Optimal Migration*

Jess Benhabib and Boyan Jovanovic

July 7, 2007

Abstract

We ask what level of migration would maximize world welfare. We find that skill-neutral policies are never optimal. An egalitarian welfare function induces a policy that entails moving mainly unskilled immigrants into the rich countries, whereas a welfare function skewed highly towards the rich countries induces an optimal policy that entails a brain-drain from the poor countries. For intermediate welfare functions that moderately favor the rich however, it is optimal to have no migration at all.

1 Introduction

All rich industrialized countries severely restrict immigration. ${ }^{1}$ While the extent of the restrictions varies by country and by period, they nevertheless are at odds with the basic tenets of free trade, and in deep contradiction with some of the most cherished values of liberal democracy: that there should be no job discrimination based on nationality, ethnicity, race or gender. While we deplore job discrimination directed at citizens, we also design immigration laws that exclude foreign nationals out of our countries and our job market. ${ }^{2}$ It follows that there must be costs associated with immigrants that are borne by the citizens of a country, or otherwise the borders would be open.

Several reasons may be given to explain restrictive immigration policies in terms of the costs that immigrants impose on the citizens of a country. The most obvious is

[^0]a distributional argument cast in terms of political economy. The median voter whose income derives mostly from wages will wish to keep out the unskilled immigrants who will depress his wage. ${ }^{3}$ Others, more controversially, stress the cost of social services that low-skilled immigrants impose on the citizens, or adopt the communitarian view that shared values, customs and culture constitute a social good that would be diluted by immigration, an argument that has often been used to keep the undesirables out. ${ }^{4}$ Finally, one can argue that positive output externalities emanating from the average level of human capital will be depressed by immigrants with low human capital stocks who cause congestion, disutility, and have a negative impact on output per capita. Since the goal of this paper is not to identify the nature and scope of the costs of immigration borne by citizens, we will model the latter explanation by externalities emanating from the average level of human capital, a framework which is quite simple, and which may be modified or reinterpreted to capture direct labor-market effects on wages, or negative cultural externalities from low skilled immigrants.

We study the welfare implications of restrictive immigration policies from the world perspective, while allowing for costs of migration to the host and source countries. We ask what the optimal immigration policy would be, given a social welfare function that parametrically weighs the citizens of the industrialized, human-capitalrich countries and those of the third world. One might simply expect that as the welfare weight is continuously shifted from the citizens of the first to the third world, optimal immigration policy, in terms of the proportion of third world citizens allowed to emigrate, would increase continuously. Our results indicate that this is not so: if populations are homogeneous in the skills within a country but differ across countries, there is a threshold relative welfare weight assigned to the third world citizens at which optimal immigration policy shifts from zero immigration to maximal immigration. If populations are heterogenous in skill to labor ratios, then under egalitarian social welfare weights, or, a fortiori, with weights that favor natives of the low average skill country, the optimal policy is to let the least skilled emigrate, up to a threshold skill level, from the low to the high average skill country. A simple and quick calibration shows that this implies that optimally up to 3.2 billion low-skilled people should emigrate from the third world to the OECD. ${ }^{5}$ If on the other hand, social welfare weights favor the natives of the high-skill country, optimal immigration policy may be no immigration at all, or an immigration policy that allows only the highly skilled to emigrate from the low- to the high-average-skill country.

[^1]With globalization, pressures to design redistributive and immigration policies that increasingly take a world rather than national perspective are likely to mount. Thus, if the political perspective shifts from a national to an international one, more consistent with values of liberal democracy applied globally, the optimal immigration policy will require a drastic change. Of course other factors, including political costs of policy transition, or political resistance in host countries, may imply a more gradual shift over time. This paper, while allowing for the costs of immigration, shows a basic thrust or tendency calling for a shift in immigration policy as we move towards a world democracy.

2 The Model

Immigrants in our model affect the well-being of the residents of the host country through a group effect. This group effect operates through the effect that immigrants have on "social capital," originally discussed by Coleman (1988) ${ }^{6}$. We define "social capital" as human capital per person, \bar{h}, which raises the marginal productivity of human capital h, and we formalize it as in Lucas (1988):

$$
\text { Marginal product of human capital }=G(\bar{h})
$$

where $G^{\prime}>0$ and $G^{\prime \prime}<0$. We drop the second factor (physical capital) and assume that the output of a country is

$$
\begin{equation*}
Y=G(\bar{h}) H \tag{1}
\end{equation*}
$$

where H is the total human capital in the country. Evidence supporting this formulation is given by Clark (1987), who attributes $G(\bar{h})$ to culture in a multinational setting, and by Rauch (1993) who attributes it to human-capital spillovers at the level of "Standard Metropolitan Statistical Areas". Thus if immigrants decrease the average level of human capital, they depress marginal products, wages and average productivity. ${ }^{7}$

A second, non-market interpretation of G, is one of a cultural externality operating not through production, but through preferences of natives. That is, since agents' utility is a monotone transform of their output or consumption, we can interpret $G(\bar{h})$ as an externality acting directly on utility, reflecting a cultural distaste for unskilled immigrants, so that the enjoyment of consumption is diluted in a society

[^2]where the arrival of less skilled immigrants lowers \bar{h}. In this sense, culture is a public good that is diminished by the arrival of unskilled immigrants, but enriched by highly skilled immigrants, so that it is not simply xenophobia. ${ }^{8}$

Constant returns and decentralizability.-The production function (1) obeys constant returns to scale in the sense that doubling the number of residents while leaving the distribution of individual human capital h unchanged leaves \bar{h} unaffected, but doubles H and, hence, Y. This allows for a competitive situation in which zero-profit firms (of indeterminate size) hire labor and pay a wage of $G(\bar{h})$ per efficiency unit.

Efficiency vs. distribution.-The model has a tension between considerations of efficiency and distribution. If taxes were the distributive tool, the tension would work through incentives. In our model, however, the only distributive tool is migration, and the tension works through the spillover mechanism that induces increasing returns to scale through G :

1. Efficiency requires that production be segregated geographically. This is the content of Proposition 1.
2. The only way to redistribute income in this model is through migration, which requires that we mix people of different human capital levels.

Efficiency and redistribution are always in conflict, and this may lead migration to sometimes be zero in spite of the planner's desire to redistribute.

Let $M(h)$ be the world's distribution of human capital, and assume that

$$
\begin{equation*}
G(h)=h^{\alpha} . \tag{2}
\end{equation*}
$$

Proposition 1 World output is maximized when there is complete segregation by h, i.e.,

$$
Y \leq \int h^{1+\alpha} d M(h)
$$

Proof. Suppose that there is a location in the world where people are heterogeneous in h. Let the distribution at that location have measure $\mu(h)$, with mean \bar{h}. Let the total output at that location be

$$
y=G(\bar{h})\left(\int h d \mu\right)
$$

[^3]Then

$$
\frac{1}{\int d \mu} y=\bar{h} G(\bar{h})=\bar{h}^{1+a}=\left(\frac{\int h d \mu}{\int d \mu}\right)^{1+\alpha} \leq \frac{1}{\int d \mu} \int h^{1+\alpha} d \mu
$$

where the inequality follows because $d \mu / \int d \mu$ is a measure adding up to unity, and $h^{1+\alpha}$ is a convex function. Cancelling the multiplicative constant leaves us with

$$
y \leq \int h^{1+\alpha} d \mu
$$

and the inequality is strict if the support of μ has more than one point. Therefore no location can have heterogeneity of h.

This proposition suggests that there should be no mixing of skill levels through migration if the sole objective is to maximize world output. Obviously, the world is fairly segregated by skill. "Social justice" however could be attained without moving people around and, instead, by world-wide redistribution, i.e., foreign aid. Unfortunately extensive foreign aid programs, even though substantial and well-intentioned (2.3 trillion over the last five decades), have failed to alleviate poverty or to raise the standards of living in many of the poor nations. Easterly (2006) documents how the misdirection and mismanagement of foreign aid, due to perverse incentives and insufficient knowledge of local conditions, have resulted in waste rather than the relief of poverty. Therefore we focus on immigration as a means to achieve redistribution and social justice.

Proposition 1 generalizes to a world in which output equals, say, $G(\bar{h}) k^{\beta} h^{1-\beta}$. On its own, the free mobility of capital will not solve the problem faced by the social planner if, as Lucas (1990) claims, inequality originates in skill differences. The group effect makes factor prices proportional to G, so that they differ across geographic locations. Unlike the Hecksher-Ohlin model, factor prices can no longer be equalized via a flow of capital or goods alone. People must move so as to equalize $\bar{h} .{ }^{9}$

[^4]
3 Case 1: Two homogeneous countries

So far we have talked of an arbitrary number of locations, but now we specialize to two locations, or "countries", $i=A, B$, with skill levels h_{A} and h_{B}. The population of A is normalized to 1 , and the population of B to n. In each country there is just one productive input, human capital. In this situation, proposition 1 says that before migration we have efficiency. Migration, if any, occurs before production takes place. Each agent would wish to be where G is higher, since then his total wages would be higher there.

Let x denote the probability that a B-native will be allowed to move to A. We shall refer to x as the migration rate, and we denote the average post-migration h levels in A and B by \bar{h}_{A} and \bar{h}_{B} respectively. Then

$$
\begin{equation*}
\bar{h}_{A}=\frac{h_{A}+x n h_{B}}{1+x n}, \quad \text { and } \quad \bar{h}_{B}=h_{B} . \tag{3}
\end{equation*}
$$

Social welfare function and the planner's problem.-The planner is a Stackelberg leader. He announces a policy at the outset, and agents then choose their migration decisions and production takes place. Let θ and $(1-\theta)$ denote the welfare weights that the planner assigns to utilities of the residents of A and B, respectively. He then chooses x to solve the problem

$$
\max _{x}\left\{\theta U\left(G\left[\bar{h}_{A}\right] h_{A}\right)+(1-\theta) n\left[x U\left(G\left[\bar{h}_{A}\right] h_{B}\right)+(1-x) U\left(G\left[\bar{h}_{B}\right] h_{B}\right)\right]\right\} .
$$

Now assume

$$
\begin{equation*}
U(c)=\ln c \tag{4}
\end{equation*}
$$

Letting $g_{A}(x)=\ln G\left(\frac{h_{A}+x n h_{B}}{1+x n}\right)$ and $g_{B}=\ln G\left(h_{B}\right)$, the problem boils down to choosing x to maximize

$$
\begin{equation*}
W(x)=\theta g\left(\bar{h}_{A}\right)+(1-\theta) n\left[x g_{A}(x)+(1-x) g_{B}\right] \tag{5}
\end{equation*}
$$

subject to (3). The first-order condition is

$$
\begin{equation*}
W^{\prime}(x)=(\theta+[1-\theta] n x) g_{A}^{\prime}+(1-\theta) n\left(g_{A}-g_{B}\right)=0 \tag{6}
\end{equation*}
$$

Then

$$
W^{\prime \prime}(x)=(\theta+(1-\theta) n x) g_{A}^{\prime \prime}+2(1-\theta) n g_{A}^{\prime} .
$$

In that case,

$$
\begin{equation*}
W^{\prime \prime}(x)>0 \quad \text { iff } \quad \frac{g_{A}^{\prime \prime}}{g_{A}^{\prime}}<-\frac{2(1-\theta) n}{\theta+(1-\theta) n x} \tag{7}
\end{equation*}
$$

The Appendix proves the following result:

Figure 1: The bang-bang policy in (z, θ) space

Lemma 1 For any $\alpha>0$ in (2), $n>0$ and $\theta \in(0,1)$, if (6) holds, then (7) also does.

This result implies that the planner's problem cannot have an interior maximum. Rather, the planner's maximum is at a corner: Either $x=0$ or $x=1$.

Characterizing the bang-bang solution for x.-Define the initial, date-zero productivity of a B-native relative to that of an A-native by

$$
\text { Relative backwardness } \equiv z=\frac{h_{B}}{h_{A}}
$$

The optimal policy depends on how backward B is relative to A in terms of skills, and it also depends on n - the population of B relative to A. The following result, proved in the Appendix, is that the form of the optimal policy does not depend on α :

Proposition 2 The optimal policy is

$$
x=\left\{\begin{array}{c}
0 \quad \text { if } \theta>\frac{n\left(\ln z-\ln \left(\frac{1+n z}{1+n}\right)\right)}{(1-n) \ln \left(\frac{1+n z}{1+n}\right)+n \ln z}, \tag{8}\\
1 \quad \text { otherwise }
\end{array}\right.
$$

We plot the indifference locus for $n=1$ and $n=10$ in Figure 1 .
The planner is more inclined to a policy of immigration if B is poor, and if B is large in terms of population, though the latter is not a quantitatively important consideration. In the plot, the action $x=0$ is preferred in the North-East quadrant
and $x=1$ is preferred in the South-East quadrant. So, the planner chooses maximal immigration if he cares enough for B (low value of θ), and if B is poor enough (low value of z) and if B is large (high values of n). Empirically, $z=0.1$ is a good approximation to the average non-OECD income, which means, for $n=1$, (since in fact x is close to zero) that $\theta \geq 3 / 4$.

The lesson of this figure is that the "world's planner," if she exists, does not care much for B. Freedberg and Hunt's (1995) numbers tell us that we are, effectively, in the $x=0$ region. But, since z must be rather small - say $1 / 10$ - the action $x=0$ is optimal only if θ is at least 0.8 . In other words, this outcome we now have is incompatible with even approximately equal weights in the social welfare function.

4 Case 2: Two heterogeneous countries

We now assume that skills are heterogeneous in both countries. In general, the world's planner may wish to make immigration policy biased toward some groups in B, but within those groups she may impose neutrality - everyone within a group may then face the same probability of moving from B to A. This subsection poses the problem at this full level of generality. ${ }^{10}$

Let μ_{A} be the pre-migration mean skills in country A and let the human capital of A 's residents be distributed $h^{\sim} F_{A}(h)$. Let μ_{B} be the mean skills in country B and let the human capital of B 's residents be distributed $h^{\sim} F_{B}(h)$, with density function $f_{B}(h)$. Let

$$
x=\phi(h)
$$

be the probability that a type- h resident of B will be allowed to emigrate to A. That is, $\phi: R \rightarrow[0,1]$.

A skill-neutral policy is one in which ϕ is a constant, independent of h. Policies that are not skill neutral are skill biased. Generalizing their definitions in (3) second

[^5]period human capital per head in A is
\[

$$
\begin{equation*}
\bar{h}_{A}=\frac{\mu_{A}+n \int h \phi(h) d F_{B}(h)}{1+n \int \phi(h) d F_{B}(h)}, \tag{9}
\end{equation*}
$$

\]

and in B it is

$$
\begin{equation*}
\bar{h}_{B}=\frac{\int h[1-\phi(h)] d F_{B}(h)}{\int[1-\phi(h)] d F_{B}(h)} . \tag{10}
\end{equation*}
$$

Finally, migration must be voluntary: The migrant must earn more in the country of his or her destination than in the country of origin. This requires that $G\left(\bar{h}_{A}\right) \geq$ $G\left(\bar{h}_{B}\right)$, or simply that

$$
\begin{equation*}
\bar{h}_{A} \geq \bar{h}_{B} \tag{11}
\end{equation*}
$$

The planner's problem is to choose a function $\phi(h)$ to maximize

$$
\begin{equation*}
\theta \int U\left[G\left(\bar{h}_{A}\right) h\right] d F_{A}(h)+(1-\theta) n \int\left\{\phi(h) U\left(G\left[\bar{h}_{A}\right] h\right)+[1-\phi(h)] U\left(G\left[\bar{h}_{B}\right] h\right)\right\} d F_{B}(h) . \tag{12}
\end{equation*}
$$

subject to (9), (10), and (11).

4.1 The optimal policy

The rest of the paper will assume that $\mu_{A}>\mu_{B}$, that h has no upper bound in the supports of F_{A} and F_{B}, and that (4) holds. In this case, the optimal policy generally is skill-biased, and of the "bang-bang" type in the sense that within a group indexed by h, either everyone should migrate or no one should do so. Moreover, the set of types is connected in the sense that if type h_{0} is allowed to migrate, then either everyone with h below h_{0} is also allowed to migrate, or everyone above h_{0} is allowed to migrate. The first policy we call "skimming from the bottom" of the F_{B} distribution; under that policy there exists a cutoff, \tilde{h}, such that

$$
\phi(h)= \begin{cases}1 & \text { for } h<\tilde{h} \tag{13}\\ 0 & \text { for } h>\tilde{h}\end{cases}
$$

The second "skimming from the top," or simply a "brain-drain" policy:

$$
\phi(h)= \begin{cases}0 & \text { for } h<\tilde{h} \tag{14}\\ 1 & \text { for } h>\tilde{h}\end{cases}
$$

The point \tilde{h} is of measure zero and in each case we know only that $0 \leq \phi(\tilde{h}) \leq 1$, the planner being, in both cases, indifferent about whether \tilde{h} should migrate or not. The rest of this section will prove the following properties of the optimal policy

1. Whenever immigration is positive, it is always skill biased,
2. For θ sufficiently close to unity, the policy is of the form (14),
3. For $\theta<\frac{1}{2}$, the policy is of the form (13), and
4. For some θ 's satisfying $\frac{1}{2}<\theta<1$, the optimal policy may involve no migration.

The rest of this subsection is devoted to proving these claims. Before reading the proof, it is instructive to consider the special case when F_{A} and F_{B} are both log-normal as in Figure 3. The region of h-values for which $\phi=1$ is then the purpleshaded area in Figure 5. We now turn to the proof of proposition 2 and begin with the following lemma.

Lemma 2 When $U(c)=\ln c$, (12) reduces to

$$
\begin{equation*}
W \equiv \theta_{A}^{*} g\left(\bar{h}_{A}\right)+\theta_{B}^{*} g\left(\bar{h}_{B}\right) \tag{15}
\end{equation*}
$$

subject to (9) and (10), where

$$
\theta_{A}^{*}=\theta+(1-\theta) \omega n, \quad \theta_{B}^{*}=(1-\theta) n(1-\omega), \quad \text { and } \omega \equiv \int \phi(h) d F_{B} .
$$

Proof. Substituting for U and leaving out terms that do not depend on ϕ, (12) reads

$$
\begin{aligned}
& \theta \ln G_{A}+(1-\theta) n \int\left\{\phi(h)\left(g_{A}+\ln h\right)+(1-\phi[h])\left(g_{B}+\ln h\right)\right\} d F_{B} \\
= & \theta \ln G_{A}+(1-\theta) n \int\left\{\phi(h) g_{A}+(1-\phi[h]) g_{B}\right\} d F_{B}+(1-\theta) n \int h d F_{B} .
\end{aligned}
$$

But the last terms does not depend on ϕ and we are left with (15).
Assume that the density f_{B} exists for all h, and define

$$
z(h)=n f_{B}(h) \phi(h)
$$

to be the new control variable that satisfies $z(h): R \rightarrow\left[0, n f_{B}(h)\right]$ for all h. In terms of this control variable in (15) we have

$$
\bar{h}_{A}=\frac{\mu_{A}+\int h z(h) d h}{1+\int z(h) d h}, \quad \bar{h}_{B}=\frac{n \mu_{B}-\int h z(h) d h}{n-\int z(h) d h}, \quad \text { and } n \omega \equiv Z=\int z(h) d h .
$$

The constraint set for z is convex. We attach the multiplier λ_{0} to the non-negativity constraint, and the multiplier λ_{1} to the upper-bound constraint. The planner faces the Lagrangean

$$
\mathcal{L}=W+\int \lambda_{0}(h) z(h) d h-\int \lambda_{1}(h) z(h)
$$

The FOC is

$$
\begin{equation*}
\frac{\partial W}{\partial z(h)}=\lambda_{1}(h)-\lambda_{0}(h) \tag{16}
\end{equation*}
$$

where $\frac{\partial W}{\partial z(h)}$ is evaluated at the optimal policy, the latter consisting of an entire function z (.). Note that at most one multiplier can be non-zero and that

$$
\frac{\partial W}{\partial z(h)}=\left\{\begin{array}{l}
<0 \Longrightarrow \lambda_{0}(h)>0 \text { and } \phi(h)=0 \tag{17}\\
>0 \Longrightarrow \lambda_{1}(h)>0 \text { and } \phi(h)=1
\end{array}\right.
$$

Now let $\bar{n}_{A}=1+n \omega$ be the post-immigration population of A and $\bar{n}_{B}=n(1-\omega)$ the post-immigration population of B.

$$
\begin{align*}
\frac{\partial W}{\partial z(h)} & =\theta_{A}^{*} g^{\prime}\left(\bar{h}_{A}\right) \frac{h-\bar{h}_{A}}{\bar{n}_{A}}-\theta_{B}^{*} g^{\prime}\left(\bar{h}_{B}\right) \frac{h-\bar{h}_{B}}{\bar{n}_{B}}+(1-\theta)\left[g\left(\bar{h}_{A}\right)-g\left(\bar{h}_{B}\right)\right] \\
& =\alpha(1-\theta)\left[\ln \frac{\bar{h}_{A}}{h_{B}}+1-m+\left(\frac{m}{h_{A}}-\frac{1}{h_{B}}\right) h\right] . \tag{18}
\end{align*}
$$

where the second equality follows because $g(h)=\alpha \ln h$ and $g^{\prime}(h)=\alpha / h$, and where

$$
\begin{equation*}
m \equiv \frac{\theta+(1-\theta) Z}{(1-\theta)(1+Z)} \quad \text { and } \quad Z \equiv \int z(h) d h \tag{19}
\end{equation*}
$$

By (18), $\frac{\partial W}{\partial z(h)}$ is linear in $h,{ }^{11}$ which immediately shows that either (13) or (14) must hold, though possibly with $\tilde{h}=0$ or $\tilde{h}=+\infty$. That is, the policy is always bangbang. We now turn to the cases that arise for different values of θ. Before proceeding we assume that that there are enough unskilled people in B so that migration can equalize the average skills, that is $\bar{h}_{A}=\bar{h}_{B}$:
Assumption: There exists an $\hat{h}<\infty$ such that

$$
\begin{equation*}
\left(\bar{h}_{A}=\right) \frac{\mu_{A}+n \int_{0}^{\hat{h}} h d F_{B}(h)}{1+n F_{B}(\hat{h})}=\frac{\int_{\hat{h}}^{\infty} h d F_{B}(h)}{1-F_{B}(\hat{h})}\left(=\bar{h}_{B}\right) . \tag{20}
\end{equation*}
$$

Since $\bar{h}_{B}=E\left(h_{B} \mid h_{B} \geq \hat{h}\right), \hat{h}<\bar{h}_{B}$. But then, since $\bar{h}_{B}(\hat{h})=\bar{h}_{A}(\hat{h}), \hat{h}<\bar{h}_{A}$. The derivative of the LHS of (20) is $\frac{n f_{B}}{1+n F_{B}}\left(\hat{h}-h_{A}\right)<0$, whereas the derivative of the RHS is $-\frac{f_{B}}{1-F_{B}}\left(\hat{h}-h_{A}\right)>0$. The two sides of (20) are continuous, and at any solution the LHS must cut the RHS from above. Therefore if \hat{h} exists, it is unique.

The case $\theta=1$.-In this case the planner cares only about country A. The following policy is then optimal:

Proposition 3 For $\theta=1$, the optimal policy is characterized by (14), with $\tilde{h}=\bar{h}_{A}$.

[^6]Proof. As $\theta \rightarrow 1$ in (18)

$$
\frac{\partial W}{\partial z(h)} \rightarrow \alpha\left(\frac{1}{1+Z} \frac{1}{\bar{h}_{A}}\left(h-\bar{h}_{A}\right)\right) \gtreqless 0 \quad \text { as } \quad h \gtreqless \bar{h}_{A}
$$

and the claim follows.
Concavity of G implies that skill-biased policies help country A less than they harm country B. In spite of this, the planner would allow some immigration from B to A even if $\theta<1$ as long as θ is sufficiently close to 1 . When $\theta=1$, we found that as long as there are some natives of B with skills exceeding those of the average A-native, skill-biased immigration policies will always lead to positive immigration flows. By continuity, we expect this to be true even for some $\theta<1$, as long as θ is close enough to 1 .

The egalitarian case $\theta=0.5$.-Immigration flows from the low-skill low-wage region B to the high-skill high-wage region A. Now consider the policy that attains $\bar{h}_{A}=\bar{h}_{B}$, namely, (13), with \tilde{h} replaced by \hat{h}. Evaluated at $\bar{h}_{A}=\bar{h}_{B}$, (18) reads

$$
\begin{aligned}
\frac{\partial W}{\partial z(h)} & =\alpha(1-\theta)\left[1-m+\left(m \frac{\bar{h}_{B}}{\bar{h}_{A}}-1\right) \frac{h}{\bar{h}_{B}}\right] \\
& =\alpha(1-\theta)(1-m)\left(1-\frac{h}{\bar{h}_{B}}\right)=0
\end{aligned}
$$

because when $\theta=0.5$, we have $m=1$. This proves the following result: ${ }^{12}$
Proposition 4 For $\theta=0.5$, the policy (13), with $\tilde{h}=\hat{h}$ as defined in (20) is optimal. Furthermore the skill level of the marginal immigrant, $h_{m}=\bar{h}_{A}=\bar{h}_{B}$. This is a skim-the-bottom policy: Only the less-skilled are allowed emigrate.

The case $\theta<0.5$.-In this case the planner cares more for B. We restrict our analysis to the case where immigration is voluntary and flows from B to A. This implies that for the optimal policy (11) will bind in this case, i.e., $\bar{h}_{A}=\bar{h}_{B}$. We state this formally in Proposition 5 which is proved in the Appendix.

Proposition 5 For $\theta<0.5$ and $\tilde{h} \in[0, \hat{h}]$, there exists a unique optimal policy of the form (13) with $\tilde{h}=\tilde{h}^{*}=\hat{h}$. which implies that $\bar{h}_{A}\left(\tilde{h}^{*}\right)=\bar{h}_{B}\left(\tilde{h}^{*}\right)$ so that (11) binds.

[^7]

Figure 2: The world income distribution in 2000

We illustrate Propositions 4 and 5 with a calibrated example below. In that example it will be seen that the restriction made in Proposition 5 that $\tilde{h}^{*} \leq \hat{h}$ is in fact not binding. This is seen by comparing the first panel of Figure 5 with the third panel. In the third panel we see that \bar{h}_{A} and \bar{h}_{B} (intersect at $\hat{h} \approx \$ 12,000$, whereas in the top panel we see that \tilde{h}^{*} never reaches $\$ 7000$.

The interval $\theta \in\left(\frac{1}{2}, 1\right)$ is not covered by the above analysis. Our simulated example shows that there may be θ s in that region such that there is no immigration whatsoever: On the one hand, allowing a skilled marginal immigrant would, for those $\theta \mathrm{s}$, not benefit the natives of A sufficiently to offset the negative brain-drain effect. On the other hand, allowing an unskilled immigrant to emigrate from B does not generate enough benefit to offset the negative externality in A through the lower \bar{h}_{A}.

5 Calibration and simulation

We now wish to illustrate the optimal policy for various hypothetical values of θ, and for realistic F_{A} and F_{B}. We choose "country A" to be the OECD which we shall think of as the developed world. "Country B" will then be the rest of the world. Sala-iMartin (2006) reports the world distribution in the year 2000, and how it comprises the distributions of income in individual countries. We reproduce these distributions in Figure 2, which shows them to be roughly log-normal in form.

We observe the distribution of income y for each citizen, which we approximate

Figure 3: Calibrated distributions of A and B
as follows by a log-normal distribution:

$$
\begin{aligned}
\mu_{O E C D}(\log y) & =\ln 20,000, & & \sigma_{O E C D}(\log y)=\ln 2 \\
\mu_{\text {Rest }}(\log y) & =\ln 2,000, & & \sigma_{\text {Rest }}(\log y)=\ln 2.5
\end{aligned}
$$

These are portrayed in Figure 3. The following equation identifies \bar{h} :

$$
E(y)=\exp \left(\mu+\sigma^{2} / 2\right)=G(\bar{h}) E(h)=\bar{h}^{\alpha+1} \Longrightarrow \bar{h}_{A}=\exp \left(\frac{\mu+\sigma^{2} / 2}{1+\alpha}\right)
$$

To infer the human capital, h, of a citizen with income y, we invert the equation $y=G(\bar{h}) h=\bar{h}^{\alpha} h$ to get $h=y \bar{h}^{-\alpha}$, i.e., $\ln h=\ln y-\alpha \ln \bar{h}$

Figure 4 plots the RHS of the FOC (18) at the status-quo point at which $Z=0$, i.e. the point at which there is no migration. The vertical axis measures the marginal benefit of allowing a migrant in; the benefit depends on the migrant's level of h. The figure shows that for some values of θ - say around $\theta=0.8$, the marginal benefit of migration is negative at all levels of migration. Because the first-order condition is linear in h, the gain to migrating a worker of type h is either decreasing or increasing in h depending on the sign of $\frac{\theta}{h_{A}}-\frac{1-\theta}{h_{B}}$.

The brain-drain region $\theta \in\left[\theta_{\mathrm{BD}}, 1\right]$ - The slope of the FOC changes sign at

$$
\theta_{\mathrm{BD}}=\frac{1}{1+\bar{h}_{B} / \bar{h}_{A}} \approx 0.88 \text { in the calibrated example }
$$

Figure 4: The first-order condition at the status quo
where BD is for brain-drain: If (as is the case in this calibration) F_{B} has unbounded support, then for any $\theta>\theta_{B D}$, some very smart B-people should go to A, and there will be a brain drain.

The skim-the-bottom region of $\theta \in\left[0, \theta_{\mathrm{SB}}\right]$.-There is another threshold, call it θ_{SB}, below which country A will only receive low- h types. Suppose that the lowest level of h in the support of F_{B} is zero (as, again, is the case in the calibration). Then as shown in Figure 5,

$$
\theta_{\mathrm{SB}}=\frac{1+C}{2+C} \approx 0.71
$$

where $C=\ln \left(\bar{h}_{A} / \bar{h}_{B}\right)$. This is also apparent in Figure 4 in which the FOC for $\theta=0.7$ barely crosses the zero axis in the neighborhood of zero.

The inaction region $\theta \in\left(\theta_{\mathrm{SB}}, \theta_{\mathrm{BD}}\right)$.-In this region, efficiency losses stemming from the mixing (see Proposition 1) overwhelm the redistributive gains. It is not worth moving the high-skilled B-natives to A because, while this would raise $G\left(\bar{h}_{A}\right)$, it would reduce $G\left(\bar{h}_{B}\right)$ by too much. At these intermediate θ 's, it is not that the planner does not value the A-natives; he simply values the B-natives too much to allow a brain drain from B to occur.

The optimal policy.-The optimal policy is described in Figure 5. The purple area is the set of people who can move under the optimal policy. The vertical axis in Panel 1 measures $G\left(\mu_{A}\right) h$, the wage that a migrant of type h would earn in country
A assuming that no one else was allowed to move so that average skills in A were at their pre-migration (i.e., current) level of μ_{A}. For $\theta \leq 0.71$, the unskilled B-natives migrate to A, and for $\theta \geq 0.89$, the skilled B-natives migrate. In between, migration is zero.

The numbers moving are huge. At $\theta=0.5$, more than half of the B-natives would optimally be moved to A. By comparison, the numbers migrating at high levels of θ are tiny - not much more than the top percentile of h in country B would be allowed to migrate when $\theta=1$.

6 Extension to two skills

The main point is that migration is a powerful tool for raising the welfare of the poor countries survives the extension of the model to two skills. We shall, however, confirm the conclusion we reached in the earlier sections that a selfish policy induces a brain drain from the poor countries.

If a country has inputs (S, U), and exogenous efficiency parameter x, its output is

$$
\begin{equation*}
Y=x U^{(1-\beta)} S^{\beta} S^{\gamma} \tag{21}
\end{equation*}
$$

where S^{γ} is an external effect operating through skilled human capital. The wages of the skilled and unskilled in that country are

$$
\begin{equation*}
w_{S}=x \beta U^{1-\beta} S^{\beta+\gamma-1} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{U}=x(1-\beta) U^{-\beta} S^{\beta+\gamma} \tag{23}
\end{equation*}
$$

Also define pre-migration total efficiency units by $S_{A}^{0}, U_{A}^{0}, S_{B}^{0}$, and U_{B}^{0}, and their post-migration levels by

$$
S_{A}=S_{A}^{0}+\tilde{S}, U_{A}=U_{A}^{0}+\tilde{U}, S_{B}=S_{B}^{0}-\tilde{S}, \text { and } U_{B}=U_{B}^{0}-\tilde{U}
$$

Thus the Planner's decisions are (\tilde{S}, \tilde{U}). Denote pre-migration wages by \bar{w}_{j}^{i} for $i=A, B$ and $J=S, U$.

When $\theta=1$, the Planner maximizes $W=\int U\left[w_{S}^{A} s\right] d H^{A}(s)+\int U\left[w_{U}^{A} u\right] d F^{A}(u)$, but if $U(c)=\ln c$, the terms involving s and u drop out and we are left with $W=$ $n_{S}^{A} \ln w_{S}^{A}+n_{U}^{A} \ln w_{U}^{A}$. After dropping the constants the Planner faces the problem of choosing (\tilde{S}, \tilde{U}) to maximize

$$
\begin{align*}
W= & n_{S}^{A}\left[(\beta+\gamma-1) \ln \left(S_{A}^{0}+\tilde{S}\right)+[1-\beta] \ln \left(U_{A}^{0}+\tilde{U}\right)\right] \tag{24}\\
& +n_{U}^{A}\left[(\beta+\gamma) \ln \left(S_{A}^{0}+\tilde{S}\right)-\beta \ln \left(U_{A}^{0}+\tilde{U}\right)\right]
\end{align*}
$$

Optimal migration: Type of migrants

Optimal migration: Number of migrants

Optimal migration: Human capital after migration

Figure 5: THE OPTIMAL POLICY

To this we add the incentive-compatibility constraint that immigration flows have to be voluntary:

$$
\begin{equation*}
\tilde{S}\left(w_{S}^{A}-w_{S}^{B}\right) \geq 0, \text { and } \tilde{U}\left(w_{U}^{A}-w_{U}^{B}\right) \geq 0 \tag{25}
\end{equation*}
$$

for all (s, u). That is flows can be positive only if wages in A exceed those in B.
The 3 Propositions are based on the following 3 observations

1. W is increasing in \tilde{S} iff

$$
\begin{equation*}
\frac{1-\beta-\gamma}{\beta+\gamma}<\frac{n_{U}^{A}}{n_{S}^{A}} \tag{26}
\end{equation*}
$$

Note that the LHS can be negative; we do not need to restrict it. Indeed (26) is likely to hold for in fact, the wage bill of the skilled being roughly twice that of the unskilled leads to a value of β of around $2 / 3$ and even with modest external effects documented by Basu and Fernald (1997) or the larger ones that Griliches (1992) describes more generally, the LHS of (26) is at most 0.25 , whereas the RHS is at least one.
2. W is increasing in \tilde{U} iff

$$
\begin{equation*}
\frac{n_{U}^{A}}{n_{S}^{A}}<\frac{1-\beta}{\beta} \tag{27}
\end{equation*}
$$

The LHS is around one, whereas the RHS is around 0.5 , and so (27) is violated and so, for the same reason, is (28).
3. W is increasing in both \tilde{S} and \tilde{U} if (28) holds. Since the LHS of (26) is no greater than the RHS of (27), either (26) holds or (27) holds, or both. Indeed, (26) and (27) both hold if

$$
\begin{equation*}
\frac{1-\beta-\gamma}{\beta+\gamma}<\frac{n_{U}^{A}}{n_{S}^{A}}<\frac{1-\beta}{\beta} \tag{28}
\end{equation*}
$$

Then we have the following 3 results, the first two following directly from the above.

Proposition 6 Suppose (26) holds, but not (27). Then (i) if $\bar{w}_{S}^{A} \leq \bar{w}_{S}^{B}$ there is no migration at all and (ii) $\bar{w}_{S}^{A}>\bar{w}_{S}^{B}$, only the skilled migrate from B to A up to the point where $w_{S}^{A}=w_{S}^{B}$.

Proposition 7 Suppose (27) holds, but not (26). Then (i) if $\bar{w}_{U}^{A} \leq \bar{w}_{U}^{B}$ there is no migration at all and (ii) $\bar{w}_{U}^{A}>\bar{w}_{U}^{B}$, only the unskilled migrate from B to A up to the point where $w_{U}^{A}=w_{U}^{B}$.

Proposition 8 Suppose (28) holds. Then if $x_{A}>x_{B}$, the optimal policy everyone in B moves to A.

Figure 6: The brain drain: migration of the skilled from B to A
Proof. From (24) and point 3, we know that domestic welfare is maximized if everyone moves. The only concern is that it is incentive compatible. But because the proposed equilibrium is for everyone to be in A , there will be no one left in B , and therefore a deviation from this equilibrium clearly cannot be made unilaterally because it would imply starvation. This by itself would, in non-cooperative situations, be enough. But we can show more. We shall show that everyone being in A is in the core. No coalition of agents could split off and decide to stay in B. Let (\hat{S}, \hat{U}) be such a coalition of efficiency units. By staying in A, total earnings of this coalition would be $w_{S}^{A} \hat{S}+w_{U}^{A} \hat{U}$, whereas if they were to split off they could earn a total of $x_{B} \hat{S}^{\beta+\gamma} \hat{U}^{\gamma}$. Therefore we need to show that

$$
\begin{equation*}
x_{B} \hat{S}^{\beta+\gamma} \hat{U}^{\gamma} \leq w_{S}^{A} \hat{S}+w_{U}^{A} \hat{U} \tag{29}
\end{equation*}
$$

for all (\hat{S}, \hat{U}).
Now by Euler's Theorem, since (21) is homogeneous of degree 1,

$$
w_{S}^{A} \hat{S}+w_{U}^{A} \hat{U}=x_{A} \hat{S}^{\beta+\gamma} \hat{U}^{\gamma}>x_{B} \hat{S}^{\beta+\gamma} \hat{U}^{\gamma}
$$

the inequality following because $x_{A}>x_{B}$. Therefore (29) holds and we're done
This policy determines (\tilde{S}, \tilde{U}), but not the identity of the movers. Lexicographically, however, the planner would move the least able agents. That is he would move all the $s \leq \tilde{s}$ and $u \leq \tilde{u}$, which satisfy

$$
\int_{0}^{\tilde{s}} \psi(s) s d H^{B}(s)=\tilde{S} \quad \text { and } \quad \int_{0}^{\tilde{u}} \phi(u) u d F^{B}(u)=\tilde{U}
$$

Therefore the skimming from the top conclusion is not robust, but we retain the brain-drain conclusion because it is the skilled that should migrate.

Figure 7: Possible migration of the unskilled from B to A

We illustrate Proposition 6 in Figure 6 for the case where $\gamma=0$. Then the incentive-compatibility constraints can be expressed purely as a function of the ratios $r_{j}=S_{j} / U_{j}$. In particular, the wages of the skilled are equalized at the point where

$$
r_{B}=\left(\frac{x_{B}}{x_{A}}\right)^{1 /(1-\beta)} r_{A}
$$

This constraint is the red line, which is below the 45^{0} line because $x_{A}>x_{B}$. Similarly, the wages of the unskilled are equalized at the point where

$$
r_{B}=\left(\frac{x_{A}}{x_{B}}\right)^{1 / \beta} r_{A}
$$

which is above the 45^{0} line.
In terms of Figure 6, Proposition 6 states that either (i) we start at a point like P in which case the Planner cannot get the skilled in country B to move voluntarily because their wages would be lower in country A or (ii) we start at a point such as Q, in which case the Planner gets some skilled agents to move, until we reach point R.

In terms of Figure 7, Proposition 7 states that either (i) we start at a point like P in which case the Planner cannot get the unskilled in country B to move voluntarily because their wages would be lower in country A or $(i i)$ we start at a point such as Q, in which case the Planner gets some unskilled agents to move, until we reach point R.

7 The price of high morals in A

If people's skills differ because of poor endowments and not on conscious investment choices, then a low-skill person is not at fault for not being high skilled. Arguably, then, a skill-neutral immigration policy is more "just" because it gives every agents in the poor countries an equal chance to migrate, regardless of his or her skill. The host country, however, generally prefers to admit high-skilled immigrants. We end the analysis by asking how much the host country loses by making its immigration policy skill neutral so that every B-native has the same chance of migrating to A.

In a brain-drain policy, Country A chooses the lowest acceptable level of immigrant skills. Let $\gamma\left(h_{m}\right)=n\left[1-F_{B}\left(h_{m}\right)\right]=$ the number of immigrants when the marginal immigrant has ability h_{m}. Then Proposition 3 says that the optimal skill-biased policy yields country A average skill of

$$
\bar{h}\left(h_{m}\right)=\frac{\mu_{A}+\gamma\left(h_{m}\right) E\left(h_{m} \mid h \geq h_{m}\right)}{1+\gamma\left(h_{m}\right)}
$$

Under the skill-neutral policy, by contrast, the mean ability of the immigrants is not $E\left(h_{m} \mid h \geq h_{m}\right)$ but μ_{B}. If that policy admits the same number of people (i.e., $\gamma\left(h_{m}\right)$ people), the post-immigration average skills in A would be

$$
H\left(h_{m}\right)=\frac{\mu_{A}+\gamma\left(h_{m}\right) \mu_{B}}{1+\gamma\left(h_{m}\right)} .
$$

Then the price of high morals is then the difference in the domestic efficiency wage (i.e., the difference in G) under the two policies:

$$
P\left(h_{m}\right) \equiv \bar{h}\left(h_{m}\right)-H\left(h_{m}\right)=\frac{\gamma\left(h_{m}\right)}{1+\gamma\left(h_{m}\right)}\left[E\left(h \mid h \geq h_{m}\right)-\mu_{B}\right] \geq 0
$$

If the support of F_{B} (the skill distribution in B) is $\left[h_{\min }, h_{\max }\right]$, i.e., a bounded interval, then $P(h)$ is an inverted-U-shaped curve, starting at zero when $h=h_{\text {min }}$ and ending at zero when $h=h_{\max }$. Even some unbounded distributions have this property as long as the tail is not too thick.

The price of morals in the Pareto case.-This distribution allows us to calculate the price analytically. Let the distribution in country B be

$$
\begin{equation*}
F_{B}(h)=1-\left(\frac{h}{h_{\min }}\right)^{-\rho}, \tag{30}
\end{equation*}
$$

in which case $E(\tilde{h} \mid \tilde{h} \geq h)=\frac{\rho}{\rho-1} h \quad$ and $\quad \gamma(h)=\left(\frac{h}{h_{\text {min }}}\right)^{-\rho}$. Then $E(\tilde{h} \mid \tilde{h} \geq h)-$ $\mu_{B}=\frac{\rho}{\rho-1}\left(h-h_{\min }\right)$, and therefore

$$
P(h)=\frac{1}{1+\left(\frac{h}{h_{\min }}\right)^{\rho}} \frac{\rho}{\rho-1}\left(h-h_{\min }\right) \geq 0 .
$$

Figure 8: The price of morals for the Pareto case (30) with $h_{\text {min }}=1$

Figure 8 take the case $h_{\min }=1$ and plot the result for two values of ρ. The bigger is ρ, the smaller is the advantage of the skill-biased policy. This makes sense because the variance of the Pareto distribution decreases with ρ, and in the limit, as $\rho \rightarrow \infty$ all the B-natives become alike. Also, the right tail of the Pareto is thicker for lower values of ρ.

While skill-neutral policies sound good "in principle," they do not maximize welfare. Even if migration is the only redistributive tool - and that is what we have been assuming in this paper - skill-biased policies do better for the natives of the host country.

8 Conclusion

Egalitarian optimal immigration policy from the world perspective, taking into account the economic costs of immigration to the host and source countries, may still require a significant and abrupt relaxation of the restrictive immigration policies currently imposed by the rich countries. With increasing globalization, the third world countries are likely to acquire a greater voice and request greater access to world labor markets. It will probably become harder for richer countries to justify their non-discriminatory and redistributive welfare policies at home, while denying access to their labor markets to citizens of poorer countries, basing the exclusion simply on ethnicity and nationality ${ }^{13}$. While the deep contradictions between the democratic values of the West and the limitations on free access to world labor markets based on nationality have only recently began to surface, they are likely to become in-

[^8]creasingly apparent in the future, and enter political discourse through international organizations like the UN or the World Bank. Political negotiations and compromises, however, may at best yield a gradual relaxation of restrictions on labor mobility, as in the case of a slowly expanding EU or the phased legalization of illegal immigrants in the US, rather than an abrupt switch to free immigration that an egalitarian parametrization of our model suggests.

References

[1] Acemoglu, Daron and Joshua Angrist. "How Large are the Social Returns to Education: Evidence from Compulsory Schooling Laws," in Ben Bernanke and Kenneth Rogoff (Editors), NBER Macroeconomic Annual 2000, pp. 9-59.
[2] Basu, Susanto and John Fernald. "Returns to Scale in U.S. Production: Estimates and Implications." Journal of Political Economy 105, no. 2. (April 1997): 249-83.
[3] Benhabib, Jess. "On The Political Economy of Immigration," European Economic Review 40 (1996): 1737-44.
[4] Borjas, George. "The Labor Demand Curve Is Downward Sloping: Reexamining the Impact of Immigration on the Labor Market," Quarterly Journal of Economics 118 (November 2003): 1335-74.
[5] Borjas, George and Lawrence Katz, "The Evolution of the Mexican-Born Workforce in the United States," NBER WP \#11281, Cambridge, April 2005.
[6] Card, David, "Is the New Immigration Really So Bad?" The Economic Journal 115 (November 2005): F300-F23
[7] Butcher, Kristin and Anne Morrison Piehl. "Recent Immigrants: Unexpected Implications for Crime and Incarceration," Industrial and Labor Relations Review 51, no. 4 (1998): 654-79.
[8] Clark, Gregory. "Why Isn't the Whole World Developed? Lessons from the Cotton Mills." Journal of Economic History 47, no. 1 (March 1987): 141-73.
[9] Ciccone Antonio and Giovanni Peri. "Identifying Human Capital Externalities: Theory with Applications", Review of Economic Studies 73 (2006): 381-412.
[10] Coleman, James. "Social Capital in the Creation of Human Capital" American Journal of Sociology 94, Supplement: Organizations and Institutions: Sociological and Economic Approaches to the Analysis of Social Structure (1988): S95-S120.
[11] Coleman, Jules, and Sarah Harding. 1995. "Citizenship, the Demands of Justice, and the Moral Relevance of Political Borders." In Schwartz (1995).
[12] Easterly, William. The White Man's Burden: Why The West's Efforts To Aid the Rest Have Done So Much Ill and So Little Good. Penguin Press, New York, 2006.
[13] Friedberg, Rachel, and Jennifer Hunt. "The Impact of Immigrants on Host Country Wages, Employment and Growth." Journal of Economic Perspectives 9, no. 2 (Spring, 1995): 23-44.
[14] Griliches, Zvi. "The Search for R\&D Spillovers." Scandinavian Journal of Economics 94 (1992): S29-S47.
[15] Lucas, Robert E., Jr. "On the Mechanics of Economic Development." Journal of Monetary Economics 22, no. 1 (1988): 3-42.
[16] Lundborg, Per, and Paul S. Segerstrom, "The Growth and Welfare Effects of International Mass Migration." Journal of International Economics 56 (2002), 177-204.
[17] Moretti Enrico "Estimating the Social Return to Higher Education: Evidence from Longitudinal and Repeated Cross-Sectional Data," Journal of Econometrics 121, no. 1 (2004): 175-212.
[18] National Research Council. "The New Americans: Economic, Demographic, and Fiscal Effects of Immigration." National Academy Press. Washington, D.C., 1997.
[19] Ortega, Francesc, "Immigration Policy and Skill Upgrading," Journal of Public Economics 89 (2005): 1841-63.
[20] Peri, Giovanni, and Gianmarco Ottaviano. "Rethinking the Effects of Immigration on Wages," NBER WP \#12497, Cambridge, 2006.
[21] Peri, Giovanni, and Susana Iranzo. "Schooling Externalities, Technology and Productivity: Theory and Evidence from U.S. States," NBER WP \#12440, Cambridge, 2006.
[22] Rauch James E. "Productivity Gains from Geographic Concentration of Human Capital: Evidence from the Cities" Journal of Urban Economics 34, Issue 3 (November 1993): 380-400.
[23] Sala-i-Martin, Xavier. "The World Distribution of Income." Quarterly Journal of Economics 121, no 2 (May 2006): 351-97.
[24] Schwartz, Warren (ed.). Justice in Immigration. Cambridge: Cambridge University Press, 1995.
[25] Trebilcock, Michael. "The Case for a Liberal Immigration Policy." in Schwartz (1995).

9 Appendix

9.0.1 Proof of Lemma 1

The proof consists of showing that if (6) holds, then (7) also does. Since $g_{A}=$ $\alpha\left(\ln \left(h_{A}+n x h_{B}\right)-\ln (1+n x)\right)$, Therefore,

$$
\frac{1}{\alpha} g_{A}^{\prime}(x)=\frac{n}{z^{-1}+n x}-\frac{n}{1+n x}<0
$$

and

$$
\frac{1}{\alpha} g_{A}^{\prime \prime}(x)=\frac{d}{d x}\left(\frac{n}{z^{-1}+n x}-\frac{n}{1+n x}\right)=\left(-\left(\frac{n}{z^{-1}+n x}\right)^{2}+\left(\frac{n}{1+n x}\right)^{2}\right)>0
$$

Therefore

$$
\begin{aligned}
\frac{g_{A}^{\prime \prime}}{g_{A}^{\prime}} & =\frac{\left(-\left(\frac{n}{z^{-1}+n x}\right)^{2}+\left(\frac{n}{1+n x}\right)^{2}\right)}{\frac{n}{z^{-1}+n x}-\frac{n}{1+n x}} \\
& =\frac{\left[\left(\frac{n}{1+n x}\right)-\left(\frac{n}{z^{-1}+n x}\right)\right]\left[\left(\frac{n}{1+n x}\right)+\left(\frac{n}{z^{-1}+n x}\right)\right]}{\frac{n}{z^{-1}+n x}-\frac{n}{1+n x}} \\
& =-\left[\left(\frac{n}{1+n x}\right)+\left(\frac{n}{z^{-1}+n x}\right)\right] .
\end{aligned}
$$

Since

$$
\begin{align*}
g_{A}-g_{B} & =\alpha \ln \left(\frac{h_{A}+n x h_{B}}{1+n x}\right)-\alpha \ln h_{B} \tag{31}\\
& =\alpha \ln \left(\frac{h_{A}+n x h_{B}}{(1+n x) h_{B}}\right)
\end{align*}
$$

so that

$$
\frac{g_{A}-g_{B}}{g_{A}^{\prime}}=\frac{\alpha \ln \left(\frac{\left(\frac{h_{A}}{h_{B}}+n x\right)}{(1+n x)}\right)}{\alpha\left(\frac{n}{z^{-1}+n x}-\frac{n}{1+n x}\right)}=\frac{\ln \left(\frac{\left(z^{-1}+n x\right)}{(1+n x)}\right)}{\left(\frac{n}{z^{-1}+n x}-\frac{n}{1+n x}\right)}
$$

Now from the definitions of h_{A}, h_{B}, and g_{A},

$$
\begin{aligned}
\frac{g_{A}^{\prime \prime}}{g_{A}^{\prime}} & =\frac{\left(-\left(\frac{n}{z^{-1}+n x}\right)^{2}+\left(\frac{n}{1+n x}\right)^{2}\right)}{\frac{n}{z^{-1}+n x}-\frac{n}{1+n x}} \\
& =\frac{\left[\left(\frac{n}{1+n x}\right)-\left(\frac{n}{z^{-1}+n x}\right)\right]\left[\left(\frac{n}{1+n x}\right)+\left(\frac{n}{z^{-1}+n x}\right)\right]}{\frac{n}{z^{-1}+n x}-\frac{n}{1+n x}} \\
& =-\left[\left(\frac{n}{1+n x}\right)+\left(\frac{n}{z^{-1}+n x}\right)\right] .
\end{aligned}
$$

So, for (7) to hold, one needs that

$$
-\left[\left(\frac{n}{1+n x}\right)+\left(\frac{n}{z^{-1}+n x}\right)\right]<-\frac{2(1-\theta) n}{\theta+(1-\theta) n x}
$$

or that

$$
\frac{1}{2}\left[\left(\frac{1}{1+n x}\right)+\left(\frac{1}{z^{-1}+n x}\right)\right]>\frac{(1-\theta)}{\theta+(1-\theta) n x}=\frac{1}{\frac{\theta}{1-\theta}+n x}
$$

Now (6) implies $\frac{\theta}{(1-\theta)}=-\left(n\left(\frac{g_{A}-g_{B}}{g_{A}^{\prime}}\right)+n x\right)$, which is equivalent to

$$
\frac{1}{2}\left[\left(\frac{1}{1+n x}\right)+\left(\frac{1}{z^{-1}+n x}\right)\right]>\frac{1}{-\left(n\left(\frac{g_{A}-g_{B}}{g_{A}^{\prime}}\right)+n x\right)+n x}
$$

or, from (31), to

$$
\frac{1}{2}\left[\left(\frac{1}{1+n x}\right)+\left(\frac{1}{z^{-1}+n x}\right)\right]>\frac{1}{-n\left(\frac{g_{A}-g_{B}}{g_{A}^{\prime}}\right)}=\frac{-1}{\frac{\ln \left(\frac{\left(z^{-1}+n x\right)}{(1+n x)}\right)}{\left(\frac{1}{z^{-1}+n x}-\frac{1}{1+n x}\right)}}=\frac{-\left(\frac{1}{z^{-1}+n x}-\frac{1}{1+n x}\right)}{\ln \left(\frac{\left.z^{-1}+n x\right)}{(1+n x)}\right)}
$$

Now, this condition can be re-written as

$$
\begin{aligned}
\ln \left(\frac{\left(z^{-1}+n x\right)}{(1+n x)}\right) & >\frac{2\left(\frac{1}{1+n x}-\frac{1}{z^{-1}+n x}\right)}{\left[\left(\frac{1}{1+n x}\right)+\left(\frac{1}{z^{-1}+n x}\right)\right]}=2 \frac{\left(\frac{1}{1+n x}\right)^{2}-\left(\frac{1}{z^{-1}+n x}\right)^{2}}{\left(\left(\frac{1}{1+n x}\right)+\left(\frac{1}{z^{-1}+n x}\right)\right)^{2}} \\
\ln \left(\frac{1}{(1+n x)}\right)-\ln \left(\frac{1}{\left(z^{-1}+n x\right)}\right) & >\frac{2\left(\frac{1}{1+n x}-\frac{1}{z^{-1}+n x}\right)}{\left[\left(\frac{1}{1+n x}\right)+\left(\frac{1}{z^{-1}+n x}\right)\right]},
\end{aligned}
$$

or, if we write $A=\frac{1}{(1+n x)}$ and $B=\frac{1}{\left(z^{-1}+n x\right)}$, to

$$
\ln (A)-\ln (B)=\ln \left(\frac{A}{B}\right)>2\left(\frac{A-B}{A+B}\right)=2 \frac{\frac{A}{B}-1}{\frac{A}{B}+1}
$$

That is, we need, for all $y>1$

$$
\ln y>2 \frac{y-1}{y+1}
$$

The LHS and RHS are both zero at $y=1$. Therefore it's enough to show that the first derivative of the LHS is more positive than the first-derivative of the RHS for all y. That is, we are done if we can show that

$$
\begin{aligned}
\frac{1}{y} & >2\left(\frac{1}{y+1}-\frac{y-1}{(y+1)^{2}}\right)=\frac{2}{y+1}\left(1-\frac{y-1}{y+1}\right) \\
& =\frac{2}{y+1}\left(\frac{y+1-y+1}{y+1}\right)=\frac{4}{(y+1)^{2}}
\end{aligned}
$$

So, we need to show that $(y+1)^{2}>4 y$, or that $y^{2}+2 y+1>4 y$, or that $y^{2}+1>2 y$. Now, the LHS and the RHS both equal 2 when $y=1$, but the derivative of the LHS, $2 y$, always exceeds the derivative of the RHS. Therefore (7) holds.

9.0.2 Proof of Proposition 2

If the claim is true, the point of indifference is where $\theta=\frac{n\left(\ln z-\ln \left(\frac{1+n z}{1+n}\right)\right)}{(1-n) \ln \left(\frac{1+n z}{1+n}\right)+n \ln z}$. We shall now show this is so. This is the curve in (θ, z)-space at which the expression (5) is the same at $x=1$ and at $x=0$. It is the set of (θ, z) pairs at which

$$
\theta g(\bar{h}[0])+(1-\theta) n\left[g(\bar{h}[0])+g\left(\bar{h}_{B}\right)\right]=\theta g(\bar{h}[1])+(1-\theta) n g(\bar{h})
$$

if

$$
G^{\theta} G^{*(1-\theta) n}=G^{\theta+(1-\theta) n}
$$

Now take $G(\bar{h})=\bar{h}^{\alpha}$. Then for $x=0, G=h^{\alpha}, G^{*}=\left(\bar{h}_{B}\right)^{\alpha}$ and for $x=1$ $G=\left(\frac{h+n h^{*}}{1+n}\right)^{\alpha}$. Therefore along the boundary

$$
\begin{aligned}
h^{\alpha \theta}\left(h^{*}\right)^{\alpha(1-\theta) n} & =\left(\frac{h+n h^{*}}{1+n}\right)^{\alpha(\theta+(1-\theta) n)} \\
\left(\frac{h^{*}}{h}\right)^{-\alpha \theta}\left(h^{*}\right)^{\alpha(\theta+(1-\theta) n)} & =\left(\frac{1+n \frac{h^{*}}{h}}{1+n}\right)^{\alpha(\theta+(1-\theta) n)}(h)^{\alpha(\theta+(1-\theta) n)} \\
z^{(1-\theta) n} & =\left(\frac{1+n z}{1+n}\right)^{\alpha(\theta+(1-\theta) n)}
\end{aligned}
$$

or

$$
\begin{aligned}
(1-\theta) n \ln z & =(\theta+(1-\theta) n) \ln \left(\frac{1+n z}{1+n}\right) \\
n \ln z-n \ln \left(\frac{1+n z}{1+n}\right) & =\theta\left((1-n) \ln \left(\frac{1+n z}{1+n}\right)+n \ln z\right)
\end{aligned}
$$

from which the claim follows.

9.0.3 Proof of Proposition 5

Proof. For a policy that allows mobility if and only if $h \leq \tilde{h}$, we have

$$
\bar{h}_{A}(\tilde{h}) \equiv \frac{\mu_{A}+n \int_{0}^{\tilde{h}} h d F_{B}(h)}{1+n F_{B}\left(h^{*}\right)}, \quad \text { and } \quad \bar{h}_{B}(\tilde{h}) \equiv \frac{\int_{\tilde{h}}^{\infty} h d F_{B}(h)}{1-F_{B}\left(h^{*}\right)} .
$$

Let

$$
Q(\tilde{h}) \equiv \frac{\bar{h}_{A}(\tilde{h})}{\bar{h}_{B}(\tilde{h})}
$$

Since the policy (13) is indexed by a single number, the critical bound, \tilde{h}, we can write the criterion as $W(\tilde{h}, h)$, i.e., as a function of the real number \tilde{h}. Now, as we did in (18), we perform a variation in the entire function $z(h)$ around the hypothesized optimum

$$
z(h)= \begin{cases}n f_{B}(h) & \text { for } h<\tilde{h} \\ 0 & \text { for } h>\tilde{h}\end{cases}
$$

For this class of bang-bang policies we can write (18) as a function of \tilde{h} and h :

$$
\begin{align*}
\frac{\partial W}{\partial z(h)} & \left.=\Psi(\tilde{h}, h)=\alpha(1-\theta)\left[\ln Q(\tilde{h})+1-\frac{h}{\bar{h}_{B}(\tilde{h})}-m\left(1-\frac{h}{\bar{h}_{A}(\tilde{h})}\right)\right] 32\right) \\
& =\alpha(1-\theta)\left[\ln \frac{\bar{h}_{A}}{\bar{h}_{B}}+1-m+\left(\frac{m}{\bar{h}_{A}}-\frac{1}{\bar{h}_{B}}\right) h\right] \tag{33}
\end{align*}
$$

Now for $\theta<0.5$, and the interval $\tilde{h} \in[0, \hat{h}]$ we have $\bar{h}_{A}(\tilde{h}) \geq \bar{h}_{B}(\tilde{h})$, it follows that $Q(\tilde{h}) \geq 0$. Furthermore, for $\theta<0.5, m<1$. Therefore for any \tilde{h}, at $h=0$

$$
\begin{equation*}
\frac{\partial W}{\partial z(h)}=\Psi(\tilde{h}, 0)=\alpha(1-\theta)\left[\ln \frac{h_{A}}{h_{B}}+1-m\right]>0 \tag{34}
\end{equation*}
$$

Since for any \tilde{h} in the interval $\tilde{h} \in[0, \hat{h}]$ we have $\bar{h}_{A}(\tilde{h}) \geq \bar{h}_{B}(\tilde{h})$ and $m<1$, we also have

$$
\frac{\partial}{\partial h} \frac{\partial W}{\partial z(h)}=\frac{\partial \Psi(\tilde{h}, h)}{\partial h}=\left(\frac{m}{\bar{h}_{A}}-\frac{1}{\bar{h}_{B}}\right)<0
$$

It follows that the solution for h to the equation

$$
\Psi(\tilde{h}, h)=0
$$

is unique. Denote this solution by $\xi(\tilde{h})$. It follows that if there exists an interior optimum (at which $\Psi(\tilde{h}, \tilde{h})=0$), it must satisfy

$$
\tilde{h}=\xi(\tilde{h})
$$

If on the other hand there is a corner equilibrium at $\tilde{h}^{*}=\hat{h}$ so that (11) binds, we would have $\Psi(\hat{h}, \hat{h})>0$ for $h \leq \tilde{h}$, with full immigration from B to A for $h \leq \tilde{h}$.

Now we show that a unique $\tilde{h}^{*}=\hat{h}$ exists. From (34) we see that $\Psi(0,0)>0$. On the other hand, at $\tilde{h}=\hat{h}, \bar{h}_{A}(\hat{h})=\bar{h}_{B}(\hat{h})$ and so $\ln Q(\hat{h})=0$. Then, for $\theta<0.5$

$$
\left.\frac{\partial W}{\partial z(h)}\right|_{h=\tilde{h}=\hat{h}}=\Psi(\hat{h}, \hat{h})=\alpha(1-\theta)\left(1-\frac{\hat{h}}{\bar{h}_{A}}\right)(1-m)>0
$$

Therefore, for $\theta \leq 0.5$, at the endpoints of the interval $h \in[0, \hat{h}], \frac{\partial W}{\partial z(h)}{ }_{h=\tilde{h}=0}>0$ and $\left.\frac{\partial W}{\partial z(h)}\right|_{h=\tilde{h}=\hat{h}}>0$.

We can now show that $\left.\frac{\partial}{\partial \tilde{h}} \frac{\partial W}{\partial z(h)}\right|_{h=\tilde{h}}=\frac{d \Psi(\tilde{h}, \tilde{h})}{d \tilde{h}}<0$ in the interval $h \in[0, \hat{h})$ so that we have a unique corner optimum $\hat{h}^{*}=\hat{h}$. We have

$$
\begin{gathered}
\left.\frac{\partial W}{\partial z(h)}\right|_{h=\tilde{h}}=\Psi(\tilde{h}, \tilde{h})=\alpha(1-\theta)\left[\ln Q(\tilde{h})+1-m+\left(m-\frac{\bar{h}_{A}}{\bar{h}_{B}}\right) \frac{\tilde{h}}{\bar{h}_{A}}\right] \\
\left.\frac{\partial}{\partial \tilde{h}} \frac{\partial W}{\partial z(h)}\right|_{h=\tilde{h}}=\frac{d \Psi(\tilde{h}, \tilde{h})}{d \tilde{h}}=\alpha(1-\theta)\left(\begin{array}{c}
\frac{Q^{\prime}(\tilde{h})}{Q(\tilde{h})}-m^{\prime}(\tilde{h})+\left(m^{\prime}(\tilde{h})-Q^{\prime}(\tilde{h})\right) \frac{\tilde{h}}{h_{A}}+ \\
+\left(m-\frac{\bar{h}_{A}}{h_{B}}\right)\left(\frac{\bar{h}_{A}-\tilde{h} \frac{d \bar{h}_{A}}{h_{h}}}{\left(\bar{h}_{A}\right)^{2}}\right)
\end{array}\right.
\end{gathered}
$$

Recall that $Z=\int^{\tilde{h}} z(h) d h$ and therefore $d Z / d \tilde{h}=z(\tilde{h})=n f_{B}(\tilde{h})$. Therefore

$$
\begin{aligned}
m^{\prime}(\tilde{h}) & =\frac{[(1-\theta)(1+Z)](1-\theta)-(\theta+(1-\theta) Z)(1-\theta)}{((1-\theta)(1+Z))^{2}} z(\tilde{h}) \\
& =\frac{\{[(1-\theta)(1+Z)]-(\theta+(1-\theta) Z)\}(1-\theta)}{((1-\theta)(1+Z))^{2}} z(\tilde{h}) \\
& =\frac{\{[(1-\theta)]-\theta\}(1-\theta)}{((1-\theta)(1+Z))^{2}} z(\tilde{h})=\frac{\{(1-2 \theta\}(1-\theta)}{((1-\theta)(1+Z))^{2}} z(\tilde{h}) \geq 0
\end{aligned}
$$

So $m^{\prime}(\tilde{h}) \geq 0$ if $\theta \leq 0.5$. Remember, by definition, $Q(\tilde{h})=\frac{\bar{h}_{A}}{h_{B}}$. Then
$Q(\tilde{h})=\frac{\bar{h}_{A}}{\bar{h}_{B}}$ so $Q^{\prime}(\tilde{h})<0$ since by construction, in the interval $h \in[0, \hat{h}], \frac{d \bar{h}_{A}}{d \tilde{h}}<0$ and $\frac{d \bar{h}_{B}}{d \tilde{h}}>0$

$$
\left.\frac{\partial}{\partial \tilde{h}} \frac{\partial W(\tilde{h})}{\partial z(h)}\right|_{h=\tilde{h}}=\frac{\partial \Psi(\hat{h}, \hat{h})}{\partial \tilde{h}} \text { can be written as }
$$

$$
\begin{aligned}
& \alpha(1-\theta)\left(\frac{Q^{\prime}(\tilde{h})}{Q(\tilde{h})}-m^{\prime}(\tilde{h})\left(1-\frac{\tilde{h}}{\bar{h}_{A}}\right)-Q^{\prime}(\tilde{h}) \frac{\tilde{h}}{\bar{h}_{A}}+\left(m-\frac{\bar{h}_{A}}{\bar{h}_{B}}\right)\left(\frac{1-\frac{\tilde{h}}{h_{A}} \frac{d \bar{h}_{A}}{d \tilde{h}}}{\bar{h}_{A}}\right)\right) \\
= & \alpha(1-\theta)\left(Q^{\prime}(\tilde{h})\left[\frac{1}{Q(\tilde{h})}-\frac{\tilde{h}}{\bar{h}_{A}}\right]-m^{\prime}(\tilde{h})\left(1-\frac{\tilde{h}}{\bar{h}_{A}}\right)+\left(m-\frac{\bar{h}_{A}}{\bar{h}_{B}}\right)\left(\frac{1-\frac{\tilde{h}}{h_{A}} \frac{d \bar{h}_{A}}{d \tilde{h}}}{\bar{h}_{A}}\right)\right) \\
= & \alpha(1-\theta)\left(Q^{\prime}(\tilde{h})\left[\frac{\bar{h}_{B}-\tilde{h}}{\bar{h}_{A}}\right]-m^{\prime}(\tilde{h})\left(1-\frac{\tilde{h}}{\bar{h}_{A}}\right)+\left(m-\frac{\bar{h}_{A}}{\bar{h}_{B}}\right)\left(\frac{1-\frac{\tilde{h}}{h_{A}} \frac{d \bar{h}_{A}}{d \tilde{h}}}{\bar{h}_{A}}\right)\right)
\end{aligned}
$$

Now, for $h \in[0, \hat{h}], \bar{h}_{B}-\tilde{h}>0, \bar{h}_{A} \geq \bar{h}_{B}, 1-\frac{\tilde{h}}{h_{A}}>0$, and $m-\frac{\bar{h}_{A}}{h_{B}}<0$. Since $\frac{d \bar{h}_{A}}{d \tilde{h}}<0,\left.\frac{\partial}{\partial \tilde{h}} \frac{\partial W(\tilde{h})}{\partial z(h)}\right|_{h=\tilde{h}}=\frac{\partial \Psi(\hat{h}, \hat{h})}{\partial \tilde{h}}<0$, and $\Psi(\tilde{h}, \tilde{h})>0$ for $\tilde{h} \in[0, \hat{h})$. Therefore the unique $\tilde{h}^{*}=\hat{h}$, and the optimal policy is (13).

[^0]: *We thank the NSF for support and Matthias Kredler for doing all the calibrations and producing the associated plots.
 ${ }^{1}$ Freedberg and Hunt (1995) report that all but 100 million of the world's 6 billion people live in the country of their birth.
 ${ }^{2}$ Protectionist arguments have recently been made against the mobility of capital, on the grounds that some multinational corporations do not pay a "living wage" in third world countries. Yet none of the pundits against outsourcing has advocated opening up of the borders to immigrants in order to improve their lot.

[^1]: ${ }^{3}$ See for example Borjas(2003), and Borjas and Katz (2005). For the opposing view see Card (2005). For a more recent reconsideration of this debate, see Peri and Ottaviano (2006).
 ${ }^{4}$ See the edited volume by Warren F. Schwartz (1995), and in particular the essays in the volume by Jules Coleman and Sarah Harding, and by Michael Trebilcock. For studies suggesting that immigrants do not impose large negative social externalities see National Research Council (1997) and Butcher and Piehl (1998).
 ${ }^{5}$ The International Organization for Migration estimates that currently there are 191 million transnational migrants worldwide comprising 3% of the global population. See http://www.iom.int/jahia/page254.html

[^2]: ${ }^{6}$ Coleman (1988) describes social capital as falling into three categories: (a) mutual obligations and expectations, (b) social norms (c) information channels and their role in the creation of human capital. The first two may be part of culture.
 ${ }^{7}$ Recent evidence on externalities of schooling in the U.S. is mixed. Moretti (2004) finds a positive external effect from an increase of college graduates in U.S. cities for 1980-1990, while Acemoglu and Angrist (2001) and Ciccone and Peri (2006) do not find significant externalities from changes in average schooling for U.S. states over the period 1960-1990. More recently Peri and Iranzo (2006) find positive externalities from the share of college graduates.

[^3]: ${ }^{8}$ Another argument for the negative welfare effects of immigration from the host country perspective is given by Lundborg and Segestrom (2002) in the context of a quality ladder model of growth. They show that while under some calibrations immigration may increase $\mathrm{R} \& \mathrm{D}$ and the growth rate in the host country by depressing wages, profits may nonetheless decline because of the aggregate demand effects of the lower wages, making the owners of capital as well as workers worse off.

[^4]: ${ }^{9}$ In a standard two country, two factor (say human capital and labor) Hecksher-Ohlin model with constant returns in production, no group effects, and where people move with their human capital, Benhabib (1996) shows that if policies are skill-blind, or if populations are homogeneous with respect to their human-capital-to-labor ratio within the countries but differ across countries, the agent with average human capital to labor ratio in the high-average-skill country prefers to let everyone in. See also Ortega (2005). Since the argument is symmetric, the agent with the average labor to human capital in the low average skill country also prefers to let everyone in. Thus both of the average agents prefer full immigration. Putting the two points together, and noting that countries initially differ only in average human capital to labor ratios, for any pair of social welfare weights applied to the average agents in each country, the optimal policy is to move all agents to one of the countries. This also demonstrates that in such a model there is no tradeoff between efficiency and social welfare, and optimal immigration is full immigration.

[^5]: ${ }^{10}$ The U.S. today follows a mixture of skill-biased policies and skill-neutral policies based on four principles: The reunification of families, the admission of immigrants with needed skills, the protection of refugees, and the diversity of admissions by country of origin. While special legislation now allows for special consideration for medical professionals for example, the majority of legal immigrants enter the US through the family-reunification program. While Canadian policy also allows immigration based on family reunification, preferences stress skills and youth: During 1990-2002, 65 per cent of permanent immigrants to the United States were admitted under family preferences. In Canada, the equivalent proportion was 34 per cent (International Migration and Development: Regional Factsheet, The Americas, http://www.un.org/migration/presskit/factsheet_america.pdf). Similarly Australia heavily emphasizes skills and youth in its preference system for immigrants. See for example http://www.workpermit.com/australia/australia.htm. Recently France has also moved towards a skill biased immigration policy: see http://www.migrationpolicy.org/pubs/Backgrounder2_France.php

[^6]: ${ }^{11}$ We plot (18) as a function of h in Figure 4.

[^7]: ${ }^{12}$ We assumed in our model that migration flows from B to A. However when $\theta=0.5$ it is possible to equalize skill levels between A and B with a policy where the most skilled emigrate from A to B. This is because with $\theta=0.5$ and with regions A and B identical except in their initial average skills, emigration policies that equalize skill levels are optimal, irrespective of who moves. When $\theta \neq 1$, we have symmetry breaking, as illustrated by the case $\theta=1$ where only zero immigration flows are optimal, because we care differentially about the residents of A and B. Symmetry breaking will also hold for the case $\theta<0.5$ studied below.

[^8]: ${ }^{13}$ By contrast, however, the French Interior Minister Sarkozy recently declared "It is the right of our country, like all the great democracies of the world, to choose which foreigners it allows to reside on our territory." See http://www.migrationpolicy.org/pubs/Backgrounder2_France.php

