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Abstract

This paper works out a simple uni�ed framework for a series of puzzles in macro-�nance. It

builds on the Rietz-Barro view, that a small probability of large crises or disasters generates is what

generates risk premia in asset markets. During a disaster, an asset�s fundamental value will fall

by a time-varying amount. This time-varying amount generates time-varying risk premia, hence

volatile asset prices, and partial predictability of future asset returns. Using the recent technique

of linearity-generating processes (Gabaix 2007), the model is very tractable, and all prices are

in closed form. Hence, the paper presents a simple, exactly solved, frictionless benchmark for a

series of questions on asset prices. It provides a way to think about the following puzzles: (i)

equity premium puzzle (ii) risk-free rate-puzzle (iii) excess volatility puzzle (the fact that equity

prices are so volatile) (iv) value-growth puzzle (stocks with high price-dividend ratios have low

future returns) (v) upward sloping nominal yield curve (vi) Fama-Bliss �ndings that a higher

slope of the yield curve predicts higher risk premia on bond returns (vii) corporate bond spread

puzzle (the spread between corporate and government bond rates are higher than warranted

by the U.S. historical experience) (viii) characteristics vs covariance puzzles (simple numbers

such as the price-dividend ratio of stocks predict future returns better that covariances with

economic factors) (ix) partial predictability of aggregate stock market returns by price/dividend

and consumption/wealth ratios (x) high price of deep out-of-the-money puts. The �probability of

disaster�can be interpreted literally, or could simply model varying risk, risk aversion, or investor

sentiment in a particularly tractable way. (JEL: E43, E44, F31, G12, G15)

�xgabaix@stern.nyu.edu. For helpful conversations and comments, I thank Robert Barro, David Chapman,
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1 Introduction

This paper proposes a simple, uni�ed closed-form model for a series of puzzles in macroeconomics and

�nance.1 It uses the idea of Barro (2006), Rietz (1988) and that there is always a possibility that some

large macroeconomic crisis (e.g. the Great Depression, a war, or a revolution) could happen, and

this type of risk creates risk premia on stocks, bonds, and other �nancial assets.2 In their models,

the intensity of potential disasters is constant. In the present paper, during a disaster, di¤erent

assets see their fundamental value fall at a time-varying rate. Hence, assets have time-varying risk

premia and volatile asset prices. For instance, stock prices are high when stocks are not very �risky�,

in the sense that their cash-�ows would not fall by much if a crisis happened next period. This

perceived riskiness mean-reverts, which leads to an expected mean-reversion of the price-dividend

ratio of stocks. Hence stocks are very volatile, and their price-dividend ratio mean-reverts. The same

dynamics hold for bonds and exchange rates.

The advantage of that formulation is that it allows for a very tractable model of stock, bonds and

exchange rates, in which all prices are in closed forms. Hence, the paper presents a simple, tractable,

frictionless benchmark for a series of questions on asset prices. Namely, it o¤ers a way to think about

the following puzzles.

Stock market: Puzzles about the aggregates

1. Equity premium puzzle.

2. Risk-free rate puzzle. For this and the above puzzle, the paper simply imports from Barro

(2006) and Rietz (1988).

3. Excess volatility puzzle: The fact that stock prices are more volatile than warranted by a model

with a constant discount rate.

4. Aggregate return predictability: Future aggregate stock market returns are partly predicted

by Price/Earnings and Price/Dividend ratios, and the Consumption/Aggregate wealth ratio.

5. Counter-cyclical equity premium

Stock market: Puzzles about the cross-section of stocks

6. Value/Growth puzzle: Stocks with a high (resp. low) P/D ratio have lower (resp. high) future

returns, even controlling for their covariance the aggregate stock market.

1 It focuses on stocks, bonds and puts, while a companion paper (Farhi and Gabaix 2007) extends the model to
international macroeconomics, in particular exchange rates, and the forward premium puzzle.

2Weitzman (2006) presents an in�uential related view, that the possibility of rare disasters stems from the uncertainty
about the true model of the world. Longsta¤ and Piazzesi (2004) calibrate a model with a constant probability of rare
disasters.
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7. Characteristics vs Covariances puzzles: In various data sets and subsamples, characteristics

of stocks (e.g. the P/D ratio) predict future returns as well or better than covariances with

economically-motivated factors.

8. Existence of �good beta�factor (Campbell and Vuolteenaho 2004).

Nominal bond puzzles: Government debt

9. On average, the long term rates are higher than short-term rates, i.e. the yield curve slopes

up.

10. Fama-Bliss, Campbell-Shiller, Cochrane Piazzesi facts: A higher slope of the yield curve predicts

excess positive returns on long term bonds.

11. A high continued de�cit, or a high debt/GDP ratio leads to higher slope of yield curve (con-

trolling for future in�ation), and higher real long term rates. This is because it predicts an

increase in in�ation if there is a disaster.

Nominal bond puzzles: Corporate debt

12. Corporate bond spreads are higher than warranted by a simple risk-neutral model

13. Higher Debt/GDP ratio leads to lower Corporate bond spreads (Krishnamurthy and Vissing-

Jorgensen 2007)

Options

14. High price of deep out-of-the-money puts.

To get a feel for the economics of the model, �rst consider bonds. The model postulates that, if a

disaster happens at t, in�ation will increase by some amount jt. If jt > 0, long term bonds are risky,

and command a risk premium (they do badly in bad states of the world). On the other hand, short

term bonds bear very little risk, and have a very small risk premium. Hence, long term rates are

higher than short term rates �the nominal yield curve slopes up. Next, suppose that the amount by

which in�ation will increase, itself varies. Then the slope of the yield curve will vary. We have the

ingredients for an economic theory of the yield curve. The model formalizes this idea, which turns

out to account for many stylized facts on bonds.

The same mechanism is at work for stocks. Suppose that, when a disaster happens, the value of

the earnings of a stock falls by jt. That possibility yields a risk premium. If jt is variable, it yields

a time-varying risk premium. This time-varying risk premium makes stock prices volatile, and also

makes them partly predictable via measures such as the dividend-price ratio.
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In general, di¤erent stocks will have di¤erent falls in earnings (jt) during the disaster. Stock that

are expected to fall a lot will be very risky, and will have a low price �they will be categorized as

�value�stocks (their price will be low compared to earnings, dividends, or book value) and they will

have high expected returns. Those expected to do better will have a high price, and low expected

returns �they are �growth�stocks. That generates a theory of value and growth stocks.

As the prospective defaults intensities vary across time and assets, they will generate comovement

in returns �even in periods when a disaster does not happen. Hence, we generate comovement and

comovement �factors�, in periods in which no disaster happens.

The above ideas are quite straightforward, and many of them have been already formulated in

other contexts. The main virtue of the paper is to articulate them in a uni�ed, compact, tractable

framework. I constantly tried to keep the model as tractable and streamlined as possible. This is

achieved by using the linearity-generating processes developed elsewhere (Gabaix 2007) to maintain

tractability.

I now mention further antecedents and motivation for this uni�cation project.

John Cochrane (1999) has emphasized the tantalizing empirical similarities in the patterns of

�excess volatility�and return predictability in stocks, bonds and exchange rates. Take stocks: if the

rate of returns on all stocks was constant, stocks with a high D/P ratio should have a low expected

price growth, but empirically, they have a higher than average price growth (that�s an instance of the

value puzzle). The same holds for exchange rates �that�s the uncovered interest rate parity puzzle,

a.k.a. the forward premium puzzle. If the rate of return of investing in di¤erent currencies was

equalized, currencies with high interest rates should depreciate (so that the full expected return �

interest rate plus expected capital gain �is equalized across countries). But empirically high-interest

rate currencies tend to appreciate, not depreciate. The same, �nally holds for bonds. Suppose a

naive theory in which bonds should be constant over time. When long term bonds have high yields,

one should expect lower than average capital gains from holding those long bonds (again, so that the

full expected return �interest rate plus expected capital gain �is constant over time. However, the

historical experience goes the other way. When long bond yields are high, expected capital gains are

high (Campbell and Shiller 1991), the opposite of the simplest riskless theory. Cochrane concludes

that this triad of puzzles suggests that a common mechanism might be at work.

The present paper aims at realizing Cochrane�s program, and at presenting a uni�ed mechanism

for stocks, bonds and exchange rates. The work on exchange rate is developed in a companion paper,

Farhi and Gabaix (2007)

The model is presented as fully rational, but it could be interpreted as a behavioral model.

The changing beliefs about the intensity of possible disasters are very close to what the behavioral

literature calls �animal spirits.�The model�s structure gives a time-consistent way to think about
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the impact of changing �sentiment�on prices, in the time-series and the cross-section.3

In terms of predictions, the model behaves similarly to models with time-varying risk-aversion,

which are chie�y done with external habit formation (Abel 1990, Campbell Cochrane 1999, Menzly

Santos Veronesi 2004). The present proposal has two virtues, emphasized by Barro (2006). Because

it conserves the usual i.i.d. structure with iso-elastic preferences, it is very tractable, and it meshes

well with modern macroeconomic models, virtually all of which use those preferences.

The model is complementary to the literature on long term risk �which view the risk of assets as

the risk of covariance with long-run consumption: e.g. Bansal and Yaron (2004), Bekaert et al. (2005),

Croce, Lettau and Ludvigson (2006), Gabaix and Laibson (2002), Hansen, Heaton and Li (2005),

Hansen and Scheinkman (2006), Julliard and Parker (2004), Lettau and Wachter (2007), Parker

(2001). While this literature has many successes, for the aggregate stock market and value/growth

stocks, it is still useful to study an arguably simpler, tractable model.

There could be two ways to �test�, or explore, the model. The most direct and literal way

would be to look at the behavior of assets during disasters. Barro (2006) led the way with the this

analysis of stocks and bills during historical disasters. This paper is one more motivation to study

how corporate bonds, and value and growth stocks have fared respectively during historical disasters.

This is a potentially vast enterprise.

The second way to make the model testable is to work out predictions that should hold in a

time series sample (such as the rich OECD countries since World War II) that have not experienced

disasters. We obtain a series of time-series and cross-sectional predictions about bonds and stocks,

that prima facie appears consistent with the main known facts. Hence, throughout the paper I try

to highlight predictions that have been tested or could be tested in �normal times�samples.

Throughout the paper, I use the recently developed class of �linearity-generating� processes

(Gabaix 2007). That class keeps all expressions in closed form. The entire paper could be rewritten

with other processes (e.g. a¢ ne-yield models) albeit with considerably more complicated algebra,

and the need to resort to numerical solutions. I suspect that the economics would be similar (the

linearity-generating class and the a¢ ne class give the same expression to a �rst order approximation).

Hence, there is little of economic consequence in the use of linearity-generating processes, and they

should be viewed as simply an analytical convenience, that allows to explore many issues in a tractable

way.

Section 2 presents the macroeconomic environment, and the cash-�ow process for stocks and

bonds. Section 3 derives the equilibrium prices. I next study in turn the model�s implication for the

predictability of returns, for stocks in section 5, and bonds in section 6. These results are useful for

the calibration of the model, done in section 4.

3 In another interpretation of the model, the �disasters�are not macroeconomic disaster, but �nancial crises.
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2 Model setup

2.1 Macroeconomic environment

The environment is a streamlined version of the one used by Rietz (1988) and Barro (2006). I consider

an endowment economy, with Ct as the consumption endowment, and a representative agent with

utility V =
P

t e
��tC1�t = (1� ). Hence, the pricing kernel is Mt = @V=@Ct = e��tC�t , and the

price of an asset yielding a dividends of Dt at time t is: Pt = Et

hP
s�tMsDs

i
=Mt, as per Lucas

(1978) and Breeden (1979).

Following Rietz (1988) and Barro (2006), I state that each period t + 1 a disaster may happen,

with a probability p. If a disaster does not happen, Ct+1=Ct = eg, where g is the normal-times

growth rate of the economy. If a disaster happens, then Ct+1=Ct = egB, with B > 0.4 For instance,

if B = 0:7, consumption falls by 30%. To sum up:

Ct+1
Ct

=

(
eg if there is no disaster at t+ 1

egBt+1 if there is a disaster at t+ 1
(1)

As the pricing kernel is Mt = e��tC�t ,

Mt+1

Mt
=

(
e�R if there is no disaster at t+ 1

e�RB�t+1 if there is a disaster at t+ 1
(2)

where

R = � + gc

is the risk-free rate in an economy that would have a zero probability of disasters.

This complete description of the macroeconomic environment, and any asset can be priced . The

innovation in this paper is to propose a way to model the time-varying riskiness of stocks, bonds and

exchange rates.

2.2 Setup for Stocks

A given stock (there can be many stocks in this economy) has a dividend Dt, which follows:

Dt+1

Dt
=

(
eg
�
1 + "Dt+1

�
if there is no disaster at t+ 1

eg
�
1 + "Dt+1

�
Ft if there is a disaster at t+ 1

(3)

4Typically, extra i.i.d. noise is added, but given that it never materially a¤ects the asset prices, it is omitted here.
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where "Dt+1 > �1 is a zero mean �uctuation that does not matter, except in the calibration of dividend
volatility, that is independent of whether there is a disaster. In normal times, Dt grows at a rate g.

But, if there is a disaster, the dividend of the asset is partially wiped out (as in Barro 2006): the

dividend is multiplied by Ft � 0. Ft is the recovery rate of the stock. When Ft = 0, the asset is

expropriated. When Ft = 1, there is no loss in dividend. To model the time-variation in the asset�s

recovery rate, I de�ne:

Ht = ptEt

h
B�t+1Ft

i
� pt (4)

Ht can be called the �expected resilience�of the asset. When the asset is expected to do well in

a disaster (high Ft), Ht is high �investors are optimistic about the asset.5

To streamline the model, I specify the dynamics of Ht directly, rather than by looking at the

individual components, pt; Bt+1; Ft+1. I split it Ht into a constant part H� and a variable part bHt:

Ht = H� + bHt

and postulate the following process for the variable part bHt:

Linearity-Generating twist: bHt+1 =
1 +H�
1 +Ht

�H bHt + "
H
t+1 (5)

where Et"Ht+1 = 0, and "
H
t+1; "

D
t+1, and whether there is a disaster, are uncorrelated variables

6 Eq. 5

means that bHt mean-reverts to 0, but as a �twisted�autoregressive process. As Ht hovers around

H�, 1+H�1+Ht
is close to 1, so that the process behaves much like a regular AR(1): Et bHt+1 � �H bHt. The

1+H�
1+Ht

term is a �twist�term that makes the process very tractable. It is best thought as economically

innocuous, and simply an analytical convenience.7

The above �nishes the setup for stocks. I next turn to the bonds.

2.3 Setup for Bonds

I start with a motivation for the model. The most salient puzzles on nominal bonds are arguably

the following. First, the nominal yield curve slopes up on average; i.e., long term rates are higher

than short term rates. Second, there are bond risk premia. The risk premium on long term bonds

increases with the di¤erence in the long term rate minus short term rate. (Campbell Shiller 1991,

Cochrane and Piazzesi 2005, Fama 2006, Fama and Bliss 1987).

5This interpretation is not so simple in general, as H also increases with the probability of disaster.
6"Ht+1 can be heteroskedastic �but, its variance need not be spelled out, as it does not enter into the prices. However,

the process needs to verify bHt � (�� 1) (1 +H�), so the process is stable, and also bHt � �p �H� to ensure Ft � 0.
Hence, that the variance needs to vanish in a right neighborhood max ((�� 1) (1 +H�) ;�p�H�). Gabaix (2007)
provides more details on the stability of Linearity-Generating processes.

7Gabaix (2007) provides a more thorough analyze of the linearity-generating twist.
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I propose the following explanation. When a disaster occurs, in�ation increases (on average). As

very short term bills are essentially immune to in�ation risk, while long term bonds lose value when

in�ation is higher, long term bonds are riskier, hence they get a higher risk premium. Hence, the

yield curve slope up.8

Moreover, the magnitude of the surge in in�ation is time-varying, which generates a time-varying

bond premium. If that bond premium is mean-reverting, that generates the Fama-Bliss puzzle.

Note that this explanation is quite generic, in the sense that it does not hinge on the speci�cs of

the disaster mechanism. The advantage of the disaster framework is that it allows for formalizing

and quantifying the idea in a simple way.

Several authors have models where in�ation is higher in bad times, which makes the yield curve

slope up (Brandt and Wang 2003, Piazzesi and Schneider 2006, Wachter 2006). The paper is part of

burgeoning literature on the economic underpinning of the yield curves, see e.g. Piazzesi and Schnei-

der (forth.), Vayanos and Vila (2006), Xiong and Yan (2006). An earlier uni�cation of many puzzles

is provided by Campbell-Cochrane (1999) and Wachter (2006), who studies a Campbell-Cochrane

(1999) model, and conclude that it explains an upward sloping yield curve and the Campbell-Shiller

(1991) �ndings. The Brandt and Wang (2003) study is also a Campbell-Cochrane (1999) model, but

in which risk-aversion depends directly on in�ation.

I now formalize the above ideas. In�ation is it. The real value of the potential coupon is called

Dt, and evolves as:

Dt+1

Dt
=

(
1� it in normal times

(1� it)F if crisis
(6)

In normal times, it depreciates at the rate of in�ation, it. In disasters, there is possibility of

default. A recovery rate F = 1 means full recovery, F < 1 partial recovery. The default could be an

outright default (e.g., for a corporate bond), or perhaps a burst of in�ation that increases the price

level hence reduces the real value of the coupon (as in Barro 2006). In this �rst pass, to isolate the

bond e¤ects, I assume the case where p (FB� � 1) = H is a constant.

I decompose in�ation as it = i�+ bit, where i� is its constant part, and bit is its variable part. The
variable part of in�ation follows the process:

bit+1 = 1� i�
1� it

�
�
�ibit + 1fCrisis at t+1g �j� + bjt��+ "it+1 (7)

This equation means �rst that, if there is no disaster, Etbit+1 = 1�i�
1�it � �iit, i.e. in�ation follows

the Linearity-Generating (Appendix A) twisted autoregressive process. In�ation mean-reverts at a

8Several authors have models where in�ation is higher in bad times, which makes the yield curve slope up. See
Brandt and Wang (2003), Piazzesi and Schneider (2006), Wachter (2006).
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rate �i, with the LG-twist
1�i�
1�it to ensure tractability

In addition, in case of a disaster, in�ation jumps by an amount jt = j�+bjt. This jump in in�ation
makes long term bonds particularly risky. j� is the baseline jump in in�ation, bjt is the mean-reverting
deviation from baseline. It follows a twisted auto-regressive process, and, for simplicity, does not

jump during crises: bjt+1 = 1� i�
1� it

� �jbjt + "jt+1 (8)

This ends the description of the in�ation process.

3 Equilibrium Asset Prices

The previous section described the process for three cash-�ows processes for stocks, bonds and

exchange rate. This section calculates their prices.

3.1 Stocks

I derive the price of a stock. Following the general procedure for Linearity-Generating processes

(Appendix A), I start by forming, using (2) and (3):

Mt+1Dt+1

MtDt
=

(
e�R+g

�
1 + "Dt+1

�
if there is no disaster at t+ 1

e�R+gB�Ft
�
1 + "Dt+1

�
if there is a disaster at t+ 1

As the probability of disaster at t+ 1 is p, and using the de�nition of Ht = p (B�Ft � 1),

Et

�
Mt+1Dt+1

MtDt

�
= e�R+g

�
(1� p) � 1 + p �B�Ft

�
= e�R+g (1 +Ht) = e�R+g

�
1 +H� + bHt

�
(9)

Next, as bHt+1 is independent of whether there is a disaster, and is uncorrelated with "Dt+1,

Et

"
Mt+1Dt+1

bHt+1

MtDt

#
= Et

�
Mt+1Dt+1

MtDt

�
Et

h bHt+1

i
= e�R+g (1 +Ht) �

1 +H�
1 +Ht

� bHt

= e�R+g (1 +H�) � bHt (10)

In (5), the reason for the 1+Ht term in the denominator was to ensure that the above express would

remain linear in bHt.

Eq. 9 and 10 ensure that Yt = MtDt

�
1; bHt

�
is a Linearity-Generating process (Appendix A),

Et [Yt+1] = 
Yt, with


 = e�R+g

 
1 +H� 1

0 � (1 +H�)

!
:
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The results in Appendix A give the stock price.

Proposition 1 (Stock prices) The price of a stock i is:

Pt =
Dt

1� e�R+g (1 +H�)

 
1 +

bHt

1� e�R+g (1 +H�) �

!
(11)

In the limits of short time periods, writing � = e��Hwith R; g; �H small, the price is:

Pt =
Dt

ri

 
1 +

bHt

ri + �H

!
(12)

with

ri = R� g �H�: (13)

When bHt � 0, those are the expressions of Barro (2006). Hence Proposition 1 is the extension of
Barro�s result with a stochastic recovery rate, bHt. As always with a Linearity-Generating process,

the details of the noise does not matter. Only a few moments matter for the price. For instance, one

can specify many stochastic structures for the variance of bHt.

3.2 Bonds

To obtain bond prices, two notations are useful. First, de�ne the risk premium:

�t �
pB�F

1 +H
bjt (14)

�t is the mean-reverting part of the �risk adjusted�expected increase in in�ation if there is a disaster.

It will be the variable part of the bond risk premium, hence its name. It is analogous to the bHt term

for stocks. Second, I parametrize the typical jump in in�ation j� in terms of a number � � (1� �i) =2
(I assume not too large in�ation jump j�):9

pB�Fj�
1 +H

= (1� i�)2 � (1� �i � �) (15)

The next Proposition gives bond prices. Its proof is in Appendix C. In the continuous time limit,

I use �i = e��i and �� = e��� .

9Normally, calculating bond prices in a Linearity-Generating system involves calculating the exponential of a matrix,
hence �nding its eigenvalues. To avoid having quadratic roots in the solution, I �presolve� the relevant equation, by
parameterizing j� by (15).
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Proposition 2 (Price of bonds) In the limits of small time intervals, with H = pB�F � p, the

nominal short term rate is

rt = R�H + it

and the price of a nominal zero-coupon bond of maturity T is given by:

Zt (T ) = e�(R�H+i��)T

0@1� 1� e��iT
�i

(it � i��)�
1�e��iT

�i
� 1�e� �T

 i

 � � �i
�t

1A : (16)

with i�� � i� + � and  � � �� � �. . The expression for discrete time case is given in Eq. 54 of

Appendix C.

Proposition 2 is an important result of this paper. It will allow a closed-form expression for the

yield curve, derived from an economic model.

To interpret it, it is good to have closed forms for two key variables about bonds, forward rates

and yields.

Proposition 3 (Bond yields and forward rates). The bond yield is, by de�nition, yt (T ) = � (lnZt (T )) =T ,
with Zt (T ) given by (16). The forward rate, ft (T ) � �@ lnZt (T ) =@T is:

ft (T ) = R�H + i�� +
e��iT (it � i��) + e��iT�e� �T

 ���i
�t

1� 1�e��iT
�i

(it � i��)�
1�e��iT

�i
� 1�e� �T

 i
 ���i

�t

They admit the Taylor expansions:

ft (T ) = R�H + i�� + e
��iT (it � i��) +

e��iT � e� �T
 � � �i

�t +O
�
"2
�

(17)

= R�H + i�� +

�
1� �iT +

�2iT
2

2

�
(it � i��) +

�
T � �i +  �

2
T 2
�
�t + h:o:t: (18)

and

yt (T ) = R�H + i�� +
1� e��iT
�iT

(it � i��) +
1�e��iT

�i
� 1�e� �T

 i

( � � �i)T
�t + h:o:t: (19)

= R�H + i�� +

�
1� �iT

2
+
�2iT

2

6

�
(it � i��) +

�
T

2
� �i +  �

6
T 2
�
�t + h:o:t: (20)

3.3 Expected returns of assets

I state a general Proposition about the expected returns in this economy (which the reader may skip

in a �rst reading).
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Proposition 4 (Expected returns) Consider an asset, and call P#t = Et [Pt+1 +Dt+1 j Disaster at t+ 1],
the value that the asset would have if a disaster happened at time t+1. Then, the expected return of

the asset at t, conditional on no disasters, is:

re;t =
1

1� p

 
eR � pB� P

#
t

Pt

!
� 1 (21)

In the limit of small time intervals (continuous time),

re;t = R+ p

 
1�B� P

#
t

Pt

!
(22)

= R� p
�
B� � 1

�
+ pB�

 
1� P#t

Pt

!
(23)

where R� p
�
B�t � 1

�
is the risk-free rate in the economy.

Proof. The Euler equation,1 = Et [Rt+1 �Mt+1=Mt], gives:

1 = e�R

"
(1� pt) (1 + re;t) + pt

 
B�

P#t
Pt

!#

hence (21). The continuous time expression comes from taking the limit of (21) to 0 of R; pt; ret.

The unconditional expected return on the asset, on an in�nite sample that includes disaster, is

(in the continuous time limit)

re + pt

 
P#t
Pt

� 1
!
= R� pt

�
B�t Ft � 1

�
� ptEt

�
B�t � 1

� P#t
Pt

� 1
!

When B�t is large, B�t � 1 and B�t are close. So, as observed by Barro (2006), the unconditional

expected return, and the expected return conditional on no disasters are very close. The possibility

of disaster a¤ects mostly the risk premium, and much less the expected loss.

Formula (21) indicates that only the behavior in disasters (the P#t+1=Pt term) creates a risk

premium. It is equal to the risk-adjusted (by B�t �the probability is augmented by the relative

importance of the event in terms of marginal utility of consumption) expected capital loss of the

asset if there is a disaster. That makes the analytics simple, as only Et
h
P#t =Pt � 1

i
is needed to

obtain a cross-section of risk premia.
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4 A Calibration

This section is more applied that the rest of the paper, so the reader may want to skip it in the �rst

reading. Units are yearly.

4.1 Parameter values

Preferences. For the time-preference, � = 4%, and for risk aversion  = 4.

Macroeconomy. In normal times, consumption grows at rate gc = 2:5%. The probability of

disaster is p = 1:7%, as estimated by Barro (2006). In disasters, the recovery rate of consumption is

B = 0:6. 10

Stocks. The volatility of the dividend is �D = 11%, as in Campbell and Cochrane (1999).

To specify the volatility of the recovery rate Ft, I specify that it has a baseline valueF� = B, and

support Ft 2 [Fmin; Fmax] = [0; 1]. That is, if there is a disaster, stocks can do anything between

losing all their value and losing no value. The speed of mean-reversion � = 0:15, which gives a high-

life of 4:6 years, and is in line with various estimates from the predictability literature. Given these

ingredients (Fmin; Fmax; F�, and �), Appendix D speci�es volatility process for Ft, and calculates the

average unconditional volatility of Ft. I use this procedure for the recovery rate of stocks, but also

bonds and exchange rates.

Bonds. In�lation is persistent, so I take �i = 8%. I keep �� = 15% for the speed of mean-reversion

of the magnitude of in�ation risk. I calibrate j� = 2%= (5pB�) = 3%, and jt 2 [�3%; 9%].11

4.2 Implications for levels and volatilities

I now turn to the average value of various economic quantities of interest. I di¤er the conclusion on

the predictability of the assets to the next sections.

T-bills. The short-term rate is 0.9% (rST = R � p (B�F$ � 1)), assuming no in�ation burst in
a disaster (that is, F$ = 1 for government T-bills).

Stocks. The normal-times expected returns on equities is Re = R�p (B�F� � 1) = 7:8%, which
corresponds to an equity premium of 6.3%. The unconditional expected return on equity (i.e., in

long samples that include disasters) is Re � pF� = 5:6%. The di¤erence between those two returns

is 1%, so as in Barro (2006), most of the return on equity comes from a risk premium.

10 In Barro, the recovery rate is a stochastic eB. My number matches it in the sense that B1� = E
h eB1�

i
. Note

that the average disaster could have a much higher recovery rate than 0:6, as the B re�ects the possibility of some very
bad disasters.
11 I target a range for the 10 year spread in the yield curve (y (10)� y (0)) equal to [�2%;+6%], for a baseline value

of 2%. By Eq. 20, y (10)� y (0) ' 5�i (�+ �t) = 5pB�F (j� + jt).
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The price/dividend ratio is P=D = 18:7 (that�s eq. 12, evaluated at bHt = 0) in-line with the

empirical evidence (see e.g. the number in Campbell Cochrane, 1999, Table 1).

The standard deviation of ln (P=D) is: 0.22. Campbell and Cochrane (1999) report an empirical

standard deviation of 0.27.

The volatility of the equity premium is �H = 1:0% per year. This translate into a volatility of

the log of the price / dividend ratio equal to 6.5%.12 The total equity volatility depends on the

correlation between dividend growth and the asset resilience, Ht.13 With a correlation of 0, 0.5 and

1, the resulting equity volatility is, respectively: 12.7%, 15.3%, and 17.5%. This is in line with the

empirical U.S. estimate, about 15% per year.14

I conclude that the model can quantitatively account for an �excess�volatility of stocks. In this

model, this is due to the stochastic risk-adjusted intensity of disaster.

Bonds. The typical slope of the 10 year rate, y (10)� y (0), is 2%. The annual volatility of that

slope is 0.6% (this is, � (Max spread�Min spread) � �1=2� ).

I next turn to the predictability generated by the model.

5 Return predictability in stocks

Applying Proposition 4 gives the expected stock returns.

Proposition 5 (Expected returns on stocks) The expected returns on stock i, conditional on no

disasters, are:

Ret = R�H� � bHt (24)

Proof. If a disaster happens, dividends are multiplied by BtFt (which is less than 1 in a disaster).

As bHt does not change, P
#
t =Pt = Ft. So, returns are, by Eq. 22,

Ret = R+ pt

�
1�B�t Ft

�
= R�Ht = R�H� � bHt:

5.1 Partial predictability of aggregate stock market returns

Consider (12) and (24). We think about the aggregate stock market, for which H� is a �xed quantity.

When bHt is high, (24) implies that the risk premium is low, and P/D ratios (12) are high. Hence, the

12Also, in a sample with rare disasters, changes in the P/D ratio mean only changes in future returns, not changes
in future dividends. This is in line with the empirical �ndings of Campbell and Cochrane (1999, Table 6).
13 It is easy to impose such a correlation in the model.
14 If their is a positive correlation between innovation to D and innovations to F , the volatility can be higher.
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model demonstrates that when the market-wide P/D ratio is low, stock market returns will be higher

than usual. This is the view held by a number of reputable �nancial economists (e.g. Campbell and

Schiller 1988, Cochrane 2006, Boudoukh, Richardson and Whitelaw 2006), although the view is still

controversial (Goyal and Welch 2006).

The model predicts the following magnitudes for regression coe¢ cients. I call rt!t+T the return

from holding the asset from t to t+ T

Et [rt!t+T ] = �+ � ln (D=P )t

then (for small to moderate �t�s, where Taylor approximations hold) the slope is: � = (Ri + �)T

i.e. about � ' 0:2 with annual predictability This is in line with the value estimate of Lettau and
Van Nieuwerburgh (forthcoming).

In the model, the consumption / aggregate wealth ratio is: CAYt = (R�H�) =
�
1 +

bHt
R+�

�
.

Hence, CAY predicts future returns, as in Lettau and Ludvigson (2001). In the regression: Et [rt!t+T ] =

�+ � lnCAYt, the coe¢ cient would be the same � = (Ri + �)T .

5.2 Stocks: Value and growth stocks

If a disaster happens, di¤erent stocks will fare di¤erently.15 Their dividend will change by Ft, where

F is the recovery rate. This dispersion of sensitivity of dividends to disasters leads to a dispersion

of premia and prices in normal times. I propose that this is a fruitful way to think about value and

growth stocks (Fama French 1996, Lakonishok, Shleifer, Vishny 1994). This is a small variant on the

idea that the value premium might be a compensation for �distress risk�(Fama French, Campbell

et al. 2006). Here distress happens during the rare, economy-wide disasters.

First, consider the simple case of constant Ft = F�. Stocks with a low F� are �risky �, as they

will perform poorly during disasters. They also have a low H� (Eq. 4), and by Proposition 1, they

have a low price/dividend ratio. They look like �value� stocks. By Proposition 5, they have high

returns �a compensation for their riskiness during disasters.

The same reasoning holds if the Ft is variable.16 Stocks with a low bFt are risky, have low bHt, low

P/D ratio, and high future returns. They are value stocks.

15For instance, stocks with a lot of physical assets that might be destroyed, or stocks very reliant on external �nance,
might have a lower F .
16Fama French (2006) show that the value premium is essentially due (at a mechanical level) to �migration�, i.e.

mean-reversion in P/E ratio: a stock with high (resp. low) P/E ratio tends to see it�s P/E ratio go up (resp. down).
It terms of the model, this means that H� is relatively constant across stocks, while the �uctuations in bHt drive the
value premium.
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Some thought experiments This perspective suggests a few thought experiments. Suppose

that the expected recovery rates, Ft, are not variable, i.e. Ht = H�. Covariances between stocks

happen only because of covariances between cash �ows Dt in normal times. Hence, the stock market

betas will only re�ect the �normal times�covariance in cash �ows. But risk premia are only due to

the behavior in disasters, H�. Hence, there will be no causal link between betas, stock market beta,

and returns. The �normal times� betas could have no relation with risk premia. However, there

could be some spurious links if, for instance, stocks with low H� had higher cash-�ow betas. One

could conclude that cash-�ow beta commands a risk premium, but this is not because cash-�ow beta

causes a risk premium. It is only because stocks with high cash-�ow beta happen to also be stocks

that have a large loading on the disaster risk.17

This experiment may help explain the somewhat contradictory �ndings in the debate of whether

characteristics or covariances explain returns (Daniel and Titman 1997, Davis Fama French 2000).

With an auxiliary assumption, the model can also explain the appearance of a �value factor�,

such as the High Minus Low (HML) factor of Fama and French. Suppose that:

bHit = �Hi
bHMt + bhit

where bHMt is a systematic (market-wide) part of the expected resilience of the asset, and bhit is the
idiosyncratic

Consider two benchmarks. If for all stocks �Hi = 1 (the �characteristics benchmark�) so that

all dispersion in bHi is idiosyncratic, then characteristics (the P/D ratio of a stock) predict future

returns, but covariances do not. On the other hand, if for all stocks bhit � 0, but the �Hi vary

across stocks, all expected returns are captured by a covariance model. In general, reality will be

in between, and covariances and characteristics are both useful to predict future returns. This is

generally what empirical studies �nd (e.g. Jagannathan and Wang forth.). Also, we see how for

some samples or time-periods, characteristics may work better than covariances (Daniel and Titman

1997) or vice-versa (Davis, Fama, French 2000).

In the model, the value spread forecasts the equity premium and the value premium

Consider a period of �exuberance�, high bHt, where the dispersion of P=D ratios is high. What about

future returns? Future returns of the market will be low. Also, value stocks are going to do relatively

better than growth stocks, so that that Fama-French factor HML (High minus Low, the return of

stock with a high book/market ratio, minus stocks with a low book/market ratio) will be high.

17Various authors (Julliard and Parker 2005, Campbell and Vuolteenaho 2006, Hansen Heaton and Li 2006) �nd that
value stocks have higher long run cash �ow betas. It is at least plausible that stocks that have high cash-�ow betas
in normal times also have high cash-�ow betas in disasters, i.e. a low Ft and a low Ht. But is is their disaster-time
covariance that creates a risk premium, not the normal-time covariance.
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Hence, the model predicts that when the dispersion (standard deviation, or interquartile range) of

the P=D, or of the Market/Book of stocks, is high, thenHMLt+1 should be high, and (RM �Rf )t+1should
be low. The predictions are in qualitative agreement with the �ndings of Liu and Zhang (2006). When

�optimism� bHt is high, then the Market to Book spread (the value of M/B for the top decile of stocks

sorted by M/B, minus the bottom decile of stocks with the same sorting), and the Book to Market

spread is low. Additionally, future aggregate returns are low.

6 Bond Premia and Yield Curve Puzzles Explained by the Model

The following proposition states the expected bond returns.

Proposition 6 (Expected returns on bonds) Conditional on no disaster, the real return on the bond

of maturity T is:

Re (T ) = R�H� +
1�e��iT

�i
(� (�i � �) + �t)

1� 1�e��iT
�i

(it � i��) +
1�e��iT

�i
� 1�e� �T

 i
 ���i

�t

(25)

In the case of small deviations, and �iT � 1,

Re (T ) = R�H� + T (� (�i � �) + �t) +O
�
"2
�

(26)

so that the excess return on the T maturity bond is:

Re (T )�Re (0) = T (� (�i � �) + �t) +O
�
"2
�

(27)

Proof. After a disaster, �t does not change, but it jumps to it + b+ i
#
t . That creates a capital loss

equal to:

Vt � V #t = e�(R�H+i��)T � 1� e
��iT

�i

�
b+ i#t

�
for the bond holder. Lemma 4 gives the risk premia, using pB�

�
b+ i#t

�
= � (�i � �) + �t. The

approximate result comes from the fact that 1�e
��iT

�i
� T when T�i ! 0:

We can now extract economic meaning from Proposition 2.

6.1 Typical behavior of the yield curve

First, as is natural the bond price decreases in it, and in �t.
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Bond carry a risk premium Consider (27). It indicates that, the longer the bond maturity,

the higher the risk premium. Furthermore, the risk premium is approximately proportional to the

maturity T of the bond. This is the �nding of Cochrane and Piazzesi (2005).

The nominal yield curve slopes up on average Let us analyze the long term rate (74),

�rst when there is no stochasticity, and it = i�, and i
#
t = 0. The short term rate is r = R�H + i�,

while the long term rate (formally de�ned as R = � limT!1 lnZt (T ) =T ), is R = r + � > r. Hence,

the long term rate is above the short term rate, by an amount � > 0.18 When the disaster happens,

in�ation jumps by b = � (�i � �) = (pB�) > 0, which does not a¤ect the value of the very short

term bill, but does depress the value of long maturity bonds. Long maturity bonds are riskier, so

they command a risk premium. Hence, the long term rate is higher than the short term rate.

To see the magnitude of the e¤ect; say that the average slope of the yield curve is � = 3%. With

�i = 10%, R = 10%, and pB
� = 8%, this gives an average increase in in�ation during disasters of:

b = � (�i � �) = (pB�) = 3%. This is not implausible, given that b is a number which we know very
little about. In any case, the model easily generates a high slope of the yield curve.

6.2 Predictability of bond excess returns

In this section I show how the model matches the key �ndings of the research on the predictability in

the yield curve. In this, the model is similar to the econometric frameworks of Du¤ee (2002) and Dai

and Singleton (2002), who show how the Fama-Bliss and Campbell-Shiller results can be accounted

by a¢ ne models. The main advantage is that the present model is a microfounded economic model

of the term structure.

6.2.1 Predictability with the forward spread (Fama-Bliss)

Fama-Bliss (1987) regress excess returns on the forward rate minus the short-term rate:

Fama-Bliss regression: Excess return on bond of maturity T = a+ � � (ft (T )� rt) (28)

A model with constant risk premia (e.g., the expectation hypothesis) would predict � = 0. On the

other hand, if the present model is right, the above regression should yield a slope � = 1. 19 This

18 If in�ation fell during disasters, then we would have � < 0, and the average nominal yield curve would slope down.
19 In terms of the model, the excess return on T�maturity bond is approximately T (� (�i � �) + �t) (see eq. 27), while

the forward spread is ft (T )�ft (0) ' T�t (see Eq. 18). Hence, the regression (28) is: T (� (�i � �) + �t) = a+� �T�t,
which yields � = 1.
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value � = 1 is precisely what Fama and Bliss have found, a �nding con�rmed by later research

(Cochrane and Piazzesi 2005, Fama 2006). This is quite heartening for the model.20

Economically, the �nding, with a slope coe¢ cient of � = 1, means that most of the variations in

(yield minus spot rate) are due to variations in risk-premium.

I conclude that the model explains the �ndings of Fama-Bliss (1987).

6.2.2 Predictability with the slope of the yield curve (Campbell Shiller)

Campbell and Shiller (1991) regress changes in yields on the spread between the yield and the

short-term rate:

Campbell-Shiller regression I:
yt+�t (T ��t)� yt (T )

�t
= a+ � � yt (T )� yt (0)

T
(29)

The expected hypothesis predicts � = 1. This paper�s model predicts (see Appendix C), in the limit

�2i var (it) =var (�t)� 1,21 � = � (1 + ��T ).
Campbell and Shiller �nd negative ��s, with a roughly a¢ ne shape as a function of maturity,

which is broadly a success for the model. The model predicts � = �1 at very short maturities, while
Campbell-Shiller �nd rather � ' 0. This is probably cause by a small bit of predictability of the

interest rate movements in the very short term, which pushes the � away from �1, and toward +1.
If the model had the short-predictability of the spot interest rate, it would presumably match the

Campbell-Shiller fact, but I think it is better not to add that feature to the model at this stage.

To understand the economics, I use a Taylor expansion. The slope of the yield curve is, to a 0-th

order approximation in T :

Slope � (yt (T )� yt (0)) =T =
1

2
(��iit + �t) + o (T )

The �rst term, ��iit; re�ect the �expectation hypothesis� term: it captures the predictable move-
ments in the short term rate (here, its mean-reversion at rate �i). The second term re�ects the bond

risk premium. Hence, when regressing the future movements in the short term rate (equal to ��iit=2)
on the slope, one gets the �expectation hypothesis� sign. Indeed, there was no sign premium, we

20Other models, if they have a time-varying bond risk premium proportional to the maturity of the bond, would
have a similar success. So, the model illustrates a generic mechanism that explains the Fama-Bliss result.
21Eq. 20 gives, in the limit of �i ! 0, and �t! 0:

yt+�t (T ��t)� yt (T )
�t

' Et [dyt (T )] =dt� @yt (T ) =@T

=

�
�1
2
T���t

�
�
�
+
1

2
���t

�
= �1 + T��

2
�t

while (yt (T )� rt) =T ' �t=2. So their regression is, approximately: � (1 + T��)�t=2 = a + � � �t=2, so that the
regression coe¢ cient should be approximately � = � (1 + ��T ).
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would have � = 1. That explains why the slope of the yield curve predicts movements in the future

short term rate with the �correct�sign (from the point of view of the expectation hypothesis).

Futhermore, Campbell-Shiller �nd that the yield spread does have a predictive power for the short

rate. The model predicts that too. The reason is that on the right-hand side of the Campbell-Shiller

regression, one �nds the slope of the yield curve:

Campbell-Shiller regression II :

Average change in the short rate over the next T periods = a+ �II � yt (T )� yt (0)
T

Campbell and Shiller �nd a positive �II , consistent in sign with the expectation hypothesis, which

predicts �II = 1. The model predicts:

�II =
�2i var (it)

�2i var (it) + var (�t)
2 (0; 1)

Indeed, the expected change in the short-term rate over T periods is ��iitT=2. Hence, the model
predicts that the slope of the yield curve partly predicts future movements of the short rate. The

model correctly delivers the positive � that Campbell-Shiller found.

I conclude that the model can account for the main qualitative �ndings of Campbell Shiller

(1991). For an even better �t, it would be better to add some short-term predictability in the model

(as Dai and Singleton 2002), but for parsimony I leave that to future work.

6.2.3 Understanding the �ndings of Cochrane and Piazzesi (2005)

Cochrane and Piazzesi (2005, 2006) deepen the �ndings of Fama-Bliss and Campbell-Shiller. They

establish that a parsimonious description of bond premia is given by: (i) 1 risk factor, such that (ii)

a bond of maturity T has a loading proportional to T and (iii) this risk premium is well-captured by

a �tent-shape�of forward rates, that capture the concavity but is roughly independent of the level

or the slope of the forward curve.

The theory in this paper (assumes) (i), a single priced risk factor. Less trivially, the excess bond

return is given by (27), i.e. a 1 factor model. Recall that � (�i � �) is a constant, while �t is the
time-varying part of the risk premium.

Do we obtain the tent shape? Recall that Cochrane and Piazzesi �nd that a good approximation

for the risk premium is �t =
P4

T=0 !T ft (T ), with !T weights that have a tent-shape, and �t is (to

a good degree of approximation) independent of the level and the slope of the curve ft. That means
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that ! � f depends on the curvature of f (T ), i.e. of f 00 (T ). Using Eq. 18, we �nd:

Level of the forward curve f (0) : R�H + it (30)

Slope of the forward curve f 0 (0) : � �i (it � i��) + �t (31)

Curvature of the forward curve � f 00 (0) : � �2i (it � i��) + (�i +  �)�t (32)

So, if an econometrician wanted to approximate �t with the level, slope or curvature, what would

be the best approximation? Again, we think of �i small. By (31), the slope of the forward curve

is not a bad approximation. Unfortunately, it does contain a pollution term �i (it � i��). But (32),
the curvature of the forward curve is a much better approximation, because the term in it � i�� is

multiplied by �2i . This is why, in the view of the present theory, Cochrane and Piazzesi �nd that the

curvature of the forward curve is the best way to approximate the risk premium.

We conclude that the simple model explains in a natural way the results of Fama Bliss, Campbell

Shiller, and Cochrane and Piazzesi.

6.3 Further remarks on bonds

Government de�cits, Ricardian equivalence, central bank independence, and the

level of real interest rates With additional, plausible assumptions, the model allows to think

about further things. Consider the impact of the government Debt/GDP ratio, or of de�cits (if

current de�cits predict a debt/GDP ratio later). It is plausible that if the Debt/GDP ratio is

high, then, if there is a disaster, the government will sacri�ce monetary rectitude (that could be

microfounded), so that j�is high, i.e. � is higher. That implies that when the Debt/GDP ratio (or

the government de�cit / GDP) is high, then long-term rates are higher, and the slope of the yield

curve is steeper (controlling for in�ation, and expectations about future in�ation in normal times).

Dai and Philippon (2006) present evidence consistent with that prediction.

We note that this e¤ect works in an economy where Ricardian equivalent holds. Higher de�cits

do not increase long term rates because they �crowd out� investment, but instead because they

increase the temptation by the government to in�ate away the debt if there is a disaster, hence the

risk premium on government debt and real long term rates.

Likewise, say that an independent central bank is a more credible commitment not to increase

in�ation during disasters (�t smaller, and b of � smaller). Then, an independent central bank has

a lower level of real long term interest rates. If an independent central bank means a lower Ft for

bonds, it also means a lower level of real short term rates as well, though we can expect the e¤ect

to be smaller.
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The Corporate Spread Consider the corporate spread, which is the di¤erence between the

rate on corporate bonds and treasury bonds. For short term securities, there is no in�ation risk, and

the risk is entirely a default risk. The spread for short term securities:

Corporate spreadShort termt = ptB
�F$t (1� FCorp;t) (33)

Hence, the corporate spread is equal to the expected default pt (1� FCorp;t), times a risk-adjustment
term equal to B� . Given B� ' 5 in the calibration, the model proposes why corporate spread

is so high, compared to historical U.S. values (e.g. Huang and Huang 2003). The corporate sector

defaults during very bad states of the world, so that risk-adjusted probability of default is much

higher than the physical probability of default.

We may also explain the �nding of Krishnamurthy and Vissing-Jorgensen (2007), that when the

debt/GDP ratio is high, the corporate spread is low; a �nding for which their favored interpretation

is a liquidity demand for treasuries. In the view of the present paper, one could say that, when

Debt/GDP is high, the temptation to default via in�ation (should a risk occur), is high, so F$t is

low, hence the corporate spread is low.

7 Options and tail risk

[This section is very preliminary] The price of a European put on a stock, with strike K is: Vt =

E
�
Mt+T (K � St+T )+

�
=Mt. In a time interval T , the probability of a crash ptT , and if a crash

happens at all, it will typically happen just once. So, for a deep out-of the money put, the value of

the put (say K more than two standard deviations below the stock price, i.e., with � the standard

deviation of the stock price), with Ste�2�T
1=2

> K > StV Ft is approximated by:

eVt = ptT �B�t (K � StFt) (34)

The above eq. predicts that the put price is (i) linear in the time-to maturity T (ii) a¢ ne in the

strike K.

It suggests the following procedure to estimate tail risk. One runs the equation, in the cross-

section of T�s or K�s (one cross-section of K�s is enough): Vt (T;K) = aKT + bStT . That identi�es:

a = ptB
�
t and b = �ptB�t Ft, so we can have estimates of the intensity-adjusted probability of

crashes ptB
�
t , and expected intensity of disasters, ptB

�
t Ft. As the expected return on the stock is

R� ptB�t Ft.

The above analysis shows that the stocks with a higher put price (control for �normal times�

volatility) should have a higher risk premium, hence higher future expected returns. The model even
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predicts a coe¢ cient of 1 on the put price, after controlling (which is di¢ culty) for �normal times�

volatility. Evaluating this prediction would be most interesting.

Empirically, Du (2006) provides an interesting analysis of the price of puts under disaster risk.

He �nds that a consumption jump size of 24% is required to explain deep out of the money puts.

A jump of 48% creates a too high price for puts. He then observes that to explain the high price

of at the money options, one needs some excess volatility, which he models by a habit formation of

the type of Campbell Cochrane and Santos Veronesi. I suspect that with the excess volatility of the

present paper (due to time-varying severity of disasters), the same calibration would hold.

The model predicts that a high price of deep out-of the money put predicts future high returns.

It is already known that high price of at-the-money options (as proxied by the VIX index) predicts

high future returns (Doran et al. 2006, Giot 2005, Guo and Whitelaw, 2006). So by continuity, this

is likely that deep out of the money put prices will also predict high returns, though that speci�c

prediction has yet to be tested.

8 Discussion

8.1 A behavioral interpretation of the model

While the model is presented as rational, it admits a behavioral interpretation. The varying beliefs

about the probability and intensity of crashes could be rational, or behavioral, after all. Given that

there are so few data points on crashes, there is little that constrains beliefs. This interpretation

allows a revisit to several themes of the literature.

Sentiment. A high Ht increases stock prices. The model generates predictions analogous to

the �ndings of the behavioral literature. For instance, Baker and Wurgler (2006, and forth.) �nd

that periods of high (resp. low) sentiment are followed by low (resp. high) returns. This is exactly

what the model generates. Also, they �nd that the e¤ect is more pronounced in small �rms. If small

�rms have a more volatile Ht, hence a higher �sentiment beta�, this is also what we expect.

The model o¤ers a coherent way to think about the joint behavior of sentiment and prices. This

is not a trivial task. Otherwise, suppose we know a stochastic path of future sentiment, what should

happen to the stock price? This is a priori a di¢ cult problem that the model�s structure allows to

solve.

Overreaction Suppose that, when there is a positive innovation to dividends, investors also

believe that the stock will do better if there is a crash, i.e. Ht is high. That makes the price/dividend

ratio increase, and lower future returns. The price increases by more than the dividend, which is

interpreted in the language of behavioral economics as �overreaction�.
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Stock market crashes A shock to bFt or bpt is a discount rate shock, that is not related
to consumption shock. Hence, the model admits stock market crashes, that have no link with

consumption news, such as the October 1987 crash. Such crashes of asset prices without changes in

consumption are typically a problem for entirely consumption-based models, e.g. Bansal and Yaron

(2004).

Twin stocks �Twin stocks� give the same dividends, in two di¤erent countries. If markets

are integrated, they should have the same price. However, they typically do not (Froot and Dabora

1999). This phenomenon can be accommodated in the model, if we think that, during disasters, the

dividends will be di¤erent. For instance, in the BP/Shell example it could be that di¤erent tax rates

or expropriation rates will a¤ect the two stocks di¤erently �the stocks have a di¤erent recovery rate

Ft. This perspective further predicts that BP will covary more with the UK stock market, and Shell

will covary more with the Dutch stock market �because changes in the catastrophe severity Ft in

the UK a¤ects both the whole UK market, and BP. On the other hand, the model predicts that

�uctuations in the �expected growth rate of dividend�terms will not a¤ect the twin stock spread.

Hence, the di¤erence in Ft across countries could be proxied by the twin stock spread.

Nominal illusion and asset prices In the post-war U.S. data, times with high in�ation

are also times of low real stock prices. Modigliani and Cohn have proposed that this was due to

nominal illusion, a view for which that Cambell, Vuolateenaho and coauthors have found empirical

support (see also Brunnermeier and Julliard 2006 on housing prices). The present model proposes

an alternative explanation. In times of high in�ation, investors are �pessimistic�about stocks ( bHt

is low), so indeed stock market valuations are low.

8.2 The whole closed economy: GDP, stocks, bonds

[This section is very preliminary, and should be skipped in a �rst reading]

To complete the painting of the economy proposed by the model, we want a way to model GDP,

while still keeping the nice feature of the Lucas endowment economy. Appendix B presents one such

model, that yields exactly the consumption process we have in our endowment economy, but with a

cyclical GDP: Yt = Ct (1 + a+ ut), where a is some positive number, and ut is a process with mean

0, for instance an AR(1). In the model ut, the business-cycle factor, is not necessarily linked between

!t;Ht and it. It is only plausible auxiliary assumptions about the technology/endowment process

that create those links. It is plausible that when ut is high (�GDP boom�) Ht is high, and !t is

low. In booms, the conditional intensity of disaster is smaller. Note that this is compatible with the

�animal spirits�interpretation of the model.
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We can gather the main results from the paper. Stock prices are:

Pt =
Dt

R

 
1 +

bHt

R+ �H
+

bgt
R+ �g

!
with R = R� �H� � g� (35)

Ht = pt

�
B�t Ft � 1

�
(36)

The price of a bond of maturity T is:

Zt (T ) = e�(R�H+i��)T

0@1� 1� e��iT
�i

(it � i��)�
1�e��iT

�i
� 1�e� !T

 i

 ! � �i
!t

1A (37)

!t = ptB
�
t Fti

#
t (38)

where it is in�ation, and !t is a bond risk premium.

GDP and Investment are:

Yt = Ct (1 + a+ ut)

It = Ct (a+ ut)

Common factors to GDP, bond premia, and stock premia When �t is smaller, the yield

curve is less steep. Hence, we predict that a less steep yield curve predicts future declines in GDP

(ut is high now, and will mean-revert), and also smaller stock market returns. This is consistent

with the �ndings of the literature, in which Cochrane and Piazzesi (2005) �nd that a low value of

their bond-premium factor (which we view �t as a proxy for) does predict future low stock market

returns.

Also, investment is predicted by ut, while the P/E ratio of the stock market (close to B/M) is a

function of Ht and gt.

Successes and failures of the Q theory of investment The model predicts that the risk-

premium bHt has little to do with investment, if it is little correlated with the business cycle, although

the slope of the yield curve does predict investment. This is consistent with the poor success of

forecasting investment with stock market variables (the Q theory of investment), and the greater

success of forecasting it with �xed income variables (Philippon 2006).

9 Conclusion

This paper proposes a uni�ed way to think about a series of puzzles about stocks, bonds and exchange

rates. I was surprised by how many �nance puzzles could be understood with the lenses of such a
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simple model. Given that the model is very simple to state, and to solve (thanks to the modeling

�tricks� allowed by linearity-generating processes), it can serve as a simple benchmark for various

questions in macroeconomics and �nance.

The paper suggests several questions for future research. First of all, it would be crucial to

examine empirically the predictions that the model generates, including the relationships between

stocks, bond, options and exchange rates.

Second, I presented a way to extend the model to (particular) production economies. A more

general extension to production economies would be very useful, as it would constitute a long-sought

uni�cation of macroeconomics and �nance.

Third, the companion paper (Farhi and Gabaix 2007) suggests that various puzzles in interna-

tional macroeconomics (including the forward premium puzzle and the excess volatility puzzle on

exchange rates) can be accounted for in an international version of the present framework. This gives

hope that a uni�ed solution to puzzles in closed-economy and international economics (Obstfeld and

Rogo¤ 2001) may be within reach.

Appendix A. Précis of results on Linearity-Generating processes

The paper constantly uses the Linearity-Generating (LG) processes of Gabaix (2007). This Appendix

gathers the main results. LG processes are given by MtDt, a pricing kernel Mt times a dividend

Dt, and Xt, a n-dimensional vector of factors (that can be thought as stationary). For instance, for

bonds, the dividend is Dt = 1.

Discrete time By de�nition, a process MtDt (1; Xt) is LG if and only if it follows, for all t�s:

Et

�
Mt+1Dt+1

MtDt

�
= �+ �0Xt (39)

Et

�
Mt+1Dt+1

MtDt
Xt+1

�
=  + �Xt (40)

Those conditions write more compactly:

EtYt+1 = 
Yt with Yt =

 
MtDt

MtDtXt

!
and 
 =

 
� �0

 �

!

Higher moments need not be speci�ed.

The main results that stocks and bonds have simple closed-form expressions. The price of a
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stock, Pt = Et

hP
s�tMsDs

i
=Mt, is:

Pt=Dt =
1 + �0 (In � �)�1Xt

1� �� �0 (In � �)�1 
(41)

The price-dividend ratio of a �bond�, Zt (T ) = Et [Mt+TDt+T ] = (MtDt), is: (with 0n a n�dimensional
row of zeros):

Zt (T ) =
�
1 0n

�
� 
T �

 
1

Xt

!
(42)

= �T + �0
�T In � �T
�In � �

Xt when  = 0 (43)

Continuous time In continuous time, MtDt (1; Xt) is LG if and if only it follows:

Et

�
d (MtDt)

MtDt

�
= �

�
a+ �0Xt

�
dt (44)

Et

�
d (MtDtXt)

MtDt

�
= � (b+�Xt) dt (45)

i.e. more compactly

Et [dYt] = �!Ytdt with Yt =
 

MtDt

MtDtXt

!
and ! =

 
� �

b �

!
:

The price of a stock, Pt=Dt = Et
�R1
t MsDsds

�
= (MtDt) ; is:

Pt=Dt =
1� �0��1Xt

a� �0��1b (46)

and the price-dividend ratio of a �bond�is: Zt (T ) = Et [Mt+TDt+T ] = (MtDt)

Zt (T ) =
�
1 0n

�
� exp

"
�
 
a �0

b �

!
T

#
�
 

1

Xt

!
(47)

= e�aT + �0
e��T � e�aT In

�� aIn
Xt when b = 0 (48)
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Appendix B. A background GDP process that does not change the

predictions of the endowment economy

This section shows an example of a process for GDP and capital, that does not change any of the

asset pricing implications of the model, but allows to talk about the �cyclical�properties of stocks

and bonds.

We normalize consumption growth to 0. Hence, consumption is Ct = C0Dt, where Dt = �1:::�t

the cumulative disaster. �t = 1 is there is no disaster at t, otherwise �t = Bt 2 (0; 1).
There is an exogenous labor income �tree�that yields Wt, to be speci�ed soon. There is also a

capital stock, Kt. The capital accumulated at the end of period t is Kt. If there is disaster, it shrinks

by a factor �t. Then, it yields a rate of return r, and depreciates by �. GDP is the sum of capital

and labor income, and is invested in consumption and investment:

Yt = r�tKt�1 +Wt = Ct +Kt � (1� �)�tKt�1 (49)

We want to design an economy so that the GDP process is:

Yt = Ct (1 + a+ ut)

where ut indicates the cyclical properties of the economy. We do not specify ut fully, but it could be

an AR(1). a > 0 will not matter, but allows various quantities to be non-negative.

For this economy to be in equilibrium, we need to specify the Euler equation, and the GDP

equation (49).

The Euler equation gives: Et
�
� (Ct+1=Ct)

� (1 + r)�t

�
= 1, i.e.

(1 + r)�1 = E
�
� (Ct+1=Ct)

� �t+1

�
� �

�
1 + p

�
B� � 1

��
The GDP (49). equation implies,

Yt � Ct = Ct (a+ ut) = Kt � (1� �)�tKt�1

hence, with � = 1� � assumed to be between 0 and 1,

Kt=Ct = (1� �L)�1 (a+ ut) =
a

1� � + (1� �L)
�1 ut
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Also, we need:

Wt=Ct = (Yt � r�tKt�1) =Ct = 1 + a+ ut � r
�

a

1� � + L (1� �L)
�1 ut

�
= 1 + a

1� �� r
1� � +

h
1� rL (1� �L)�1

i
ut (50)

If we start the economy with ut = 0 for t � 0, and K�1=C�1 = a= (1� �), we have completed
our �designer�economy.

Proposition 7 De�ne C�t = C�0�1:::�t, and r such that 1 = � (1 + r � �)E
h
�1�t

i
. Suppose an

economy with gross rate of return to capital (1 + r)�t, and an endowment labor income:

Wt = C�t

�
1 + a

1� �� r
1� � +

h
1� rL (1� �L)�1

i
ut

�
(51)

with � = 1� �, and a representative utility function
X

�tC1�t = (1� ), which is maximized subject
to the budget constraint on the GDP, Yt:

Yt = r�tKt�1 +Wt = Ct +Kt � (1� �)�tKt�1

Suppose initially ut = 0 for t � 0, and K�1 = C0a= (1� �). Then, the equilibrium process for this

economy is:

Consumption : Ct = C�t

GDP : Yt = Ct (1 + a+ ut)

Investment : It = Ct (a+ ut)

and the capital stock is: Kt = Ct

�
a
1�� + (1� �L)

�1 ut
�
.

We have constructed a �designer� economy, in which (i) the optimal consumption is the same

as in the endowment economy (ii) the asset pricing properties are the same as in the endowment

economy, but (iii) there business cycle. Hence, we can talk about the cyclical properties of asset

prices, where the cycle is indexed by ut.

Appendix C. Longer Proofs

Proof of Proposition 2 Continuous time:
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In the proof, I normalize i� = 0. I will show thatMtDt (1; it; �t) is a Linearity-Generating process.

I calculate its three signature moments (see Appendix A for the motivation). First,

Et

�
d (MtDt)

MtDt

�
=dt = � (R+ it)| {z }

No disaster term

+ pt

�
FB�t � 1

�
| {z }
Disaster term

= �R+H � it

Next,

Et

�
d (MtDtit)

MtDt

�
=dt = � (R+ it) it + Et [dit=dt j No disaster at t]| {z }

No disaster term

+ pt

�
B�t FtEt [it+ ]� it

�
| {z }

Disaster term

= � (R+ it) it � (�� it) it + pt
�
B�t Ft

�
it + b+ i

#
t

�
� it

�
= ptB

�
t Ftb� (R+ ��H) it + ptB�t Fi#t

and �nally, in terms of �t:

Et
d (MtDt�t)

MtDt
=dt = � (R+ it)�t + Etd�t=dt| {z }

No disaster term

+ pt

�
B�t F�t � �t

�
| {z }
Disaster term

(52)

I conclude that Yt =MtDt (1; it; �t)
0 is a Linearity-Generating process.22

To solve for the bond price, I de�ne bit = it � i��. Then process MtDt

�
1;bit; �t� is Linearity-

Generating, with generating matrix:

!1 =

0BB@
R�H + i�� 1 0

0 R�H + i�� + �i �1
0 0 R�H +  �

1CCA
Indeed,

Et
d
�
MtDt

bit�
MtDt

=dt = Et
d (MtDtit)

MtDt
=dt� i��Et

d (MtDt)

MtDt
=dt

= pB�b� (R�H + �i)
�
i�� +bit�+ �t � i�� h� (R�H + i��)�biti

= � (�i � �)� i�� (�i � i��)� (R�H + �i � i��)bit + �t
= � (R+ �i �H � i��)bit + �t

22Et [dYt] = �!Ytdt, with the generator is ! =

0@ R�H 1 0
�� (�i � �) R�H + �i �1

0 0 R�H + ��

1A.

30



Applying Theorem 3 in Gabaix (2007), the price of a bond is: Zt (T ) = (1; 0; 0) exp (�!1T )
�
1;bit; �t�0,

hence the announced result.

Discrete time

The proof is as above.

Et

�
Mt+1Dt+1

MtDt

�
= e�R (1� it)

�
1 + p

�
B�F � 1

��
= e�R (1 +H)

�
1� i� �bit�

Et

�
Mt+1Dt+1

MtDt

bit+1� = e�R (1� it) f(1� p)Et
hbit+1 j No disaster at t+ 1i| {z }
No disaster term

+pB�FEt
hbit+1 j Disaster at t+ 1i| {z }
Disaster term

]

= e�R (1� it)
1� i�
1� it

f
�
1� p+ pB�F

�
�ibit + pB�Fjtg

= e�R (1 +H) (1� i�)
�
�ibit + pB�F

1 +H

�
j� + bjt�� because H = p

�
B�F � 1

�
= e�R (1 +H) (1� i�)

�
�ibit + (1� i�)� (1� �i � �) + �t�

using the de�nitions (14) and (15). Finally,

Et

�
Mt+1Dt+1

MtDt

bjt+1� = Et

�
Mt+1Dt+1

MtDt

�
Et

hbjt+1i = e�R (1 +H) (1� it) �
1� i�
1� it

�jbjt+1
= e�R (1 +H) (1� i�) �jbjt+1

so that, using that �t is proportional to bjt (Eq. 14),
Et

�
Mt+1Dt+1

MtDt
b�t+1� = e�R (1 +H) (1� i�) �jb�t+1

So, MtDt

�
1;bit; jt� is a LG process, with generating matrix:


 = e�R (1 +H) (1� i�)

0BB@
1 �1= (1� i�) 0

(1� i�)� (1� �i � �) �i 1

0 0 ��

1CCA : (53)

Theorem 1 of Gabaix (2007) says that a zero-coupon bond of maturity T has a price Zt (T ) =

(1; 0; 0)0
T
�
1;bit; jt�. Calculating that integral (diagonalizing the matrix by hand, or using a sym-
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bolic calculation software) gives:

Zt =
�
e�R (1 +H) (1� i�)

�T f(1� �)T � (1� �)T � (�+ �i)
1� 2�� �

�bit � ��� (54)24 (�+�)T

�+�i���
� (1��)T

1�����
1� 2�� �i

+
�T�

(�+ �i � ��) (1� �� ��)

35 �t
1� i�

The above expression is a bit complicated, which is why the continuous-time version may be

easier.

Appendix D. Calibrating the variance

Suppose an LG process centered at 0, dXt = � (�+Xt)Xtdt+ � (Xt) dWt, where Wt is a standard

Brownian motion. Because of economic considerations, the support of the Xt needs to be some

(Xmin; Xmax), with �� < Xmin < 0 < Xmax. The following variance process makes that possible:

�2 (X) = 2K (1�X=Xmin)2 (1�X=Xmax)2 (55)

with K > 0. K is in units of [Time]�3.

The average variance of X is

�2X = E
�
�2 (Xt)

�
=

Z Xmax

Xmin

� (X)2 p (X) dX:

where p (X) is the steady state distribution of Xt. It satis�es the Forward Kolmogorov equation,

d ln p (X) =dX = 2 (�+X) =�2 (X)� d ln�2 (X) =dX.
Numerical simulations shows that the process volatility is fairly well-approximated by: �X '

K1=2�, with � ' 1:3.
Asset prices often require to analyze the standard deviation of expressions like ln (1 + aXt).

Numerical analysis shows that the Taylor expansion approximation is a good one: Average volatility

of: ln (1 + aXt) ' aK1=2�, which numerical simulations prove to be a good approximation too.

The standard deviation of X�s steady state distribution is: Standard deviation of X ' (K=�)1=2.
For the steady-state distribution to have a �nice� shape (e.g., be unimodal), the following re-

strictions appear to be useful: K � �0:2 � �XminXmax In the calibration of the paper, I take
K = � (�Xmin)2 0:1, which leads to an average volatility of X, �X ' 0:40 � �1=2 (�Xmin), and a
standard deviation of X of 0:1:5 (�Xmin).
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