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Abstract:  Using plant-level data from Chile and the U.S. we show that investment 
spikes are highly pro-cyclical, so much so that changes in the number of 
establishments undergoing investment spikes (the “extensive margin”) account for 
the bulk of variation in aggregate investment. The number of establishments 
undergoing investment spikes also has independent predictive power for aggregate 
investment, even controlling for past investment and sales. We re-calibrate the 
Thomas (2002) model (that includes fixed costs of investing) so that it assigns a 
prominent role to extensive adjustment.  The recalibrated model has different 
properties than the standard RBC model for some shocks.  
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1. Introduction 
  
Economists are sharply divided over the aggregate significance of the heterogeneity of 
plant-level investment.  On the one hand, there is unanimous agreement that individual 
plants sometimes forgo investing at all and at other times have dramatic surges in 
investment.1 Caballero (1999), in his survey for the Handbook of Macroeconomics, 
argues that accounting for this “lumpiness” is critical: “it turns out the changes in the 
degree of coordination of lumpy actions play an important role in shaping the dynamic 
behavior of aggregate investment.”  On the other hand, Thomas (2002) presents a model 
where this is not true: “in contrast to previous partial equilibrium analyses, [the] model 
results reveal that the aggregate effects of lumpy investment are negligible.  In general 
equilibrium, households’ preference for relatively smooth consumption profiles offsets 
changes in aggregate investment demand implied by the introduction of lumpy plant-
level investment.”  This “irrelevance result” inspired Prescott (2003) to argue “partial 
equilibrium reasoning to an inherently general equilibrium question cannot be trusted.”   
 
In this paper, we make three contributions to this debate. First, we introduce several new 
facts about surges in investment (that we call spikes).  In particular, we show that for both 
U.S. and Chilean plants, most of the variation in the total investment rate is due to 
variation in investment of firms undergoing spikes.  Moreover, this approximation 
derives its explanatory power from changes in the number of firms making large 
investments (the “extensive margin”), and not changes in the average size of the spikes 
(the “intensive margin”). We also find that information on prevalence of spikes in one 
year has predictive power for forecasting aggregate investment (even controlling for the 
past level of investment or sales): years with relatively more spikes are followed by years 
with relatively less investment.   
 
We then try to construct a model that not only generates spikes on average, but also 
variation in spikes over the business cycle.  To do this we start with the Thomas (2002) 
model, which is a tractable dynamic stochastic general equilibrium (DSGE) model that 
naturally yields lumpy investment. The heterogeneity in this model derives from variation 
in the fixed costs that firms must pay in order to invest.  We find that the exact model, as 
originally calibrated, has trouble fitting the facts about cyclical patterns in lumpiness. But 
by changing the calibration we can match better these facts. 
 
While we make several changes, the critical one is to alter the distribution of fixed costs 
that firms face.  In order for the extensive margin to matter, this distribution must have 
the property that many firms face roughly the same sized fixed cost in deciding whether 
to invest.  When the distribution has this type of compression, it becomes possible for a 
shock to move many firms across the threshold from not investing to investing. 
Conversely, if the distribution exhibits little compression, then firms become much less 
likely to synchronize their decisions and the extensive margin matters less. Importantly, 
even if part of the distribution is “compressed” there can still be substantial heterogeneity 
in the overall distribution and hence in the level of fixed costs that firms pay to adjust.   
                                                 
1 See among others Becker et al. (2006), Caballero, Engel and Haltiwanger (1995), Cooper, Haltiwanger 
and Power (2000), Cooper and Haltiwanger (2006), Doms and Dunne (1998). 
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The third contribution is to explore the aggregate response of investment to various 
shocks when extensive adjustment is important.  The Thomas model, as originally 
calibrated, implies that the fixed costs which generate spikes are essentially “irrelevant” 
for aggregate dynamics.  In particular, the aggregate dynamics (summarized for example 
by the impulse response of investment to a productivity shock) are the same as the 
standard real business cycle (RBC) model, which has no adjustment costs of any kind.  In 
our calibration, the qualitative response of investment to a productivity shock is 
somewhat different from the standard RBC model.  More importantly, we find that the 
original Thomas model and the RBC model also exhibit virtually identical response when 
the distribution of firms capital levels move away from the steady-state distribution (for 
instance, as might occur if a temporary tax change leads firms to accelerate investment 
spending).  In contrast, under our calibration, aggregate investment behaves differently 
than it would in the RBC model. Hence for this kind of shock the fixed cost seems to 
matter substantially.  
 
We conclude, therefore, that although general equilibrium attenuates the differences 
between the fixed cost model and the RBC model, it does not eliminate these differences. 
In other words, the irrelevance result is not a generic finding that comes from the general 
equilibrium, but rather a result that depends on the details of how the model is calibrated, 
especially regarding the production side.   
 
The remainder of the paper is organized into three sections.  The first documents the 
aforementioned empirical regularities. Next we review the Thomas model and explain 
our calibration. We then explore the predictions of the re-calibrated model regarding the 
sensitivity to various disturbances.  We close with a brief summary.   
 
 
2. Empirical Evidence on Lumpiness over the Business Cycle  
 
To analyze lumpiness we study two establishment-level data sets covering manufacturing 
plants in Chile and the U.S. The data construction is discussed more completely in 
Gourio and Kashyap (2007).2    One important point from that discussion is the method 
that we use for aggregating the observations.  In all of the results reported here, 
aggregates are constructed by weighting plants by their capital.  While there are several 
good theoretical reasons that motivate this choice, as a practical matter we believe it is 
essential to make sure that the statistics we analyze are not driven by the behavior of 
small firms. 
 
We also refer interested readers to Gourio and Kashyap (2007) for more details on the 
basic properties of the data (in particular, see their Table 1 and Figures 1, 2, and 3).  As in 
all past studies of plant-level data, there are four prominent features of our two samples.  
First, in both data sets many plants report literally no investment or only tiny investment 
(e.g. investment of less than two percent of capital) in a given year.  We combine these 
                                                 
2 Importantly, we do not have access to the underlying micro data, but instead have tabulations that group 
plants according to their current investment rates. 
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establishments and refer to them as having “near zero” investment. On a capital weighted 
basis, the near zeros account for over 35% of the plant-years in the Chilean sample and 
over 15% percent in the U.S. sample.   
 
Second, there are also many spikes.  To facilitate comparisons with most papers in this 
literature including Cooper, Haltiwanger and Power (1999), Cooper and Haltiwanger 
(2006), and Becker et al. (2006), we define spikes to be cases where investment relative 
to the beginning of period capital is greater than 20 percent.  Using this threshold, 15% 
and 20%, respectively of the (capital-weighted) plant-years in the Chilean and U.S. 
samples represent spikes.  Importantly, the new facts shown below regarding the 
importance of the extensive margin also hold when spikes are defined as investments 
exceeding 35 percent of capital.  
 
The third and fourth patterns relate to the cyclicality of the share of plants with near-zero 
investment and the share of plants undergoing a spikes. To analyze the cyclical behavior 
of these series, we remove a linear trend from each series.3   The de-trended aggregate 
investment rate is highly positively correlated with the spikes and negatively correlated 
with the near-zeros. For instance, the correlation between the capital-weighted spikes and 
the aggregate investment rate (both linearly detrended) is 0.87 for the U.S. sample and 
0.96 for the Chile sample; and the correlation between the capital-weighted near zeros 
and the aggregate investment rate (both linearly detrended) is -0.94 for the U.S. sample 
and -0.56 for the Chilean sample.        
  
In the remainder of this section we document several new facts regarding the connection 
between aggregate investment and investment spikes.  The aggregate investment rate is 
calculated by taking the capital weighted average of the establishment level rates and we 
denote this as Itot/K.  (The weighting scheme also means that Itot/K is the ratio of 
aggregate investment to aggregate capital in our sample.)  In Figure 1, we decompose the 
aggregate investment rate into two parts.  One part (shown by the lines with the circles) is 
the total investment done by those establishments where there is a spike (i.e. I/K > 20 
percent), divided by the total stock of capital for all the firms in the sample; we label this 
series I20/K.  The remainder of investment, that we dub I(0-20)/K, represents investment 
of plants with investment rates between 0 and 20 percent over total capital, and is shown 
in the line with inverted triangles.  
 
The relative levels of I20/K and Itot/K indicate that the spikes account on average for 
about half of total investment in each country; in other words, I20/Itot is about 0.5.  More 
importantly, the investment rate constructed for the spiking firms tracks the movements 
in the aggregate investment rate closely; the correlations between the de-trended series is 
0.99 for each sample. Clearly, the bulk of the variation in the aggregate Itot/K is 
accounted for by changes in I20/K. The share of variance of Itot/K accounted for by 

                                                 
3 For Chile the sample period corresponds to a remarkable macroeconomic boom (see Hsieh and Parker 
(2006) and Fuentes, Gilchrist and Rysman (2006)) so perhaps the upward trend is not so surprising.  For the 
U.S. there is a modest downward trend.  These low frequency movements are outside of the scope of our 
investigation so we remove the trends.  It makes no difference whether we use a linear time trend or 
Hodrick-Prescott filter to detrend the series.   
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I20/K (as opposed to the residual I(0-20)/K)) is 97 percent for the U.S. sample and 86 
percent for the Chile sample.4 The converse of these observations is that there is little 
variation in total investment explained by the firms investing between zero and 20 
percent.  Thus, for the purposes of modeling investment fluctuations it is critical to 
understand the timing of the investment spikes.5   
 
To go further and understand how spikes matter for business cycles, we start from the 
following identity: 
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In words, equation (1) simply says that the total investment done by the plants 
experiencing spikes can vary either because of a change in the investment per adjuster 
(IPA20, the intensive margin) or because of a change in the (capital-weighted) number of 
firms adjusting (ADJ20, the extensive margin).  This approach is analogous to the one 
proposed by Klenow and Kryvstov (2005) for studying price dynamics, where they 
decompose inflation into changes in the number of firms resetting their prices and 
changes in the average size of price changes for those firms resetting their price.  
 
Figure 2 shows a graph of Log(I20/K), along with Log(IPA20) and Log(ADJ20) (after 
each series has had a linear time trend removed) for the U.S. and Chilean samples.  The 
striking conclusion is that the extensive margin, ADJ20, drives variation in spikes.  
 
One way to conveniently summarize the information in the picture is to compute the 
following pair of statistics:  
 
 

I20 I20covariance(log(ADJ20),log( )) covariance(log(IPA20),log( ))
K KShareADJ20  and ShareIPA20I20 I20variance(log( )) variance(log( ))

K K

≡ ≡

  
 

                                                 
4 This is measured as Cov (I20/K,I/K) / Var (I/K). 
5 This fact is also present, to a lesser degree, in Figure 8 of Cooper, Haltiwanger and Power (2000). The 
difference may be due to the fact that they use a balanced panel of rather large establishments. These 
authors also mention that spikes are procyclical but do not focus on this feature of the data. 
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These shares by construction must sum to one. If the proportion of firms with spikes 
(ADJ20) is constant, they would be zero and one, and if the average investment rate of 
firms with spikes is constant, they would be one and zero. For the U.S. sample 
ShareADJ20 is 0.87, while for the Chilean sample it is 0.925.  The dominant role of the 
extensive margin also appears when the threshold for identifying spikes is 35 percent 
instead of 20 percent. This fact also holds for different de-trending methods (e.g. the 
Hodrick-Prescott filter, or just considering growth rates). 
 
Our last new fact about spikes is that they predict future investment. The spirit of many 
models of lumpiness (e.g. Caballero and Engel (1999)) is that the cross-sectional 
distribution of firms’ capital stock relative to the level that would prevail absent any 
adjustment costs should be an important determinant of aggregate investment. It is 
empirically difficult to construct this cross-sectional distribution, but there is a simple 
way to test for this possibility. We estimate regressions of the form: 
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The novelty is that we add the share of adjusters to an otherwise standard accelerator type 
investment equation.6   This type of accelerator style equation has repeatedly been shown 
to be an effective forecasting equation in horse-races of different regression 
specifications (Bernanke, Bohn and Reiss (1988) and Oliner, Rudebusch and Sichel 
(1995)).   
 
Table 1 shows estimates of equation (2).  The first six rows show the estimates for the 
U.S. data, while the last six rows show the estimates for the Chilean sample.  For the U.S. 
data the lagged dependent variable is always estimated to have a positive and highly 
significant coefficient.  The sales proxy is positively related to investment, but not always 
significant.  Conversely in the Chilean sample the sales variable is always estimated to 
have a positive and very significant effect on investment, but the lagged dependent 
variable does not systematically influence investment.   
 
Our main coefficients of interest are the ω’s that measure the effect of past spikes on 
current investment.  For the U.S. sample, the coefficients on both the first and second 
lags of ShareADJ20 are significant, whereas in the Chilean data, only the second lag is 
consistently significant.7  Importantly, the estimated signs of the ω’s are all negative, 
suggesting that investment is depressed in the period after an investment surge.  This 
correlation is to be expected based on fixed costs models (and would be of the opposite 
sign if the past ShareADJ20 variable was standing in for productivity shocks or other 
factors that raise investment demand).  
 

                                                 
6 For both the U.S. and Chilean samples, we have shipments data which correspond to sales for 
establishment data.   
7 When the spikes are measured with the 35 percent threshold then both lags one and two are significant in 
both samples.  
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Taken literally, the coefficients suggest that these “echoes” from the spikes have a 
quantitatively important effect on investment. For the U.S. sample (Chile) the standard 
deviation of the spike variable is 0.046 (0.093), compared to the standard deviation of the 
investment rate of 0.017 (0.054).  Taking the specifications where h=1, (shown in rows 5 
and 11), the estimates for the U.S. (Chile) sample imply that a one standard deviation 
increase in ShareADJ20 predicts an increase of the investment rate of 0.7 (0.57) of a 
standard deviation. 
 
Collectively, these new facts provide guidance about how to model lumpiness.  
Aggregate investment is largely driven by investment spikes; so a successful model 
should have the property that I20/Itot is substantial and that variations of I/K are 
accounted for by variation in I20/K.  Moreover, the spikes matter because of adjustment 
along the extensive margin, i.e. a change in the number of firms making large 
investments; these spikes are sufficiently important that they have independent predictive 
power for aggregate investment, even controlling for past investment and sales. We now 
attempt to construct a model that has these properties, and we concentrate especially on 
matching the fact that ShareADJ20 is large. 
 
 
3. A DSGE model with fixed costs of adjusting capital 
 
We first review the Thomas model and then discuss how we calibrate it. 
 
3.1  A brief review of the Thomas model 
 
Thomas (2002) offers an elegant and compact model for analyzing the importance of 
fixed costs of adjusting capital on aggregate investment in a dynamic, stochastic general 
equilibrium framework.8   
 
The economy has a fixed number of plants (normalized to be of measure one). In what 
follows, we refer to these as “plants” or “firms” interchangeably. Each plant has the 
production function: υy=Ak nψ , where y is output, A is aggregate productivity (TFP), k is 
capital, and n is labor.  There are decreasing returns to scale so that 1ψ υ+ <  and there is 
no entry or exit. 
 
In each period, each plant has the opportunity to adjust its factor usage.  Labor can be 
freely varied, but adjusting capital can only be done if the firm pays a fixed cost.  The 
fixed cost, ,ξ  is a random variable that is independently and identically distributed across 
time and plants and comes from the cumulative distribution G.  This distribution has 
finite support and the maximum fixed cost is called B.  The firms that choose to pay the 
fixed cost, which we call “adjusters”, bear no marginal adjustment costs: they can buy or 
sell capital at price 1.  The fixed cost is measured in units of labor. Owing to the fixed 
cost, firms will not always adjust capital. 
 

                                                 
8 The setup is similar to the sticky price model of Dotsey, King and Wolman (1999). 
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Much of the model’s tractability derives from its inherent symmetry that leads all firms 
choosing to invest at a given point to pick the same new level of capital, k0,t+1;  this is 
because there is no heterogeneity except in the fixed cost drawn today and the current 
capital. So firms are distinguished by the time since their last investment.  Regardless of 
whether a firm invests, its capital depreciates at rate δ.  Therefore, 
 

0, 1 , ,k (1 k it j t j tδ+ = − ) +  when ij,t > 0 and otherwise  1, 1 ,k (1 kj t j tδ+ + = − ) , 
 
where kj,t is the capital of a plant of vintage j at time t, and ij,t is the investment of a plant 
of vintage j at time t, conditional on the plant deciding to pay the fixed cost. 
 
A firm that last adjusted capital j periods ago, henceforth a vintage j firm, will operate 
with capital kj (and labor nj).  This implies the following maximization problem for a 
plant:     
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subject to the capital accumulation laws above, where mt is the stochastic discount factor 
(the ratio of marginal utilities in period t to period 0), and wt is the real wage. 
 
The TFP process, At, evolves according a first-order autoregressive process around a 
deterministic trend: 
 

t
t A tA z= Θ ,  t 1log  z log t tzρ ε−= + ,  2is distributed independently ( , ).t N oε σ  

 
The combination of the fixed depreciation rate and the finite upper bound on the fixed 
cost guarantees that all firms will eventually find it optimal to invest; in other words, this 
structure delivers a maximum vintage J by which time all firms will invest.  The solution 
to the problem involves finding that maximum vintage (J), along with the capital stock 
for each of the intervening vintages (kj), and the percentage of total firms in each vintage 
(θj).  
 
Thomas shows that firm’s investment decisions follow a cutoff rule: in any given vintage, 
and in any period, there is a threshold fixed cost, such that firms which draw a fixed cost 
below the threshold will invest and upgrade their capital, and firms which draw a fixed 
cost above the threshold will let the capital depreciate. We call αj the proportion of firms 
which are below the threshold (and so choose to adjust). In her simulations Thomas 
chooses a uniform distribution for the fixed costs, between 0 and B.  The level of fixed 
costs B is chosen to match two facts reported by Doms and Dunne (1998): i) in the 
average year, 8 percent of plants raise their real capital stocks by 30 percent or more; ii) 
these plants account for 25 percent of aggregate investment. 
 
The rest of the model is intentionally chosen to follow the real business cycle (RBC) 
literature.  So, for instance, Thomas adopts a utility function with indivisible labor of the 
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form Ut= log t tc nζ− .  Thus, aside from the fixed costs and the mild decreasing returns, 
the calibrated parameters, displayed in the second column of Table 2, are very standard.9  
Indeed, when the upper bound of fixed costs, B, is set to 0, all firms adjust their capital 
each period, and equate their marginal product of capital and labor; in this case, there is a 
representative firm, and the model collapses to a standard RBC model with decreasing 
return to scale. 
 
This model is solved numerically by a standard log-linearization around the steady-state. 
First, one finds the optimal J, the maximum time-since-last-adjustment such that all firms 
want to invest. Second, one solves the system of non-linear equations that define the non-
stochastic steady-state. Finally, one computes the log-linear approximation itself. The 
log-linear method is advantageous here since the state space of the model is large: it 
includes the TFP shock, and the cross-sectional distribution of capital (the θj’s and the 
kj’s). 10   
 
 
3.2 Calibration of the Model 
 
In the first three rows of Table 3 we report several statistics comparing the prominence of 
spikes in both of our samples and in the baseline model. Given that Thomas chose B to 
match the Doms-Dunne facts on spikes, it is not surprising that the model also matches 
the prevalence of spikes in our sample.  In her original calibration of the model, however, 
spikes only account for about 62 percent of the total variance of investment and the 
extensive margin accounts for only 51 percent of the variance of spikes; in the data both 
these percentages are roughly 90 percent.    
 
In Gourio and Kashyap (2007) we describe several comparative static exercises that help 
provide intuition for why the extensive margin is not very important in the Thomas 
calibration.  We focus on three key parameters in these experiments: the maximum size 
of fixed costs, B, the distribution of fixed costs, G, and the curvature of the production 
function (ψ+υ).  Intuitively one expects these parameters to be critical since B and G 
govern the costs of adjusting capital and the curvature governs the benefits (by 
determining the loss in profits that result from having an inefficient plant size).   
 
These experiments suggest that the key determinant of the extensive-intensive 
decomposition is the shape of the CDF. The intuition for this conclusion is that increasing 
the number of plants doing positive investment requires marginal plants to switch from 
inaction to action; this decision depends on the fixed costs for the indifferent plants. If 
marginally inactive plants face the same fixed cost as marginally active plants, increasing 
the number of plants investing is inexpensive. Hence, the marginal cost of changing the 
extensive margin depends on the shape of the CDF of fixed costs.  
 
                                                 
9 Also, the model is calibrated to annual rather than quarterly data, because the plant-level evidence is 
based on annual surveys.  
10 For more details on the solution, we refer the reader to our separate technical appendix (available on 
http://people.bu.edu/fgourio). 
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Thomas, following Caballero and Engel (1999), chooses G to be uniform.  With this type 
of CDF (or any other that is very smooth), increasing the number of plants investing 
requires activating plants that have substantial differences in the fixed costs they are 
facing.  Put differently, at the margin there is a lot of heterogeneity in terms of fixed cost.  
In this case it will be efficient to rely more on intensive adjustment. On the other hand, 
when the CDF is sufficiently “compressed”, i.e. so that many firms face nearly-identical 
fixed costs, the opposite result obtains: increasing the number of plants investing need not 
be very costly.  This means that the extensive margin can be important.   
 
The compressed CDF that is considered in the experiments that follow is displayed in 
Figure 3.  This particular CDF implies that the fixed costs for most firms bunch around B 
and B/2, but all of our results would also obtain if there was bunching only around one 
level of fixed cost.11  Indeed in the first draft of this paper, we considered simpler 
examples where there is almost no heterogeneity in fixed costs: virtually all firms draw 
B, in which case the model is closer to the first generation of Ss models12 rather than the 
ones studied by Caballero and Engel (1999) and Thomas (2002).  However, what matters 
for us is the “compression” and not the lack of heterogeneity, and to make that clear we 
present results for this CDF.  Based on the cases we considered we conjecture that the 
same results would obtain if there were multiple points of compression; it appears that 
having bunching is a necessary condition for extensive adjustment to be dominant in this 
type of model – but the exact nature of the compression is not critical.13  
 
Before turning to the results, we note one other observation regarding the original 
Thomas calibration.  As reported in the fourth column of Table 3, total expenditure due to 
adjustment costs is roughly 1/5 of one percent of total investment spending.  This cost 
seems small on an anecdotal basis, if we think of the costs of the planning, budgeting, 
and committee work that accompany most investments. There are also obvious cases 
when adjustment costs are much larger: think of the re-tooling of a factory, or the 
temporary closure of a retail store to redesign it.  
 
One recent study that computes adjustment costs is by Cooper and Haltiwanger (2006). 
They study a host of specifications that include convex and non-convex adjustment costs, 
including fixed costs, quadratic costs, gaps between the buying and selling price of 
capital, and productivity distortions created by capital adjustment. Using U.S. plant level 
data, they find statistically significant costs of each type, either when estimated in 
isolation or when several costs are simultaneously present. The total implied adjustment 
costs in this model and all the others (e.g. the one including just fixed costs) are 
substantial.  For instance, their preferred estimates suggest that profits are reduced 20 
                                                 
11 The formula for this CDF is G(x) = H(x/B) where B is the upper support and H is defined on the interval 
[0,1]  as H(x) = (F(x)-F(0))/(F(1)-F(0)), with F(x) = 1/(2*π)*(arctan(σl*(x-1/2)) + arctan(σ2*(x-1))). This 
distribution implies that many firms draw either a cost around B/2 or a cost close to B. The parameters 
sigma1 and sigma2 govern how concentrated around B/2 and B the fixed costs are. For all the experiments 
in Table 3 we set σl =150 and σ2=33.3.  
12 Sheshinksi and Weiss (1977) and (1983), Caplin and Spulber (1987), Caplin and Leahy (1991). 
13 For instance, Gourio and Kashyap (2007) show that a CDF with only one region of compression that has 
much more heterogeneity in the overall range of fixed costs also delivers very similar results to those 
shown below.   
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percent during investment spikes.  They simulate the model and find that on average 
spending on adjustment costs is equal to 0.91 percent of capital.  Given that investment 
for their sample is about 12.2 percent of capital, this implies that adjustment costs 
average roughly 7.5 percent of investment; in other words, they find adjustment costs 
roughly 40 times the size assumed by Thomas. Abel and Eberly (2002) in their study of 
listed firms find a similar magnitude of adjustment costs (between 1.1 and 9.7 percent of 
investment).  So in what follows we also explore the predicted variation in total 
adjustment costs paid relative to investment.  From a theoretical standpoint, it is hardly 
surprising that lumpiness is quantitatively irrelevant when fixed costs are small. This is 
another motivation to explore the effect of varying B, the parameter which governs the 
level of fixed costs. 
 
Our first experiment is to substitute the compressed distribution of fixed costs from 
Figure 3 for the uniform distribution.14  If we keep Thomas choice of B=0.002, then 
plants adjust continuously15; hence to obtain some lumpiness, we set B=0.008.  The 
results are shown in row 4 of Table 3.  With these changes the extensive margin in the 
model rises to 92.6 percent and the variance of Itot/K due to I20/K rises to 99.9 percent.  
Thus, the model becomes much closer to the data on these two critical dimensions.  The 
only shortcoming is that expenditure on adjustment costs remains less than one percent of 
total investment spending.   
 
To see that the improvement in fit comes solely from the compression, the next row in 
the table shows the findings when the uniform distribution is used and B is set to 0.0053.  
With this level of B the average adjustment costs faced by firms is the same as in row 4.  
With this specification ShareADJ20 drops back towards the level in the baseline Thomas 
specification.  The contrast between rows 4 and 5 quantifies the intuition given above 
about the importance of compression.   
 
Our next step is to increase B to move the expenditure in adjustment costs to a more 
plausible level.  Row 6 shows the result when B is equal to 0.03.  This change increases 
the resources spent on adjustment so that they are nearly two percent of investment.   
Notice that the number of vintages also rises so that J=24.   This occurs because as the 
costs become higher, firms tolerate larger deviations from their target capital before 
adjusting.  Indeed, if we double B again, to B=0.06, then J=45 and the expenditure on 
adjustment costs rises to just over three percent of investment.  In this case, roughly 96 
percent of the plants do not invest.    
 
To limit this waiting it is necessary to give firms higher benefits from adjusting their 
capital stock; to do so we change the curvature of the profit function (which in this model 
comes from the decreasing returns to scale but could also have been introduced by 
assuming monopolistic competition in the product market). The curvature determines the 
cost to having the capital stock deviate from its static optimal level. Subsequent to 
Thomas’ paper a large empirical literature has estimated this curvature to be between 0.5 

                                                 
14 Recall that the uniform CDF is linear and hence has no compression.   
15 This is because the chance of getting a very low fixed cost is low, so that in contrast to Thomas, there is 
no option value of waiting for a low fixed cost. 
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and 0.7, markedly lower than one (see e.g., Cooper and Haltiwanger (2005), Fuentes, 
Gilchrist and Rysman (2006), and Hennessy and Whited (2005)).  Thus, there are both 
empirical and theoretical reasons to consider calibrations with more curvature.   
 
Comparing rows 6 and 7 shows the effect of changing curvature.  Here we set the return 
to scales to 0.6, and find that relative to row 6 this doubles the resources spent on 
adjustment costs, and reduces the maximum vintage J, so that firms adjust faster.  The 
extensive margin remains dominant.  
 
This suggests that a calibration that raises B and involves more curvature could lead to a 
model that has both non-trivial spending on adjustment and important extensive 
adjustment.  Our preferred calibration confirms this hunch. For these results we increase 
B to 0.06 and keep the returns to scale equal to 0.6; the full set of parameters we choose 
are shown in the last column of Table 2 and the resulting moments are shown in the last 
row of Table 3.  We now find that the extensive margin is critical and that spending on 
adjustment costs is substantial.   
 
This calibration is not fully optimized, i.e. it is likely that by changing more of the 
baseline parameters we can match the moments more closely. But, we believe that further 
improvements would not change our main conclusions that compression in the 
distribution of fixed costs is key to matching the dominant role of the extensive margin, 
and a combination of high fixed costs and curvature leads to non-trivial spending on 
adjustment costs.  One defect of our preferred specification is that nearly all the 
investment is spikes.  This comes because we have no maintenance motives for investing.  
In Gourio and Kashyap (2007) we show that adding maintenance improves our ability to 
match the cross-sectional distribution of investment rates, by generating small 
investments, without affecting our other results noticeably.16 
 
While these findings are robust to the changes that we have investigated, the literature on 
this class of models is growing quickly and suggests several additional experiments that 
merit consideration.  Khan and Thomas (2006) extend the Thomas (2002) model to allow 
for idiosyncratic productivity shocks.  They do not find any significant effect of fixed 
costs on aggregate dynamics. Their baseline calibration has relatively low adjustment 
costs and only modest curvature.  Moreover, they maintain the assumption of a uniform 
distribution of fixed costs. Given this, and that the productivity shocks are log-normally 
distributed, the marginally inactive firms will not be similar to the marginally active ones. 
They also concentrate on the response of investment to TFP shocks (and not other 
shocks), and on whether the model generates nonlinearities. We concentrate on the 
simpler question of whether aggregate dynamics are different in the fixed cost model and 
in the RBC model. Interestingly, Khan and Thomas emphasize that general equilibrium 
                                                 
16 This is not surprising.  Consider an exogenous breakdown process which requires firms to have small 
investment rates; this will create some small investment rates in every period, but since this “maintenance 
investment” will not change over the business cycle it will have almost no effect on aggregate dynamics. 
Indeed, if there are types of investment for which the fixed cost does not apply or is different, calibrating 
the model to match the cross-sectional distribution of investment rates is not informative about the business 
cycle behavior. These considerations are why we concentrate on matching the (capital-weighted) business 
cycle statistics of the cross-section (rather than the average properties).   
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feedbacks affects plant-level investment dynamics, which would imply that the panel data 
estimates from partial equilibrium models that we use may be misleading. We conjecture 
that our results would hold if the idiosyncratic productivity shocks do not eliminate the 
compression associated with our parameterization of the fixed costs, but would go away 
if they did. The shape of the distribution of idiosyncratic shocks would likely matter as 
well, and we conjecture that a compressed distribution for idiosyncratic shocks could also 
generate results close to ours. 
  
Bachmann, Caballero and Engel (2006) also explore issues that we do not consider. Like 
us, their model presumes higher curvature, and higher fixed costs to reproduce “sectoral 
level” volatility. They then calibrate the intertemporal elasticity of substitution of 
consumption to match aggregate volatility. With these features, they obtain like us 
differences between the impulse responses of their model and the RBC model.  They 
emphasize that their specification also implies that the elasticity of aggregate investment 
with respect to a TFP shock is time-varying. This feature is absent from our model 
because it is log-linear. There are two main differences between our paper and theirs. 
First, we keep the same preferences as Thomas (2002), i.e. log utility of consumption and 
linear disutility of leisure (as in Hansen (1985) and Rogerson (1988)). Since the dispute is 
about whether general equilibrium offsets are central to this debate, we believe this is the 
appropriate place to start. Second, we focus on the shape of the distribution of fixed costs 
while they emphasize the role of sectors.17  If we follow Bachmann et al. and allow for 
preferences with higher intertemporal elasticity of substitution (than the log case) we find 
also more smoothing than in our baseline.   
 
4. Aggregate Dynamics and the Irrelevance Result 
 
We conclude our analysis by revisiting the Thomas (2002) “irrelevance result” using our 
new calibration of the fixed cost model. 
 
4.1. The Thomas result 

 
Thomas compared the effect that aggregate productivity shocks have on investment when 
the fixed cost is positive and when the fixed cost is zero. In the latter case, the model 
simplifies to the standard RBC model (with decreasing returns to scale) without any 
adjustment cost.  The bottom panel of Figure 4 plots the impulse response of the two 
models to the productivity shock.18 The striking result is that the two models are virtually 
indistinguishable, with the two lines sitting on top of each other. The response on impact 
of the fixed cost model is about 99.8 percent of the response of the RBC model. 
 

                                                 
17 Another recent paper on the topic is Svenn and Weinke (2005). In contrast to Thomas (2002) or 
Caballero and Engel (1999), they use a Calvo-style time-dependent adjustment rule for capital. 
Interestingly, they find that given this rule, the irrelevance result holds in the RBC model but not in a New 
Keynesian model. 
18 In a one-shock linear model, the impulse response function (IRF) summarizes the full dynamics of the 
system. Hence, models which have the same IRF have exactly the same dynamics in all respects. 
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This result holds for many variations of parameter values.  For instance, changing the 
elasticity of labor supply or the source of shocks does not affect the result.  Increasing the 
level of fixed costs (B), while maintaining a uniform distribution, also makes little 
difference: for instance, when B is multiplied by a factor of 10, i.e. B = 0.02, so that the 
maximum vintage is J=20, the impact response of the fixed cost model is 98 percent of 
the response of the RBC model. That is, larger fixed costs lead to a slightly smaller 
response of investment, but the difference between the two models remains negligible. 
 
This is in stark contrast with the partial equilibrium analysis, where fixed cost models 
typically generate two features in the impulse response: first, aggregate investment 
becomes of course smoother than without any adjustment costs; second, investment 
becomes subject to oscillatory dynamics (aka “echo effects”, or replacement cycle). 
Thomas argued that the general equilibrium nature of the model was responsible for the 
inconsequential impact of the micro lumpiness. 
 
While there is little doubt that general equilibrium effects are important, there is still a 
tension between the preference for smooth consumption of households and the lumpy 
investment demand of firms. We see no good theoretical reason why all the effects of 
fixed costs would disappear in general equilibrium. Intuitively, this has to be a 
quantitative question: depending on the curvature of the utility function and the 
parameters that govern the investment demand of firms, the race between consumption 
smoothing and investment lumpiness will go one way or the other. Consistent with this 
intuition, we show below that general equilibrium is not the whole story. Depending on 
microeconomic assumptions, features typical of the partial equilibrium responses with 
fixed costs may still arise in general equilibrium. 
 
4.2 Impulse response to a technology shock with our calibration 
 
We start by displaying in the top panel of Figure 4 the impulse response function of 
aggregate investment to a productivity shock for our preferred calibration from Section 3, 
along with the RBC model with the same parameters but zero fixed costs. While the 
general shape of the impulse response is the same, the two models differ qualitatively in 
two respects.  First, the response is initially smaller in the fixed cost model: on impact the 
response of the fixed cost model is only 89 percent of the response of the RBC model. 
This reflects simply that investment becomes smoother in the presence of adjustment 
costs. Second and more interestingly, the fixed cost model exhibits a noticeable hump 12 
periods after the shock. We call this hump an “echo effect” because it is caused by the 
initial surge in investment: as many firms adjust initially, the distribution shifts toward 
more recent vintages, which are less likely to invest. This makes the investment response 
smaller than the RBC model for a while, until the units which invested at time 0 need to 
invest again to replace their capital. Clearly, this result depends on the shape on the 
hazard rate (the probability of adjusting as a function of vintage, i.e. alpha). For our 
calibration, the hazard rate is initially steeply convex: the alphas (probability of 
adjustment) are very small for the first vintages before rising noticeably after 12 periods. 
(Of course, adjustment is random, and probabilities of adjustment move over time, but 
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the average shape of the hazard rate still plays an important role.)  The quantitative 
differences between the responses of the two models to a TFP shock are modest.19 
 
4.3 The dynamic effects of a change in the cross-sectional distribution with our 
calibration 
 
When we consider disturbances which affect more directly the shape of the cross-
sectional distribution, the differences between the two models become much larger. In 
general the cross-sectional distribution is endogenous to shocks, but there are several 
cases when we might expect it to shift abruptly for exogenous reasons: for instance, 
Bloom (2006) considers the effect of a rise in uncertainty which leads many firms to 
delay capital adjustment.  Another trigger could be an investment tax cut.  In Gourio and 
Kashyap (2007), we simulate the effects of an unexpected, temporary cut in the price of 
capital, such as an investment tax credit. That experiment is somewhat complicated to 
analyze, because not only must one specify the size and duration of the change, but one 
must also account for the fact that the tax change changes the level of capital by different 
amounts in the fixed cost model and the RBC model (since they are not equivalent any 
more).  
 
To side-step these complications, we consider the following thought experiment: assume 
that many firms have invested in the past two years, so that the distribution is distorted 
with more firms in the first two vintages and fewer firms in all the other vintages. Does 
changing the initial cross-sectional distribution in this way affect aggregate investment?  
This experiment is at the heart of the debate in the fixed cost literature. Figure 5 presents 
the exact perturbations that we consider and Figure 6 gives the aggregate investment 
responses. The RBC model displays the usual, monotonic, smooth convergence to the 
steady-state given a high starting initial capital (since many firms have invested recently). 
The fixed cost model, for our calibration, differs in two respects from the RBC model: 
first, the response of investment is smaller than in the case of the RBC model (except in 
the first two periods). This is because many firms have invested recently, so that there is 
less investment demand as fewer firms are close to the point where they want to invest.  
Second, we obtain a magnified “echo effect” when firms which had invested recently 
finally re-invest after 8 to 11 periods. These features are typical of partial equilibrium 
fixed cost models.  
 
These features arise largely because of our choice of fixed cost distribution: this 
distribution G implies that the hazard rate is initially very low and then rises steeply; the 
initially lower response of aggregate investment stems directly from the first feature, and 
the echo stems from the second feature. In other words, the compression of the CDF that 
is necessary for amplifying the importance of extensive adjustment essentially guarantees 
that the change in the initial cross-sectional distribution will matter for the subsequent 
aggregate dynamics. Overall, we conclude that a shock which affects the shape of the 

                                                 
19 With different parameter values (e.g. higher fixed costs, higher depreciation rate, or lower returns to 
scale), the two qualitative differences (smoothing and echo) between the RBC model and fixed cost model 
can be made somewhat larger.  
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cross-sectional distribution has very different effects when fixed costs are positive than 
when they are nil.20  
 
We emphasize that all of these results are obtained with log utility. As a point of 
reference the bottom panel of Figure 6 shows the same experiment in the baseline 
Thomas model. The RBC model and the Thomas model yield essentially identical 
predictions even for this experiment. This equivalence for us is proof that general 
equilibrium effects are not the only reason why Thomas found no aggregate effect of 
fixed costs. Depending on microeconomic assumptions, i.e. on the calibration, the 
equivalence result need not hold.  
 
 
5. Conclusions 
 
We make three contributions to the debate over the aggregate significance of plant-level 
investment lumpiness.  Remarkably, the basic plant-level facts on the lumpiness of 
investment are fairly similar in Chile and the U.S.  In each country, we show that 
investment spikes drive total investment.  The spikes draw their predictive power from 
changes in number of plants making large investments, rather than changes in the size of 
average investment per plant.  We use these statistics regarding the decomposition 
between the intensive and extensive margins of adjustment to summarize the 
microeconomic facts about lumpiness that we ask a model to match. 
 
We use the Thomas (2002) model to examine these facts.  This model augments a 
relatively standard RBC model by assuming that firms must pay a fixed cost (that is 
randomly drawn each period) in order to adjust its capital.  As originally calibrated, 
however, the model fails to generate a dominant role of investment spikes and a dominant 
role of the extensive margin.   To fit these facts we change the distribution of fixed costs 
from which firms sample and make it more “compressed” than the distribution 
considered by Thomas.  We also argue that the original calibration has an average level 
of fixed costs which is too low and a profit function that has too little curvature. 
 
Our final contribution is to study the properties of the model using our preferred 
calibration.  In the original Thomas model the aggregate dynamics for investment 
following a productivity shock were indistinguishable from an RBC model with no 
adjustment costs.  In our model this type of shock plays out somewhat differently. 
Moreover, for shocks that directly reshape the cross-sectional distribution of capital, the 
two models have very different implications: in general, the fixed cost model predicts that 
investment is more depressed for a while; moreover, the fixed cost model generates an 
echo effect which is absent in the RBC model.  
 
Our conclusion from the last exercise is that there is nothing generically related to DSGE 
models that guarantees that plant-level investment lumpiness is smoothed away. Rather 
we agree with Thomas that there can be substantial differences between the importance 
                                                 
20 To keep our experiment simple, we picked the initial cross-sectional distribution arbitrarily, but similar 
results are obtained when one runs a true investment tax credit in the model. 
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of lumpiness in a GE models and partial equilibrium models. However, many have gone 
farther and concluded that GE makes fixed costs to investment completely irrelevant for 
the business cycle. Both our empirical and theoretical work shows this conclusion is 
premature; in particular, the details of how the production side is modeled matter. Given 
the currently available information, we think our calibration is reasonable, but we 
recognize much more work needs to be done in this respect to determine how these 
models should be estimated and calibrated. 
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Table 1:  Forecasting of Aggregate Investment by Share of Plants undergoing Investment 
Spikes. 
 
Dependent variable is Itott/Kt-1 , the ratio of the sum of investment across all plants to the sum of beginning 
of period capital across all plants; the lag of this variable is denoted Itott-1/Kt-2,  Rows of the table show 
regressions with different right hand side variables.  Salest-1/Kt-2  is the (lag of) total plant-level shipments 
divided by the (lag of) the total capital at all establishments.  A time trend is always included (but not 
shown).  ShareADJ 20 is defined below the table. For the U.S. sample, the time period is 1974 to 1998.  For 
the Chilean sample the time period is 1981 to 1999.  The standard errors are computing using the Newey-
West (1987) correction with three lags. 
 

   Coefficient estimates 
(standard errors) 

Row Sample 2R   Itott-1/Kt-2   
  

Salest-1/Kt-2 
   

ShareADJ20t-1 
  

ShareADJ20t-2 
  

1 U.S. 
 

0.748 0.743 
(0.101) 

   

2 U.S. 0.738 0.690 
(0.094) 

0.0078 
(0.0098) 

  

3 U.S. 0.776 1.255 
(0.180) 

 -0.204 
(0.044) 

 

4 U.S. 0.893 1.553 
(0.165) 

 -0.228 
(0.035) 

-0.161 
(0.048) 

5 U.S. 0.786 1.257 
(0.153) 

0.0199 
(0.009) 

-0.258 
(0.039) 

 

6 U.S. 0.866 1.531 
(0.167) 

0.010 
(0.008) 

-0.250 
(0.033) 

-0.157 
(0.055) 

7 Chile 
 

0.809 0.353 
(0.292) 

   

8 Chile 
 

0.848 0.151 
(0.257) 

0.055 
(0.017) 

  

9 Chile 
 

0.802 0.999 
(0.804) 

 -0.331 
(0.341) 

 

10 Chile 
 

0.847  1.152 
(0.753) 

 -0.454 
(0.272) 

-0.405 
(0.061) 

11 Chile 
 

0.839 0.462 
(0.764) 

0.054 
(0.018) 

-0.156 
(0.339) 

 

12 Chile 
 

0.856 0.790 
(0.629) 

0.034 
(0.12) 

-0.323 
(0.264) 

-0.331 
(0.075) 

   
ShareADJ20 is defined as:  

     
K20 I20

covariance(log( ),log( ))
K KShareADJ20

I20
variance(log( ))

K

≡  
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Table 2: Parameters in the Thomas (2002) Calibration and in our Preferred Calibration. 
 
Parameter  Thomas (2002) Preferred Calibration 
Depreciation rate (δ)  0.06 0.06 
Persistence of TFP shock (ρ) 0.9225 0.9225 
Returns to scale (ψ υ+ ) 0.905 0.60 
Share of capital in Production Function ψ  0.325 0.2155 
Share of capital in Output ψ /ψ υ+  0.359 0.359 
B (maximum fixed cost) 0.002 0.06 
Discount factor (β) 0.954 0.954 
Intertemporal elasticity of substitution  1 1 
Frisch elasticity of labor supply Infinite Infinite 
 
The CDF for G is G(x) = H(x / B) where B is the upper support and H is defined on the 
interval [0,1]  as H(x) = (F(x)-F(0))/(F(1)-F(0)), with F(x) = 1/(2*π)*(arctan(σl*(x-1/2)) 
+ arctan(σ2*(x-1))). We set σl =150 and σ2=33.3. 
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Table 3: Steady-State and Business Cycle Lumpiness Statistics for various calibrations. 
 
 

Row  J Total 
Adjustment 
Costs / Total I  

Mean %  Plants 
I/K>0.20 

Mean I20/Itot % Variance 
of  Itot/K due to 
I20/K 

Share ADJ 20 

1 Data US NA NA 20.8 49.9 97.0 87.0 
2 Data Chile NA NA 16.6 57.3 86.0 92.5 
3 Thomas (2002) 

Calibration 
5 0.21 19.7 85.9 62.4 51.7 

4 Thomas with 
Compressed CDF 
and B=0.008 

11 0.87 12.2 99.9 99.9 92.6 

5 
 

Thomas with Uniform 
CDF and B=0.0053 
(i.e. same mean as row 4) 

9 0.34 17.1 93.9 81.9 55.2 

6 Thomas with 
Compressed CDF and 
Higher B (B=0.03) 
 

24 1.97 6.4 99.9 99.9 100.0 

7 Thomas with 
Compressed CDF and 
Lower return to scales 
(0.6), and Higher B=0.03 

16 3.97 8.31 99.9 99.9 115.6 

8 Preferred Calibration 
 = Thomas with 
Compressed CDF and 
Lower return to scales 
and higher B=0.06  

23 
 

6.24 5.9 99.9 99.9 84.5 

 
Note:  Results from simulations of the model (500 simulations of 200 periods each). See 
the text for the full characteristics of the alternative calibrations.  The definitions of I20, 
Itot, ShareADJ2 and ShareADJ20 are:  

, ,

, 1 , 1

, ,

, 1 , 1

, ,

0.20 0.0

, 1,    , 1

0.20 0.0

   I20 ,     Itot ,

  K20 K

i t i t

i t i t

i t i t

i t i t

i t i t
I I

K K

i t i t
I I

K K

I I

K K
− −

− −

> ≥

− −

> ≥

≡ ≡

≡ ≡

∑ ∑

∑ ∑
      

 
The %Variance of  Itot/K due to I20/K is Cov(I20/K, Itot/K)/Var(Itot/K), and the 
ShareADJ20 is Cov(log(K20/K),log(I20/K))/Var(log(I20/K)) where the logs of the 
various series are de-trended using the Hodrick-Prescott filter.  
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Figure 1:  Decomposition of Aggregate Investment for U.S. and Chilean Manufacturing 
Plant into Investment Spikes and Remaining Investment.  
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Figure 2:  Decomposition of de-trended Aggregate Investment into Intensive and 
Extensive Adjustment for U.S. and Chilean Manufacturing Plants. 
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ADJ20, IPA20 and I20/K are defined in the text. Each series shown in the figure are 
residuals from a regression that removes a linear time trend. 
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Figure 3: Cumulative Distribution Function G of Fixed Costs used in Our Calibration. 
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Figure 4:  Impulse Response of Aggregate Investment to an Aggregate Productivity 
Shock for our Preferred Calibration of the DSGE Model with Fixed Costs (Top Panel) 
and for the Original Thomas Calibration (Bottom Panel). 
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Figure 5:  Initial Cross-Sectional Distribution for the experiment of Section 4.3 in our 
Preferred Calibration (Top Panel) and in the Thomas Calibration. In both cases the first 
two vintages are up by 20% each and the other vintages are reduced equally. 
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Figure 6:  Dynamic Path for Aggregate Investment When the Initial Distribution of 
Capital is Distorted in the Our Calibration of the DSGE Model with Fixed Costs (Top 
Panel) and in the Thomas Calibration (Bottom Panel). 
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