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Abstract 
 

The value of a statistical life (VSL) is a key component in many regulatory 
analyses. Along with stated preference and human capital procedures, revealed 
preference techniques based on markets for labor or safety-related products are 
commonplace in determining its magnitude.  Wage-hedonics uses the fact that 
workers who select riskier occupations will be compensated with a higher wage 
rate.  However, according to occupational sorting theory (Roy 1951), observed 
wage distributions are distorted by individuals selecting jobs according to both 
common and idiosyncratic returns.  We show that this type of sorting will 
typically lead to a bias in wage-hedonic VSL estimates, and we demonstrate two 
simple approaches to estimation that correct for it.  Implementing these strategies 
with data from the Current Population Survey, we recover VSL estimates that are 
two to three times larger than those based on the traditional wage-hedonic model, 
statistically significant, and robust to a wide array of specifications. 
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1.  INTRODUCTION 

Cost-benefit analyses of environmental, workplace, and product safety regulations 

frequently require estimates of the monetary value of fatality risk reductions.  This value 

typically comes in the form of the value of a statistical life (or, alternatively, the value of 

a statistical death averted) and is often estimated with wage-hedonic methods.1  Workers 

are compensated for choosing to work in risky jobs.  However, workers vary in their 

idiosyncratic skills, and the return to these skills may vary greatly across occupations.  In 

this paper we show that worker sorting based on idiosyncratic returns can bias value of 

statistical life (VSL) estimates derived with the wage-hedonic technique, and we 

demonstrate a new empirical strategy to correct for this source of bias.  In particular, we 

employ two techniques introduced by Bayer, Khan, and Timmins (2007) to control for 

polychotomous selection when individuals care about more than just pecuniary returns.  

These techniques extend the idea originally posited in the Roy model (1951), which 

explains occupational sorting as a function of only wages.  The extension is appropriate 

for wage-hedonics since, in those models, workers sort across occupations based on non-

pecuniary job attributes like fatality risk in addition to their wages.2 

Correcting for this bias is both empirically important and has significant policy 

implications.  Estimated VSL’s for males aged 18-60 rise by as much as a factor of three 

and become statistically significant, compared with VSL’s based on the same data but 

derived with traditional techniques.  We find this bias, moreover, in age-specific VSL’s 

that exhibit patterns similar to those found by previous researchers.  Estimated VSL’s for 

women are reasonable in magnitude and statistically significant, unlike their counterparts 

based on traditional wage-hedonic techniques.  These larger estimates of the VSL (which 

are also less sensitive to specification) suggest a greater willingness among Americans to 

                                                 
1 The value of a statistical life (VSL) is constructed from individuals’ revealed or stated willingness to 
trade-off other consumption for a marginal reduction in fatality risk (e.g., risk of on-the-job fatality in the 
context of wage-hedonics).  Suppose, for example, that an individual is willing to pay $40 for a policy that 
results in a 1-in-100,000 reduction in the chance of dying.  If we were to take 100,000 individuals 
confronted with this choice, the policy would lead to one fewer death among them.  Although none of those 
individuals know which of them will be saved by the policy, their aggregate willingness to pay is 40 x 
$100,000 = $4 million.  This number is taken as the VSL.  If asked for a willingness to pay to avoid his or 
her own particular death, any one individual would not be able to give a credible answer to the willingness-
to-pay question. 
2 The estimation strategy described below also has applications in other empirical contexts – for example, 
individuals migrating across cities, where utility is determined by both the wages and local amenities. 
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pay for reductions in fatality risk through environmental, workplace, and product safety 

regulations than previously believed.   

This paper proceeds as follows.  Section 2 describes the Roy model and explains 

why we should expect sorting based on idiosyncratic returns to yield biased estimates of 

the VSL calculated with traditional wage-hedonic techniques.  Section 3 discusses how 

our estimator deals with (or fails to address) some other well-known problems with the 

wage-hedonic approach.  Section 4 outlines our first estimation strategy, which semi-

parametrically identifies workers’ risk preferences in the presence of Roy sorting.  

Section 5 describes the data we use to implement this approach, including information 

about individual workers from the CPS, data describing occupational fatalities from the 

Bureau of Labor Statistics, and data on other occupational attributes from the Department 

of Labor’s Dictionary of Occupational Titles.  Section 6 reports the results of our first 

estimator alongside results derived from a traditional wage-hedonic procedure, and 

discusses the results of a number of alternative model specifications.  Section 7 describes 

and implements our alternative estimation technique, which makes use of stronger 

independence and distributional assumptions but requires less of the data.  Section 8 

discusses policy implications and concludes. 

 

 

2.  ROY SORTING BIAS IN THE WAGE-HEDONIC ESTIMATE OF THE VSL 

Rosen (1986) refers to the theory of equalizing differences as the “fundamental 

(long-run) market equilibrium construct in labor economics.”  It explains how the 

difference in wages between risky and safe jobs is determined – if some jobs are less safe 

than others, the market equalizing difference (or “compensating differential”) is set so 

that enough workers sort into the risky occupation to clear the market.  This was the idea 

behind Thaler and Rosen’s (1975) seminal research on using labor market outcomes to 

value life – i.e., wage-hedonics. 

A second literature in labor economics has examined the implications of 

idiosyncratic differences in returns to workers’ abilities for their choice of occupation.  

These implications were first demonstrated by Roy (1951), whose name has since been 

associated with this class of sorting models.  The idea behind the Roy model is simple.  In 
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an example with just two occupations, workers who choose occupation #1 over 

occupation #2 receive greater pecuniary returns from this choice than those workers who 

chose occupation #2 would have received had they chosen occupation #1, ceteris paribus.  

The difference between the wages received by workers in occupation #1 and occupation 

#2 will not, therefore, reflect the difference between the wages that the average worker 

would have received in each sector.  In the simplest possible case, this type of sorting 

does not create a problem for measuring compensating wage differentials.  However, with 

only minor complications, it can have important implications for the ability of wage-

hedonics to recover the value of any job attributes (including fatality risk).  We 

demonstrate why with a series of numerical examples.3 

Suppose that the returns individual i would receive from working in each of two 

occupations are determined by the following wage equation: 

 

(1) jijji Rw ,, εβ +=  j = 1, 2 

 

where the idiosyncratic component of wages is drawn from a bivariate normal 

distribution. 
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Rj measures the fatality risk in occupation j.  Occupation #1 is assumed to be “safe” (R1 = 

0), whereas occupation #2 is “risky” (R2 = 1).  For the sake of simplicity, we set the 

coefficient on risk in the wage equation (β) to be 1.  Figure 1 illustrates the unconditional 

distribution of wages in each occupation.  The compensating wage differential ($1) is 

apparent in the difference between the means of these two distributions. 

The distributions portrayed in Figure 1 are not, however, the distributions 

observed by the researcher.  Individuals sort across occupations to maximize utility, 

which is determined in this simple example by wages in combination with fatality risk.  

Individual i receives the following utility from choosing to work in occupation j: 
                                                 
3 For a formal description of these features of the Roy model, see Heckman and Honore (1990). 
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(3) jjiji RwU β−= ,,  

 

In the case described in equations (1) and (2), the average wage in occupation #2 will still 

be higher than that in occupation #1 by $1 to compensate for its added risk, even after 

individuals have optimally sorted.  Figure 2 demonstrates this result.  We construct Figure 

2 by simulating a pair of wages for each of one million individuals and assigning that 

individual to the occupation with the highest utility.  We then plot the conditional wage 

distribution for each occupation (i.e., conditional upon workers having optimally sorted 

into that sector).  Note that, consistent with the predictions of the Roy model, the means 

of both distributions increase while their variances decrease.  Importantly, the difference 

in the means of the two conditional distributions (1.57-0.57 = 1.00) still reflects the true 

compensating wage differential from which we could derive an unbiased measure of the 

value of a statistical life.  This is because that difference is deducted from utility before 

Roy sorting occurs and is therefore not distorted by the sorting process. 

 Now consider a minor modification of the sorting model in equations (1) and (2).  

In particular, suppose the variance of the unconditional wage distribution in occupation 

#1 (i.e., the “safe” occupation) is greater than that in occupation #2. 
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Figure 3 shows that the difference in the means of the unconditional wage distributions 

still reveals the true compensating wage differential.  However, when individuals sort, 

occupation #1 offers greater opportunities for very high wage draws (large idiosyncratic 

returns).  The result is a bigger upward shift in the mean of the occupation #1 conditional 

wage distribution.  Comparing the means of the two conditional distributions in Figure 4 

reveals a downward bias in the estimate of the compensating differential (1.46-0.92 = 

0.54), implying an understated VSL. 

 This sorting-induced bias is compounded if individuals’ wage draws are positively 

correlated across occupations.  Consider an extreme case: 
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Now, the individuals receiving the highest draws in occupation #1 are the same 

individuals who would have received a draw from the upper tail of the occupation #2 

distribution.  Those left in occupation #2 tend to be those individuals who receive low 

draws in both occupations.  Figure 5 illustrates that this further compresses the difference 

in the means of the conditional wage distributions (i.e., down to 1.07-0.80 = 0.27), 

making the sorting-induced downward bias in the implied VSL even more severe.  The 

opposite is true if wage draws are negatively correlated across occupations: 
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although in this example, the negative correlation is not strong enough to offset the initial 

sorting bias.  Figure 6 illustrates this case, in which the compensating differential only 

falls to 1.69-1.06 = 0.63. 

In these numerical examples, the direction and size of the bias induced by Roy 

sorting depends upon the relative sizes of the variances of the unconditional wage 

distributions in combination with the correlation of individuals’ wage draws across 

occupations.4  Heckman and Honore (1990), however, prove that these unconditional 

distributions cannot be recovered without first assuming a value for the correlation in 

individuals’ wage draws across occupations (e.g., independence).  This leaves the 

researcher in a difficult position with respect to the bias in the wage-hedonic estimate of 

the VSL induced by Roy sorting – one would need to first assume a degree of correlation 

in wage draws in order to recover the unconditional wage distributions, but the degree of 

correlation itself affects the size of the bias induced by Roy sorting.  In Section 4, we 

demonstrate how one can avoid this problem and correct the sorting bias in the VSL (i) 

                                                 
4 In particular, by making the variance in occupation #2 larger than that in occupation #1, we could have 
made the bias in the VSL go in the opposite direction. 
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without knowing the unconditional wage distributions and (ii) without assuming anything 

about the correlation in individuals’ wage draws across occupations. 

 

 

3.  OTHER PROBLEMS WITH THE WAGE-HEDONIC ESTIMATE OF THE VSL 

The wage-hedonic technique has been used extensively (and rigorously 

scrutinized) for decades.  We present only a brief overview of the resulting large 

literature.  Viscusi and Aldy (2003) provide a comprehensive discussion of the VSL, 

paying particular attention to the wage-hedonic technique and the problems that can arise 

in its implementation.  Consider, for example, the role of unobservable individual 

heterogeneity.  One particular form of such heterogeneity is worker productivity.  Hwang 

et al (1992) demonstrate that if workers can be classified as high or low productivity (i.e., 

if there is positive correlation in wage draws across occupations) and if high productivity 

workers choose to take some of their compensation in the form of lower fatality risk, 

wages in low-risk occupations will look too high and the estimated fatality risk premium 

will be too low.  This problem has been dealt with in earlier work by using longitudinal 

data, identifying individual fixed effects with either (i) workers who switch jobs or (ii) 

time-varying fatality rates within a job. [See, for example, Brown (1980), Black and 

Kneisner (2003), and Kniesner et al (2006)]  The first estimation approach we describe 

below will, conveniently, account for this source of bias in that (i) it assumes workers 

take account of both wages and job attributes (including fatality risk) when choosing an 

occupation, and (ii) it is robust to any form of correlation in workers’ wage draws (i.e., 

workers can have differing productivities). 

A separate problem arises if there is unobservable heterogeneity in individuals’ 

ability to avoid risk.  Shogren and Stamland (2002) note that estimates of the VSL will be 

biased up if there is heterogeneity in unobservable safety-related skills.  The presence of 

safety-related skills means that not all workers face the same risk on the same job – 

alternatively, some workers may simply be better at avoiding accidents than others.  The 

compensating differential is determined by the marginal worker, who will have the least 

amount of safety-related skill among workers in the risky job and thus will face the 

highest risk.  If the average risk faced by workers in the risky job is instead used to 
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calculate the estimate of the VSL, that estimate will be biased upward.  Our estimators, in 

their current form, are unable to allow for idiosyncratic exposure to risk. 

A third problem arises when individuals have heterogeneous preferences for risk.  

In particular, workers who put less value on safety are more likely to sort into risky jobs, 

biasing downward wage-hedonic estimates of the compensating risk premium.  While 

panel data and individual fixed effects provide one solution to this sort of preference-

based sorting, researchers have also used information about seatbelt use [Hersch and 

Viscusi (1990), Hersch and Pickton (1995)] or smoking behavior [Viscusi and Hersch 

(2001)] to control for risk preferences.5 

There are a number of other problems that may arise when using wage-hedonics to 

measure the VSL.  For example, wage-hedonic techniques often ignore quality of life 

impacts, as well as the effects of life expectancy.6  They usually measure the disutility of 

facing a particular kind of death that is neither slow nor protracted, and which does not 

involve a significant latency period.  These techniques may not, therefore, be good for 

valuing avoided deaths from cancer. [Savage (1993), Revesz (1999)]  Scotten and Taylor 

(2007) demonstrate that one should not even treat different sources of on-the-job fatality 

risk (e.g., accidental, transportation related, and death from violent assault) homogenously 

in a wage-hedonic equation.  Because they focus on labor market outcomes, wage-

hedonic techniques are not useful for valuing the lives of children and the elderly.  For 

these and other problems, there are a variety of alternative techniques for calculating 

VSL’s including stated preference, human capital approaches, and quantifying the risk 

tradeoffs agents make in non-labor market settings.7  Finally, it is unclear how well actual 

                                                 
5 Note that our approach does allow distaste for fatality risk to vary with observable sources of worker 
heterogeneity.  DeLeire and Levy (2004) provide empirical support for the notion that workers who, based 
on their observable characteristics such as sex, marital status, and whether they have children, likely have a 
greater distaste for dangerous work tend to choose safer occupations.   
6 Notable exceptions include Viscusi and Aldy (2006), who find that VSL’s follow an inverted-U pattern in 
age, and Alberini et al (2004), who find lower VSL’s for those over the age of 70 using stated preference 
techniques.  Other researchers have also found that the VSL declines at higher ages – see Table 10 in 
Viscusi and Aldy (2003) for a summary.  In contrast, Smith et al (2004) find no evidence of lower VSL’s 
for older individuals. 
7 Ashenfelter and Greenstone (2004), for example, use states’ decisions to raise speed limits as evidence 
that the median voter was willing to incur an increased risk of driver death in exchange for lower travel 
times.  Atkinson and Halvorsen (1990), Dreyfus and Viscusi (1995), and Li (2006) look at the willingness 
of automobile buyers to trade-off risk of death with operating expenditures and purchase price.  Blomquist 
(1979) and Hakes and Viscusi (2007) use drivers’ decisions to employ seatbelts in order to recover 
estimates of the VSL, and Carlin and Sandy (1991) do so with data on individuals’ decisions to use child 



 9 

on-the-job fatality risks proxy for the risks a worker perceives when he decides to accept 

or reject a wage offer. 

Even with all these problems, wage-hedonics remains prevalent in policy making.  

The EPA currently uses a VSL of $6.2 million, which is based on the results of twenty-six 

different studies surveyed by Viscusi (1992).  Twenty-one of those studies use wage-

hedonic techniques.  Wage-hedonic results are especially relevant (and transferable) when 

valuing risk reductions from OSHA regulations. 

 

 

4.  IDENTIFICATION 

We begin by describing our identification strategy with a simple model of sorting 

by individuals into one of two occupations (j = 1, 2).  We indicate the wage earned by 

individual i should he choose to work in occupation #1 or #2 as ωi,1 and ωi,2, respectively.  

In contrast to the classic Roy model, where sorting across occupations is driven entirely 

by an individual’s pecuniary compensation, we model sorting as determined by his wage 

draw in each occupation and by non-wage determinants of utility specific to each 

particular occupation.  We summarize the latter (for now) as “tastes”.  The conventional 

wisdom, based on Heckman and Honore (1990) is that there is no additional information 

in conditional wage distributions with which to identify these taste parameters.  In the 

following model, we show how they are, in fact, identified with the help of a simple 

assumption. 

We begin by modeling individual i’s utility from choosing occupation j as the sum 

of wages (ωi,j) and tastes (τj): 

 

(7) jjijiU τω += ,,  

 

                                                                                                                                                  
safety seats.  Portney (1981) and Gayer, Hamilton, and Viscusi (2000) use tradeoffs between housing 
expenditures and mortality from air pollution and cancer (caused by proximity to Superfund sites), 
respectively. 
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The first important restriction we impose on the model is that there is no idiosyncratic 

component to the taste parameter (i.e., we estimate τj instead of τi,j).8  After first 

explaining how to recover estimates of these taste parameters, we describe how they can 

be used to recover the value workers place on particular non-pecuniary occupation 

attributes (e.g., fatality risk). 

Without loss of generality, we normalize τ1 = 0.9  At this point, the goal of our 

exercise is to recover an estimate of τ2.10  The difficulty in doing so arises from the fact 

that we only see (i) wage distributions conditional upon optimal sorting behavior, and (ii) 

an indicator of which occupation an individual chooses.  In particular, for an individual i, 

we only observe ωi,2 if: 

 

(8) 1,22, ii ωτω ≥+  

 

Alternatively, we only observe ωi,1 if: 

 

(9) 1,22, ii ωτω <+  

 

Denote the smallest wage (i.e., the minimum order statistic, or extreme quantile) that we 

observe from someone choosing occupation #1 or #2 by 1w  and 2w , respectively.  

Assuming that the unconditional distributions of ω1 and ω2 have finite lower points of 

supports (denoted by *
1ω  and *

2ω ), we know the smallest value of ω1 that we could ever 

see, given that individuals maximize utility: 

 

(10) 
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8 Relaxing this assumption may be possible with the use of explicit (un-testable) distributional assumptions.  
Exploring these assumptions is the subject of our continuing research. 
9 As in all random-utility frameworks, utility is only identified up to an additive constant.  This requires 
some sort of a normalization, which we use to eliminate one of the τ’s from the two-occupation example.  In 
the more general N occupation case, we estimate (N-1) distinct τ’s. 
10 Bayer, Khan, and Timmins (2007) show how, by making an additional assumption of independence, non-
parametric estimates of the unconditional wage distributions can be recovered as well.  
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Similarly, the smallest value of ω2 that we could ever observe would be: 

 

(11) 
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In order to make sense of (10) and (11), define the following two cases: 

 

(12) 
2

*
2

*
1

2
*
2

*
1

:

:

τωω
τωω

+≤

+>

B

A
 

 

We are not able to tell whether case A or B prevails in the data without first recovering an 

estimate of τ2, which is the object of the estimation procedure.  Conveniently, we are able 

to recover an estimate of τ2 in either case.  In particular: 

 

(13) 212 ww −=τ     

 

Equation (13) therefore describes our minimum order statistic estimator for τ2 in the 

simplest two-occupation case.  Figures 7 and 8 illustrate the intuition underlying this 

estimator for cases A and B, respectively.  The heavy dashed lines in each figure 

correspond to the minimum order statistics that would be observed in the data (i.e., 

*
11 ω=w  and 2

*
12 τω −=w  in case A, and 2

*
21 τω +=w  and *

22 ω=w  in case B).  In each 

case, the difference between the heavy dashed lines identifies τ2. 

 We reiterate at this point that, at no point in the preceding discussion were we 

required to say anything about the relative sizes of the variances of wage draws across 

occupations or the correlation in an individual’s wage draws across occupations.  

Correlations that are positive, negative, or zero are all consistent with this model.  

Identification comes off of only differences in the supports of different conditional wage 

distributions. 

The theory used to describe the simple two-occupation case scales-up naturally to 

any number of potential occupations.  With more than two potential occupations, 
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however, we require some additional notation.  Consider the following three-occupation 

system with wages for individual i denoted by ω1,i, ω2,i, and ω3,i.  We denote the lower 

supports of each occupation’s wage distribution by *
1ω , *

2ω , and *
3ω .  We therefore 

normalize τ1 = 0.  For individual i, we observe wi, where: 

 

(14) 

)],(max[

)],(max[

)],(max[
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We also observe an indicator corresponding to which occupation individual i has selected 

– i.e., d1,i, d2,i, and d3,i.  We note that, under convex supports for all random variables and 

assuming finite lower support points ( *
1ω , *

2ω , *
3ω ), we have the following conditional 

minimum order statistics: 

 

 ),,(max)1|(min 3
*
32

*
2

*
1,11 τωτωω ++=== ii dww  

(15) 23
*
32

*
2

*
1,22 ),,(max)1|(min ττωτωω −++=== ii dww  

 33
*
32

*
2

*
1,33 ),,(max)1|(min ττωτωω −++=== ii dww  

 

Notice that τ3 is equal to )( 31 ww − , while τ2 is equal to )( 21 ww − . 

 With estimates of τ for multiple occupations j = 1, 2, …, it becomes possible to 

decompose the taste parameter into the utility effects of multiple non-pecuniary 

occupation characteristics, X (including fatality risk), along with an unobserved 

occupation attribute, εj, by way of regression analysis. 

 

(16) jjj X εβτ +′=  
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5.  DATA 

We use data from three different sources for our analysis.  First, we use data on 

hourly wage rates and occupations from the Outgoing Rotation Groups of the Current 

Population Surveys (CPS).  Second, we use data on fatal and non-fatal risks associated 

with each occupation that we construct by merging Bureau of Labor Statistics data on 

injuries and deaths with CPS data in a procedure described below.  Third, we use data on 

the occupational characteristics (besides injury risks) from the Dictionary of Occupational 

Titles (DOT). 

We record wages and occupations from the CPS Outgoing Rotation Groups 

Surveys from 1983 through 2002. We restrict the data to these years because 1983 and 

2002 are the first and last years that the 1980 occupational classification was used in the 

CPS.  In particular, to determine occupation we use responses to the question “What kind 

of work was … doing [last week]?” Our sample includes all individuals who were 

employed during the survey week.  This yields data on 3,434,820 workers.  

We assign fatal and non-fatal injury risks to each occupation using data from the 

BLS Survey of Occupational Injuries and Illnesses and the Census of Fatal Occupational 

Injuries.  These data provide counts of injuries and fatalities at the 3-digit occupation 

level from 1992 to 1999; there is also information on the severity of non-fatal injuries, 

including the median number of days missed from work per injury within an occupation. 

In some cases the data are aggregated across 3-digit occupations; we aggregate all data to 

correspond to the 2-digit detailed occupation recodes in the CPS.11  We use monthly CPS 

data to calculate hours worked over this period in each category to transform the counts 

into risks (the number of injuries per 100 full-time workers).12  We also calculate 

“anticipated” days of work lost due to nonfatal injury by multiplying the risk of nonfatal 

injury by the median days lost per injury within an occupation.  We then average over the 

period 1992-1999 in order to minimize the effects of year-to-year noise (recall that we do 

not need time variation in fatality risk for identification).  Average annual risk of death on 

                                                 
11 The categories do not correspond perfectly to the Census detailed occupation recodes; we collapse codes 
40, 41, and 42 into a single category since the fatality data are not available for these categories in a way 
that can be disaggregated. 
12 A full-time worker is assumed to work 2,000 hours/year, so that the risks we calculate are per 200,000 
hours worked. 
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the job is 0.005 for all men (or one for every 25,000 men) and 0.002 for all women (or 

one for every 50,000 women).   

We also use data on other job attributes from the Dictionary of Occupational 

Titles.  The DOT is a reference manual compiled by the U.S. Department of Labor that 

provides information about occupations.  It attempts both to define occupations in a 

uniform way across industries and to assess the characteristics of occupations.  While the 

occupational characteristics in the DOT were not collected from a nationally 

representative survey of firms and little detail on sampling or response rates is available, 

they are the best data available on the characteristics of occupations. The analysis of 

occupational characteristics was conducted through on-site observation and interviews 

with employees.  The DOT data were constructed by analysts assigning numerical codes 

to 43 job traits. We create six aggregate variables from the underlying DOT variables to 

describe occupational characteristics: substantive complexity, motor skills, physical 

demands, working conditions, creative skills, and interactions with people.  A detailed list 

of the variables used to construct these data is provided in Table 1.  Table 2 summarizes 

the attributes of each occupation.  The highest risk occupations (in order) are (1) forestry 

and fishing, (2) motor vehicle operations, (3) other transportation occupations, (4) farm 

workers, and (5) construction, freight, labor.  All other occupations average fewer than 

one death per 10,000 workers each year.   

The data used to construct hourly wage rates for this analysis come from the 

Bureau of the Census, Current Population Survey, Outgoing Rotation Groups files from 

1983 through 2002.  Wages are inflated to 2005 dollars using the CPI-U-RS.  Workers’ 

hourly wage rates are either (i) the reported hourly wage (for the 60 percent of workers 

paid on that basis) or (ii) weekly earnings divided by weekly hours (for the other 40 

percent of workers).13  To avoid measurement error from using wages derived from salary 

and “usual” hours data, we drop the latter group of workers for our primary analysis.14  

The focus of our investigation is therefore on “blue collar” workers.  This group has 

received much of the attention in previous VSL studies. [Viscusi and Aldy (2003)] 

                                                 
13 Imputed data on wage rates were used to describe some hourly workers.  In cases where individuals do 
not provide complete responses to the Census Bureau interviewers, the Census Bureau imputes the missing 
data using the information provided by a different respondent with some of the same characteristics, when 
those characteristics were likely to be associated with the missing data.  
14 In Section 6.2, we do report a separate set of results for salaried workers. 
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Table 3 summarizes the data describing hourly workers.  In particular, the table 

reports means for attributes of men and women, broken down according to whether the 

individual works in a high or low risk occupation.15  There are a few interesting points 

that can be made simply by looking at these raw data.  Men in high risk occupations earn 

more on average than those in low risk occupations, even though the latter are more likely 

to be college educated.  This suggests the sort of variation in the data that would yield a 

positive VSL.  Men in high risk occupations are, however, also more likely to be older, 

married, union members, fulltime workers, and white – all of which are factors that would 

likely contribute to their being paid a higher wage.  This highlights the importance of 

controlling for individual heterogeneity when applying our minimum order statistic 

estimator.  We describe how this is done in the following section. 

Unlike their male counterparts, women in high risk occupations tend to earn lower 

wages.  Like men, women with any college training are less likely to work in those jobs.  

Across most other attributes, women are similar irrespective of whether they work in a 

high or low risk occupation.  Finally, note that 83% of men work in occupations classified 

as high risk, while only 35% of women do so. 

 

 

6.  ESTIMATION AND RESULTS 

 In this section, we describe the results of two sets of estimation procedures.  The 

first is based on the traditional wage-hedonic model for recovering marginal willingness-

to-pay for reductions in fatality risk.  In particular, we estimate a regression of the form: 

 

(17) jijjiji XFATALZw ,3210, εαααα +′++′+=  

  

where i indexes workers and j indexes forty-three occupation categories.  Z is a vector of 

variables describing worker i, including: 

 

 

                                                 
15 The individual is considered to be in a high risk occupation if that occupation has fatality risk above the 
median risk across all 43 occupations (i.e., 1.571 deaths per 100,000 workers each year). 
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HSDROP   worker is a high-school dropout 
HSGRAD   worker is a high-school graduate 
SOMECOLL   worker has completed < 4 years of college 
COLLGRAD   worker has a four year college degree 
AGE    age measured in years 
AGE2    age-squared 
MARRIED   worker is married and lives with spouse 
UNION   worker is a union member 
MSA    worker lives in a metropolitan area 
FULLTIME   fulltime worker (i.e., hours > 35 per week) 
PUBLIC   worker is in the public sector 
BLACK   worker is African-American 
OTHER   worker is other race (non-white) 
HISPANIC   worker is of Hispanic decent 
NEW ENGLAND  worker lives in New England census region 
MID-ATLANTIC   worker lives in Mid-Atlantic census region 
EAST NORTH CENTRAL worker lives in East North Central census region 
WEST NORTH CENTRAL worker lives in West North Central census region 
SOUTH ATLANTIC  worker lives in South Atlantic census region 
EAST SOUTH CENTRAL worker lives in East South Central census region 
WEST  SOUTH CENTRAL worker lives in West South Central census region 
MOUNTAIN   worker lives in Mountain census region 
PACIFIC   worker lives in Pacific census region 

 

X is a vector of non-pecuniary occupation attributes other than fatality risk.  These 

include: 

 

NONFATAL “Anticipated” days of work lost due to nonfatal injury. 
 

SCMPLX Substantive complexity, including complexity of function in 
relation to data, general educational development, intelligence, 
numerical aptitude, adaptability to performing repetitive work, 
sensor or judgmental criteria, specific vocational preparation, and 
verbal aptitude. 

 
MSKILL Motor skills, including color discrimination, finger dexterity, 

manual dexterity, motor coordination, and complexity in relation to 
things. 

 
PHYDDS Physical demands, including climbing and balancing, eye-hand-

foot coordination, dealing with hazardous conditions or outside 
working conditions, stooping, kneeling, crouching, or crawling. 
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WORCON Working conditions, including extreme cold, extreme heat, 
wetness, or humidity. 

 
CSKILL Creative skills, including abstract and creative activities, feelings, 

ideas, or facts. 
 

INTPEOPLE Worker interactions with people. 
 

 

The main variable of interest is the fatality risk associated with occupation j, represented 

by FATAL (the number of deaths per 100 full-time workers) which we defined above. 

  Recognizing that the value placed on certain job attributes may differ with worker 

attributes, we also estimate a regression of the form: 

 

(18) jiAGEjcolljjjiji dXdXXFATALZw ,54043210, )()( εαααααα +′+′+′++′+= >  

 

where dcoll is a dummy variable indicating that SOMECOLL = 1 or COLLGRAD = 1, and 

dAGE>40 is a dummy variable indicating that the individual is over 40 years of age.  We 

restrict our estimate of the compensating differential in wages (and, hence, the VSL) to be 

constant across worker attributes. 

 We then take the estimate of the marginal willingness-to-pay to avoid fatality risk, 

α2, and scale this up by the typical maximum number of hours worked in a year (2,000) 

and by the number of workers over whom the annual fatality risk was measured (100).  

This provides us with our estimated VSL. 

 Tables 4 and 5 describe the results of regression equations (17) and (18) for both 

men and women.  In each case, we estimate two specifications – one in which we use 

worker-occupation attribute interactions, and another in which we do not.  All results 

reported in this section of the paper are based on a trimmed sample that drops all 

individuals reporting wages lower than the federally mandated minimum wage in the year 

of observation.16, 17 

                                                 
16 In many years, CPS wages are top-coded at a nominal value of $99.99.  We drop all observations 
nominally at or above this top-coded value in every year.  Dropping observations with wages below the 
federally mandated minimum wage reduces the influence of mis-measured wages, particularly in the lower 
tail of the wage distribution.  Results without lower trimming are reported in the sub-section 6.2. 
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6.1.  Minimum Order Statistic Estimator 

 We carry-out a comparable set of specifications of our minimum order statistic 

estimator.  The practical difficulty in applying this estimator in the current context arises 

in controlling for the rich set of worker attributes provided by the CPS.  One alternative is 

to divide the data up into very small groups and apply the estimator non-parametrically to 

each group.  The problem that arises, however, is that for a particular group (e.g., black, 

non-hispanic, married men aged 18-30 with a high-school education, living in an MSA in 

New England, who are fulltime workers but not in the public sector), we may be unlikely 

to see many individuals in a particular occupation (e.g., machine operators).  The 

estimator becomes very sensitive to the wages of the few individuals we do see, and fails 

if we see no workers in a group.  Alternatively, we could choose not to control for 

individual attributes at all, but then we would be deriving our measure of the VSL from 

the wages and occupation choices of a potentially unrepresentative group.  We therefore 

adopt a two-stage estimation procedure that introduces some parametric modeling.18  We 

first estimate a regression of the form: 

 

(19) jiiji uZw ,10,ˆ +′+= ββ  

 

where jiw ,ˆ  is individual i’s observed wage in occupation j, having differenced out the 

mean of all wages earned by workers in occupation j.  ξi,j measures worker i’s wage in 

occupation j, purged of the effects of observable individual attributes Zi:
19 

 

(20) 10,, ββξ ijiji Zw ′−−=  

 

                                                                                                                                                  
17 Keep in mind that, in the traditional wage-hedonic model, a disamenity enters the wage equation 
positively, indicating a positive wage differential paid to compensate for the unattractive job attribute. 
18 This two-step approach is similar to that employed by Bajari and Kahn (2005), who face a similar 
problem of needing to perform non-parametric estimation with an abundance of covariates. 
19 Note that we use wi,j, not 

jiw ,ˆ , in deriving ξi,j.  ξi,j should be purged of the effects of observable individual 

attributes, but not of the level-effects attributable to being in different occupations.    



 19 

We then use ξi,j as our “wage” in implementing the lower bound estimator.  This allows 

us to compare different individuals without having to divide them into unreasonably small 

sub-groups.20 

 In particular, normalizing the taste parameter for a large occupation (i.e., 

occupation #34 – construction trades) to be zero, we recover estimates of the taste 

parameters for the remaining sectors according to the formula:21  

 

(21) 
jj ξξτ −=

34
 

 

and carry out the second-stage regression to recover the value of non-pecuniary job 

attributes: 

 

(22) jjjj XFATAL υββθτ +′++= 32  

 

where θ accounts for the arbitrary choice of normalization in deriving the τ’s.  In a final 

specification, we also include interactions between Xj and dcoll and between Xj and dAGE>40 

in the estimation of equation (19). 

 Bayer, Khan, and Timmins (2007) describes the asymptotic distribution of the 

minimum order statistic estimates.  We rely, however, on M/N bootstrapping techniques 

to recover confidence intervals.22  In particular, we conduct 1000 M/N bootstrap 

simulations of each specification, from which we derive symmetric 95% confidence 

                                                 
20 This assumption does impose the constraint that job attributes and worker characteristics enter additively 
in determining a worker’s wage.  This is restrictive, but not significantly different from the assumption 
usually maintained in the VSL literature. 
21 We choose an occupation with a lot of observations for our normalization, as the minimum order statistic 
is likely to provide us with the cleanest estimate of the lower bound of the wage distribution for this 
occupation.  That predicted lower bound will enter into the calculation of τ for every other occupation, so 
picking the occupation with the most observations for normalization is prudent. 
22 Inference is complicated by the fact that the lower bound estimator does not have an asymptotically 
normal distribution.  The traditional bootstrap algorithm, moreover, is invalid when the estimate is not 
asymptotically normal.  This problem is overcome by the use of the M/N bootstrap, a variant on sub-
sampling (here, we use bootstrapped sub-samples that are ¼ the size of the full data set).  While yielding 
inefficient (i.e., overly large) estimates of the confidence interval, the M/N bootstrap does produce 
confidence interval estimates that are consistent. 



 20 

intervals.23  Results are consistent with expectations – workers exhibit a strong and 

statistically significant disutility from increased fatality risk.24 

 Tables 6 and 7 report the results of our minimum-order-statistic estimator, for both 

men and women.  The first and third columns refer to the specification that does not 

include worker-occupation attribute interactions; the second and fourth columns include 

these interactions.  Table 6 reports results for equation (19), while Table 7 reports the 

results of equation (22), including 95% confidence intervals derived from the M/N 

bootstrap. 

 Table 8 summarizes the VSL estimates from both the traditional wage hedonic 

and minimum order statistic estimation techniques, for each of the specifications 

described above.  Looking only at point estimates for men, the minimum order statistic 

estimator produces VSL estimates that are 3.3 and 4.3 times greater than those produced 

by the traditional wage hedonic procedure.  The minimum order statistic estimates are, 

moreover, statistically significant with a 95% confidence interval ranging from 

approximately $5 million to almost $16 million.  None of traditional wage-hedonic VSL 

estimates for men are statistically significant. 

 Turning our attention to the results for women, the difference between the two 

models is even more stark.  The minimum order statistic estimator yields results that are 

similar to those for men – $8.62 or $12.26 million, depending upon whether worker-

occupation attribute interactions are included in the first stage estimation.  Moreover, 

these results are statistically significant.  By contrast, the wage-hedonic procedure yields 

negative VSL point estimates, with 95% confidence intervals ranging from -$53.17 

million to $24.42 million. 

 

 

                                                 
23 Specifically, a bootstrap simulation consists of taking a random ¼ sub-sample (drawn with replacement) 
from the population of ξi,j’s.  We then determine the values of τj, j = 1, 2,…, 43, and regress these values on 
the vector of occupation attributes.  We record the resulting estimates and repeat the entire process 1000 
times.   The bootstrapped confidence interval is then found by taking the 2.5th and 97.5th percentiles of the 
distribution of bootstrapped parameter estimates. 
24 In contrast to the traditional wage-hedonic model, we are here estimating structural utility function 
parameters.  Disutility is therefore indicated by a negative parameter value.  Recall, moreover, that these 
parameter estimates are already normalized by the marginal utility of wages, so that they can be interpreted 
as marginal willingnesses-to-pay, and are comparable across sub-populations. 
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6.2  Alternative Specifications 

 Because our estimator is based on the minimum order statistic, it is possible that 

our results may be sensitive to the particular choice of model specification (including the 

criteria used to draw a data sample).  In this sub-section, we explore that sensitivity with a 

variety of alternative specifications.  Table 9 reports the VSL estimates arising from ten 

alternatives.  We note at the outset that in no case does the traditional wage-hedonic 

procedure produce a statistically significant estimate, and for women, most of the point-

estimates have the wrong sign.  The first row of Table 9 reports estimates based on the 

sample of salaried workers.  Minimum order statistic estimates remain significant, but fall 

relative to their values for wage workers (more so for men than for women).  Wage-

hedonic estimates, on the other hand, rise dramatically but have large confidence 

intervals.  The second row reports results based on a sample of hourly workers that does 

not drop those reporting wages below the federally mandated minimum.  These low 

wages may be real observations, but might also simply reflect measurement error.  

Including these low wages has the effect of collapsing across-occupation variation at the 

bottom of the wage distribution, with the effect of reducing the VSL estimate based on 

the minimum order statistic.  Even with this reduction, however, the estimate is still 

statistically significant and larger than that based on the traditional wage hedonic 

technique. 

 The next four rows describe results based on samples drawn to include only 

individuals in a certain age range.25,26  In particular, we perform the exact same estimation 

procedure described in the previous sub-section (including estimating parameters on AGE 

and AGE2), but do so only on a sub-set of workers (e.g., aged 20 to 29).  It is reassuring 

that the same inverted-U pattern found in previous work is apparent in our results.  The 

inverted-U is, moreover, shifted upward for the minimum order statistic estimates relative 

to the wage-hedonic estimates. 

 The next two rows describe how the VSL varies with marital status.  Using the 

minimum order statistic estimator, we find that married men have a higher VSL.  This 

                                                 
25 In these results (and in the remainder of the results in this section), we use the trimmed sample of hourly 
workers as a starting point. 
26 Besides age, researchers have also calculated VSL’s that differ with respect to race [Viscusi (2003)], 
income, and union status [summarized in Viscusi and Aldy (2003)]. 
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difference goes away when considering women, and is not present for men or women 

when using the traditional wage-hedonic estimator. 

 The final two rows of Table 9 illustrate two cases in which our model may not 

perform well.  In the first, we restrict ourselves to using a limited set of worker attributes 

(AGE, AGE2, HSDROP, SOMECOLL, COLLGRAD).  This has the effect of reducing 

the variability across occupations in the lower bound of our wage distributions.27  The 

result is to provide a sort of lower bound on the VSL estimate.  While the minimum order 

statistic estimate falls below that found with the wage-hedonic model, it does remain 

statistically significant.  This result highlights the importance of explaining as much of 

the variation in wages as possible with observable worker attributes. 

 The final row of Table 9 illustrates the effects of having little cross-occupation 

variation in fatality risk.  In particular, we eliminate the relatively risky occupation 

categories #41 - #43 (i.e., farm managers, farm workers, and forestry & fishing).  The 

result is to increase the confidence intervals for the estimates derived from both 

techniques (particularly for the minimum order statistic estimator).  The change has little 

effect on the point estimate for men based on the wage-hedonic technique, but the point 

estimate based on the minimum order statistic jumps dramatically. 

 

 

7.  ESTIMATION WITHOUT THE MINIMUM ORDER STATISTIC 

 While the CPS provides high-quality data on wages, one might still be concerned 

about the potential for measurement error to prevent us from observing the true minimum 

order statistic.  A similar concern might arise in settings where one has a relatively small 

sample to work with.  In this section, we employ an alternative estimation strategy that 

instead uses data from the entire conditional wage distribution and makes no assumption 

about the distributions’ supports. [Bayer, Khan, and Timmins (2007)]  Instead, it relies 

upon two alternative identifying assumptions: (i) the unconditional distribution of log-

                                                 
27 Consider an extreme example.  When we trim all observations below the federally mandated minimum 
wage and use no covariates, it will likely be the case that there is no variation at all across sectors in the 
lower point of support.  The VSL recovered with our minimum order statistic estimator would therefore be 
$0. 
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wage in occupation j is normal with mean jμ  and variance 2
jσ , and (ii) wage draws for 

individual i are independent across occupations.28 

To explain this estimator, we return to the simple model of individuals sorting 

over two occupations, indexed by #1 and #2.  Without loss of generality, we again 

normalize the taste for occupation #1 to zero (τ1 = 0).  We define a variable di, which 

functions as an indicator that individual i chose occupation #1: 

 

(23) ][ 2,2,1 τωω +>= iii Id  

 

Using this indicator, we can write down an expression for individual i’s observed wage: 

 

(24) iiiii ddw ,2,1 )1( ωω −+=  

 

i.e., the individual receives his draw from occupation #1 if it was utility maximizing to 

choose that occupation.  Next, define the following joint probability distributions, both of 

which are easily observed in the data: 

 

(25) ),0()(),1()( 21 twdPttwdPt iiii ≤==Ψ≤==Ψ  

 

We will also work with the derivatives of these expressions, denoted by: 

 

(26) ),0()(),1()( 21 twdP
t

ttwdP
t

t iiii ≤=
∂
∂=≤=

∂
∂= ψψ  

 

Focusing on the expression for Ψ1(t), we can exploit the independence assumption to re-

write it as follows: 

 

                                                 
28 Using panel data to relax the independence assumption is a focus of our current research. 
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This means that we can define ψ1(t) as follows: 

 

(28) )()()()()( 2211212111 τωτωωψ −=−
∂
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t
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t

 

 

An analogous argument defines ψ2(t): 

 

(29) )()()()()( 2122221222 τωτωωψ +=+
∂
∂= ∫

∞−

tFtfdFf
t

t
t

 

 

Going back to the final integral in equation (27) and carrying out integration-by-parts 

yields: 

 

(30) ∫ ∫
∞− ∞−

−−−=−=Ψ
t t

dssfsFtFtFdFft )()()()()()()( 2212211212111 ττωτωω  

 

Performing a change of variables 2τ−= su , equation (30) becomes: 

 

(31) duufuFtFtFt
t

∫
−
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Next, we use the expressions for ψ1(t) and ψ2(t) defined in (28) and (29) to re-write 

equation (31) as follows: 
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Noting that the integral term in (32) is simply )( 22 τ−Ψ t , we can solve for the 

distribution of ω1 as a function of τ2: 
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where λ1(t) is a function of the unconditional wage distribution in location #1.  (33) is a 

single equation in two unknowns (λ1(t) and τ2) when evaluated at a particular value of t, 

and it is therefore not surprising that we cannot identify both of these values without 

making an additional assumption.  Bayer, Khan, and Timmins (2007) show how the 

equation can be estimated in a model of spatial sorting by assuming that workers living in 

the same location receive a wage draw from the same distribution irrespective of where 

they migrated from.  That source of variation is not available in the data used to recover 

the VSL.  Instead, we make a parametric assumption about F1(t).  Assuming F1(t) is the 

cumulative normal distribution with mean μ1 and variance σ1
2 would reduce equation (33) 

to three parameters.  The number of parameters would not increase, moreover, as we 

consider the expression evaluated at different values of t.  By forcing the equation to hold 

for many values of t, we would have more equations than unknowns and could identify 

the model’s parameters. 

The preceding arguments scale-up to any number of occupations (although the 

denominator in the right-hand-side expression of (33) becomes more complicated).  We 

can, therefore, estimate the model in our occupational sorting context by forming a 

minimum-distance criterion function based on equation (33).  Minimizing this objective 

function requires us to search over a high-dimensional parameter space (i.e., forty-three 

means, forty-three variances, and forty-two taste parameters).29  We make one further 

simplifying assumption in order to facilitate estimation – that the taste parameter can be 

                                                 
29 In this unrestricted specification, one of the taste parameters must still be normalized to zero. 
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written as a function of observable occupation attributes: βτ jj X ′= .  We therefore need 

to only estimate eight β parameters instead of a separate τj for each occupation. 

Table 10 describes the outcome of this estimation procedure applied to the sample 

of male hourly workers earning more than the federal minimum wage.30  We evaluate a 

minimum distance criterion function based on (33) at 200 values of log-wages evenly 

spaced between 0.25 and 4.25.31  Standard errors are bootstrapped from 800 re-samples.  

Because we are modeling log-wages, the coefficient on fatality risk needs to be multiplied 

by the wage rate before being converted into a VSL.  We use the average wage rate in the 

sample ($13.16).  The result is a statistically significant VSL estimate of $8.05 million. 

Although the assumptions and methodology used to arrive at this estimate differ 

dramatically from those in the previous section, the result is remarkably similar.  

Controlling for Roy sorting, we recover a VSL that is two to four times greater than that 

derived from traditional wage-hedonics.  Taken together, the results of these two 

methodological approaches lead us to conclude that the VSL based on traditional wage-

hedonic techniques is indeed biased downward by Roy sorting.  

 

 

8.  CONCLUSIONS 

The effect of individual unobservable heterogeneity (i.e., productivity) on 

estimates of the value of a statistical life has been addressed in previous work, but 

occupational (Roy) sorting based on idiosyncratic returns is absent from the literature on 

VSL.  We demonstrate that this type of sorting has the potential to bias wage-hedonic 

estimates of the VSL.  Recovering the size and direction of that bias is a difficult 

empirical problem that depends partly upon the relative variances of the unconditional 

sector-specific wage distributions.  But as Heckman and Honore (1990) demonstrate, one 

cannot recover those unconditional wage distributions without first making an assumption 

                                                 
30 Specifically, we apply the procedure to the “purged” wage data that were created by removing the 
variation in wages explained by observable worker attributes (i.e., ξi,j from equation (20)). 
31 Bayer, Khan, and Timmins (2007) describe the details of this procedure.  For example, we use normal 
density kernels and a Silverman’s rule of thumb to approximate ψ j t( ) .  Ψ j t( )  is measured non-

parametrically as a step-function. 
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about the correlation of wage draws across occupations. This is problematic, since the 

assumed value of the correlation affects the size of the Roy sorting bias. 

We demonstrate a way to deal with Roy sorting bias without recovering the 

unconditional wage distributions.  Doing so requires the relatively innocuous assumption 

that wage distributions have finite lower bounds.  In addition to controlling for the biases 

induced by Roy sorting, this semi-parametric estimator also corrects for biases resulting 

from unobserved productivity, of the sort described by Hwang et al (1992).  It is, 

moreover, easy to use – everything (except standard errors) can be calculated with a 

spreadsheet.  Finally, it can be expanded to use better data sets (e.g., a finer gradation of 

occupation/sector, like those used by Kniesner et al. (2006) or Scotten and Taylor (2007).  

In so doing, however, it does also require the stronger practical assumption that we can 

actually see the lower bound of each conditional distribution in the form of a minimum 

order statistic.  For some (small, noisy) data sets, this will clearly not be the case.  In 

response to this concern, we offer an alternative estimation strategy that does not impose 

strict data requirements (but does require an independence assumption on wage draws).  

The conclusions of both models are that traditional wage-hedonic techniques yield 

downwardly biased estimates of the VSL.  That bias is big enough, moreover, to matter 

for policy.  Estimates for men rise by more than a factor of three and become statistically 

significant.  Estimates for women take on the expected sign and become statistically 

significant as well.  These estimates suggest that substantially larger valuations should be 

used in cost-benefit analyses of environmental, workplace, and job safety regulations than 

is current practice. 
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Table 1 
Determinants of Job Characteristics Based on DOT Data 

 
       

 
Factor 1 SUBSTANTIVECOMPLEXITY   

DATAL (complexity of function in relation to data)  
GED (general educational development)  
INTELL (intelligence)  
NUMERCL (numerical aptitude)  
REPCON (Adaptability to performing repetitive work)  
SJC (sensor or judgmental criteria)  
SVP (specific vocational preparation)  
VERBAL (verbal aptitude)  

 
Factor 2 MOTOR SKILLS   

CLRDISC (color discrimination)  
FNGRDXT (finger dexterity)  
MNLDXTY (manual dexterity)  
MTRCRD (motor coordination)  
THINGS (complexity in relation to things)  

 
Factor 3 PHYSICAL DEMANDS    

CLIMB (climbing, balancing)  
EYHNFTC (eye-hand-foot coordination)  
HAZARDS (hazardous conditions)  
OUT (outside working conditions)  
STOOP (stooping, kneeling, crouching, crawling)  

 
Factor 4 WORKING CONDITION   

COLD (extreme cold)  
HEAT (extreme heat)  
WET (wet, humid)  

 
Factor 5 CREATIVE SKILLS   

ABSCREAT (abstract & creative activities)  
FIF (feelings, ideas or facts) 
 

 

 
Factor 6 INTPEOPLE 

PEOPLE (interaction with people) 

 



Table 2 (a) 
Occupation Attributes 

 
Occupation FATAL NONFATAL SCMPLX MSKILL PHYDDS WORCON CSKILL INTPEOPLE 
3-6: Pub. Admin. 0.0018 0.0000 0.6879 1.1353 -0.2425 0.6505 -0.1907 -0.7855 
7-22: Other Exec. 0.0020 1.4982 0.6143 1.1082 -0.4853 -0.3941 -0.1763 -0.9577 
23-37: Management 0.0009 1.3879 0.9138 1.1947 -0.7276 -0.4849 -0.1829 -1.3500 
44-59: Engineers 0.0023 1.0150 1.3207 -0.9070 -0.4879 -0.4232 0.4608 -0.2709 
64-68: Mathematical and Comp Sci 0.0004 0.6365 1.1708 1.3192 -0.6439 -0.5881 -0.0977 -1.0983 
69-83: Natural scientists 0.0023 0.8725 1.3793 -0.9374 -0.3347 0.3333 0.0038 -0.1951 
84-89: Health diagnosers 0.0011 1.8691 1.8017 -3.1622 -0.5097 -0.5521 -0.4203 0.3824 
95-106: Health assess & treat 0.0007 5.1230 0.6012 -0.9513 -0.4469 -0.5923 -0.3494 0.6415 
113-154: Professors 0.0005 0.2670 1.6046 1.4303 -0.8375 -0.5982 -0.1342 -1.3198 
155-159: Teachers (exc. coll.) 0.0005 1.2979 0.9016 0.3525 -0.3597 -0.5881 0.9809 -0.9455 
178-179: Lawyers & judges 0.0012 0.3306 2.0665 1.7181 -0.9118 -0.6018 4.1324 -2.1331 
43,63,163-177,183-199: Oth. prof. spec. 0.0011 2.2276 1.1812 0.1353 -0.5487 -0.0945 4.1225 -0.7069 
203-208: Health tech. 0.0009 8.6382 0.0277 -1.0334 -0.3174 -0.4868 -0.3592 0.2528 
213-225: Eng/sci tech. 0.0020 4.2027 0.5435 -1.4970 -0.4499 -0.4413 -0.0645 -0.2571 
226-235: Tech, not eng/sci 0.0096 5.5567 0.7081 0.4057 -0.5408 -0.5718 -0.0134 -0.7532 
243: Sales supervisors 0.0033 3.5027 0.4089 1.0263 -0.2950 -0.3658 -0.0998 -0.7847 
253-257: Sales reps and business 0.0012 1.5427 0.6899 1.2582 -0.8207 -0.5888 -0.3644 -1.0679 
258-259: Sales reps, non-retail comm. 0.0016 2.0476 0.2529 1.0859 -0.8616 -0.5615 -0.3929 -1.2436 
263-278: Sales work, retail & svc. 0.0020 5.3078 -0.4732 -0.2793 -0.7061 -0.5062 -0.3788 -0.2030 
283-285: Sales-related occupations 0.0000 5.8560 -0.0287 -0.0613 -0.8066 -0.5784 0.7758 -0.4289 
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Table 2 (b) 
Occupation Attributes 

 
Occupation FATAL NONFATAL SCMPLX MSKILL PHYDDS WORCON CSKILL INTPEOPLE 
303-307: Admin. Supervisors 0.0004 2.6672 0.1349 0.3182 -0.6802 -0.4804 -0.3788 -0.6197 
308-309: Computer operators 0.0000 1.7641 -0.0650 -0.4041 -0.5568 -0.6022 -0.4023 0.0712 
313-315: Secretaries 0.0003 2.0029 0.3957 -1.9561 -0.9030 -0.5939 -0.4176 -0.0692 
337-344: Fin. record process 0.0002 2.1631 -0.1916 -0.4688 -0.8965 -0.5598 -0.4209 -0.8874 
354-357: Mail/msg dist. 0.0025 11.5449 -1.1516 0.5619 -0.6374 -0.4628 -0.4289 -0.0914 
316-336,345-353,359-389: other admin. 0.0005 6.3292 -0.3962 0.5455 -0.7559 -0.4331 -0.3810 -0.6918 
403-407: Pvt. hh service 0.0007 0.0000 -1.3641 0.7072 0.2214 -0.5826 -0.4251 -0.0018 
413-427: Protective svc. 0.0086 7.7154 -0.6374 0.6563 0.7423 1.0386 -0.4224 0.4060 
433-444: Food service 0.0009 8.8127 -0.8628 0.4484 -0.3909 2.1472 -0.1096 -0.0835 
445-447: Health service 0.0008 24.1017 -0.8532 -0.2811 0.6658 -0.3933 -0.3731 1.2654 
448-455: Cleaning/bldg svc. 0.0020 13.8845 -1.5140 0.3170 1.1338 -0.2767 -0.4196 1.4381 
456-469: Personal svc. 0.0014 9.1429 -0.4508 -0.5895 -0.2467 -0.4406 1.3130 0.3233 
503-549: Mechanics & repairers 0.0053 15.2240 -0.0444 -1.3110 0.7587 0.3971 -0.4063 1.6128 
553-599: Construction trades 0.0068 22.5577 -0.0188 -0.9502 2.2933 -0.1960 -0.3797 1.8767 
613-699: Other precision production 0.0029 13.6475 -0.5258 -1.0338 0.0501 1.6055 -0.3601 0.4448 
703-779: Machine operators 0.0024 22.6953 -1.2204 -0.3437 -0.1057 0.8997 -0.3738 0.0608 
783-799: Fabricators, inspectors 0.0028 17.8286 -1.2994 -0.4417 -0.0571 0.6781 -0.3785 0.2925 
803-814: Motor vehic. Operators 0.0176 35.6393 -1.3383 -0.3606 0.7426 -0.4457 -0.4160 0.6131 
823-859: Other transportation 0.0166 29.2157 -1.1876 -0.0819 1.1613 0.4532 -0.4187 0.7212 
864-889: Construction, freight, labor 0.0110 34.9962 -1.6291 0.4910 1.0768 3.8833 -0.4244 0.8275 
473-476: Farm managers 0.0094 0.3968 0.4685 0.2723 2.3756 -0.4168 -0.4280 2.3884 
477-489: Farm workers 0.0117 11.4986 -1.3619 0.3021 2.6532 -0.1571 -0.3915 1.5870 
494-499: Forestry & fishing 0.0872 35.0779 -1.2595 0.2617 2.6898 2.9723 -0.4088 1.7403 
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Table 3:  Worker Attributes32 
 

 
 

                                                 
32 This table describes the sample of hourly wage workers, excluding all those who earn less than the federal minimum wage. 

 Men Women 
 Low Risk High Risk Low Risk High Risk 
Sample Size 105259 522782 410823 217218 
Wage 12.93 13.21 12.11 9.99 
AGE 31.60 34.07 35.74 35.09 
MARRIED 0.38 0.54 0.56 0.51 
UNION 0.03 0.04 0.02 0.02 
MSA 0.81 0.70 0.74 0.72 
FULLTIME 0.71 0.84 0.63 0.64 
WHITE 0.82 0.86 0.85 0.83 
HSDROP 0.13 0.22 0.08 0.18 
HSGRAD 0.27 0.45 0.38 0.45 
SOMECOLL 0.36 0.26 0.38 0.28 
COLLGRAD 0.24 0.07 0.17 0.10 
NEW ENGLAND 0.08 0.08 0.09 0.09 
MID ATLANTIC 0.13 0.11 0.13 0.11 
E. N. CENTRAL 0.14 0.14 0.16 0.15 
W. N. CENTRAL 0.10 0.10 0.12 0.10 
SOUTH ATLANTIC 0.16 0.19 0.16 0.19 
E. S. CENTRAL 0.04 0.06 0.05 0.06 
W. S. CENTRAL 0.08 0.10 0.08 0.09 
MOUNTAIN 0.11 0.10 0.09 0.09 
PACIFIC 0.16 0.12 0.12 0.12 



Table 4 
Wage-Hedonic Model Estimates (Worker Attributes)33 

 
 (1) (2) (3) (4) 
Sample Men 

Age 18-60 
Men 

Age 18-60 
Women 

Age 18-60 
Women 

Age 18-60 
Worker-Occupation 
Attribute  Interactions 

No Yes No Yes 

Constant -0.603 
(1.344) 

-1.132 
(1.128) 

1.421 
(1.279) 

1.045 
(1.043) 

HSDROP -1.347 
(0.167) 

-1.397 
(0.162) 

-0.643 
(0.173) 

-0.898 
(0.133) 

SOMECOLL 0.235 
(0.109) 

0.614 
(0.315) 

1.019 
(0.306) 

1.317 
(0.557) 

COLLGRAD 2.775 
(0.522) 

2.762 
(0.507) 

4.290 
(0.823) 

4.201 
(0.794) 

AGE 0.569 
(0.060) 

0.569 
(0.059) 

0.419 
(0.060) 

0.404 
(0.058) 

AGE2 -0.006 
(6.8 x 10-4) 

-0.006 
(7.0 x 10-4) 

-0.004 
(6.7 x 10-4) 

-0.004 
(6.5 x 10-4) 

BLACK -1.258 
(0.154) 

-1.261 
(0.140) 

-0.420 
(0.150) 

-0.448 
(0.132) 

OTHER -0.942 
(0.167) 

-0.889 
(0.167) 

-0.196 
(0.123) 

-0.204 
(0.118) 

HISPANIC -1.384 
(0.133) 

-1.443 
(0.129) 

-0.523 
(0.124) 

-0.567 
(0.127) 

MARRIED 1.260 
(0.074) 

1.213 
(0.071) 

0.250 
(0.077) 

0.217 
(0.066) 

PUBLIC 1.089 
(0.367) 

0.988 
(0.368) 

0.379 
(0.373) 

0.344 
(0.343) 

UNION 2.669 
(0.190) 

2.665 
(0.196) 

1.946 
(0.228) 

1.902 
(0.226) 

MSA 0.802 
(0.099) 

0.811 
(0.098) 

0.976 
(0.129) 

0.998 
(0.128) 

FULLTIME 1.430 
(0.119) 

1.378 
(0.109) 

0.764 
(0.223) 

0.797 
(0.198) 

Regional 
Indicators 

Yes Yes Yes Yes 

R2 0.316 0.331 0.317 0.334 
N 628217 628217 695051 695051 

 
 

                                                 
33 Standard errors (in parentheses) are clustered to reflect the fact that occupation attributes are the same for 
all workers in a particular occupation. 
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Table 5 
Wage-Hedonic Model Estimates (Occupation Attributes)34 

 
 

 (1) (2) (3) (4) 
 Men 

Age 18-60 
Men 

Age 18-60 
Women 

Age 18-60 
Women 

Age 18-60 
FATAL 20.506 

(-37.893, 78.904) 
13.804 

(-35.100, 62.708) 
-65.183 

(-265.855, 135.489) 
-44.251 

(-210.577, 122.076) 
NONFATAL 0.094 

(0.041, 0.147) 
0.057 

(0.026, 0.088) 
0.098 

(-0.017, 0.212) 
0.061 

(-0.007, 0.129) 
SCMPLX 5.422 

(3.287, 7.557) 
3.318 

(1.869, 4.767) 
4.283 

(0.469, 8.098) 
1.530 

(0.273, 2.788) 
MSKILL -1.397 

(-2.426, -0.368) 
-1.478 

(-2.157, -0.800) 
-0.393 

(-1.814, 1.028) 
-0.027 

(-0.346, 0.292) 
PHYDDS -0.328 

(-0.794, 0.139) 
-0.119 

(-0.423, 0.185) 
0.951 

(-0.164, 2.067) 
0.112 

(-0.619, 0.842) 
WORCON 0.156 

(-0.179, 0.490) 
0.036f 

(-0.160, 0.232) 
0.147 

(-0.331, 0.625) 
-0.016  

(-0.343, 0.311) 
CSKILL -0.353 

(-0.782, 0.076) 
-0.327 

(-0.944, 0.289) 
-0.798 

(-1.289, -0.308) 
-0.583 

(-0.942, -0.225) 
INTPEOPLE 2.529 

(0.252, 4.806) 
1.983 

(0.405, 3.560) 
0.799 

(-2.729, 4.328) 
-0.116 

(-1.485, 1.253) 
 

                                                 
34 Confidence intervals (in parentheses) are based on clustered standard errors, reflecting the fact that occupation attributes are the same for all workers in a 
particular occupation. 
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Table 6 
Minimum Order Statistic Estimator, First Stage (Worker Attributes) 

 

 
 
 

 (1) (2) (3) (4) 
Sample Men 

Age 18-60 
Men 

Age 18-60 
Women 

Age 18-60 
Women 

Age 18-60 
Worker-Occupation 
Attribute  Interactions 

No Yes No Yes 

Constant -10.578 
(0.080) 

-10.915 
(0.080) 

-6.836 
(0.062) 

-7.242 
(0.062) 

HSDROP -1.203 
(0.018) 

-1.254 
(0.020) 

-0.553 
(0.018) 

-0.706 
(0.018) 

SOMECOLL 0.058 
(0.018) 

0.203 
(0.031) 

0.180 
(0.013) 

0.388 
(0.030) 

COLLGRAD 1.311 
(0.026) 

1.872 
(0.036) 

2.078 
(0.018) 

2.533 
(0.032) 

AGE 0.449 
(0.004) 

0.458 
(0.005) 

0.299 
(0.003) 

0.308 
(0.003) 

AGE2 -0.004 
(5.9 x 10-5) 

-0.005 
(5.9 x 10-5) 

-0.003 
(4.5 x 10-5) 

-0.003 
(4.5 x 10-5) 

BLACK -1.008 
(0.025) 

-1.129 
(0.025) 

-0.195 
(0.018) 

-0.278 
(0.018) 

OTHER -0.759 
(0.035) 

-0.813 
(0.035) 

-0.088 
(0.028) 

-0.188 
(0.028) 

HISPANIC -1.185 
(0.023) 

-1.275 
(0.023) 

-0.455 
(0.021) 

-0.531 
(0.021) 

MARRIED 0.884 
(0.016) 

0.958 
(0.016) 

0.039 
(0.012) 

0.097 
(0.012) 

PUBLIC 0.341 
(0.025) 

0.392 
(0.025) 

0.159 
(0.018) 

0.286 
(0.018) 

UNION 2.486 
(0.040) 

2.464 
(0.040) 

1.567 
(0.036) 

1.552 
(0.036) 

MSA 0.761 
(0.017) 

0.825 
(0.017) 

0.869 
(0.013) 

0.928 
(0.013) 

FULLTIME 0.841 
(0.019) 

0.897 
(0.019) 

0.492 
(0.012) 

0.561 
(0.012) 

Regional 
Indicators 

Yes Yes Yes Yes 

R2 0.146 0.153 0.096 0.104 
N 628041 628041 694930 694930 
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Table 7 
Minimum Order Statistic Estimator, Second Stage (Occupation Attributes)35 

 
 (1) (2) (3) (4) 
Sample Men 

Age 18-60 
Men 

Age 18-60 
Women 

Age 18-60 
Women 

Age 18-60 
Constant -2.194 

(-3.43, 0.41) 
-1.613 

(-3.02, 0.70) 
1.409 

(0.46, 2.68) 
1.603 

(0.63, 3.13) 
FATAL -66.737 

(-78.91, -29.17) 
-59.371 

(-79.60, -23.22) 
-43.116 

(-66.21, -22.80) 
-61.275 

(-70.29, -37.63) 
NONFATAL 0.073 

(0.01, 0.09) 
0.033 

(-0.03, 0.07) 
0.013 

(-0.05, 0.04) 
0.006 

(-0.06, 0.03) 
SCMPLX -0.768 

(-1.30, 0.89) 
-1.937 

(-2.39, 0.03) 
-0.740 

(-1.22, 0.52) 
-2.075 

(-2.41, -0.60) 
MSKILL 0.399 

(-0.22, 0.61) 
0.640 

(-0.11, 0.77) 
0.225 

(-0.43, 0.31) 
0.393 

(-0.30, 0.46) 
PHYDDS 0.101 

(-0.31, 0.47) 
0.323 

(-0.14, 0.70) 
-0.371 

(-0.63, -0.01) 
-0.352 

(-0.62, 0.01) 
WORCON 0.279 

(-0.12, 0.61) 
0.547 

(0.19, 0.89) 
0.088 

(-0.16, 0.36) 
0.091 

(-0.20, 0.36) 
CSKILL -0.066 

(-0.35, 0.27) 
0.230 

(-0.04, 0.65) 
0.169 

(-0.01, 0.54) 
0.217 

(0.06, 0.59) 
INTPEOPLE -0.589 

(-1.03, 1.30) 
-1.195 

(-1.42, 1.10) 
-0.273 

(-0.49, 1.36) 
-0.903 

(-0.98, 1.00) 
 

                                                 
35 Confidence intervals (in parentheses) are based on the 2.5th and 97.5th percentiles of the distribution of bootstrapped parameter estimates. 
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Table 8:  Value of a Statistical Life ($ millions) 
95% Confidence Interval in Parentheses 

 
 
 Sample Men 

Age 18-60 
Men 

Age 18-60 
Women 

Age 18-60 
Women 

Age 18-60 
Worker-Occupation 
Attribute Interactions 

No Yes No Yes 

Wage-Hedonic Model 
4.10 

(-7.58, 15.78) 
2.76 

(-7.02, 12.54) 
-13.04 

(-53.17, 27.10) 
-8.85 

(-42.12, 24.42) 
Minimum Order 
Statistic Estimator 

13.35 
(5.83, 15.78) 

11.87 
(4.64, 15.92) 

8.62 
(4.56, 13.24) 

12.26 
(7.53, 14.06) 
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Table 9:  Sensitivity Analysis, Value of a Statistical Life ($ millions) 
95% Confidence Interval in Parentheses 

 
Men Women Specification 

Minimum Order 
Statistic Estimator 

Wage-Hedonic 
Model 

Minimum Order 
Statistic Estimator 

Wage-Hedonic 
Model 

Salaried Workers 6.98 
(0.88, 14.30) 

10.66 
(-4.95, 26.28) 

7.94 
(-5.87, 21.64) 

37.12 
(-10.82, 85.06) 

Un-trimmed Sample 6.85 
(3.26, 14.50) 

4.53 
(-7.66, 16.72) 

6.44 
(0.02, 19.10) 

-7.42 
(-50.31, 35.46) 

Age [20,30) 7.17 
(2.78, 10.70) 

2.73 
(-6.09, 11.54) 

7.62 
(4.26, 18.28) 

-11.09 
(-43.31, 21.13) 

Age [30, 40) 9.01 
(5.57, 14.92) 

5.58 
(-6.81, 17.97) 

8.86 
(5.13, 17.60) 

-10.43 
(-55.98, 35.12) 

Age [40, 50) 13.23 
(5.24, 20.26) 

6.19 
(-8.96, 21.34) 

11.19 
(5.83, 27.22) 

-13.48 
(-61.04, 34.09) 

Age [50, 60)36 7.33 
(2.57, 19.04) 

2.94 
(-15.45, 21.32) 

 -17.39 
(-70.93, 36.14) 

Married 13.62 
(5.96, 18.71) 

4.27 
(-7.99, 16.53) 

7.98 
(3.92, 16.85) 

-18.55 
(-65.56, 28.46) 

Unmarried 7.71 
(3.20, 12.40) 

3.73 
(-7.13, 14.60) 

8.54 
(5.01, 13.64) 

-5.13 
(-36.51, 26.25) 

Limited Individual Attributes 2.05 
(0.86, 8.43) 

5.54 
(-7.47, 18.55) 

4.85 
(2.63, 11.37) 

-11.40 
(-53.22, 30.41) 

No Ag, Forestry, Fishing 19.45 
(-11.18, 138.70) 

2.25 
(-26.79, 31.30) 

5.25 
(-4.81, 30.92) 

-11.56 
(-60.27, 37.16) 

 

                                                 
36 In the case of women aged 50 – 59 years, there were some occupations in which we observed no workers.  The minimum order statistic estimator could not be 
run in this case. 
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Table 10:  Parameter Estimates Based on Normality and Independence Assumptions 
 

Param Est S.E. Param Est S.E. Param Est S.E. 
μ1 0.04 0.01 σ1 3.52 1.12 FATAL -3.06 0.85 
μ2 2.14 0.61 σ2 3.17 1.02 NONFATAL -0.31 0.02 
μ3 -2.78 0.81 σ3 2.92 0.81 SCMPLX -3.05 0.30 
μ4 -2.34 0.62 σ4 2.97 0.83 MSKILL -0.73 0.08 
μ5 1.22 0.35 σ5 2.72 0.80 PHYDDS 2.94 0.21 
μ6 0.43 0.14 σ6 2.39 0.64 WORCON 0.18 0.05 
μ7 1.29 0.60 σ7 3.29 0.91 CSKILL 0.61 0.04 
μ8 -0.57 0.16 σ8 2.19 0.54 INTPEOPLE 2.05 0.22 
μ9 3.37 1.19 σ9 3.93 0.91    
μ10 -2.24 0.67 σ10 1.93 0.50    
μ11 0.49 0.14 σ11 2.38 0.61    
μ12 1.62 0.44 σ12 3.20 1.01    
μ13 0.99 0.30 σ13 2.88 0.77    
μ14 -2.91 0.81 σ14 3.51 0.99    
μ15 2.86 0.77 σ15 2.76 0.93    
μ16 -2.07 0.55 σ16 2.75 0.70    
μ17 -1.35 0.44 σ17 1.35 0.43    
μ18 -2.60 0.68 σ18 2.88 0.89    
μ19 -1.94 0.53 σ19 1.72 0.50    
μ20 -0.64 0.18 σ20 1.23 0.36    
μ21 0.99 0.29 σ21 3.62 1.02    
μ22 1.21 0.34 σ22 3.37 0.94    
μ23 0.58 0.15 σ23 2.34 0.66    
μ24 -1.60 0.45 σ24 2.05 0.62    
μ25 0.43 0.12 σ25 2.17 0.71    
μ26 -2.89 0.74 σ26 2.54 0.80    
μ27 -0.80 0.24 σ27 3.21 0.84    
μ28 -0.32 0.08 σ28 2.11 0.62    
μ29 2.20 0.58 σ29 2.18 0.60    
μ30 1.09 0.37 σ30 3.43 1.03    
μ31 -0.26 0.08 σ31 2.84 0.74    
μ32 0.83 0.24 σ32 1.47 0.35    
μ33 1.89 0.53 σ33 2.55 0.58    
μ34 -0.07 0.02 σ34 1.56 0.41    
μ35 0.44 0.14 σ35 4.10 1.18    
μ36 -0.23 0.07 σ36 0.81 0.26    
μ37 0.80 0.21 σ37 1.52 0.35    
μ38 3.42 0.96 σ38 3.58 0.87    
μ39 -1.05 0.33 σ39 1.97 0.61    
μ40 -1.01 0.30 σ40 2.58 0.66    
μ41 -1.59 0.42 σ41 2.18 0.49    
μ42 -3.43 1.05 σ42 3.69 1.12    
μ43 -0.03 0.01 σ43 1.83 0.51    
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Figure 1 – Unconditional Wage Distributions 
Equal Variances Across Occupations, No Correlation 

 

 
 
 
 

Figure 2 – Conditional Wage Distributions 
Equal Variances Across Occupations, No Correlation 
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Figure 3 – Unconditional Wage Distributions 
Unequal Variances Across Occupations, No Correlation 

 

 
 
 
 

Figure 4 – Conditional Wage Distributions 
Unequal Variances Across Occupations, No Correlation 
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Figure 5 – Conditional Wage Distributions 
Unequal Variances Across Occupations, Positive Correlation 

 

 
 
 
 

Figure 6 – Conditional Wage Distributions 
Unequal Variances Across Occupations, Negative Correlation 
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Figure 7

CASE A:  ω 1
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