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ABSTRACT
We study a model of lumpy investment wherein establishments face persistent shocks

to common and plant-specific productivity, and nonconvex adjustment costs lead them to
pursue generalized (S,s) investment rules. We allow persistent heterogeneity in both capital
and total factor productivity alongside low-level investments exempt from adjustment costs
to develop the first model consistent with available evidence on establishment-level invest-
ment rates. Examining the implications of lumpy investment for aggregate dynamics in this
setting, we find that they remain substantial when factor supply considerations are ignored,
but are quantitatively irrelevant in general equilibrium.

The substantial implications of general equilibrium extend beyond the dynamics of aggre-
gate series. While the presence of idiosyncratic shocks makes the time-averaged distribution
of plant-level investment rates largely invariant to market-clearing movements in real wages
and interest rates, we show that the dynamics of plants’ investments differ sharply in their
presence. Thus, model-based estimations of capital adjustment costs involving panel data
may be quite sensitive to the assumption about equilibrium. Our analysis also offers new
insights about how nonconvex adjustment costs influence investment at the plant. When
establishments face idiosyncratic productivity shocks consistent with existing estimates, we
find that nonconvex costs do not cause lumpy investments, but act to eliminate them.
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1 Introduction

Over the past fifteen years, an influential body of research has developed the argu-

ment that, in order to understand cyclical fluctuations in aggregate investment, we must

explicitly examine changes in the underlying distribution of capital across establishments.

This growing literature challenges the usefulness of smooth aggregative models for business

cycle research, emphasizing that there are important nonlinearities in aggregate investment

originating from nonconvexities at the establishment level. In particular, it has been ar-

gued that nonconvex costs of adjustment lead establishments to adjust capital infrequently

in the form of lumpy investments and that occasional synchronization in the timing of es-

tablishments’ investments can sharply influence the dynamics of the aggregate series. As

explained by Caballero and Engel (1999), a large aggregate shock in such a setting may lead

to a substantial change in the number of establishments undertaking capital adjustment.

This, in turn, implies a time-varying elasticity of aggregate investment demand with respect

to shocks. The further claim is that such nonlinearities help explain the data.

The substantial heterogeneity that characterizes (S, s) models of capital adjustment has

largely dissuaded researchers in the lumpy investment literature from undertaking general

equilibrium analysis.1 One early exception to this was the dynamic stochastic general equi-

librium model of Khan and Thomas (2003), where nonconvex adjustment costs caused plants

to adopt optimal (S, s) decision rules with respect to capital. There, the aggregate nonlin-

earities predicted by previous partial equilibrium studies were present when real wages and

interest rates were held fixed, but they disappeared in general equilibrium. Proponents

of lumpy investment have remained unconvinced by the finding, however, partly because

there were important discrepancies in the model’s microeconomic implications relative to

the data. At the heart of the lumpy investment debate lies the distribution of capital

across establishments. As the distribution of investment arising in our early model differed

sharply from that in the data, implying a similar mismatch for the distribution of capital

itself, researchers were led to question the relevance of its aggregate implications.

1Examples of partial equilibrium (S, s) models include Caballero and Engel (1999), Caballero, Engel and

Haltiwanger (1995), Cooper, Haltiwanger and Power (1999) and Cooper and Haltiwanger (2006). Veracierto

(2002) provides a general equilibrium analysis of plant-level (S, s) policies caused by irreversible investment.

Bachman, Caballero and Engel (2006) study a version of our general equilibrium lumpy investment model ,

but follow a different calibration strategy, as is discussed in section 6. Gourio and Kashyap (2006) modify

the Thomas (2002) environment to include random machine breakdowns and less uncertainty in capital

adjustment costs.
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One important limitation of the first-generation DSGE lumpy analysis was an assumption

that differences in capital were the sole source of heterogeneity across plants. Although

it could generate lumpy investments, the abstraction from persistent differences in plant-

specific productivity prevented the theory from usefully addressing a richer set of recently

documented establishment-level facts.2 For example, Cooper and Haltiwanger’s (2006)

summary of investment patterns in the LRD reveals negative capital adjustments among 10

percent of plants in the average year, while the model failed to generate any. Moreover, as is

the convention throughout the lumpy literature, there was a stark assumption regarding the

incidence of nonconvex adjustment costs, with these costs applying to all capital adjustments

irrespective of their size. As a result, the model reproduced the observed frequency of large

positive investment episodes (spikes) only by dramatically overstating the frequency of near-

zero (inactive) episodes.

Confronting these issues, this paper reconsiders whether plant-level nonconvexities are

an essential element lacking in our standard models of the business cycle, this time in an

equilibrium setting where the resulting distribution of capital is empirically viable. Here,

we take two important steps away from the first-generation model to construct a model

that is quantitatively consistent with the available evidence on establishment-level capital

adjustment. First, we allow for persistent differences across plants not only in their capital

stocks but also in their total factor productivities. Next, we further generalize the model to

permit plants to undertake low levels of investment without incurring adjustment costs. As

we evaluate the aggregate implications of nonconvex capital adjustment costs in this more

realistic setting, our approach will be distinguished by a series of simple comparisons between

our lumpy investment economy versus an otherwise identical (nested) economy without

adjustment frictions. By undertaking these controlled comparisons, we can attribute any

differences we find entirely to the difference in adjustment technologies.

Before exploring aggregate results, we first verify that our model satisfies two prereq-

uisites for a useful study. We begin by confirming its consistency with the features of

the plant investment distribution that motivate our current work. Next, we confirm that

the lumpy investment technology therein has a substantial influence on dynamics that does

not evaporate with aggregation. Specifically, we show that, in partial equilibrium (that is,

with real wage and interest rates fixed at their steady-state values), nonconvex adjustment

costs at the plant sharply increase skewness and kurtosis in the distribution of aggregate

investment rates.
2 It has also been suggested that additional sources of persistent heterogeneity may reinforce the aggregate

effects of lumpy microeconomic adjustment, and that their omission in our earlier work biased results against

aggregate implications.
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Having established our model’s consistency with previous predictions of aggregate non-

linearities throughout the partial equilibrium lumpy literature, we trace these features to

large changes in the target capital stocks adopted by adjusting plants (changes along the

intensive margin) in response to aggregate shocks that, in turn, induce large changes in

the numbers of plants actively undertaking these adjustments (changes along the extensive

margin). In particular, our environment generates asymmetries in the average distribution

of plants over capital, alongside rising adjustment hazards implying that the fractions of

plants paying fixed costs to undertake adjustment rise in the distance from the relevant

target capitals. We show that this combination leads to asymmetric changes along the ex-

tensive margin that amplify aggregate responses to positive shocks, but dampen responses to

negative shocks. Finally, we also confirm that, in partial equilibrium, aggregate investment

rates are less volatile and more persistent in the presence of nonconvex adjustment costs,

as consistent with the aggregate smoothing emphasized in Bachman, Caballero and Engel’s

(2006) recent equilibrium work on lumpy investment and in related work on investment

irreversibilities by Bertola and Caballero (1994). By delaying capital adjustment for some

establishments, fixed costs at the establishment level deliver gradual changes in aggregate

investment. Thus, partial equilibrium estimation may tend to emphasize these costs be-

cause, like convex adjustment costs, they deliver persistence in aggregate investment rates

that would otherwise be absent, bringing them closer to the data.

Despite the sharp improvement in our current model’s ability to reproduce investment

patterns in the microeconomic data, our aggregate findings here reinforce those isolated

in our previous lumpy investment studies. Microeconomic lumpiness continues to have

perceptible effects on aggregate investment dynamics only when equilibrium factor supply

considerations are ignored. General equilibrium itself matters tremendously in shaping

aggregate dynamics. First, it is extremely effective in smoothing changes in aggregate

series, yielding investment rates close to the postwar US data in both their cyclical variability

and persistence, irrespective of capital adjustment costs. Second, it dampens much of the

movement along the extensive margin that would otherwise distinguish the lumpy investment

economy, leaving no trace of aggregate nonlinearities. However, this is not a deficiency of

our theoretical environment relative to its empirical counterpart; it is a success. In fact,

we show that the near-zero skewness and excess kurtosis in the distribution of aggregate

investment rates arising from our general equilibrium models (both lumpy and smooth)

matches the third and fourth moments from the aggregate data reasonably well, and far

more closely than does the partial equilibrium lumpy model.

Whether nonconvex adjustment costs cause only a fraction of all plants to (uncon-

strainedly) adjust their capital stocks in any period (in the lumpy model), or whether all
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plants adjust their stocks in every period (in a control model without adjustment frictions),

households’ preferences for consumption smoothing imply equilibrium movements in relative

prices that sharply restrain changes in the target capitals to which these plants adjust in

response to aggregate disturbances. Moreover, these dampened changes along the intensive

margin immediately imply reduced changes in the value that plants in the lumpy investment

economy place on adjustment, thus eliminating large extensive margin changes. Without

these large movements in the numbers of adjusting plants, the nonlinearities distinguishing

the lumpy investment economy disappear. As a result, our model economy achieves through

modest movements along two margins the same aggregate investment dynamics that appear

in the frictionless control model through the intensive margin alone.

Our development of a DSGE model consistent with richer aspects of the establishment-

level data has led us to some additional new results regarding the influence of nonconvex

adjustment costs, idiosyncratic risk and general equilibrium upon microeconomic investment

behavior that we believe may be of independent interest. First, we find that intertemporal

changes in the cross-sectional distribution of plant investment rates are sharply dampened in

general equilibrium. Although the reallocation of investment goods across plants in response

to idiosyncratic shocks is unaffected by equilibrium (as it generates no changes in aggregate

investment), we show that the micro-elasticity of response to aggregate shocks is greatly

reduced when the associated equilibrium movements in relative prices are permitted to feed

back into establishments’ decisions. This indicates that equilibrium analysis is essential

for understanding investment dynamics even at the most disaggregated level, particularly

in times of large aggregate disturbances. Thus, it is precisely during those episodes where

partial equilibrium lumpy researchers (e.g., Caballero, Engel and Haltiwanger (1995), Ca-

ballero and Engel (1999), Cooper and Haltiwanger (2006)) have argued the distribution of

establishments over capitals is essential to understanding aggregate dynamics that a partial

equilibrium analysis most distorts the true distribution.

Second, we find that the microeconomic role of nonconvex capital adjustment costs can

change substantially in the presence of persistent idiosyncratic risk. When plant-specific

productivity shocks are volatile relative to aggregate shocks, as suggested by the data,

nonconvex costs no longer cause the plant-level investment spikes that are the hallmark of

lumpy investment. Rather, their primary role shifts to one of eliminating some of these

spikes, as is necessary to move the model-implied average cross-sectional distribution in line

with the data. These costs now take on a secondary role in reproducing a stark asymmetry

in the occurrence of positive versus negative investment (spikes). Noting that each of these

effects also arises in the presence of investment irreversibilities, and under combinations of

irreversibilities and convex capital adjustment costs, this finding suggests that there actually
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may be no distinct role for nonconvex costs even at the microeconomic level. As such, it may

be extremely difficult to correctly disentangle the importance of nonconvex costs, relative

to other adjustment frictions, from the establishment-level investment data.

2 Model

In our model economy, there are both fixed costs of capital adjustment and persistent

differences in plant-specific productivity, which together lead to substantial heterogeneity in

production. In this section, we describe the economy beginning with production units, then

follow with households and equilibrium. Next, using a simple implication of equilibrium, we

characterize the capital adjustment decisions of production units as a two-sided generalized

(S, s) policy. This decision rule for investment is what distinguishes the model from the

stochastic neoclassical growth model.

2.1 Production and capital adjustment

We assume a large number of production units. Each establishment produces its output

using predetermined capital stock k and labor n, via an increasing and concave production

function, F :

y = zεF (k, n) .

Here, z reflects stochastic total factor productivity common across plants, while ε is plant-

specific productivity. For convenience, we assume that z is a Markov chain, z ∈ {z1, . . . , zNz},
where

Pr
¡
z0 = zj | z = zi

¢ ≡ πij ≥ 0,
and

PNz
j=1 πij = 1 for each i = 1, . . . ,Nz. Similarly, we assume that ε ∈ {ε1, . . . , εNε}, where

Pr
¡
ε0 = εm | ε = εl

¢ ≡ πεlm ≥ 0,

and
PNε

m=1 π
ε
lm = 1 for each l = 1, . . . ,Nε.

In each period, a plant is defined by its predetermined stock of capital, k ∈ R+, its
idiosyncratic productivity level, ε ∈ E ≡ {ε1, . . . , εNe}, and its fixed cost associated with
(non-exempted) capital adjustment, ξ ∈ [0, ξ], which is denominated in units of labor. Given
the current aggregate state of the economy, the plant chooses its current level of employment,

production occurs, and its workers are paid. Next, the plant chooses its investment; in doing

so, it chooses whether it will pay or avoid its current adjustment cost.
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The plant’s capital stock evolves according to γk0 = (1− δ) k + i, where i is its current

investment and δ ∈ (0, 1) is the rate of capital depreciation.3 After current production, the

plant can undertake an unconstrained investment only upon payment of its fixed adjustment

cost, ξ. Specifically, by forfeiting ωξ units of current output, where ω denotes the real wage

rate, the plant can invest to any future capital, k0 ∈ R+. Alternatively, because fixed costs
do not apply to adjustments that are sufficiently minor relative to the existing capital stock,

the plant can avoid its fixed cost by selecting a constrained investment, i ∈ [ak, bk], where
a ≤ 0 ≤ b. In this case, the plant achieves future capital k0 ∈ Λ (k) ⊆ R+, where

Λ (k) ≡
h1− δ + a

γ
k,
1− δ + b

γ
k
i
. (1)

For the plant, capital adjustment involves a nonconvexity; conditional on undertaking

an unconstrained adjustment, the cost ξ entailed is independent of the scale of adjustment.

At the same time, we assume that ξ varies across plants and over time for any given plant.

Each period, every plant draws a cost from the time-invariant distribution G :
£
0, ξ
¤→ [0, 1].

As a result, given its end-of-period stock of capital, a plant’s current adjustment cost has

no implication for its future adjustment. Thus, it is sufficient to describe differences across

plants by their idiosyncratic productivity, ε, and capital, k. We summarize the distribution

of plants over (ε, k), using the probability measure μ defined on the Borel algebra, S, for
the product space S = E ×R+. The aggregate state of the economy is then described by
(z, μ), and the distribution of plants evolves over time according to a mapping, Γ, from the

current aggregate state; μ0 = Γ (z, μ). We will define this mapping below.
Let v1 (εl, k, ξ; zi, μ) represent the expected discounted value of a plant entering the

period with (εl, k) and drawing an adjustment cost ξ, when the aggregate state of the

economy is (zi, μ). We state the dynamic optimization problem for the typical plant using

a functional equation defined by (2) - (4). First we define the beginning of period expected

value of a plant, prior to the realization of its fixed cost draw, but after the determination

of (εl, k; zi, μ):

v0 (εl, k; zi, μ) ≡
Z ξ

0
v1 (εl, k, ξ; zi, μ)G (dξ) . (2)

Assume that dj (zi, μ) is the discount factor applied by plants to their next-period expected

value if aggregate productivity at that time is zj and current productivity is zi. (Except

where necessary for clarity, we suppress the indices for current aggregate and plant produc-

tivity below.) The plant’s profit maximization problem, which takes as given the evolution

3Throughout the paper, primes indicate one-period-ahead values, and all variables measured in units of

output are deflated by the level of labor-augmenting technological progress, which implies output growth at

the rate γ − 1 along the balanced growth path.

6



of the plant distribution, μ0 = Γ (z, μ), is then described by

v1(ε, k, ξ; z, μ) = max
n

"
zεF (k, n)− ω (z, μ)n+ (1− δ) k (3)

+max

(
−ξω (z, μ) + max

k0∈R+

r
¡
ε, k0; z, μ0

¢
, max
k0∈Λ(k)

r
¡
ε, k0; z, μ0

¢)#
,

where r (ε, k0; z, μ0) represents the continuation value associated with any future capital
stock:

r
¡
ε, k0; z, μ0

¢ ≡ −γk0 + NzX
j=1

πijdj (z, μ)
NeX
m=1

πεlmv
0
¡
εm, k

0; zj , μ0
¢
. (4)

Given (ε, k, ξ) and the equilibrium wage rate ω (z, μ), the plant chooses current employ-

ment n. Next, the plant decides upon either an unconstrained or a constrained choice of

its capital stock for next period. The unconstrained choice, in the first term of the binary

maximum above, requires payment of the fixed labor cost of capital adjustment. However,

if k0 ∈ Λ (k) is selected, the second term in the binary maximum applies, and this cost

is avoided. Rather than subtracting investment from current profits, we adopt an equiva-

lent but notationally more convenient approach in (3); there, the value of nondepreciated

capital augments current profits, and the plant is seen to repurchase its capital stock each

period. Since adjustment costs do not affect the choice of current employment, we denote

the common employment selected by all type (ε, k) plants using N (ε, k; z, μ). Further, let

K (ε, k, ξ; z, μ) represent the choice of capital for the next period by plants of type (ε, k)

with adjustment cost ξ.

2.2 Households

The economy is populated by a unit measure of identical households. Household wealth

is held as one-period shares in plants, which we denote using the measure λ.4 Given the

prices they receive for their current shares, ρ0 (ε, k; z, μ), and the real wage they receive for

their labor effort, ω (z, μ), households determine their current consumption, c, hours worked,

nh, as well as the numbers of new shares, λ0 (ε0, k0), to purchase at prices ρ1 (ε0, k0; z, μ). The
4Households also have access to a complete set of state-contingent claims. However, as there is no

heterogeneity across households, these assets are in zero net supply in equilibrium. Thus, for brevity, we do

not explicitly model them.
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lifetime expected utility maximization problem facing each of them is listed below.

W (λ; z, μ) = max
c,nh,λ

0

h
U
³
c, 1− nh

´
+ β

NzX
j=1

πijW
¡
λ0; zj , μ0

¢i
(5)

subject to

c+

Z
S
ρ1
¡
ε0, k0; z, μ

¢
λ0
¡
d
£
ε0 × k0

¤¢ ≤ ω (z, μ)nh +

Z
S
ρ0 (ε, k; z, μ)λ (d [ε× k]) .

Let C (λ; z, μ) describe the household choice of current consumption, Nh (λ; z, μ) the

current allocation of time to working, and Λh (ε0, k0, λ; z, μ) the quantity of shares purchased
in plants that begin the next period with productivity ε0 and k0 units of capital.

2.3 Recursive equilibrium

A recursive competitive equilibrium is a set of functions,³
ω, (dj)

Nz

j=1 , ρ0, ρ1, v
1,N,K,W,C,Nh,Λh

´
,

such that plants and households maximize their expected values, and the markets for assets,

labor and output clear:

1. v1 satisfies (2) - (4), and (N,K) are the associated policy functions for plants.

2. W satisfies (5), and
¡
C,Nh,Λh

¢
are the associated policy functions for households.

3. Λh (εm, k0, μ; z, μ) = μ0 (εm, k0), for each (εm, k0) ∈ S.

4. Nh (μ; z, μ) =

Z
S

"
N (ε, k; z, μ) +

ξR
0

ξJ
³
γK(ε,k,ξ;z,μ)−(1−δ)k

k

´
G (dξ)

#
μ(d [ε× k]),

where J (x) = 0 if x ∈ [a, b]; J (x) = 1 otherwise.

5. C (μ; z, μ) =
Z
S

"
zεF (k,N (ε, k; z, μ))−

ξR
0

³
γK (ε, k, ξ; z, μ)−(1− δ) k

´
G(dξ)

#
μ(d [ε× k]).

6. μ0 (εm, B) =
Z
{(εl,k,ξ) |K(εl,k,ξ;z,μ)∈B}

πεlmG (dξ)μ (d [εl × k]), for all (εm, B) ∈ S, de-
fines Γ.

8



2.4 (S, s) decision rules

Using C and N to describe the market-clearing values of household consumption and

hours worked satisfying conditions 4 and 5 above, it is straightforward to show equilibrium

requires that ω (z, μ) = D2U(C,1−N)
D1U(C,1−N) and that dj (z, μ) =

βD1U(C0j ,1−N 0
j)

D1U(C,1−N) . We may then com-
pute equilibrium by solving a single Bellman equation that combines the plant-level profit

maximization problem with these equilibrium implications of household utility maximiza-

tion. Defining p as the price plants use to value current output, we have the following two

conditions.

p (z, μ) = D1U (C, 1−N) (6)

ω (z, μ) =
D2U (C, 1−N)

p (z, μ)
(7)

A reformulation of (2) - (4) then yields an equivalent description of a plant’s dynamic

problem. Suppressing the arguments of the price functions and defining Λ (k) as in (1),

V 1(ε, k, ξ; z, μ) = max
n

"Ã
zεF (k, n)− ωn+ (1− δ) k

!
p (8)

+max

½
−ξωp+ max

k0∈R+

R
¡
ε, k0; z, μ0

¢
, max
k0∈Λ(k)

R
¡
ε, k0; z, μ0

¢¾#
,

where

R
¡
ε, k0; z, μ0

¢ ≡ −γk0p+ β
NzX
j=1

πij

NeX
l=1

πεlmV
0
¡
εm, k

0; zj , μ0
¢
, (9)

V 0 (ε, k; z, μ) ≡
Z ξ

0
V 1 (ε, k, ξ; z, μ)G (dξ) . (10)

Equations (8) - (10) will be the basis of our numerical solution of the economy. This

solution exploits several results that we now derive. First, note that plants choose labor

n = N (ε, k; z, μ) to solve zεD2F (k, n) = ω (z, μ). Next, we examine the capital choice

of a type (ε, k) plant drawing adjustment cost ξ. Define the value associated with the

unconstrained capital choice, E (ε, z, μ), and that associated with the constrained choice,

EC (ε, k, z, μ), as follow:

E (ε, z, μ) ≡ max
k0∈R+

R
¡
ε, k0; z, μ0

¢
(11)

EC (ε, k, z, μ) ≡ max
k0∈Λ(k)

R
¡
ε, k0; z, μ0

¢
. (12)

Next, define the plant’s target capital as the unconstrained choice of k0 solving the right-hand
side of (11).
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Note that the solution to the unconstrained problem in (11) is independent of both k and

ξ, but not ε, given persistence in plant-specific productivity. As a result, all plants sharing

the same current productivity ε that pay their fixed costs to make unconstrained capital

adjustments will choose a common target capital for the next period, k0 = k∗ (ε, z, μ), and
achieve a common gross value of unconstrained adjustment, E (ε, z, μ). By contrast, plants

that do not pay adjustment costs, instead undertaking constrained capital adjustments

solving (12), will choose future capital that may depend on their current capital, k0 =
kC (ε, k, z, μ). (The exception occurs for plants with k∗ (ε, z, μ) ∈ Λ (k); for such plants, the
constraint in (12) does not bind, and the target capital is achieved without incurring an

adjustment cost.)

Referring again to the functional equation in (8), it is clear that a plant will absorb its

fixed cost to undertake an unconstrained adjustment if the net value of achieving the target

capital, E (ε, z, μ) − ξωp, is at least as great as the continuation value under constrained

adjustment, EC (ε, k, z, μ). It follows immediately that a plant of type (ε, k) will undertake

unconstrained capital adjustment if its fixed cost, ξ, lies at or below some (ε, k)-specific

threshold value. In particular, let bξ (ε, k; z, μ) describe the fixed cost that leaves a type
(ε, k) plant indifferent between these investment options:

−p (z, μ)bξ (ε, k; z, μ)ω (z, μ) +E (ε, z, μ) = EC (ε, k, z, μ) . (13)

Next, define ξT (ε, k; z, μ) ≡ min
n
ξ,bξ (ε, k; z, μ)o, so that 0 ≤ ξT (ε, k; z, μ) ≤ ξ. Any plant

with an adjustment cost at or below its type-specific threshold, ξT (ε, k; z, μ), will pay the

fixed cost and adjust to its target capital.

Using the target and constrained capital choices identified above, alongside the threshold

adjustment costs, the plant-level decision rule for capital may be conveniently summarized

as follows. Any establishment identified by the plant-level state vector (ε, k, ξ; z, μ) will

begin the subsequent period with a capital stock given by

k0 = K (ε, k, ξ; z, μ) =

(
k∗ (ε, z, μ) if ξ ≤ ξT (ε, k; z, μ)

kC (ε, k, z, μ) if ξ > ξT (ε, k; z, μ).
(14)

Thus, within each group of plants sharing a common (ε, k), fraction G
¡
ξT (ε, k; z, μ)

¢
pay

their labor-denominated fixed costs to undertake an unconstrained capital adjustment. It

then follows that the market-clearing levels of consumption and work hours required to
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determine p and ω using (6) and (7) are given by:

C =

Z
S

³
zεF (k,N (ε, k; z, μ))−G

¡
ξT (ε, k; z, μ)

¢ h
γk∗ (ε, z, μ)− (1− δ) k

i
−
h
1−G

¡
ξT (ε, k; z, μ)

¢ih
γkC (ε, k, z, μ)− (1− δ) k

i´
μ (d [ε× k]) , (15)

N =

Z
S

"
N (ε, k; z, μ) +

Z ξT (ε,k;z,μ)

0
ξG (dξ)

#
μ (d [ε× k]) . (16)

Finally, based on (14), we can now describe the evolution of the plant distribution,

μ0 = Γ (z, μ). First, define the indicator function J (x) = 1 for x = 0; J (x) = 0 for x 6= 0.
Informally, for each

³
εm,bk´ ∈ S,

μ0
³
εm,bk´ = NεX

l=1

πεlm

"
J
³bk − k∗ (εl, z, μ)

´Z
G
¡
ξT (εl, k; z, μ)

¢
μ (εl, dk) (17)

+

Z h
1−G

¡
ξT (εl, k; z, μ)

¢iJ ³bk − kC (εl, k, z, μ)
´
μ (εl, dk)

#
.

Consider the cases of bk = k∗ (εl, z, μ), for each given εl, l = 1, . . . , Nε. The first line of equa-

tion (17) represents those plants (εl, k) that pay their fixed costs to adjust to this target.

However, our law of motion must also reflect those plants that reach bk = k∗ (εl, z, μ) without
paying fixed costs. For such plants, kC (εl, k, z, μ) = k∗ (εl, z, μ), so ξT (εl, k; z, μ) = 0. Thus,
they are a subset of the plants avoiding fixed costs in the second line of (17), those with cur-

rent capital such that k∗ (εl, z, μ) ∈ Λ (k). Next, consider the cases of bk 6= k∗ (εl, z, μ). Those
plants reflected in the second line for which k∗ (εl, z, μ) /∈ Λ (k) are plants that face either
a binding upper constraint on their capital choice (with k < γ

1−δ+bk
∗ (εl, z, μ)) or a binding

lower constraint (with k > γ
1−δ+ak

∗ (εl, z, μ)). Of this group, those with kC (εl, k, z, μ) = bk
begin the next period with bk.
3 Calibration

We evaluate the plant-level and aggregate implications of nonconvex capital adjustment

costs using several numerical experiments across which we vary the stochastic process for

idiosyncratic shocks to plants’ total factor productivity and the parameterization of capital

adjustment costs. All other production parameters, as well as preferences, are held con-

stant throughout. Each experiment is based on a 10,000-period model simulation, and the

same random draw of aggregate productivity is used in each. Below, we discuss functional

forms and parameter values for technology and preferences that are identical across models.
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Thereafter, in section 3.2, we explain the choice of idiosyncratic shocks and the distribu-

tion of capital adjustment costs. The description of our numerical method is provided in

Appendix A.

3.1 Common parameters

Across our model economies, we assume that the representative household’s period util-

ity is the result of indivisible labor (Hansen (1985), Rogerson (1988)): u(c, L) = log c+ϕL,

and the establishment-level production function takes a Cobb-Douglas form, zεF (k,N) =

zεkαNν . We fix the length of a period to correspond to one year, allowing us to use evi-

dence on establishment-level investment in selecting parameters governing the distributions

of adjustment costs and idiosyncratic productivities below.

Model parameters, other than those involving idiosyncratic shocks and adjustment costs,

are selected to ensure agreement with observed long-run values for key postwar U.S. aggre-

gates in a nested frictionless version of our model without capital adjustment costs described

in Appendix B. As proven in lemma 2 of this appendix, macroeconomic aggregates are in-

sensitive to the presence of idiosyncratic productivity differences in the absence of capital

adjustment costs. This allows us to choose parameter values for technology and pref-

erences that are consistent with empirical counterparts before specifying an idiosyncratic

shock process. For these parameters, we apply the same values to the lumpy investment

model. We are able to use this approach because the aggregate first moments across our

model economies are extremely similar.

The mean growth rate of technological progress is chosen to imply a 1.6 percent average

annual growth rate of real per capita output, and the discount factor, β, is then set to

imply an average real interest rate of 4 percent. Given the rate of technological progress,

the depreciation rate, δ, is selected to match an average investment-to-capital ratio of 10

percent, corresponding to the average value for the private capital stock between 1954 and

2002 in the U.S. Fixed Asset Tables. Labor’s share is then set to 0.64 as in Prescott (1986);

given this value, capital’s share of output is determined by targeting an average capital-

to-output ratio of 2.353 as in the data. Next, the parameter governing the preference for

leisure, ϕ, is taken to imply an average of one-third of available time spent in market work.

Table 1 lists the resulting parameter values.

In specifying our exogenous stochastic process for aggregate productivity, we begin by

assuming a continuous shock following a mean zero AR(1) process in logs: log z0 = ρz log z+

η0z with η0z ∼ N
³
0, σ2ηz

´
. Next, we estimate the values of ρz and σηz from Solow residuals

measured using NIPA data on US real GDP and private capital, together with the total

employment hours series constructed by Prescott, Ueberfeldt, and Cociuba (2005) from
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CPS household survey data, over the years 1959-2002. Finally, we discretize the resulting

productivity process using a grid with 11 shock realizations; Nz = 11.

3.2 Plant-specific shocks and adjustment costs

The remaining parameters involve the distribution of plant-specific productivity and

the adjustment costs facing plants in the lumpy investment economy. We determine idio-

syncratic shocks (εi)
Nε
i=1 and the Markov Chain determining their evolution

³
πεij

´Nε

i,j=1
by

discretizing a log-normal process, log ε0 = ρε log ε+ η0ε using 15 values (Nε = 15). To main-

tain controlled comparisons, the same stochastic process is applied to both the frictionless

and the lumpy investment models. In the latter, fixed costs of investment are assumed to

be drawn from a uniform distribution, G(ξ) = ξ/ξ, and the range of investment rates that

do not incur such costs is assumed to be symmetric around 0; in other words, |a| = b.

There is little agreement about the persistence of the idiosyncratic shock process, ρε.

(Compare, for example, the values in Comin and Phillipon (2005) to those of Cooper and

Haltiwanger (2006).) Given this, we simply set it equal to the persistence of the aggregate

shock, ρε = ρz.
5 Next, the remaining plant-level parameters (σηε , ξ, b) are selected to

best match the empirical average distribution of plant investment rates, as summarized by

Cooper and Haltiwanger (2006).

Constructing their own plant capital series using data on retirements and investment

from the Longitudinal Research Database, Cooper and Haltiwanger provide a detailed set

of time-averaged moments on plants’ investment rates, which are reproduced in the shaded

row of Table 2. They define any plant with an investment rate (ratio of investment to

capital) less than 1 percent in absolute value as inactive. Positive investment rates are

those at or exceeding 1 percent, while negative investment rates are those falling at or below

−0.01. Finally, positive spikes are investment rates exceeding 0.2, and negative spikes are
observations of i

k < −0.2.
Several features of the time-averaged plant data are prerequisites for our study. First,

investment inactivity is relatively rare, occurring among only 8 percent of plants on aver-

age. Next, there is a sharp asymmetry in positive versus negative investment rates; in the

average year, roughly 82 percent of plants actively raise their capital stocks. Finally, the

columns summarizing observations of investment spikes indicate not only extreme invest-

ment episodes occurring among a nontrivial fraction of establishments (roughly 20 percent)

in the tails of the average plant distribution, but also right skewness. Here again we see a

sharp asymmetry; positive spikes are observed 10 times as often as negative spikes.

5 In a previous version of this paper, we instead selected a much lower persistence, ρε = 0.53, taken from

Cooper and Haltiwanger (2002). Our findings here are entirely unaffected by the change.
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Before proceeding, we discuss our reasons for assuming a region of capital adjustment

that is exempt from adjustment costs. Throughout the lumpy investment literature thus

far, it has been assumed that all active adjustments to a plant’s capital stock incur fixed

costs. Given that assumption, we show in the next section that the inclusion of idiosyncratic

productivity shocks is not sufficient to yield consistency with the average distribution of

investment rates in the plant-level data. Specifically, the traditional lumpy investment model

matches the average occurrence of large positive and negative investment episodes only by

substantially exaggerating the frequency of near-zero investment episodes. One possible

explanation for this tension in reconciling the theory with microeconomic data is that, in

reality, fixed adjustment costs apply only to those investments that are comparatively large

relative to a plant’s existing capital. Alternatively, it may be reasonable to suppose that

the fixed costs associated with relatively large capital adjustments, such as building a new

structure, are substantially greater than those associated with minor ones, such as installing

a new computer. We adopt a rough proxy for these distinctions by permitting some low-level

capital adjustments that are exempt from fixed costs. This generalization of the traditional

lumpy investment framework allows our model to overcome the tension noted above, making

it the first to succeed in matching the average distribution of plant investment rates.

4 Prerequisites

4.1 Consistency with microeconomic data

A prerequisite for our current study is that our environment reproduce the key aspects

of the microeconomic data described above. In Table 2, we evaluate the microeconomic

performance of our model, comparing it to that of the traditional lumpy investment model

previously studied by Khan and Thomas (2003).6 There, all non-zero investment rates

were subject to fixed adjustment costs (b = 0), and there were no plant-specific productivity

disturbances (Nε = 1, σηε = 0). Row 1 presents the results for this special case of our

current model when the upper support of the adjustment cost distribution alone is selected

to best match the LRD data.

The traditional lumpy model reproduces only one aspect of the micro data, the frequency

of positive investment spikes. There, some plants repeatedly draw relatively high fixed costs,

and hence forego capital adjustment, for several consecutive periods. Typically, when such

6These moments from the cross-sectional distribution in each model’s steady state match closely with cor-

responding time-averages taken over long general equilibrium model simulations. While partial equilibrium

simulations yield similar results, they are more so when plants’ individual investment decisions are more

influenced by idiosyncratic relative to aggregate disturbances.
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a plant finally takes action, its effective capital stock lies far below the target to which it

invests, a result of ongoing depreciation and technological progress. This explains why fixed

costs cause positive investment spikes in this environment.7 However, in the average year,

there is no force leading any plant to lower its target capital, so no establishment has capital

exceeding its target. As a result, this simple model cannot generate any of the negative

investment (and hence negative spikes) seen in the average cross-sectional distribution from

the LRD. While the model does achieve large asymmetries, it does so in a trivial sense.

Moreover, as noted above, it suffers a stark trade-off in generating sufficient observations of

positive spikes versus positive investment rates.

The trade-off in reproducing observations of investment spikes versus inactivity is a com-

mon difficulty among quantitative models of lumpy investment, (see, for example, Cooper

and Haltiwanger (2006)). To achieve the former, generally there must be a sufficient num-

ber of plants that refuse to pay their adjustment cost draws for several consecutive periods

and thus see their actual capital stocks move far from their targets. This, in turn, means

that the upper support on adjustment costs must be sufficiently high to ensure only a small

fraction of plants pay their fixed costs in the typical period. When adjustment costs apply

to all non-zero investments, this immediately implies far too much investment inactivity.

Roughly 79 percent of plants are inactive in the traditional lumpy model versus 8 percent

in the data and, in turn, the model delivers far too few observations of positive investment,

as reflected in column 4. This problem persists with the introduction of plant-specific pro-

ductivity shocks; again, inactivity exceeds 75 percent when observations of positive spikes

match those in the data.

The sharp disparities between the moments summarizing actual plant-level investment

patterns and those arising in the traditional lumpy model of our previous work have moti-

vated the extensions we have undertaken here in arriving at our current model. When plants

face idiosyncratic productivity shocks, those shifting from relatively high productivities to

relatively low ones can find themselves with too much capital and choose to undertake neg-

ative investment. Moreover, if that drop in relative productivity is sufficiently large, it may

result in a negative spike. Next, the tension between reproducing the empirical observations

of spikes versus inaction is alleviated by allowing for the possibility that not all investment

is subject to fixed costs. In this case, plants not paying their adjustment costs may exhibit

active investments, while nonetheless having their activities sufficiently constrained that

they will eventually undertake an investment spike. As seen in row 2, roughly 75 percent

7While fixed costs cause investment spikes here, they can have precisely the opposite effect in environments

where plant-level productivity is associated with substantial idiosyncratic risk. We revisit this issue in section

7.2.
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of plants now exhibit positive investments on average in our model, almost matching the 82

percent seen in the data.

Aside from the moments of the time-averaged investment rate distribution presented in

table 2, we also report our model’s fit to some moments of establishment-level investment

dynamics that were not targets in our calibration. First, we find that the variability of plant

investment rates is reasonably well reproduced by our general equilibrium model. Simulating

1000 plants over 10, 000 periods, the standard deviation of the typical plant’s investment rate

is 24.4 percent in our model, while it is 33.7 percent in the LRD (Cooper and Haltiwanger

(2006)). Next, we consider the measure developed by Gourio and Kashyap (2006) to gauge

the importance of the extensive margin in explaining changes in investment spikes. Using

the LRD, they find that the correlation between the number of plants experiencing positive

investment spikes and the total investment in these plants (as a fraction of aggregate capital)

is 87 percent. Our model also predicts a sizeable role for the extensive margin in explaining

spikes, with a corresponding correlation of 66.9 percent.

4.2 Partial equilibrium aggregate nonlinearities and smoothing

We begin our study of the implications of nonconvex capital adjustment costs by con-

firming that, in partial equilibrium, our model of lumpy investment exhibits important

nonlinearities that survive aggregation. As almost all of the existing analyses of lumpy in-

vestment have been conducted in partial equilibrium, this exercise is necessary to establish

our model’s consistency with these existing studies abstracting from market clearing move-

ments in real wages and interest rates.8 To confirm the large potential lumpy investment

has for reshaping our model’s aggregate dynamics, we simulate a partial equilibrium version

of the model and compare its results to those in the corresponding frictionless model (distin-

guished only by its upper support on adjustment costs, ξ = 0) in panel A of Table 3. Both

models are subject to the same 10,000 period random draw of aggregate shocks. In choosing

a margin along which to compare them, we follow the empirical investment literature, which

has focused on changes in investment rates (that is, movements in the unfiltered ratio of

investment to capital).

4.2.1 Nonlinearities

The frictionless model serving as our control is an element of the set of models that

Caballero, Engel and Haltiwanger (1995) and Caballero (1999) refer to as linear, in that it is

a special case of a quadratic capital adjustment cost model. These authors term such models
8See, for example, Caballero and Engel (1999), Caballero, Engel and Haltiwanger (1995) and Cooper,

Haltiwanger and Power (1999).
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linear based on the result that, if shocks are normally distributed, then so too are investment

rates. Consistent with this, our frictionless model generates approximately zero skewness

and excess kurtosis in aggregate investment rates.9 In the lumpy investment model, by

contrast, nonconvex capital adjustment at the plant-level leads to a distribution of aggregate

investment rates that is both sharply right-skewed and fat-tailed. This is the central and

well-known nonlinearity in models of lumpy investment that has motivated such interest

in their aggregate implications, summarized by Caballero (1999) as follows. "What is the

aspect of the data that makes these models better than linear ones at explaining aggregate

investment dynamics? ... it is the flexible cyclical elasticity of the increasing hazard model

which allows it to better capture the high skewness and kurtosis imprinted on aggregate data

by brisk investment recoveries."

In fact, lumpy investment in our model increases skewness roughly 3-fold and kurtosis

more than 15-fold relative to the frictionless control. This vivid evidence of nonlinearity

in panel A establishes that our model is capable of delivering an aggregate role for lumpy

investment similar to that found in previous partial equilibrium studies and summarized

in Caballero’s (1999) survey. However, if one compares the two rows of this panel to the

near-zero third and fourth moments in the shaded row representing postwar U.S. investment

rates, it appears that the additional skewness and kurtosis generated by lumpy investment

does not improve model fit, but instead moves the model-implied investment series further

from the data.10

4.2.2 Smoothing

While the lumpy investment literature has primarily focused on aggregate nonlinearities,

there is also a smoothing aspect associated with fixed capital adjustment costs that has been

emphasized in the recent work of Bachman, Caballero and Engel (2006). We conclude our

discussion of the partial equilibrium panel in table 3 by noting from its first two columns

that our model is consistent with this more recent focus. This may come as little surprise,

given an analogous finding by Bertola and Caballero (1994) in the context of investment

9The faint suggestion of nonlinearity, more precisely skewness, that we observe in the frictionless model

arises from the log-normal distribution of aggregate shocks and decreasing returns to scale in the aggregate

production technology.
10These aggregate investment rate moments are similar whether we use the private sector captial stock,

as we do here, or the business capital stock. In that case, persistence and standard deviation are 0.777

and 0.011, respectively, while skewness and excess kurtosis are −0.053 and −0.619. Nonetheless, these

moments of the data do depend upon the level of aggregation. Examining investment rates from two-digit

U.S. manufacturing industries, Caballero and Engel (1999) find skewness and kurtosis of 0.61 and 0.74,

respectively, for equipment and 0.76 and 0.87 for structures.
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irreversibilities.

It is well-understood that, in partial equilibrium, the frictionless model lacks necessary

smoothing. In contrast to the aggregate data, its aggregate investment rate is both far

too volatile and negatively auto-correlated. With real wages and interest rates held fixed,

aggregate capital in this model is entirely determined by the previous period’s aggregate

productivity. Corresponding to this, the full response in aggregate investment demand

takes place immediately at the date of an aggregate shock. Thus, while productivity and

hence aggregate capital are persistent, investment is not. Turning to the second row, note

that lumpy investment improves model fit in these two columns by removing a substantial

fraction of the excess variability and introducing some persistence.

In this smoothing respect, nonconvex costs in the lumpy investment model take on

the same aggregate role that convex capital adjustment costs have historically held in

representative-firm neoclassical investment models. In such models, convex costs smooth

aggregate capital adjustment along the intensive margin by inducing all plants to undertake

concurrent, but gradual, capital adjustment. In our model, by contrast, the aggregate ad-

justment is gradualized through the extensive margin, because fixed adjustment costs imply

that only a fraction of plants adjust their capital in any period.11

Because they stagger the adjustments undertaken by individual plants in response to

aggregate shocks, nonconvex adjustment costs at the micro-level protract adjustments in

aggregate capital. More specifically, fixed costs induce inaction among plants with rel-

atively high current costs or capital close to their target value. Thus, in the aggregate,

investment demand initially responds less to a change in aggregate productivity than in

the frictionless model without adjustment costs. However, because aggregate productivity

changes are very persistent, many initially inactive plants undertake capital adjustments

in subsequent periods. Thus, in partial equilibrium, fixed capital adjustment costs make

aggregate investment both less variable and more persistent. However, despite these im-

provements, the partial equilibrium lumpy model continues to exhibit more than 10 times

the variability, and far too little persistence, relative to the aggregate data.

4.2.3 Extensive margin

Figure 1 provides further evidence of the substantial changes lumpy investment implies

for our model’s aggregate dynamics when relative prices are fixed at their steady state values.

11 In contrast to the aggregate nonlinearities that are our primary focus, the smoothing effect of nonconvex

costs (associated with a reduction in the standard deviation of aggregate series) survives in general equilibrium

if these costs are sufficiently large, in an otherwise plausibly calibrated model. We explore this issue further

in section 6.
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The top panel shows the histogram of aggregate investment rates over the partial equilibrium

simulation in the lumpy model; the bottom panel shows the corresponding histogram for

the control model without adjustment frictions. Note first the abruptness in the frictionless

model’s investment rate distribution. Looking then to the top panel, we see that fixed

adjustment costs smooth away some of this abruptness, as consistent with our discussion

above. Moreover, while the distribution in the lower panel appears roughly symmetric, the

inclusion of lumpy investment in the upper panel causes the distribution to lean rightward,

and shifts more mass into the tails.

The added kurtosis arises from the fact that aggregate investment in the partial equi-

librium lumpy model is more responsive to large aggregate shocks than to small ones, as

consistent with the time-varying elasticity of investment rates stressed by previous authors

in this literature. This follows directly from the rising shape of the hazards that govern

the fractions of plants undertaking (unconstrained) capital adjustment in a period. As will

be clear below, this shape implies that small shifts in the hazards yield minimal changes

in the numbers of adjusting plants, while larger shifts can generate disproportionately large

changes in these numbers. The increased skewness arises from the fact that the model’s

investment series is more responsive to large positive shocks than it is to large negative ones.

As we will explain, this happens because there are usually more plants concentrated on the

lower ramps of the adjustment hazards, carrying too little capital relative to their targets,

versus the upper ramps associated with excess capital.

Figure 2 illustrates the skewness arising in the partial equilibrium lumpy investment

model by showing the responses in aggregate capital following a two standard deviation

positive shock to aggregate total factor productivity versus a same-sized negative shock.

There, we plot capital’s percent deviation from steady state in the lumpy investment and

frictionless models under the assumption that the wage and real interest rate remain at their

steady-state values. In response to the positive shock in period 20, the rise in the lumpy

model’s aggregate capital stock, 58 percent, is roughly the same as in the frictionless model,

59 percent. However, following the negative shock in period 40, the aggregate capital stock

falls by 37 percent in the frictionless model, but by only 20 percent in the lumpy investment

model. Thus, while nonconvex adjustment costs do smooth the responses in aggregate

investment and thus capital to shocks, their effect is very nonlinear; responses to positive

shocks are hardly affected, while responses to negative shocks are greatly dampened.

Skewness in the lumpy investment model’s aggregate responses is caused by asymmetric

changes in the numbers of plants undertaking (unconstrained) adjustments to their capital

stocks. To explore this asymmetry, we must examine how the distribution of plants over cap-

ital evolves in response to aggregate disturbances. For expositional ease, we abstract from
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plant productivity shocks in this discussion to consider the effects of the two shocks above in

a common productivity version of our model. In this case, the endogenous aggregate state

contains a one-dimensional distribution of plants over capital, and, within any period, there

is a single adjustment hazard determining the fractions of plants that pay their fixed costs

to adjust from each capital level to one common target. This adjustment hazard and the

corresponding steady state distribution are shown in figure 3. The highest capital value at

which the distribution has positive mass is the target, k∗, just below 1.38, which is adopted
by all plants that pay their fixed adjustment costs, absent changes in aggregate productivity.

The dashed curve, which may be read off the right vertical axis, shows adjustment rates as

a function of capital.

Note that the adjustment hazard rises in the distance between current capital and the

capital stocks associated with the target, (the capital stocks from which a plant can reach k∗

for next period without suffering an adjustment cost, k ∈ [ γ
1−δ+bk

∗, γ
1−δ−bk

∗]). The hazard
takes this rising shape because plants with capital further from the target are willing to

suffer larger fixed costs to correct their stocks, and thus have higher probabilities of capital

adjustment. The lowest capital level held by any plant is 0.653; those entering the period

with this stock adjust with full probability. We define the aggregate adjustment rate in our

model as the population-weighted sum of the fractions of plants adjusting to their target from

each current capital, which is 0.223 in the steady-steady of the common productivity model

shown in figure 3. Finally, notice that, because both physical and economic depreciation

continually erode nonadjusted capital stocks, plants enter the average period concentrated

along the left ramp of the hazard with capital at or below the target.12 This is essential

to the partial equilibrium lumpy model’s asymmetric responses to positive versus negative

shocks, as may be seen in figure 4.

The left panel of figure 4 illustrates the extensive margin response to the two standard

deviation rise in productivity from above in figure 2, beginning with the bolded steady state

distribution and hazard of figure 3, and continuing to hold relative prices fixed at steady

state. Because changes in aggregate productivity are expected to persist, the positive shock

causes a large rise in the expected marginal product of capital that in turn raises target

capital sharply, to roughly 2.06. This leads the adjustment hazard to shift rightward, re-

centering at the much higher capitals associated with the new target. Given that plants

have all entered the period located along the left ramp of the steady state hazard (with

capital at or below the steady state target), this shift increases the gap between actual and

12More generally, in our model with plant-specific productivity shocks, there is an adjustment hazard

associated with each plant productivity level. Nonetheless, given mean-reversion in the shocks, the downward

pressure of depreciation and technological progress continues to imply disproportionate concentrations of

plants along the left ramps of the hazards.
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target capital for each of them, raising the value they place on capital adjustment. With

plants of each type now willing to pay larger fixed costs, adjustment rates increase sharply,

and the total number of adjusting plants jumps to 0.986. This rise along the extensive

margin reinforces the intensive-margin rise in the average investment undertaken by each

adjusting plant. As a result, aggregate capital rises by far more than it would in the absence

of an increase in adjustment rates. For the common productivity model, the 72 percent rise

in the aggregate capital stock exceeds the 59 percent rise in the frictionless model (where

idiosyncratic productivity differences do not affect aggregate responses).

By contrast, the right panel of figure 4 illustrates how the equivalent fall in aggregate

productivity leads to a sharp decrease in adjustment rates, again beginning with the bolded

steady state distribution and hazard. With the drop in expected future productivity, the

resulting fall in target capital, to 0.926, moves it down into the existing plant distribution,

and below the capital stock actually held by almost all plants. As a result, the fraction

of plants for which adjustment is sufficiently valuable to offset the associated fixed costs

declines markedly. This decline is most pronounced near the middle of the distribution,

where current capital, once adjusted for depreciation and exogenous technological progress,

is closest to the target capital stock for next period. As a result, the adjustment hazard

takes on a U shape over the mass of plants and, overall, the number of adjusting plants falls

from its average of 0.223 to 0.159. This fall in the adjustment rate offsets some of the decline

in aggregate capital that would otherwise occur with the fall in target capital, leading the

aggregate capital stock to fall by only 13 percent, far less than the 37 percent fall in the

frictionless model.

In sum, we have seen that the lumpy investment model can exhibit asymmetry in its

aggregate responses to shocks, and thus skewness in the distribution of aggregate investment

rates, because rightward versus leftward shifts in its adjustment hazards generate asymmetric

changes along the extensive margin in the number of adjusting plants. These changes are

sufficiently large to drive pronounced aggregate nonlinearities in partial equilibrium, because

aggregate shocks are followed by sharp changes in target capital that cause large shifts in

adjustment hazards. Returning to our full lumpy model with heterogeneity in both capital

and productivity, this explains the sharp response following the positive shock in figure 2

(which, despite its adjustment frictions, very nearly reaches that in the frictionless control

model) and its markedly dampened response following the negative shock, and thus the

skewed distribution of partial equilibrium investment rates seen in the top panel of figure 1.13

13Evidence of aggregate nonlinearity under partial equilibrium is even more extreme in the common pro-

ductivity case of our model analyzed above. There, skewness and kurtosis are 1.90 and 5.29, respectively.

Plant-specific productivity shocks on their own substantially reduce the lumpy investment model’s potential

for aggregate nonlinearities, because their presence implies more dispersion in the average distribution of
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In the section below, we will explore the extent to which these large dynamic effects persist

when we relax the fixed real wage and interest rate assumption maintained throughout this

section.

5 Aggregate Results

Having established our model’s consistency with essential features of the microeconomic

data, as well as the existence of aggregate nonlinearities in partial equilibrium that make it

comparable to existing studies in the literature, we now examine its aggregate results.

5.1 Model fit

Figure 5 presents the general equilibrium counterpart to the distribution of aggregate

investment rates in the lumpy versus frictionless model examined in figure 1. Here, we

report simulation results based on the same 10, 000 period random draw of aggregate shocks

as before, this time solving the models in equilibrium. Note that both model economies’

investment rates are greatly dampened by market-clearing movements in real wage and inter-

est rates; thus, the range of investment rates in figure 5 is nearly 10 times more compressed

relative to figure 1. Nonetheless, differences in the equilibrium histograms appear minimal,

with little evidence of added skewness or kurtosis in the lumpy investment panel.

These observations are confirmed by the second and higher moments presented in panel

B of Table 3. There, we see an unambiguous improvement in model fit as we move from the

partial equilibrium lumpy investment row of panel A to its general equilibrium counterpart

in panel B. Persistence increases sharply, nearly reaching the empirical autocorrelation,

while the excessive volatility in column 2 is virtually eliminated. Moreover, comparing the

GE lumpy model to its PE counterpart, we see that equilibrium dramatically reduces the

skewness and excess kurtosis in the distribution of aggregate investment rates, bringing the

model far closer to the actual series. Viewing the four columns as a whole, the simulated

aggregate investment rate series matches its counterpart in the data relatively well when

the effects of equilibrium are included in the lumpy investment environment, and far less so

when these effects are ignored.

Although the general equilibrium lumpy investment model yields empirically viable ag-

gregate investment dynamics, comparison of the two rows within panel B reveals that the

nonconvex investment technology faced by plants has no role in this success. Consistent

plants over capital, as well as greater symmetry in the typical concentration of plants along the left versus

right ramps of adjustment hazards. A more comprehensive explanation is provided in an earlier draft of this

paper and available on request.
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with our observations in figure 5, here we see that differences in the aggregate dynamics of

the lumpy investment versus frictionless model are largely eliminated in general equilibrium.

Aggregate investment rates exhibit nearly identical volatility, skewness, and kurtosis across

the two model economies. Moreover, there is virtually no difference in persistence, which

again is far greater in both models than it was in panel A and very close to that in the

data. This similarity in aggregate investment rate dynamics across the lumpy and friction-

less economies extends to other key macroeconomic aggregates, as may be seen in Table

4. There, the variabilities and contemporaneous correlations of aggregate output, employ-

ment, consumption and investment indicate that the aggregate business cycle is essentially

unaffected by lumpy investment.

Given the differing investment technologies across these models, alongside the marked

differences they implied in the partial equilibrium dynamics of section 4.2, the explanation

for the similarities within panel B of Table 3 (as well as those in the histograms of figure

5 and the business cycle moments of table 4) must be traceable to the influence of the

representative household that they share in common. Persistence in aggregate investment

rates is an immediate result of households’ preference for consumption smoothing. The

omission of this channel in partial equilibrium places an emphasis on capital adjustment

costs in Panel A to generate some of this otherwise absent persistence. In equilibrium, by

contrast, adjustment costs are not necessary to smooth aggregate investment demand; this

is achieved far more effectively through market-clearing changes in relative prices.

5.2 Why nonlinearities dissolve

As discussed above, the nonlinearities generated by lumpy investment in partial equi-

librium arise because changes in aggregate productivity are followed by large movements in

target capitals that can cause sharp, concurrent changes in the fractions of plants under-

taking (unconstrained) capital adjustment. However, such synchronizations in the timing of

large investment projects would in turn imply large movements in households’ consumption.

When we impose market-clearing, this volatility is sharply restrained by procyclical real

interest rates, which dampen the changes in target capitals arising from aggregate shocks,

and thus dampen changes in adjustment rates.14

Recall our earlier example in Figure 2, where we traced our model’s responses to a

large rise and fall in aggregate productivity. In contrast to the asymmetry there, where

aggregate capital rose far more sharply following a 2-standard deviation positive aggregate

shock than it fell after the same-sized negative shock, the general equilibrium responses to

14Procyclical wages further dampen fluctuations in the marginal profits associated with changes in plant-

level capital and thus in target capital stocks.
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aggregate shocks are far more symmetric. Following the positive shock, capital now rises by

2.86 percent, while it falls by 2.53 percent with the negative shock. This reflects no greater

asymmetry than occurs in the near-linear frictionless model, where capital rises 2.86 percent

and falls 2.6 percent in response to the two shocks.

The reason general equilibrium is so effective in eliminating the lumpy investment model’s

aggregate nonlinearities is that it smooths away much of the movement in target capitals

that are essential in generating large changes along the extensive margin. For example,

following the positive shock in figure 2, the average target capital stock (weighting the 15

productivity-specific targets by the ergodic distribution over productivities) rose more than

43 percent when our model was solved in partial equilibrium, thereby triggering sufficiently

large rightward shifts in the adjustment hazards as to raise the total adjustment rate by 59

percentage points and the aggregate investment rate by 59 percentage points. In general

equilibrium, the same shock causes only a 5.1 percent rise in the average target. Because

real interest rates rise with an increase in aggregate productivity, plants’ incentive to increase

capital is mitigated. This restraining force is compounded by accompanying increases in real

wages, which both raise the price of current adjustment activities and reduce the benefits of

high future capital. As a result, shifts in the adjustment hazards are minimal, leading the

aggregate adjustment rate to rise by only 3.6 percentage points and the aggregate investment

rate to rise just 2.9 percentage points.

Similarly, following the large negative aggregate shock, the fall in average target capital

is 5.5 percent in general equilibrium (versus 40.4 percent in partial equilibrium), yielding

only a 3 percentage point fall in the number of adjustors, and a 2.6 percentage point decline

in the aggregate investment rate (versus the 20.3 percentage point decline under partial

equilibrium). Thus, the rise and fall in the aggregate investment rate following these aggre-

gate shocks is an order of magnitude smaller in equilibrium and almost perfectly symmetric.

To appreciate the extent of this symmetry, one need only compare these outcomes with

those in the frictionless model. There, through changes in the intensive margin alone, the

aggregate investment rate rises by 2.91 percentage points and falls by 2.67 percentage points

in response to the two shocks.

5.3 Summary of aggregate results

We summarize the primary results of this section as follows. Despite the improved

match to microeconomic investment patterns, we find that lumpy plant-level investment

has no quantitatively relevant role in the dynamics of aggregate investment. When relative

prices are allowed to adjust to clear the markets for labor and goods, large fluctuations in

target capital stocks are smoothed dramatically, and thus so are changes in the numbers of
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plants undertaking relatively large capital adjustments. As a result, aggregate nonlinearities

associated with lumpy investment disappear, and the dynamics of aggregate investment,

labor supply and output are virtually indistinguishable from those in the standard frictionless

environment.

In closing, we re-emphasize that the absence of aggregate nonlinearities must not be

viewed as a failure of the equilibrium lumpy (or frictionless) model, as these features are

not apparent in the aggregate data. With or without capital adjustment costs, our general

equilibrium models match the higher moments of aggregate investment rates from the data

reasonably well, far more so than the partial equilibrium lumpy model where skewness and

kurtosis are sharply overstated. Of course, the empirical improvements associated with the

shift to a general equilibrium model are not limited to investment’s higher moments. By

reducing changes in plants’ target capital stocks, market-clearing relative price movements

also smooth away the excessively large and abrupt fluctuations in aggregate investment

demand we saw in partial equilibrium, so that the resulting investment series matches the

empirical persistence and volatility almost perfectly. These results indicate that, irrespective

of capital adjustment costs, general equilibrium analysis has an essential role in explaining

the dynamics of aggregate investment in actual economies.

6 Robustness and reconciliation

While the calibration of most parameters of our lumpy investment model is standard

and consistent with the method of Prescott (1986), we have selected the adjustment cost

parameters distinguishing this model from its frictionless counterpart, as well as the volatility

of plant productivity shocks, to match summary statistics taken from time-averages of the

microeconomic investment data. This approach differs sharply from that taken in the recent

work of Bachman, Caballero and Engel (2006), and it implies far smaller fixed adjustment

costs. These authors choose the size of fixed costs in their single sector model to match the

volatility of sectoral investment rates from 3-digit manufacturing data. Defining a group

of plants drawing a common sectoral shock as a sector, and assuming sectoral changes do

not affect real wages or interest rates, Bachman et. al. require large adjustment costs to

smooth sectoral capital reallocation sufficiently to match the variability in the data. This

is because plants’ outputs are perfectly substitutable in their one sector environment, so

there are no sectoral relative prices adjusting in response to changes in economic conditions,

thereby dampening investment flows across sectors.

As our equilibrium model does not show evidence of aggregate nonlinearities, while that

in Bachman et. al. does, we begin this section by considering whether the disparity in our

25



findings may arise from the differing size of our fixed costs, or from our lesser volatility

in plant-specific productivities. In row 1 of table 5, we return to the same 10,000 period

simulation used in our baseline results, this time reporting the resulting aggregate investment

rate moments when the upper support of the fixed cost distribution is raised 10-fold to

imply much larger adjustment costs in the model. In the next row, we make these costs

even larger, raising the upper support 25-fold, and simultaneously increase the variability

of idiosyncratic shocks to 3 times that of the aggregate shock. While these changes do

slightly reduce aggregate volatility, the third and fourth moments indicate that they have

little effect in generating nonlinearities.

Given that large increases in the size of our fixed adjustment costs and plant-specific

productivity variations fail to alter our baseline results, we next consider the second distin-

guishing feature of our model relative to that examined by Bachman et. al., the incidence

of adjustment costs. Our baseline calibration allows for a range of investment rates around

zero that are exempt from fixed costs, where the width of this range is taken to match

aspects of the average plant distribution. Bachman et. al. allow no such interval; instead,

they assume that, if a plant chooses not to pay its fixed cost, it must replace 50 percent

of the capital that it would otherwise passively shed through depreciation. In the third

row of table 5, we re-examine our model’s aggregate results when we modify the interval

of investment rates exempted from adjustment costs to allow plants to replace all of their

depreciated capital without incurring fixed costs; however, we do not force our plants to

undertake this investment. Again, we find negligible changes in the model’s aggregate dy-

namics relative to our baseline results, with no greater evidence of skewness or kurtosis.

From this, we conclude that it is not plants’ ability to undertake maintenance investment

without incurring adjustment costs that explains the nonlinearities uncovered in Bachman

et. al. and absent in our results.15

In the remainder of this section, we take a different approach toward isolating the sources

15Motivated by arguments in Gourio and Kashyap (2006), we have also explored cases where adjustment

costs are both very large and highly predictable for plants, as well as cases with quite low returns to scale in

production, where the overall incidence of fixed costs is magnified by difficulties in concentrating production

among few plants. Our aggregate findings appear robust to such changes; in each case, the equilibrium lumpy

model exhibits no evidence of nonlinearities. For example, when we assume that fixed costs are drawn from a

beta distribution that is sharply right-skewed with most probability concentrated at its upper support (α = 3

and β = 1
3 ), and we select the upper support at

1
2 to imply total output lost to adjustment costs averages

3.5 percent of total investment (as in Gourio and Kashyap (2006)), the resulting third and fourth moments

for the model’s aggregate investment rate are 0.077 and −0.062 respectively. Continuing to assume the beta
distribution, these moments are 0.080 and −0.065 when we simultaneously reduce returns to scale from 0.90

to 0.65 (while lowering ϕ to maintain total hours averaging 1
3
and raising σηz to hold the variability of output

in the frictionless model unchanged relative to the baseline results).
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of the disparate findings across these two equilibrium lumpy investment studies. We begin

by imposing each of the assumptions made by Bachman et. al. to reproduce their aggregate

nonlinearities, using essentially their parameter values (with an innocuous adjustment to

allow for a balanced growth path). Next, to gauge the importance of each, we remove one

assumption at a time so long as evidence of nonlinearities remains. A final assumption that

will be important in this exercise is that regarding the representative household’s attitude to-

ward risk and consumption smoothing. Across our lumpy investment and frictionless model

economies, the representative household has a unit elasticity of intertemporal substitution.

While this may be considered somewhat high, it lies within the range of standard values

applied in quantitative dynamic stochastic general equilibrium studies.16 By contrast, the

household in the Bachman et. al. lumpy investment economy is essentially risk-neutral,

with this elasticity exceeding 9. Such preferences imply far greater tolerance for fluctua-

tions in consumption, thus making the household supply of investment goods very flexible

and encouraging larger movements in target capital stocks and thus adjustment hazards.

When we combine the large adjustment costs, high variance in plant-level productiv-

ity, and mandatory maintenance investment described above together with the near risk-

neutrality assumption, we obtain the Bachman et. al. nonlinearities in aggregate investment

rates; skewness rises from the 0.067 of our model nearly 5-fold, to 0.315. After removing the

extreme elasticity of intertemporal substitution, instead setting σ = 1, we find that roughly

half of this skewness remains, 0.151. Next, we eliminate the assumption that plants must

replace one-half of their depreciated capital in any period that they do not pay their fixed

costs, instead applying the more traditional assumption that such plants undertake zero

investment.17 This removes virtually all remaining skewness, despite the large adjustment

costs and volatile plant productivity shocks still in place. The result, at 0.071, is indistin-

guishable from that in our model. Thus, we find that the aggregate results of Bachman et.

al. are reconciled to ours with the removal of the two specific assumptions regarding house-

hold preferences and mandatory maintenance. The question of whether nonconvex capital

adjustment costs cause aggregate nonlinearities then appears simply a question about the

plausibility of these two assumptions.

16The same value is chosen by Bachman et. al. for the household residing in their frictionless economy.
17 In a sense, required maintainence investment has the effect of imposing a partial investment irreversibility.

Under this assumption, plants experiencing rises in their relative productivity will be reluctant to adopt a

high capital stock, as they may be forced to retain much of it in the future until they agree to pay a fixed

adjustment cost. This then compresses the steady-state distribution of plants over capital. As a result, any

given shift in adjustment hazards will imply greater changes in overall adjustment rates.
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7 Additional Results

We now turn to examine our model’s predictions involving plant-level investment. In

this section of additional results, we explore how plants’ investments are influenced by the

interaction of idiosyncratic shocks, fixed adjustment costs, and equilibrium price movements.

7.1 Role of general equilibrium in microeconomic dynamics

Given the large influence of general equilibrium in our findings involving aggregate dy-

namics, we begin by considering how much information is lost in abstracting from market-

clearing price adjustments if our interest lies instead in the dynamics of highly disaggregated

series, such as the investments undertaken by individual production units. Naturally, when

idiosyncratic productivity shocks give rise to a nontrivial distribution of plants over in-

vestment rates, and the effect of these plant-level shocks is large relative to that of the

calibrated aggregate shock, the time-averaged cross-sectional distribution is relatively unaf-

fected by equilibrium. Differences in plants’ investment rates, on average, represent largely

a reallocation of capital from one production unit to another, and such reallocations have

no effect on aggregate investment. However, this does not imply that the dynamics of

plant-level investment are independent of equilibrium.

The period-by-period distribution of plant investment rates changes over time in response

to aggregate shocks. Because the associated movements in relative prices feed back into

plant-level decisions, the extent of these changes may be sharply distorted in a partial

equilibrium study that omits market-clearing relative price adjustments. For example, when

the lumpy investment model is simulated for 10, 000 periods under partial equilibrium, the

standard deviation of the fraction of the economy’s plants exhibiting positive investment

spikes in each period is 0.12, and the standard deviation of the size of these spikes is 0.08.

When the same simulation is undertaken in general equilibrium, each of these standard

deviations falls to 0.01.

We further illustrate this point through the comparison of some simple panel regressions

in Table 6. In row 1, we regress plant investment rates on changes in aggregate productivity,

∆z, and changes in plant-specific productivity, ∆ε, using simulated data from our general

equilibrium lumpy investment model. In row 2, we repeat this same exercise using data

from the lumpy model simulated in partial equilibrium. As expected, the coefficients on ∆ε

across these two rows are large and essentially identical. However, plant investments are far

less responsive to changes in aggregate total factor productivity when the resulting market-

clearing price movements are included than they are when these restraints are ignored. The

general equilibrium coefficient on ∆z reflecting plants’ investment elasticity to an aggregate
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shock, 0.423, is exaggerated 13-fold when real wage and interest rates are not allowed to

respond to the change in aggregate conditions.

Because large aggregate shocks are relatively infrequent in our calibrated study, plants’

investment rates over long simulations are usually well-predicted by the partial equilibrium

model. However, the sharply differing micro-level elasticity to changes in aggregate total

factor productivity naturally implies that a given plant will invest quite differently at some

times depending on whether or not it faces equilibrium prices. Over those dates when

changes in aggregate productivity are large, the errors introduced by ignoring endogenous

movements in relative prices will be substantial. From this, we conclude that equilibrium

analysis is essential for understanding the dynamics of investment even at the most disag-

gregated level, most particularly in times of large aggregate disturbances. It may be useful

to recall that it is precisely during such times that existing partial equilibrium studies have

found substantial differences between lumpy investment models and standard linear models

with convex adjustment technologies (see, for example, Caballero, Engel and Haltiwanger

(1995) and Caballero and Engel (1999)).

7.2 Role of nonconvexities in microeconomic investment

Throughout the lumpy investment literature, it has been maintained that nonconvex

capital adjustment costs cause lumpy investments at the plant. A brief comparison of the

average plant investment distribution in our model economy relative to that arising in ab-

sence of adjustment costs reveals that this is not necessarily true. In fact, if the effect of

plant-specific shocks is large relative to aggregate shocks, as consistent with recent esti-

mates, their presence can completely overturn the previously understood role of nonconvex

adjustment costs at the plant.

Absent differences in plant-level productivities, the standard model with frictionless in-

vestment implies a continuum of identical plants that, on average, undertake modest positive

investments in every period to replace their depreciated capital. The introduction of non-

convex capital adjustment costs to this environment necessarily generates the trademark

features of lumpy investment, inaction and spikes, since they lead some plants to delay

adjustment sufficiently that their capital stocks drift far from that to which they eventu-

ally adjust. However, consider instead the frictionless model with idiosyncratic productivity

shocks reported in row 1 of Table 7. Here, before the inclusion of capital adjustment costs,

there is already a nontrivial cross-sectional distribution of plant investment rates determined

by the distribution of plant-specific productivity shocks. Notice that these volatile idiosyn-

cratic shocks on their own cause both positive and negative investment spikes in the average

year; in fact, these observations are overstated relative to the LRD. When fixed adjustment

29



costs are added to this environment, moving from row 1 to row 2, we observe that fixed costs

do not cause additional lumpy investments, but instead eliminate some of their occurrences,

as indeed is necessary to achieve consistency with the data.

Under frictionless capital adjustment, plants’ investments are, on average, extremely

responsive to changes in their individual productivities. Through a pure reallocation of

aggregate investment, the economy in row 1 exhibits positive investment spikes among plants

experiencing large increases in relative productivity, as well as negative spikes among those

suffering large decreases in relative productivity. Nothing restrains this reallocation, because

it can be costlessly reversed in any subsequent date. However, such reversals are not costless

in the economy with capital adjustment frictions. A plant in row 2 realizing raised relative

productivity will be more cautious in selecting its new target capital, knowing that, in some

nearby date when its productivity may fall, it may at the same time face a high fixed cost to

re-adjust its capital to a lowered target. Thus, even if it pays its current fixed cost to adopt

a new target, the plant’s investment is tempered by an effort to avoid future adjustment

costs. A similar restraint applies to negative investment in response to a fall in relative

productivity. For this reason, fixed adjustment costs act to reduce the volatility of plant

investments, yielding fewer investment spikes.

Beyond eliminating excess spikes, nonconvex costs can take on a secondary role that

further reduces the distance between model and actual plant data, but has not been empha-

sized in previous studies. Comparing the ratio of positive investment (spike) observations

to negative investment (spike) observations in row 1 versus row 2, we find that the adjust-

ment costs boost asymmetries in plant-level investment. Recall our explanation above for

why these costs eliminate excess spikes. Because depreciation and technological progress

automatically erode inactive plants’ effective capital stocks, the reduction in a plant’s value

caused by a high future adjustment cost will be greater if a plant finds itself with too little

capital, rather than too much capital. As a result, plants are less cautious in raising their

capital stocks than in lowering them, so that the presence of fixed costs increases the fraction

of positive investment (spike) observations relative to negative ones.

We emphasize the changed role of nonconvex costs in the presence of idiosyncratic shocks

because it is essential that we understand what these costs actually do if we are to establish

their importance in explaining establishment-level investment. If their role is to remove

investment spikes and cause asymmetry, as we have seen here, then the same effect might

be similarly achieved by either investment irreversibilities or by combinations of fixed costs,

irreversibilities and convex costs. Thus there may be no aspect of microeconomic behavior

that is uniquely explained by the presence of nonconvex adjustment costs. Viewed another

way, if idiosyncratic shocks are the primary force explaining plant investment differences, it
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may be virtually impossible to use the establishment investment data to infer the relative

size or importance of these costs relative to other frictions.

8 Concluding Remarks

We have studied a dynamic stochastic general equilibrium model with nonconvex capital

adjustment costs and plant-specific differences in productivity. By introducing persistent

plant-level productivity shocks and allowing small investments exempt from adjustment

costs, our model reproduces essential empirical regularities involving establishment-level

investment. In this environment, equilibrium movements in real interest rates and wages

play an essential role in adding persistence to aggregate investment rates, bringing the

model closer to the data. An additional consequence of such movements in relative prices

is that they eliminate the implications of plant-level nonconvexities for aggregate dynamics.

In partial equilibrium, these nonconvexities lead to aggregate nonlinearities through large

changes in plants’ target capital stocks that drive large changes in the fractions of plants

adjusting to these targets. Such nonlinearities disappear in general equilibrium, however,

because procyclical movements in real wages and interest rates substantially dampen the

changes in plants’ target capital stocks that follow an aggregate shock.

Throughout our analysis, we have assumed that output is perfectly substitutable across

production units. This makes the reallocation of resources, in response to idiosyncratic

shocks, optimal from the perspective of the representative household. Conversely, it also

encourages the avoidance of capital adjustment costs through the concentration of invest-

ment. If we instead considered an environment where firms produced distinct goods, such

disparities in the distribution of inputs would be more costly. This suggests that, for a

given distribution of idiosyncratic shocks and capital adjustment costs, more firms would

undertake unconstrained capital adjustments in each period. With the average fraction of

firms adjusting nearer one, this would move the model with fixed adjustment costs closer to

the frictionless environment without these costs. At the same time, it would also dampen

the aggregate response to shocks, given a stronger incentive to adjust production evenly

across the distribution of firms, and thus larger rises in overall adjustment costs. Thus,

we conjecture that such a generalization would move the lumpy investment model to more

closely resemble a linear model with convex capital adjustment costs.
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 Figure 2: Partial equilibrium aggregate capital responses 
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 Figure 3: Steady state adjustment in common productivity lumpy model
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Table 1. Baseline parameter values 
 

γ β δ α ν ϕ ρz σηz ρε σηε b ξ 
1.016 0. 977 0.069 0.256 0.640 2.400 0.859 0.014 0.859 0.022 0.011 0.0083 

 

 
 
 

Table 2. Matching the time-averaged plant investment data 
 

   average annual fraction of plants exhibiting:  Inaction 
Positive 
Spike 

Negative 
Spike  

Positive 
Invest. 

Negative 
Invest. 

LRD data 0.081 0.186 0.018 0.815 0.104 

(1) traditional lumpy 0.789 0.187 0.000 0.211 0.000 

(2) extended lumpy with plant-specific TFP 0.073 0.185 0.010 0.752 0.175 
 

DATA: Cooper and Haltiwanger (2005).  Traditional model: σηε = b = 0, upper support = 0.014 to fit positive spike obs. 
 

 
 
  



  

Table 3. Role of nonconvexities in aggregate investment rate dynamics 
 

 Persistence 
Standard 
Deviation 

Skewness Kurtosis 

postwar U.S. 0.706 0.008 - 0.182 - 0.743 

                                     A.  partial equilibrium models 
(1) PE frictionless - 0.069 0.128 0.358  0.140 

(2) PE lumpy investment   0.210 0.085 1.121  2.313 

                                   B.  general equilibrium models 
(1) GE frictionless  0.659 0.010  0.048   0.048 

(2) GE lumpy investment   0.662 0.010  0.067 - 0.074 
 

DATA:  Annual private investment-to-capital ratio, 1954 – 2002, computed using BEA tables. 
 
 



  

Table 4. Aggregate business cycle moments* 
 

 Y Z N C I K 

A.  Standard Deviations Relative to Output 

(1) GE Frictionless 2.277 0.602 0.645 0.429 3.562 0.494 

(2) GE Lumpy 2.264 0.605 0.639 0.433 3.539 0.492 

B.  Contemporaneous Correlations with Output 

(1) GE Frictionless  1.000 0.955 0.895 0.976 0.034 

(2) GE Lumpy  1.000 0.956 0.900 0.976 0.034 
 

* The logarithm of each series is HP-filtered using a weight of 100.  The first column of panel A 
reports percent standard deviations of output.   

 



  

Table 5. Robustness 
 

 Persistence 
Standard 
Deviation 

Skewness Kurtosis 

postwar U.S. 0.706 0.008 - 0.182 - 0.743 

baseline lumpy  0.662 0.010 0.067 - 0.074 

(1) big fixed costs 0.677 0.009 0.071 - 0.066 

(2) huge fixed costs and big σε 0.681 0.009 0.071 - 0.064 

(3) no fixed costs for i ∈ [0,δk] 0.665 0.010 0.070 - 0.057 

 
 
 

 

Table 6. Equilibrium and the dynamics of plant investment rates 
 

Panel regressions from 
simulated lumpy models. 
                           plant i/k on: 

 
constant 

 
∆z 

 
∆ε 

adj. 
R-squared 

S.E. of 
regression 

(1) General equilibrium data 
 

0.107 
 

0.423 
(0.047) 

5.126 
(0.032) 

0.227 0.215 

(2) Partial equilibrium data 
 

0.112 

 
5.464 
(0.051) 

 
5.414 
(0.034) 

0.289 0.233 



  

Table 7. Role of fixed costs in plant-level investments 

      average annual fraction  
             of plants exhibiting: Inaction 

Positive 
Spike 

Negative 
Spike 

Positive 
Invest. 

Negative 
Invest. 

LRD data 0.081 0.186 0.018 0.815 0.104 

(1) frictionless model 0.032 0.204 0.028 0.611 0.356 

(2) lumpy investment model 0.073 0.185 0.010 0.752 0.175 
 

 

 
 

 
 



Appendices

A Numerical method

Solving the frictionless model is fairly straightforward, even in the presence of persis-

tent plant-level shocks. Despite a distribution of plants over capital and productivities,

the endogenous aggregate state vector may be characterized by total capital and a time-

invariant distribution of plants’ shares of the aggregate capital stock that are functions of

their idiosyncratic productivity levels (as shown in section B). Given the invariance in this

distribution of relative capital, the aggregate state vector contains only two time-varying ele-

ments, total capital and aggregate productivity, and standard methods may be used to solve

the model. The one novelty in our approach is that we apply a nonlinear solution method

using piecewise polynomial cubic spline interpolation of the planner’s value function. This

method is described briefly in Khan and Thomas (2003) and, in more detail, in Thomas

(2004). In partial equilibrium, the same nonlinear approach is applied to solving plants’

value functions for the lumpy investment models. Note that uncertainty in adjustment costs

implies that value functions are smooth objects.

In contrast to its frictionless counterpart, the equilibrium lumpy investment model’s

aggregate state vector involves a nontrivial distribution of plants, which makes the compu-

tation of equilibrium more challenging. Our solution algorithm involves repeated application

of the contraction mapping implied by (8) - (10) to solve for plants’ start-of-period value

functions V 0, given the price functions p (z, μ) and ω(z, μ) and the laws of motion implied

by Γ (z, μ) , (πij) and (πεlm). This recursive approach is complicated in two ways. First,

recalling that a primary focus throughout this literature has been on lumpy investment’s

potential for generating aggregate nonlinearities, we must use a solution method that does

not rule them out. Moreover, we must adopt a non-local method, because plants’ (S, s) de-

cision rules can sometimes hit corners (when interior values for their threshold costs shift to

the boundaries of the cost distribution). As explained below, this implies that the number

of capital stocks with a positive measure of plants changes over time.

The upper bound on the distribution of capital adjustment costs implies that all plants

adjust in finite time; in this sense, the economy has finite memory. Thus, at each idiosyn-

cratic productivity level, the distribution of plants over capital may be described using a

finite vector of capital levels and the associated number of plants holding each such level. At

the same time, while not high-dimensional, the distribution μ in the aggregate state vector is

still a large object. Even in the lumpy investment model without idiosyncratic productivity
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shocks, it involves 62 variables. The nonlinear solution method predicated by our focus on

aggregate nonlinearities makes this numerically intractable, so we use selected moments as

a proxy for the distribution in the aggregate state vector.

More specifically, our solution adapts the method of Khan and Thomas (2003) to allow for

a two-dimensional distribution of plants over capital and idiosyncratic productivity. Thus,

we assume that agents use a smaller object in proxy for the distribution as they forecast

the future state to make decisions given current prices. In choosing this proxy, we apply a

variation on the method of Krusell and Smith (1997), assuming that agents approximate the

distribution in the aggregate state vector with a vector of moments, m = (m1, ...,mI), drawn

from the true distribution. Because our work involves discrete choices among producers, we

find that using the conditional means from I equal-sized partitions of the distribution is

efficient, implying small forecasting errors.

Our solution algorithm iterates between an inner loop and an outer loop, as in Krusell

and Smith (1997). In the inner loop, agents’ value functions are solved based upon a given

set of forecasting rules. Given these value functions, the economy is simulated in the outer

loop, where p is endogenously determined in each date. Throughout our simulations, we

use the actual distribution of plants over capital and productivity in each period, alongside

plants’ value functions (derived using the forecasting rules described above), to determine

equilibrium prices and quantities, and thus the subsequent period’s distribution. Next, the

resulting simulation data are used to update the forecasting rules, with which we return to

the inner loop, this two-step process continuing until the forecasting rules converge.

Table A1 presents agents’ forecasting rules for the common productivity model. In

determining their current decisions, agents forecast the future proxy state, m0
1, assumed to

be the logarithm of the first moment of the distribution of plants over capital, using the

logarithm of the mean of the current distribution, m1 (and current aggregate productivity).

Similarly, when solving for agents’ value functions, we have them assume that the valuation

of current output, p, is a log-linear function of this mean. Note that adjusted R-squareds

are very high, and standard errors are small; almost all the true variation in the mean of

the distribution, and in the relative price of output, may be anticipated using these simple

forecasting rules.

In the full lumpy investment model, there is a two-dimensional distribution of plants over

capital and idiosyncratic productivity. Here, the 15-point discretization of the persistent

plant productivity process implies an aggregate state vector where 2029 levels of capital

have positive mass. Nonetheless, we find that the solution method described above is robust

to this additional source of heterogeneity. The equilibrium forecasting rules are presented in

Table A2. Note that there is no loss of accuracy in the forecasting rules with the introduction
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of persistent differences in plant-specific productivity, though we continue to use only the

unconditional mean of the distribution of capital as a proxy for the aggregate endogenous

state. This suggests that our general equilibrium solution method may be applied to a broad

class of models currently studied in partial equilibrium.

B A characterization of the frictionless model

In this appendix, we derive several analytical results for the full frictionless model

characterized by persistent plant-specific total factor productivity shocks and no nonconvex

costs of capital adjustment. In lemma 1, under the assumption of Cobb-Douglas production,

we establish that the plant decision rule for next period’s capital stock may be expressed

as the product of two functions whose arguments are the current plant-specific productivity

term and the aggregate state, respectively. Thus, in the absence of capital adjustment costs,

a plant’s decision rule for future capital is independent of its current capital. Moreover, this

decision rule is separable in plant-level and aggregate variables.

It is then immediate that, given any initial distribution of plants, future distributions

involve only Nε time-varying values of capital with positive mass. The separability of

plants’ capital stock decision rules into a plant-specific and an aggregate component implies

that the shares of the aggregate capital stock across plant types are time-invariant. In other

words, the distribution of capital across plants, once normalized, satisfies a time-invariance

property. This property ensures that, in any period, the entire distribution of capital,

and thus production, may be described using a time-invariant share distribution and the

aggregate capital stock, as established in lemma 2. As a result, the aggregate capital stock

is sufficient to fully characterize variation in the endogenous state vector of the full version

of the frictionless model, just as under common productivity. Moreover, it follows that all

aggregate dynamics of the full model may be recovered using a representative firm approach,

although for brevity we omit the details here.

We begin our analysis of the frictionless model by describing the problem of a plant. In

the absence of capital adjustment costs, the value of any plant of type (εl, k) will solve the

following functional equation:

v1 (εl, k; zi, μ) = max
n,k0

h
ziεlF (k, n)− ω (zi, μ)n− γk0 + (1− δ) k (18)

+
NzX
j=1

πijdj (zi, μ)
NεX
m=1

πεlmv
1
¡
εm, k

0; zj , μ0
¢i
,
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subject to μ0 = Γ (zi, μ). Let N (εl, k; zi, μ) describe the plant’s employment choice and
K (εl, k; zi, μ) its decision rule for next period’s capital stock. The description of households

in section 2.2 of the text is unchanged.

A recursive competitive equilibrium is a set of functions³
ω, (dj)

Nz

j=1 , ρ1, ρ0, v
1, N,K,W,C,Nh,Λh,Γ

´
such that plants and households maximize their expected values and the markets for assets,

labor and output clear:

1. v1 satisfies (18) and (N,K) are the associated policy functions for plants.

2. W satisfies (5) and
¡
C,Nh,Λh

¢
are the associated policy functions for households.

3. Λh (εm, k0, μ; z, μ) = μ0 (εm, k0), for each (εm, k0) ∈ S.

4. Nh (μ; z, μ) =
R
SN (ε, k; z, μ)μ(d [ε× k]).

5. C (μ; z, μ) =
R
S

³
zεF (k,N (ε, k; z, μ))− γK (ε, k, ξ; z, μ) + (1− δ) k

´
μ(d [ε× k]).

6. μ0 (εm, B) =
R
{(εl,k) |K(εl,k;z,μ)∈B} π

ε
lmμ (d [εl × k]), for all (εm, B) ∈ S, defines Γ.

B.1 Plant’s capital decision rule

Let α ∈ (0, 1) represent capital’s share of production and ν ∈ (0, 1) be labor’s share,
where α + ν < 1. The choice of employment, n, solves maxn (skαnν − ωn), where s = zε

and ω is the real wage. This yields the employment decision rule n =
¡
νskα

ω

¢ 1
1−ν , allowing us

to express production as y = s
1

1−ν k
α
1−ν

¡
ν
ω

¢ ν
1−ν . Production net of labor costs is then given

by the following:

y − ωn = (1− ν) s
1

1−ν k
α
1−ν

³ ν
ω

´ ν
1−ν . (19)

Substituting (19) into (18), we remove the static employment decision:

v1 (εl, k; zi, μ) = max
k0

h
(1− ν) [ziεl]

1
1−ν k

α
1−ν

µ
ν

ω (zi, μ)

¶ ν
1−ν

(20)

−γk0 + (1− δ) k

¶
+

NzX
j=1

πijdj (zi, μ)
NεX
m=1

πεlmv
1
¡
εm, k

0; zj , μ0
¢i
.

The first-order condition is

−γ +
NzX
j=1

πijdj (zi, μ)
NεX
m=1

πεlmD2v
1
¡
εm, k

0; zj , μ0
¢
= 0.
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Combining this with the Benveniste-Scheinkman condition below,

D2v
1 (εl, k; zi, μ) = α [ziεl]

1
1−ν k

α
1−ν−1

µ
ν

ω (zi, μ)

¶ ν
1−ν

+ (1− δ) ,

we have a stochastic Euler equation for capital:

γ =
NzX
j=1

πijdj (zi, μ)
NεX
m=1

πεlm

µ
α [zjεm]

1
1−ν

¡
k0
¢ α
1−ν−1

µ
ν

ω (zj , μ0)

¶ ν
1−ν

+ (1− δ)

¶
. (21)

Define the following terms:

L0 (εl) =

Ã
NεX
m=1

πεlm (εm)
1

1−ν

! 1−ν
1−(α+ν)

(22)

L1 (zi, μ) =

⎛⎜⎝ γ − (1− δ)
PNz

j=1 πijdj (zi, μ)

α
PNz

j=1 πijdj (zi, μ) z
1

1−ν
j

³
ν

ω(zj ,μ0)

´ ν
1−ν

⎞⎟⎠
1−ν

α+ν−1

. (23)

Simplification of (21) and use of the definitions in equations (22) - (23) proves the following.

Lemma 1 The capital decision rule for a plant, K (εl, k; zi, μ), is independent of k and

takes the form L0 (εl)L1 (zi, μ).

B.2 Aggregation

The fact that plants’ future capital stocks are independent of their current capital stocks

is central to our aggregation result. This result is not shared by the lumpy investment model

because of the inaction arising from its fixed adjustment costs.

We next exploit the implication from lemma 1 that the ratio of capital across any two

plants depends only on their lagged productivity levels to describe how the dynamics of

this economy may be solved as a standard optimal growth model, with the aggregate state

vector effectively reduced to simply the aggregate capital stock and exogenous productivity.

Let H = (h1, . . . , hNε)
T be the vector representing the time-invariant distribution of

plants over idiosyncratic shock values solving

H =

¯̄̄̄
¯̄̄̄
¯̄̄

πε1,1 πε1,2 · · · πε1,Nε

πε2,1 πε2,2 · · · πε2,Nε

...
...

...

πεNε,1
πεNε,2

· · · πεNε,Nε

¯̄̄̄
¯̄̄̄
¯̄̄H.

Since capital decision rules are independent of current capital, it follows that all plants

with the same current idiosyncratic shock value, εl, will choose the same capital stock for
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next period, kl = L0 (εl)L1 (zi, μ), l = 1, . . . ,Nε. Thus, there will be Nε capital values

with positive mass next period, and hl plants, all currently having the idiosyncratic shock

value εl, will begin the next period with kl. Define the mean of this distribution of capital

K 0 =
PNε

l=1 hlk
0
l. Using lemma 1, we know

K 0 =
NεX
l=1

hlL0 (εl)L1 (zi, μ) . (24)

Toward establishing a time-invariant relative distribution of plants over capital, it is useful

to define the following share terms:

χm ≡
L0 (εm)PNε
l=1 hlL0 (εl)

, m = 1, . . . , Nε. (25)

Define the vector of these share terms as χ ≡ ¡χ1, . . . , χNε

¢
.

While all plants with the same current idiosyncratic shock value will choose a common

capital stock for next period, their subsequent idiosyncratic productivities will differ. LeteH describe the two-dimensional distribution of plants over εt−1 and εt. An element of this

Nε ×Nε matrix, ehlm, represents the number of plants that had εt−1 = εl and have εt = εm:

ehl,m = πl,mhl, for l = 1, . . . ,Nε and m = 1, . . . , Nε. (26)

In any period t+1, where t ≥ 0, the distribution of plants is then completely characterized
by eH and χ together with the aggregate capital stock, Kt+1. This establishes lemma 2

below.

Lemma 2 Let K be the aggregate capital stock, and define kl ≡ χlK, l = 1, . . . , Nε. For

each εm, m = 1, . . . , Nε, μ (εm, kl) = ehl,m ≥ 0, and elsewhere μ = 0.
Thus, the distribution of plants over both idiosyncratic productivity levels and capital

stocks hasN2
ε elements in all. More importantly, this distribution is completely characterized

by two time-invariant objects, eH and χ, and the aggregate capital stock. It follows, then,

that the aggregate state vector of the full frictionless model has only two time-varying

elements, aggregate capital and exogenous aggregate productivity.
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Table A1.  Forecasting rules in common productivity lumpy model  

 

   β1 β2 S.E. R2 

z1   m1’ 0.006 0.802 0.20 e-3 0.9999 

 (119 obs.) p 0.998 -0.395 0.14 e-3 0.9999 

z2     m1’ 0.014 0.800 0.25 e-3 0.9999 

(298 obs.) p 0.990 -0.393 0.15 e-3 0.9999 

z3     m1’ 0.021 0.798 0.25 e-3 0.9999 

 (734 obs.) p 0.981 -0.392 0.14 e-3 0.9999 

z4     m1’ 0.028 0.797 0.28 e-3 0.9999 

 (1208 obs.) p 0.972 -0.392 0.15 e-3 0.9999 

z5     m1’ 0.035 0.796 0.31 e-3 0.9999 

 (1682 obs.) p 0.963 -0.391 0.15 e-3 0.9999 

z6     m1’ 0.041 0.796 0.31 e-3 0.9999 

 (1871 obs.) p 0.953 -0.389 0.15 e-3 0.9999 

z7     m1’ 0.048 0.795 0.29 e-3 0.9999 

 (1706 obs.) p 0.944 -0.388 0.14 e-3 0.9999 

z8     m1’ 0.055 0.794 0.26 e-3 0.9999 

 (1237 obs.) p 0.935 -0.386 0.13 e-3 0.9999 

z9     m1’ 0.062 0.793 0.24 e-3 0.9999 

 (751 obs.) p 0.926 -0.386 0.11 e-3 0.9999 

z10     m1’ 0.070 0.791 0.26 e-3 0.9999 

 (295 obs.) p 0.917 -0.385 0.11 e-3 0.9999 

z11     m1’ 0.078 0.789 0.21 e-3 0.9999 

 (99 obs.) p 0.908 -0.384 0.11 e-3 0.9999 
        

NOTE. – Forecasting rules are conditional on current productivity, zi.  Each regression takes the form: 
log (y) = β1 + β2 log (m), where y= m’ or p. 



  

 
Table A2.  Forecasting rules in full lumpy model 

 

  β1 β2 S.E. R2 

z1   m1’ 0.009 0.800 0.15 e-3 1.0000 

 (119 obs.) p 0.994 -0.397 0.03 e-3 1.0000 

z2     m1’ 0.016 0.798 0.22 e-3 0.9999 

(298 obs.) p 0.986 -0.395 0.04 e-3 1.0000 

z3     m1’ 0.023 0.796 0.23 e-3 0.9999 

 (734 obs.) p 0.977 -0.394 0.04 e-3 1.0000 

z4     m1’ 0.030 0.795 0.26 e-3 0.9999 

 (1208 obs.) p 0.968 -0.393 0.05 e-3 1.0000 

z5     m1’ 0.037 0.794 0.27 e-3 0.9999 

 (1682 obs.) p 0.958 -0.392 0.05 e-3 1.0000 

z6     m1’ 0.044 0.079 0.28 e-3 0.9999 

 (1871 obs.) p 0.949 -0.391 0.05 e-3 1.0000 

z7     m1’ 0.051 0.793 0.26 e-3 0.9999 

 (1706 obs.) p 0.940 -0.389 0.05 e-3 1.0000 

z8     m1’ 0.058 0.792 0.24 e-3 0.9999 

 (1237 obs.) p 0.931 -0.388 0.05 e-3 1.0000 

z9     m1’ 0.065 0.792 0.23 e-3 0.9999 

 (751 obs.) p 0.921 -0.386 0.04 e-3 1.0000 

z10     m1’ 0.072 0.791 0.25 e-3 0.9999 

 (295 obs.) p 0.912 -0.384 0.05 e-3 1.0000 

z11     m1’ 0.079 0.791 0.19 e-3 0.9999 

 (99 obs.) p 0.903 -0.382 0.04 e-3 1.0000 
        

NOTE. – Forecasting rules are conditional on current productivity, zi.  Each regression takes the form: 
log (y) = β1 + β2 log (m), where y= m’ or p. 
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