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Abstract: Using plant-level data from Chile and the U.S. we show that investment
spikes are highly pro-cyclical, so much so that changes in the number of
establishments undergoing investment spikes (the “extensive margin’) account for
the bulk of variation in aggregate investment. The number of establishments
undergoing investment spikes also has independent predictive power for aggregate
investment, even controlling for past investment and sales. We re-calibrate the
Thomas (2002) model (that includes fixed costs of investing) so that it assigns a
prominent role to extensive adjustment. The recalibrated model has different
properties than the standard RBC model for some shocks.

Key words: adjustment costs, investment, investment tax credit, fixed costs,
extensive margin.

JEL Classification Number: E22, E32

¥ Department of Economics, Boston University, '™ Graduate School of Business University of Chicago,
Federal Reserve Bank of Chicago, and National Bureau of Economic Research. Kashyap thanks the Center
for Research in Securities Prices, Initiative on Global Financial Markets and the Stigler Center all at the
University of Chicago Graduate School of Business for research support. We thank Shawn D. Klimek from
the U.S. Census, and Olga Fuentes and Simon Gilchrist from Boston University for very kind help in
providing data. We thank participants in the SNB conference and in seminars at the Universities of
Chicago, Pompeu Fabra (CREI), Texas (Austin), Kellogg Graduate School of Management, the Paris
School of Economics, the AEA meetings, the BU macro lunch, and in the GSB Macro and Finance lunches
for helpful suggestions; Ricardo Caballero, Janice Eberly and Robert E. Lucas Jr. for helpful conversations;
Jeffrey Campbell, Russell Cooper and Edward Prescott for discussing our paper; and Robert King for many
constructive comments. We also thank Doriana Ruffino, Sandra Shao, and Jin Xu for excellent research
assistance. The data, a technical appendix and Matlab programs to run the model are posted on the
following web page: http://people.bu.edu/fgourio/extintpaper.html. All errors here are our own.




1. Introduction

Economists are sharply divided over the aggregate significance of the heterogeneity of
plant-level investment. On the one hand, there is unanimous agreement that individual
plants sometimes forgo investing at all and at other times have dramatic surges in
investment." Caballero (1999), in his survey for the Handbook of Macroeconomics,
argues that accounting for this “lumpiness” is critical: “it turns out the changes in the
degree of coordination of lumpy actions play an important role in shaping the dynamic
behavior of aggregate investment.” On the other hand, Thomas (2002) presents a model
where this is not true: “in contrast to previous partial equilibrium analyses, [the] model
results reveal that the aggregate effects of lumpy investment are negligible. In general
equilibrium, households’ preference for relatively smooth consumption profiles offsets
changes in aggregate investment demand implied by the introduction of lumpy plant-
level investment.” This “irrelevance result” inspired Prescott (2003) to argue ‘“partial
equilibrium reasoning to an inherently general equilibrium question cannot be trusted.”

In this paper, we make three contributions to this debate. First, we introduce several new
facts about surges in investment (that we call spikes). In particular, we show that for both
U.S. and Chilean plants, most of the variation in the total investment rate is due to
variation in investment of firms undergoing spikes. Moreover, this approximation
derives its explanatory power from changes in the number of firms making large
investments (the “extensive margin”), and not changes in the average size of the spikes
(the “intensive margin”). We also find that information on prevalence of spikes in one
year has predictive power for forecasting aggregate investment (even controlling for the
past level of investment or sales): years with relatively more spikes are followed by years
with relatively less investment.

We then try to construct a model that not only generates spikes on average, but also
variation in spikes over the business cycle. To do this we start with the Thomas (2002)
model, which is a tractable dynamic stochastic general equilibrium (DSGE) model that
naturally yields lumpy investment. The heterogeneity in this model derives from variation
in the fixed costs that firms must pay in order to invest. We find that the exact model, as
originally calibrated, has trouble fitting the facts about cyclical patterns in lumpiness. But
by changing the calibration we can match better these facts.

While we make several changes, the critical one is to alter the distribution of fixed costs
that firms face. In order for the extensive margin to matter, this distribution must have
the property that many firms face roughly the same sized fixed cost in deciding whether
to invest. When the distribution has this type of compression, it becomes possible for a
shock to move many firms across the threshold from not investing to investing.
Conversely, if the distribution exhibits little compression, then firms become much less
likely to synchronize their decisions and the extensive margin matters less. Importantly,
even if part of the distribution is “compressed” there can still be substantial heterogeneity
in the overall distribution and hence in the level of fixed costs that firms pay to adjust.

! See among others Becker et al. (2006), Caballero, Engel and Haltiwanger (1995), Cooper, Haltiwanger
and Power (2000), Cooper and Haltiwanger (2006), Doms and Dunne (1998).



The third contribution is to explore the aggregate response of investment to various
shocks when extensive adjustment is important. The Thomas model, as originally
calibrated, implies that the fixed costs which generate spikes are essentially “irrelevant”
for aggregate dynamics. In particular, the aggregate dynamics (summarized for example
by the impulse response of investment to a productivity shock) are the same as the
standard real business cycle (RBC) model, which has no adjustment costs of any kind. In
our calibration, the qualitative response of investment to a productivity shock is
somewhat different from the standard RBC model. More importantly, we find that the
original Thomas model and the RBC model also exhibit virtually identical response when
the distribution of firms capital levels move away from the steady-state distribution (for
instance, as might occur if a temporary tax change leads firms to accelerate investment
spending). In contrast, under our calibration, aggregate investment behaves differently
than it would in the RBC model. Hence for this kind of shock the fixed cost seems to
matter substantially.

We conclude, therefore, that although general equilibrium attenuates the differences
between the fixed cost model and the RBC model, it does not eliminate these differences.
In other words, the irrelevance result is not a generic finding that comes from the general
equilibrium, but rather a result that depends on the details of how the model is calibrated,
especially regarding the production side.

The remainder of the paper is organized into three sections. The first documents the
aforementioned empirical regularities. Next we review the Thomas model and explain
our calibration. We then explore the predictions of the re-calibrated model regarding the
sensitivity to various disturbances. We close with a brief summary.

2. Empirical Evidence on Lumpiness over the Business Cycle

To analyze lumpiness we study two establishment-level data sets covering manufacturing
plants in Chile and the U.S. The data construction is discussed more completely in
Gourio and Kashyap (2007).>  One important point from that discussion is the method
that we use for aggregating the observations. In all of the results reported here,
aggregates are constructed by weighting plants by their capital. While there are several
good theoretical reasons that motivate this choice, as a practical matter we believe it is
essential to make sure that the statistics we analyze are not driven by the behavior of
small firms.

We also refer interested readers to Gourio and Kashyap (2007) for more details on the
basic properties of the data (in particular, see their Table 1 and Figures 1, 2, and 3). As in
all past studies of plant-level data, there are four prominent features of our two samples.
First, in both data sets many plants report literally no investment or only tiny investment
(e.g. investment of less than two percent of capital) in a given year. We combine these

? Importantly, we do not have access to the underlying micro data, but instead have tabulations that group
plants according to their current investment rates.



establishments and refer to them as having “near zero” investment. On a capital weighted
basis, the near zeros account for over 35% of the plant-years in the Chilean sample and
over 15% percent in the U.S. sample.

Second, there are also many spikes. To facilitate comparisons with most papers in this
literature including Cooper, Haltiwanger and Power (1999), Cooper and Haltiwanger
(2006), and Becker et al. (2006), we define spikes to be cases where investment relative
to the beginning of period capital is greater than 20 percent. Using this threshold, 15%
and 20%, respectively of the (capital-weighted) plant-years in the Chilean and U.S.
samples represent spikes. Importantly, the new facts shown below regarding the
importance of the extensive margin also hold when spikes are defined as investments
exceeding 35 percent of capital.

The third and fourth patterns relate to the cyclicality of the share of plants with near-zero
investment and the share of plants undergoing a spikes. To analyze the cyclical behavior
of these series, we remove a linear trend from each series.” The de-trended aggregate
investment rate is highly positively correlated with the spikes and negatively correlated
with the near-zeros. For instance, the correlation between the capital-weighted spikes and
the aggregate investment rate (both linearly detrended) is 0.87 for the U.S. sample and
0.96 for the Chile sample; and the correlation between the capital-weighted near zeros
and the aggregate investment rate (both linearly detrended) is -0.94 for the U.S. sample
and -0.56 for the Chilean sample.

In the remainder of this section we document several new facts regarding the connection
between aggregate investment and investment spikes. The aggregate investment rate is
calculated by taking the capital weighted average of the establishment level rates and we
denote this as Itot/K. (The weighting scheme also means that Itot/K is the ratio of
aggregate investment to aggregate capital in our sample.) In Figure 1, we decompose the
aggregate investment rate into two parts. One part (shown by the lines with the circles) is
the total investment done by those establishments where there is a spike (i.e. /K > 20
percent), divided by the total stock of capital for all the firms in the sample; we label this
series 120/K. The remainder of investment, that we dub 1(0-20)/K, represents investment
of plants with investment rates between 0 and 20 percent over total capital, and is shown
in the line with inverted triangles.

The relative levels of 120/K and Itot/K indicate that the spikes account on average for
about half of total investment in each country; in other words, 120/Itot is about 0.5. More
importantly, the investment rate constructed for the spiking firms tracks the movements
in the aggregate investment rate closely; the correlations between the de-trended series is
0.99 for each sample. Clearly, the bulk of the variation in the aggregate Itot/K is
accounted for by changes in 120/K. The share of variance of Itot/K accounted for by

? For Chile the sample period corresponds to a remarkable macroeconomic boom (see Hsich and Parker
(2006) and Fuentes, Gilchrist and Rysman (2006)) so perhaps the upward trend is not so surprising. For the
U.S. there is a modest downward trend. These low frequency movements are outside of the scope of our
investigation so we remove the trends. It makes no difference whether we use a linear time trend or
Hodrick-Prescott filter to detrend the series.



120/K (as opposed to the residual 1(0-20)/K)) is 97 percent for the U.S. sample and 86
percent for the Chile sample.* The converse of these observations is that there is little
variation in total investment explained by the firms investing between zero and 20
percent. Thus, for the purposes of modeling investment fluctuations it is critical to
understand the timing of the investment spikes.’

To go further and understand how spikes matter for business cycles, we start from the
following identity:

120 _ 120 A K20
K K20

= IPA20e ADJ20 (1)

R Log(l%) = log(IPA20)+log(ADJ20 )
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In words, equation (1) simply says that the total investment done by the plants
experiencing spikes can vary either because of a change in the investment per adjuster
(IPA20, the intensive margin) or because of a change in the (capital-weighted) number of
firms adjusting (ADJ20, the extensive margin). This approach is analogous to the one
proposed by Klenow and Kryvstov (2005) for studying price dynamics, where they
decompose inflation into changes in the number of firms resetting their prices and
changes in the average size of price changes for those firms resetting their price.

Figure 2 shows a graph of Log(I20/K), along with Log(IPA20) and Log(ADJ20) (after
each series has had a linear time trend removed) for the U.S. and Chilean samples. The
striking conclusion is that the extensive margin, ADJ20, drives variation in spikes.

One way to conveniently summarize the information in the picture is to compute the
following pair of statistics:

covariance(log(ADJ20),log( 120 ) covariance(log(IPA20),log( 120 )
ShareADJ20 = K and ShareIlPA20 = K
) 120 ) 120
variance(log( K ) variance(log( K )

* This is measured as Cov (120/K,I/K) / Var (I/K).

> This fact is also present, to a lesser degree, in Figure 8 of Cooper, Haltiwanger and Power (2000). The
difference may be due to the fact that they use a balanced panel of rather large establishments. These
authors also mention that spikes are procyclical but do not focus on this feature of the data.



These shares by construction must sum to one. If the proportion of firms with spikes
(ADIJ20) is constant, they would be zero and one, and if the average investment rate of
firms with spikes is constant, they would be one and zero. For the U.S. sample
ShareADJ20 is 0.87, while for the Chilean sample it is 0.925. The dominant role of the
extensive margin also appears when the threshold for identifying spikes is 35 percent
instead of 20 percent. This fact also holds for different de-trending methods (e.g. the
Hodrick-Prescott filter, or just considering growth rates).

Our last new fact about spikes is that they predict future investment. The spirit of many
models of lumpiness (e.g. Caballero and Engel (1999)) is that the cross-sectional
distribution of firms’ capital stock relative to the level that would prevail absent any
adjustment costs should be an important determinant of aggregate investment. It is
empirically difficult to construct this cross-sectional distribution, but there is a simple
way to test for this possibility. We estimate regressions of the form:

H
IéOtt =+ fTrend, +y L+ w,ShareADJ 20, , 2

t-1 t-2 t-2 h=1

[tot, r o Sales,

The novelty is that we add the share of adjusters to an otherwise standard accelerator type
investment equation.® This type of accelerator style equation has repeatedly been shown
to be an effective forecasting equation in horse-races of different regression
specifications (Bernanke, Bohn and Reiss (1988) and Oliner, Rudebusch and Sichel
(1995)).

Table 1 shows estimates of equation (2). The first six rows show the estimates for the
U.S. data, while the last six rows show the estimates for the Chilean sample. For the U.S.
data the lagged dependent variable is always estimated to have a positive and highly
significant coefficient. The sales proxy is positively related to investment, but not always
significant. Conversely in the Chilean sample the sales variable is always estimated to
have a positive and very significant effect on investment, but the lagged dependent
variable does not systematically influence investment.

Our main coefficients of interest are the ®’s that measure the effect of past spikes on
current investment. For the U.S. sample, the coefficients on both the first and second
lags of ShareADJ20 are significant, whereas in the Chilean data, only the second lag is
consistently significant.” Importantly, the estimated signs of the @’s are all negative,
suggesting that investment is depressed in the period after an investment surge. This
correlation is to be expected based on fixed costs models (and would be of the opposite
sign if the past ShareADJ20 variable was standing in for productivity shocks or other
factors that raise investment demand).

® For both the U.S. and Chilean samples, we have shipments data which correspond to sales for
establishment data.

" When the spikes are measured with the 35 percent threshold then both lags one and two are significant in
both samples.



Taken literally, the coefficients suggest that these “echoes” from the spikes have a
quantitatively important effect on investment. For the U.S. sample (Chile) the standard
deviation of the spike variable is 0.046 (0.093), compared to the standard deviation of the
investment rate of 0.017 (0.054). Taking the specifications where h=1, (shown in rows 5
and 11), the estimates for the U.S. (Chile) sample imply that a one standard deviation
increase in ShareADJ20 predicts an increase of the investment rate of 0.7 (0.57) of a
standard deviation.

Collectively, these new facts provide guidance about how to model lumpiness.
Aggregate investment is largely driven by investment spikes; so a successful model
should have the property that 120/Itot is substantial and that variations of I/K are
accounted for by variation in [120/K. Moreover, the spikes matter because of adjustment
along the extensive margin, i.e. a change in the number of firms making large
investments; these spikes are sufficiently important that they have independent predictive
power for aggregate investment, even controlling for past investment and sales. We now
attempt to construct a model that has these properties, and we concentrate especially on
matching the fact that ShareADJ20 is large.

3. A DSGE moddl with fixed costs of adjusting capital
We first review the Thomas model and then discuss how we calibrate it.
3.1 A brief review of the Thomas model

Thomas (2002) offers an elegant and compact model for analyzing the importance of
fixed costs of adjusting capital on aggregate investment in a dynamic, stochastic general
equilibrium framework.

The economy has a fixed number of plants (normalized to be of measure one). In what
follows, we refer to these as “plants” or “firms” interchangeably. Each plant has the

production function: y=Ak"n", where y is output, A is aggregate productivity (TFP), k is
capital, and n is labor. There are decreasing returns to scale so that ¥ +v <1 and there is
no entry or exit.

In each period, each plant has the opportunity to adjust its factor usage. Labor can be
freely varied, but adjusting capital can only be done if the firm pays a fixed cost. The
fixed cost, &, is a random variable that is independently and identically distributed across

time and plants and comes from the cumulative distribution G. This distribution has
finite support and the maximum fixed cost is called B. The firms that choose to pay the
fixed cost, which we call “adjusters”, bear no marginal adjustment costs: they can buy or
sell capital at price 1. The fixed cost is measured in units of labor. Owing to the fixed
cost, firms will not always adjust capital.

¥ The setup is similar to the sticky price model of Dotsey, King and Wolman (1999).



Much of the model’s tractability derives from its inherent symmetry that leads all firms
choosing to invest at a given point to pick the same new level of capital, ko;; this is
because there is no heterogeneity except in the fixed cost drawn today and the current
capital. So firms are distinguished by the time since their last investment. Regardless of
whether a firm invests, its capital depreciates at rate 8. Therefore,

Ko = (1= &)k, +1,

Jit

when ij; > 0 and otherwise k,,,,, =(1-9d)k

it
where k; is the capital of a plant of vintage j at time t, and i, is the investment of a plant
of vintage j at time t, conditional on the plant deciding to pay the fixed cost.

A firm that last adjusted capital j periods ago, henceforth a vintage j firm, will operate
with capital k; (and labor n;j). This implies the following maximization problem for a
plant:

727 i
max Eo (DZO mt(A[kjtnjt - thjt - Ijt - gtwtlijtio)) >

Hjt-Mjt

subject to the capital accumulation laws above, where m is the stochastic discount factor
(the ratio of marginal utilities in period t to period 0), and w is the real wage.

The TFP process, A, evolves according a first-order autoregressive process around a
deterministic trend:

A=0,z, log z, =plogz , +¢, & is distributed independently N(0,07).

The combination of the fixed depreciation rate and the finite upper bound on the fixed
cost guarantees that all firms will eventually find it optimal to invest; in other words, this
structure delivers a maximum vintage J by which time all firms will invest. The solution
to the problem involves finding that maximum vintage (J), along with the capital stock
for each of the intervening vintages (k;), and the percentage of total firms in each vintage

(0).

Thomas shows that firm’s investment decisions follow a cutoff rule: in any given vintage,
and in any period, there is a threshold fixed cost, such that firms which draw a fixed cost
below the threshold will invest and upgrade their capital, and firms which draw a fixed
cost above the threshold will let the capital depreciate. We call a; the proportion of firms
which are below the threshold (and so choose to adjust). In her simulations Thomas
chooses a uniform distribution for the fixed costs, between 0 and B. The level of fixed
costs B is chosen to match two facts reported by Doms and Dunne (1998): 1) in the
average year, 8 percent of plants raise their real capital stocks by 30 percent or more; ii)
these plants account for 25 percent of aggregate investment.

The rest of the model is intentionally chosen to follow the real business cycle (RBC)
literature. So, for instance, Thomas adopts a utility function with indivisible labor of the



form U=logc, —¢n,. Thus, aside from the fixed costs and the mild decreasing returns,

the calibrated parameters, displayed in the second column of Table 2, are very standard.’
Indeed, when the upper bound of fixed costs, B, is set to 0, all firms adjust their capital
each period, and equate their marginal product of capital and labor; in this case, there is a
representative firm, and the model collapses to a standard RBC model with decreasing
return to scale.

This model is solved numerically by a standard log-linearization around the steady-state.
First, one finds the optimal J, the maximum time-since-last-adjustment such that all firms
want to invest. Second, one solves the system of non-linear equations that define the non-
stochastic steady-state. Finally, one computes the log-linear approximation itself. The
log-linear method is advantageous here since the state space of the model is large: it
inclu(%gs the TFP shock, and the cross-sectional distribution of capital (the 0;’s and the
kj’S).

3.2 Calibration of the M odd

In the first three rows of Table 3 we report several statistics comparing the prominence of
spikes in both of our samples and in the baseline model. Given that Thomas chose B to
match the Doms-Dunne facts on spikes, it is not surprising that the model also matches
the prevalence of spikes in our sample. In her original calibration of the model, however,
spikes only account for about 62 percent of the total variance of investment and the
extensive margin accounts for only 51 percent of the variance of spikes; in the data both
these percentages are roughly 90 percent.

In Gourio and Kashyap (2007) we describe several comparative static exercises that help
provide intuition for why the extensive margin is not very important in the Thomas
calibration. We focus on three key parameters in these experiments: the maximum size
of fixed costs, B, the distribution of fixed costs, G, and the curvature of the production
function (y+v). Intuitively one expects these parameters to be critical since B and G
govern the costs of adjusting capital and the curvature governs the benefits (by
determining the loss in profits that result from having an inefficient plant size).

These experiments suggest that the key determinant of the extensive-intensive
decomposition is the shape of the CDF. The intuition for this conclusion is that increasing
the number of plants doing positive investment requires marginal plants to switch from
inaction to action; this decision depends on the fixed costs for the indifferent plants. If
marginally inactive plants face the same fixed cost as marginally active plants, increasing
the number of plants investing is inexpensive. Hence, the marginal cost of changing the
extensive margin depends on the shape of the CDF of fixed costs.

? Also, the model is calibrated to annual rather than quarterly data, because the plant-level evidence is
based on annual surveys.

1 For more details on the solution, we refer the reader to our separate technical appendix (available on
http://people.bu.edu/fgourio).



Thomas, following Caballero and Engel (1999), chooses G to be uniform. With this type
of CDF (or any other that is very smooth), increasing the number of plants investing
requires activating plants that have substantial differences in the fixed costs they are
facing. Put differently, at the margin there is a lot of heterogeneity in terms of fixed cost.
In this case it will be efficient to rely more on intensive adjustment. On the other hand,
when the CDF is sufficiently “compressed”, i1.e. so that many firms face nearly-identical
fixed costs, the opposite result obtains: increasing the number of plants investing need not
be very costly. This means that the extensive margin can be important.

The compressed CDF that is considered in the experiments that follow is displayed in
Figure 3. This particular CDF implies that the fixed costs for most firms bunch around B
and B/2, but all of our results would also obtain if there was bunching only around one
level of fixed cost.'' Indeed in the first draft of this paper, we considered simpler
examples where there is almost no heterogeneity in fixed costs: virtually all firms draw
B, in which case the model is closer to the first generation of Ss models'” rather than the
ones studied by Caballero and Engel (1999) and Thomas (2002). However, what matters
for us is the “compression” and not the lack of heterogeneity, and to make that clear we
present results for this CDF. Based on the cases we considered we conjecture that the
same results would obtain if there were multiple points of compression; it appears that
having bunching is a necessary condition for extensive adjustment to be dominant in this
type of model — but the exact nature of the compression is not critical."

Before turning to the results, we note one other observation regarding the original
Thomas calibration. As reported in the fourth column of Table 3, total expenditure due to
adjustment costs is roughly 1/5 of one percent of total investment spending. This cost
seems small on an anecdotal basis, if we think of the costs of the planning, budgeting,
and committee work that accompany most investments. There are also obvious cases
when adjustment costs are much larger: think of the re-tooling of a factory, or the
temporary closure of a retail store to redesign it.

One recent study that computes adjustment costs is by Cooper and Haltiwanger (2006).
They study a host of specifications that include convex and non-convex adjustment costs,
including fixed costs, quadratic costs, gaps between the buying and selling price of
capital, and productivity distortions created by capital adjustment. Using U.S. plant level
data, they find statistically significant costs of each type, either when estimated in
isolation or when several costs are simultaneously present. The total implied adjustment
costs in this model and all the others (e.g. the one including just fixed costs) are
substantial. For instance, their preferred estimates suggest that profits are reduced 20

" The formula for this CDF is G(x) = H(x/B) where B is the upper support and H is defined on the interval
[0,17 as H(x) = (F(x)-F(0))/(F(1)-F(0)), with F(x) = 1/(2*1)*(arctan(0;*(x-1/2)) + arctan(0,*(x-1))). This
distribution implies that many firms draw either a cost around B/2 or a cost close to B. The parameters
sigmal and sigma2 govern how concentrated around B/2 and B the fixed costs are. For all the experiments
in Table 3 we set 0; =150 and 0,=33.3.

12 Sheshinksi and Weiss (1977) and (1983), Caplin and Spulber (1987), Caplin and Leahy (1991).

1 For instance, Gourio and Kashyap (2007) show that a CDF with only one region of compression that has
much more heterogeneity in the overall range of fixed costs also delivers very similar results to those
shown below.



percent during investment spikes. They simulate the model and find that on average
spending on adjustment costs is equal to 0.91 percent of capital. Given that investment
for their sample is about 12.2 percent of capital, this implies that adjustment costs
average roughly 7.5 percent of investment; in other words, they find adjustment costs
roughly 40 times the size assumed by Thomas. Abel and Eberly (2002) in their study of
listed firms find a similar magnitude of adjustment costs (between 1.1 and 9.7 percent of
investment). So in what follows we also explore the predicted variation in total
adjustment costs paid relative to investment. From a theoretical standpoint, it is hardly
surprising that lumpiness is quantitatively irrelevant when fixed costs are small. This is
another motivation to explore the effect of varying B, the parameter which governs the
level of fixed costs.

Our first experiment is to substitute the compressed distribution of fixed costs from
Figure 3 for the uniform distribution.'* If we keep Thomas choice of B=0.002, then
plants adjust continuously'”; hence to obtain some lumpiness, we set B=0.008. The
results are shown in row 4 of Table 3. With these changes the extensive margin in the
model rises to 92.6 percent and the variance of Itot/K due to 120/K rises to 99.9 percent.
Thus, the model becomes much closer to the data on these two critical dimensions. The
only shortcoming is that expenditure on adjustment costs remains less than one percent of
total investment spending.

To see that the improvement in fit comes solely from the compression, the next row in
the table shows the findings when the uniform distribution is used and B is set to 0.0053.
With this level of B the average adjustment costs faced by firms is the same as in row 4.
With this specification ShareADJ20 drops back towards the level in the baseline Thomas
specification. The contrast between rows 4 and 5 quantifies the intuition given above
about the importance of compression.

Our next step is to increase B to move the expenditure in adjustment costs to a more
plausible level. Row 6 shows the result when B is equal to 0.03. This change increases
the resources spent on adjustment so that they are nearly two percent of investment.
Notice that the number of vintages also rises so that J=24. This occurs because as the
costs become higher, firms tolerate larger deviations from their target capital before
adjusting. Indeed, if we double B again, to B=0.06, then J=45 and the expenditure on
adjustment costs rises to just over three percent of investment. In this case, roughly 96
percent of the plants do not invest.

To limit this waiting it is necessary to give firms higher benefits from adjusting their
capital stock; to do so we change the curvature of the profit function (which in this model
comes from the decreasing returns to scale but could also have been introduced by
assuming monopolistic competition in the product market). The curvature determines the
cost to having the capital stock deviate from its static optimal level. Subsequent to
Thomas’ paper a large empirical literature has estimated this curvature to be between 0.5

' Recall that the uniform CDF is linear and hence has no compression.
" This is because the chance of getting a very low fixed cost is low, so that in contrast to Thomas, there is
no option value of waiting for a low fixed cost.
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and 0.7, markedly lower than one (see e.g., Cooper and Haltiwanger (2005), Fuentes,
Gilchrist and Rysman (2006), and Hennessy and Whited (2005)). Thus, there are both
empirical and theoretical reasons to consider calibrations with more curvature.

Comparing rows 6 and 7 shows the effect of changing curvature. Here we set the return
to scales to 0.6, and find that relative to row 6 this doubles the resources spent on
adjustment costs, and reduces the maximum vintage J, so that firms adjust faster. The
extensive margin remains dominant.

This suggests that a calibration that raises B and involves more curvature could lead to a
model that has both non-trivial spending on adjustment and important extensive
adjustment. Our preferred calibration confirms this hunch. For these results we increase
B to 0.06 and keep the returns to scale equal to 0.6; the full set of parameters we choose
are shown in the last column of Table 2 and the resulting moments are shown in the last
row of Table 3. We now find that the extensive margin is critical and that spending on
adjustment costs is substantial.

This calibration is not fully optimized, i.e. it is likely that by changing more of the
baseline parameters we can match the moments more closely. But, we believe that further
improvements would not change our main conclusions that compression in the
distribution of fixed costs is key to matching the dominant role of the extensive margin,
and a combination of high fixed costs and curvature leads to non-trivial spending on
adjustment costs. One defect of our preferred specification is that nearly all the
investment is spikes. This comes because we have no maintenance motives for investing.
In Gourio and Kashyap (2007) we show that adding maintenance improves our ability to
match the cross-sectional distribution of investment rates, by generating small
investments, without affecting our other results noticeably.'®

While these findings are robust to the changes that we have investigated, the literature on
this class of models is growing quickly and suggests several additional experiments that
merit consideration. Khan and Thomas (2006) extend the Thomas (2002) model to allow
for idiosyncratic productivity shocks. They do not find any significant effect of fixed
costs on aggregate dynamics. Their baseline calibration has relatively low adjustment
costs and only modest curvature. Moreover, they maintain the assumption of a uniform
distribution of fixed costs. Given this, and that the productivity shocks are log-normally
distributed, the marginally inactive firms will not be similar to the marginally active ones.
They also concentrate on the response of investment to TFP shocks (and not other
shocks), and on whether the model generates nonlinearities. We concentrate on the
simpler question of whether aggregate dynamics are different in the fixed cost model and
in the RBC model. Interestingly, Khan and Thomas emphasize that general equilibrium

' This is not surprising. Consider an exogenous breakdown process which requires firms to have small
investment rates; this will create some small investment rates in every period, but since this “maintenance
investment” will not change over the business cycle it will have almost no effect on aggregate dynamics.
Indeed, if there are types of investment for which the fixed cost does not apply or is different, calibrating
the model to match the cross-sectional distribution of investment rates is not informative about the business
cycle behavior. These considerations are why we concentrate on matching the (capital-weighted) business
cycle statistics of the cross-section (rather than the average properties).
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feedbacks affects plant-level investment dynamics, which would imply that the panel data
estimates from partial equilibrium models that we use may be misleading. We conjecture
that our results would hold if the idiosyncratic productivity shocks do not eliminate the
compression associated with our parameterization of the fixed costs, but would go away
if they did. The shape of the distribution of idiosyncratic shocks would likely matter as
well, and we conjecture that a compressed distribution for idiosyncratic shocks could also
generate results close to ours.

Bachmann, Caballero and Engel (2006) also explore issues that we do not consider. Like
us, their model presumes higher curvature, and higher fixed costs to reproduce “sectoral
level” volatility. They then calibrate the intertemporal elasticity of substitution of
consumption to match aggregate volatility. With these features, they obtain like us
differences between the impulse responses of their model and the RBC model. They
emphasize that their specification also implies that the elasticity of aggregate investment
with respect to a TFP shock is time-varying. This feature is absent from our model
because it is log-linear. There are two main differences between our paper and theirs.
First, we keep the same preferences as Thomas (2002), i.e. log utility of consumption and
linear disutility of leisure (as in Hansen (1985) and Rogerson (1988)). Since the dispute is
about whether general equilibrium offsets are central to this debate, we believe this is the
appropriate place to start. Second, we focus on the shape of the distribution of fixed costs
while they emphasize the role of sectors.!” If we follow Bachmann et al. and allow for
preferences with higher intertemporal elasticity of substitution (than the log case) we find
also more smoothing than in our baseline.

4. Aggregate Dynamics and the Irrelevance Result

We conclude our analysis by revisiting the Thomas (2002) “irrelevance result” using our
new calibration of the fixed cost model.

4.1. The Thomasresult

Thomas compared the effect that aggregate productivity shocks have on investment when
the fixed cost is positive and when the fixed cost is zero. In the latter case, the model
simplifies to the standard RBC model (with decreasing returns to scale) without any
adjustment cost. The bottom panel of Figure 4 plots the impulse response of the two
models to the productivity shock.'® The striking result is that the two models are virtually
indistinguishable, with the two lines sitting on top of each other. The response on impact
of the fixed cost model is about 99.8 percent of the response of the RBC model.

'7 Another recent paper on the topic is Svenn and Weinke (2005). In contrast to Thomas (2002) or
Caballero and Engel (1999), they use a Calvo-style time-dependent adjustment rule for capital.
Interestingly, they find that given this rule, the irrelevance result holds in the RBC model but not in a New
Keynesian model.

' In a one-shock linear model, the impulse response function (IRF) summarizes the full dynamics of the
system. Hence, models which have the same IRF have exactly the same dynamics in all respects.
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This result holds for many variations of parameter values. For instance, changing the
elasticity of labor supply or the source of shocks does not affect the result. Increasing the
level of fixed costs (B), while maintaining a uniform distribution, also makes little
difference: for instance, when B is multiplied by a factor of 10, i.e. B = 0.02, so that the
maximum vintage is J=20, the impact response of the fixed cost model is 98 percent of
the response of the RBC model. That is, larger fixed costs lead to a slightly smaller
response of investment, but the difference between the two models remains negligible.

This is in stark contrast with the partial equilibrium analysis, where fixed cost models
typically generate two features in the impulse response: first, aggregate investment
becomes of course smoother than without any adjustment costs; second, investment
becomes subject to oscillatory dynamics (aka “echo effects”, or replacement cycle).
Thomas argued that the general equilibrium nature of the model was responsible for the
inconsequential impact of the micro lumpiness.

While there is little doubt that general equilibrium effects are important, there is still a
tension between the preference for smooth consumption of households and the lumpy
investment demand of firms. We see no good theoretical reason why all the effects of
fixed costs would disappear in general equilibrium. Intuitively, this has to be a
quantitative question: depending on the curvature of the utility function and the
parameters that govern the investment demand of firms, the race between consumption
smoothing and investment lumpiness will go one way or the other. Consistent with this
intuition, we show below that general equilibrium is not the whole story. Depending on
microeconomic assumptions, features typical of the partial equilibrium responses with
fixed costs may still arise in general equilibrium.

4.2 Impulseresponse to a technology shock with our calibration

We start by displaying in the top panel of Figure 4 the impulse response function of
aggregate investment to a productivity shock for our preferred calibration from Section 3,
along with the RBC model with the same parameters but zero fixed costs. While the
general shape of the impulse response is the same, the two models differ qualitatively in
two respects. First, the response is initially smaller in the fixed cost model: on impact the
response of the fixed cost model is only 89 percent of the response of the RBC model.
This reflects simply that investment becomes smoother in the presence of adjustment
costs. Second and more interestingly, the fixed cost model exhibits a noticeable hump 12
periods after the shock. We call this hump an “echo effect” because it is caused by the
initial surge in investment: as many firms adjust initially, the distribution shifts toward
more recent vintages, which are less likely to invest. This makes the investment response
smaller than the RBC model for a while, until the units which invested at time 0 need to
invest again to replace their capital. Clearly, this result depends on the shape on the
hazard rate (the probability of adjusting as a function of vintage, i.e. alpha). For our
calibration, the hazard rate is initially steeply convex: the alphas (probability of
adjustment) are very small for the first vintages before rising noticeably after 12 periods.
(Of course, adjustment is random, and probabilities of adjustment move over time, but
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the average shape of the hazard rate still plays an important role.) The quantitative
differences between the responses of the two models to a TFP shock are modest.'’

4.3 The dynamic effects of a change in the cross-sectional distribution with our
calibration

When we consider disturbances which affect more directly the shape of the cross-
sectional distribution, the differences between the two models become much larger. In
general the cross-sectional distribution is endogenous to shocks, but there are several
cases when we might expect it to shift abruptly for exogenous reasons: for instance,
Bloom (2006) considers the effect of a rise in uncertainty which leads many firms to
delay capital adjustment. Another trigger could be an investment tax cut. In Gourio and
Kashyap (2007), we simulate the effects of an unexpected, temporary cut in the price of
capital, such as an investment tax credit. That experiment is somewhat complicated to
analyze, because not only must one specify the size and duration of the change, but one
must also account for the fact that the tax change changes the level of capital by different
amounts in the fixed cost model and the RBC model (since they are not equivalent any
more).

To side-step these complications, we consider the following thought experiment: assume
that many firms have invested in the past two years, so that the distribution is distorted
with more firms in the first two vintages and fewer firms in all the other vintages. Does
changing the initial cross-sectional distribution in this way affect aggregate investment?
This experiment is at the heart of the debate in the fixed cost literature. Figure 5 presents
the exact perturbations that we consider and Figure 6 gives the aggregate investment
responses. The RBC model displays the usual, monotonic, smooth convergence to the
steady-state given a high starting initial capital (since many firms have invested recently).
The fixed cost model, for our calibration, differs in two respects from the RBC model:
first, the response of investment is smaller than in the case of the RBC model (except in
the first two periods). This is because many firms have invested recently, so that there is
less investment demand as fewer firms are close to the point where they want to invest.
Second, we obtain a magnified “echo effect” when firms which had invested recently
finally re-invest after 8 to 11 periods. These features are typical of partial equilibrium
fixed cost models.

These features arise largely because of our choice of fixed cost distribution: this
distribution G implies that the hazard rate is initially very low and then rises steeply; the
initially lower response of aggregate investment stems directly from the first feature, and
the echo stems from the second feature. In other words, the compression of the CDF that
is necessary for amplifying the importance of extensive adjustment essentially guarantees
that the change in the initial cross-sectional distribution will matter for the subsequent
aggregate dynamics. Overall, we conclude that a shock which affects the shape of the

' With different parameter values (e.g. higher fixed costs, higher depreciation rate, or lower returns to
scale), the two qualitative differences (smoothing and echo) between the RBC model and fixed cost model
can be made somewhat larger.
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cross-sectional distribution has very different effects when fixed costs are positive than
when they are nil.*

We emphasize that all of these results are obtained with log utility. As a point of
reference the bottom panel of Figure 6 shows the same experiment in the baseline
Thomas model. The RBC model and the Thomas model yield essentially identical
predictions even for this experiment. This equivalence for us is proof that general
equilibrium effects are not the only reason why Thomas found no aggregate effect of
fixed costs. Depending on microeconomic assumptions, i.e. on the calibration, the
equivalence result need not hold.

5. Conclusions

We make three contributions to the debate over the aggregate significance of plant-level
investment lumpiness. Remarkably, the basic plant-level facts on the lumpiness of
investment are fairly similar in Chile and the U.S. In each country, we show that
investment spikes drive total investment. The spikes draw their predictive power from
changes in number of plants making large investments, rather than changes in the size of
average investment per plant. We use these statistics regarding the decomposition
between the intensive and extensive margins of adjustment to summarize the
microeconomic facts about lumpiness that we ask a model to match.

We use the Thomas (2002) model to examine these facts. This model augments a
relatively standard RBC model by assuming that firms must pay a fixed cost (that is
randomly drawn each period) in order to adjust its capital. As originally calibrated,
however, the model fails to generate a dominant role of investment spikes and a dominant
role of the extensive margin. To fit these facts we change the distribution of fixed costs
from which firms sample and make it more ‘“compressed” than the distribution
considered by Thomas. We also argue that the original calibration has an average level
of fixed costs which is too low and a profit function that has too little curvature.

Our final contribution is to study the properties of the model using our preferred
calibration. In the original Thomas model the aggregate dynamics for investment
following a productivity shock were indistinguishable from an RBC model with no
adjustment costs. In our model this type of shock plays out somewhat differently.
Moreover, for shocks that directly reshape the cross-sectional distribution of capital, the
two models have very different implications: in general, the fixed cost model predicts that
investment is more depressed for a while; moreover, the fixed cost model generates an
echo effect which is absent in the RBC model.

Our conclusion from the last exercise is that there is nothing generically related to DSGE
models that guarantees that plant-level investment lumpiness is smoothed away. Rather
we agree with Thomas that there can be substantial differences between the importance

2 To keep our experiment simple, we picked the initial cross-sectional distribution arbitrarily, but similar
results are obtained when one runs a true investment tax credit in the model.
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of lumpiness in a GE models and partial equilibrium models. However, many have gone
farther and concluded that GE makes fixed costs to investment completely irrelevant for
the business cycle. Both our empirical and theoretical work shows this conclusion is
premature; in particular, the details of how the production side is modeled matter. Given
the currently available information, we think our calibration is reasonable, but we
recognize much more work needs to be done in this respect to determine how these
models should be estimated and calibrated.
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Table 1: Forecasting of Aggregate Investment by Share of Plants undergoing Investment
Spikes.

Dependent variable is Itot,/K,  , the ratio of the sum of investment across all plants to the sum of beginning
of period capital across all plants; the lag of this variable is denoted Itot, ;/K;, Rows of the table show
regressions with different right hand side variables. Sales, /K, is the (lag of) total plant-level shipments
divided by the (lag of) the total capital at all establishments. A time trend is always included (but not
shown). ShareADJ 20 is defined below the table. For the U.S. sample, the time period is 1974 to 1998. For
the Chilean sample the time period is 1981 to 1999. The standard errors are computing using the Newey-
West (1987) correction with three lags.

Coefficient estimates
(standard errors)
Row | Sample R? Itot.. /K Sales./K» ShareADJ20, ShareADJ20,,
1 u.S. 0.748 0.743
(0.101)
2 U.S. 0.738 0.690 0.0078
(0.094) (0.0098)
3 u.S. 0.776 1.255 -0.204
(0.180) (0.044)
4 U.S. 0.893 1.553 -0.228 -0.161
(0.165) (0.035) (0.048)
5 u.S. 0.786 1.257 0.0199 -0.258
(0.153) (0.009) (0.039)
6 U.S. 0.866 1.531 0.010 -0.250 -0.157
(0.167) (0.008) (0.033) (0.055)
7 Chile 0.809 0.353
(0.292)
8 Chile 0.848 0.151 0.055
(0.257) (0.017)
9 Chile 0.802 0.999 -0.331
(0.804) (0.341)
10 Chile 0.847 1.152 -0.454 -0.405
(0.753) (0.272) (0.061)
11 Chile 0.839 0.462 0.054 -0.156
(0.764) (0.018) (0.339)
12 Chile 0.856 0.790 0.034 -0.323 -0.331
(0.629) (0.12) (0.264) (0.075)

ShareADJ20 is defined as:

ShareADJ20 =

K20
covariance(log( ? ),log(

120
<)

120
variance(log( ? )
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Table 2: Parameters in the Thomas (2002) Calibration and in our Preferred Calibration.

Parameter Thomas (2002) | Preferred Calibration
Depreciation rate () 0.06 0.06
Persistence of TFP shock (p) 0.9225 0.9225
Returns to scale (¢ +v) 0.905 0.60

Share of capital in Production Function y 0.325 0.2155

Share of capital in Output /iy + v 0.359 0.359

B (maximum fixed cost) 0.002 0.06
Discount factor () 0.954 0.954
Intertemporal elasticity of substitution 1 1

Frisch elasticity of labor supply Infinite Infinite

The CDF for G is G(x) = H(x / B) where B is the upper support and H is defined on the

interval [0,1] as H(x) = (F(x)-F(0))/(F(1)-F(0)), with F(x) = 1/(2*1)*(arctan(0;*(x-1/2))
+ arctan(0,*(x-1))). We set 0 =150 and 0,=33.3.
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Table 3: Steady-State and Business Cycle Lumpiness Statistics for various calibrations.

Row J Total Mean % Plants Mean 120/Itot % Variance Share ADJ 20
Adjustment I/K>0.20 of Itot/K due to
Costs / Total 1 120/K
1 Data US NA | NA 20.8 49.9 97.0 87.0
2 Data Chile NA | NA 16.6 57.3 86.0 92.5
3 Thomas (2002) 5 0.21 19.7 85.9 62.4 51.7
Calibration
4 Thomas with 11 | 0.87 12.2 99.9 99.9 92.6
Compressed CDF
and B=0.008
5 Thomas with Uniform 9 0.34 17.1 93.9 81.9 55.2
CDF and B=0.0053
(i.e. same mean as row 4)
6 Thomas with 24 | 1.97 6.4 99.9 99.9 100.0
Compressed CDF and
Higher B (B=0.03)
7 Thomas with 16 |3.97 8.31 99.9 99.9 115.6
Compressed CDF and
Lower return to scales
(0.6), and Higher B=0.03
8 Preferred Calibration 23 | 6.24 59 99.9 99.9 84.5

= Thomas with
Compressed CDF and
Lower return to scales
and higher B=0.06

Note: Results from simulations of the model (500 simulations of 200 periods each). See
the text for the full characteristics of the alternative calibrations. The definitions of 120,
Itot, ShareADJ2 and ShareADJ20 are:

20= > 1, Iot= > I,

Il.t >0.0

I
—1t 5020

Kl,tfl

K20= > K, K

|
—Lt 5020
iLt-1

Ki

= IZ Kit

_Lt 500

it-1

The %Variance of Itot/K due to 120/K is Cov(I20/K, Itot/K)/Var(Itot/K), and the
ShareADJ20 is Cov(log(K20/K),log(120/K))/Var(log(I20/K)) where the logs of the
various series are de-trended using the Hodrick-Prescott filter.
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Figure 1: Decomposition of Aggregate Investment for U.S. and Chilean Manufacturing

Plant into Investment Spikes and Remaining Investment.
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Figure 2: Decomposition of de-trended Aggregate Investment into Intensive and

Extensive Adjustment for U.S. and Chilean Manufacturing Plants.
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Figure 3: Cumulative Distribution Function G of Fixed Costs used in Our Calibration.
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Figure 4: Impulse Response of Aggregate Investment to an Aggregate Productivity
and for the Original Thomas Calibration (Bottom Panel).



Figure 5: Initial Cross-Sectional Distribution for the experiment of Section 4.3 in our

Preferred Calibration (Top Panel) and in the Thomas Calibration. In both cases the first

two vintages are up by 20% each and the other vintages are reduced equally.
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Capital is Distorted in the Our Calibration of the DSGE Model with Fixed Costs (Top

Figure 6: Dynamic Path for Aggregate Investment When the Initial Distribution of
Panel) and in the Thomas Calibration (Bottom Panel).
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