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Abstract

This paper characterizes the solution to the consumer’s dynamic decision
problem in the presence of consumption commitments (goods that involve
transaction costs and are infrequently adjusted). The findings in recent theo-
retical literature have suggested that consumption commitments amplify risk
aversion in static models (Postlewaite et. el. 2006) and in a dynamic model
without the borrowing constraints and with zero interest rate (Chetty and
Szeidl 2007).

This paper illustrates that the opposite result might obtain in a more
general dynamic environment. We show that, if the price of a risk-free bond
does not exceed the time preference rate (as it is usually predicted by the
general equilibrium macroeconomic models), the consumers who start saving
in order to increase consumption of the commitment good in the future become
risk neutral or risk lovers. We argue that such behavior is likely to arise
either because the interest rate is positive or because the consumers cannot
borrow against their future income. The latter observation suggests that in the
economies with consumption commitments borrowing constraints can make
uninsured risk desirable (in contrast, it is known that in standard models
borrowing constraints increase the cost of uninsured risk).
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1 Introduction

Consumption commitments arise when some goods involve substantial transaction

costs and thus are infrequently adjusted. Typical examples of such goods are hous-

ing, land, vehicles, etc. Consumption commitments have attracted attention in

recent economic literature since it has been documented that they constitute a large

share in households’ life-time expenses1. Various effects of commitment goods have

been discussed; special attention being paid to their impact on consumers’ risk pref-

erences (e.g. Chetty and Szeidl 2007, Shore and Sinai 2005, Postlewaite et. al. 2006,

etc.). It has been argued that the presence of consumption commitments increases

risk aversion of individuals.

Intuitively, if consumption of some of the goods remains unchanged in response

to (relatively small) permanent changes in current wealth or income, consumption

of the remaining (flexible) goods would vary “too much”. Such extra volatility of

these goods raises the welfare cost of risk compared to the environment in which all

the goods could be adjusted flexibly. Thus it has been suggested that consumption

commitments magnify risk aversion. So far, this result had been rigorously estab-

lished in static models (Postlewaite et. el. 2006) and in a dynamic model under

some specific assumptions discussed later (Chetty and Szeidl 2007).

This paper argues that in a more general environment the effect of consumption

commitments on consumers’ risk preferences might be very different; the consumers

with particular wealth levels might even become risk lovers. As in the previous

studies, we emphasize that consumers’ attitudes towards risk are determined not

by the properties of their instantaneous utility function – but by the shape of their

indirect life-time utility function arising from the solution of a dynamic optimization

problem with commitments. In our model (as well as in the previous literature), the

indirect life-time utility is a function of consumers’ wealth. We show that for the

consumers with particular wealth levels this function may be concave, linear or even

convex, depending on the relative values of the interest rate and the time discount

factor.

To briefly outline the driving forces of our results, consider a case when the gross

1Warren and Tyagi (2003) find that a typical American family earmarks 75% of their income
on “fixed expenses” such as mortgage, car payments, etc. Chetty and Szeidl (2007) use CES data
and estimate that around 50% of households’ life-time wealth is spent on “commitment goods”.
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return to risk-free savings is smaller than the reverse of the time discount factor

(β(1 + r) < 1), as it is usually predicted by the general equilibrium macro models

with uninsured risk (e.g. Aiyagari 1994). Suppose also that the agent has committed

to little housing expenses in the beginning of his life, but is currently accumulating

wealth in order to move to a bigger house in the future. As long as this agent stays

in a small house, his consumption of a flexible good has the standard properties

obtained in a neoclassical growth model. In particular, the current marginal utility

from consuming the flexible good is equalized with the discounted future marginal

utility times the gross rate of return (u′(ct) = β(1 + r)u′(ct+1)); thus the flexible

good’s consumption declines over time. At the same time, by the envelope condition,

the consumption level of the flexible good determines the slope of the value function

(indirect life-time utility function): as consumption declines, the value function

gets steeper. Since consumption declines simultaneously with an increase in wealth

(recall that the consumer makes savings in order to move to a bigger house), the value

function (as a function of wealth) gets steeper as wealth rises, thereby generating

demand for wealth lotteries.

Why would some consumers decide to commit to a low level of housing consump-

tion in the beginning of their life and then start accumulating wealth in order to

move to a more expensive housing in the future? One possibility could be the pres-

ence of the borrowing constraints. If buying a small house requires lower adjustment

cost than purchasing a big house, if consumers have little wealth in the beginning

of their life and cannot borrow against their future (possibly large) income, they

would have no other choice but to move into a small house and start accumulating

wealth in order to pay bigger adjustment cost and eventually switch to a bigger

house. While they are living in a small house, their value function has the proper-

ties described in the previous paragraph and thus these consumers could actually

become risk lovers. Therefore, the presence of commitment goods has a somewhat

surprising impact on the role of borrowing constraints. It is commonly believed that

borrowing constraints make risk more costly (because people have to give up their

consumption when they are hit with the temporary negative shocks). This paper

points out to a situation in which borrowing constraints have a reverse effect: they

generate an interval of wealth levels, within which consumers are actually willing to

pay for taking a lottery; though outside of this interval borrowing constraints have

a standard effect by raising consumers’ risk aversion.
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Previous literature has discussed a number of situations in which risk loving

behavior might arise endogenously. Most of them are various version of discrete

choice models which generate kink in the indirect utility function. For example,

Vereshchagina and Hopenhayn (2006) model a discrete occupational choice model

and argue that entrepreneurs might be willing to take excess risk because their value

function has a kink at a wealth level at which agents are indifferent between being

workers and being entrepreneurs. Albuquerque and Hopenhayn (2004) show that

risk taking might be the feature of the optimal borrowing contract between the bank

and a risk-neutral firm; such risk taking is used to eliminate the kink occurring at

the intersection of the firm’s endogenous value and its exogenous liquidation cost.

Athreya (2002) argues that poor consumers might have additional incentives to

make risky investment and are more likely to default because their value has a kink

at a point at which the value of default intersects the value of no-default. Even

Chetty and Szeidl (2007) acknowledge that consumption commitments can generate

demand for moderate-stake risks due to local convexity of the value function at a

point at which the consumer is indifferent between staying in an house and adjusting

his housing consumption to a new level.

In contrast to all these papers, we describe how the local convexity of the indirect

utility function arises not due to a presence of a kink, but as an outcome of optimal

saving behavior of consumers either with little patience or facing low interest rate

(so that β(1 + r) is sufficiently low). The resulting value function is convex not at

one single point at which the consumer is indifferent between two discrete options;

instead, it is convex within an interval of wealth levels. Therefore this project

brings up attention to a (hopefully) novel relationship between agents’ patience,

saving opportunities, borrowing constraints and risk preferences.

The paper is organized as follows. Section 2 analyzes a simple model in which

the choice of housing is exogenously discrete. It describes the methodology used to

characterize the consumers’ decision problem and emphasizes the role of β(1 + r)

in shaping the consumers’ risk attitudes. It also contrasts our model with Chetty

and Szeidl (2007) and discusses why the effects of consumption commitments on

risk preferences studied in our paper could not arise in their environment. Section 3

extends our benchmark model by allowing for more flexible housing choice and argues

that either the positive interest rate or the borrowing constraints alone might lead to

risk loving (or risk neutral) behavior in the presence of consumption commitments.
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2 The Model: Discrete Choice of Housing

2.1 Setup

We will illustrate our main results in a discrete-time infinite horizon model. Assume

that a consumer receives income y ≥ 0 in every period and can spend it on food

and housing. The consumer’s life-time utility is given by:

+∞∑
t=0

βtu(ct, ht),

where β ∈ (0, 1) is the time discount factor, and the instantaneous utility in period

t is derived from the consumption of food ct and housing ht. Assume that u(·, h) is

defined on (0, +∞) and is strictly increasing, strictly concave, bounded from above

and satisfies Inada conditions.

We assume that food consumption is flexible and can be adjusted at no cost.

In contrast, the choice of housing consumption is discrete, ht ∈ {h1, h2} (where

0 < h1 < h2) and that the adjustment cost η > 0 must be paid if the agent

switches from one housing level to another.2 We also impose the following simplifying

assumptions about the dynamics of the housing: (i) the agent’s initial housing level is

h0 = h1 and (ii) the agent can adjust the level of housing only once (e.g., he cannot

move from h2 to h1). The former assumption is crucial for obtaining the main

results of the paper (as we will show later, only the consumers who are planning

to switch from low to high level of hosing might become risk lovers).3 The latter

assumption significantly simplifies the analysis; it implies that the life-time utility of

the consumer who has already switched to high housing consumption can be easily

determined. In the final Section of the paper we argue that our results should still

hold even if the second assumption is relaxed, but we do not formally analyze this

case. Finally, it is worth pointing out that even under these simplifying assumption

our model is capable of producing richer housing dynamics than the model of Chetty

and Szeidl (2007).

2In the extension of the model in the nest Section we allow for a flexible choice of housing
after the switching cost η is paid. All the main results of this section would also apply in that
environment.

3Such assumption could be justified by interpreting η as a cost of moving into h2 and assuming
that it is costless to move into h1.
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Finally, assume that the consumer can save in a risk-free bond which offers

interest rate r and he might be facing the borrowing constraints preventing his asset

holdings at fall below some exogenous level a. Thus the consumer’s decision problem

can be written as the choice of the food consumption and wealth profiles {ct, at}+∞
t=0

as well as the moment of switching from low to high housing consumption:

max
{ct,at},T∈{0,1,2,...,+∞}

T−1∑
t=0

βt(u(ct) + v1) +
+∞∑
t=T

βt(u(ct) + v2)

s.t. ct + h1 +
at+1

1 + r
≤ at + y, 0 ≤ t < T,

ct + h2 + η1 +
at+1

1 + r
≤ at + y, t = T,

ct + h2 +
at+1

1 + r
≤ at + y, t > T,

at ≥ a, t ≥ 0,

a0 is given.

(1)

Note that the agent might decide to switch to h2 right away by setting T = 0 (in

which case the first budget constraint is irrelevant) or to remain in a small house h1

forever by setting T = +∞.

2.2 Solution

We can reformulate the consumer’s decision problem (1) recursively. The value of

the agent who has already moved to a house h2 can be found from the following

dynamic programming problem:

V 2(a) = max
c,a′>a

{u(c, h2) + βV 2(a′)}

s.t. c + h2 +
a′

1 + r
≤ a + y.

(2)

This consumer remains in the big house h2 for the rest of his life, and thus his

next-period value is given by v2(a′). If the consumer has not moved to the big house

yet, in the current period he might choose whether to remain in the old house or to

move into a new house and pay the cost η. Therefore, his value can be found as

V (a) = max{V 1(a), V 2(a− η)}, (3)
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where

V 1(a) = max
c,a′>a

{u(c, h1) + βV (a′)}

s.t. c + h1 +
a′

1 + r
≤ a + y

(4)

Note that if the consumer decides to remain in the old house, he would still have a

choice of moving into a new house in the future, thus his continuation value is given

by V (a′).

Alternatively, we can represent the decision problem of the agent who has not

moved to a new house yet as the choice of the moment of switching

V (a) = max{V∞(a), V0(a), V1(a), V2(a), V3(a), ...}, (5)

where Vt(a) stands for the value of the consumer who plans to move into a new

house in t periods. Thus

V0(a) = V 2(a− η) (6)

and the rest of the sequence {Vt(a)}+∞
t=1 can be found recursively:

Vt+1(a) = max
a′>a

{u(a + y − h1 − a′

1 + r
, h1) + βVt(a

′)} = TVt(a). (7)

Obviously, V∞(a) is the fixed point of the operator T :

V∞(a) = max
a′>a

{u(a + y − h1 − a′

1 + r
, h1) + βV∞(a′)} = lim t → +∞T tV0(a) (8)

Such recursive representation helps to fully characterize the solution to the con-

sumer’s decision problem (1) and describe the properties of the value function V (a)

over its domain (a, +∞).

The crucial step in characterizing V (a) is establishing the following Lemma:

Lemma 1

Suppose that V0(a) and V1(a) are concave, increasing, continuously differentiable

and bounded from above functions. Assume that V0(a) and V1(a) have at most one

intersection and V0(a) > V1(a) for all a > a∗1. Then

(i) TV0(a) and TV1(a) cannot have more than one intersection and TV0(a) >
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Figure 1: Illustration to Lemma

TV1(a) for sufficiently large a; let â∗1 = min{a : TV0(a) ≥ TV1(a)};

(ii) a′0(a) > a∗1 for all a ≥ â∗1 and a′1(a) < a∗1 for all a ≤ â∗1, where a′i(a) the optimal

saving policy of the agent maximizing TVi(a), i = 0, 1.

Note that Lemma 1 holds for any V0(a) and V1(a) which satisfy its conditions. We

later on will verify that these conditions hold for the corresponding value functions

in our model. Also note that Lemma 1 does not require the difference between the

two value functions, V0(a)− V1(a), to be monotone.

The results of Lemma 1 are very intuitive. The first statement says that if the

choice between the two options V0(a) and V1(a) is described by a unique threshold

rule then the decision problem of the agent who chooses whether to continue with

V0(a) or V1(a) in the future is also described by the unique threshold rule for the

agent’s current wealth level. The second statement says that the savings policy of

the agent is consistent with his future choice between V0(a) and V1(a): for instance,

if the agent prefers TV0(a) in the current period then he would save so much that

in the next period he would indeed prefer to choose V0(a
′). The proof of Lemma 1

is in the Appendix.

We can now use Lemma 1 to provide a complete characterization of V (a). The

first statement of Lemma 1 implies that if V0(a) and V1(a) have a unique intersection

then any two consecutive functions Vt(a) and Vt+1(a) from the sequence {Vt(a)}+∞
t=1

defined by (7) would also have at most one intersection. The second statement of

the Lemma 1 is used to argue that the corresponding sequence of the cutoff levels

8



Figure 2: An example of the function V (a) = max{V∞(a), V0(a), V1(a), V2(a), ...}
(highlighted in violet) and the optimal savings policy a′(a) for the agent with h0 =
h1.

is monotonically decreasing as long as Vt+1(a) > max{V∞(a), V0(a), V1(a), ..., Vt(a)}
for some a ≥ a. Thus we can formulate the following Proposition:

PROPOSITION 1 (Characterization of V (a))

Suppose that the following conditions are satisfied

(a) V0(a) and V∞(a) are concave, increasing and continuously differentiable;

(b) TV0(a) and V0(a) have at most one intersection and TV0(a) < V0(a) for suffi-

ciently high a;

(c) V∞(a) and V0(a) at most one intersection and V∞(a) < V0(a) for sufficiently

high a (needed only if β(1 + r) ≤ 1).

Then there exists a ≤ â∞ ≤ a∗1 such that the agent

(i) stays in house h1 forever if a < â∞;

(ii) switches to house h2 right away if a ≥ a∗1;

(iii) stays in h1 for T (a) periods and then switches to h2 if a ∈ [â∞, a∗1); T (a) is

decreasing in a.
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Figure 2 illustrates an example of the value function V (a) characterized in Propo-

sition 1. The agent decides to postpone switching to a new house by three periods or

less if his wealth falls into the intermediate interval (â∞, a∗1). The second statement

of Lemma 1 implies that within this intermediate interval the consumer’s wealth is

growing over time: for instance, if the agent’s current wealth falls into [a∗3, a
∗
2) and

he currently chooses to remain in the old house for two more periods, the agent

would save so much that in the following period his wealth would fall into [a∗2, a
∗
1)

and he would be planning to remain in the old house for one period only.

In order to apply Proposition 1 to our model, we remain to verify that V0(a)

and V∞(a) defined in (6) and (8) respectively indeed satisfy the conditions (a)-(c) of

the Proposition 1. The standard dynamic programming arguments imply that both

value functions inherit the properties of u(·, h), thus (a) of Proposition 1 holds. The

last condition (c) is trivially verified if we assume that u1(c, h
1) ≤ u1(c, h

2) for all c

(i.e. u12(c, h) ≥ 0). However, verifying the second condition (b) is more cumbersome

due to the presence of the borrowing constraint a ≥ a. We do it by establishing the

following additional result:

Lemma 2 (Single-crossing of V0(a) and TV0(a))

If V ′
0(a) ≤ TV ′

0(a) then V0(a) > TV0(a), and thus V0(a) and TV0(a) might have only

one intersection at which V ′
0(a) < TV ′

0(a).

The dynamics of wealth inside the intermediate interval (â∞, a∗1) helps to describe

risk preferences of the consumers who are planning to switch to a new house in the

future. This is done in the following section.

2.3 The Role of β(1 + r) for Risk Preferences

Let us look more closely at the shape of V (a) inside the interval (â∞, a∗1) (consider

the case when V (a) > max{V∞(a), V0(a)} for some a > â∞). First, notice that the

envelope condition to (7) implies that

V ′(a) = V ′
t+1(a) = u′(c(a)) for all a ∈ [a∗t+1, a

∗
t ), 0 ≤ t ≤ T, (9)

where c(a) is the optimal food consumption of the agent with current wealth a. The

first order conditions to (7), which hold with equality since consumers’ savings are

10



interior, imply that

u′(c(a)) = β(1 + r)V ′
t (a

′(a)) for all a ∈ [a∗t+1, a
∗
t ), 0 ≤ t ≤ T. (10)

Recalling that a′(a) ∈ [a∗t , a
∗
t−1) and thus Vt(a

′(a)) = V (a′(a)), we obtain that

V ′(a) = β(1 + r)V ′(a′(a)) for all a ∈ [a∗t+1, a
∗
t ), 0 ≤ t ≤ T. (11)

This implies that if β(1 + r) < 1 then the consumer’s value function gets steeper

while his wealth rises over time.

Figure 3 illustrates the dynamics of the consumer’s value and wealth starting

from some a0 ∈ (a∗∞, a∗T ). Relationship (11) implies that

V ′(a0) < V ′(a1) < ... < V ′(aT ) and a0 < a1 < ... < aT .

This creates some sort of convexity in the indirect utility function within the interval

(a∗∞, a∗T ). In particular, at time periods t = 1...T−1 the consumer would like to take

a lottery randomizing between at−1 and at+1 with the expected payoff at. In general,

this consumer would be better off if he is able to randomize over any combination

of the wealth levels {a0, a1, ..., aT} experienced during the first T periods of his life

if the lottery’s expected payoff is equal to his current wealth level.

Note also that, due to time discreetness, the consumer would not necessarily

be willing to take any fair lottery with payoffs from (a∗∞, a∗T ); it is important that

the outcomes of the lottery belong to the set {a0, a1, ..., aT}. This is because the

consumer’s indirect life-time utility is strictly concave within each interval (a∗t+1, a
∗
t ),

0 ≤ t ≤ T . However, all above arguments do not depend on the length of the

time period. Thus we can always rewrite the model by shortening the time period

and, thereby, allowing consumers to make adjustments more frequently (doing this

would only make the model more realistic).4 Under such modification, the intervals

within which V (a) is strictly concave would shrink. Intuition suggests that as the

length of the period converges to zero (i.e. the model becomes a continuous time

model), the consumer’s indirect utility function would be strictly convex in the

4When we make the time period shorter, we need to adjust the model’s parameters corre-
spondingly. For example, if we split each period into n equal periods, we need to set β̂ = β1/n,
r̂ = (1 + r)1/n − 1 and ŷ = 1+r

r
br

1+br y.
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Figure 3: The effect of consumption commitments on the agents’ indirect utility,
β(1 + r) < 1

Figure 4: The shape of the indirect utility function for β(1 + r) < 1 in a continuous
time model.
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interval (a∗∞, a∗T ) as it is shown in Figure 4. However, this result should still be

established rigorously (either by rewriting the model in continuous time or by using

some limiting argument).

Figure 5 and 6 illustrate how the shape of V (a) changes as β(1 + r) increases.

Since Proposition 1 holds for any value of β(1 + r), relationship (11) implies that

V ′(a0) = V ′(a1) = ... = V ′(aT ) if β(1 + r) = 1 and V ′(a0) > V ′(a1) > ... > V ′(aT )

if β(1 + r) > 1. At the same time, the relationship a0 < a1 < ... < aT holds

independently of the value of β(1+ r) (of course, the actual values of a0, a1, ..., aT as

well as T are different for different β(1 + r)). This suggests that as the time period

shrinks, those consumer who save in order to switch to higher housing consumption

become risk-neutral when β(1 + r) = 1 and risk-averse when β(1 + r) > 1. Note

that even in the latter case the fact that V (a) is concave within (a∗∞, a∗T ) does not

necessarily imply that these consumers are more risk averse than what they would

be if there were no consumption commitments.

In short, we have illustrated that if in the presence of consumption commitments

some consumers decide to postpone switching to a higher level commitment good,

these consumers’ risk aversion is not necessarily magnified by the presence of con-

sumption commitments. We have shown that risk preferences of such consumers are

determined by the value of β(1 + r): it turns out that for the values of β(1 + r)

consistent with the typical predictions of the general equilibrium macroeconomic

models (β(1 + r) = 1 in complete market economies and β(1 + r) < 1 in the models

with uninsured risk), the consumers of this type become risk-neutral or even risk-

lovers because they have committed to low housing value in the beginning of their

life.

Notice that the risk attitudes of the consumers inside the interval (a∗∞, a∗T ) (risk

averse/risk loving/risk neutral) are solely determined by the value of β(1 + r) and

do not depend on the curvature of the instantaneous utility function u(·, h) or of

the value function V (a). To better understand the intuition behind this finding, we

first construct two examples suggesting why β(1 + r) plays such an important role

and then explain why the lessons learnt from these examples could be applied to

the general version of our model.
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Figure 5: The effect of consumption commitments on the agents’ indirect utility,
β(1 + r) = 1.

Figure 6: The effect of consumption commitments on the agents’ indirect utility,
β(1 + r) > 1.
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Example 1: Switching time and risk preferences

Consider the agent who saves s > 0 in period t = 0 and by the time when the

total cumulative return on his savings becomes equal to Y , the agent can take an

action which would raise his life-time utility by ∆ (measured in utils). Suppose that

in period 0 the agent is allowed to either save s in a risk-free bond or to take a fair

lottery and then save its outcome in a risk-free bond. If the lottery is successful,

the agent would be able to experience utility jump ∆ sooner; if the outcome of the

lottery is not successful, the utility jump would occur later. In order to figure out

whether the agent would be willing to take a lottery first, let us compute the present

value PV (s) of the utility gain associated with the future utility jump ∆ if the agent

saves s in a risk-free bond.

For brevity, let us assume for this part only that the time is continuous. The

agent would accumulate amount Y by the time period x such that s exp (rx) = Y .

The present value of the utility jump then would be equal to PV (s) = exp (−ρx)∆

(where β = 1
1+ρ

), which could be rearranged as

PV (s) = exp (−ρx)∆ = (exp (−rx))ρ/r∆ = (s/Y )ρ/r∆.

Notice that PV (s) is strictly concave in s if ρ < r (β(1 + r) > 1), strictly convex if

ρ > r (β(1 + r) < 1) and is linear if ρ = r (β(1 + r) = 1). In our benchmark model

exactly the same conditions on β(1 + r) determine whether the agent is risk averse,

risk lover or risk neutral while he is saving in order to move to a new house.

Example 2: Separable u(c, h), no borrowing constraints

Now we illustrate that the previous example can be mimicked by a special case of

our benchmark model. Suppose that the utility function is separable in consumption

and housing, u(c, h) = vc(c) + µvh(h), and that there are no borrowing constraints.

Then the decision problem of the agent can be rewritten as:

max
{ct},T

+∞∑
t=0

βtvc(ct) +
vh(h

1)

1− β
+ βT vh(h

2)− vh(h
1)

1− β

s.t.
1 + r

r
y + a0 =

+∞∑
t=0

ct

(1 + r)t
+

1 + r

r
h1 + +

1

(1 + r)T
[η +

1 + r

r
(h2 − h1)]

(12)
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The similarities between decision problem (12) and Example 1 studied above be-

come obvious once we realize that the consumer’s behavior can be interpreted in

the following way. The agent borrows against his future income in period 0 and

opens two risk-free bank accounts: the savings on the first bank account will be

used to finance the stream of consumption expenses {ct} and housing payments of

size h1 throughout his life; while the savings on the second bank account (of the

initial size s = 1
(1+r)T [η + 1+r

r
(h2−h1)]) are used to finance the switch from h1 to h2

in period T . At the time of the switch the agent’s life-time utility would jump up

by ∆ = vh(h2)−vh(h1)
1−β

. Thus, according to our conclusions in Example 1, the agent

should strictly prefer to invest his savings in the second bank account in a safe asset

if β(1 + r) > 1 and would be risk loving if β(1 + r) < 1.

General intuition

These two examples suggest that the risk attitudes of the consumers inside the

intermediate interval (a∗∞, a∗T ) are explained by the fact that the savings decision

of the consumer who eventually plans to switch to a new house could be separated

into two parts. More specifically, such agent makes savings for two different pur-

poses: (i) to smooth the marginal utility of his flexible consumption u1(c, ht) (which

is the same as the marginal value V ′(a)) over time and (ii) to raise his life-time

utility level at the moment when the switch happens. The second type of savings

governs the agent’s risk preferences during the path of wealth accumulation towards

the switch; that is why all the findings from Example 1 also apply in a general model.

Contribution to the literature on dynamic models with Friedman-Savage

instantaneous utility

Our findings suggest that in an infinite horizon model in which β(1 + r) ≥ 1

the consumers can completely eliminate the non-concavity of their value function

(driven by the discreteness of their choice set) if they can choose optimally their

savings plan as well the switching moment from one option to another. This obser-

vation contributes to the literature on dynamic models with Friedman-Savage utility

function. Friedman and Savage (1948) has initially proposed to study non-concave

instantaneous utility function as an explanation for why consumers simultaneously

buy insurance and lottery tickets. In a later paper, Bailey et. al. (1980) have

argued that in a dynamic environment the consumers might be able to eliminate

16



non-concavity in instantaneous utility function if they have access to borrowing and

lending technology (therefore suggesting that Friedman-Savage utility would not

necessarily explain simultaneous demand for lotteries and insurance in a dynamic

world).

However, a recent work by Hartley and Farrel (2002) had pointed out that Bailey

et. al.’s argument works only if the consumer’s income is drawn from the set of

countable points and the demand for lotteries may pertain otherwise. Their model,

similar to ours, was set up in discrete time. The authors derived the conditions on

the relationship between β(1 + r) and the consumers’ income level under which the

consumers would remain in the proximity to the small kink points (appearing due

to time discreteness) during their transition path, and, thereby, would eventually

be willing to take a small lottery in order to eliminate such ‘local non-concavity’.

However, the authors have not mentioned that as time period shrinks to zero, such

local non-concavity should not be an issue any more, and, correspondingly, they

did not discuss that the incentives to take lotteries would completely disappear if

β(1 + r) ≥ 1.

2.4 Incentives to Postpone Switching

As a partial case, it might happen that V (a) = max{V∞(a), V0(a)}, i.e. the inter-

mediate interval within which the consumer decides to remain in an old house for a

while and switch to a new house later is empty. The previous literature analyzing

the effects of consumption commitments has studied the models in which this partic-

ular case would be the only solution to the agents’ decision problem, either because

the static models were analyzed (Postlewaite et. al. 2006) or because attention was

restricted to the dynamic models in which there was no motive for postponing the

moment of adjusting the level of commitment good (Chetty and Szeidl 2007). Figure

7 illustrates why this solution suggests that consumption commitments are likely to

magnify risk aversion. If the adjustment cost where such that limh′→h ηn(h, h′) = 0

(superindex n stands for ‘no commitment’), the consumers would adjust their hous-

ing consumption continuously in response to the changes in the wealth level. Under

some assumptions on ηn(h, h′), the consumers’ indirect life-time utility V n(a) would

be strictly concave. To make the cases with and without commitment comparable,

let us assume that h1 is the optimal choice of housing at some a1 > 0, h2 is the
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Figure 7: The effect of consumption commitments on the agents’ indirect utility
when V (a) = max{V∞(a), V0(a)}. V n(a) is the consumers’ indirect utility in the
absence of consumption commitments (ηn(h, h′) → 0 as h′ → h); h1 is the optimal
choice of housing at a1, h2 is the optimal choice of housing at a2 and ηn(h, h′) is
such that ηn(h1, h2) = η1.

optimal choice of housing at a2 > 0 and ηn(h, h′) is such that ηn(h1, h2) = η1. Then

V n(a) is tangent to V (a) = max{V∞(a), V0(a)} at a = a1 and a = a2 as it is shown

in Figure 7.

Since consumer’s attitudes towards risk are characterized by the curvature of the

value functions V (a) and V n(a), it is obvious that housing commitments increase

risk aversion of the consumers with a0 = a1 and a0 = a2. Under additional as-

sumptions on ηn(h, h′) and the relative curvature of u(c) and v(h), it can be shown

that the curvature of V (a) exceeds the curvature of V n(a) for all a ∈ (â∞, a∗∞) and

all a ∈ (â∞, +∞), thus implying that housing commitments magnify risk aversion

independently of the initial wealth level. Intuitively, in the presence of housing com-

mitments small changes in initial wealth should be absorbed only by changes in food

consumption, which might generate substantial welfare losses if u(c) has high risk

aversion coefficient. Thus the existing theoretical studies came to the conclusion

that consumption commitments make consumers more risk averse.5

5Some papers, e.g. Chetty and Szeidl 2006, compare the model with commitments to the
environment without adjustment costs; they also conclude that commitments magnify risk aversion,
even though the result cannot be illustrated graphically using Figure 7 – the agent’s value in the
absence of adjustment costs should exceed V (a) for all a 6= a1.
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Our analysis in the previous section suggested that consumption commitments

can have a very different effect on consumers’ risk attitudes if the prospects of

adjusting the level of commitment good in the future alters consumers’ savings

behavior. At the same time, Proposition 1 did not say how wide the intermediate

interval might be or, in other words, how likely it is that the consumers’ wealth falls

into it. The following proposition addresses this question.

PROPOSITION 2

Suppose that V0(a) and V∞(a) satisfy the conditions of Proposition 1. Then

(i) V (a) > V∞(a) for all a ≥ a when β(1 + r) > 1 ;

(ii) either V (a) > V∞(a) for all a ≥ a or V (a) is the concave envelope of max{V∞(a), V0(a)}
when β(1 + r) = 1.

In other words, we should expect the the intermediate wealth intervals (â∞, a∗∞)

might be sizeable. In our model the consumer might decide to postpone switching

into a new house for four different reasons:

(a) due to discreteness of available housing levels (in order to average out the life-

time housing expenditures if the consumer’s per period income is such that

he would prefer to choose some housing level h∗ ∈ (h1, h2) at the moment of

switching);

(b) in order to decrease the present value of the switching cost η if r > 0 (thereby

raising the present value of the life-time wealth);

(c) in order to accumulate sufficient funds necessary for switching (to pay for η

and higher housing expenditures) if the borrowing constraints are present and

the consumer does not have much wealth in the beginning of his life;

(d) if β(1 + r) > 0, the consumer’s optimal consumption and wealth profiles are

increasing over time, thus even the consumers with low initial wealth levels

would eventually want to switch to a bigger house.

All these four reasons creating incentives to postpone switching in our model

are absent in the dynamic model developed in Chetty and Szeidl (2007) to analyze

the effects of consumption commitments on risk preferences. The authors study the
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environment in which the consumers can choose the level of housing flexibly at the

moment of switching. They also assume that the interest rate r is equal to zero,

the time discount rate β is equal to one (thus they have a finite horizon model)

and the consumers can borrow against their future income. That is why in Chetty

and Szeidl’s environment all the consumers either choose to remain in the old house

forever or decide to switch to a new house right away.

In the rest of the paper we generalize our benchmark model by allowing for a

more flexible choice of housing at the moment of switching. With this modification,

our model becomes a generalization of Chetty and Szeidl (2007), which allows us

to analyze whether either of the last three reasons (b)-(d) in the above list might

be responsible for generating a sizable intermediate interval, in which consumption

commitments do not necessarily magnify consumers’ risk aversion.

3 Extension: Flexible Choice of Housing

Suppose that the agent can choose any house of the size h ≥ h1 if he decides to

adjust his housing consumption. Suppose also that the housing size can be adjusted

only once, i.e. the value of the agent can be easily found if he had already moved to

a new house. Then the decision problem of the agent who still remains in the old

house h1 can be written as

V (a) = max
h∗≥h1

{V (a; h∗)}, (13)

where V (a; h∗) is the value of the agent choosing whether to stay in h1 or to move

into a house of the given size h∗. Obviously, V (a; h∗) is the same as the value

function V (a) characterized in the previous Section (with h2 = h∗). Thus for any

h∗ > h1 the agents planning to switch to h∗ become risk lovers if β(1 + r) < 1, risk

neutral if β(1 + r) = 1 or risk averse if β(1 + r) > 1.

In this environment the agent might decide to postpone switching to a new house

for three reasons: to decrease the present value of the adjustment cost (if r > 0),

to accumulate the necessary funds if the borrowing constraints are binding, and to

support an increasing consumption profile if β(1+r) > 0. The last case is of the least

interest to us because the agent is risk averse throughout the whole life-time (though

not necessarily more risk-averse than what he would be in the model without fixed
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adjustment costs) and also because such relationship between interest rate and the

time discount factor is unlikely to arise in an equilibrium of a macroeconomic model.

Thus in what follows we will focus primarily on the first two cases and analyze the

role of the positive interest rate and the borrowing constraints in shaping consumers’

risk preferences in the presence of fixed adjustment costs.

3.1 Numerical Exercise

The dynamic model of Chetty and Szeidl (2007) predicts that the agents make all

housing decisions in period 0 because the following assumptions were imposed in

their environment: (a) r = 0, β(1 + r) = 1 and (b) tconsumers can borrow against

their future income. As it was suggested in the previous Section, relaxing any of these

two assumptions might lead to the appearance of the intermediate interval (â∞, a∗∞),

within which consumption commitments do not necessarily magnify risk aversion.

The goal of the following numerical exercise is to analyze how wide intermediate

intervals might be generated if we ‘generalize’ Chetty and Szeidl (2007) by relaxing

either of the two above assumptions.

Suppose that the utility function is separable in consumption and housing,

u(c, h) =
c1−σc

1− σc

+ µ
h1−σh

1− σh

and assume that σc = 4 and σh = 1. Let us normalize per period income to y = 1

and choose µ in such a way that in the model without fixed adjustment costs the

agent with zero initial wealth spends 50% of his life-time income on housing (µ = 8).

Correspondingly, the initial housing commitment is chosen to be h1 = 0.5. Finally,

we set the adjustment cost η equal to 10% of the initial housing commitment.6

3.1.1 The role of r > 0

Suppose that there are no borrowing constraints. For the benchmark case we assume

that β(1 + r) = 1 but, in contrast to Chetty and Szeidl (2007), we set β = 0.96 and

r = 0.0417, which implies that η = 1.25.

6These parameters are chosen similar to the ones used in the benchmark simulation of Chetty
and Szeidl (2007), see column 2 of Table 2.
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Table 1: The size of the intermediate interval

with r > 0 and without borrowing constraints

r(%) β(1 + r) (â∞, a∗1) (∆min,∆max)

4.17 1.000 (1.58,8.74) (0.06,0.34)

3.90 0.997 (2.27,7.88) (0.08,0.29)

3.70 0.995 (2.80,6.83) (0.09,0.24)

3.50 0.994 (3.22,6.31) (0.10,0.20)

3.30 0.992 (3.60,5.18) (0.12,0.17)

3.10 0.989 (3.84,4.63) (0.13,0.14)

2.90 0.988 empty empty

For these parameter values the agents with initial wealth between 1.58 and 8.74

would start saving in order to eventually move into a bigger house (see the first raw

in Table 1). This intermediate interval shrinks as the interest rate falls (keeping the

rest of the parameters constant) and it becomes empty when reaches r = 0.029.

The last column in Table 1 provides a possible measure of how wide the computed

intermediate intervals are. This is done in the following way. Suppose that the

the initial housing commitment h1 is endogenously chosen in period 0 at no cost.

Denote by a∗0 the initial wealth at which h1 = 0.5 is optimal for the given parameter

values (a∗0 = 0 for our case). Obviously, since for all cases reported in Table 1,

β(1 + r) ≤ 1, the agent who initially chose h1 optimally would not be willing to

move into a bigger house later in his life. However, if such agent had experienced

an unexpected permanent income shock in period 0, his life-time wealth would rise

and he might decide to adjust his housing consumption even though it is costly

(since there are no borrowing constraints in this environment, such an income shock

is isomorphic to a change in the initial wealth level). The last column in Table 1

reports the range of percentage deviations in income that would induce the agent

to start saving for a bigger house. For instance, if the agent’s annual income rises

by more than 6% but less than 34%, the agent adjusts his savings plan in order

to eventually move into a new house and becomes temporarily risk neutral (since

β(1 + r) = 1). Income shocks of this size are not uncommon in the data
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Table 2: The size of the intermediate interval

for different values of η, β(1 + r) = 1

η % of 1+r
r h1 (â∞, a∗1) (∆min, ∆max)

1.25 10 (1.58,8.74) (0.06,0.34)

1.0 8.0 (1.47,7.94) (0.05,0.31)

0.8 6.4 (1.37,7.12) (0.05,0.28)

0.6 4.8 (1.23,6.26) (0.04,0.24)

0.4 3.2 (1.06,5.40) (0.04,0.21)

0.2 1.6 (0.85,3.98) (0.02,0.15)

0 0 empty empty

(e.g. Kydland 1984); most numerical macroeconomic models with incomplete mar-

kets assume that the standard deviation of the annual income is around 20% (e.d.

Hugget 1996).

Table 2 illustrates the interval (â∞, a∗1) remains sizeable even for relatively small

values of the switching cost η (we keep r = 0.0417 for different values of η). As η

decreases, V0(a) shifts to the left and V∞(a) remains unchanged. Since for β(1+r) the

interval wealth threshold levels â∞ and a∗1 are the tangent points with the common

tangent line to V∞(a) and V0(a) respectively, the interval (â∞, a∗1) remains wide as

η decreases.

3.1.2 The role of the borrowing constraints

In the model with the borrowing constraints, the consumers with relatively low

wealth might be not able to adjust their housing consumption either because it is

not feasible (i.e., if a + y ≤ η) or because paying the cost η upfront would require a

significant decrease in food consumption for some time.

Numerical results in Table 3 illustrate that the borrowing constraints can indeed

cause consumers to postpone switching to a new housing level; while in the models

with exactly the same parameter values and no borrowing constraints all the con-

sumers would either choose to remain in house h1 forever or switch to a new house

right away.
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Table 3: The effects of the borrowing constraints

on the risk preferences of the consumers, y = 1.1

RP for 10% lot. RP for 10% lot.

r β(1 + r) (â∞, a∗1) T with a ≥ 0 no b.c.

2.9% 0.988 [0.55,1.67) 19 −1.0% 0.6%

2.7% 0.986 [0.62,1.58) 17 −1.2% 0.4%

2.5% 0.984 [0.67,1.51) 14 −1.4% 0.2%

As we have illustrated earlier, in the model without borrowing constraint the

incentives to postpone housing adjustment disappear if the interest r falls below

3.0%. In particular, if we increase per period income to y = 1.1, the agents with

zero initial wealth would choose to move into a new house right away. Table 1 reports

that if the borrowing constraint a ≥ 0 is imposed, then the same consumers would

not be able to borrow against their future income and would choose to remain in

the house h1 forever. However, if the consumer’s initial wealth falls into the interval

(0.55, 1.67) (which corresponds to 50% to 150% of the annual income), he would

start accumulating wealth in order to eventually move into a bigger house. During

this time, the consumer is risk lover (since β(1 + r) < 1) and would be willing to

pay the price of 1% if he were able to gamble 10% of his wealth in a fair lottery.

If the borrowing constraints were not present, this consumer would take the same

wealth lottery only if it offered a premium of 0.6%.

Finally, it is not surprising that outside of the interval (â∞, a∗1), the agents are

more risk averse in the model with borrowing constraints than without them (not re-

ported in Table 3). This is consistent with the standard predictions of a neoclassical

growth model, in which imposing borrowing limits increases the cost of uninsured

risk (e.g. Aiyagari 1994). That is why the analysis in this paper draws attention

to a situation in which borrowing constraints might have a seemingly counterintu-

itive effect by lowering the risk aversion of consumers (in conjunction with fixed

adjustment costs or discrete choice).
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4 Final Remarks

In this paper we have argued that in a dynamic environment consumption commit-

ments do not necessarily magnify risk aversion. In particular, if a consumer decides

to postpone moving into a bigger house for some time, he becomes risk lover if

β(1 + r) < 1 or risk neutral if β(1 + r) = 1. We also argue that such behavior can

be driven by either of the two factors, positive interest rate (creating incentives to

postpone the adjustment cost to the future) and borrowing constraints (implying

that the housing adjustment might happen only if the agent accumulates sufficient

amount of wealth). Previous studies of consumption commitments in dynamic setup

assumed that the interest rate equals to 0 an that the consumers can easily borrow

against their future income, that it why the effect of consumption commitments on

risk preferences discussed in this paper did not arise in those models.

From the methodological perspective, the paper develops a simple approach to

characterizing deterministic dynamic discrete choice models in discrete time. Or

finding could be applied to any framework, in which the discreteness of the choice

is either exogenous or arises endogenously due to the presence of fixed adjustment

costs, as long as the value of switching to a new option satisfies the conditions of

Proposition 1 and, prior to switching to this option, the agent’s decision problem

is deterministic. The example of the two closely related models to the environment

studied in this paper are the models with costly technology adoption and the models

of occupational choice.

Our results also contribute to the literature on dynamic models with Friedman-

Savage utility function. A number of papers in the field have discussed to what

extent the non-concavity in instantaneous utility function can be eliminated by the

possibility of borrowing and saving. However, we are not aware of any research work

that would arrive at the conclusion that the value function obtained in a dynamic

setup would become concave if β(1 + r) ≥ 1. Even though our framework cannot

be directly interpreted as a dynamic model with Friedman-Savage utility, intuition

suggests that the results of Prposition 1 could also be applied in that environment.

Our analysis has two major limitations. First, the proofs heavily rely on the fact

that along the transition path towards the new option the agent’s decision problem

is deterministic. Intuition suggests that our results should extend if we add just a

bit of uncertainty or introduce very persistent income shocks. However, a rigorous
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analysis of the case with uncertainty is needed.

Second, throughout the paper we assumed that the agent can adjust the level

of housing only once. This was done in order to easily characterize the value of

the consumer after the adjustment is made (in particular, we need to know that it

is concave). However, it can be argued that this assumption is not crucial in the

environment without uncertainty. If β(1 + r) = 1 then the consumer would not

want to adjust the level of housing more than once. If β(1 + r) > 1, the consumer

would want to move to a bigger house later on; and we already know that under

such condition on β(1 + r) the consumer’s value function becomes concave. Lastly,

if β(1 + r) < 1, the consumer might be willing to move into a smaller house in the

future. While he is planning to do so, his wealth and consumption will be falling and

thus his value function will remain concave. This suggests that our results should

remain true if we allow for multiple switches; however, a more rigorous analysis is

also needed to verify whether this guess is correct.

Finally, we do not endogenize the initial housing commitment h1 (even though

in the numerical example in the last section we discuss how this can be done). The

type of consumers’ behavior that we are interested in arises when the consumers’

initial housing choice ends up being suboptimal in the long run. This outcome

could be explained either by the presence of uncertainty or by the presence of the

borrowing constraints. In the former case, it might happen that ex ante housing

choice becomes suboptimal ex post, after the realization of the income shock. In

the latter case, adding differences in the adjustment costs would do the job. For

instance, if the cost of moving into a small house is smaller than the cost of moving

into a big house, the agent might choose a small house in the beginning of his life

(when he has little wealth) and move into a big house later on. Either of these

features would have to be modelled carefully if one wants to carefully quantify

the effects of consumption commitments on agents’ risk preferences (i.e. in order

to analyze whether consumption commitments help to resolve the private equity

premium puzzle).

26



5 References

Aiyagari, R. (1993). Uninsured Idiosyncratic Risk and Aggregate Saving. The Quar-

terly Journal of Economics, Vol. 109, No. 3, pp. 659-684

Albuquerque, R. and H. Hopenhayn. Optimal Lending Contracts and Firm Dy-

namics. The Review of Economic Studies, 2004, 71(2), pp. 285–314.

Athreya, K. Welfare Implications of the Bankruptcy Reform Act of 1999. Jour-

nal of Monetary Economics, 49 (2002) 1567-1595.

Bailey, M., Olson, M. and P. Wonnacot (1980). The Marginal Utility of Income

Does Not Increase: Borrowing, Lending, and Friedman-Savage Gambles. American

Economic Review, 70, pp. 372-379.

Chetty, R. and Szeidl (2004). Consumption Commitments and Asset Prices. Un-

published Manuscript.

Chetty, R. and A. Szeidl (2007). Consumption Commitments and Risk Preferences,

forthcoming in The Quarterly Journal of Economics.

Flavin, M. and S. Nakagawa (2004). A Model of Housing in the Presence of Ad-

justment Costs: A Structural Interpretation of Habbit Persistence. NBER Working

Paper 10458.

Friedman, M. and L. Savage (1948). the Utility Analysis of Choices Involving Risk.

The Journal of Political Economy, 56, pp. 279-304.

Hartley, R. and L. Farrel (2002). Can Expected Utility Theory Explain Gambling?

American Economic Review, 92, pp. 613-624.

Hugget, M. (1996). Wealth Distribution in Life-Cycle Economies. Journal of Mon-

etary Economics, 28, pp. 469-494.

27



Khan, A. and B. Ravikumar. Costly Technology Adoption and Capital Accumula-

tion. Review of Economic Dynamics, 2002, 5, pp. 489–502.

Marshall, D. and N. Parekh (1999). Can Costs of Consumption Adjustment Ex-

plain Asset Pricing Puzzles? The Journal of Finance, 54, pp. 623-654.

Postlewaite, A., Samuelson, L. and D. Silverman (2006). Consumption Commit-

ments and Employment Contracts. Unpublished manuscript.

Rogerson, R. ”Indivisible labor, lotteries and equilibrium.” Journal of Monetary

Economics, 1998, 21, pp. 3–16.

Shore, S. and T. Sinai (2006). Commitment, Risk and Consumption: Do Birds

of a Feather Have Bigger Nests? NBER Working Paper 11588.

Vereshchagina, G. and H. Hopenhayn (2006). Risk taking by entrepreneurs. Un-

published manuscript.

Warren, E. and A. Tyagi (2003). The Two-Income Trap. New York: Basic Books.

6 Appendix

Proof of Lemma 1

We start by proving the second statement of the Lemma. Since V0(a) and V1(a) are

strictly concave, the policy functions a′0(a) and a′1(a) are strictly increasing. Thus

it is sufficient to verify that a′0(â
∗
1) > a∗1 and a′1(â

∗
1) < a∗1. We do it by contradiction.

Suppose that a′0(â
∗
1) ≤ a∗1. Then, by definition of a∗1, V1(a

′
0(â

∗
1)) ≥ V1(a

′
0(â

∗
1)). At

the same time, a′0(â
∗
1) is a feasible saving rule for the consumer maximizing TV1(a).

Thus

TV1(â
∗
1) > u(â∗1 + y − h1 − a′0(â

∗
1)

1 + r
, h1) + βV1(a

′
0(â

∗
1)) ≥

≥ u(â∗1 + y − h1 − a′0(â
∗
1)

1 + r
, h1) + βV0(a

′
0(â

∗
1)) = TV0(a

∗
t+1),
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Figure 8: Illustration to the Proof of Lemma 1

which contradicts to the definition of â∗1. The first inequality in the above expression

is strict because TV1(a) is flatter than TV0(a) at â∗1, so the saving decision a′0(â
∗
1)

is strictly suboptimal. The inequality a′1(â
∗
1) < a∗1 can be easily verified in a similar

way.

To prove (ii) we use the above property of the policy functions. Suppose that

TV0(a) and TV1(a) have multiple intersections. Then there exist ã such that TV ′
0(ã) =

TV ′
1(ã) and TV1(ã) > TV0(ã) (it is easy to verify that TV1(ã) < TV0(ã) for suffi-

ciently large a). Since ã is in between the two intersection points, it follows that

a′1(ã) < a∗1 and a′0(ã) > a∗1 and thus TV1(a
′
1(ã)) < TV0(a

′
0(ã)). At the same time,

TV ′
0(ã) = TV ′

1(ã) implies that the agents maximizing TV0(ã) and TV1(ã) have the

same current current utility, which contradicts to TV1(a
′
1(ã)) < TV0(a

′
0(ã)). Thus

TV1(a) and TV0(a) cannot have multiple intersections. ¥

Proof of Proposition 1

Let us denote by a∗t the wealth level at which Vt(a) and Vt−1(a) intersect; and by

at
∞ the wealth level at which Vt(a) and V∞(a) intersect (by (i) of Lemma 1 each pair

has at most one intersection). To prove Proposition 1 it is sufficient to verify that

a∗t+1 < a∗t as long as Vt+1(a) > max{V∞(a), V0(a), V1(a), ..., Vt(a)} for some a ≥ a.

This is done in two steps.

Step 1: Let’s show that if Vt(a) < max{V∞(a), Vt−1(a)} for all a ≥ a then

Vt+1(a) < max{V∞(a), Vt(a)} for all a ≥ a.
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Figure 9: Illustration to Step 1 of the proof of Proposition 1

Suppose that the opposite is true and there exist t ≥ 1 such that Vt(a) <

max{V∞(a), Vt−1(a)} for all a ≥ ât but Vt+1(a) ≥ max{V∞(a), Vt(a)} for some a.

This implies that a∗t+1 ≥ at
∞ > a∗t (see Figure 9). Correspondingly, Vt+1(a

∗
t+1) >

V∞(a∗t+1).

First, notice that a′t+1(a
∗
t+1) > a∗t+1. If the opposite is true then Vt+1(a

∗
t+1) ≥ Vt(a

∗
t+1)

and thus Vt+2(a
′
t+1(a

∗
t+1)) ≥ Vt+1(a

′
t+1(a

∗
t+1)). Since Vt+2(a) and Vt+1(a) have unique

intersection and Vt+1(a) > Vt+2(a) for sufficiently large a, Vt+2(a) ≥ Vt+1(a) ≥ Vt(a)

for all a ≤ a∗t+1. By induction, it follows that Vt+k(a) ≥ Vt+1(a) for all a ≤ a∗t+1

and k ≥ 2, which leads to contradiction because limk→+∞ Vt+k(a) = V∞(a) and

Vt+1(a
∗
t+1) > V∞(a∗t+1).

Second, a′t+1(a
∗
t+1) > a∗t+1 implies that

Vt+1(a
∗
t+1) = u(a∗t+1 + y − h1 − a′t+1(a

∗
t+1)

1 + r
, h1) + βVt(a

′
t+1(a

∗
t+1)) <

< u(a∗t+1 + y − h1 − a′t+1(a
∗
t+1)

1 + r
, h1) + βVt−1(a

′
t+1(a

∗
t+1)) ≤

≤ u(a∗t+1 + y − h1 − a′t(a
∗
t+1)

1 + r
, h1) + βVt−1(a

′
t(a

∗
t+1)) = Vt(a

∗
t+1),

which contradicts to the definition of a∗t+1 (Vt+1(a
∗
t+1) = Vt(a

∗
t+1)).

Correspondingly, if for some T VT+1(a) < max{V∞(a), V0(a), V1(a), ..., VT (a)} for

all a ≥ a then for any k ≥ 1 VT+k(a) < max{V∞(a), V0(a), V1(a), ..., VT (a)} for all
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Figure 10: Illustration to Step 2 of the proof of Proposition 1

a ≥ a and V (a) = max{V∞(a), V0(a), V1(a), ..., VT (a)}.

Step 2: Let’s verify that a∗t+1 ≤ a∗t for all t ≤ T − 1.

Suppose that the opposite is true and a∗t+1 > a∗t for some t ≤ T − 1 (see Figure

10). Then, by (ii) of Lemma 1, a′t+1(a
∗
t+1) < a∗t . Correspondingly, Vt+1(a

′
t+1(a

∗
t+1)) >

Vt(a
′
t+1(a

∗
t+1)). Therefore,

Vt+2(a
∗
t+1) ≥ u(a∗t+1 + y − h1 − a′t+1(a

∗
t+1)

1 + r
, h1) + βVt(a

′
t+1(a

∗
t+1)) >

> u(a∗t+1 + y − h1 − a′t+1(a
∗
t+1)

1 + r
, h1) + βVt−1(a

′
t+1(a

∗
t+1)) =

= Vt(a
∗
t+1) = Vt+1(a

∗
t+1).

Since Vt+2(a) and Vt+1(a) have at most one intersection, Vt+2(a) > Vt+1(a) for all

a ≤ a∗t+1. Thus we can inductively apply the above argument and conclude that for

all k ≥ 2 Vt+k(a) > Vt+1(a) > V∞(a) for all a ≤ a∗t+1, which obviously contradicts to

limk→+∞ Vt+k(a) = V∞(a). ¥
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Proof of Lemma 2

First, let’s recall how the functions V0(a) and V1(a) are determined:

V0(a) = max
a′>a

{u(a + y − h2 − a′

1 + r
, h2) + βV 2(a′)} =

= V 2(a− η)

(14)

V1(a) = max
a′>a

{u(a + y − h1 − a′

1 + r
, h1) + βV0(a

′)} (15)

Denote by c0(a) and c1(a) the corresponding optimal levels of non-commitment

consumption. By the envelope condition, V ′
0(a) < V ′

1(a) implies that u1(c0(a), h2) <

u1(c1, h
2). The first order conditions for the decision problems (14) and (15) implies

that u1(c0(a), h2) ≥ β(1 + r)V 2′(a′0(a)) and u1(c1(a), h1) ≥ β(1 + r)V ′
0(a

′
1(a)), with

strict inequality if a′i(a) = a.

Notice that the decision problem (15) cannot have a corner solution at a point

where V ′
0(a) < V ′

1(a). This is because a′1(a) = a in conjunction with h2 > h1

η > 0 and a′2(a) > a implies that c0(a) < c1(a), which contradicts to u1(c0(a), h2) <

u1(c1, h
2). Thus the first order condition to (15) holds with equality:

V ′
0(a) = u1(c0(a), h2) ≥ β(1 + r)V 2′(a0(a))

V ′
1(a) = u1(c1(a), h1) = β(1 + r)V ′

0(a1(a))

Thus V ′
0(a) < V ′

1(a) implies that u(c0(a), h2) > u(c1(a), h1) (since u12(a) > 0 and

V 2′(a0(a)) < V ′
0(a1(a)). Finally, since V0(a) = V 2(a − η), the latter inequality im-

plies that V 2(a0(a)) > V0(a1(a)), which completes the proof of Lemma. ¥

Proof of Proposition 2

(i) If β(1 + r) > 1 then the optimal savings policy of the agent who never moves

satisfies a′∞(a) > a. Correspondingly, if V∞(at
∞) = Vt(a

t
∞) and V ′

∞(at
∞) ≤ V ′

t (a
t
∞)

for some t ≥ 1 then V∞(at
∞) < Vt+1(a

t
∞). Thus max{V0(a), V1(a), ...} > V∞(a).

(ii) When β(1+r) = 1, a′∞(a) = a and the combination of V∞(at
∞) = Vt(a

t
∞) and

V ′
∞(at

∞) < V ′
t (a

t
∞) for some t ≥ 1 implies that V∞(at

∞) < Vt+1(a
t
∞). Thus in the limit

one of the two cases might happen: (a) limt→+∞ at
∞ = a and max{V0(a), V1(a), ...} >

V∞(a) or (b) limt→+∞ at
∞ > a and limt→+∞ V ′

t (a
t
∞) = V ′

∞(at
∞). ¥
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