estimation because these two cases are nested within QD and ∆DT framework.

3 Simulations

3.1 Setup and Calibration

We generate the data as either DT (deterministic trends) or ST (stochastic trends) using the model

equations for the stationary (i.e., normalized) variables. The model variables are then rescaled back

to non-stationary form and treated as observed data dt = (ct, kt, yt, lt) that the researcher takes as

given. The researcher then decides (i) whether to use the model equations implied by DT or ST

for estimation, and (ii) how to detrend the data.

We estimate Θ = (α, ρ, σ) and treat parameters (β, δ, θ, ḡ) as known. We calibrate the model as

follows: capital intensity α = 0.33; disutility of labor θ = 1; discount factor β = 0.99; depreciation

rate δ = 0.1; gross growth rate in technology ḡ = γ̄ = 1.005. We restrict the admissible range of the

estimates of α to [0.01,0.99]. We vary the persistence of shocks to technology uz
t . The parameter

ρz takes values (0.5, 0.95, 0.99, 1). The admissible range for ρ̂z in the DT model is [-0.999,0.999].

Since for now we have only one shock in the model, we set the standard deviation of ez
t to σ = 0.1

without loss of generality. We perform 500 replications for each choice of parameter values. For

each replication, we create series with T=300 observations which is a typical sample size in applied

macroeconometric analysis.

In the simulations, we use a covariance structure estimator that minimizes the distance between

the observed unconditional autocovariances of the data and those implied by the model. We

described the estimator in the previous sections. To minimize distortions associated with poor

estimation of the optimal weighting matrix, we use an identity weighting matrix in our method of

moments estimator. In all simulations and for all estimators, we set starting values in optimization

routines equal to the true parameter values.

3.2 Results for the Baseline Model

We report simulation results for the baseline one-shock model in Table 2 and present the kernel

density estimates for parameter estimates in Figure 1. We use the following notation to label

difference cases. In case (XX,YY), XX stands for the method used to filter the data, while YY
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stands for the assumed model. Thus, (LT,m̂t) means that the data used in estimation are residuals

from projection on a time trend, and the assumed model is expressed in terms of m̂t with |ρz| < 1.

The DGP is given in the first column.

Our simulations suggest that combinations (QD,∆ρzm̂t) and (FD,∆m̂t), which are reported in

columns 4 and 6 and correspond to the QD and unconstrained ∆DT estimators respectively, yield

estimates generally centered at the true values. The distribution of the estimates is bell-shaped and

well-behaved uniformly for all values of ρz. That is, the performance of QD and ∆DT estimators

is not affected as ρz approaches one. This pattern is recurrent in all simulations. In contrast, other

estimators exhibit significant biases and larger dispersion of estimates especially when ρz is close

to a unit circle. Below we document their properties and explain why these estimators tend to

underperform.

Consider first the (LT,m̂t) combination when the researcher uses series after linear detrending

as the data concept and m̂t as the model concept of the observed variables (column 1, Table 2). For

small to moderate values of ρz, this combination performs well: the distribution of the parameter

estimates is centered at true values. However, as ρz increases the performance of the (LT,m̂t)

combination quickly deteriorates. There is a significant upward bias in the estimates of the capital

share α. Furthermore, this bias increases with ρz so much that at ρz = 1, the mean of α̂ is close to

one. The bias in σ̂ also worsens rapidly as ρz approaches one and the dispersion of the estimates is

large as seen from the flat density of σ̂ in Figure 1. The estimates of ρz tend to be relatively close

to true values up to ρz = 0.95. As ρz approaches one, however, there is a strong downward bias in

ρ̂z. For example at ρz = 1, the mean of ρ̂z is approximately 0.7.

Note that the (LT,m̂t) case can not only significantly bias the estimates but it can also yield

multi-modal distribution of the estimates. For example, the case with ρz = 0.99 has two peaks in the

distribution of α̂, σ̂ and ρ̂z, i.e., the objective function of the covariance structure estimator has two

or more local optima. This observation is particularly troubling for users of standard optimization

routines as these routines can fail to escape from local optima. Importantly, estimates based on

different local optima can lead to drastic changes in the economic interpretation of the estimates.

The case of ρz = 1 (last row of the (LT,m̂t) column) is particularly interesting because linear

detrending is commonly used in estimation of DSGE models, as seen from Table 1. Projecting

series with a unit root on time trend is known to lead to spurious cycles in univariate analysis

(e.g. Nelson and Kang (1981)). Our results suggest that in systems estimation such as the one

considered here, linear detrending leads to extremely strong biases in the estimates of the structural

parameters. Since technology shocks appear to be highly persistent and well approximated with

unit root (Problem MTS), researchers should be very cautious with using linearly detrended data
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for estimation of DSGE models in applied work.

Turning to the (HP,m̂t) combination in column 2, the estimates of ρz have a strong downward

bias. On the other hand, there is a strong upward bias in α̂ and σ̂.7 These estimates suggest larger

but less persistent shocks to technology as well as a significant role of capital as a mechanism for

propagating shocks in the model. To understand this pattern, recall that HP filter removes not

only the linear trend but also low frequency variation in the series. When ρz is large, HP filter

can significantly alter the properties of the series. More specifically, HP filter changes not only

the persistence of the series (recall Cogley and Nason (1995)) but also the relative volatility and

serial correlation of the series(see e.g. King and Rebelo (1993) and Harvey and Jaeger (n.d.)).

This translates into biased estimates of all parameters because the estimator is forced to match the

properties of the altered data which is different from the model concept of observed variables.

Under (HP,m̃t), ρz is fixed at 1 and the model variables are m̃t. As seen from column 3, the

estimates of α and σ remain unsatisfactory. The estimates of α’s are lumped at the boundary of the

admissible range [0.01, 0.99] and the estimates of σ tend to be very close to zero. In other words,

the estimated model suggests that shocks to technology are very small but propagation through

capital accumulation is strong. Why does this happen? Note that in the ST model defined in terms

of m̃t, the dynamics of the variables tend to have weak serial correlation because deviations from

ut are transitory and quickly dissipating as variables such as consumption adjust to almost full

strength in response to permanent shocks to technology. On the other hand, HP filter leaves out

sizable serial correlation in the filtered data. Thus, the fitted model is forced to produce parameter

values that have strong propagation mechanism to generate relatively strong serial correlation in

deviations from the stochastic trend.

To understand the strong downward bias in σ̂, note that var(ỹt) < var(c̃t) and var(k̃t) > var(c̃t)

in the model, while var(yc
t ) < var(cc

t) and var(kc
t ) < var(cc

t) in the HP-filter series. As α approaches

one, var(ỹt) and var(k̃t) become approximately equal to var(c̃t) and thus the gap in the relative

volatility between output, capital and consumption resembles the relative volatility in the data. At

the same time, larger values of α increase the volatility of the series and the estimator decreases the

size of the shocks to match the level of volatility in the data. Hence, there is a strong downward

bias in σ̂. Overall, results for combinations (HP,m̂t) and (HP,m̃t) suggest that Problems (DD)

and (MTS) can significantly affect estimates of structural parameters and can lead to erroneous

economic interpretations.

To get a sense of how much difference filtering can make, consider the combination (FD,∆1mt),
7Note that we do not HP-filter labor series as labor is stationary irrespective of whether ρz < 1 or ρz = 1. Results

do not change qualitatively when we estimate the model using HP-filter labor series.
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reported in column 5, Table 2. It performs reasonably well when ρz ≈ 1, that is, ST is the correct

assumption and first differencing is correctly applied to data and model variables. As ρz departs

from one, Problem (MTS) manifests in an increasing upward bias in both α̂ and especially σ̂. Note

that despite the fact that estimates based on (FD,∆1mt) exhibit sizable biases when ρz moves

away from one, (FD,∆1mt) dominates (HP,m̃t) by a large margin. This pattern is typical in our

simulations.

3.3 Estimation of Propagation Mechanisms

Clearly, the absurdly large estimates of α or similar problems with the estimates of deep parameters

can alert the researcher that the model is likely misspecified and he or she must make adjustments

to the model. One possible and popular adjustment is to introduce serial correlation in the growth

rates of structural shocks such as technology. Interestingly, when we introduce such correlation in

the growth rates of technology (not reported) and estimate the model using (HP,m̃t) combination,

the estimates of α take more plausible values in the range of 0.4-0.5. However, this modification in

the model is ad hoc and more importantly it indicates that improper choice of filtering techniques

and model concepts can induce the researcher to augment correctly specified models with spurious

mechanisms of propagation and amplification to match the moments of the data.8

To highlight this point, we augment the basic model with internal habit in consumption. This

modification is a popular way to introduce greater persistence and amplification in business cycle

models. Specifically, consider an alternative utility function:

max
∑

βt

[
ln(Ct − φCt−1)− Lt

]
where φ ∈ [−0.999, 0.999] measures the degree of habit in consumption. In this model, the re-

searcher estimates (α, φ, ρ, σ). We set φ = 0.8 to investigate how the treatment of the trends affect

estimates of internal propagation mechanisms as well as estimates of other structural parameters.

We report results in Table 3 and Figure 2. To save space, we do not consider the case of ρz = 0.5

and present kernel densities of the estimates for only the case of ρz = 0.95 in Figure 2.

Similar to the results in the previous section, QD and ∆DT perform well. The bias in the

estimates is generally negligible and the distribution of the estimates is well-behaved. Overall, QD

and ∆DT strongly dominate alternative estimators whose performance we examine below.

The combination (LT,m̂t) has a relatively small upward bias in φ̂ when ρz = 0.95 but the

performance of (LT,m̂t) quickly deteriorates as ρz approaches one, see column 1 of Table 3. Specif-

ically, at ρz = 0.99 the mean value of φ̂ is close to the the true value of φ but the dispersion of φ̂

8For example, Doorn (2006) shows in simulations that HP filtering can significantly alter the parameter estimates
governing dynamic properties in his inventory model.
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rapidly increases indicating that the distribution of φ̂ is quite flat. When ρz = 1, the mean of φ̂

sharply drops and the dispersion of φ̂ increases further. In fact, the kernel density of φ̂ is practically

flat (not reported) so that researcher using (LT,m̂t) may end up with effectively any estimate of

φ. Note that introducing habit formation changes the pattern of biases in the estimates of other

parameters when compared to the baseline model without habit formation. In particular, although

α̂ is upwardly biased in the model with and without habit formation, there is a downward bias in ρ̂z

and σ̂ for the model with habit formation which is different from the results for the baseline model

without habit formation. Note that it is very hard to predict the sign of the bias in general. Small

modifications in a model can lead to distortionary effects reinforcing or attenuating each other so

that estimates can over- or understate the magnitudes of structural parameters. The direction of

the bias is highly model specific and a priori ambiguous.

Under the (HP,m̂t) combination, when the researcher uses HP filter to remove the trend, there

are larger distortions to φ̂. The estimate of φ has a clear upward bias when ρz = 0.95. However,

the mean value of φ̂ understates the degree of the bias as the distribution of φ̂ has a thick left tail.

As ρz approaches one, the dispersion of φ̂ increases dramatically, which is a manifestation of the

flat distribution of φ̂. This finding suggests that identification of φ from the filtered data may be

poor. Indeed, identification of φ comes from low frequency variation in the data but this frequency

is removed or greatly attenuated by the HP filter. Other estimates are also biased. In particular,

α̂ has a stronger upward bias than in the case without habit formation. The bias in σ̂ decreases

with ρz while it increases with ρz in the model without habit formation. Also note that the extent

of the bias in ρ̂z is smaller in this model than in the model without habit formation.

The (HP,m̃t) combination which imposes ρz = 1 tends to produce results similar to the previous

case but with more acute identification problems for φ as the density of φ̂ is fairly flat even for

ρz = 0.95. Also note that in this case, there is a somewhat smaller pressure on α̂ and the mean

of α̂ is away from the boundary of the admissible space for the estimate of α because part of the

adjustment to match the data moments is absorbed by changes in the estimates of φ. Interestingly,

as φ increases towards one, the bias in α̂ turns from upward to downward. Again, note that using

an alternative combination (FD,∆1mt) can greatly improve the estimates when ρz ≈ 1, which is

similar to the baseline case without habit formation.

3.4 Statistical Properties

The above simulations indicate that our quasi-differenced estimates are close to the true value and

the difference between the estimates and the true value is by and large symmetrically distributed.

Note that our quasi-differenced estimator is nothing but a non-linear GMM estimator using an
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identity as weighting matrix and stationary (after quasi-differencing) data. Since our estimator

satisfies prerequisites for standard asymptotic inference, one may expect that the t-statistic for

estimates based (QD,∆ρzm̂t) (or (FD,∆m̂t)) may be well approximated by the normal distribution

for large T and our estimator is
√

T consistent and asymptotically normal. In this subsection, we

assess this conjecture.

Let vc
t = (dc

t , d
c
t−1, . . . , d

c
t−s) be the vector of stacked data so that ωd = vech(cov(vc

t )). Likewise,

define vm
t , the vector of stacked model variables, and ωm = vech(cov(vm

t )). It is convenient to

define
1
T

T∑
t=1

gt = ḡ = ωd − ωm.

By construction of the quasi-differenced data, ḡ is the sample mean of a stationary ergodic process

and
√

T ḡ
d−→N(0, S). By assumption, gt is continuous in Θ, which is a compact. The assumptions

of the GMM estimator such as stated in Hayashi (2000) apply. Let G be the matrix of derivatives

of g with respect to Θ. Then

Θ̂ = argmin
Θ

J = T × ḡ′ḡ

yields
√

T (Θ̂−Θ) d−→N(0, (G′G)−1G′S′G(G′G)−1).

We employ Newey-West estimator of S, i.e., S = T−1(vc′
t vc

t ) +
∑

(1 − j/(p + 1))T−1(vc′
t vc

t−j).

Using this standard machinery of asymptotic inference, we compute t-statistic for the parameters

of the baseline one-shock model. If the inference is
√

T consistent, the simulated density for t-

statistic should be close to the p.d.f. of the standard normal random variable. We focus on three

combinations (QD,∆ρzm̂t), (FD,∆m̂t), and (LT,m̂t) and report the kernel density of t-statistic for

T=300 and T=2,000 in Figures 3 and 4.

The figures show that the distribution based on the QD estimator for α and σ is generally close to

the N(0,1) density. Likewise, apart from the case when ρz = 1, the distribution of the t-statistic for

ρ̂z is also closely approximated by the standard normal distribution.9 The distribution of t-statistic

based on ∆DT is somewhat less impressive but nonetheless it is a much better approximation to

N(0,1) than the approximation provided by a more commonly used (LT,m̂t) combination.

While
√

T asymptotic normality of α and σ may not seem surprising,
√

T consistency and

asymptotic normality of ρz as suggested by the simulations may be unexpected. This is because
9Note that the model does not have a unique rational expectations equilibrium if ρz > 1. Since we consider

only parameter values consistent with the existence of a unique rational expectations equilibrium, the estimate for ρz

becomes distorted as ρ̂z cannot exceed unity. However, in the linear single-equation case considered in Gorodnichenko
and Ng (2007), the distribution of ρ̂z is well behaved and close to the standard normal since ρ̂z is allowed to exceed
one.
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almost all the results in the literature on integrated data suggest that estimates of the largest

autoregressive root tend to be super consistent with a convergence rate of T , but that the asymptotic

distribution is highly skewed. This is at odds with our finding that the distribution of ρ̂z appears

symmetric. This surprising and curious result was investigated in more detail in Gorodnichenko and

Ng (2007) in the much simpler case of estimating the largest autoregressive root of an autoregressive

process using a covariance structure estimator such as the one considered in this paper. In a nutshell,

there are two aspects of the estimator that leads to this result. First, the covariance estimator is

non-linear in the parameter of interest, and second the covariance is defined for the error process

rather than the data itself. It was shown in our companion paper that this particular non-linear

estimator has an asymptotic distribution that is continuous at the unit circle is conditionally normal,

which greatly facilitates inference. The cost, which seems warranted, is that the estimator looses

its super-consistent property, though it continues to be
√

T consistent. The estimator considered

in this paper is different in that it is a systems estimator, but it appears to have the same desirable

properties as the estimator considered in Gorodnichenko and Ng (2007).

4 The General Formulation

Our Monte Carlo experiments suggest that the (QD,∆ρzm̂t) and (FD,∆m̂t) estimators outperform

popular alternatives in terms of providing less dispersed and biased estimates of structural param-

eters. Combinations (QD,∆ρzm̂t) and (FD,∆m̂t) are similar in terms of having little or no bias.

However, (QD,∆ρzm̂t) tends to have smaller dispersion and more well behaved distribution of the

estimates than (FD,∆m̂t) when at least one of the shocks is persistent.

The key to robustness is that these estimates do not depend on whether the data are persistent

and that they apply basic transformations to both possibly persistent data and model variables so

that there is a coherent mapping between the model and data. Effectively, Problems (DD) and

(MTS) are addressed simultaneously because i) the researcher does not have to take a stand on the

properties of the forcing variables (e.g., technology has a permanent or transitory shocks) as the

transformed data and model variables are stationary for all parameter values describing persistence

of forcing variables; and ii) the researcher applies the same transformation (filter) to model and

data to make variables stationary so that filtered variables in the model and data have the same

connotation. In other words, (QD,∆ρzm̂t) and (FD,∆m̂t) preserve consistency between the data

and model concepts irrespective of whether variables are stationary or not.

Our framework straightforwardly extends to more general cases. Suppose there are J shock

processes ujt, j = 1, . . . J , and

(1− ρjL)ujt = ejt, j = 1, . . . J
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and some of the ρj may be on the unit circle. Let mt be a vector of (predetermined, non-

predetermined, plus exogenous) variables of the model and let m̂t be the vector of zero-mean

variables that are deviations of mt from the steady state values. While m̂t is demeaned, it is not

normalized by technology or other non-stationary forcing variables. Normalization of m̂t results in

m̃t = m̂t−ut and is necessary to make model variables stationary when some shocks are permanent.

As seen from Table 1, most studies assume that shocks are transitory and solve

ΓD
0 m̂t = ΓD

1 Etm̂t+1 + ΓD
2 m̂t−1 + ΨD

1 ut+1 + ΨD
0 ut

A smaller number of studies assume stochastic trends and solve

ΓS
0 ∆m̂t = ΓS

1 Et∆m̂t+1 + ΓS
2 ∆m̂t−1 + ΨS

1 et+1 + ΨS
0 et.

As illustrated in section 3, the estimation approach depends on what is the assumed model,

how the observed data are filtered to become stationary. Let dt be a vector of r observed variables.

Partition the model variables m̂t = (m̂0t, m̂1t) to have q0 stationary and q1 non-stationary state

variables, denoted m̂0t and m̂1t, respectively. The general solution in state space representation is

dt = δ0 + δ1 t + B0m̂0t + B1m̂1t (11a)

m̂0t = π0m̂0t−1 + Π0ut (11b)

m̂1t = m̂1t−1 + Π1et. (11c)

The measurement equation (11a) links the r×1 observed variables mt to the q model variables,

m̂t through the matrices B0 (r× q0) and B1 (r× q1).10 The parameters δ0 and δ1 are r× 1 vectors

of restricted constants to be estimated along with the other parameters. This ensures that the

data are detrended using model consistent parameters. An alternative, used in Ireland (2004a) and

many others, is to linearly detrend the data prior to estimation. This amounts to not imposing

constraints on δ0 and δ1 to take on values implied by the model. If the model is correctly specified

for the data, both methods of detrending are asymptotically equivalent. Without loss of generality,

simply let dc
t = dt − δ0 − δ1t be the detrended data. When q1 = 0 and m̂0t = m̂t, the measurement

equation becomes

dc
t = dt − δ0 − δ1t = B0 m̂t. (12)

Equation (11b) is the law of motion for the state variables of a trend stationary model. The

state variables with a unit root evolve according to (11c). When q0 = 0, (11b) is irrelevant and the
10A vector of r measurement errors ηt can be added to the measurement equation as in Edge et al. (2005).
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measurement equation is either

dc
t = ∆dt − δ1 = B1∆m̂t, (13)

or

dc
t = HP (L)dt = B1∆m̃t. (14)

Our quasi-differencing approach can be extended to the case of multiple shocks by defining

∆ρ(L) =
J∏

j=1

(1− ρjL).

In other words, the quasi-differencing operator is now the product of the J polynomials in lag

operator that describes the dynamics of the J shocks. Then the J-shock quasi-differenced model

is defined as

EtΓD
2 ∆ρm̂t+1 = ΓD

0 ∆ρm̂t + ΓD
1 ∆ρm̂t−1 + ΨD

1 ∆ρut+1 + ΨD
0 ∆ρut, (15)

The link between the data and the model is given by

∆ρ(dt − δ0 − δ1t) = ∆ρm̂t.

This link is valid whether the true model is DT or ST. Note that one does not have to work

with the product of (1− ρL) operators for each shock. Following the insight from the comparison

of the QD and unconstrained ∆DT estimators, one can use quasi-differencing only for shocks that

are expected to be persistent and do not need to transform the data further to accommodate other,

known-to-be stationary shocks. For example, if one knows that shocks to tastes dissipate quickly

while technology shocks zt are close to unit root, the researcher can use only (1 − ρzL) in the ∆ρ

operator.

4.1 A Two Shock Example

To illustrate the multiple shock case, we re-introduce shocks to hours in the model so that the

system is given by

Et

0 0 0
1 0 A0

0 0 0

ĉt+1

k̂t+1

l̂t+1

 =

−1 0 −α
1 A0 0

A1 A2 α− 1

ĉt

k̂t

l̂t

 +

0 α 0
0 0 0
0 A4 0

ĉt−1

k̂t−1

l̂t−1


+

 0 0
−A0 0

0 0

[
uz

t+1

uq
t+1

]
+

1− α 1
0 0

α− 1 0

[
uz

t

uq
t

]
(16)

Following the procedures we describe above, it is straightforward to write this model in terms

of stationary variables m̃t or ∆mt when shocks to technology or hours contain a unit root.
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The QD approach extends naturally to the case of two shocks. Let ∆ρ = (1 − ρzL)(1 − ρqL).

The quasi-differenced representation of the two-shock model (16) is:

Et

0 0 0
1 0 A0

0 0 0

∆ρĉt+1

∆ρk̂t+1

∆ρ l̂t+1

 =

−1 0 −α
1 A0 0

A1 A2 α− 1

∆ρĉt

∆ρk̂t

∆ρ l̂t

 +

0 α 0
0 0 0
0 A4 0

∆ρĉt−1

∆ρk̂t−1

∆ρ l̂t−1


+

 0 0
−A0 1

0 0

[
ez
t+1

eq
t+1

]
+

1− α 1
ρqA0 0
α− 1 0

[
ez
t

ez
t

]

+

−ρq(1− α) −ρz

0 0
ρq(α− 1) 0

[
ez
t−1

eq
t−1

]
.

This representation is valid when none, one or both shocks are non-stationary. It is easy to see

that when none or one shock is permanent, the transformation recovers the correct representation.

When both shocks are permanent, the representation is the first difference of (16). Instead of solving

for a model that is possibly non-stationary, we solve for a model that is possibly over-differenced.

In this model, we estimate (α, ρz, σz, ρq, σq). The relative persistence and variability of shocks

is important for the estimates. We fix σz = 0.1 and let σq take values (0.025,0.05,0.15). The

persistence of the shocks to technology and hours is described by the vectors (0.95,0.99,1) and

(0.5,0.8,0.9,0.975) respectively so that in our exercise technology shocks are generally more persis-

tent than shocks to hours. To preserve space, we report only selected results in Table 4 and Figures

5-7 (ρq = 0.8,ρz = 0.95) and provide only a concise summary of the results. Additional results are

available upon request.

In short, combinations (QD,∆ρzm̂t) and (FD,∆m̂t) perform well while other estimators have

significantly worse performance. Using HP filter to remove the trend as in (HP,m̂t) or (HP,m̃t)

continues to induce very strong biases in all estimates. The combination (FD,∆1mt) performs

well when technology shocks have a unit root but its performance quickly deteriorates as ρz moves

away from one. Linear detrending in (LT,m̂t) can perform relatively well when shocks to stationary

hours are large relative to technology shocks. That is, as shocks to hours explain a larger fraction of

variation in variables, identification of structural parameters improves as one can rely on variation

in stationary, non-persistent structural shocks. For example, in the case of ρz = 0.95, as σq increases

from 0.025 to 0.15 the mean estimate of α falls from 0.4520 to 0.3813 so that the bias decreases from

0.1220 to 0.0513. The reduction in the bias is even more dramatic when ρz is closer to one. The

bias in other estimates exhibits a similar pattern. However, the biases become pronounced again

when shocks to hours become more persistent, i.e., ρq increases towards one. The pair (FD,∆1mt)

dominates (HP,m̂t) or (HP,m̃t), either of which continues to exhibit strong biases in the estimates.
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In some cases (e.g., (HP,m̃t)) the relative size of the shocks is reversed in the estimates—that is,

σ̂q > σ̂z while σq < σz—so that the researcher may be tempted to conclude that shocks to hours

have larger volatility than shocks to technology while the opposite is true.

5 Concluding Remarks

This paper has several substantive findings. First, the paper identifies Problems (DD) and (MTS)

and shows that the consequences of these two problems can be devastating for the estimates of

structural parameters in DSGE models. Specifically, the paper demonstrates that Problems (DD)

and (MTS) can lead to distorted estimates, spurious estimates of propagation/amplification mech-

anisms (both external and internal), poor identification of structural parameters (especially pa-

rameters identified from low frequency variation). Importantly, both Problem (DD) and Problem

(MTS) are empirically relevant and often arise in applied work.

Second, the paper proposes a robust approach to address Problems (DD) and (MTS) simul-

taneously. Specifically the paper shows that quasi-differencing or similar approaches (e.g., first

differencing) tackle both problems by applying the same transformation to the data and model

variables and using the fact that this transformation yields stationary series for all parameters

values that can describe persistence of forcing variables in the model. Simulations show that quasi-

differencing outperforms popular alternatives not only in terms of having smaller bias and smaller

dispersion of the estimates but also in terms of providing
√

T consistent inference even for param-

eters governing persistence of exogenous shocks. Although the paper illustrates the working of the

quasi-differencing estimator on specific simple examples, the paper also shows that the framework

can be easily generalized to more complex settings.
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Table 1. Summary of selected works.  

Paper Technology process 

System  
vs.  

single 
equation 

Filter Estimation 
method 

Ireland (2001) Stationary AR system Linear trend MLE 

Del Negro, Schorfheide, Smets, 
and Wouters (2004) 

Unit root with serial 
correlation in growth 

rates 
system First difference Bayesian 

Bouakez, Cardia, and J. Ruge-
Murcia (2005) Stationary AR system Linear trend MLE 

Faia (2007) Stationary AR system HP calibration 

Clarida, Gali, and Gertler (2000) Stationary AR equation HP and deviation from CBO 
measure of potential output GMM 

Christiano, Eihenbaum, and Evans 
(2005) Not specified system VAR GMM 

Dib (2003) Stationary AR system Linear trend MLE 

Smets and Wouters (2007) Stationary AR system First difference Bayesian 

Smets and Wouters (2003) Stationary AR system HP Bayesian 

Kim (2000) Stationary AR system Linear trend MLE 

McGrattan, Rogerson, and Wright 
(1997) Stationary AR system Linear trend and HP MLE 

Altug (1989) Unit root system First differences  
MLE in 

frequency 
domain 

Fuhrer and Rudebusch (2004) Not specified equation 
HP, one-sided BP, CBO, 
linear trend with breaks, 

quadratic deterministic trend 
MLE, GMM 

Fuhrer (1997) Not specified equation HP, linear trend, quadratic 
trend GMM 

Kydland and Prescott (1982) Permanent and 
transitory components system HP calibration 

Altig, Christiano, 
Eichenbaum, and Linde (2004) 

Unit root with serial 
correlation in growth 

rates 
system First difference GMM 

Ireland (2004) Unit root system 
Stationary variables and 

growth rates of 
nonstationary variables 

MLE 

Christiano and Eichenbaum (1992) Unit root  system HP GMM 

Burnside, Eichenbaum and Rebelo 
(1993) Stationary AR system HP GMM 

 



Table 2. Basic one-shock model. 

DGP ρz  ˆ(LT, )tm  ˆ(HP, )tm  (HP, )tm  ˆ(QD, )tmρΔ 1 ˆ(FD, )tmΔ  ˆ(FD, )tmΔ
   (1) (2) (3) (4) (5) (6) 
         

α̂ : capital intensity, 0.33α =  

DT 0.50 mean 0.3467 0.4201 0.9900 0.3435 0.3880 0.3330
  sd 0.0264 0.0066 0.0000 0.0265 0.0162 0.0171
  median 0.3462 0.4207 0.9900 0.3438 0.3866 0.3293

DT 0.95 mean 0.4554 0.6245 0.9900 0.3260 0.4227 0.3552
  sd 0.0996 0.0090 0.0000 0.0414 0.0596 0.0819
  median 0.4500 0.6250 0.9900 0.3246 0.4136 0.3309

DT 0.99 mean 0.7998 0.7430 0.9900 0.3241 0.3829 0.3607
  sd 0.1931 0.0133 0.0000 0.0407 0.0850 0.0935
  median 0.8835 0.7434 0.9900 0.3228 0.3591 0.3307
     

ST 1.00 mean 0.9525 0.7804 0.9900 0.3178 0.3545 0.3499
  sd 0.1370 0.0135 0.0000 0.0362 0.0886 0.0883
  median 0.9747 0.7804 0.9900 0.3210 0.3284 0.3285
     

σ̂ : st.dev. of shocks to technology, 0.1σ =  

DT 0.50 mean 0.1048 0.1237 0.0037 0.1033 0.1840 0.1009
  sd 0.0091 0.0064 0.0003 0.0086 0.0087 0.0101
  median 0.1039 0.1226 0.0037 0.1024 0.1836 0.0990

DT 0.95 mean 0.1076 0.1757 0.0047 0.0985 0.1380 0.1095
  sd 0.0178 0.0121 0.0005 0.0124 0.0209 0.0309
  median 0.1039 0.1753 0.0047 0.0977 0.1338 0.1004

DT 0.99 mean 0.3377 0.2413 0.0043 0.0990 0.1175 0.1101
  sd 0.1660 0.0211 0.0005 0.0106 0.0259 0.0286
  median 0.3429 0.2409 0.0043 0.0980 0.1094 0.1002

ST 1.00 mean 3.3506 0.2749 0.0041 0.0976 0.1077 0.1062
  sd 1.7781 0.0255 0.0004 0.0088 0.0239 0.0237
  median 2.8516 0.2738 0.0041 0.0970 0.0991 0.0986

     
ˆzρ : persistence of shocks to technology 

DT 0.50 mean 0.4611 0.2441 1.0000 0.4809 1.0000 0.4942
  sd 0.0651 0.0411 0.0549  0.0810
  median 0.4650 0.2455 0.4860  0.4947

DT 0.95 mean 0.9270 0.5319 1.0000 0.9449 1.0000 0.9508
  sd 0.0266 0.0329 0.0140  0.0127
  median 0.9350 0.5329 0.9464  0.9498

DT 0.99 mean 0.9120 0.5049 1.0000 0.9899 1.0000 0.9897
  sd 0.0621 0.0281 0.0045  0.0055
  median 0.9218 0.5070 0.9906  0.9896

ST 1 mean 0.6932 0.4871 1.0000 0.9993 1.0000 0.9981
  sd 0.0910 0.0257 0.0020  0.0026
  median 0.6724 0.4890 1.0000  0.9991

Note: This table presents summary statistics for estimates of 0.33α = , 0.1σ = , and ρz (0.5,0.95,0.99,1)= . The 
number of simulations is 500. sample size is T=300. In the top-row label (XX,YY), XX denotes the method of 
detrending and YY indicates the model concept of the observed variables. LT is linear detrending, HP is 
Hodrick-Prescott filter, FD is first differencing, QD is quasi differencing. Δ1 denotes the restriction ρz = 1 when 
the model is solved in first differences. Δ1 = 1 – ρzL denotes quasi differencing.  



Table 3. Basic one-shock model with habit formation in consumption. 

DGP ρz  ˆ(LT, )tm  ˆ(HP, )tm  (HP, )tm  ˆ(QD, )tmρΔ 1 ˆ(FD, )tmΔ  ˆ(FD, )tmΔ
   (1) (2) (3) (4) (5) (6) 

α̂ : capital intensity, 0.33α =  

DT 0.95 mean 0.3991 0.7916 0.9647 0.3280 0.4399 0.3336
  sd 0.0599 0.0441 0.0202 0.0248 0.0196 0.0260
  median 0.3923 0.7980 0.9687 0.3262 0.4380 0.3336

DT 0.99 mean 0.6067 0.8224 0.9836 0.3356 0.3582 0.3394
  sd 0.1988 0.1216 0.0090 0.0252 0.0291 0.0295
  median 0.6159 0.8630 0.9879 0.3366 0.3633 0.3386

ST 1.00 mean 0.8061 0.8357 0.9864 0.3387 0.3386 0.3406
  sd 0.1831 0.1705 0.0079 0.0282 0.0362 0.0288
  median 0.8876 0.9008 0.9896 0.3365 0.3422 0.3358

σ̂ : st.dev. of shocks to technology, 0.1σ =  

DT 0.95 mean 0.0881 0.1758 0.0066 0.0972 0.1171 0.1009
  sd 0.0132 0.0268 0.0023 0.0083 0.0095 0.0051
  median 0.0868 0.1808 0.0062 0.0967 0.1164 0.1008

DT 0.99 mean 0.0630 0.1271 0.0042 0.0984 0.1028 0.1011
  sd 0.0179 0.1266 0.0011 0.0055 0.0052 0.0048
  median 0.0608 0.0852 0.0038 0.0986 0.1024 0.1009

ST 1.00 mean 0.0640 0.0452 0.0038 0.0997 0.1003 0.1013
  sd 0.0330 0.0617 0.0010 0.0048 0.0046 0.0045
  median 0.0622 0.0368 0.0035 0.0996 0.1004 0.1010

ˆzρ : persistence of shocks to technology 

DT 0.95 mean 0.9434 0.6450 1.0000 0.9453 1.0000 0.9485
  sd 0.0070 0.0670 0.0103  0.0088
  median 0.9449 0.6431 0.9460  0.9496

DT 0.99 mean 0.9870 0.8058 1.0000 0.9875 1.0000 0.9879
  sd 0.0040 0.1809 0.0055  0.0071
  median 0.9881 0.8565 0.9886  0.9891

ST 1 mean 0.9908 0.9439 1.0000 0.9980 1.0000 0.9962
  sd 0.0077 0.0705 0.0033  0.0052
  median 0.9926 0.9601 0.9996  0.9983

φ̂ : habit formation in consumption, 0.8φ =  

DT 0.95 mean 0.8280 0.9262 0.8255 0.7981 0.7536 0.8032
  sd 0.0218 0.0757 0.2003 0.0091 0.0219 0.0216
  median 0.8275 0.9336 0.8952 0.7979 0.7545 0.8033

DT 0.99 mean 0.8386 0.7749 0.8518 0.8025 0.7960 0.8074
  sd 0.1763 0.4104 0.1799 0.0150 0.0148 0.0241
  median 0.8906 0.9362 0.9082 0.8047 0.7986 0.8059

ST 1 mean 0.2864 0.7555 0.8221 0.8042 0.8033 0.8115
  sd 0.3918 0.3366 0.2081 0.0140 0.0205 0.0219
  median 0.2892 0.9515 0.8899 0.8032 0.8070 0.8060

Note: This table presents summary statistics for estimates of 0.33α = , 0.1σ = , and ρz (0.95,0.99,1)= . The 
number of simulations is 500. sample size is T=300. In the top-row label (XX,YY), XX denotes the method of 
detrending and YY indicates the model concept of the observed variables. LT is linear detrending, HP is 
Hodrick-Prescott filter, FD is first differencing, QD is quasi differencing. Δ1 denotes the restriction ρz = 1 when 
the model is solved in first differences. Δ1 = 1 – ρzL denotes quasi differencing.  



Table 4. Two-shock model, estimate of α. 

DGP ρz  ˆ(LT, )tm  ˆ(HP, )tm  (HP, )tm  ˆ(QD, )tmρΔ 1 ˆ(FD, )tmΔ  ˆ(FD, )tmΔ
   (1) (2) (3) (4) (5) (6) 

σq = 0.025 

DT 0.95 mean 0.4520 0.6516 0.4487 0.3385 0.2911 0.3573 
  sd 0.1054 0.0278 0.1392 0.0285 0.0453 0.0766 
  median 0.4394 0.6510 0.4043 0.3310 0.2789 0.3326 

DT 0.99 mean 0.7798 0.7384 0.8887 0.3444 0.3499 0.3667 
  sd 0.1964 0.0323 0.1863 0.0356 0.0816 0.0891 
  median 0.8552 0.7394 0.9840 0.3326 0.3217 0.3360 

ST 1.00 mean 0.9197 0.7619 0.9497 0.3448 0.3622 0.3644 
  sd 0.1207 0.0326 0.1208 0.0359 0.0863 0.0865 
  median 0.9473 0.7626 0.9859 0.3330 0.3292 0.3312 
         

σq = 0.05 

DT 0.95 mean 0.4442 0.6323 0.4031 0.3354 0.2900 0.3491 
  sd 0.1018 0.0393 0.0361 0.0194 0.0225 0.0556 
  median 0.4315 0.6279 0.3974 0.3316 0.2856 0.3334 

DT 0.99 mean 0.7489 0.6914 0.4546 0.3376 0.3269 0.3507 
  sd 0.2020 0.0425 0.0512 0.0207 0.0356 0.0594 
  median 0.8362 0.6896 0.4450 0.3332 0.3178 0.3322 

ST 1.00 mean 0.8794 0.7065 0.4725 0.3422 0.3432 0.3561 
  sd 0.1463 0.0436 0.0606 0.0246 0.0407 0.0578 
  median 0.9292 0.7047 0.4602 0.3374 0.3340 0.3377 
         

σq = 0.15 

DT 0.95 mean 0.3813 0.5722 0.5378 0.3354 0.3225 0.3417 
  sd 0.0581 0.0471 0.0434 0.0123 0.0115 0.0310 
  median 0.3735 0.5679 0.5362 0.3331 0.3208 0.3311 

DT 0.99 mean 0.4182 0.5878 0.5481 0.3383 0.3316 0.3455 
  sd 0.1270 0.0446 0.0435 0.0125 0.0120 0.0298 
  median 0.3761 0.5846 0.5453 0.3363 0.3302 0.3351 

ST 1.00 mean 0.4433 0.5900 0.5512 0.3399 0.3344 0.3469 
  sd 0.1640 0.0445 0.0431 0.0127 0.0120 0.0291 
  median 0.3759 0.5866 0.5483 0.3380 0.3329 0.3371 
 

Note: Other parameters are fixed at 0.33, 0.8, 0.1q zα ρ σ= = = . 1000 simulations. Sample size 

T=300. In the top-row label (XX,YY), XX denotes the method of detrending and YY indicates the 

model concept of the observed variables. LT is linear detrending, HP is Hodrick-Prescott filter, FD 

is first differencing, QD is quasi differencing. 1Δ  denotes the restriction 1zρ =  when the model is 

solved in first differences. 1 Lρ ρΔ = −  denotes quasi differencing. 



Figure 1. Kernel density of estimates, baseline model.  
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Note: This figure plots kernel density of ˆ ˆ ˆ( , , )α ρ σ  generated in 1000 simulations. Bandwidth is 0.01. For the 
case presented in this figure the true values are 0.33, 0.1α σ= = . True value of zρ  is indicated on the left of the 
figure. In the legend (XX,YY), XX denotes the method of detrending and YY indicates the model concept of 
the observed variables.  

 



 

Figure 2. Kernel density of estimates for the model with habit formation, 0.95zρ = . 
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Note: This figure plots kernel density of ˆˆ ˆ ˆ( , , , )α ρ σ φ  generated in 1000 simulations. Bandwidth is 0.01. For the case presented in this figure 
the true values are 0.33, 0.95, 0.8, 0.1zα ρ φ σ= = = = . In the legend (XX,YY), XX denotes the method of detrending and YY indicates the 
model concept of the observed variables. 
 



Figure 3. Kernel density for t-statistic, baseline model, T=300.  
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Note: This figure plots kernel density of t-statistic for ˆ ˆ ˆ( , , )α ρ σ  generated in 1000 simulations. Bandwidth is 
0.01. In the legend (XX,YY), XX denotes the method of detrending and YY indicates the model concept of the 
observed variables.  
 



Figure 4. Kernel density for t-statistic, baseline model, T=2000.  
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Note: This figure plots kernel density of t-statistic for ˆ ˆ ˆ( , , )α ρ σ  generated in 1000 simulations. Bandwidth is 
0.01. In the legend (XX,YY), XX denotes the method of detrending and YY indicates the model concept of the 
observed variables.  
 



 

Figure 5. Kernel density of estimates for the model with shocks to hours and technology, 0.95zρ = , 0.025qσ = . 
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Note: This figure plots kernel density of ˆ ˆ ˆˆ ˆ( , , , , )z z q qα ρ σ ρ σ  generated in 1000 simulations. Bandwidth is 0.01. For the case presented in this 
figure the true values are 0.33, 0.95, 0.1, 0.8, 0.025z z q zα ρ σ ρ σ= = = = = . In the legend (XX,YY), XX denotes the method of detrending and 
YY indicates the model concept of the observed variables. See text for further details.  



 

Figure 6. Kernel density of estimates for the model with shocks to hours and technology, 0.95zρ = , 0.05qσ = . 
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Note: This figure plots kernel density of ˆ ˆ ˆˆ ˆ( , , , , )z z q qα ρ σ ρ σ  generated in 1000 simulations. Bandwidth is 0.01. For the case presented in this 
figure the true values are 0.33, 0.95, 0.1, 0.8, 0.05z z q zα ρ σ ρ σ= = = = = . In the legend (XX,YY), XX denotes the method of detrending and 
YY indicates the model concept of the observed variables. See text for further details. 

 



 

Figure 7. Kernel density of estimates for the model with shocks to hours and technology, 0.95zρ = , 0.15qσ = . 
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Note: This figure plots kernel density of ˆ ˆ ˆˆ ˆ( , , , , )z z q qα ρ σ ρ σ  generated in 1000 simulations. Bandwidth is 0.01. For the case presented in this 
figure the true values are 0.33, 0.95, 0.1, 0.8, 0.15z z q zα ρ σ ρ σ= = = = = . In the legend (XX,YY), XX denotes the method of detrending and 
YY indicates the model concept of the observed variables. See text for further details. 
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