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Abstract

A synthesis of the Lucas-Prescott island model and the Mortensen-
Pissarides matching model of unemployment is studied. By assump-
tion, all unmatched workers and jobs are randomly assigned to sub-
markets, islands, at the beginning of each period and the number
of matches that form on a particular island is the minimum of the
two realizations. When calibrated to the recently observed averages
of U.S. unemployment and vacancy rates, the model fits the oberved
vacancy-unemployment Beveridge relationship very well and implies
an implicit log linear relationship between the job finding rate and
the vacancy-unemployment relationship with an elasticity near 0.5.
The socially efficient solution to the model, which obtains in market
equilibrium when the wage on each island is the outcome of a mod-
ified auction, implies larger responses in the vacancy-unemployment
ratio to productivity and job destruction shocks than the canonical
model of equilibrium unemployment. Finally a variant of the model
in which the wage is the solution to the strategic bargaining problem
faced by worker and employer after they meet explains all the observed
volatility of vacancies and unemployment in the U.S.
Key words: Matching function, Beveridge curve,labor market

volatility.
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1 Introduction

The purpose of the paper is to study a matching model that incorporates fea-
tures of both the Lucas and Prescott (1974) and the Mortensen and Pissarides
(1994) equilibrium models of unemployment. That unmatched workers and
jobs search submarkets, "islands" in the literature, at random and that the
number of matches that form on any particular island is the minimum of the
two realizations are the essential specification assumptions.1 The solution to
the associated social planner’s problem is derived as well a decentralization
in which the realized wage on each island is determined by a modified auction
as in the Lucas-Prescott model. In addition, an alternative formulation in
which wage on each island is the outcome of a strategic bilateral bargaining
game played between worker and employer after they meet is considered.
The matching process is closely related to the original formulation of

job-worker matching as summarized in the first chapter of Pissarides (2000).
However, instead of supposing that some ad hoc matching function exists, the
essential assumptions generate an endogenous positive relationship between
the job finding rate and the ratio of vacancies to unemployment (a "reduced
form" matching function) as well as a negative relationship between vacancies
and unemployment (a Beveridge curve). Indeed, given parameters chosen to
match the U.S. average unemployment and vacancy rates observed in the
last six years in the U.S. and a match period length consistent with the
average flows into and out of employment in the U.S., the implied Beveridge
curve and observed unemployment rates explains 90% of the variation in
vacancy rates observed over that same period. Furthermore, the implicit
relationship between the job finding rate and the vacancy-unemployment
ratio is essentially log linear over the relevant range with an elasticity of
about 0.48, two facts consistent with the literature on the estimation of
empirical matching functions reviewed by Petrongolo and Pissarides (2001).
When the wage is set at auction, equilibrium outcomes would be efficient

if the matching process were characterized by constant returns to scale in
the sense that the expected number of matches increases in proportion to
the average numbers of unmatched workers and jobs per market holding
their ratio constant. Although in fact the specified matching process exhibits
increasing returns, the efficiency holds as an approximation when the average

1This quite old ideas has been fruitfully explored in a recent paper by Shimer (20060)
in the case of limited mobility between island.
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numbers of workers and jobs per island are large. In this case, the private
and social incentives are (almost) aligned when agents on the short side of
the market obtain all of match surplus for reasons anticipated by Mortensen
(1982). Although the calibrated version of the model does not approximate
the case of constant returns, an auction augmented by a relatively simple
subsidy-tax system can decentralize the solution to the planner’s problem in
the general case.
The alternative wage mechanism considered is the strategic solution to the

bilateral wage bargaining problem obtained when delay rather than continued
search is the relevant default outcome in the game. Hall and Milgrom (2005)
argue that this solution is more realistic than the so-called Nash solution
with threat points equal to the value of continued search as usually assumed
in matching models.2 Although the marginal social and private values of
participation are not equal in equilibrium, there is one and only one solution it
has important implications for the volatility of unemployment and vacancies,
an issue raised by Shimer (2005). Unlike the canonical matching model
that he studied, the volatilities vacancies and unemployment implied by this
modification are close to those observed in Shimer’s time series data.

2 The Matching Process

In the standard search equilibrium framework, the matching function is a
black box that relates the number of unemployed workers and vacant jobs to
the flow of matches that form. As in Shimer (2006), the relationship between
the match flow and the numbers of unmatched workers and jobs considered in
this paper is the outcome of more primitive assumptions about how matching
takes place. The specification follows.
The economy is composed of a continuum of workers and employers and

a continuum of islands where exchange takes place. Time is divided into dis-
crete periods of equal length denoted as t = 1, 2, .... Let M and N represent
measures of unmatched workers and unmatched jobs per island respectively
at the beginning of any period. Under the assumption that participants
are randomly assigned to islands, Shimer (2006) demonstrates that the joint
probability that there are i workers and j jobs on any particular island are
independent Poisson variables with means M and N respectively. Formally,

2This solution was also suggested by Binmore, Rubstein, and Wolinsky (1986) some
time ago.
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the probability is

π(i, j;M,N) =
e−(M+N)M iN j

i!j!
. (1)

As one can easily verify,

∂π(i, j;M,N)

∂M
= π(i− 1, j;M,N)− π(i, j;M,N) (2)

∂π(i, j;M,N)

∂N
= π(i, j − 1;M,N)− π(i, j;M,N).

In other words, the derivative of the probability that there are i workers (j
jobs) in any market with respect to the average number of workers (jobs)
per market is equal to the change in the probability induced by the marginal
worker (job) in each market.
Given that the short side determines the match outcome on each island,

the average number of matches created per island is given by

F (M,N) ≡ E{min(i, j)} =
∞X
i=0

∞X
j=0

min(i, j)π(i, j;M,N) (3)

As an implication of equations (1) and (2), Shimer (2006a) demonstrates
that

∂F

∂M
≡ FM(M,N) =

∞X
j=1

j−1X
i=0

π(i, j;M,N) = Pr{i < j} > 0 (4)

∂F

∂N
≡ FN(M,N) =

∞X
i=1

i−1X
j=0

π(i, j;M,N) = Pr{j < i} > 0. (5)

In other words, the partial derivative, FN(M,N), is the share of the islands
with unemployed workers at the end of a period while FM(M,N) is the
fraction of islands with vacant jobs. In this paper, we refer to F (M,N)
as the structural matching function implied by the matching process. A
characterization of its properties follow:

Proposition 1 The matching function F (M,N) is increasing and concave
in M and N holding the other constant (FMM < 0 and FMM < 0). Further-
more,

FMN(M,N) = 1− FN(M,N)− FM(M,N) (6)

=
∞X
i=0

π(i, i;M,N) = Pr{i = j} ≤ FMN

µ
M +N

2
,
M +N

2

¶
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and
lim

M+N→∞
FMN(M,N) = 0. (7)

Proof. See the Appendix.
The next result, a corollary of Shimer’s (2006) Proposition 3, implies that

the matching process exhibits increasing returns.

Proposition 2 A one percent increase in both M and N increases the num-
ber of matches by more than one percent. Formally, the matching function
exhibits increasing returns in the sense that

MFM

F
+

NFN

F
− 1 = FMN(M,N)

E{i|i = j}
E{min(i, j)} > 0 (8)

where

E{i|i = j} =
P∞

i=0 iπ(i, i;M,N)P∞
i=0 π(i, i;M,N)

.

Proof. See the Appendix.
Hence, equation (7) and (8) together imply that the matching function is

approximately linearly homogenous when the sum of the number of workers
and jobs per island is large. Still, the following fact and the graph in Figure
1 suggests that the speed of convergence can be slow:

Pr{i = j} = FMN(M,N) =
∞X
i=0

e−(M+N)M
iN i

i!i!

≤ max
M,N≥0

( ∞X
i=0

e−(x+y)
xiyi

i!i!
s.t.x+ y =M +N

)

= FMN

µ
M +N

2
,
M +N

2

¶
.

3 The Beveridge Curve

The number of unemployed workers, U , and vacant jobs, V , are defined
as those not matched during the period. That is U = M − F (M,N) and
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Figure 1: Convergence to Linear Homogeneity
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V = N − F (M,N). Hence, the corresponding unemployment and vacancy
rates are

u =
U

L
=

M − F (M,N)

L
(9)

and

v =
V

L− U + V
=

N − F (M,N)

L−M +N
(10)

where L ≥M is the average number of workers per market and L−U+V , the
sum of the number of matched and vacant jobs, is the average number of jobs
per market. Shimer (2006) shows that observations on the unemployment
and vacancy rates tie down the number of unmatched workers and jobs con-
ditional on the total average number of workers per market, L. Furthermore,
variation in the number of unmatched jobs induce a negative relationship
between the vacancy rate and the unemployment rate given the number of
unmatched workers.
Although the number of unmatched jobs at the beginning of a period is a

state variable fixed at a moment of time, it responds over time to changes in
the number of unmatched jobs, induced say by shocks to match productivity.
Under the assumption of random search,

Mt+1 = Ut + s(L− Ut) =Mt + s(L−Mt)− (1− s)F (Mt, Nt) (11)

where s is the job separation rate. Indeed, in steady state the number of work-
ers hired and jobs filled is equal to the separations flow, (1− s)F (M,N) =
s(L −M). The assumption that all unmatched workers and jobs are ran-
domly assigned is easily justified. Specifically, if all other workers (jobs) that
find themselves not matched at the end of a period were to stay in their
respective islands, then the chance of finding a job (worker) is the next pe-
riod is higher at a randomly selected alternative island. Hence, staying is
not a symmetric non-cooperative Nash equilibrium. However, if all search by
selecting an island at random, then the likelihood of matching is the same in
all islands. It is this assumption of continual reallocation that distinguishes
the model studied in this paper from Shimer’s (2006) mismatch model. In
formulating the social planner’s problem, we take the coordination problem
implicit in the random assignment assumption as given by supposing that
the planner cannot dictate the destination island for any individual worker
or job.
The following strategy for calibrating the model suggests itself: First,

choose the period length and set the value of the separation rate per period
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s to its observed average value in the data accordingly. Given these numbers
and the observed unemployment rate and vacancy rate averages, use equation
(9), equation (10) and the steady state conditgionto determine M and N .
The choice of a matching period length is not totally arbitrary. Specifi-

cally, in the U.S. case the length must be consistent with the fact that the
average duration of an unemployment spell is approximately one quarter
and that the median spell length is considerably shorter. With these facts
in mind, a period length of one month suggests itself as a base line case.
Shimer’s (2005) estimate of s is 10% per quarter or 3.33% per month. The
average vacancy rate reported in the JOLTS data over the 72 month pe-
riod from December 2000 to November 2006 inclusive was 2.51% while the
monthly average of standard CPS measure of the (non-farm) unemployment
rate over the same period was 5.29%. Given these choices, equations (9)-(11)
imply M = 1.174, N = 0.778, and L = 13.909. These numbers suggest that
a "island" might be interpreted as a firm of about median size which receives
1.17 applicants per month seeking jobs that become available with frequency
0.78 per month.
The raw data on vacancy and unemployment rates over the last six years,

reported in the data Appendix, are plotted as the scatter of points illustrated
in Figure 2. The plot represents a well defined empirical Beveridge curve.
The vacancy-unemployment relationship obtained by varyingN between 0.75
and 0.95 is illustrated as the solid curve in the figure. As anyone can see, the
fit of the model is remarkable. Indeed, the percent of variance in the vacancy
rate explained by the curve implied by the model and the unemployment
rate is 91%.
The slope of the model’s Beveridge curve is relatively invariant to choices

of the length of the matching period within the range consistent with ob-
served unemployment durations. This fact is illustrated in Figure 3 where
the implied relationship between the vacancy and unemployment rate are
drawn under the assumption that the period length is a quarter and a week
as well as a month.
Of course, Shimer’s (2006) mismatch model can also explain the recent

time series data on unemployment and vacancy rates. In that model, the
labor market is viewed as a collection of segmented markets for different
occupations and regions. Given this interpretation, he argues that cross
market mobility is quite small or non-existent. In this environment, the
total number of workers per island (L in our notation) isM which he regards
as fixed. He calibrates his model by setting M and N to match observed
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Figure 2: U.S. Beveridge Curve 12/2000-11/2006
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vacancy and unemployment rate averages and then varies N holdingM fixed
to generate a Beveridge curve.

4 The "Reduced Form" Matching Function

The job finding rate, defined as the ratio of the hires flow to the number of
unemployed workers, is an empirical measure of unemployment spell hazard.
As documented in Petrongolo and Pissarides (2001), the empirical literature
on the matching function suggests that the job finding rate is well described
as a log linear function of the vacancy-unemployment ratio with a elasticity
in the range of 0.3 to 0.5.
In the model under study, the measured job finding rate per period is

the ratio of the number matched to the number unemployed, F (M,N)/U,
and the vacancy-unemployment ratio is V/U. Since both increase as N in-
creases, a positive implicit relationship exists between the two variables, one
that Shimer (2006) calls the "reduced form" matching function. Indeed,
the log-log relationship obtained when N varies between 0.75 and 0.95, the
same range used to generate the model’s Beveridge curve, is illustrated in
Figure 4. Obviously, the relationship is very close to linear over this range.
Furthermore, the slope (elasticity) is 0.481, a number within the Petrongolo-
Pissarides "plausible range".3 Hence, the model provides a simple micro
foundation for the empirical matching functions estimated in the literature.

5 The Social Planner’s Problem

The planner posts a number of unmatched jobs in each period subject to a
cost, c, the same cost that an employer would face. Assume that workers and
employers are risk neural and discount future income by the factor β ∈ (0, 1)
per period. A job-worker match produces market output of value p per period
and the home production of any unmatched worker during a period has value
z. Obviously, gain from trade require that p > z.
Consider the timing is as follows: Each period t is divided into three parts.

In the first subperiod, matching takes place. In the second subperiod, all

3Although Shimer’s mismatch model also implies a nearly log linear relationship, his
implied elasticity is only about 0.2.
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matches produce. Job seperations takes place and the number of unmatched
jobs to post in period t+ 1 is determined in the final subperiod.
As employment is equal toEt = L−Ut andMt+1 = Ut+sEt = L−(1−s)Et

its law of motion is

Et+1 −Et = L− Ut+1 −Et = L−Mt+1 + F (Mt+1, Nt+1)−Et (12)

= F (L− (1− s)Et, Nt+1)− sEt

by equation (11) where Nt+1 is the number of jobs posted at the end of
period t.In each period, the planner chooses a job entry strategy, a function
of the state of the market as reflected in the current value of employment,
that determines the number of unmatched jobs that will participate in the
matching process at the beginning of the next period.
Given agent preferences, a benevolent planner chooses a strategy that

maximizes the present value of aggregate match surplus net of recruiting
costs. Since the match surplus flow is p−z, the Bellman equation associated
with this dynamic programming problem is

V (Et) = max
N≥0

{(p− z)Et − cN + βV ((1− s)Et + F (L− (1− s)Et, N))} .

The first order condition is

c ≥ βFN(L− (1− s)Et, N)λt+1 with equality holding if N > 0 (13)

where

λt ≡ V 0(Et) = p− z + β(1− s) [1− FM(L− (1− s)Et, N)]λt+1 (14)

represents the present value of a job-worker match. In other words, the
cost of posting an unmatched job is equal to the product of the job’s mar-
ginal contribution to the total number of matches in the next period and
the present value of a job-worker match. Because FNN < 0, the second or-
der necessary condition is satisfied. The solution to the planner’s problem
solves the first order condition, equation (13), the system of difference equa-
tions defined by equations (12) and (14), and the transversality condition
lim→∞ λt(1 + r)−t = 0.
The existence of at least one steady state solution to the problem can

be demonstrated with the following argument. First, solve the free entry
condition, equation (13) for N as a function of λ and E. Since FN(M,N)
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is increasing in M and decreasing in N from (6) and (5), the solution for
the average number of unmatched jobs posted per island, denoted as N =
N(λ,E), is positive for any λ > 0, is increasing in λ and is decreasing in
E. Since F (M,N) is positive and increasing in both of its arguments, it
follows from equation (12) and the properties of N(λ,E) that the singular
curve representing the steady state condition ∆E = Et+1 − Et = 0 can be
represented by a strictly positvely sloped curve relating λ and E where λ =bλ, the positive solution to c = βFN(L,N(bλ, 0)), at E = 0 as represented in
phase diagrams illustrated in Figures 5. Finally, as the right hand side of
(12) is decreasing in Et, Et+1 − Et < (>)0 to the right (left) of the singular
curve as indicated by the direction arrow in the phase diagram.
Because FM(M,N) is a probability by (??), the curve defined by ∆λ =

λt+1−λt = 0, the solution to λ = (p−z)/[1−β(1−s) [1− FM(L− (1− s)E,N(λ,E))],
is bounded above by (p − z)/[1 − β(1 − s)] and below by p − z. This fact
and the properties of the ∆E = 0 singular curve imply that the two singular
curves must intersect at least once in the positive quadrant if p − z > bλ.
Because the coefficient on λt+1 on the right side of equation (14) is strictly
less than unity, ∆λ > (<)0 at points above (below) the curve as indicated by
the directional arrows in the phase diagrams portrayed in Figures 5. Finally,
since F (M,N) exhibits increasing returns, FMMFNN − FMNFNM < 0 can
hold and

∂FM

∂E
= −(1− s)FMM + FNN

∂N

∂E
= (1− s)

µ
FMNFNM − FMMFNN

FNN

¶
,

the singular curve representing the condition ∆λ = 0 can also has a positive
slope as illustrated in Figures 5.
Although it might appear that multiple steady states can exist, in fact

there is only one.4 The assertion can be established by using the steady
condition ∆λ = 0 to eliminate λ in the first order condition. The result is

c =
βFN(L− (1− s)E,N)(p− z)

1− β(1− s)[1− FM(L− (1− s)E,N(λ,E))]
,

a condition that defines an downward sloping relationship between E and
λ given the properties of the partial derivatives of F (N,M) reported in
Proposition 1. Of course, a steady state is the single solution pair at the
intersection of this curve and the positively sloped relationship defined by
∆E = F (L− (1− s)E,N)− sE = 0.

4I am indebted to Rob Shimer for pointing out this fact.
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Finally, because the steady state is a saddle point, there is a unique path
converging to it from any initial condition as illustrated in Figure 5. Because
any other solution trajectory violates the transversality condition, the con-
verging trajectory represents the unique solution to the planning problem
associated with the initial stock of unmatched workers inherited from the
past.

0
E

λ

L

ΔE = 0
Δλ = 0

p-z

(p-z)/(1-β(1-s))

Phase Diagram: Planner’s Problem

6 Auction Equilibrium

Suppose that the wage on each island are determined as the outcome of an
auction as in Lucas and Prescott (1974) and Shimer (2006). Specifically, as-
sume that the worker collects the entire match surplus if there are more jobs
than workers on her island but receives only her reservation wage if the num-
ber of workers exceeds the number of jobs available. Although the auction
outcome is indeterminate when the number of workers and jobs are equal,
suppose for now that the employer obtains the surplus in this case. Shimer
(2006) shows that these assumptions yield outcomes that are equivalent to
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the planner’s solution in his "mismatch" model. In this model, the two so-
lutions would be equivalent only under the counter factual condition that
the expected number of matches that form is homogenous of degree one in
the number of unmatched jobs and workers. Although this condition holds
approximately when the average numbers of unmatched jobs and workers per
market are large, the calibration presented above does not have this prop-
erty, as illustrated by Figure 1. However, a relatively simple tax and subsidy
system exists that will decentralize the planner’s problem.
As the probability that there are i workers and j jobs in the same island

from the point of view of any job on a particular island is equal to the
probability that i workers and j−1 other jobs are also assigned to the island,
an employer can expect to obtain the entire match surplus with probability
equal to the fraction of markets that have strictly fewer jobs than workers.
That is

Q(M,N) =
∞X
i=1

iX
j=1

π(i, j − 1;M,N) =
∞X
i=1

i−1X
j=0

π(i, j;M,N) = FN(M,N)

by equation (5). An alternative way to obtain the same result is to realize
that the relevant probability is equal to the expected number of jobs that
are matched in markets with weakly fewer jobs than workers divided by the
number of jobs to be matched. But that fraction is also

1

N

∞X
i=1

iX
j=1

jπ(i, j;M,N) =
∞X
i=1

iX
j=1

π(i, j − 1;M,N) = FN(M,N)

by equation (1).
As a worker receives the surplus only if matched on an island with fewer

workers than jobs, an analogous argument and equation (4) imply that the
probability of such an event is

P (M,N) =
1

M

∞X
j=1

j−1X
i=1

iπ(i, j;M,N) =
∞X
j=1

j−1X
i=1

π(i− 1, j;M,N) (15)

= FM(M,N)−
∞X
j=1

π(j − 1, j;M,N)

where
P∞

j=1 π(j − 1, j;M,N) is the probability that there is one fewer other
workers than jobs on the island.
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The present value of employment to a worker originally matched on an
island with fewer unmatched workers that unmatched jobs, denoted Yt, is
the solution to

Yt = p+ β [(1− s)Yt+1 + s [Pt+1Yt+1 + (1− Pt+1)Ut+1]]

where Ut+1is the value of search and Pt+1 = P (Mt+1, Nt) = P (L − (1 −
s)Et, Nt+1) is the probability of being matched on an island with fewer work-
ers in the next period. In addition to the current flow of match product,
the worker can expect to receive the total value of her match in the next
period if either her current match continues or the match ends at the end of
the current period but she is rematched on an island with few workers than
jobs in the next period. This second possibility is a consequence of the fact
that a worker can move directly from one job to another without a spell of
unemployment. As the value of unemployed search solves

Ut = z + β[Pt+1Vt+1 + (1− Pt+1)Ut+1]

and the value of an unmatched job is zero in equilibrium, the surplus value of
a match, the difference St = Yt−Ut, is the solution to the Bellman equation

St = p− z + β(1− s)[1− P (L− (1− s)Et, Nt+1)]St+1. (16)

Finally, the free entry condition requires that the cost of posting a vacancy
now equals its expected future return, the product of the present value of the
match surplus and the employer’s chance of receiving it in the next period.
In other words, the number of unmatched jobs solves

c ≥ βQ(L− (1− s)Et, Nt+1)St+1 with equality holding if Nt+1 > 0. (17)

An equilibrium is a any solution to equations (12), (16) and (17) that satisfies
the tranversality condition limt→∞ βtSt = 0.
A comparison of the equilibrium conditions, equations (17) and (16) ,

with the necessary conditions for a solution the planner’s problem, equations
(13) and (14) respectively, implies that the equilibrium solution is a candidate
solution to the planner’s problem if and only if the surplus value of a match
is equal its shadow value in the efficient solution, i.e., St = λt for all t.
However, equations (14) and (16) together with equation (15) imply that
P (Mt+1, Nt+1) < FM(Mt+1, Nt+1). As a consequence, the private return to
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posting a vacancy generally exceeds the social return implying that that the
market over invests in job creation relative to the efficient solution.
Alternative, if the worker receives the surplus instead, then

Q(M,N) =
∞X
i=1

i−2X
j=0

π(i, j;M,N) = FN(M,N)−
∞X
i=1

π(i, i−1;M,N) < FN(M,N)

is the probability that there are strictly few jobs than workers. In this case,
the private and social surplus value of a match are equal since P (M,N) =
FM(M,N), but too few unmatched jobs are created because Q(M,N) <
FN(M,N).
These facts imply that the following tax and subsidy scheme will imple-

ment the efficient solution: Provide both parties with the full surplus value
of a match when the number of unmatched workers and employers on an
island are exactly equal and finance the subsidy with a lump sum tax levied
on the workers, employed or not.5 In this case, P = FM and Q = FN which
implies St = λt and c ≥ βFMλt+1. Of course, the transfer required,

T = FMN(L− (1− s)Et, Nt+1)St+1 (18)

vanishes as the number of unmatched workers and jobs become large as a
consequence of equation (7).

7 Bargaining Equilibrium

Suppose that the wage is determined as the outcome of a strategic non-
cooperative bargaining game played after worker and employer meet along
the lines outlined by Hall and Milgrom (2005). Hall and Milgrom argue that
delay rather than search is the relevant default option so long as both sides
receive at least the value of continued search. Assuming that the worker can
generate value at the flow rate z while bargaining but neither can search
for an alternative until next period, the unique perfect wage outcome of a
symmetric alternating offer game is given by

wt = min

µ
p,max

µ
z +

1

2
(p− z), Rt

¶¶
(19)

5In other words, allocating the match surplus to the side responsible for forming the
match, which is both when the numbers on the two sides of the market are equal, imple-
ments the efficient solution as pointed out in Mortensen(1983).
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In other words, the pair split the flow surplus, p − z, equally provided that
the result exceeds the flow value of the worker’s search option, Rt, and is less
than match output.
Because the value of a filled job to the employer is the present value of

the profit flow and the ex ante probability of filling any job in the matching
process is the ratio of the matching rate to the number of unmatched jobs
at the beginning of the period, the free entry condition is

c ≥ F (L− (1− s)Et, Nt+1)

Nt+1
βJt+1 with strict equality holding if Nt > 0.

(20)
where Jt+1 is the employer’s value of a match in the next period. The em-
ployer’s value evolves according to the rule

Jt = p− wt + β(1− s)Jt+1. (21)

Provided that match output exceeds the opportunity cost of employment,
p ≥ z, and the worker’s wage is no less then the reservation wage, z + 1

2
(p−

z) ≥ Rt, the wage is wt = z+ 1
2
(p− z) and the employer’s match value solves

Jt =
p− z

2
+ β(1− s)Jt+1. (22)

Obviously, the singular curve characterizing ∆J = 0 is the horizontal line
defined by J = (p−z)/2

1−β(1−s) in Figure 7. Furthermore, because 0 < β(1− s) < 1,
the difference equation is unstable forward in time as indicated in figure by
the directional arrows.
The solution to the free entry condition, equation (20), for the number of

unmatched jobs, denoted as N(J,E), increases with J and decreases with E
F (M,N) is increasing in both arguments and is concave in N . The locus of
points for which ∆M =Mt+1 −Mt = 0 is defined by

s(L−M)− (1− s)F (L− (1− s)E,N(J,E)) = 0

is a postively sloped relationship between J and E as illustrated in Figue
7. Since ∆E > 0(< 0) for all E to the left (right) of the singular curve
characterizing ∆E = 0, a unique saddle point steady state solution exists,
coincident with the ∆J = 0 curve, which is the only solution to the differ-
ential equation system defined by the necessary conditions and tranversality
conditions. Furthermore, the state state value of employment is positive if
p− z is positive and sufficiently large.
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Figure 5: Phase Diagram: Bargaining Equilibrium
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We conclude the section by verifying the supposition that the worker’s
participation condition, wt =

p+z
2
≥ Rt, never binds. The value of worker’s

value of a match solves

Wt+1 = wt+β

∙
(1− s)Wt+1 + s

∙µ
F (L− (1− s)Et, Nt+1)

(L− (1− s)Et

¶
Wt+1 +

µ
1− F (L− (1− s)Et, Nt+1)

(L− (1− s)Et

¶
given that workers who lose their job at the end of period t can find a new one
at the beginning of period t+1 with probability equal to F (Mt+1, Nt+1)/Mt+1.
As the worker’s value of unemployment solves

Ut = z+β

∙µ
F (L− (1− s)Et, Nt+1)

(L− (1− s)Et

¶
Wt+1 +

µ
1− F (L− (1− s)Et, Nt+1)

(L− (1− s)Et

¶
Ut+1

¸
,

the surplus value is

Wt − Ut = wt − z + β(1− s)

µ
1− F (L− (1− s)Et, Nt+1)

(L− (1− s)Et

¶
(Wt+1 − Ut+1)

Since the reservation wage Rt is the value of wt that equates the value of
employment and unemployment, that is Wt − Ut = wt −Rt, it follows that

Rt = z + β(1− s)

µ
1− F (L− (1− s)Et, Nt+1)

(L− (1− s)Et

¶
(Rt+1 − wt+1)

= z + β(1− s)

µ
1− F (L− (1− s)Et, Nt+1)

(L− (1− s)Et

¶µ
Rt+1 −min

µ
p,max

µ
p+ z

2
, Rt+1

¶¶¶
≤ z <

p+ z

2
.

8 Labor Market Volatility

In a now famous paper, Shimer (2005) argues that the standard matching
model can explain at most 10% of the observed volatility in the ratio of
vacancies to unemployment. In this section, I show that the efficient so-
lution to the island matching model can explain over 25% of the volatility
given reasonable parameter values if productivity and separation shocks are
sufficiently persistent.6 However, if the wage is set as the outcome of the

6In his more recent paper, Shimer (2006) also shows that his model of mismatch un-
employment does much better in this dimension.
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symmetric non-cooperative bargaining game with delay as the default option
then the volatility of the vacancy-unemployment ratio is virtually identical
to that found in Shimer’s (2005) post WWII time series data.
One implication of matching models that differentiate them from Shimer’s

(2006) mismatch model is that shocks to the match separation or job destruc-
tion rate, s, induce variation in both vacancies and unemployment as well as
shocks to productivity, represented in the model by the parameter p. In the
efficient solution case, the steady state values of the number of unmatched
workers and jobs, M and N , are determined by the following equations:

c =
βFN(M,N)(p− z)

1− β(1− s)[1− FM(M,N)]
(free entry). (23)

F (M,N) = s(L−M + F (M,N)) (steady state). (24)

Without loss of generality, one can normalize the base line value of match
productivity per period at p = 1. Given the normalization, c and z are ex-
pressed in units of output per period. Given a period length of one month,
reasonable values of the interest rate and separation rate are r = 0.004 and
s = 0.033. In his papers, Shimer (2005,2006) sets the opportunity cost of em-
ployment, z, equal to 0.4 (40% of market output). Hagadorn and Manovskii
(2005), Hall (2006), and Mortensen and Nagypál (2006) argue for larger val-
ues. As in the last of these papers, I set z = 0.7. Because M ,N, and L are
determined by the steady state condition and the observed average values
of the unemployment and vacancy rates over the 12/2000 to 11/2006 period
as discussed above, the free entry condition evaluated at these bench mark
values can be use to tie down the cost of vacancy posting. The implied value
is c = 0.499, equal to about two week of match output. Given all these
parameter values, one can now use equations (23) and (24) to compute the
responses of all the endogenous variables to variation in both the productivity
and separation rates.
The central variable of interest in the literature on labor market volatility

is the vacancy-unemployment ratio. At the baseline parameter values, the
elasticity of the steady state value of the ratio with respect to p, computed
using equations (??) and (??), is 4.58.7 This measure of the response to

7This is a comparative static result, and as such, is not the response one would see to
a persistent but transitory shock under rational expectation. However, the evidence in
Shimer(2005) suggest that productivity shocks are nearly permanent, a fact that justifies
the use of the number as an approximation to the dynamic response.
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productivity variation is somewhat larger than the value of 3.43 obtained
using the version of the canonical matching model studied by Shimer (2005)
and the same parameter values and much larger than the 1.72 number ob-
tained when Shimer’s choice for the opportunity cost of employment z = 0.4
is assumed.
As Mortensen and Nagypál (2006) argue, the elasticity of the vacancy-

unemployment ratio with respect to p is not the only parameter needed to
explain volatility given that separation shocks also occur and are known to
be negatively correlated with productivity shocks as documented by Shimer
(2005). The computed value of the elasticity of the vacancy-unemployment
ratio with respect to s is only −0.135. Given the elasticities of the vacancy-
unemployment ratio and the standard deviation of log productivity (σp =
0.02), the standard deviation of the log of the separation rate (σs = 0.075),
and the correlation between the two (ρps = −0.524) computed from U.S.
post WWII data reported in Shimer (2005), the implied standard deviation
of the vacancy-unemployment ratio is

σθ =
¡
η2θpσ

2
p + ηθpηθsρpsσpσs + η2θsσs

¢ 1
2 = 0.097

where θ = V/U represents the ratio of vacancies to unemployment and ηθx is
the elasticity of θ with respect to x. This number is about 25% of the standard
deviation of the vacancy-unemployment ratio (σθ = 0.382) in Shimer’s data.
The worker’s flow value of search, R, is procyclic because both the ex-

pected wage and the probability of becoming employed increase with produc-
tivity and decrease with the separation rate in the efficient solution to the
model. To see this point, note that one can write the free entry condition in
the efficient solution case as

c =
FN(M,N)(p−R)

1− β(1− s)

where

R = z + FM(1− s)

µ
p−R

1− β(1− s)

¶
is the worker’s reservation wage. Given that FN(M,N), the probability of
strictly fewer workers than jobs on an island, is decreasing in N and that
M is fixed, at least in the short run, the direct effect of an increase in p
is an increase in N. The reservation wage rises with p both directly and
because the probability of being on the short side of the market increases
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with N. Similarly, the reservation wage falls with s. Hence, the response in
the reservation wage dampens the effects of shocks on unemployment and
vacancies as in the standard model.
When the wage is the outcome of a non-cooperative bargaining game as

characterized by Hall and Milgrom (2005), I have shown above that the wage
is independent of the reservation wage because 1

2
(p+z) > Rt for all t. Hence,

it follows from equations (19) - (21) that the equilibrium solution is demand
determined. Indeed, because

wt = z +
1

2
(p− z) and Sf(t) =

1

2

p− z

1− β(1− s)
,

the number of unmatched jobs solves

c =
F (Mt, Nt)

Nt

1
2
β(1− s) (p− z)

1− β(1− s)
for all t.

The response elasticities to shocks in both p and s are much different than
those implied by the efficient solution. Indeed, at the baseline parameter
values, the elasticity of the vacancy-unemployment ratio with respect to p is
15.11 and with respect to s is −2.77. Given these values and Shimer’s (2005)
statistics σp = 0.02, σs = 0.075, and ρps = −0.524, the implied standard
error of the log vacancy-unemployment ratio (θ = V/U) is

σθ =
¡
η2θpσ

2
p + 2ηθpηθsρpsσpσs + η2θsσs

¢ 1
2 = 0.447, (25)

which actually exceeds the observed value of 0.382 reported by Shimer (2005).
Table 1 provides a complete summary of the models implications for its

elasticities of each of the endogenous variables with respect to the forcing
variables p and s as well as the standard deviations and correlations of the
natural logs of the variable. For comparison, the corresponding statistics from
Shimer’s (2005) data are reported in parentheses. The standard deviations
and the covariances used in the calculations are computed using formula
implied by a log linear approximation of the relationships. Namely, for x, y ∈
{u, v, θ, f},

σx =
¡
η2xpσ

2
p + 2ηxpηxsρpsσpσs + η2xsσs

¢ 1
2

and
σxy = ηxpηypσ

2
p + (ηxpηys + ηxsηyp)ρpsσpσs + ηxsηysσ

2
s.
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Clearly, given the parameter values, the model does a good job of match-
ing the volatilities observed for all the labor market variables. Note that
productivity and job destruction shock have opposite effects on each of the
endogenous variables. As a consequence, the correlations among them are
even higher than those found in the data even though there are two exogenous
shocks.

Implied Elasticities, Standard Deviations and Correlations
p s U V V/U f

Standard Deviation 0.224 0.224 0.447 0.117
( Standard Deviation) (0.190) (0.202) (0.380) (0.118)
Elasticity Matrix Correlation Matrix
U -6.71 1.64 1 -0.988 -0.997 -0.976

(-0.894) (-0.971) (-0.949)
V 8.40 -1.13 - 1 0.997 0.998

(0.975) (0.897)
V/U 15.11 -2.77 - - 1 0.990

(0.948)
f 7.11 -.073 - - - 1
All variables are in logs.
Shimer’s (2005) data statistics are reported in parentheses.

9 Conclusion

The implications of the aggregate matching function implied by assuming
random assignment of unmatched worker and jobs to submarkets (islands)
and that the match flow in each is equal to the minimum of the realized
values of the numbers of worker and jobs that are assigned to the sub-
market is studied in the paper. When the model is calibrated to match
the average unemployment and vacancy rates over the last six years in the
U.S., the model fits well the negative relationship between all the vacancy
and unemployment rates (Beveridge curve) observed over the same period.
Furthermore, the implies relationship between the job finding rate and the
vacancy-unemployment ratio is log linear with elasticity within the "reason-
able range" reported in Petrongolo and Pissarides (2001). In other words,
the matching process generates a "reduced form" matching function with the
properties found in the empirical literature.
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When the matching process is embedded in a standard model of equi-
librium unemployment, I show that the solution to the planner’s problem
can be implemented by a modified auction. Namely, if the agents matched,
workers or employers, are allocated the entire match surplus when their re-
alized number on any island is less than or equal to the number on the other
side of the market, then a search equilibrium is socially efficient. Although
the efficient solution to the model implies too little volatility in the ratio of
unemployment to vacancies for reasonable parameter values, an alternative
variant in which wages are set as the outcome of a strategic bargaining game
explains all the observed volatility of both unemployment and vacancies in
the U.S. as reported in Shimer (2005).
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10 Appendix

10.1 Proof of Proposition 1

By applying equations (1) and (2), one obtains the following:

∂FN

∂N
= FNN(M,N) =

∞X
i=1

i−1X
j=1

(π(i, j − 1;M,N)− π(i, j;M,N))

=
∞X
i=1

i−1X
j=1

π(i, j − 1;M,N)−
∞X
i=1

iX
j0=1

π(i, j0 − 1;M,N)

= −
∞X
i=1

π(i, i− 1,M,N) < 0

∂FM

∂M
= FMM(M,N) =

∞X
i=1

iX
j=0

(π(i, j;M,N)− π(i− 1, j;M,N))

=
∞X
i=1

iX
j=0

π(i, j;M,N)−
∞X
i0=0

i0+1X
j=0

π(i0, j;M,N)

= −
∞X
i0=0

π(i0, i0 + 1;M,N) = −
∞X
j=1

π(j − 1, j,M,N) < 0

∂FN

∂M
= FNM(M,N) =

∞X
i=1

i−1X
j=0

(π(i− 1, j;M,N)− π(i, j;M,N))

=
∞X
i0=0

i0X
j=0

π(i0, j;M,N)−
∞X
i=1

i−1X
j=0

π(i, j;M,N)

=
∞X
i=0

π(i, i;M,N) =
∞X
j=0

π(j, j;M,N) = FMN(M,N) =
∂FM

∂N
> 0

Note that

FMN(M,N) =
∞X
i=0

e−(M+N)MiNi

i!i!
≤ max

(x1,x2)≥0

( ∞X
i=0

e−(M+N)MiNi

i!i!
|x1 + x2 =M +N

)

=
∞X
i=0

e−(M+N)(M+N
2 )

i
(M+N

2 )
i

i!i!
= FMN

µ
M +N

2
,
M +N

2

¶
.
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An application of the limit operator in Mathcad yields limx→∞ FMN(x, x) =
0.

10.2 Proof of Proposition 2

Define,

x ≡ M − F (M,N)

M
,

Shimer (2006a, footnote 7) claims that

∂x

∂ lnM
+

∂x

∂ lnN
= −N

M

∞X
i=1

π(i, i− 1;M,N).

Since the definition implies

∂x

∂ lnM
= −

µ
FM(M,N)− F (M,N)

M

¶
and

∂x

∂ lnN
= −N

M
FN(M,N),

it follows that

MFM(M,N)

F (M,N)
+

NFN(M,N)

F (M,N)
− 1

=
N

F (M,N)

∞X
i=1

π(i, i− 1;M,N) =
N

F (M,N)

∞X
i=1

e−(M+N)M iN i−1

i!(i− 1)!

=

P∞
i=1

e−(M+N)iM iN i

i!i!P∞
i=1

e−(M+N)min(i,j)MiN i

i!i!

= FMN(M,N)
E{i|i = j}
E{min(i, j)} .
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