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Introduction

The climate is a key ingredient in the earth’s complex system that sustains human life and well 

being.  There is a growing consensus that emissions of greenhouse gases due to human activity will alter 

the earth’s climate, most notably by causing temperatures, precipitation levels, and weather variability to 

increase.  According to the UN’s Intergovernmental Panel on Climate Change (IPCC) Third Assessment 

Report (2001), climate change is likely to affect human health directly through changes in temperature 

and precipitation and indirectly through changes in the ranges of disease vectors (e.g., mosquitoes) and 

other channels.  The design of optimal climate change mitigation policies requires credible estimates of 

the health and other benefits of reductions in greenhouse gases, however current evidence on the 

magnitudes of the direct and indirect impacts is considered insufficient for reliable conclusions (WHO 

2003).1

Conceptual and statistical problems have undermined previous efforts to develop estimates of the 

health impacts of climate change.  The conceptual problem is that the canonical economic models of 

health production predict that individual will respond to climate changes that threaten their health by 

purchasing goods that mitigate the health damages (Grossman 2000).  In the extreme, it is possible that 

individuals would fully “self-protect” such that climate change wouldn’t affect measured health 

outcomes.  In this case, an analysis that solely focuses on health outcomes would incorrectly conclude 

that climate change had zero impact on welfare.     

On the statistical side, there are at least three challenges.  First, there is a complicated, dynamic 

relationship between temperature and mortality, which can cause the short-run relationship between 

temperature and mortality to differ substantially from the long run one (Huynen et al. 2001; Deschênes 

and Moretti 2005).2  Second, individuals’ locational choices---which determine exposure to a climate---

are related to health and socioeconomic status, so this form of selection makes it difficult to uncover the 

                                                          
1 See Tol (2002a and 2002b) for overall estimates of the costs of climate change, which are obtained by summing 

costs over multiple areas including agriculture, forestry, species/ecosystems, sea level rise, and human health.  

Deschenes and Greenstone (2006) provides evidence on the impacts on the US agricultures sector.  Also, see 

Schlenker, Hanemann, and Fisher (2006). 
2 For example, Deschênes and Moretti (2005) document the importance of forward displacement or “harvesting” on 

hot days.  Specifically, they find that hot days can lead to an immediate increase in mortality but a decline over the 

subsequent days such that 30 days after a hot day there is virtually no increase in mortality.  



causal relationship between temperature and mortality.  Third, the relationship between temperature and 

health is highly nonlinear and likely to vary across age groups and other demographic characteristics. 

This paper develops measures of the welfare loss associated with the direct risks to health posed 

by climate change in the US that confront these conceptual and statistical challenges.  Specifically, the 

paper reports on statistical models for demographic group by county annual mortality rates and for annual 

state-level energy consumption (perhaps primary form of protection against high temperatures) that model

temperature semi-parametrically.  The mortality models include county and state by year fixed effects, 

while the energy ones include state and Census-division by year fixed effects.  Consequently, the

temperature variables are identified from the unpredictable and presumably random year-to-year variation 

in temperature so concerns about omitted variables bias are likely to be unimportant.

We combine the estimated impacts of temperature and predicted changes in climate to develop

estimates of the impact of climate change on mortality and energy consumption.  The preferred mortality

estimates indicate that climate change will lead to roughly 35,000 more deaths per year by the end of the

century, which is roughly a 1.3% increase in the annual fatality rate. However, these estimated overall

impacts are statistically indistinguishable from zero and the 95% confidence interval ranges from a 

decline of 23,000 fatalities to an increase of 93,000 per year.  The estimates for some subgroups are more

precise, as there are statistically significant increases in mortality rates predicted for male and female

infants and some older age groups.

The energy results suggest that by the end of the century climate change will cause total US

residential energy consumption to increase by 4 - 6 quadrillion (i.e., 1015) British thermal units (Btus) or 

25% - 35% of average annual consumption in the 1970-2003 period.  This estimated increase is

statistically significant and when valued at the average energy prices from the 1991-2000 period, it 

implies that there will be an additional $30 -$45 billion (2006$) per year of US energy consumption.  It 

seems reasonable to assume that the mortality impacts would be larger without this compensatory

response.  More generally, the analysis suggests that a substantial portion of the adjustment to climate

change will occur through adaptation or changes in consumption patterns, rather than increased mortality.

There are a few important caveats to these calculations and, more generally, the analysis. The
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estimated impacts likely overstate the mortality and adaptation costs, because the analysis relies on inter-

annual variation in weather and less expensive adaptations (e.g., migration) will be available in response 

to permanent climate change.  On the other hand, the estimated welfare losses fail to include the impacts

on numerous other determinants of welfare (e.g., morbidities) that may be affected by climate change so 

in this sense they are an underestimate.  Additionally, the effort to project outcomes at the end of the 

century requires a number of strong assumptions, including that the climate change predictions are

correct, relative prices (e.g., for energy and medical services) will remain constant, the same energy and 

medical technologies will prevail, and the demographics of the US population (e.g., age structure) and

their geographical distribution will remain unchanged.  These assumptions are strong, but their benefit is 

that they allow for a transparent analysis that is based on the available data, rather than unverifiable

assumptions.

The analysis is conducted with the most detailed and comprehensive data available on mortality,

energy consumption, weather, and climate change predictions for fine US geographic units.  The

mortality data come from the Compressed Mortality Files (CMF), energy data are from the Energy 

Information Administration (EIA), and the weather data are from the thousands of weather stations

located throughout the US.  We focus on end of century (i.e., 2070-2099) climate change predictions

based on the Hadley Centre's 3rd Ocean-Atmosphere General Circulation Mode and the A1F1 scenario

that predicts large increases in temperature.  This scenario most closely approximates a “business-as-

usual” or no carbon tax case.

Finally, it is notable that the paper’s approach mitigates or solves the conceptual and statistical

problems that have plagued previous research.  First, the availability of data on energy consumption

means that we can measure the impact on mortality and self-protection expenditures. Second, we 

demonstrate that the focus on annual mortality, rather than daily, mitigates concerns about harvesting/

forward displacement and delayed impacts.  Third, the county fixed effects adjust for any differences in

unobserved health across locations due to sorting.  Fourth, we model temperature with 20 separate 

variables that measure the number of days in a year that the daily mean temperature falls in 5 degree

Fahrenheit ranges or bins.  Consequently, we don’t have to rely on functional form assumptions to infer 
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the impacts of the hottest and coldest days on mortality.  Fifth, we estimate separate models for 16 

demographic groups (8 age categories and male/female), which allows for substantial heterogeneity in the 

impacts of temperature.

The paper proceeds as follows.  Section I briefly reviews the patho-physiological and statistical

evidence on the relationship between weather and mortality.  Section II provides the conceptual

framework for our approach.  Section III describes the data sources and reports summary statistics.

Section IV presents the econometric approach and Section V describes the results.  Section VI assesses 

the magnitude of our estimates of the effect of climate change and discusses a number of important

caveats to the analysis.  Section VII concludes the paper. 

I. Background on the Relationship between Weather and Mortality 

Individuals’ heat regulation systems enable them to cope with high and low temperatures.

Specifically, exposure to both high and low temperatures generally triggers an increase in the heart rate in

order to increase blood flow from the body to the skin, leading to the common thermoregulatory

responses of sweating in hot temperatures and shivering in cold temperatures.  These responses allow 

individuals to pursue physical and mental activities without endangering their health within certain ranges 

of temperature.  Temperatures outside of these ranges pose dangers to human health and can result in 

premature mortality.  This section provides a brief review of the mechanisms and the challenges for

estimation.

Hot Days. An extensive literature documents a relationship between extreme temperatures

(usually during heat waves) and mortality (e.g., Klineberg 2003; Huynen 2001; Rooney et al. 1998). 

These excess deaths are generally concentrated among causes related to cardiovascular, respiratory, and 

cerebrovascular diseases. The primary mechanism in these periods is the additional stress imposed on the 

cardiovascular and respiratory systems by the need for body temperature regulation.  In the context of 

specific indicators of body operations, elevated temperatures are associated with increases in blood 

viscosity and blood cholesterol levels.  It is not surprising that numerous studies have shown that access

to air conditioning greatly reduces mortality on hot days (CITATIONS TO COME).
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An important feature of the relationship between heat and mortality is that the number of deaths

immediately caused by a period of very high temperatures is at least partially compensated for by a

reduction in the number of deaths in the period immediately subsequent to the hot day or days (Basu and 

Samet 2001; Deschênes and Moretti 2005).  This pattern is called forward displacement or “harvesting,” 

and appears to occur because heat affects individuals that were already very sick and would have died in

the near term.  Since underlying health varies with age, these near-term displacements are more prevalent

among the elderly.

Cold Days.  Cold days are also a risk factor for mortality.  Exposure to very cold temperatures

causes cardiovascular stress due to changes in blood pressure, vasoconstriction, and an increase in blood 

viscosity (which can lead to clots), as well as levels of red blood cell counts, plasma cholesterol, and 

plasma fibrinogen (Huynen et al. 2001).  Further, susceptibility to pulmonary infections may increase 

because breathing cold air can lead to bronchoconstriction.  Interestingly, there is some evidence that cold 

weather can affect driving fatalities.  In particular, Eisenberg and Warner (2005) found that on days with 

snow accumulation there is a decline in fatal motor vehicle accidents relative to dry days, although there 

is an increase in nonfatal ones. 

Deschênes and Moretti (2005) provide the most comprehensive evidence on the impacts of cold

days on mortality.  They find “evidence of a large and statistically significant effect on mortality within a 

month of the cold wave. This effect appears to be larger than the immediate effect, possibly because it 

takes time for health conditions associated with extreme cold to manifest themselves and to spread”

(Deschênes and Moretti 2005).  Thus, in the case of cold weather, it may be that there are delayed impacts

and that the full effect of a cold day takes a few weeks to manifest itself. Further, they find that the 

impact is most pronounced among the young and elderly and concentrated among cardiovascular and

respiratory diseases.

Implications.  The challenge for this study and any study focused on substantive changes in life

expectancy is to develop estimates of the impact of temperature on mortality that are based on the full 

long-run impact on life expectancy.  In the case of hot days, the previous literature suggests that this task

requires purging the temperature effects of the influence of harvesting or forward displacement.  In the

5



case of cold days, the mortality impact may accumulate over time.  In both cases, the key point is that the 

full impact of a given day’s temperature may take numerous days to manifest fully.

Our review of the literature suggests that the full mortality impacts of cold and hot days are 

evident within 30 days (Huynen et al. 2001; Deschênes and Moretti 2005).  The below econometrics

section outlines a method that allows the mortality impacts of temperature to manifest themselves over 

long periods of time.  Further, the immediate and longer run effects of hot and cold days are likely to vary

across the populations with larger impacts among relatively unhealthy subpopulations.  One important

determinant of healthiness is age, with the old and young being especially sensitive to environmental

insults.  Consequently, we conduct separate analyses for 16 demographic groups defined by the 

interaction of gender and 8 age categories. 

II. Conceptual Framework

This paper’s goal is to estimate part of the health related welfare impact of climate change.  To 

understand the welfare effects of an exogenous increase in temperature, it is instructive to consider a

simple 1-period model of utility maximizing individuals that formalizes the decision to invest in human

health (see Grossman 2000).  For this section’s expositional purposes, we assume that climate change 

leads to an increase in temperatures in the summer only when higher temperatures are harmful for health. 

We assume individuals consume a jointly aggregated consumption good, xC.  Their other 

consumption good is their mortality risk, which leads to a utility function of 

(1) U = U[xC, s],

where s is the survival rate.  The production function for survival is expressed as:

(2) s = s(xH, T), 

where T represents temperature.  Consequently, survival is a function of xH, which is a private good that

affects the probability of survival, and ambient temperature.  For example, energy consumption is an

example of xH since energy is used to run air conditioners, which affect survival on hot days.  We define 

xH such that s/ xH > 0.  Since this section focuses on summers where higher temperatures are dangerous, 

we assume that s/ T < 0.
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The individual faces a budget constraint of the form:

(3) I – xC – pxH = 0, 

where I is exogenous earnings or income.  We assume the prices of xC and xH are 1 and p, respectively.

The individual’s problem is to maximize (1) through her choices of xC and xH, subject to 

equations (2) and (3).  The solution of this maximization problem reveals that the input demand equations 

for xC and xH are functions of prices, income, and temperature.  In equilibrium, the ratio of the marginal

utilities of consumption of the two must be equal to the ratio of the prices: [( U/ s)·( s/ xH)]/[ [ U/ xC]

= p. 

Now, consider an exogenous increase in temperature due to climate change, which reduces the 

survival probability.  If individuals are not allowed to adjust their consumption bundles, then [( U/ s)·(

s/ xH)]/[ U/ xC] > p.  In this case, their expenditures on health production are suboptimally low and they

are literally dying to increase consumption of xH.

To move back into equilibrium after the temperature increase, consumers will increase their 

consumption of xH at the expense of consumption of xC.  Since the effective price of survival has

increased, the chosen survival rate, s, is likely to decline.  In fact, it is possible that there would be a large 

change in the consumption of xH and little change in s.  However, the key point for this paper’s purposes 

is that the full welfare effect of the exogenous change in temperature is reflected in changes in the 

survival rate and the consumption of xH.3

The subsequent empirical work will develop estimates of the impact of climate change on 

mortality rates and on energy consumption.  We will monetize the changes in mortality and energy

consumption to develop a partial measure of the welfare loss associated with climate change.  This will

only be a partial measure of the welfare loss, because climate change may affect other health outcomes

3 A richer model would allow individuals to choose the temperatures they face through their location choice (see,
e.g., Rosen 1974).  The advantage of such a model is that in principle, it is possible to capture the full welfare effects
of a change in temperature through the land market since land is a fixed factor.  If there is imperfect information
about the change in temperatures and its health effects, then this hedonic method will not produce reliable estimates
of the welfare effects of a change in temperature.  An advantage of this paper’s health production function approach
is that it does not rely on perfect information assumptions.  Its disadvantages are that for data reasons it may not be 
possible to measure all the potential health effects (e.g., changes in morbidity rates) and it cannot capture any non-
health benefits (e.g., individuals may prefer higher temperatures for amenity reasons).

7



(e.g., morbidity rates).  Further, although energy consumption likely captures a substantial component of 

health preserving expenditures, climate change may induce other forms of adaptation (e.g., substituting 

indoor exercise for outdoor exercise or changing the time of day when one is outside).  These other

outcomes are unobservable in the data files that we have compiled for this paper, so our welfare estimates

will be incomplete.

Finally, this one-period model misses an issue, which may be especially relevant in light of our 

empirical strategy that relies on inter-annual fluctuations in weather to learn about the welfare 

consequences of permanent climate change.  Specifically, individuals cannot engage in the full set of 

adaptations in response to a single year’s weather realization.  It is easy to turn the thermostat down and 

use more air conditioning on hot days, and it is even possible to purchase an air conditioner in response to

a single year’s heat wave.  A number of adaptations, however, cannot be undertaken in response to a 

single year’s weather realization.  For example, permanent climate change is likely to lead to some

migration (presumably to the North), which will be missed with our approach. 

The limited set of adaptations available in the short-run means that our approach is likely to

overstate the mortality and energy consumption-related costs of climate change.  This is because the 

longer-run adaptations will only be undertaken if they lead to smaller reductions in consumption of xC,

than the reductions that occur when only the short-run adaptations are available.  So, this study only

examines a subset of the outcomes likely to be affected by climate change and in this respect it

underestimates the costs, but it is likely to provide an upper bound on the costs among the outcomes it

measures (i.e., mortality and energy consumption).

III. Data Sources and Summary Statistics

To implement the analysis, we collected the most detailed and comprehensive data available on 

mortality, energy consumption, weather, and predicted climate change.  This section describes these data

and reports some summary statistics. 

A. Data Sources
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Mortality and Population Data.  The mortality data is taken from the Compressed Mortality Files

(CMF) compiled by the National Center for Health Statistics.  The CMF contains the universe of the 72.3

million deaths in the US from 1968 to 2002.  Importantly, the CMF reports death counts by race, sex, age 

group, county of residence, cause of death, and year of death.  In addition, the CMF files also contain 

population totals for each cell, which we use to calculate all-cause and cause-specific mortality rates.  Our 

sample consists of all deaths occurring in the continental 48 states plus the District of Columbia.

Energy Data.  The energy consumption data comes directly from the EIA’s State Energy Data

System.  These data provide state-level information about energy price, expenditures, and consumption

from 1968 to 2002. The data is disaggregated by energy source and end use sector. All energy data is 

given in British Thermal Units, or BTU. 

We used the database to create an annual state-level panel data file for total energy consumption

by the residential sector, which is defined as “living quarters for private households.”  The database also

reports on energy consumption by the commercial, industrial, and transportation sectors.  These sectors

are not a focus of the analysis and they don’t map well into the health production function model outlined

in Section II.  Further, factors besides temperature are likely to be the primary determinant of

consumption in these sectors.

The measure of total residential energy consumption is comprised of two pieces-- “primary”

consumption, which is the actual energy consumed by households, and “electrical system energy losses.”

The latter accounts for about 2/3 of total residential energy consumption; it is largely due to losses in the

conversion of heat energy into mechanical energy to turn electric generators, but transmission and

distribution and the operation of plants also account for part of the loss.  In the 1968-2002 period, total

residential energy consumption increased from 7.3 quadrillion (quads) British thermal units to 21.2 quads

and the mean over the entire period was 16.6 quads.

Weather Data.  The weather data are drawn from the National Climatic Data Center (NCDC)

Summary of the Day Data (File TD-3200).  The key variables for our analysis are the daily maximum and
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minimum temperature, as well as total daily precipitation.4  These data are taken from the 7,380 stations

that met our sample selection rule for at least one year during the 1968-2002 period.  The acceptable

station-level data is then aggregated at the county level by taking the simple average of the measurements

from all stations within a county.

To ensure the accuracy of the weather readings, we developed a weather station selection rule.

Specifically, we dropped all weather stations at elevations above 7,000 feet since they were unlikely to

reflect the weather experienced by the majority of the population within a county.  Among the remaining

stations, we considered a year’s readings valid if the station operated at least 363 days. The average 

annual number of stations with valid data in this period was 3,879.  The county by years with acceptable 

weather data accounted for 53.4 of the 72.3 million deaths in the US from 1968 to 2002. 

Climate Change Prediction Data.  Climate predictions are taken from the Hadley Centre’s 3rd 

Coupled Ocean-Atmosphere General Circulation Model, which we refer to as Hadley 3 (T. C. Johns et al.

1997, Pope et al. 2000).  This is the most complex and recent model in use by the Hadley Centre and

more broadly is considered a state of the art global climate model. This is because Hadley 3 is a coupled

atmospheric-ocean general circulation model. This type of model is considered the most complex because

it considers the interplay of several earth systems and is therefore considered the most appropriate for

climate predictions.

Predictions of climate change in the Hadley 3 model are available for several emission scenarios,

corresponding to 'storylines' describing the way in which the world (population, economies, etc.) will

develop over the next 100 years.  We consider the two extreme scenarios: A1F1, which predicts the

largest increase in global mean temperature and B1, which predicts the smallest.

Throughout the paper, we focus on the Hadley 3 A1F1 scenario because we believe it most

accurately represents the “business-as-usual” scenario against which carbon taxes or other interventions

should be judged.  Both the A1F1 and B1 scenarios assume that there will be rapid economic growth 

4 Other aspects of daily weather such as humidity and wind speed could influence mortality, both individually and in
conjunction with temperature.  Importantly for our purposes, there is little evidence that using wind chill factors (a
non-linear combination of temperature and wind speed) perform better than simple temperature levels in explaining
daily mortality rates (Kunst et al. 1994).
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during the current century, especially in the developing world which leads to economic convergence.  The 

two scenarios diverge on the issue of fossil fuel usage.  The A1F1 scenario assumes that fossil fuels will 

continue to be the primary source of energy, while the B1 scenario assumes that energy comes mostly

from alternative (i.e., non-fossil fuel) sources (IPCC 1996).  Given the abundant supply of inexpensive 

coal and other fossil fuels, a switch to alternative sources is unlikely without carbon taxes or the 

equivalent.  Thus, our view is that A1F1 is the proper benchmark scenario because it doesn’t reflect a

policy intervention and we emphasize the results based on this scenario. 

We use the results of the application of these scenarios to the Hadley 3 model to develop regional 

estimates of the impact of climate change within the US.  The Hadley 3 predictions are available for grid 

points spaced at 2.5° (latitude) x 3.75° (longitude). There are 153 grid points in total, but we use the 89 

located on land to develop the regional estimates.  Six states do not have a grid point, so we developed 

daily Census division-level predictions for the 9 US Census divisions using the land grid points.  More 

details on the temperatures predictions are available in the data appendix. 

B. Summary Statistics 

Mortality Statistics.  Table 1 reports the average annual mortality rates per 100,000 by age group

and gender using the 1968-2002 CMF data.  It is reported separately for all-causes of death and for deaths

due to cardiovascular disease, neoplasms, respiratory disease, and motor-vehicle accidents.5  These four

categories account for roughly 75% of all fatalities, though the relative importance of each cause varies 

by sex and age.  Importantly, these entries are consistent with the average annual mortality rates reported

by the National Center for Health Statistics.

The all cause and all age mortality rates for women and men are 804.4 and 939.2, respectively,

but there is tremendous heterogeneity in mortality rates across age and gender groups. For all-cause 

mortality, the female and male infant mortality rates are 1,031.1 and 1,292.1.  After the first year of life, 

5In terms of ICD-9 Codes, the causes of deaths are defined as follows: Neoplasms = 160-250, Cardiovascular
Diseases = 320-490, Respiratory Diseases = 500-580, Motor Vehicle Accidents = XXXX. We focus on motor-
vehicle accidents, rather than all external causes since climate change could change the number of days with unsafe
driving conditions.
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mortality rates don’t approach this level again until the 55-64 category.  The annual mortality rate starts 

to increase dramatically at older ages, and in the 75-99 age category it is 8.0% for women and 9.4% for 

men.  The higher annual fatality rates for men at all ages are striking and explain their shorter life 

expectancy.

As is well-known, mortality due to cardiovascular disease is the single most important cause of

death in the population as a whole.  The entries indicate that cardiovascular disease is responsible for 

48.4% and 43.6% of overall female and male, mortality.  It is noteworthy that the importance of the 

different causes of death varies dramatically across age categories.  For example, motor vehicle accidents

account for 22.1% (23.8%) of all mortality for women (men) in the 15-24 age group.  In contrast, 

cardiovascular disease accounts for 59.6% (53.7%) of all mortality for women (men) in the 75-99 

category, while motor vehicle accidents are a negligible fraction.  More generally, for the population aged

55 and above---where mortality rates are highest---cardiovascular disease and neoplasms are the two 

primary causes of mortality.

Weather and Climate Change Statistics.  We take advantage of the richness of daily weather data

and climate change predictions data by using the information on daily minimum and maximum

temperatures.  Specifically, we calculate the daily mean temperatures at each weather station as the mean

of the each day’s minimum and maximum temperature.  The county-wide mean is then calculated as the

unweighted average across all stations within a county.  The climate change predictions are calculated

analogously, except that we take the average of the daily predicted mean temperature across the grid

points within the relevant geographic units.

The “Actual” column of Table 2 reports the weighted average of the daily mean temperatures

across counties from 1968-2002, where the weight is the population between ages 0 and 99 in the relevant

year.  The average daily mean is 56.6° F.6  The entries for the four Census regions confirm that the South 

is the hottest part of the country and the Midwest and Northeast are the coldest ones.7  Since people are 

6 The average daily mean and all other entries in the table (as well as in the remainder of the paper) are calculated 
across counties that meet the weather station sample selection rule described above.
7 The states in each of the Census regions are: Northeast-- Connecticut, Maine, Massachusetts, New Hampshire,
Vermont, Rhode Island, New Jersey, New York, and Pennsylvania; Midwest-- Illinois, Indiana, Michigan, Ohio,
Wisconsin, Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, and South Dakota; South-- Delaware,
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more familiar with daily highs and lows from newscasts, the table also documents the average daily

maximum and minimums.8  The average daily spread in temperatures is 21.2° F, indicating that hottest

and coldest hours can differ substantially from the mean.  It is important to emphasize that the weighted

means, as well as the subsequent predictions, depend on the distribution of the population across the US 

so systematic migration (e.g., from South to North) would change these numbers even without any

change in the underlying climate.

Figure 1 depicts the variation in the measures of temperature across 20 temperature bins in the

1968-2002 period.  The leftmost bin measures the number of days with a mean temperature less than 0° F

and the rightmost bin is the number of days where the mean exceeds 90° F.  The intervening 18 bins are 

all 5° F wide.  These 20 bins are used throughout the remainder of the paper as they form the basis for our 

semi-parametric modeling of temperature in equations for mortality rates and energy consumption.

The figure depicts the mean number of days that the typical person experiences in each bin; this is

calculated as the weighted average across county by year realizations, where the county by year’s

population is the weight. The average number of days in the modal bin of 70° - 75° F is 38.2.  The mean

number of days at the endpoints is 0.8 for the less than 0° F bin and 1.6 for the greater than 90° F bin. 

The remaining columns of Table 2 report on the predicted changes in temperature from the B1 

and A1F1 scenarios and the Hadley 3 model for the 2070-2099 period.9  Each set of predictions is based 

on a single run of the Hadley 3 model.  Recall, the B1 scenario predicts the smallest greenhouse gas 

accumulation and temperature increase, whereas A1F1 predicts the largest increases and as the business 

as usual scenario is our focus.

The B1 scenario predicts a change in mean temperature of just 0.5° F.  Interestingly, there is

substantial heterogeneity with mean temperatures expected to increase by 5.0° F in the Midwest and to

District of Columbia, Florida, Georgia, Maryland, North Carolina, South Carolina, Virginia, West Virginia,
Alabama, Kentucky, Mississippi, Tennessee, Arkansas, Louisiana, Oklahoma, and Texas; and West-- Arizona,
Colorado, Idaho, Montana, Nevada, New Mexico, Utah, Wyoming, Alaska, California, Hawaii, Oregon, and
Washington.
8 For counties with multiple weather stations, the daily maximum and minimum are calculated as the average across
the maximums and minimums, respectively, from each station. 
9 For comparability, we follow much of the previous literature on climate change and focus on the temperatures
predicted to prevail at the end of the century.
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decline by 2.7° F in the West.  The A1F1 scenario predicts a gain in mean temperature of 6.5° F.  The 

increases in the Midwest and South exceed 9° F, while there is virtually no predicted change in the West.

Figure 2 provides an opportunity to understand how the full distributions of mean temperatures

are expected to change under the A1F1 scenario.  One’s eye is naturally drawn to the last two bins.  The

typical person will experience 18.9 additional days per year where the mean daily temperature is between 

85° F and 90° F.  Even more amazing, the mean daily temperature is predicted to exceed 90° F 43.8 extra 

days per year.10  To put this in perspective, given the current distribution of the population across the 

country, the average person experiences just 1.6 days per year where the mean exceeds 90° F.

An examination of the rest of the figure highlights that the increase in these very hot days is not

being drawn from the entire year.  For example, the number of days where the maximum is expected to be 

between 55° F and 80° F declines by 55.5 days.  Interestingly, the mean number of days where the

minimum temperature will be below 30° F is predicted to fall by just 3.8 days, further underscoring that 

the temperature increases are not spread evenly throughout the year.

IV. Econometric Strategy

This section describes the econometric models that we employ to learn about the impact of

temperature on mortality rates and residential energy consumption.

A. Mortality Rates.

We fit the following equations for county-level mortality rates of various demographic groups:

(4) ctdstdcddct

l

ctl

PREC

dl

j

ctj

TMEAN

djctd XPRECTMEANY

Yctd is the mortality rate for demographic group d in county c in year t. In the subsequent analysis, we use 

16 separate demographic groups, which are defined by the interaction of 8 age categories (0-1, 1-14, 15-

24, 25-44, 45-54, 55-64, 65-74, and 75+) and gender.  is a vector of observable time varying

determinants of fatalities measured at the county level.  The last term in equation (4) is the stochastic 

ctX

10 At the risk of insulting the reader, we want to underscores that a mean daily temperature of 90° F is very hot.  For 
example, a day with a high of 100° F would need a minimum temperature greater than 80° F to qualify.
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error term, ctd .

The variables of interest are the measures of temperature and precipitation, and we have tried to

model these variables with as few parametric assumptions as possible while still being able to make 

precise inferences.  Specifically, they are constructed to capture the full distribution of annual fluctuations

in weather. The variables TMEANctj denote the number of days in county c and year t where the daily

mean temperature is in one of the 20 bins used in Figures 1 and 2.  Thus, the only functional form

restriction is that the impact of minimum temperature is constant within 5F degree intervals. This degree 

of flexibility and freedom from parametric assumptions is only feasible because we are using 35 years of 

data from the entire US. Since extreme high and low temperatures drive most of the health impacts of 

temperature, we tried to balance the dual and conflicting goals of allowing the impact of temperature to

vary at the extremes and estimating the impacts precisely enough so that they have empirical content. 

The variables PRECctl are simple indicator variables denoting annual precipitation equal to “l” in county c 

in year.  These intervals correspond to 2 inches bins.

The equation includes a full set of county fixed effects, cd .  The appeal of including the county

fixed effects is that they absorb all unobserved county-specific time invariant determinants of the

mortality rate for each demographic group.  So, for example, differences in permanent hospital quality or 

the overall healthiness of the local age-specific population won’t confound the weather variables.  The 

equation also includes state by year indicators, std , that are allowed to vary across the demographic

groups.  These fixed effects control for time-varying differences in the dependent variable that are

common within a demographic group in a state (e.g., changes in state Medicare policies).

The validity of any estimate of the impact of climate change based on equation (4) rests crucially

on the assumption that its estimation will produce unbiased estimates of the and  vectors.

The consistency of the components of each requires that after adjustment for the other covariates the

unobserved determinants of mortality do not covary with the weather variables.  In the case of the mean

temperatures, this can be expressed formally as E[TMEANctj

TMEAN

dj

PREC

dl

dj

ctd | ,ctX cd , std ] = 0.  By conditioning

on the county and state by year fixed effects, the ’s are identified from county-specific deviations in

weather about the county averages after controlling for shocks common to all counties in a state.  Due to

dj
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the unpredictability of weather fluctuations, it seems reasonable to presume that this variation is

orthogonal to unobserved determinants of mortality rates.  The point is that there is reason to believe that 

the identification assumption is valid. 

A primary motivation for this paper’s approach is that it may offer an opportunity to identify

weather-induced changes in the fatality rate that represent the full impact on the underlying population’s

life expectancy.  Our review of the literature suggests that the full effect of particularly hot and cold days

is evident within approximately 30 days (Huynen et al. 2001; Deschênes and Moretti 2005).

Consequently, the results from the estimation of equation (4) that uses the distribution of the year’s daily 

temperatures should largely be free of concerns about forward displacement and delayed impacts.  This is 

because a given day’s temperature is allowed to impact fatalities for a minimum of 30 days for fatalities 

that occur from February through December.  An appealing feature of this set-up is that the

coefficients can be interpreted as reflecting the full long-run

TMEAN

dj

 impact of a day with a mean temperature in

that range. 

The obvious limitation is that the weather in the prior December (and perhaps earlier parts of the 

year if the time frame for harvesting and delayed impacts is longer than 30 days) may affect current year’s

mortality.  To assess the importance of this possibility, we also estimate models that include a full set of 

temperature variables for the current year (as in equation (4)) and the prior year.  As we demonstrate

below, our approach appears to purge the estimates of fatalities of people with relatively short life 

expectancies.11

There are two further issues about equation (4) that bear noting.  First, it is likely that the error 

terms are correlated within county by demographic groups over time.  Consequently, the paper reports 

standard errors that allow for heteroskedasticiy of an unspecified form and are clustered at the county

level.

11 A daily version of equation (4) would be very demanding of the data.  In particular, there would be a tension
between our flexibility in modeling temperature and the number of previous days of temperature to include in the
model.  Equation (4) models temperature with 20 variables, so a model that includes 30 previous days would use
600 variables for temperature, while one with 365 days would require 7300 temperature variables. Further, daily
mortality data for the entire US is only available from 1972-1988 and there may not be sufficient variation in
temperature within this relatively short period of time to precisely identify some of the very high and very low
temperature categories.
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Second, it may be appropriate to weight equation (4).  Since the dependent variable is 

demographic group-specific mortality rates, we think there are two complementary reasons to weight by 

the square root of demographic group’s population (i.e., the denominator).  First, the estimates of 

mortality rates with large populations will be more precise than the estimates from counties with small

populations, and this weight corrects for the heteroskedasticity associated with the differences in 

precision.  Second, the results can then be interpreted as revealing the impact on the average person, 

rather than on the average county.

Residential Energy Consumption.  We fit the following equation for state-level residential energy 

consumption:

(5) stdtsst

l

l

PREC

l

j

j

TMEAN

jst XPRECTMEANC )ln(

Cst is residential energy consumption in state s in year t and d indexes Census Division.  The modeling of 

temperature and precipitation is identical to the approach in equation (4).  The only difference is that these 

variables are measured at the state by year level— they are calculated as the weighted average of the

county-level versions of the variables, where the weight is the county’s population in the relevant year.

The equation also includes state fixed effects ( s ) and census division by year fixed effects ( dt ) and a

stochastic error term, st .

The challenge for the successful estimation of this equation is that there has been a dramatic shift

in the population from the North to the South over the last 35 years.  If the population shifts were equal

within Census divisions, this wouldn’t pose a problem for estimation but this has not been the case.  For

example, Arizona’s population has increased by 223% between 1968 and 2002, compared to just 124% 

for the other states in its Census Division and due to its high temperatures it plays a disproportionate role 

in the identification of the ’s associated with the highest temperature bins.12  The point is that unless

we correctly adjust for these population shifts, the estimated ’s may confound the impact of higher 

j

j

12 For example, we estimated state by year regressions for the number of days where the mean temperature was in 
the > 90° F bin that adjusted for state fixed effects and census division by year fixed effects.  The mean of the annual
sum of the absolute value of the residuals for Arizona is 3.6 but only 0.6 in the other states in its Census Division.
The other states in Arizona’s Census Division are Colorado, Idaho, New Mexico, Montana, Utah, Nevada, and
Wyoming.
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temperatures with the population shifts. 

As a potential solution to this issue, the vector  includes the ln of population and gross

domestic product by state as covariates.  The latter is included since energy consumption is also a

function of income.  The below analysis demonstrates the importance of controlling for these covariates 

and in mitigating confounding associated with the population shifts out of the Rust Belt and to warmer

states.

stX

Finally, we will also report the results from versions of equation (5) that model temperature with

heating and cooling degree days.  We follow the consensus approach and use a base of 65° F to calculate 

both variables.13  Specifically, on a given day, the number of cooling degree days equals the day’s mean

temperature (i.e., the average of the minimum and maximum) minus 65° F for days where the mean is

above 65° F and zero for days when the mean is below 65° F.  Analogously, a day’s heating degree days

is equal to 65° F minus its mean for days where the mean is below 65° F and zero otherwise.  So, a day 

with a mean temperature of 72° F would contribute 7 cooling degree days and 0 heating degree days,

while a day with a mean of 51° F would contribute 0 cooling degree days and 14 heating degree days.

To implement this alternative method for modeling a year’s temperature, we sum the number of

heating and cooling degree days separately over the year.  We then include the number of heating and

cooling degree days and their squares in equation (5) instead of the TMEANctj variables. 

V. Results 

This section is divided into three subsections.  The first explores the extent of variation in the 

temperature variables in the context of the rich statistical models that we employ.  The second provides

estimates of the impact of predicted climate change on overall mortality.  It also implements a series of

specification tests and assesses whether these effects are concentrated among particular causes of death.

13 Electrical, natural gas, power, heating, and air conditioning industries utilize heating and cooling degree
calculations to predict demand (http://www.fedstats.gov/qf/meta/long_242362.htm).  Further, the National Oceanic

and Atmospheric Administration recommends using a base of 65° F for both heating and cooling degree days
(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/degree_days/ddayexp.shtml).  Further,

an examination of the figures suggests in Engle et al.’s seminal paper on relationship between temperature and

electricity sales suggests that 65° F is a reasonable base for both cooling and heating degree days (Engle et al.
1986).
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The third examines the impact of predicted climate change on residential energy consumption.

A. How Much Variation is there in Temperature?

As we discussed above, our preferred specifications model temperature with 20 separate

variables.  For this method to be successful, it is important that there is substantial inter-annual variation 

in county temperature after adjustment for these county and state by year fixed effects in the mortality

equations.  If this is the case, the predicted health impacts of climate change will be identified from the

data, rather than by extrapolation due to functional form assumptions.

Figure 3 provides an opportunity to assess the extent of inter-annual variation in temperature.  For 

each daily mean temperature bin, we create a data file where the observations are from all county by year

observations with valid weather data between 1968 and 2002.  We then regress the annual realization of 

the number of days that the relevant county had a daily mean in the temperature bin against state-by-year

and county fixed effects. For each county by year, we sum the absolute value of the residuals.  The figure

reports the mean of this number across all county by year observations.  The resulting figures can be 

interpreted as the average number of days in a county by year that are available to identify the parameter 

associated with that temperature bin after adjustment for the fixed effects.

An inspection of the figure demonstrates that there is substantial variation in temperatures, so it 

should be possible to obtain relatively precise estimates of the impacts of most of the temperature bins. 

Notably, due to the large data file, there are still many days available to estimate the impact of even the 

extreme bins.  For example, the mean of the absolute value of the residuals for the bin for the > 90° F bin

is 0.7 days. Although this may seem small, the size of our data file helps greatly.  Since there are XXXX

county by year observations, this means that there are roughly XXXX county by days to help identify the

impact of a day in this bin.  The analogous figure for the 85° - 90° F bin is XXXX days.

B. Estimates of the Impact of Climate Change on Mortality 

All Cause Mortality Results.  Figure 4 provides an opportunity to better understand the paper’s 

approach and understand the basis of the results for male infants.  It plots the estimated ’s from thej
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estimation of equation (4) for male infants.  In this version of the equation, we dropped the TMEANj

variable associated with the 65° - 70° F bin so each  reports the estimated impact of an additional day

in bin j on the infant mortality rate (i.e., deaths per 100,000) relative to the mortality rate associated with a 

day where the temperature is between 65° - 70° F.  The figure also plots the estimated ’s plus and 

minus one standard error of the estimates so that the precision of each of these estimates is evident.

j

j

The most striking feature of this graph is that the response function is generally flat so

temperature has little influence on male infant mortality rates, except at the highest and coldest

temperatures.  Recall, the Hadley 3 A1F1 results predict that the changes in the distribution of

temperature will be concentrated among days where the mean temperatures exceeds 50° F, so the 

estimated ’s in this range are most relevant for this paper’s exercise.  If the estimates are taken 

literally, it is evident that the shift of days into the last bin will lead to an increase in infant mortality.  For

example, the results suggest that the shift of a day from the 70° - 75° F bin (estimated  = -0.78) to the > 

90° F bin (estimated  = 0.92) would lead to 1.7 more infant deaths per 100,000 births.

j

It is also important to highlight that the estimated ’s have associated sampling errors. Among

the most relevant ’s, the largest standard error is in the highest bin which is due to the relatively small

days with a mean temperature exceeding 90° F. The imprecision of the estimated impact of this bin 

poses a challenge for making precise inferences about the impact of the predicted changes in temperature

on mortality rates.  The estimated ’s at the lowest temperatures are also imprecise, but they play an 

inconsequential role in this exercise.

j

j

j

We now turn to Table 3, which summarizes the results from the estimation of separate versions of 

equation (4) for the 16 gender by age groups using the Hadley 3 A1F1 scenario.  These versions include 

all twenty TMEANj variables.  Estimates for females and males are reported in the left and right panels, 

respectively.  Columns (1a) and (2a) report the predicted change in annual mortality for each 

demographic group and its estimated standard error. For a given county and demographic groups, these

impacts are calculated as follow:

(6)
j

cj

TMEAN

djcdcd TMEANˆPOPM
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That is, we multiply the predicted change in the number of days in each temperature cell from the Hadley

3 A1F1 predictions ( ) by the corresponding demographic-group specific impact on mortality

( ) and then sum these products.  This sum is then multiplied by the average population for that 

demographic in that county ( ) over the sample period.  Finally, the impacts for a given

demographic group are summed over all counties and this is the national demographic group-specific 

estimate of the change in annual mortality.  It is straightforward to calculate the standard error, since the 

estimated mortality change is a linear function of the estimated parameters.

cjTMEAN

TMEAN

dj
ˆ

cdPOP

Columns (1b) and (2b) report the change in the annual mortality rate.  This is calculated as the

ratio of the change in the demographic group’s mortality rate due to predicted climate change to the 

group’s overall mortality rate.  Since fatalities at relatively young ages are likely associated with larger 

changes in life expectancies, columns (1c) and (2c) report the change in life years due to predicted climate

change for each age category.  This entry is the product of the predicted increase in annual fatalities and

the residual life estimate for each age group (evaluated in the middle of the age range) and sex, taken 

from the 1980 Vital Statistics.14 Negative values correspond to loss of life-years, while positive entries

correspond to gains in life-years.  We note that this calculation may overstate the change in life years,

because affected individuals are likely to have shorter life expectancies than the average person.

Nevertheless, it provides a way to capture that fatalities at young ages may have greater losses of life

expectancy than those at older ages. 

The entries in columns (1d) and (2d) report p-values from F-tests of the hypothesis that the

twenty estimated ’s are equal.  This test is not directly informative about the mortality impacts of 

predicted climate change, but it provides a summary of the impact of temperature on mortality in the US. 

A failure to reject the null is consistent with the view that in the US individuals are able to easily adapt to 

changes in temperature that could pose risks to mortality.

j

We begin by returning to infant mortality, which is reported in the first row.  These entries

indicate that predicted climate change will increase the number of female and male infant deaths by

14 Starting with infants and progressing towards the oldest age category, the residual life estimates for females are: 
78.1, 72.1, 59.4, 45.8, 30.9, 22.4, 14.8, and 6.3.  The corresponding estimates for males are: 70.7, 64.8, 52.4, 39.5,
25.2, 17.5, 11.3, and 5.0.
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roughly 1,000 and 1,800 per year.  The female estimate borders on statistical significance at conventional 

levels, while the male estimate is substantially more precise.  These estimates are equivalent to increases

of 5.5% (female) and 7.8% (male) infant mortality rates.  The life years calculation suggests that these 

extra fatalities would lead to a loss of about 200,000 life years of life expectancy every year.  This finding 

of higher temperatures leading to increased rates of infant mortality is consistent with the medical

evidence that infants’ thermoregulatory systems are not fully developed.

In the remainder of the table, there is evidence of mortality impacts for some sub-groups.  The 

most substantial impacts are concentrated among 75-99 females.  The entries suggest that there would be 

an additional 11,500 fatalities per year in this demographic group and their annual mortality rate would 

increase by roughly 2.0%.  Due to their age, the total loss of life years is comparable to the loss for infants

even though the increase in fatalities is 11 times larger. There is also evidence of an increased mortality

rates for 1-14 year olds and for men in the 45-54 and 55-64 age categories.  However, there is little 

evidence of an increase in the mortality rate for many of the demographic groups; for example, the null of

zero increase in fatalities cannot be rejected at even the 10% level for 9 of the 16 demographic groups. 

Overall, these differences in the results across age, gender, and age by gender categories underscore the 

importance of estimating these models in such a disaggregated manner.

The bottom row of Table 3 reports the aggregate impacts, which are simply the sum of the

impacts for each demographic group.  For both females and males, annual mortality is predicted to 

increase by approximately 17,500 deaths per year.  This excess mortality corresponds to increases in the 

annual mortality rate of 1.3% for both genders.  The predicted loss of life years is about 290,000 for 

women and 490,000 for men.  The marked difference between males and females reflects the differences 

in the distribution of the mortality impacts across age categories, especially the heavy concentration in the 

75-99 age category for women.

To understand the source of these aggregate estimates, it is instructive to examine the regression 

coefficients (i.e., ) that drive the overall estimates.  Figures 5A and 5B plot the population-

weighted average of these parameters across age groups scenario for female and males.  Each data point 

represents the impact on the annual mortality rate (per 100,000) of an additional day in the relevant

TMEAN

dj
ˆ
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temperature bin, relative to the 70° - 75° F bin.  The figure also plots the estimated ’s plus and minus

one standard error of the estimates.  The y-axes are scaled identically so that the response functions can

be compared easily.

j

Both figures suggest that mortality risk is highest at the colder and hotter temperatures.  It is 

evident that trading some days in the 50° - 80° F bin range for hotter days as is predicted in the Hadley 3

A1F1 scenario will lead to mortality increases.  The figures underscore the lack of precision of the

mortality estimates at the highest temperature bins and this explains the lack of precision in the Table 3

estimates.  Cold days appear to be relatively harmful for men, but the imprecision of these estimates mean

that they should be interpreted cautiously. 

The approach of modeling temperature with 20 separate variables and allowing the impacts to 

vary by demographic group is very demanding of the data, so we assessed whether making some

restrictions would help to allow for more precise inferences and generally concluded that the answer is 

no.  For example, we estimated models that (XXXX INSERT LIST).  None of these alternative

specifications helped to reduce the standard errors substantially.  Ultimately, the problem is that our

predicted impacts of climate change rely so heavily on the mortality impacts at the highest temperature

bins where the available data is more limited than is ideal. 

Robustness Analysis.  Table 4 reports on the estimated aggregate mortality impact for females and 

males from a series of alternative models.  The top row repeats the overall estimate from Table 3 so that it

can serve as the basis for comparisons. The second row details the results when the climate predictions 

come from the Hadley 3 B1 Scenario which predicts smaller temperature increases. This scenario

produces mortality estimates that are smaller, roughly 20,000 extra fatalities per year.  The estimated

mortality impacts are essentially unchanged when the state by year effects are replaced with year fixed 

effects (row 3).  The next two rows report the largest and smallest mortality impacts from the 30 years in 

the 2070-2099 period.15

The specifications in the remaining rows lead to the same qualitative conclusions.  In rows (6) 

15 In all other parts of the paper, we use the predicted distribution of temperature averaged over the 2070-2099
period.
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and (7) we use 40 separate temperature variables:  (6) uses the same 20 temperature bins for the daily 

maximum and for the daily minimum temperatures and (7) uses the 20 temperature bins for the current 

years temperature and the previous year’s temperature to allow for the possibility that we have not 

adequately accounted for the dynamics of the mortality-temperature relationship.  Row (8) reports on the 

predicted impact of climate change based on ’s  that are obtained using post-1980 data only. The

intuition is that air conditioning ownership rates and medical technologies are more advanced in the later 

years.  Surprisingly, the overall impact of predicted climate change is essentially unchanged.

TMEAN

dj
ˆ

Accounting for the Dynamics Relationship Between Temperature and Mortality.  Figure 6 

provides an opportunity to assess the paper’s success at modeling the complicated dynamic relationship

between temperature and mortality to address the issues of harvesting/forward displacement and delayed

impacts.  The figure replicates the daily analysis of Deschênes and Moretti (2005) and was constructed 

with the Multiple Cause of Death Files (MCOD) for the 1972-1988 period.  The key difference with the 

CMF is that the MCOD files contain the exact date of death between 1972 and 1988.

We use these data to estimate daily and annual versions of equation (4).  In both versions, males

and females are combined.  In the first, the dependent variable is the daily age-adjusted mortality rate

across all age categories.16 This equation includes county fixed effects, state by year fixed effects, state 

by month fixed effects, and the 20 temperature variables.  The figure then reports the estimated

parameters on the temperature variables.

In the annual version, the analysis is conducted exactly as described above, except that for 

comparison purposes we combine males and females in each age category and estimate separate models

for the 8 age categories.  The figure reports the population weighted averages of the ’s across the

age categories, just as was done in Figures 5A and 5B (except here it is for both genders at once).

TMEAN

dj
ˆ

The figure reveals the shortcomings of the daily model that is prevalent in the previous literature

(Cite TK).  This is most evident at the coolest temperatures; the daily approach suggests that relationship

between mortality rates are equal from the <0° F bin through the 70° - 75° F bin.  A comparison with the

16 We are currently constructing samples that will permit the estimation of the daily models separately for different
age categories.
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annual approach highlights that the delay impacts hypothesis is correct as the mortality impacts are 

substantially greater at the colder temperatures.  For example, the average of the estimated  for

the 7 bins representing temperatures 30° F and below is .02 which suggests that an extra day in that 

temperature range is associated with .02 additional deaths per 100,000 population.  The analogous 

calculation from the annual approach is 0.22, which is more than 10 times larger. 

TMEAN

j
ˆ

The paper’s primary purpose is to learn about the likely impacts of climate change and there are 

important differences between the estimated  at the higher temperatures too.  Here, the estimated

coefficients from the daily model overstate the mortality impact of a hot day; for example the estimated

impact of days in the 85° - 90° F and > 90° F bins are 0.14 and 0.13 larger, respectively, in the daily

model.  The result is that the predicted increase in mortality with the daily approach is 45,452 but only 

19,138 with the annual approach.

TMEAN
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Furthermore, these results suggest that the reports of the extremely elevated risk of mortality

associated with hot days overstate the mortality impacts of these episodes (CITE Chicago and Paris 

Studies).  This is because the individuals that die on these days appear to have had little life expectancy

remaining, just as is predicted by the harvesting/forward displacement hypothesis.   In this respect, the

results confirm the Deschênes and Moretti (2005) findings although we have done so with a much more

blunt approach; their paper traces out the precise dynamics of the mortality-temperature relationship on

hot days.

Results for Cause-Specific Mortality. Table 5 reports on the estimated impacts of the Hadley 3

A1F1 scenario on deaths due to cardiovascular diseases, neoplasms, respiratory diseases, and motor-

vehicle accidents.  It is evident that the largest mortality impacts are concentrated among cardiovascular

and respiratory diseases. Interestingly, the respiratory results are statistically different from zero at the 

10% level for men 45 and older.  The large decline in motor vehicle fatalities for males 15-24 would seem 

to be related to a reduction in dangerous driving days.  Overall, this by-cause exercise is demanding of the

data and it isn’t possible to make precise inferences for many of the causes or demographic groups.

Geographic Variation in the Estimated Impacts.  To Come.
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C. Estimates of Adaptation from Energy Consumption

We now turn to an analysis of the effect of inter-annual fluctuations in temperature on residential 

energy consumption.  Specifically, this subsection fits versions of equation (5) to the state by year data on

residential energy consumption from the EIA.  As a reminder, the annual mean of residential energy

consumption in this period is 16.6 quads.

Figure 7 plots the estimated ’s from the specification that includes the familiar 20 temperature

variables.  The coefficients report the estimated impact of an additional day in bin j on annual energy

consumption, relative to energy consumption on a day where the temperature is between 65° - 70° F.  The

estimates are adjusted for the ln of population and state gross domestic product, their squares and 

interaction. The figure also plots the estimated ’s plus and minus one standard error of the estimates

so that the precision of each of these estimates is evident.

j

j

The response function has a U-shape, indicating that that energy consumption is highest in cold 

and hot days.  Notably, the function turns up sharply at the last three bins.  So, for example, an additional 

day in the > 90° F bin is associated with an extra 0.11 quads of energy consumption. The response 

function is very flat and precisely estimated for temperatures between 45 – 80° F; these seven estimated

’s all range between -0.01 and 0.01.  In fact, the shape of this function undermines the convention in

the literature of modeling heating and cooling degree days linearly with a base of 65 because fitting a line

through these points will overstate consumption in the flat range and understate it at the extremes of the

temperature distribution.

j

Table 6 presents the predictions of the impact of climate change on annual residential energy 

consumption from estimation of versions of equation (6).  All specifications include state fixed effects 

and census division by year fixed effects.  The specification details are noted in the bottom rows.  For 

each specification, we reports results from modeling temperature with the 20 separate variables and with 

cooling and heating degree days (and their squares). The rows in the specification analysis panel provide

results from some robustness checks.

The baseline specification in the first row reports compelling evidence that predicted climate

change will cause a sharp increase in energy consumption.  Specifically, the estimates suggest an increase 
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in residential energy consumption in the range of 4-6 quads or 25%-35%.  All of these estimates would be

judged to be statistically different from zero at conventional significance levels.

The specification checks generally support the validity of the findings in the baseline 

specification.  The predicted impact of climate change is about 40% smaller when the post-1980 only data 

is used to obtain the estimated ’s. One interpretation is that the proliferation of energy saving 

technologies (e.g., better insulation and greater efficiency of appliances) was increasing faster than air

conditioning.  The modeling of temperature with 20 separate variables for the daily minimum and 

maximum leaves the estimates unchanged.  A model that replace the census division by year fixed effects

with year fixed effects leads to smaller impacts when temperature is modeled with 20 variables and larger

ones with heating and cooling degree days.  Hadley 3 B1 predictions lead to smaller increases in energy 

consumption with the 20 variables and precisely estimated declines with heating and cooling degree days.

j

Finally, an alternative approach is to estimate the relationship between energy consumption and 

temperatures in the cross-section (Mansur, Mendelsohn, and Morrison 2007; Mendelsohn 2006).  In the 

absence of specification error, this approach will reveal the equilibrium relationship between energy

consumption and temperature.  However, this relationship isn’t informative about the social costs 

associated with obtaining the presumably greater levels of energy efficiency in the hotter parts of the

country; consequently it is not especially useful in determining the predicted costs of climate change.  In 

principle, it would be possible to use land markets to measure the full costs of these adaptations, however 

as Deschenes and Greenstone (2007) have demonstrated the cross-sectional hedonic for land prices 

appears to suffer from substantial misspecification or omitted variables bias, making this approach less 

appealing from a practical perspective.17

Overall, these results imply that predicted climate change will lead to substantial increases in 

energy consumption in the residential sector.  This finding is consistent with predicted increases in energy 

consumption from a study of California (Franco and Sanstad 2006).  To the best of our knowledge, these 

17 Despite the limitations of this cross-sectional approach, we implemented it with our national data on residential
energy consumption by estimating versions of equation (5), except these versions all dropped the state fixed effects.
Thus, this is a pooled cross-section.  This approach produced inconsistent results with the 20 variable specification
yielding negative and statistically significant declines in energy consumption, while the heating and cooling degree
day approach led to increases in energy consumption that are similar to those in the baseline specification in Table 6. 
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estimates on energy consumption are the first ones based on data from the entire country.  In addition to

being useful for policy purposes, they should help climate modelers who have not yet incorporated 

feedback effects from higher energy consumption into their models.

VI. Interpretation

We now use the above findings to calculate a partial measure of the economic costs of climate

change.  The Hadley 3 A1F1 results in Table 3 suggest that climate change would lead to a loss of 

roughly 750,000 life years annually. A valuation of a life year at about $100,000 is roughly consistent

with Ashenfelter and Greenstone’s (2004) estimate of the value of a statistical life.  So if we ignore the

sampling variability, the Hadley 3 A1F1 results suggest that the direct impacts of climate change on

mortality will lead to annual losses of roughly $75 billion in the 2070-2099 period.18

The social cost of the additional energy consumption should be added as a welfare loss.  The 

estimates from Table 6 imply an increase in consumption of 4-6 quads.  The average cost of a quad in

2006$ between 1990 and 2000 is $7.6 billion, so this implies that there would be an additional $30-$45 

billion of energy consumption at the end of the century.

There are a number of caveats to these calculations and to the analysis more generally that bear 

noting.  First, the life-year calculation assumes that the individuals’ whose lives are affected by the 

temperature changes had a life expectancy of 78.6 for women and 71.2 for men.  It is certainly possible

that our efforts to purge the influence of harvesting and delayed impacts were not entirely successful and,

in this case, the estimated impact on life years would be smaller.

Second, it is likely that these calculations do not reflect the full impact of climate change on 

health.  In particular, there may be increases in the incidence of morbidities due to the temperature

increases.  Additionally, there are a series of indirect channels through which climate change could affect

human health, including greater incidence of vector borne infectious diseases (e.g., increased incidence of 

malaria and dengue fever).  Further, it is possible that the incidence of extreme events would increase and

18 It is also possible to make a similar calculation using estimates of how the value of a statistical life varies over the
life cycle (Murphy and Topel 2006).
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these could affect human health (Kerry 200X).  This study is not equipped to shed light on these issues. 

Third, the brief theoretical section highlighted that our estimates likely overstate the increase in 

mortality and energy consumption due to climate change.  This is because the higher temperatures are

likely to cause individuals to increase expenditures on goods that protect themselves from the changes in 

temperature.  Our identification strategy relies on inter-annual fluctuations in weather, rather than a 

permanent change, and individuals can only engage in a limited set of responses or adaptations in

response to the weather being unseasonably hot for a few days. For example, as the load results indicate, 

individuals can use more air conditioning on hot days and some people might even be motivated to buy

an air conditioner.

However, there are a number of adaptations that cannot be undertaken in response to a single 

year’s weather realization.  For example, permanent climate change is likely to lead to some migration

(presumably to the North) and this will be missed with our approach.  Although these adaptations may be 

costly, individuals will only undertake them if they are less costly than the alternative.  For this reason, 

our approach is likely to overstate the costs of climate change. 

VII. Conclusions

To Come.
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Data Appendix 

I. Hadley 3 Census Division-Level Predictions 

We downloaded the Hadley Climate Model 3 (HadCM3) data from the British Atmospheric Data Centre 
(http://badc.nerc.ac.uk/home/), which provides a wealth of atmospheric data for scientists and researchers. 
Hadley Centre data appears on BADC thanks to the Climate Impacts LINK Project, a distributor of 
archived climate model output to researchers. Daily climate predictions generated by the Hadley 3 model
are available for all future years from the present to 2099 and for several climate variables – we
downloaded the predicted maximum and minimum temperatures and precipitation levels for each day
during the years 2070-2099.

The HadCM3 grid spans the entire globe; latitude points are separated by 2.5°, and longitude points are 
separated by 3.75°. We use the 89 gridpoints that fall on land in the contiguous United States to develop 
climate predictions for the 9 US Census Divisions.  At the Census Division level, each day’s mean
temperature is calculated as the simple average across all grid points within the Division.  The data used
in this paper was originally generated by the Hadley Centre for the International Panel on Climate
Change’s (IPCC) Special Report on Emissions Scenarios (SRES).

II. EIA Energy Consumption Data 

The consumption data is derived from several different reports and forms depending on energy source. 
Coal consumption data for most sectors comes from the EIA’s Annual Coal Report; electric power sector
coal use is the exception, coming instead from forms EIA-906 “Power Plant Report” and EIA-920
“Combined Heat and Power Plant Report”. Natural gas consumption data comes from the EIA’s Natural 
Gas Annual. Most petroleum data is the “product supplied” data found in EIA’s Petroleum Supply
Annual, with the exception again of electric power sector use, which is reported on EIA-906 and EIA-
920. Solar, wind, geothermal, and most biomass energy use data is also reported on those forms.
Residential and commercial use of biomass is reported on forms EIA-457 “Residential Energy
Consumption Survey” and “Commercial Buildings Energy Consumption Survey”. Nuclear electric power 
and other electricity data comes from the EIA Electric Power Annual. Finally, system energy losses and
interstate flow are estimated in the State Energy Data System.
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Figure 1:  Distribution of Annual Daily Mean Temperatures (F), 1968-2002 
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Figure 2:  Changes in Distribution of Annual Daily Mean Temperatures (F) Under 3 
Climate Change Scenarios 

-20

-10

0

10

20

30

40

50

<0 0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65 65-70 70-75 75-80 80-85 85-90 >90

Change in Distribution of Annual Daily Mean Temperatures (F)

from 3 Sets of Climate Change Predictions

Hadley 3, A1F1 Scenario



Figure 3:  Residual Variation in Annual Daily Mean Temperatures (F), 1968-2002 
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Figure 4:  Estimated Regression Coefficients, Male Infants (relative to temperature cell 
65-70)
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Figure 5A:  Population-Weighted Average Regression Estimates Across Age Groups, 
Females (relative to temperature cell 65-70) 
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Figure 5B:  Population-Weighted Average Regression Estimates Across Age Groups, 
Males (relative to temperature cell 65-70) 
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Figure 6:  Population-Weighted Average Regression Estimates Across Age Groups, for 
Daily and Annual Approaches (relative to temperature cell 65-70)
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Figure 7:  Estimated Impact on Total Energy Consumption in the Residential Sector
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