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some negative jointness is always desirable. Numerical simulations suggest that, in that model, it is
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1 Introduction

The tax treatment of couples has been a debating point throughout the existence of the income
tax. Actual policies have varied over time and across countries. Over the past three decades,
there has been an international trend from joint to individual taxation of husbands and wives,
and today the majority of OECD countries use the individual as the basic unit of taxation.
Under individual taxation, tax liability is assessed separately for each family member and is
therefore independent of the income of other individuals living in the household. By contrast,
in a system of fully joint taxation of couples, as operated by for example the United States, tax
liability is assessed at the family level and depend on total family income. It is also notable
that most countries which have moved to individual income taxation still use joint income to
determine welfare benefits and transfers at the bottom end. Two basic points have been noted
in the previous informal discussions of the issue (e.g., Rosen, 1977; Pechman, 1987).

First, as the labor supply of secondary earners is more elastic with respect to taxes than
the labor supply of primary earners (see Blundell and MaCurdy, 1999, for a recent survey),
the traditional Ramsey optimal taxation principle suggests that the labor income of secondary
earners should be taxed at a lower rate than labor income of primary earners for efficiency
reasons. This is achieved to some extent by a progressive individual income tax since primary
earners have higher incomes and hence will face higher marginal tax rates than secondary
earners. By contrast, a fully joint income tax generates identical marginal tax rates across
members of the same family and hence does not meet this efficiency criterion.

Second, welfare is better measured by family income than individual income. As a result,
if the government values redistribution, two married women with the same labor income ought
not to be treated identically if their husbands’ incomes are very different. This redistributive
principle is achieved to some extent by progressive income taxation based on family income,
since it imposes higher tax rates on wives married to high-income husbands than on wives
married to low-income husbands. By contrast, an individual income tax imposes the same
tax burden on wives irrespective of their husbands’ earnings and hence does not meet this
redistributive criterion.!

The purpose of this paper is to explore the optimal income taxation of couples. Following

! Another topic which is often discussed is the neutrality of the tax system with respect to marriage decisions
(see e.g., Alm et al. 1999). This paper considers only couples and hence will not touch on this issue.



the seminal contribution of Mirrlees (1971), optimal income tax theory has focused almost
exclusively on individuals. In contrast to previous work on this topic, we consider fully gen-
eral income tax systems allowed to depend on the earnings of each spouse in any nonlinear
fashion and hence impose no a priori restrictions.”? Such a problem can be seen as a multi-
dimensional screening problem where agents (couples in the present paper) are characterized
by a multi-dimensional parameter (ability and taste-for-work parameters of each spouse) that
are unobserved by the principal (the government which maximizes social welfare).

Due to the technical difficulties involved, there are very few studies in the optimal taxation
literature attempting to deal with multi-dimensional screening problems. Mirrlees (1976, 1986)
considered briefly such general screening problems in the context of optimal taxation but did
not go beyond obtaining general first-order conditions and did not consider specifically the
case of family taxation. More recently, Cremer, Pestieau and Rochet (2001) revisited the issue
of commodity versus income taxation in a multi-dimensional screening model in a finite type
economy.

The nonlinear pricing literature in the field of Industrial Organization has investigated a
number of aspects of multi-dimensional screening problems. Wilson (1993), Armstrong and Ro-
chet (1999), and Rochet and Stole (2003) provide surveys of this literature. Multi-dimensional
screening problems are difficult to analyze because, in contrast to the one-dimensional case,
first-order conditions are not sufficient to characterize the optimal solution in general. In this
paper, we consider primarily models with a discrete number of earnings outcomes (instead
of types) for the secondary earner which simplifies the theoretical analysis and allows us to
characterize optimal solutions using a first-order approach. Furthermore, we are able to derive
a number of properties of optimal schedules which are relevant for tax policy analysis and
which, to the best of our knowledge, have not been analyzed in nonlinear pricing theory.

As in the nonlinear pricing literature, we have to make certain simplifying assumptions

to be able to make progress in our understanding of the optimal schedules. In particular,

?Boskin and Sheshinski (1983) considered linear taxation of couples with the possibility of differentiated
marginal tax rates on spouses. Their problem is formally identical to a many-person Ramsey optimal tax
problem. They analyze the efficiency principle discussed above and provide a number of useful numerical
simulations based on empirical labor supply elasticities. However, because they restrict themselves to linear
taxation, their tax system is an individual-based (albeit gender specific) income tax by assumption. Hence,
they cannot address the central question of how the tax rate on one earner should depend on the earnings of
his/her spouse.



we consider a model of family labor supply which assumes no income effects on labor supply,
along with separability in the disutility of supplying labor for the two members of the couple.
We obtain four main results.

First, we derive optimal tax formulas as a function of labor supply elasticities, the re-
distributive tastes of the government (measured by social marginal welfare weights), and the
distribution of earnings abilities and work costs in the population. We show how the opti-
mal tax formulas can be obtained by considering small reforms around the optimum schedule,
which allows us to understand the economic intuition behind each term in the formulas and
how they relate to classic individualistic optimal income tax theory. We show that the marginal
tax rate faced by primary earners at a given earnings level — averaging over secondary earn-
ers — is identical to the marginal tax rate obtained in the standard individualistic Mirrlees
model. Thus, the presence of the secondary earner introduces heterogeneity in marginal tax
rates faced by primary earners at a given earnings level (depending on their spouses) but does
not affect the average.

Second, we analyze the asymptotics of the optimal tax formulas as the earnings of the
primary earner become large. Quite strikingly, for a wide class of social welfare objectives, we
can show that the tax distortion on the secondary earner vanishes asymptotically when the
earnings of the primary earner become very large. In other words, the earnings of spouses
married to very high income husbands should be exempted from income taxation.?> The
intuition for the zero optimal tax on secondary earners can be understood as follows. Taxing
secondary earners amounts to redistributing from two-earner couples to one-earner couples.
For couples with very large primary earner incomes, there is no value in such redistribution
as marginal social welfare weights for one- and two-earner couples are about the same in the
limit.

Third and most importantly, we show that under some additional regularity assumptions
and uncorrelated abilities across spouses, the marginal tax rate on the primary earner is lower
when his spouse works. As a result, the tax on secondary earners decreases with primary

earnings. The intuition is an extension of the asymptotic result described previously. When

3At first glance, our result may seem reminiscent of the famous result that the top marginal tax rate is zero
in the Mirrlees model (Sadka, 1976; Seade, 1977), but the logic is in fact quite different. Indeed, we obtain our
zero-tax result for secondary earners under assumptions implying a positive top marginal tax rate on primary
earners.



primary earnings are low, secondary earnings make a significant difference for the couple’s
welfare. Hence, the government would like to compensate one earner-couples for not having
secondary earnings relatively more when primary earnings are low. This is equivalent to
introducing a tax on secondary earners which decreases with primary earnings.

Fourth, we show that this negative jointness result is likely to be robust to more general
models where secondary earnings are continuous (instead of binary). In that context, we show
that starting from the optimal separable schedule, it is desirable to introduce negative jointness
at the margin. Although we can only conjecture that negative jointness will be present at the
optimum, extensive numerical simulations suggest that negative jointness is indeed a feature
of the optimum tax systems.

The desirability of negative jointness seems striking at first glance. Notice that fully joint
progressive income taxation, as observed in the United States for example, is characterized by
positive jointness, i.e. the marginal tax on one spouse depends positively on the income of
the other spouse. Our result suggests that such a system is suboptimal: a move to separate
taxation would be a step in the right direction, but this would not go far enough. However,
it is important to note that, in practice, transfers programs at the bottom are almost always
based on joint family income and the phasing-out of those programs creates implicit taxes
on secondary earners which are actually decreasing with primary earnings. For example, the
United Kingdom has an individual income tax system but a family-based transfer system.
Consider a secondary earner in the United Kingdom with modest earnings. There is a high
tax on secondary earnings when primary earnings are low (because secondary earnings reduce
transfer payments) and there is a low tax on secondary earnings when primary earnings are
high (because the secondary earner then faces solely the individual income tax with low rates
for initial earnings). Hence, our optimal tax results are in fact quite consistent with the actual
tax and transfer systems of many OECD countries.

The remainder of the paper is organized as follows. Section 2 analyzes the case where
secondary earners respond only along the extensive margin (working or not working). Section 3
explores how our results extend to a model where secondary earners respond along the intensive
margin. Section 4 presents numerical simulations. Section 5 discusses the implications of
alternative models of family decision making and, finally, Section 6 offers concluding remarks

and avenues for future work.



2 Extensive Response for the Secondary Earner

2.1 Labor Supply Model

In this section, we consider the simplest possible labor supply model for couples allowing us
to derive properties of the fully general optimal joint tax system.

In the model, the primary earner is characterized by a scalar ability parameter n similar
to the Mirrlees (1971) model. The cost of earning z for a primary earner with ability n is
n-h(z/n), where h(.) is an increasing and convex function of class C? and normalized so that
h(0) = 0 and A/(1) = 1. The secondary earner makes a binary decision [ = 0,1 of whether or
not to work. Secondary earners are characterized by a scalar fixed cost of work parameter ¢.
They earn a uniform amount w when working (I = 1) and zero when not working (I = 0).

The government cannot observe n and ¢ and hence has to base redistribution solely on
observed earnings z and w - [. Therefore, the government sets a general non-linear tax system
which depends on z and . We discuss the mechanism design details more formally in Appendix
A.1. Hence, the general tax system is characterized by a pair of non-linear tax schedules
To(z),T1(z) depending on whether the spouse works or not. The tax system is separable if
and only if Ty and T differ by a constant. Disposable income for a couple with earnings
(z,w-1) is given by ¢ = z+w-l—Tj(z). The utility function for a couple whose primary earner

has ability n and whose secondary earner has a fixed cost of work ¢ takes the quasi-linear form
z

u(c,z,l):c—n~h<—>—q~l. (1)
n

The quasi-linear utility specification amounts to ruling out income effects in the labor supply
decisions of both spouses. We make this assumption for two reasons. First, as is well known
from the Industrial Organization literature on nonlinear pricing (e.g., Wilson, 1993) and as
shown more recently by Diamond (1998) in the context of the Mirrlees optimal income tax
model, ruling out income effects simplifies substantially the theoretical analysis. Second, since
the empirical labor market literature tends to find small income effects (e.g., Blundell and
MaCurdy, 1999), the case of no income effects would seem to provide a useful benchmark.
The assumption that disutility of work is separable across the two spouses is also made to

simplify the analysis.*

It would be violated if, for example, spouses prefer to spend leisure time together (if one works more, then



The couple chooses (z,1) so as to maximize utility (1) subject to its budget constraint
¢c=z+w-l—"Tz). It is important to note that our model is equivalent to a single decision
maker optimizing along two dimensions z and /. Thus, there is no conflict in the family about
consumption or labor supply choices.® The first-order condition for primary earnings z is given
by

W(2) =1-1/(2), (2)

n

where Tl’ is the marginal tax rate of the primary earner taking [ = 0,1 as given. In the case
of no tax distortion, 7/(z) = 0, and our normalization assumption h'(1) = 1 implies that
z = n. That is, primary earnings would be identical to ability n, and it is therefore natural to
interpret n as potential earnings. Positive marginal tax rates depress actual earnings z below
potential earnings n. If the tax system is not separable (so that T} and T} are not identical),
there will be an interdependence between the labor supply decisions of the two spouses. We
denote by z; the optimal choice of z for a given labor supply choice [ of the secondary earner.

We define the elasticity of primary earnings with respect to the net-of-tax rate (one minus
the marginal tax rate) as

o =1 0z nh'(z/n) 3)
T 80 =T)) Al (a/n)

Because we have assumed away income effects, the compensated and uncompensated elasticity
of labor supply are of course identical. This elasticity would be constant in the iso-elastic case
where h(z) = 2% /(1 + k). In that case, ; = 1/k.

We assume that couple characteristics (n,q) are distributed according to a continuous
density distribution defined over [n,71] x [0, 00). We normalize the size of the total population
to one. We denote by P(g|n) the cumulated distribution function of ¢ conditional on n, p(g|n)
the density of ¢ conditional on n, and f(n) the unconditional density of n, so that the density

of the joint distribution of (n,q) is given by p(g|n) - f(n).

leisure is less valuable for the other spouse). The assumption would also be violated if the are economies of
scale in household production, for example in child care.

®This stands in contrast to the recent literature on collective labor supply (following the seminal contributions
by Chiappori 1988, 1992) modelling couples as two individual utility maximizers interacting with each other.
The single decision maker hypothesis provides a useful and simpler benchmark for our analysis. We argue in
detail in Section 5 that collective labor supply issues matter primarily for redistribution within couples and
that such within-couple redistribution can be made first best and is largely independent of the second-best
redistribution across couples which we consider here.



For the secondary earner to enter the labor market and work, the utility from participation

must be greater than or equal to the utility from non-participation. Let us denote by
z
Vi(n) = 2 — Ty(z1) — nh (#) Y, (4)

the indirect utility of the couple (exclusive of the fixed work cost ¢). Differentiating with
respect to n (which we denote by an upper dot from now on), and using the envelope theorem,

we obtain

Vi) = —h (2)+ 2w (2. (5)

n

The participation constraint for secondary earners is
q<Vi(n) = Vo(n) =q. (6)

As defined in this expression, ¢ is the net gain from working exclusive of the fixed work cost
q. For families with a fixed cost below the threshold-value g, the secondary earner works. For
families with a fixed cost above the threshold, the secondary earner stays out of the labor
force. If the tax function is not separable, the value of ¢ and hence the participation decision
of the secondary earner will depend on the labor supply decision of the primary earner. The
probability of labor force participation for the secondary earner at a given ability level n of
the primary earner is given by P (g n).

It is natural to define the participation elasticity with respect to the net gain from working

q as
g 0P(gn)
TP eq (7)

When ¢ = w, secondary earners for whom ¢ < w participate, corresponding to a situation

with no tax distortion in the secondary earner labor supply choice. If § = 0, only spouses with
a zero cost of working would participate, representing the case of 100% taxation of secondary

earnings. Hence, we can define the tax rate on secondary earners by

w—q
T = .
w

Note that, when taxation is separate so that Tf = 7] and hence zyp = z;, we have 7 =
(Ty — Tp)/w. When taxation is not separate, i.e. Tj # T| and hence zy # z1, the parameter 7
captures the tax rate on the secondary earner while T} — T is the total change in tax liability

for the couple when the secondary earner starts working.



Lemma 1 At any point n, we have:
e Tl >T <= zy <z <= 7<0
o Tl =T <= zp=21 <= 7=0

o Tl <T| = z0>21 <= 7>0

The proof follows easily from (5). The lemma is simply another way to restate the theorem
of equality of the cross-partial derivatives. We naturally say that a tax system has positive
jointness if 7 is increasing and negative jointness if 7 is decreasing. If 7 is constant, the tax
system is separable. Those definitions can be either local (at a given n) or global (for every

It is important to note that double-deviation issues are directly taken care off in our model
because we always reason along the n-dimension and assume that z adapts optimally. For
example, if the secondary earners starts to work, optimal primary earnings shift from zp(n) to
z1(n) but the key first-order condition (5) continues to apply. More precisely, we can show,
exactly as in the Mirrlees (1971) model, that a given path for (zp(n), z1(n)) can be implemented
via a truthful mechanism or equivalently with a non-linear tax system if and only if zg(n) and
z1(n) are non-negative and non-decreasing in n. We explain these mechanism design issues in

more detail in Appendix A.1.

2.2 Deriving the Optimal Income Tax Rates

As in standard optimal income tax models, the government maximizes a social welfare function
defined as the sum of a concave and increasing transformation W(.) of the couples’ utilities

subject to a government budget constraint. Formally, the government maximizes

W = /nnn /qooo VU (Vi(n) —q- Dp(gn) f(n)dgdn, 8)

subject to the budget constraint
n o]
[ Bptan)sndaan = B, )
n=n Jg=0
where E is an exogenous per capita revenue requirement. The concavity of ¥(.) measures
the redistributive tastes of the government. We derive formally in appendix A.2 the following

optimal tax formulas:



Proposition 1 The first-order conditions for the optimal marginal tax rates T}, and T] at

ability level n can be written as

T 1 1 K / Sy . N,

=T 0wl = P =01 (1= P (@) + (T3 = Tilo al')} o )ZZ))
T 1 1 " N ot i .

T-77 —1T{ T nfmPam) /n {1 =g (P (qn') — [Ty = Tolp (gln') } f())dn!,  (11)

where all the terms outside the integral are evaluated at ability level n and all the terms inside
the integral are evaluated at n', and where go(n') and gi1(n') are the average social marginal
welfare weights for couples with primary earners’ ability n’ and secondary earners not working
and working, respectively.

The first-order conditions (10) and (11) apply at any point n where there is no bunching
(i.e., where zi(n) is strictly increasing in n). If the conditions generate segments where zy(n)

or z1(n) are decreasing, then there is bunching and zo(n) or z1(n) are constant over a segment.

Heuristic Proof of Proposition 1

In order to understand the economic intuition behind the formulas in Proposition 1, it is
useful to provide a heuristic derivation of the results based on the analysis of a small tax
reform around the optimum schedule.

A useful first step is to present briefly the derivation of the optimal tax rate formula in the
standard individualistic case (with no secondary earner). In that case, the model is a classic
Mirrlees (1971) optimal income tax model with no income effects as in Diamond (1998). The
heuristic derivation of optimal income tax rates has been developed by Piketty (1997) and
Saez (2001).

Suppose, as illustrated in Figure 1, that we increase the income tax by dI' for individuals
with ability above n. This increase in taxes is obtained through a small increase dt in the
marginal tax rate in a small band of ability levels [n,n + dn]. This tax reform raises more tax
revenue from all taxpayers above the small band but decreases their utility. The gain for the

government net of the welfare cost is
4G — a7 [ 11 = g )|,

where g(n’) is the marginal social welfare weight for individuals with ability n’, and f(n') is

the density distribution of ability.



In the small band [n,n + dn], there is a reduction in earnings due to the higher marginal
tax rate dt. This decreases tax revenue collected from taxpayers in this band. An individual
in the band reduces earnings by dz = —z - ¢ - dt/(1 —T") which translates into a tax change
of T'dz. There are f(n)dn such individuals in the band. Following the same derivation as in

Saez (2001), the effect on tax revenue is®

T/

dL = —dT -nf(n)-¢- =7
At the optimum, this small reform cannot change welfare. Hence, the sum of the behavioral
revenue effect dL and the net gain dG must be zero, implying the optimal income tax rate

formula
1

This corresponds to the Mirrlees (1971) formula for optimal marginal tax rates in the case

T/

— - [ =g, (12)

1
=
with no income effects as shown in Diamond (1998).7

Let us now examine how the introduction of a secondary earner modifies equation (12).
With a secondary earner, the tax system can be depicted as a pair of tax schedules, shown in
Figure 2, one for couples with working spouses and one for couples with non-working spouses.
Note that the vertical distance between the two schedules, T} — Tp, is the extra tax paid by
the couple when the secondary earner enters the labor force.

Let us consider, as illustrated in Figure 2, the same reform as before but only for couples
with working spouses. More precisely, all couples with ability above n and a working spouse
face a small tax increase d1" which is created by increasing the marginal tax rate in the small
band [n,n+dn]. As above, this tax reform raises more tax revenue from all two-earner couples
above the small band but decreases their utility. The gain for the government net of the welfare

cost is therefore .
dG =dT"- / 1 —gi(n)|f(n")P(gn)dn',

where g1(n’) is the average marginal social welfare weight for couples with ability n’ and a

working spouse and P(g|n’) is the fraction of couples with ability n’ for which the secondary

5The key point to note is that dT' = dt - dn - z/n as the width of the small band in terms of realized earnings
is dn - z/n.

"The Diamond (1998) formula has 1 + 1/ instead of 1/ because n is defined as wage rates in the original
Mirrlees model used by Diamond (1998). We prefer to define n as potential earnings instead because it simplifies
comparative statics in € (see Saez, 2001).

10



earner works (those with fixed cost of work below the cut-off level ).

As above, the increase in the marginal tax rate in the small band creates a negative labor
supply response for the primary earner which affects taxes collected by
T/
dL = —dT - P(gn) - nf(n) - &1 - 1_—1T1,
In contrast to the previous case, there is now an additional behavioral effect as the tax reform
will induce some working spouses (married to primary earners above n) to drop out of the
labor force and fall back on the one-earner tax schedule. At ability level n’ > n, couples
with fixed work costs between ¢ and ¢ — dT' (there are p(gqn') - f(n') - dT of those couples)
will move to the non-working spouse schedule, creating a government revenue effect equal

to —[Th — To| - p(gn’) - f(n') - dT. Hence, the total effect on tax revenue from participation

responses is given by
dP = —dT / [Ty —To] - p(gn’) - f(n')dn'.

At the optimum, the sum of the three effects dG, dL, and dP will be zero which leads imme-
diately to equation (11) in the Proposition.

Equation (10) can be obtained in a similar way by considering an increase in the tax
for one-earner couples above n. In that case, the participation effect goes in the opposite
direction: some non-working spouses are induced to start working, which increases government
tax revenue (when T — Tp is positive). As a result, the participation term in equation (10)

appears with a positive sign.

2.3 Analyzing the Properties of the Optimal Income Tax Rates
2.3.1 Classical Zero Top and Bottom Results

Sadka (1976) and Seade (1977) demonstrated one of the most striking properties of the Mirrlees
(1971) model, namely that the marginal tax rate should be zero at the top and at the bottom
(provided the bottom skill is positive and everybody works). The same property holds in the

two-earner model we are considering.

Proposition 2 If the distribution of abilities n is bounded, then T, = T{ = 0 at the top ability
n. If the bottom ability n is positive, then T, =T =0 at the bottom.

11



The proof follows directly from the transversality conditions (see Appendix A.1).

It is easy to see why these results hold using the heuristic variational method described
above. Let us go back to Figure 2 and assume that the increase in the marginal tax rate took
place at the very top in the small band [ — dn, 71]. In that case, the mechanical effect (net of
the welfare cost) is negligible relative to the primary earner labor supply effect because there
is nobody above n to collect the extra taxes dI' from. Similarly the participation effect is
negligible relative to the primary earner intensive labor supply effect. Thus, the first-order
conditions hold only if T = T = 0 at the top skill 7. A similar type of proof can be applied
to the bottom ability as well.

Numerical simulations in the context of the Mirrlees model (e.g., Tuomala, 1990) have
shown that the top result is not of much use in practice because it is true only at the very
top and hence applies only to the top earner. Top tails of the earnings distribution are very
well approximated by Pareto distributions and it is therefore much more fruitful to consider
infinite tails to obtain useful high-income optimal income tax results (see Saez, 2001, for a

discussion of this point). We consider infinite tails below.

2.3.2 The Average Marginal Tax Rate Conditional on Ability n

It is useful to start by noting that the average marginal tax rate over one- and two-earner
couples is exactly identical to the marginal tax rate in the individualistic standard case shown

in equation (12). By taking the (weighted) sum of (10) and (11), we obtain

o1 = Plaln)) =gy + Pl iy = s [ =g, ()

where g(n') = P(q|n/)g1 (n')+(1 — P (q|n’)) go (n') is the average social marginal welfare weight
for couples with ability =’

This result can be obtained heuristically by increasing slightly the tax for all couples with
ability above n. In that case, there is no change in the participation decision of secondary
earners and therefore the only behavioral response is a substitution effect for primary earners
around n. The result shows that redistribution from high- to low-ability primary earners follows
the exact same logic as in the Mirrlees (1971) optimal income tax model. The introduction of

a secondary earner does not change the average marginal tax rate faced by primary earners

12



but introduces a difference in the marginal tax rate faced by one- versus two-earner couples,

which we now examine in detail.
2.3.3 The Desirability of Joint Taxation

We introduce two assumptions.
Assumption 1 The function V. — W/'(V) is convez.

This is a very natural assumption on social preferences, and it will be satisfied for all standard

social welfare functions such as the CRRA form ¥(V) = V1=7/(1 —5) with v > 0.
Assumption 2 ¢ and n are independently distributed.

This assumption allows us to isolate the impact on the optimal tax system of the interac-
tion between spouses occurring through the social welfare function. Obviously, we do not
expect this assumption to hold in practice and we examine numerically in Section 4 how this

assumption affects our results.

To begin with, suppose that the government implements the optimal separable tax system,
i.e. a tax system where T) — T} is independent of the primary earnings. Then the optimal
constrained schedule is characterized by a single set of primary earner marginal tax rates 77,
a constant tax on the secondary earner 17 — Ty, and an initial condition Tp(z(n)). In this
case, we have that z(n) = zy(n) and that § = w — (11 — Tj) is constant. Hence Assumption
2 implies that P(q) is also constant across n. Exactly as in the above heuristic derivation of
the average marginal tax rate, it can be shown that the optimal 7" is given by the standard
Mirrlees (1971) formula:

! n
=t - area

The optimal T — T can be derived by shifting either the T'- or the Ty-schedule uniformly

by dT'. For the Ti-schedule, this generates the formula

(T —Ty) - % =1- /ngl(n)f(n)dn,

and for the Tph-schedule, we obtain

(T1 —Tp) - 1{’(71% _ /nn go(n)f(n)dn — 1.



Summing those two equations implies

(110} g s = [ o)~ ] n)n > 0 (1)

The positive sign in (14) can be obtained as follows. By definition,

go(n) — g1(n) = \Ij/()\VO) _ L ‘I”(%;g(—q)@p(q)dq’ )

Thus, the fact that W’ is decreasing (¥ concave) implies that gy — g1 > 0.

Starting from this separable schedule, let us introduce some negative jointness. We consider
an increase in the tax on one-earner couples and a decrease in the tax on two-earner couples
above some ability level n as depicted in Figure 3. The change in the tax for two-earner couples
is dT7 = —dT'/P(q) and the change in the tax for one-earner couples is dTy = dT'/ (1 — P(q)),
so that the net effect on taxes collected (absent any behavioral response) is zero.

The net direct welfare effect is

n
dW =dT - / [g1(n") = go(n)] f(n)dn/.
n
There are two behavioral responses to the tax change. First, these tax changes are obtained
by raising (lowering) the marginal tax rate on the primary earner in one-earner (two-earner)
families around n. The changes in marginal tax rates generate earnings responses for primary
earners going in opposite directions in one- and two-earner couples. Since the primary earner
elasticity is the same for one- and two-earner couples (from equation (3) as z; = zg), these
behavioral responses offset each other exactly and the net fiscal effect is zero.

Second, the tax change induces a number of non-working spouses above n to join the labor
force. The number of switchers is (1 — F\(n))p(§)dg and dg = d1y—dTy = dT/[P(1— P)]. Each
of these movers pays T7 — Ty > 0 extra in taxes and hence generate a positive fiscal effect. So
the net effect on tax revenue due to the behavioral response is dB = dT - (1 — F(n)) - (11 —
) p(@)/1P(1 = P).

Therefore, the net effect of the reform is given by

dB + dW = dT - {(1 — F(n))(T} — TO)P@ .pl@ i /n[go(n’) — gl(n’)]f(n’)dn’} :

Using (14), this can be rewritten to

14



T

dB +dW =dT"- {(1—F(n))/n

n

lgo(n') — g2 ()] £ ()" — /

n

[go(n/) - g (n/)]f(n/)dn/}

n

—ar. {(1 = F) [ o) = n N0~ Fn) [

n

o) = (L' b (16
dB + dW > 0 will follow from the following Lemma.

Lemma 2 Under Assumptions 1 and 2 and with a separable tax system, go(n) — g1(n) is

(weakly) decreasing in n.

Proof:
Because the tax system is separable, we have that § = w — (T1 — Tp) is constant in n. Hence,

equation (15) implies:

dlgo(n) —gr(m) _ | W"(Vo) _ JW"(Vo + - ap(a)da]
dn A X P(q) o

Assumption 1 implies that ¥” is increasing, thus the expression in square brackets above is

negative. Furthermore, Vj is increasing in n. This demonstrates the Lemma. O

The lemma implies that

Ju lgo(n') = g1 (n)f (n')dn’ > o) — gn(n) > Julgo(n') = g1(n))f (n)dn’

F(n) 1—F(n)

This inequality implies that expression (16) above for dB + dW is positive. Therefore, the
reform depicted on Figure 3 is desirable, showing in particular that separate taxation is not

optimal. We can then state the following proposition.

Proposition 3 Under Assumptions 1 and 2, starting from the optimal separable schedule,
introducing some negative jointness in taces by lowering tazes in (n,7n) for two-earner couples

and increasing tazes in (n,n) for one-earner couples increases welfare.

This proposition shows that the desirable direction of the reform is to decrease the tax
on secondary earners for high primary earnings or equivalently to increase the marginal tax
rate on one-earner couples relative to two-earner couples. This tax reform result is a first step

toward establishing this pattern at the full joint optimum which we explore below.
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It is important to understand the economic intuition behind this result: the tax on sec-
ondary earners, T — Ty > 0, amounts to redistributing from two-earner couples to one-earner
couples. This redistributive value is higher for couples with low primary earnings than for cou-
ples with high primary earnings. This tax on secondary earnings generates a distortion on the
labor supply of the secondary earner which does not depend on primary earnings. Therefore,
trading off equity and efliciency, it is desirable for the government to reduce this secondary

earner tax when primary earnings are high.
2.3.4 Asymptotic Results for 17 — T

Suppose that n = o so that the ability distribution of primary earners has an infinite tail.
For any reasonable welfare function, we would then have that gg(n) and g1(n) converge to
the same value ¢°°, because the additional income generated by the secondary earner becomes
infinitesimal relative to primary earner income in the limit.® It is also natural to assume that
the primary earner elasticities ; converge to an asymptotic value €* as n tends to infinity.
Since top tails of income distributions are well approximated by Pareto distributions, as
explained above, we assume that abilities n are Pareto distributed at the top with Pareto
parameter a, and that fixed work costs ¢ are distributed independently of n at the top with

distribution P(q). Under these assumptions, we can prove the following result:

Proposition 4 Suppose that Ty — Ty, T}, T{, q converge to AT, T'5°, T'3°, and ¢ when
n goes to infinity. Then we have

e AT = 0, i.e., the tax on secondary earners goes to zero as the earnings of the primary
earner increase to infinity.

o 170 =T =(1-¢>)/(1—¢>°+a-£*) >0, exactly as in the Mirrlees model.

Proof:

Because T} — T} converges when n goes to infinity, it must be the case that 773° = 779 = T"°°.
Because, ¢ converges, P(g) and p(g) also converge. Let us denote by P* and p® their limits.
The Pareto assumption implies that (1 — F(n))/(nf(n)) = 1/a for n large. Taking the limit

when n goes to infinity of the optimal tax formulas (10) and (11) from Proposition 1, we obtain

8Tn the case where ¢> = 0, the optimal tax system extracts as much tax revenue as possible from the very
rich (‘soaking the rich’).
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respectively:

oo 1 1 p>

L fi—gegAre P

1-T% % g { gt 1—P00}’
i 11

— o [l arinl.

1—Tr  gx g poo

Hence, it is necessary that AT = 0 and the formula for 7' follows immediately. [

The result in Proposition 4 is quite striking. The earnings of spouses of the highest-income
earners should be exempted from taxation, even in the case where the government tries to
extract as much tax revenue as possible from high-income couples (the case of ¢ = 0).
Although the result may seem reminiscent of the classic zero top result of Sadka and Seade
discussed above, the logic is completely different. In fact, in the present case where the
distribution of abilities n has an infinite tail, the tax on the secondary earner is zero at the
top while the marginal tax on the primary earner is actually positive at the top. On the other
hand, in the case of a bounded ability distribution, we would obtain a top marginal tax rate
on the primary earner equal to zero (cf. Proposition 2), but then the tax on the secondary
earner would no longer be zero at the top (a point which we come back to in the following
subsection).

The economic intuition of this result can be understood by using Figure 3 again where we
increase the tax on one-earner couples and decrease the tax on two-earner couples above some
high ability level n. Let us assume that T} — T were to converge to some limit AT > 0 so
that the analysis can parallel the analysis of the previous subsection. The mechanical effect
on tax revenue is zero as before. Importantly, the direct welfare effect is also zero because the
reduced welfare of one-earner couples is exactly compensated for by an increase in the welfare
of two-earner couples as the social marginal welfare weights are identical (and equal to ¢°°)
for both groups. As before, the behavioral response along the intensive margin does not affect
tax revenue. Finally, the tax change induces a number of non-working spouses above n to join
the labor force. Each of these movers would pay AT > 0 extra in taxes and hence generate
a positive fiscal effect. This positive effect is the net total effect of the reform as all of the
previous effects cancelled out. Therefore, AT> > 0 cannot be optimal.® Therefore we must

have AT = 0 asymptotically as stated in Proposition 4.

9Conversely, if AT™ were to be negative, the opposite tax reform would increase welfare.

17



In summary, this result can be seen as an extension of Proposition 3. For very high primary
earnings, secondary earnings are negligible and hence there is no value in redistributing from
two-earner couples to one-earner couples. Therefore, there is no point in introducing a tax

distortion on secondary earners when primary earnings are very high.

2.3.5 A General Negative Jointness Result

We now turn to the comparison of T} and T} over the full tax schedule. In order to obtain our
central negative jointness result, we need introduce three additional assumptions.

Assumption 3 The function x — (1 — I/ (2))/(x - h'(z)) is decreasing.

This assumption is satisfied, for example, for iso-elastic utilities h(z) = 2'**/(1 + k) where

the labor supply elasticity € is constant and equal to 1/k.
Assumption 4 The function x — z - p{w — z)/[P(w — z) - (1 — P(w — x))] is increasing.

This assumption is satisfied for iso-elastic cost of work distributions of the type P(q) =
(¢/Gmaz)" where the participation elasticity of secondary earners (with respect to the money

metric net utility of working § = V1 — Vi) defined as ¢ - p(q)/P(q) is constant and equal to 7.
Assumption 5 ¢-p(q)/P(q) <1 for all q.

This assumption is satisfied when the participation elasticity 7 is less than or equal to one.

With these assumptions, we can state the following proposition:

Proposition 5 Under Assumptions 1-5, and assuming there is no bunching at the optimum,
we have
o 11 <1 for all n. FEquivalently, T is non-increasing in n everywhere.

o Ti(zn) = To(zn) = T1(zn) —To(zn) > 0 for all n (assuming that n < oo).

Proof:

Suppose by contradiction that 7] > T for some n. Then, because T}, and 77 are continuous
in n (cf. Appendix A.2) and because T] = T} at the top and bottom skills (cf. Proposition 2),

there exists an interval (n,, ny) where T > T}, and where T} = T{ at the end points, n, and n,.
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This implies that z1 < zg on (ng,np) with equality at the end points. Hence, by Assumption
3, we have e, T7/(1 —T7) = (1 = h))/(h] - z1/n) > (1 — h}) /(K] - z0/n) = eoT{/(1 — TF) on
(ng,np). Then, using the first-order conditions (10) and (11) which apply everywhere because
of our no bunching assumption, we obtain
1 n 1 /"

Qo(n) = Tp [(1—g0)(1=P)+AT-p|f(n)dn' < F/ [(1—g1)P=AT-p|f(n)dn' = Q1 (n)
on (ng,ny) with equality at the end points. This implies that the derivatives of the above
expressions with respect to n, at the end points, obey the inequalities €2 (ng) < 0 (n,) and
Qo (np) > Oy (np). At the end points, we have T = T{, zy = =, and Vi = V4, which implies

g =0 and P =0. Hence, the inequalities in derivatives can be written as

1—go+AT-p/(1=P) > 1—g1 —AT-p/P at n,,

1—go+AT-p/(1-P) < 1—-g1—AT-p/P atn.

Combining these inequalities, we obtain

AT - p

e > 00(n0) = 01(2) > anlm) = 91 (0) > By sl

PO-P

The middle inequality is intuitive and follows formally from Assumptions 1-5 as shown in
Appendix A.3. Using that § = w — AT at n, and ny, along with Assumption 4, we obtain
AT (ng) > AT(ny).

However, T} > T}, and hence z; < zp implies that ¢ < 0 on the interval (n4,np). Then
we have ¢(n,) > ¢(np) and hence AT(n,) < AT(np). This generates a contradiction, which
proves that T} < T} for all n.

The second part of the proposition follows easily from the first part. Since we now have
T] < T} on (n,n) with equality at the end points, we obtain Qg (n) > Q (n) on (n,n) with

equality at the end points. Then we have that (n) < O (1), which implies
l—g+AT-p/1—-P)>1—g1 —AT -p/P atn.

Because go(n) — g1(n) > 0, we have AT (n) > 0.
Finally, 7] < T}, and hence z; > z implies ¢ > 0 and ¢ > w — AT with equality at 7.
Therefore, we have w — AT(n) < g(n) < §(7) = w— AT(7), and hence AT(n) > AT(n). O
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At a given primary earner ability level, secondary earner participation is a signal of small
fixed costs of work and being better off than non-participation. This implies go(n) —g1(n) > 0
making it optimal to redistribute from two-earner couples to one-earner couples, i.e. T} —1p >
0. This redistribution gives rise to a tax distortion in the entry-exit decision of secondary
earners, creating a trade-off between equity and efficiency. The size of the efficiency cost
does not depend on the ability of the primary earner because the characteristics of the two
spouses, ¢ and n, are independently distributed. An increase in n therefore only influences the
optimal secondary earner tax through its impact on the social welfare weights. The value of
redistribution in favor of one-earner couples is declining in primary earnings, i.e. go(n)—gi(n)
is decreasing in n, due to the fact that the contribution of the secondary earner to household
utility is declining. Therefore, the tax on secondary earnings is declining in primary earnings.
As shown previously, if the ability distribution of primary earners is unbounded, the secondary
earner tax vanishes to zero at the top. The implication of the declining secondary earner tax
is that the marginal tax rate on the primary earner is lower when the spouse works. This is
what we have termed negative jointness.

Although our results may seem surprising at first glance, they obey a simple redistributive
logic. If the tax schedule for two-earner couples is seen as the base schedule, the tax schedule
for one-earner couples is obtained from this base schedule by giving a tax break — a dependent
spouse allowance — which is larger for couples with low primary earnings than for couples with
large primary earnings. In the limit where primary earnings go to infinity, the tax break is
zero. The shrinking tax break generates an implicit tax on secondary earners which decreases
with primary earnings.

We can prove a simple result on the necessary and suflicient conditions for the optimum
tax to be separable in the earnings of each spouse. This result can be seen as a Corollary to

the much more general Proposition 5.

Proposition 6 Under Assumption 2, if go — g1 is constant over n, then the optimum is

characterized by T}, =T} and

which is independent of n. Conversely, if the optimum is such that T{ =T}, (implying Ty — Tj

being independent of n), then it must be the case that gy — g1 is constant over n.
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We present the proof in Appendix A.4. Note that gg — ¢1 constant in n cannot happen with
a standard concave social welfare function ¥. However, one can consider more general social
welfare weights where go — g1 constant is possible which makes the result of this proposition

useful.

3 Intensive Response for the Secondary Earner

Instead of specifying a binary choice model for the secondary earner labor supply response,
we can use a classic intensive labor supply model for the secondary earner. In that case, the
primary and secondary earner are modelled symmetrically. There is a distribution of earnings
abilities (np,ns) over the population of couples with density f(n,,ns) on the domain D. The

utility function is given by

u(e, 2p, 25) = ¢ = nphy(zp/np) — nshs(zs/ns),

with ¢ = 2z, + 2, — T'(2p, 25). This is a two-dimensional screening problem. There is a small
literature in optimal tax theory considering this type of multi-dimensional screening models
originating with Mirrlees (1976, 1986). There is a larger literature on multi-dimensional screen-
ing in nonlinear pricing theory (see McAffee and McMillan, 1988; Wilson, 1993; Armstrong,
1996; Rochet and Choné, 1998; and Rochet and Stole, 2002).

The first-order conditions for each earner are given by
hy(zp/np) =1 =T, and hi(z/ns) =11 (18)

The indirect utility is denoted by V(n,,n,) and satisfies (using the envelope theorem):

Vép = —hy + (zp/np)hy, and V, = —h, + (z5/ns) R (19)
The objective of the government is to maximize

W = // U (V (np,ns)) f (np,ng) dnpdnsg,
D

subject to the budget constraint

// T (zp, zs) [ (np,ns) dnpdng > E.
D

We can then state the following proposition:
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Proposition 7 The first-order conditions for the optimal marginal tax rates TI; and T! at

ability level (ny,ns) can be written as

T 1 1
P
S . 20
1=T) & npf (np, M) P (20)

T 1 1
s__ .- 21
1-T! &5 nsf(np,ns) s (21)

where (1, and ps are multipliers satisfying the transversality conditions piy(n,,,ns) = tip(Rp, ns) =

0 for all ng and ps(np,ng) = ps(np,ns) = 0 for all ny,, along with the divergence equation

Oy, Opis
On, — On,

= lg(np,ns) = 1]+ f(np,ns), (22)

where g(ny,ns) is the marginal welfare weight for couples with ability (ny,ns). At the optimum,

the following equation has to be satisfied everywhere:

zp Ozp (% zs Oz, { %s
L —n L )==—hl{—]). 23
n2 ons ¥ (np> n2 on, ° \ns (23)

The proof is presented in Appendix A.5.

The formulas are obtained from the first-order conditions of the Hamiltonian. The diver-
gence equation (22) has many solutions satisfying the boundary transversality conditions.!”
Equation (23), which follows from the fact that the second-order derivatives of the indirect util-
ity function V'(n,,n,) has to be symmetric, gives an additional condition making the optimum
solution unique generically.

The optimal marginal tax rate formulas can be obtained heuristically as follows. Consider
a tax reform increasing by d1 the tax for couples (ny,, ;) above (np, ns), i.e., such that ny, > n,
and n), > ng. This change can be obtained by increasing the marginal tax rate on primary
earners in a small interval [np, np, + dny| with spouses with ability n/, above ns. Symmetrically,
the marginal tax rate on secondary earners in a small interval [ns, ns + dng| with spouses with
ability n; above n,, is also increased. The reform is illustrated in Figure 4.

The reform leads to a mechanical increase in tax revenue and a reduction in welfare for all

couples in the shaded area in Figure 4. The net effect is given by

dT/ P/ s [1 =g (ny,n))] f(ny,,nL)dn,dn’.
np JnNs

O0\ore precisely, if (jip, pis) is a solution to the divergence equation, then any function (us — 8p/dns, pp +
dp/On,) where p(ny, ns) is an arbitrary scalar function will also satisfy the divergence equation.
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In addition, there will be a labor supply response for individuals in the south and west borders

of the shaded area due to changed marginal tax rates. The net loss of tax revenue is
s T/ Tp T/ ,
dT/ Ep T/npf (np, 8) dnl + dT/ ST T’nSf (np,ns) dn,,.
s Tp
At the optimum, those two effects need to be equal. It is straightforward to check that the
resulting equation implies equations (20), (21), and (22) of the Proposition.
It is easy to show that the average TI; across ng is the same as in the standard Mirrlees
model. We define f,(n,) as the unconditional density distribution of n,. Let us define F}, as

the cumulated distribution of n,:

1= Fy(ny) / / f(n p,sdndn

and (G, as the average of marginal welfare weights g(n/ above ny:

pv s)

Gp(np) - [1 — Fp(ny)] / / p, ny) p, n.)dn, dn

We can then show,

Proposition 8
!
Tp — l (1 — Fp) i (1 - GP) + 5p(npvn8) (24)
1=-17 & Ny fp

where 0P (ny,ns) averages to zero when summed over ng, i.e., for all ny

/ ) 0P (np, ns) f(np, ng)dng = 0.

s

The symmetric equations hold when substituting p for s.

Proof:

0P (ny,n) is defined as:

/

T’ (1_Fp)’(1_Gp)~

6P (np,ns) =npfp - p - 1

Hence, equation (20) implies:

6P (np,ns) - flnp,ns) = ppfp — (1= 1) - (1 = Gp) f(np, ms).

Integrating this expression over (n, fis), we have:

Ns

/ " 8P (. ) g, ms)dng = fy(ny) / tip(ps ms)dns — Fo(np) - (1= Fy) - (1= Gy).  (25)

s s
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Integrating the divergence equation (22) over ns and using the transversality condition, we

have:

) %dns = / S[g(np,ns) — 1] f(np,ns)dns,
n, Ony, n,

Integrating again from n, to n,, we have:

/nn pp(np,ns)dns = /n:P /n” [1 = g(np,ns)] - f(npsns)dns = (1 — Gp(ny)) - (1 — Fy(ny)).

This implies that the expression (25) is zero which completes the proof. O

Desirability of joint taxation

As in the binary case, we make an assumption on the social welfare function (Assumption
1 above) along with an assumption that innate characteristics are independently distributed,

that is,
Assumption 2’: n, and n, are independently distributed.

Suppose the government implements the optimal separable tax schedule. It can be shown
easily using the standard one dimensional approach that the optimal separable tax schedules

will take the form
TZ; 1 (1 = Fp(nyp)) - (1 = Gp(ny))

1 — Té - ; npfp 9 (26)
T, 1 (1—=Fn)- (1 —Gsny))
=7, nafs ‘ (27)

where G,(n,) is the average welfare weight above n, (averaged across all ng) and Gg(ns) is
the average welfare weight above n, (averaged across all n,).

Starting from those separable schedules, we can consider introducing some jointness as
shown on Figure 5. Let fix a point n = (np, ns). We increase taxes by d1'/[(1 — F,(ny))Fs(ns)]
in the South-East (SE) quadrant (n,, n,) x (n,, ns). We decrease taxes by —dT'/[(1—Fp(np))(1—
Fy(ns))] in the North-East (NE) quadrant (n,,n,) x (ns,7s). There is no change in taxes in
the North-West and South-West quadrants.

This tax change has no effect on taxes collected, absent any behavioral response because
the number of couples in the SE quadrant is (1 — F,(n,)) - Fs(ns) and the number of couples
in the NE quadrant is (1 — Fy(np)) - (1 — Fs(ns)).
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This tax change gives rise to a direct welfare effect equal to
dW = —dT"- [G((np, 11p) X (g, n5)) = G((np, 1) X (5, 75))],

where G(I x J) denotes the average welfare weight on the set I x J.

Those changes can be implemented by decreasing TI; in the band n, X (ns,ns) and by
increasing T, in the band n, x (n,,ns). Similarly, T; decreases in the band (np,7;,) X ns.
Those changes affect labor supply and hence tax collected (but the welfare effect is second
order due to usual envelope theorem argument).

The changes in TI; compensate each other exactly in terms of labor supply because we
are starting from a separable tax schedule. Hence, the tax revenue effect due to behavioral
responses is solely due to the T! change. The change in T! needs to accommodate a jump
down in taxes equal to dT'/[(1 — Fp)Fy| + dT/[(1 — F,)(1 — Fy)] = dT/[(1 — Fp)Fs(1 — Fy)).
Hence, the effect on tax revenue can be written as (exactly as in our derivation of the standard

Mirrlees formula in Section 3):

dT O ar T 1 — Gi(ns)
dB = 5 e fs "Ndn! = S _congfe = dT- s\ Ms
(1= ) Fu(1 - F) /n T gyl folmy)dny, = s T s, Fu(ng)

where we use the separability for the first equality and the optimal tax formula (27) for the
second equality.

The average social weight is equal to one, hence:
G (s 7ip) X (055 15)) - Fa(ns) + G((1y, p) X (05, 70)) - (1 = Fi(ns)) = 1,

which, using the fact that Gs(ns) = G((n,,7p) X (ns,ns)), can be written as:

1 —Gs(ns)

F(ng) G((ny,1p) X (g, n5)) — G((1y, 1) X (5, 705)).

Plugging this into our expression for dB, we obtain:
dB = dT'- [G((ny, np) X (15, 715)) — G((np, 71p) X (115, 75))]-

Comparing the expressions for dW and dB above, it is clear that dW + dB > 0 if we can

show that

Gl(my7p) x (100)) = Gl(1y7p) (5, 720)) > Gl 7p) x (1)) = Gy ) x (g, 7,))
(28)
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Proposition 9 Under Assumptions 1 and 2°, starting from the optimal separable schedule,
introducing some negative jointness in tazes by increasing taxes in (ny,ny) X (ng,ns) and

decreasing tazes in (np,np) X (ns,Nis) increases welfare.

Proof:

V(np,ns) is strictly increasing in ns. As a result, Assumption 1 implies that U"(V(n,,nl)) <
U'(Vi(ng,ns)) < W' (V(np,nl)) for n, < ng < nZ. Hence averaging across nj, € (ny,ns) and

" 5 i
nl € (ng,Ns), we obtain:

Jud UV, ) fo()dnly  [B W (V (g, ) S (n)
Fi(ns) - 1= F(n) |

Assumptions 2’ implies that V'(n,,ns) is also separable and hence that Vép is independent
of ng. Therefore, the inequality above implies that:

S WV (np,nQ)) fs(nl)dnl [T W/ (V(ny, nl)) fo(n)dnlt
FS(nS) - 1_Fs(ns) ’

Qnp) =

is decreasing in n,. Hence, the average of (2 across (n,,,np) is larger than (n;,) which is larger

than the average of Q across (ny,n,). This can be restated as:

G((np, p) X (125, 15)) = G((1p, Mp) X (15, 705)) < G((12512p) X (125, 75)) = G((1257p) X (125, 725))-
Using the decompositions

G (12, p) X (125 105)) = Fp(np) - Gy, mp) X (125,7m5)) + (1 = Fp(np)) - G((72p, 1p) X (1255 726)),

G (1, p) X (155 705)) = Fp(np) - Gy, mp) X (n5,75)) + (1 = Fp(np)) - G((72p, 1p) X (105, 705)),

we can obtain immediately the inequality (28) required to complete the proof. [

This proposition generalizes our previous statement from Section 2.3.3. It shows that in
the double intensive model as well, introducing some negative jointness increases welfare. This
suggests that our central proposition 5 result from the binary case might generalize to the
double intensive model. Under a set of regularity conditions, we should expect that TI; is

decreasing with ns (and conversely that 77 is decreasing with n,).
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4 Numerical Simulations

There are two goals in our numerical simulations. First, we want to illustrate our theoretical
results. This includes showing that our no bunching assumption applies to a wide set of
situations, and demonstrating that negative jointness is optimal in more general models than
the binary case considered in Section 2 and carries over to the case where secondary earners
respond along the intensive margin. Second, we want to give a sense of the quantitative
importance of the negative jointness result, how it depends on the parameters of the model,
and how robust it would be to relaxing some of the Assumptions in our basic model.

For the simulations, we make the following simple parametric assumptions. First, we
assume that h(z) = 2'7%/(1+k), so that we have a constant primary earner elasticity ¢ = 1/k.
Second, we assume that F'(n) is distributed over [n,7] as a truncated Pareto distribution with
parameter ¢ > 1, implying a cumulative distribution function equal to Fi(n) = [1—(n/n)%]/[1—
(n/7)%). Third, we assume that ¢ is distributed as a power function on the interval [0, ¢naz)
with distribution function P(q) = (¢/@maz)" and density function p(q) = n- (¢" 1) /qthaz- As a
result, the elasticity of participation with respect to net gain of working is constant and equal
to 7. Fourth, we assume that the social welfare function ¥ is CRRA with coefficient of risk
aversion v > 0, i.e.,, (V) = VI77/(1 —4). In the case of v = 1, we have ¥(V) = log V.
The combination of a power function for P(q) with a CRRA social welfare function simplifies
considerably the numerical simulations because the integrals over ¢ can be expressed directly
in terms of the incomplete beta function making computations much faster. Finally, we assume
no exogenous revenue requirement so that £ = 0.

Simulations are based on the optimal marginal tax rate formulas derived in Proposition 1.
As described in Appendix A.6, they are performed using an iterative method until the solution
converges to a fixed point satisfying the optimal formulas as well as all the transversality

conditions and the government budget constraint.
4.1 The Extensive-Intensive Model

In this subsection, we consider the binary case presented in Section 2. In Appendix A.6, we
describe the details of the numerical simulations. In the simulations, we set n = 1, n = 4,

w =1, and ¢mar = 2 - w. We assume that n is Pareto distributed with parameter a = 2.
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For our benchmark case, we assume v = 2, € = 0.5, = 0.5. Figure 6 plots the optimal
0, T, and 7 as a function of n. Consistent with our theoretical results, we have T =T =0
at the end points and 7] < T} everywhere else. The difference between T] and T} is about 7
percentage points which makes T} about 30% percent larger than T}. The graph also shows
that the tax on secondary earners 7 is decreasing in n from about 37 percent at n to 22 percent
at n. This suggests that the negative jointness property is not a negligible phenomenon and
that it generates a significant difference in marginal tax rates between one- and two-earner
couples.

Figure 7 examines the sensitivity of optimal tax rates with respect to alternative parameter
values. It shows optimal tax rates T{, T}, and 7 in four situations. In Panel A, we increase the
participation elasticity i to one. We find that this decreases the level of the tax on secondary
earners by about 10 percentage points but the decreasing slope for 7 (or, equivalently, the gap
between T} and T]) remains significant and fairly close to the benchmark case. In Panel B,
we increase the intensive elasticity € to one. We find that this decreases the level of marginal
tax rates on primary earners by about 10 percentage points but again the decreasing slope
for 7 (and the gap between T}) and T7) remains significant as a proportion of tax rate levels.
In panel C, we increase both 1 and ¢ to one. This reduces T}, 77, and 7 but the negative
jointness pattern remains. Taken together, results from Panels A, B, C show that levels of tax
rates obey the traditional Ramsey principle: when the elasticity increases, the corresponding
tax rate decreases.

In Panel D, we increase redistributive tastes of the government to v = 4. We find that all
tax rates increase significantly but, again, the negative jointness pattern remains about the
same in proportion to tax rates.

Figure 8 explores two other departures from our benchmark case. Panel A focuses on
the Rawlsian case (y = o0). In this case, we have that g;(n) = 0 and that go(n) is a Dirac
distribution with all mass concentrated at n. The optimal tax formulas from Proposition 1
continue to apply but the transversality condition 7} = 0 is no longer true at the bottom.
Indeed, the simulation shows that T{(n) = 59% in this case. Interestingly, the negative

jointness result carries over to this case.!! The Rawlsian case is theoretically very interesting

1Tt is actually possible to present a formal proof of negative jointness in the Rawlsian case following the
same steps as in our proof of Proposition 5.
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because it is formally equivalent to a multi-product nonlinear pricing problem as analyzed in
the Industrial Organization literature.!> This shows that the negative jointness result would
carry over in that case as well. Interestingly, the intensive-binary multi-dimensional screening
problem we have considered does not generate singularities at the bottom even when the
objective function corresponds to the one considered in the Industrial Organization literature.
This is in sharp contrast with the important findings by Armstrong (1996) and Rochet and
Choné (1998) who consider multi-intensive models where there is always singularities at the
bottom.

Figure 8, Panel B, explores the case with a long tail. In the simulation, we set n = 200
(which is a close approximation to an infinite tail). The figure shows that in this case, T} and
T converge to the theoretical asymptotic value of 1/(1 + a-¢) = 1/2. We also see that, as
expected, 7 converges to zero.

Figure 9 examines the implications of introducing positive or negative correlation in spouse
characteristics, n and ¢g. If we think of a low ¢ as reflecting a high ability of the secondary
earner, a negative correlation in n and ¢ would correspond to a positive correlation in ability,
and vice versa. We introduce correlation by making ¢, a function of n; it will be a decreasing
function in the case of positive ability correlation and an increasing function in the case of
negative ability correlation. The correlations are calibrated so that the average participation
rates of spouses remains approximately the same. Panel C displays the participation rates of
spouses by potential earnings in the cases of independent abilities (benchmark), positive cor-
relation in ability, and negative correlation in ability. Panel C shows that we have introduced
significant correlation with participation rates doubling from n to 7 in the positive correlation
case and decreasing by 50% from n to 7 in the negative correlation case. Panels A and B dis-
play the optimal tax rates in the positive and negative correlation case, respectively. The levels
of tax rates are higher in the positive correlation case because inequality is more important in
that case and hence redistribution more desirable. However, the negative jointness pattern is
very similar to the cases with no correlation. This suggests that the empirical observation of

positive correlation in ability across spouses (positive assortative mating) would not overturn

12The case where the government minimizes the efficiency costs of raising a given amount of tax revenue
subject to a participation constraint (couples cannot pay more than what they earn in taxes for example) is
also formally equivalent to the Rawlsian model. In that case, go = g1 is constant over n and the bottom
transversality condition T5(n) = 0 does not hold. The pattern of optimal taxes would be identical to Figure 8,
Panel A, but with a uniform scaling down.
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the negative jointness result we have obtained.
4.2 The Discrete Intensive-Intensive Model

In order to explore the robustness of the negative jointness results to more general models, we
extend our binary model from Section 2 to a larger number of possible earnings outcomes for
the spouse. We do not try to simulate directly the double intensive model presented in Section
3 because of the considerable technical difficulty involved. Instead, we consider a simpler
model where the intensive response of secondary earners occurs along a discrete number of
earnings outcomes.

The secondary earner chooses among I +1 occupations denoted by ¢ = 0,1, ..., I and paying
wages wg < wi < ... < wy. We assume that occupation 0 is being out of the labor force and
hence pays no wage (wg = 0). Secondary earners can be of type ¢ = 1,..,1. We assume that
there is an exogenous fraction h; of spouses of type i. A spouse of type ¢ will earn w;_; if she
expends no effort but can earn w; if she expends a cost ¢;. The distribution of costs is given
by I'i(g:), with density vi(q:).

This discrete model has been developed in the one-dimensional case by Piketty (1997) and
Saez (2002) as an alternative to the Mirrlees (1971) continuous model. Piketty (1997) and Saez
(2002) show that optimal tax rate formulas carry over intuitively to that model.'? Introducing
the discrete intensive choice for the spouses is the simplest way to generalize the binary model
while keeping tractability, both for deriving optimal tax formulas and implementing numerical
simulations.

There are I + 1 tax schedules: Ty(2),..,T7(2), depending on the occupation of the spouse.
As shown in appendix, we can define the marginal tax rate from occupation ¢ —1 to occupation
i for spouses as 7, = [w; — Vi — (wi—1 — Vi_1)]/(w; — w;—1). The generalization of negative
jointness to this model can be stated as T} > 17 > .. > 17} for all n which is equivalent to
T; being decreasing in n for each ¢. We do not have a general theoretical result on negative
jointness in the double-intensive context, but we expect that it holds in a wide set of parametric

assumptions which we explore with numerical simulations.!*

131t is important to note that the discreteness is in the outcomes and not in the types. The discrete type
case has been extensively analyzed in the literature. However, the discrete type case does not lend itself to a
simple generalization in the multi-dimensional screening case (see Armstrong, 1995).

147t is easy to show that starting from the optimal separable schedule, introducing some jointness increases
welfare exactly as in Section 3.
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In the simulations, we assume that I'; = (q/qugg)77 with a constant elasticity . We assume
that w; = 4 so that w; —w;_; = 1. An in our binary benchmark case, we assumen =1, a = 2,
v =2, =05, and F = 0. We pick a higher parameter for n = 1. In this model, the
effective elasticity of spousal earnings is actually significantly smaller than # (which explains
the relatively higher rates on spouses in the multi-discrete model).

The top two panels of Figure 10 consider the case with finite 7 = 4 while the bottom panels
consider the case with infinite tail 7 = oc.

Panel A, displays the optimal marginal tax rates on the primary earner when I = 3, i.e.
T}, .., T5. The figure shows clearly that T) > .. > T3 on (n,n) with equality (and the standard
zero results) at the end points. The differences in marginal tax rates from T}, to T4 are large.
Panel B displays the marginal tax rates on spouses for each transition (7 for the transition
from occupation 0 to 1, etc.). As expected, we see that each 7; is decreasing in n consistent
with our conjecture that negative jointness is optimal.

An interesting point to note is that the slope of 7; is larger (in absolute value) at the
bottom (¢ = 1) than at the top (¢ = 3). The sensitivity of the spouse marginal tax rate with
respect to primary earnings is larger for low earnings spouses than for high earnings spouses.
This is consistent with our general theme that introducing wedges in the secondary earnings
labor supply decision is more desirable when the primary earnings are low because spousal
earnings make a significant difference in welfare. This significant difference in welfare is of
course higher when spouse earnings are modest (moving from wg = 0 to w; = 1) than when
spouse earnings are large (moving from ws = 2 to ws = 3).

The bottom two panels display the case with an infinite tail for n. As we obtained in the
binary case, we see that marginal tax rates on primary earners converge to 0.5 when n grows
and that the marginal taxes on spouses all converge toward zero (although relatively slowly).

Another interesting point to note is that, if we refine the grid for w; by increasing the
number I, we should expect the solution to converge to the double intensive model. It is
unfortunately impossible for us to simulate optimal tax system with a very fine grid for I
because our iterative simulation method is no longer converging in that case. However, we
speculate that the optimum solution in the double intensive model might be regular every-
where with no bunching. This again stands in sharp contrast to the analysis in the Industrial

Organization literature where marginal welfare weights are constant and where bunching is
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always part of the solution as shown in the important contributions by Armstrong (1996) and
Rochet and Choné (1998). We speculate that the solution in the double-intensive model of
Section 3 would also be smooth with no singularities and display global negative jointness as
long as the social welfare function is not degenerate as in the Rawlsian case (where the same

singularity phenomena uncovered by Armstrong (1996) and others would clearly be present).

4.3 Link to Actual Tax Schedules

The numerical simulations presented here are quite stylized and do not represent a real world
calibration attempt. Nevertheless, it is useful to discuss if observed redistribution schedules
display negative jointness as our results suggest they should.

Notice first that joint progressive income taxation featuring increasing marginal tax rates
on family income, such as the system in the United States, display positive jointness and hence
contradict our results. However, the central point to note is that welfare programs offering
low-income support are always based on family income the phasing-out of those means-tested
programs typically create high marginal tax rates at the bottom of the earnings distribution.
As a result, the tax rate on spousal earnings is very high when primary earnings are low
enough to bring the family into the phase-out range of transfer programs. On the other hand,
the tax on the spouse is lower when primary earnings are high enough that the family is
beyond the phase-out range. Hence, transfer programs in OECD countries do create negative
jointness in the lower part of the primary earnings distribution. Then, if the income tax itself
is individually based, such as the one operated by the United Kingdom, the tax rate on spouses
never increases in the upper part of the primary earnings distribution and hence the global
tax/transfer system displays negative jointness as our theory predicts is optimal.

It is also interesting to emphasize that the debate on moving from joint to individual
taxation is always about the income tax which applies on the middle and upper part of the
distribution (thanks to exemptions at the bottom keeping low income earners out of the income
tax) and never about transfers which are means-tested and based on total family income. Our
theory provides support to the current practice of basing transfers on family income and having
an individual income tax system above the bottom in order to avoid positive jointness.

Figure 11 provides an optimum tax simulation example illustrating this. We consider a

distribution of abilities that is uniform from n = 0 to n = 3, and Pareto distributed above
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n = 3 with Pareto parameter a = 2. The density distribution is continuous at n = 3 (but
has a kink). We use ¢ = 2/3, 7 = 1/3, and v = 5. The interesting and realistic feature is
that marginal tax rates in the standard Mirrlees model are U-shaped in that case (as shown
theoretically in Diamond, 1998 and in the calibrated simulations of Saez, 2001). High rates at
the bottom correspond to the phasing-out of the lumpsum grant. As can be seen from (12),
increasing rates at the top are due to the redistributive tastes of the government combined with
the Paretian assumption and constant elasticity. Figure 11 shows that, for the specific choices
of parameters, the tax rate 7 on spouses is in between the marginal tax rates for primary
earners at the bottom of the ability distribution. This means that the optimal schedule would
be closely approximated by a family based transfer system at the bottom where transfers are
assessed based on total family earnings and are phased out as earnings increase with high and
declining marginal tax rates. Obviously, a family based schedule cannot be optimum at high
n as 7 vanished to zero and 7] and T} converge to 7' = 43%. However, an individually
based progressive income tax could generate a pattern with increasing marginal tax rates for
primary earners and low marginal tax rates for secondary earners. Thus, combining a family
based transfer system with a individually based income tax could be a good approximation to
the fully optimal system displayed on Figure 11.

It would be important to calibrate carefully the optimal tax model we have developed to
a real world situation, allowing for correlation of ability across spouses and replicating closely
the actual distribution of joint earnings, and modelling responses along both the extensive and
intensive margin calibrated to match the empirical estimated elasticities. Such work would
allow an assessment of the quantitative importance of optimal negative jointness and provide
a better guide to policy makers founded in optimal tax theory. It would also be interesting to
analyze how our couple results interact with the recent studies (Saez, 2002, Immervoll et al.
2007) showing that work subsidies for low income earners are actually optimal in the presence
of strong participation effects in the case of individual taxation. This goes well beyond the

theoretical exploration attempted here and is left for future work.
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5 The Unitary Versus the Collective Approach

We have considered the unitary labor supply model whereby husbands and wives pool their
resources and maximize a single utility function subject to a family budget constraint. A num-
ber of papers have challenged the unitary approach and have viewed the family as consisting of
members with conflicting interests engaging in bargaining over household resources (see Lund-
berg and Pollak, 1996, for a survey of this literature). Following the seminal contributions by
Chiappori (1988, 1992), the collective labor supply model has become especially popular. The
collective approach does not model a particular bargaining process — only Pareto efficiency
is assumed — and it encompasses the unitary model and cooperative bargaining models as
special cases.

In the absence of income pooling, intra-family resource allocation will generally depend
on which family member receives or controls income. Empirical studies have supported this
hypothesis. For example, the influential study of Lundberg et al. (1997) demonstrated that
giving a child allowance directly to the mother instead of to the main income earner as a
reduction in withheld taxes significantly increases spending on children.

What would be the implications of abandoning the income-pooling assumption for the
question of optimal income redistribution analyzed here? Let us adopt the collective approach,
assuming that consumption is allocated across spouses in a Pareto efficient way. The collective
decision process is associated with implicit weights on the individual utilities of each spouse,
where the weights may depend on factors such as innate characteristics, relative incomes,
and on whom receives government transfers. In the government’s problem, social preferences
will be defined on the individual utilities of husbands and wives rather than a family utility
function, and the government attach welfare weights to each family member which may or
may not differ from the weights implicit in the family’s decision process.

It is natural to distinguish between two cases depending on the government’s view on
the intra-family distribution. In one case, policy makers respect family sovereignty, i.e., the
marginal welfare weight on the husband relative to the wife is exactly identical to the relative
bargaining weights implied by the sharing rule in the family. In this case, it is easy to see that
changes in intra-household distribution have no consequences for social welfare, implying that

all of our optimal tax results would continue to apply.
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In the alternative case, policy makers disagree with intra-household distribution. Suppose
for example that, from the point of view of the government, husbands have too much power
and get too large a fraction of consumption in the family. How can the government get a
fairer distribution within families? The findings by Lundberg et al. (1997) show that the
government can actually modify within-family consumption allocation at no fiscal cost simply
by transferring the child benefit from husband to wife. As shown in the formal analysis of
Kroft (2006), by transferring enough resources from husband to wife, the government is able to
restore a fair allocation across spouses in the family. In sharp contrast to the previous models
we have considered here, this within-family redistribution is first best (it does not create any
efficiency costs) as long as the within-family bargaining is Pareto efficient (as assumed in the
theory of Chiappori 1988, 1992).

Hence, within-family distributional issues can be solved using such non-distortionary gov-
ernment transfers within families. Once those within-family distributional issues are fully
resolved at no efficiency costs, we are essentially back to the problem of redistribution across
families which we have analyzed in this paper. Hence, collective labor supply models introduce
a new within-family dimension to the redistribution problem which is very interesting and calls
for more work but which is largely independent of the across-family redistribution problem we

have considered in this paper.

6 Conclusion

This paper has explored the optimal income tax treatment of couples allowing for fully general
joint income tax systems. To make progress on this difficult problem, we have considered a
simple model with no income effects, separability of labor supply decisions across spouses,
and focusing primarily on the case where labor supply of the secondary earner is a binary
participation choice. Under additional regularity assumptions and independent abilities across
spouses, our central result is that the optimal tax function should have a negative cross partial
derivative: the tax rate on secondary earnings should decrease with primary earnings and the
marginal tax rate on primary earners should be lower when secondary earnings increase. The
intuition for this negative jointness result can be understood as follows.

Redistribution from couples with high primary earnings to couples with low primary earn-
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ings takes place according to the logic of the Mirrlees (1971) model. Indeed, in our model,
the average marginal tax rate on primary earners at each earnings level is identical to the one
obtained in the Mirrlees model. Conditional on primary earnings, redistribution takes place
by transferring income from two-earner couples to one-earner couples. Such a transfer creates
a tax wedge on secondary earnings. This tax wedge is largest at low primary earnings because
this is where redistribution from two-earner couples to one-earner couples is most valuable.
Thus, although our results may seem surprising at first sight, they obey a simple redistribu-
tive logic. If the tax schedule for two-earner couples is seen as the base schedule, the schedule
for one-earner couples is obtained from that base schedule by giving a dependent spouse tax
allowance, which is larger for couples with low primary earnings than for couples with high
primary earnings.

This seems a surprising result at first sight, and at odds with the actual practice of joint
progressive taxation of family income. However, we have argued that the current practice of
many European countries — such as the United Kingdom — of having an individual income
tax system for middle- and high-income earners in combination with a means-tested family-
based transfer system for low-income earners creates such a pattern: at the bottom, secondary
earners face a large tax rate due to the phasing-out of transfer benefits, while at the middle
and high end, secondary earners face a low tax rate due to the individual income tax.

It would clearly be important to extend the numerical simulations to a carefully calibrated
model which is closer to the real world in terms of the distribution of abilities and the cor-
relation of such abilities across couples. Such numerical simulations would allow us to assess
the quantitative importance of the negative jointness result relative to the many other factors
and parameters that affect optimal tax rates. We leave such an important extension for future

work.
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A Appendix

A.1 Mechanism Design and Implementation

In our model, agents are characterized by the private information 8 = (n,q) € ©. Agents

choose the observable action z = (z,() and receive consumption ¢. The utility function is
z
u(z, c,0) :c—n~h<—> —q-1l
n

The taxes paid to the government are defined as z + w - | — ¢. By the revelation principle,
any government mechanism can be decentralized by a truthful mechanism (x(8), ¢(8))sco such
that, for any 6, ¢":

u(2(0),c(0),0) > u(x(0),c(0),0).

Given the binary structure for action /, we have:

Lemma 3 Any truthful mechanism (x2(0),c(0))gce can be replaced by a simpler “truthful”
mechanism (zi(n), ci(n))1c{0,1} ne(nm) Such that, for each n, there is a g(n) so that:

e When g < g(n), (I' =1,n' = n) mazimizes u(zp(n'),l, cp(n'), (n,q)) over all (I',n').

o When q > q(n), (I' =0,n" =n) mazimizes u(zp(n'),l',cp(n), (n,q)) over all (I',n').

For each agent, the new mechanism generates the same utility as the original mechanism and

raises at least as much tazes.

Proof:

For each n, the set @ = (0, c0) is partitioned into 2 sets Qo(n) and Q1(n) such that, ¢ € Qo(n)
implies {(n,q) = 0 (spouse does not work) and ¢ € Q1(n) implies I(n,q) = 1 (spouse works).
Let us assume by convention that, in case of indifference between [ = 0 or [ = 1, we always
have I(n,q) = 0. For a given n, and for all q,¢ € Qo(n), truthfulness implies

)= (229 5 ) (20,

n
Hence ¢(n, ¢) —nh(z(n, ¢)/n) is constant for ¢ € Qn(n). Let us denote its value by V(n). Let us
denote by Zo(n) = {2(n,q),q € Qo(n)}. Let us denote by m = sup,c z,(,y 2 —nh(z/n) — Vo(n).
Because z — z — nh(z/n) is continuous with a maximum at z = n and decreases to —oo

when z goes to infinity, there is some zo(n) € Zo(n) (the closure of Zy(n)) such that m =
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zo(n)—nh(zo(n)/n)—Vo(n).> We define co(n) = nh(zo(n)/n)+Vo(n). The choice (co(n), z0(n))
“maximizes” government taxes z — c over the (closure of the) set (c(n, ), 2(n, q))geqo(n)-
Similarly, let us define Vi(n) = e(n,q) — nh(z(n,q)/n) constant over ¢ € Q1(n), and

(c1(n), z1(n)) which “maximizes” taxes z—c over the (closure of the) set (c(n, q), 2(n, q)) g, (n)-

Let us define g(n) = Vi(n) — Vo(n). Truthfulness implies:

Vi(n) —q > Vi(n), for all g € Q1(n).

Vo(n) > Vi(n) — g, for all g € Qp(n).
Therefore, Q1(n) = (0,g(n)) and Qp(n) = [g(n),o0). If ¢ < g(n), the agent chooses [ =1 and
(c1(n),z1(n)). If ¢ > g(n), the agent chooses { = 0 and (cp(n), zo(n)). If ¢ = g(n), the agent is

indifferent and we assume by convention that the agent chooses [ = 0.

Let us show that the new mechanism is truthful. For all n,n/, ¢ < @(n),q" < g(n’),
u(z1(n), 1,e1(n), (,0)) = Vi(n) — 4 2 e(n', ) — wh(a(, ) /) — g

Because (21(n'), c1(n’)) is in the closure of the set (c(n’,¢'), 2(n',¢'))ycq,(n)> and u(.) is con-

tinuous, the inequality above implies that, for all n,n’, q < g(n):

u(z1(n), 1,e1(n), (n, ) = u(z1(n'), 1, e1(n'), (n, q)).

Similarly, for all n,n’, ¢ < @(n),q" > g(n’),
u(z1(n), 1,e1(n), (n,q)) = Vi(n) —q > Vo(n) > e(n’, ¢') —nh(z(n,¢') /n),
which implies, for all n,n/,q < g(n):
u(z1(n), 1, c1(n), (n,q)) = u(z0(n), 0, co(n’), (n, q)).
For all n,n/,q > g(n), the inequalities:

u(z0(n), 0, co(n), (n,4)) = u(z(n"),0,c0(n’), (n, 9)),

u(z0(n),0,¢0(n), (n,q)) = u(z1(n), 1,e1(n"), (. q)),

can be demonstrated in the same way and complete the proof. 0O

" To see this, take a sequence 2° € Zo(n) such that 2 — nh(2F/n) — Vo(n) converges to m. z* is bounded
above, and hence a subsequence of 2" converges to some limit zo(n).
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Thanks to this lemma, we can restrict ourselves to the simpler mechanism consisting of
two standard one-dimensional schedules (zg(n), co(n)) and (z1(n),c1(n)), where agents choose
which schedule to use based on their choice for [. As, in the one-dimensional mechanism design

theory (see e.g., Guesnerie and Laffont (1987)), we define implementability as follows:

Definition 1 An action profile (20(n), 21(n))ne(n,n) is implementable if and only if there exists
transfer functions (co(n), c1(n))ne(mn) such that (zi(n), ci(n))ic0,1y nem,n) s a simple truthful

mechanism.
The central implementability theorem of the one-dimensional case carries over to our model.

Lemma 4 An action profile (z0(n), 21(n))nemn) is implementable if and only if zo(n) and

z1(n) are both non-decreasing in n.

Proof:

The utility function e—nh(z/n) satisfies the classic single crossing (Spence-Mirrlees) condition.
Hence, from the one-dimensional case, we know that z(n) is implementable, i.e., there is some
¢(n) such that ¢(n) — nh(z(n)/n)) > ¢(n’) — nh(z(n')/n)) for all n,n’/, if and only if z(n) is
non-decreasing.

Suppose (z9(n), z1(n)) is implementable, implying that there exists (¢g(n), e1(n)) such that
(z1(n), e1(n))ic 0,1y me(nm) i a simple truthful mechanism. That implies in particular that
ci(n) — nh(z(n)/n)) > ¢(n’) — nh(z(n')/n)) for all n,n’ and for [ = 0,1. Hence, the one
dimensional result implies that zp(n) and z1(n) are non-decreasing.

Conversely, suppose that zg(n) and z1(n) are non-decreasing. Because zp(n) is non decreas-
ing, the one dimensional result implies there is ¢y(n) such that cy(n) —nh(zo(n)/n)) > co(n’) —
nh(zg(n')/n)). Similarly, there is ¢;(n) such that ¢y (n)—nh(z1(n)/n)) > c1(n')—nh(z1(n')/n)).

It is easy to show that the mechanism (z;(n), ¢;(n))ic(0,1} ne(n,n) is actually truthful. Define
Vi(n) = ¢i(n) —nh(z(n)/n)) for I = 0,1 and g(n) = Vi(n) — Vo(n). We only need to prove the

cross-inequalities. For all n,n’,q > q(n),

u(z0(n),0,c0(n), (n,q)) = Vo(n) = Vi(n) — q = u(z1(n'), 1, c1(n), (1, q))-
For all n,7’,q < q(n),

u(z1(n), 1, ¢e1(n), (n,q)) = Vi(n) —q = Vo(n) > u(z0(n’),0,co(n’), (n,q))-
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The key assumption that allows us to obtain those simple results is the fact that ¢ is separable

in our utility specification. [

A.2 Solving the Government Maximization Problem and Proposition 1

The government maximizes

Vi(n)—Vo(n)

7 Vi(n)—Vo(n) ~
w /n {/0 W(Vi(n) - q)p(qln)dq+/ q/(%(n))p(qm)dq} Fln)dn,

subject to the budget constraint

A rVi(n)—Vo(n)
/ / [21(n) -+ w — nh(21(n) /) — Vi(n)]p(aln) £ (n)dadn-+

I [z0(n) — nh(z0(n)/) = Vo(mlp(aln) f(n)dgdn > E,
n JVi(n)-Vo(n)
and the constraints arising from the couples utility maximization:
Vo(n) = —h(z0(n)/n) + (z0(n)/n)l' (z0(n) /n),
Vi(n) = —h(z1(n)/n) + (z1(n) /)b (1 (n) /n),
and the implementability constraints:

20 (n) Z 07

21 (n) Z 07

Let us denote by X, po(n), p1(n), po(n), and pi(n), the five multipliers associated. The
transversality conditions are po(n) = pi(n) = wo(f) = pi(f,1) = 0 and po(n) = 0 at each
point of increase of zp(n) and pi1(n) = 0 at each point of increase of z(n). We abbreviate

h{z1(n)/n) into hq, ete.
The first order conditions with respect to zp(n) and z1(n) are
20 50 ’ _ .
po-—shy +A-(1=hy)- (1= Plgn)) - f(n) +po =0,
z .
p- =gk X (L= 1Y) - Plgln) - f(n) + pr = 0.
The first order conditions with respect to Vo(n) and Vi(n) are

—f1o = /OO V' (Vo(n))p(gln) f(n)dg — A(1 = P(g[n)) f(n) — ATy = To]p(gin) f(n),
Vi—-W
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Vi—Wo
—fin = / V' (Vi(n) = @)p(gln) f(n)dg — AP(qIn) f(n) + ATy — To|p(gin) f ().
0
Introducing the social marginal welfare weights

Jvi v, ¥'(Vo(n))p(aln) f (n)dq

go(n) = X (L= P(gn)f(n) ,
i) fovlfvo W(Vi(n) — q)p(gn) f(n)dgq
A+ P(gn)f(n) ’

we can integrate those two equations using the upper transversality conditions and obtain:

- /n{[l—go(n’)](l—P(qln’))f(n’)+[T1 Tp(aln’) £ ',

/ {1 = g1(mp)IP(aln’) f(n') = [Ty = Tolp(aln) f(n') } dn’.

On a segment where z; is increasing, we have p; = 0 and hence p; = 0. In that case,

plugging these two equations into the first order conditions for z; and z;, we obtain:

L plap s = 22 [ 1 — g1 = Pl 0) + 73 = Toptai )
0
1 ;llh’l - P(gn) f(n)n — B 21/7”L / {11 — gy ()| P(gln’) f (") — [Ty — Tolp(gln) f(n')} d.

Using the fact that 7] =1 — hl and the definition of the labor supply intensive elasticity (3),

e; = hj/(h] - z1/n), we obtain the expressions (10) and (11) in Proposition 1.

If the above expressions generate solutions zg, z1 that are non-decreasing everywhere, then
there is no bunching and those expressions apply everywhere. However, if the zg, z; coming
out of those expressions are decreasing on some portions, then they cannot be the solution
and the constraint z; > 0 has to bind on some segments and there is bunching. On bunching
segments, we no longer have p; = 0 and hence the expressions of Proposition 1 no longer apply.

As in the standard one dimensional model, z and 7} are continuous in n and display no

jumps (even when there is bunching) because of our simple quasi-linear specification.

Note that the bottom transversality conditions imply

/n {[1 = go(n")](1 = P(gln")) (") + [Ty — Tolp(qln’) f(n) } dn’ = 0,
/ {1 = q1(n)P(gn') f(n') = [T1 = To]p(gn') f(n) } dn’ = 0.
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A.3 Proof of Lemma in Proposition 4

Lemma 5 If T > T} on (ne,n) with equality al the end points, then go(ng) — g1(ng) >

go(ny) — g1(np).

Proof:
We have g = V7 — Vj and

go(n) —g1(n) = \I//()\VO) _ fo \III(I\/l ]_D(C;))I)(Q)dq >0,

where positivity follows from W’ decreasing. Differentiating the equation with respect to n, we

have: )
o) — u(m) — V- LI _y; SV ;(?)p(q)dq
+P(Q)q ) S (Vi = q)plq)dg @7 V(W)
P(q) A P(q) P(q) A
Rearranging, we obtain:
don) — nn) — 1. L) g JOVA—ap(@d s Pl

) ! X-P(q)
and therefore:

V(o) JdV'(Vo + a— q)plq)dg

dnlr) = infr) =Vi- | = S0 '
i+ |~tanlo) — ) - 58— L0 (20)

The first term in expression is negative because Vi >0 and by Assumption 1, ¥" is increasing
and hence the term inside the first square brackets is negative.

In the segment (ng,np), 21 < 20 and hence g < 0. Furthermore,

) — gr () — SR = W0 g = ol —9"(Vi)la — a)pla)da
e A-P(a) - - P(q)

where Vi <V, < Vj —q using the intermediate value theorem. Because, —¥" > 0 is decreasing,

we have:
—U"(Vy)g
o) — a(m) < —2 0T
Assumption 5 (- p(q)/P(g) < 1) then implies that:

p(@) _ —V'(Vo)
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Therefore, the second term in square brackets in expression (29) above is non-negative. Thus,
the second term in (29) is non-negative. As a result, go(n) — g1(n) < 0 on (ng,n) and the

Lemma is proven. [

A.4 Proof of Proposition 6

For the first part, we want to show that, if ¢ and n are independent and gy — g7 is constant,
then T{ = T and Ty — Ty, given by eq. (17) satisfy the first-order conditions of Proposition 6.
Notice that T} = T} implies zp = 21, €0 = €1, and ¢ = w — T} + T being independent of n.

Then the first-order conditions of Proposition 1 implies that, for every n,

[ s v =m0 s = [ - o - 1= B8 s

q (9)

which may be written as

/:[90 —gilf(n)dn' = /:[Tl - To]%f(”/)d”/~ (30)

If go — g1 is constant, this condition is solved by 11 — Tp given by (17).
For the second part, with ¢ and n being independent, if 7 = 7 we have just shown that
the first-order conditions imply (30). Taking the derivative of eq. (30) with respect to n, we

obtain
r(q)

go— 491 = [Tl —To]ma

which is constant in n under the assumptions.

A.5 Proof of Proposition 7

We start by forming the integrated Hamiltonian:

0= [ [ 000)  (rpme) dngin,
D
+//D A=V 4 2y + zs — nphy (2p/1p) — nishs (25 /)] f (g, g) dnpdnig
+//D [_hp + (Zp/np) h; o Vnp] IELP (npvns) dnpdns
4 / /D [—ho + (z/me) B, — Vi ] fis (s ms) dryn,

where X is the scalar budget constraint multiplier and fi,, and fi, are scalar functions of (n,,n,).

To simplify the problem, it is useful to introduce the following formula from multi-variable
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calculus (see Mirrlees, 1976)

3Mp 8[‘8 o ~
// Vi fip + Vns,us dnpdns + // (8np n. dnpdns = /aD V(jii-ds),

where i = (fip, fis) and ds denotes the normal outward vector along 9D, the boundary of D.

Using the above expression, we may rewrite the Hamiltonian to
// V (np,ns)) f (np,ns) dnpdns
+//D M=V + zp + 25 — nphy (2p/1p) — nshs (zs/ns)] f (np, ns) dnpdns
+//D [—hy + (zp/p) K] iy (1) iy
+/ / [=hs + (z5/ms) ] fis (mp, ms) iy

Ofyy  Ofis -
dn,dng — Vi(p-ds).
// (8np 8”8) TP et /8D (:U S)

The transversality condition is that & - dS = 0 on the boundary dD. In words, the scalar

product of the normal vector ds to the boundary of D and 2 must be zero at all points along
the boundary 0D. If D = [n,, 7| x [ng,7s], then i, = 0 for n, = n,,7, and fs = 0 for
Ng = Ng, Ng.

The first-order conditions in z, and z, are:

A[l—h;(zp/np)]f(npms)+;—’;h§§(zp/np)~g—z =0 (31)
AL = B e ) o) + 2R fm) - 22 = (32)

After routine rewriting and introducing the elasticity of earnings with respect to 1 —TI;, denoted

by €, for the primary earner, the first-order condition in z, at (n,,n,) becomes

13 1 1 i
_r _ _ - .- . @. (33)
=T, e npf(np,ns) A
Similarly, the first-order condition in z, at (np,ns) is
T/ 1 1 s
s .- B (34)
1-T7 &5 ngf(npng) A
The first-order condition in V' at (n,,n,) gives the divergence equation
o Ofis
Bl b o = A=V O] f (). (35)

On,  Onsg
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By defining p1; = fii/ A for i = p, s and g (np,ns) = W (+) /A, we rewrite the first-order conditions
above so as to obtain the conditions (20), (21), and (22) in Proposition 5.

The solution to a multi-variable calculus problem must also fulfill the so-called integrability
constraint. According to this constraint, the resulting marginal tax rates (T;,TS’) must be a
gradient so that the tax function T'(2,, 25) is well defined. (77, 7TY) is a gradient iff the matrix of
second derivative is symmetric, i.e., T, = Ty,. Similarly, the indirect utility function V' (n,,n;)
needs to satisfy Vy,_n, = Vi n,. It turns out that those two conditions are equivalent and are
satisfied iff condition (23) is fulfilled. From the derivatives of the indirect utility function
in (19), we have Vi,n, = (2p/n2) b)) (zp/np) 0z, /Ons and Vi, = (2s/n2) BY (2s/ns) D25/ Ony
thereby obtaining condition (23) directly.

To see that condition (23) is also equivalent to 7). = Ty, note that 1 — T} (zp,25) =
Ry, (zp/np) and 1 =T} (2, zs) = R (25/ns). By differentiating each of those two equations with

respect to 7, and ns, we obtain a system of equations which takes the matrix form
T"Dz = Dg'(z/n),
from which it is seen that T, = Ty, if condition (23) is satisfied.

A.6 Numerical Simulations

A.6.1 Extensive-Intensive Model Simulations

Simulations are performed with Matlab software and our programs are available upon request.
We select a grid for n, from n = 1 to 7 = 4 with 1000 elements: (ng)g. Integration along
the n variable is carried out using the trapezoidal approximation. All integration along the ¢
variable is carried out using explicit closed form solutions using the incomplete 8 function:

i-¥%o i-Vo 1 n-qt!
(Vi — d :/ d
[ vei-anen= [ s

LYo

Vi—Vo =" n="

77 - - 77 . V V1 _ _ 77 . V ‘/0

=7 / (Vi—q) 7" dg = 72— / U=V = T Bl 1)
4max JO 4max 0 4max 1

where the incomplete beta function § is defined as (for 0 <2z <1):

B(z,a,b) = /m o1 — )b tae

0
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Matlab does not compute it directly for v > 1 (b < 0) but we have used the development in

series to compute it very accurately and quickly with a subroutine:

Brsaty— 143 =D =B =) 2

n! n+a

n=1
We pick ¢mar = 2w 1/ so that the fraction of spouses working is normalized in the situation

with no taxes (when w or # change). We set w = 1 in the simulations presented so that

Qmaxr = 2.

Simulations proceed by iteration:

We start with given Tj, T vectors, derive all the vector variables zg, z1, Vo, V1, q, Tp, 11,
A, etc. which satisfy the government budget constraint and the transversality conditions.!®
This is done with a sub-iterative routine that adapts Ty and T} as the bottom n until those
conditions are satisfied. We then use the first order conditions (10), (11) from Proposition 1
to compute new vectors T}, T]. In order to converge, we use adaptive iterations where we take
as the new vectors T}, T}, a weighted average of the old vectors and newly computed vectors.
The weights are adaptively adjusted down when the iteration explodes. We then repeat the
algorithm. This procedure converges to a fixed point in most circumstances. The fixed point
satisfies all the constraints and the first order conditions. We check that the resulting zy and
z1 are non-decreasing so that the fixed point is implementable. So the fixed point is expected
to be the optimum.!”

The central advantage of our method is that the optimal solution can be approximated
very closely and quickly. In contrast, brute force simulations where we search the optimum

over a large set of parametric tax systems by computing directly social welfare would be much

slower and less precise.
A.6.2 Discrete Intensive-Intensive Model Simulations

We can denote again by V; the indirect utility (before fixed cost of work) of a couple when the
spouse works in occupation i: V; = z; — T;(2;) + w; — nh(z;/n), where z; is chosen optimally

such that h/(z/n) =1 —T/.

'$The adjust the constants for Ti(n) until all those constraints are satisfied. This is done using a secondary
iterative procedure.

1"We also compute total social welfare and verify on examples that it is higher than social welfare generated
by other tax rates Ty, T} satisfying the government budget constraint.
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A spouse of type ¢ works in job ¢ (instead of job ¢ — 1) if and only if her fixed costs of
work effort ¢; are such that ¢ =V, — V;_1 > ¢;. Hence, the fraction of spouses of type ¢ who
work in job 4 is T';(g). We denote by P, = h; - T'i(@) + hiv1 - [1 — Tir1(giy1)] the number of
spouses working in job ¢. We denote by Q:(g) = hi - (@) + hii1 + .. + hy the number of
spouses working in jobs é,2+41,..,1. The first order conditions of the government problem can

be written as follows:

nf(n)’Pi:/ [(1—g))Pi— AT} k- %i(@) + ATig1 - higr - Yir1 (@i 1)) f(0))dn'. (36)

/
Ei’l——lTi”
The average marginal tax rate across spouses occupations is also given by the classical
Mirrlees formula and the transversality conditions imply that 7/ = 0 at n and n. For the
simulations, we pick the following (equivalent) transversality conditions:

/”[(1 — Gi)Qi — AT, - hi - %i(g)] f(n")dn'.

where G; is the average of ¢;,..,g7, and Q; = P, + .. + Pr.

Simulations in that case proceed in exactly the same way as in the binary case. We choose
the same functional form T';(¢) = (¢/¢maz)". We choose w; =i and I = 3 in the example. We
choose h; = 1/1 and we set again gmaz = 2.

We then use the same iterative process starting from a set of vectors 1}, .., 77}, then com-
puting all the vector variables zg,..,z7, Vo,.., V1, q1,..,qr, To,..,T7, A, etc. which satisfy the
government budget constraint and the transversality conditions. We then recompute 77, ..,77}
using the first order conditions (36) and using the same adaptive weighting procedure as above.

The iterative process is converging in most cases when [ is not too large.
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Figure 6: Benchmark Simulation: y=2, n=0.5, ¢=0.5
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Figure 7: Sensitivity Analysis around Benchmark (y=2, 1=0.5, €¢=0.5)
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Figure 8: Two Cases of Interest
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Figure 9: The Effects of Spousal Correlation of Ability
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Figure 10: Discrete Intensive Spouse Model
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