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Abstract

We propose a procedure to infer the quantitative significance of firm-level pricing comple-
mentarities in the context of a menu cost model of price adjustment, using product-level data
on prices and market shares. We then apply this procedure by calibrating our model (in which
pricing complementarities are based on decreasing returns to scale at the product level) to one
particular data set of super-market scanner data, to explore the quantitative importance of pric-
ing complementarities for the propagation of nominal disturbances at business cycle frequencies.
Although our data supports moderately strong levels of pricing complementarities, they appear
to be too weak to generate much larger aggregate real effects from nominal shocks than a model

without pricing complementarities.

1 Introduction

A central question in monetary business cycle theories is whether models based on nominal rigidities
can generate large and persistent delays in price adjustment in response to aggregate shocks to
nominal spending and demand. This is complicated by the fact that at the individual firm or
product level, prices appear to be anything but sticky. For example, Bils and Klenow (2005) report
that the prices of individual products that are used by the BLS to construct the CPI change on
average every 4 to 5 months; moreover, when prices change, they usually change by large amounts

of up to 10% on average, and they may either increase or decrease.
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One possible source of amplification from the small extent of nominal rigidities at the product
level into larger adjustment delays in the aggregate is the introduction of so-called real rigidities or
pricing complementarities, which reduce any individual firm’s willingness to respond to a nominal
shock, if it expects that some other firms don’t respond right away (Ball and Romer 1990). We
define the degree of pricing complementarities by the elasticity of a firm’s ideal price with respect to
the aggregate price; the closer this elasticity is to one, the stronger are the pricing complementar-
ities. Such pricing complementarities can result from various features of the environment; leading
examples are decreasing returns to scale, demand elasticities that vary with scale, firm-specific, local
or regional input markets, aggregate input-output linkages across sectors, or real wage rigidities.

At a theoretical level, pricing complementarities can amplify arbitrarily small degrees of nominal
stickiness at the micro level into arbitrarily large adjustment delays in the aggregate. Whether
pricing complementarities are large enough to provide much amplification is therefore mainly a
quantitative question.

In this paper, we propose a procedure to infer the quantitative significance of certain types of
pricing complementarities in the context of a menu cost model of price adjustment, using product-

level data on prices and market shares.!

Our main focus is on pricing complementarities that
result at the firm level (such as decreasing returns to scale, firm-specific input markets, or scale-
dependent demand elasticities). The parameters determining firm-level pricing complementarities
also determine how a firm’s optimal pricing decisions interact with the firm’s idiosyncratic shocks,
implying that they also have implications for moments on prices and market shares at the product
level, so that at least in principle, they can be inferred from micro data.?

As a key theoretical insight that drives our inference strategy, we discuss how firm-level pricing
complementarities also give rise to asymmetries between price increases and decreases, and differ-
ences in pricing behavior, depending on whether current market shares and/or prices are high or
low relative to their time-series average. Together with empirical measures (or reasonable upper
bounds) on the magnitude of menu costs, we can use these asymmetries as additional moment
restrictions to guide the choice of the model’s parameters.

We then apply this procedure by calibrating our menu cost model to one particular data set on

prices and market shares, a scanner data from a large chain of supermarkets in the Chicago area

'We focus on market shares, as opposed to physical quantities, as a simple way to isolate product-level from

sectorial fluctuations.
?We also explore the role of aggregate pricing complementarities, such as real wage rigidities. The strength of

these complementarities, however, is not easily inferred from micro data, and requires either some estimates based

on aggregate data, or some other outside estimates/calibrations.



(Dominick’s), to assess the quantitative importance of pricing complementarities. We conclude
from our calibration that, although this data support moderately strong levels of pricing comple-
mentarities, these remain much weaker than what would be required to provide, purely on the basis
of these firm-level pricing complementarities, strong amplification of nominal shocks at a business

cycle frequency.

In section 2, we describe our model, which introduces pricing complementarities into an oth-
erwise standard menu cost model, by allowing for decreasing returns to scale. To match observed
fluctuations in prices and market shares, we also allow for idiosyncratic demand shocks in addition
to the cost shocks assumed by the existing literature (e.g. Golosov and Lucas 2006, Midrigan 2006).

In section 3, we then discuss how we can discipline the model’s key parameters. In our model,
the pricing complementarity depends on the returns to scale and on the elasticity of demand,
which we need to infer using the micro data on prices and quantities. This leads to the well
known identification problem of inferring the elasticities of demand and marginal cost using data
on prices and quantities. Moreover, for reasons that we will discuss below, we need to infer these
two parameters separately, and cannot just focus directly on the pricing complementarity to reduce
the inference problem.

Our approach exploits key properties of the model for inference purposes, and thus complements
solutions to this identification problem that try to instrument for variation in costs and demand.
Specifically, we rely on three observations. First, we can place an upper bound on the magnitude
of the menu cost using existing measures of the firms’ costs of price adjustment. Since the demand
elasticity and returns to scale affect how frequently, and by what magnitudes firms want to adjust
their prices, we can then use the frequency of price changes to determine these parameters.

Alternatively, the menu cost model has some distinct implications for the data on prices and
quantities that we can use to discipline model parameters even without taking a stand on the size
of menu costs. Firm profits are more sensitive to mispricing, when prices are too low, rather than
too high. This implies that price increases in the model are more frequent than price decreases,
but they are also of smaller magnitude. Moreover, this asymmetry becomes larger, as we raise the
demand elasticity and lower the returns to scale, and we can thus determine these two parameters
by calibrating our model to separately match the frequencies and magnitudes of price increases and
decreases.

Finally, the model also has the implication that firms are more willing to adjust their prices
when current market shares are relatively high. If cost shocks are the main source of idiosyncratic

fluctuations, this occurs when prices are relatively low. If instead demand shocks are important,



this occurs when prices are relatively high, compared to long-run averages. By comparing whether
price changes are more or less likely when current prices are high as opposed to low, we can thus
infer the relative importance of cost and demand shocks. This in turn provides information on
pricing complementarities, since, in order to account for the observed magnitude of price changes,
the latter must be stronger, the more important are the demand shocks.

These insights provide some guide, in addition to the basic properties of frequency, magnitude,
variability and correlation of price and share changes, to discipline the degree of firm level pricing

complementarities.

In sections 4-7, we then apply these insights in a calibration using one particular data set. Ideally
one would want to have this data for a comprehensive set of products in the overall economy, but
this information is hard to obtain. Instead, in this paper we use a particular scanner data from a
large chain of supermarkets in the Chicago area. While limited in scope due to its narrow geographic
coverage and particular set of grocery products, this dataset has the advantage of providing high
frequency information on both prices and market shares for many items within narrowly defined
product categories.

In section 4, we discuss how we measure the empirical moments of the data to which our model is
calibrated. The frequencies and magnitudes of price changes that we report are similar to the ones
documented by Bils and Klenow (2005) and Klenow and Kryvtsov (2005) for the BLS data on the
Consumer Price Index, and by Midrigan (2006) for the same data that we are using. We complement
this with moments on market share fluctuations, and with measures of the asymmetries between
price increases and decreases, and between the frequency of price changes when prices and/or
market shares are above or below average. The following observations are particularly relevant
for our purposes: (i) the magnitude and variability of market share fluctuations is fairly large, (ii)
fluctuations in prices and market shares are slightly negatively correlated, (iii) well over half of
price changes are increases, but they are on average smaller than price decreases, and (iv) prices
are significantly more likely to change when market shares are above average (as opposed to below
average), but the frequency of price adjustment is only marginally higher when prices are below,
as opposed to above average.

In section 5, we calibrate our model so that it matches these moments in steady state. We
conclude that a model with a moderately strong degree of pricing complementarities of 0.6 provides
the best fit, given the targeted moments. To put this number in perspective, Rotemberg and
Woodford (1997) estimate pricing complementarities in a Calvo model using aggregate data, and

argue that in order to generate a large propagation of a monetary disturbance at the business cycle



frequency, the pricing complementarities must be much closer to 1, around 0.9.

In section 6, we explore the aggregate implications of our estimate of pricing complementari-
ties. Formally, we simulate the impulse response of our economy to a one-time increase in nominal
spending. Our preferred calibration generates only small delays in the response of prices, rela-
tive to a model without pricing complementarities, so that nearly half of the nominal shock is
absorbed by prices on impact. Along similar lines as Caballero and Engel (2007), we then use a
decomposition of the response of prices that isolates the role of pricing complementarities, to con-
duct some simple counterfactual experiments. We conclude from these that, in order to generate
quantitatively significant amplification for aggregate nominal shocks, we would need overall pric-
ing complementarities to be substantially stronger. With our preferred calibration, the firm-level
pricing complementarities appear to have only small effects for the model’s aggregate implications.?

In section 7, we examine how sensitive our conclusions are to changes in the targets and other
parameter changes. In particular, we discuss how the results depend on whether we filter out price
promotions in computing the targets. Although stronger pricing complementarities are sustainable
if one accepts smaller targets for the magnitude of price and/or market share fluctuations, these
fluctuations would have to be substantially smaller to sustain much larger pricing complementari-
ties, and much smaller than what our data suggests.

In summary, we conclude that a menu cost model purely with firm-level complementarities
is unlikely to generate quantitatively large aggregate amplification effects from nominal rigidities.
What is the basic explanation for this finding? The data suggest that changes in prices and
quantities are highly variable and fairly large. Stronger firm-level pricing complementarities instead
give firms an incentive to change prices more frequently, but by smaller magnitudes. Maintaining
the same frequency and magnitude of price changes then requires much larger menu costs than what
is consistent with the data. It also generates a much larger asymmetry between price increases and

decreases.

Our analysis relates to several literatures. Golosov and Lucas (2006) and Midrigan (2006)
calibrate menu cost models to match empirical facts about price changes at the micro level, and
then examine the resulting aggregate implications of a nominal shock. Most closely related to our
analysis, Klenow and Willis (2006) introduce pricing complementarities into the Golosov-Lucas
model by allowing for scale-dependent mark-ups. As in our model, firms have a desire to respond

to the idiosyncratic cost shocks by adjusting their price frequently, and by small magnitudes. Their

3 Allowing for aggregate channels of pricing complementarities lead to stronger aggregate effects overall, but this

also reduces the role of firm-level complementarities for aggregate amplification.



main conclusion is therefore that such a model would require lead to implausible pricing implications
at the micro level, and would require implausibly large cost shocks and very large menu costs to
match the data.

In contrast to these papers, we calibrate our model to match facts on both prices and market
shares. In the process, we also need to augment the model with idiosyncratic demand shocks in
order to account for the observed fluctuations in prices and market shares.* Both are crucially
important for inferring the degree of pricing complementarities: since the price response to demand
fluctuations may increase with stronger decreasing returns, the observed large variability of quanti-
ties (which leads to big fluctuations in marginal costs) may by itself be an important source of big
price changes - as a consequence, the magnitude of shocks and menu costs in our model no longer
seems implausible, given the data.

Gertler and Leahy (2005) and Nakamura and Steinsson (2006a) consider menu cost models with
pricing complementarities at the sector or aggregate level. Gertler and Leahy provide a theoretical
foundation for a New Keynesian Phillips Curve based on a model with pricing complementarities
arising from sector-specific input markets. Nakamura and Steinsson instead calibrate a model with
sector-level pricing complementarities resulting from input-output linkages across sectors.

Our model also relates to various aggregate models that embed pricing complementarities to
generate persistent delays of price adjustment. Key examples are Altig, Christiano, Eichenbaum
and Linde (2005), Bergin and Feenstra (2001), Chari, Kehoe and McGrattan (2000), Eichenbaum
and Fisher (2004), Dotsey and King (2006), Kimball (1995), or Rotemberg and Woodford (1997).
All these papers seek to evaluate the plausibility of amplification channels based on pricing com-
plementarities by calibrating or estimating richer macroeconomic models to aggregate data, with
sometimes conflicting conclusions. We complement these studies by calibrating pricing complemen-
tarities using micro data.

Finally, our model also abstracts form various richer characteristics of the micro data, such as
inventories and stock-outs, price promotions, a richer market structure and demand systems, and
interactions between whole-salers and retailers. While we view these as important considerations
to understand our supermarket data on prices and quantities, our goal is to quantify the monetary

transmission mechanism, a question that is not usually the main focus in the IO context.’

4We do not provide a structural interpretation of these shocks, but we just back them out to account for the

magnitude and comovement of price and shares in our dataset.
’Goldberg and Hellerstein (2006) and Nakamura (2006), for example, consider menu costs in a richer structural

10 model, but abstract from the monetary transmission mechanism.



2 The Model

We write down our menu cost model as an equilibrium model of a single sector or product category.
For simplicity, we summarize the considerations of general equilibrium by a simple quantity equation
that determines aggregate nominal spending and an equation relating aggregate nominal spending,
wages and prices.

Time is discrete and infinite. There is a continuum of varieties, indexed by ¢ € [0,1], and
uniformly distributed over the unit interval. Each variety is produced by a single monopolistic
firm. These varieties are purchased by a representative household in whose preferences they enter
through a Dixit-Stiglitz index of consumption. The representative household, in turn sells labor

services to the firms, who use labor as the unique input into production.

Demand structure: The demand for each variety ¢ is given by

—0
;
Yit = Qit Yy (ﬁ)
1
1—

where Y; denotes the aggregate (sector-level) real demand in period ¢, P, = [ fol aitpzltfodi} ? is the
Dixit-Stiglitz price index, p;; denotes the price of variety ¢, a;; is an idiosyncratic preference shock

for variety 4 in period ¢, and 8> 1 is the demand elasticity parameter.

Technologies: Each variety is produced by a single monopolist, using labor [;; as unique input,
according to the following technology:
Vit = Zitl§y
where z;; is an idiosyncratic, labor-augmenting technology shock for variety ¢ in period t. The
parameter o determines the degree of decreasing returns to scale in production, which correspond
to the presence of a firm-specific factor that is costly to adjust at short horizons.® The firms’
nominal profits in period ¢, exclusive of menu costs are then characterized as
1/a
Yit
Tit = Pityit — Wi (—Z> ;
Zit

where W; denotes the aggregate nominal wage in period ¢.

Price adjustment: In each period, firms must decide whether or not to adjust their prices.

A firm must hire F>> 0 units of labor to change its price. At the beginning of each period, firms

6This is also isomorphic to the presence of a firm-specific input whose market price is increasing in firm scale (e.g.
Woodford 2003).



observe their draw of demand and cost shocks s;; = (as,24) and then decide whether or not to
adjust their nominal price, or keep it constant.”
The firms maximize the expected net present value of nominal profits, discounted at nominal

interest rates:

o]
1
max B -1 — it — WiFTy,, +p, )
ma O;Hs_o( 1—1—23) (it = WiF Ly, spie 1

where I, .., is an indicator variable that takes on the value 1, if p;; # p;z—1 and 0 otherwise.

Nominal spending, wages, and interest rates: Aggregate nominal spending M; = Y; P,
is assumed to grow exogenously at a constant rate p in a non-stochastic steady state. We assume
that nominal wages W; are determined as an average of nominal spending and nominal prices,
Wy = M,}MYPtV , where 7 € [0,1). Although this formulation is reduced form, it allows us to
capture several interesting special cases: If v = 0, nominal wages move one for one with nominal
spending, (or equivalently, real wages move one for one with real output). This case is the one
considered in Golosov and Lucas (2006), and can be sustained as a general equilibrium outcome
when preferences are log in consumption and linear in labor; we will refer to it as the flexible wage
case. Alternatively, in the limit as v converges to 1, nominal wages become less and less responsive
to changes in nominal spending, or equivalently, real wages move less and less with real output. We
will refer to this alternative limiting case as the case with rigid real wages. Given this discussion,
the parameter ~ indicates the degree of aggregate pricing complementarities.®

As we will discuss below, in a steady-state equilibrium with no aggregate uncertainty, My, W,
and P; all grow at the same rate p, and the parameter v has no bearing on our identification of
other parameters for price adjustment. However, it will be important for subsequently quantifying

the effects of nominal shocks and adjustment out of steady-state.

Finally, we assume that interest rates are determined by the household’s Euler Equation

u' (Yiy1)
Py

u' (Vi)
P

:ﬁ(l-i-it)

where w (+) is the household’s per period utility function, and g € (0,1) the household’s discount
factor. In steady-state, Y is constant, and the nominal interest rate therefore satisfies 1 + i; =

(1+p)/B.

T An alternative specification where firms choose prices after observing their demand shock has similar qualitative

implications to our benchmark model when demand shocks are sufficiently persistent.
8The case with y< 1 also results from a model where firms use the final good as an intermediate input in

production (as in Basu 1995, or more recently, Nakamura and Steinsson, 2006a).



Shocks: Demand and productivity shocks each follow an AR1 process,

a
Inagz = pglnaig1+ej

z
Inzy = p,Inzy 1 +¢e;

where €%, ~ N (0,02) and €% ~ N (0,02) are iid across varieties and over time. We let W (s'|s)

denote the transition probability function associated with the idiosyncratic shocks, where s = (a,z).

Optimal pricing decisions and steady-state equilibrium: To characterize optimal pricing
strategies, we normalize all nominal variables by My, and we let P=r /My and p;y = pir/ My denote
the normalized variables. In a steady-state equilibrium, P, = P and Y; = P! are constant over
time, and nominal interest rates are constant and given by 144 = (1 4 u) /3. Let V (p; s) denote the
present value of profits for a firm that sets its own normalized price p;; = p, with an idiosyncratic

state s. This value function is characterized by the following Bellman equation:

V (p:s) :ﬁ(ﬁ;s)+ﬁ/glmaX{V* ()~ FV <1ﬁu;s’>}d\11 ()

where V* (s) = maxp V (p; s) and 7 (p; s) denotes the firm’s normalized per period profits. Substi-

tuting in the definition of the nominal wage, this is defined as

AN\ 1—0 A\ —0/a
o it p ANV s 1y (P
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Moreover, let p*(s) = argmaxpV (p;s) denote the firms’ optimal decision rule, conditional on
adjusting. Coming into period ¢ with price p_;, the firms’ optimal decision rule p(p_1;s) equals
p—1/ (1 + p) if the firm does not adjust its price, and p (p—1; s) = p* (s) if it adjusts. We conjecture
that the value function V' (p; s) is strictly concave in p, and is unbounded below. A firm then keeps
its nominal price constant, as long as its current normalized price is inside an interval @ (s);p (s)]
around the optimal price p* (s), and p (p—1;s) is characterized by p* (s), p(s) and p (s), such that
p(p-1;s) = p—1/ (1 +p) iff p_1 € [p(s);p(s)], and p(p_1;s) = p* (s) otherwise. These bounds
must satisfy V (p(s);s) =V (p(s);s) = V*(s) — F. As is well-known, this is a common property
of models with fixed adjustment costs, and we will verify numerically that the same property also

applies to our model.

At each date, each firm is characterized by its idiosyncratic state s and its previous price p_1.
The aggregate state is then characterized by the cross-sectional distribution ® over price-state pairs
(s,P-1). A non-stochastic steady-state equilibrium of the menu cost economy is characterized by a

cross-sectional distribution ®, a decision rule p (p_1;s), and a normalized price level P such that (1)



the decision rule p (p_1; s) solves the firms’ optimization problem, and (iz) ® is stationary under the
Law of Motion induced by the decision rule 7 (p_1;s), and P satisfies P = S ap'=0d® (p; s)] Tl",
for all £. We can compute steady-state equilibria by first solving the firms’ pricing problem for a
fixed price level P, to find the steady-state rule for price adjustment p(p_1;s). From there, we
characterize the Law of Motion for the distribution of prices and determine its fixed point. Finally,

we check whether this fixed point is consistent with the initial guess of P.

The role of complementarities: With flexible prices, the firm’s (normalized) optimal price

pf (s; P) solves the first-order condition 7, (p; s) = 0, which implies

log p/ (8;p)=ko+klogp— (logz — (1 —a)loga).

1
a+6(l—a)
Here, k = 1—% measures the elasticity of a firm’s optimal price w.r.t. a change in the aggregate
price index. This is our formal definition of pricing complementarities. kg = Wla_@ log (%)
measures the logarithm of the firm’s mark-up over marginal cost.

In time-dependent pricing models, the rate at which prices adjust in response to aggregate
shocks depends on the frequency of price adjustment, and the degree of pricing complementarities
k. This parameter in turn depends on the demand elasticity 6, the return to scale parameter «, and
the aggregate complementarity parameter v. With constant returns to scale, « =1 and k£ = v, in
which case the overall pricing complementarities are uniquely determined by the aggregate pricing
complementarities.

In contrast, with decreasing returns to scale, the firm’s demand elasticity and returns to scale
also affect the degree of pricing complementarity. In particular, for a< 1, k is increasing in 6
(implying more pricing complementarities as demand becomes more elastic) and decreasing in «,
if and only if 1 —y> 1/6; otherwise k is increasing in . In addition, k is increasing in « (implying
more pricing complementarities overall, when there are stronger aggregate complementarities).
With decreasing returns, variations in aggregate prices feed into the firm’s production scale, and
hence its marginal costs, making optimal pricing decisions interdependent.

Finally, notice that the idiosyncratic variation in pf (3; P) is scaled by a factor that depends
on 6 and « only, but not on v. When we calibrate our model to a steady-state equilibrium with
constant wage and price inflation, the product level variation in prices and quantities therefore
only allows us to identify the pricing complementarity parameters relevant at the firm level, i.e.
0 and «, but v remains unidentified. Nevertheless, both are important for determining overall
pricing complementarities k, and we must therefore make additional assumptions or use aggregate

measures to determine aggregate pricing complementarities.
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3 Inferring Pricing Complementarities

In this section, we discuss our strategy for inferring the key parameters of our model, using moments
of the micro data on prices and quantities (or equivalently, expenditure shares) at the product
level. Our model has ten parameters: (p,,04) and (p,,0 ») govern the stochastic processes of the
productivity and demand shocks. The substitution elasticity and the returns to scale parameters 6
and « determine, respectively the elasticity of demand and the elasticity of marginal cost to output.
In addition, there is the menu cost F', the growth rate of nominal spending, u, the discount rate
B, and the wage elasticity parameter vy. To simplify our discussion, let’s abstract from p, and p,,
set v equal to the steady-state rate of inflation, and 8 to match the steady-state real interest rate.
Moreover, in a steady-state equilibrium, in which nominal wages and prices grow at the same rate
1, the wage elasticity parameter v remains unidentified. This still leaves us with 5 parameters to
determine: (F,o 4,0 ;,0 ).

On the other hand, the micro data on prices and market shares gives us four moments that we
can match using these parameters: (7) the frequency of price adjustment, (ii) the average magnitude
of month to month price changes, (ii7) the variability of month to month changes in market shares,
and (iv) the correlation of changes in prices and shares. Given these 4 moments, we still have
an under-identification problem. Let us abstract for a moment from the fixed cost F', and the
frequency of price adjustment. Then, with the remaining three moments and four parameters, the
identification problem that we are facing is well-known: Given data on prices and quantities only,
we need to separately identify the elasticity of demand and marginal cost, or 6 and « in our case,
and the magnitude of shocks to cost and demand. The problem is illustrated in figure 1, which
shows that the same data on prices and shares may be the result of different parameter pairs (6,a ):

Moreover, these different parameter values of o and 6 may have vastly different implications
for k: In the figure above, we see that as we decrease the supply elasticity (i.e. reduce the returns
to scale parameter ), we need to increase demand elasticity 6 to continue to match the same raw
moments of prices and shares. If v is sufficiently low, k is increasing in 6 and decreasing in «,
and hence, these shifts both contribute to increasing the pricing complementarity. Therefore, the
two panels above, which are based on the same set of micro observations, might be consistent with
two different levels of pricing complementarities, depending on which parameters of o and 6 one
admits.

In most earlier calibrations of menu cost models, this issue did not arise, since o was set equal

to 1, and 0 primarily affected quantities, while the model was calibrated to match data on prices

11



Marginal Revenue:
0~1 Marginal Revenue:

0>1

Marginal Cost :

a<l

N Marginal Cost :

550 o
66060 0 a=1
0°%° o

o

share

Figure 1: The identification problem

only. For us, the identification issue is central, since  and « jointly determine the extent of pricing

complementarities, i.e. the key parameter for identifying the degree of pricing complementarities.

Outside measures of parameters: A first possible solution to this inference problem is to
measure key model parameters directly. For example, # and « also determine the firm’s profit
rates, and it might therefore seem tempting to also try to match measures of mark-ups or profits.
Such an approach, however, would require assumptions about what the unmodelled fixed factors
of production are, how they compensated, and how they are accounted for in any measure of profit
rates. Nevertheless, estimates of 6 that are near 1 or of o near 0 would lead to the implication
that the implied profit rates and mark-ups over average costs are near infinite, which, even after
accounting for fixed factors, seems implausible.

Likewise, one might resort to existing measures of menu costs. The basic premise of menu cost
models is that such costs can be small, yet have significant aggregate effects. Levy et al. (1999)
and Zbaracki et al. (2004) report that firms devote between 0.4% and 0.7% of their revenues on
average to price changes. Although these numbers are based on a small number of firms and on
time-use survey data, they are consistent with the common sense notion that costs of price changes
are small compared to the overall costs and revenues of a firm’s activities.

If we fix the menu cost to match these empirical measures, we can then use the other four
moments to match the other four parameters. As we lower a and increase 6, the firms’ profits
become more sensitive to mispricing, which creates incentives for more frequent, but smaller mag-

nitude price changes, all else equal. To correct for this, we would need to raise both the magnitude
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Figure 2: Asymmetry in value function and Ss-bands

of menu costs and the magnitude of the shocks. However, the menu cost is fixed to match the
empirical measures, so the frequency of price changes then effectively pins down « and 6.
Alternatively, we can resort to additional moments regarding the data on prices and market
shares to identify our model. In particular, we focus on the asymmetries the model generates
between price increases and decreases, and show how these can be used to infer the returns to
scale. In addition, the model also implies an asymmetry between high and low relative prices (as
well as high and low market shares), which we can use to identify the relative importance of cost
and demand shocks. We now discuss how these asymmetries can inform us about the underlying

structural parameters.

Asymmetry between price increases and decreases: The idea behind matching separately
the average frequencies and magnitudes of price increases and decreases is the following. Suppose
for a moment that p = 0, i.e. that there is no inflation. The firms’ value function, and hence its
Ss bands, are asymmetric around the ideal price p*. This is illustrated in figure 2, where, for a
particular realization of s, we plot the firm’s value function, and in figure 3, where we plot the ss
bounds - in the latter figure, we project pairs (a,z _1) into a single dimension on the horizontal axis.
The shapes in these figures are explained as follows: when prices are away from their optimum,
both prices and quantities change. Having a price that is too low lowers the mark-up over marginal
cost and increases the quantity sold; with decreasing returns to scale, increasing the quantity raises
the marginal cost, thus further lowering mark-up. If the mispricing is sufficiently large, it may even
be the case that profits are negative. On the other hand, when prices are too high, this increases
the mark-up, but lowers the quantity sold, and as a result, profits can never be negative. This

already puts a bound on the firm’s potential losses, when prices are set too high.
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Figure 3: Asymmetry between price increases and decreases

Overall, this suggests that the firm’s profits decline more rapidly when prices are too low than
when they are too high. This in turn implies that firms are on average more likely to reach their
lower sS band and increase their price than the upper sS band and decrease their price; i.e. the
frequency of price increases should be larger than the frequency of price decreases. On the other
hand, price decreases are on average larger in absolute magnitude than increases.”

Now, how does this asymmetry depend on 6 and a? The parameters § and o determine the
extent to which firms’ marginal costs responds to a departure from the ideal price; the higher is 0
and the lower is «a, the more marginal costs respond to quantities. If prices are too low, the profit
margin is then further reduced by the increased quantity (and hence the rise in marginal costs),
whereas if prices are too high, the reduction in profits resulting from the lower quantity is mitigated
by the fact that marginal costs are also reduced. Therefore, the higher is # and the lower is «, the

larger should be the difference in frequency between increases and decreases, and the larger should

be the difference in magnitudes between increases and decreases.

So far, this discussion relied on a zero steady-state inflation rate. If we introduce positive
inflation rates, this is going to have an effect on the magnitudes of these asymmetries, but the
general feature remains the same. To match both the asymmetries in frequencies and in magnitudes

of price changes, it is therefore important that we account for steady-state inflation.

Asymmetry between high and low relative prices: The menu cost model suggests a

related argument for identification that is based on the difference between high and low relative

9See Burstein (2006) and Devereux and Siu (2005) for a related discussion of pricing asymmetries in state dependent

sticky price models.
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Figure 4: Asymmetry between high and low relative prices

prices, which enables us to identify the respective roles of cost and demand shocks. Ceteris paribus,
profits are more sensitive to mispricing, when a good is in high demand. This in turn should lead
to narrower sS bands, and a higher frequency of price changes, than when demand is low. Now, a
model, in which price changes are driven mostly by cost shocks, demand is high, when the prices
are low, i.e. when there is a favorable technology shock (high z). In contrast, in a model, in which
price changes are driven mostly by demand shocks, demand is high when there is a large demand
shock (high @), which in turn also implies a high price, on average.

As plotted by figure 4, this suggests a difference in the width of the Ss-bands, depending on
whether idiosyncratic shocks are to demand or to technology: in a cost shock model, price changes
should be more frequent, when the original price is relatively low. In a demand shock model, price
changes instead should be more frequent, when the original price is relatively high. A model that
combines both shocks will fall somewhere in between, but the extent of this asymmetry can still

inform us about the relative importance of cost vs. demand shocks.

Therefore, by examining how the frequency of price adjustment depends on the current price
level, we can learn something about the relative importance of cost and demand shocks. To validate
this argument, we also need to look at how the frequency of price adjustment depends on the current
level of demand (or the current market share) - after all, the above argument is empirically relevant
only if price changes are indeed more likely when demand is high. In our calibration, we will
therefore attempt to match how the frequency of price adjustment depends on the current level of

both prices and market shares.
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In summary, we can thus use the magnitude of menu costs, and the asymmetries between price
increases and decreases, and high and low prices and market shares to gain three additional moment
targets for our menu cost model. Since strictly speaking we only need one additional restriction to
infer the parameters, we have two additional moment targets that can be used to assess the overall

fit of the model.

4 Data on prices and market shares

We now apply the procedure described above, designed to discipline the model’s parameters, using
a specific dataset. This dataset measures retail sales by Dominick’s Finer Food, a large supermarket
chain with 86 stores in the Chicago area, and was prepared by the University of Chicago’s Grad-
uate School of Business in cooperation with Dominick’s. The products included in this dataset
include non-perishable food products (e.g. crackers), household supplies (e.g. detergents), and
hygienic products (e.g.: shampoo). While limited in scope due to its narrow geographic coverage
and particular set of grocery products, this dataset has the advantage of providing high frequency
information on both prices and quantities for many items within narrowly defined product cate-
gories.

It is a weekly store-level scanner data by universal product code (UPC), ranging between 1989
and 1997. For each UPC it includes weekly sales and retail prices. The dataset includes 29 product
categories (e.g.: beer, bottled juice, toothpaste, dish detergent) and more than 4500 UPCs (e.g.:
Crest mint 8.2 oz., Tropicana mango 46 oz). We conduct our analysis of pricing at the chain
level. Dominick’s follows a chain-wide pricing strategy, with some discretion given to individual
stores which results in prices not perfectly correlated across locations. Stores are divided into high,
medium, and low pricing zones, depending on the extent of local competition. We only consider
stores that are included in the middle-level pricing zone, which contains the largest number of
stores. We focus on fluctuations in market shares, as opposed to fluctuations in physical quantities,
to isolate fluctuations that are due to idiosyncratic, as opposed to sectoral shocks to aggregate
quantities of a product category.

We index weeks by w, product categories by i, UPC’s by j, and stores by k. We construct
market shares, sgu, as the ratio of sales of UPC (4,5 ) in store k and week w, to total sales across
all UPCs within product category ¢ in store k and week w. Similarly, we construct relative prices
pfw as the ratio of the nominal price P,ZU of UPC (4,5) in store k in week w to the aggregate

price Péw of product category ¢ in store k in week w (product category prices P,iw are averages
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of individual price levels using store k, week w market shares as weights). We also construct an
indicator variable mfw of temporary price mark-downs, defined as a price reduction that is reversed
to its original value in no more than 6 weeks. That is, x?w =1if Plzfﬂ <P i{u’ = P,i{u,,, w <w ,
w” >w , for at least one pair {w’,w”} such that w” —w' € {2,3,4,5,6}, and :L'ij = 0 otherwise.!?

We aggregate the data across weeks and stores, as follows. We define time periods as T'—week
intervals, and we index periods by t. That is, period ¢t = 1 includes weeks w = 1,..., T, period t = 2
includes weeks w = T+ 1,..., 2T, and so forth. We aggregate the data on relative prices and market
shares by taking simple averages across stores and weeks within a 7" week time period, for UPC’s
with at least 8 consecutive time periods of data. The resulting relative prices and shares are denoted
by pij and sij — note that these measures exclude store index k and week index w. We also report
moments of the data that exclude temporary price markdowns, computed as simple averages across
observations with l’;cjw = (0. We also report the moments of the data if we use weighted averages
instead of simple averages, if we only focus on data for one store (the one with the lowest number
of missing observations), and if we compute our statistics for price and market share changes across
all individual stores for each UPC (rather than constructing one chain-level price and market share
for each UPC).

For our statistics on changes in chain-wide price levels, we do not calculate an average price
across weeks and stores — this would deliver artificially high price flexibility as simple price averages
would reflect changes in only a subset of (some) individual store/week prices. Instead, we measure
the median price set by Dominick’s across stores (within the medium pricing zone) for each UPC
in a given time period. If there is more than one price observation per time period (say because a
time period includes multiple weeks), then we use the price observation corresponding to the first
available week. In the calculations that abstract from temporary price mark-downs, we exclude
those price observations with xfw = 1 when computing the median price for each UPC/period.

Our baseline statistics are constructed using 4 week time periods (7' = 4) — the time length
of a period in the calibration of our model, and abstracting from UPC/periods with market shares
that are sufficiently small (i.e. 0.1%). Below we discuss how the results change if the moments of
the data that we focus on are constructed in alternative ways. We compute the statistics described
below for each UPC, and then compute a weighted average of the value of these statistics across all

UPC’s within each product category (using as weights the fraction of sales of each UPCs in total

0The V pattern that we use to construct a sales indicator is closely related to the definition of "filter B" in
Nakamura and Steinsson (2006). It is more restrictive than that in Midrigan (2006), who does not impose price

reductions to return to their original level when defining a sale.
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sales of its product category during the total time span). We report each statistics for the median
product category. We then perform the same calculations using data generated by our model.

A. Frequency of price adjustment: The frequency of price adjustment for each UPC is
defined as the fraction of observations with price changes, and the price duration is defined as the
inverse of the frequency. Table 1, Row 1, shows that, for the median product category, the price
of the average UPC changes every roughly 4 four-week periods (this is equal to 1/0.25) exclud-
ing temporary price markdowns, and 2.5 four-week periods including temporary price markdowns
(footnote: In calculating the frequency, we exclude temporary price markdowns from the numerator
and the denominator). In the model calibration, we target an average duration of 4.5 periods, in

order to make the results comparable to Golosov and Lucas (2006) and Midrigan (2006).

B. Magnitude of Price Changes: We focus on measures of the size of changes in prices
over time (and changes over time in the logarithm of market shares in the following subsections),
and we do not focus on differences in price levels (or levels of market shares) across goods at a
point in time, because our model abstracts from permanent differences across goods in quality,
size, characteristics, etc. that explain some of the price (and market share) differences across goods
observed in the data.

Table 1, Rows 2-4, reports three measures to document large changes in UPC prices. Row 2
displays the average magnitude of non-zero price changes. It is roughly 10% if we exclude temporary
price markdowns, and 13% otherwise. Row 3 displays the standard deviation of non-zero price
changes, roughly 15% excluding temporary price discounts and 19% if we include them. Row 4
displays the standard deviation of relative prices p (the nominal price of the UPC divided by the
nominal price of the product category). Note that here we do not exclude zero price level changes,
as even in those cases the relative price might change if the aggregate product level price changes.
The standard deviation of relative price changes is 7% if we exclude temporary price markups and
9% if we include them.

In calibrating our model, we target a 4-week average magnitude of prices changes equal to 10%.

This figure is very close to the targets used in Golosov and Lucas (2006) and Midrigan (2006).

C. Magnitude of Share Changes: Table 1, Rows 5-7 reports the magnitudes and standard
deviations of changes in log-market shares (note that this is different from the standard deviation of
percentage point changes in market shares). The average magnitude of changes in log market shares
is 17%, and the standard deviation is roughly 25%. Row 7 indicates that fluctuations in market
shares are significant even if we focus on periods with no price change. If we include temporary

price markdowns, log market shares are roughly 5% more volatile.
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In the benchmark calibration of our model, we target a 4-week standard deviation of changes

in market shares equal to 25%.

D. Comovement of Prices and Share Changes: Table 1, Rows 8-11 report four statistics
that summarize the comovement between changes in prices and changes in market shares. Recall
that a model with only idiosyncratic cost shocks would imply a strongly negative correlation between
price and market share changes, and a model with only idiosyncratic demand shocks would imply
a strongly positive correlation, in the presence of decreasing returns to scale.

Row 8 displays the fraction of price changes in which price and market shares are of the same
sign. Note that the model with only idiosyncratic cost shocks would imply that all price changes
are accompanied with share changes in the opposite signs (provided that prices are set along the
elastic part of the demand schedule). For the median product category, this ratio is roughly 45%
if we exclude temporary price markdowns, and 40% if we include them.

Row 9 and 10 display the correlation between changes in price levels and market share changes
(row 10 conditions on observations with non-zero price changes). The correlations are roughly —0.1
if we exclude temporary price markdowns and —0.2 if we include them.

Row 12 displays the correlation between changes in relative prices and market shares (including
zero price change observations). This correlation, which is computed aggregating the data across
all stores, is roughly —0.2 if we exclude temporary price markdowns, and —0.35 if we include them.
These correlations are only slighly closer to zero if we condition on nominal price adjustment.''1?

The fact that correlations between prices and market shares are far from —1 and that prices and
market shares frequently move in the same direction suggests that idiosyncratic demand-like shocks
could be partly driving the movements in prices and quantities. In our benchmark calibration we
target a correlation of price and share changes, conditional on nominal price adjustment, equal to

—0.20.13

1We also compute an alternative relative price (market share) measure, defined as the ratio of the current price
(market share) of a UPC to the average price (market share) across periods for that UPC. The standard deviation
and correlation of these alternative measure of relative prices and market shares is very similar to those that we

report in Table 1.
12WWe also compute these statistics using physical quantities for each UPC, instead of using market shares. We find

that quantities are slightly more volatile than market shares, and the correlation between prices and quantities is

slightly more negative than the correlation between prices and market shares.
3Note that increases in relative prices driven by temporary price markdowns of a firm’s competitor, if associated to

a rise in the quantity sold, would generate a negative comovement between relative prices and market shares. Hence,
accounting for the observed comovement between relative prices and market shares, which is far from —1, requires

additional sources of demand fluctuation.
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E. Price Increases vs. Decreases: Rows 13-14 reports the likelihood and size of price
increases relative to price decreases. Row 13 shows that for the median product category, roughly
60% of prices changes, exclusive of temporary price markdowns, are price increases. Including price
promotions, the fraction of price increases is roughly 54%. These figures are very similar to those
reported in Klenow and Kryvtsov (2005) and Nakamura and Steinsson (2006). Row 14 shows that
the size of price increases is slightly smaller than the size of price decreases (the ratio of the average
magnitude of price increases relative to price decreases is roughly 0.85 if we exclude sales and 0.90
if we include them).

In our calibration, we will just focus on the relative magnitudes and abstract from the fraction
of price increases. In pure accounting terms, the steady state inflation rate can be decomposed
into the frequencies and magnitudes of price increases and decreases. With the right steady state
inflation rate, matching one of these two moments automatically implies that we also match the
other one. Since there are measurement issues with the inflation rate, and since in the model the
inflation rate primarily impacts the fraction of price increases versus decreases with only minimal
effects on the relative magnitudes, we decide to target the latter. This is also in line with results by
Gagnon (2006), who reports that changes in inflation have a large effect on the relative frequencies

of price increases and decreases, but not on the relative magnitudes.

F. High vs. Low Relative Prices: Row 15 reports the frequency and size of price changes
conditioning on whether the initial price level is high or low. We first compute the average price
of each UPC using the available observations in the data sample. For each UPC, we then compute
the frequency and magnitude of price changes separately for pre-change prices that are higher or
lower than the average price. We then average the ratio of high to low frequencies and magnitude
of price changes across UPCs, and report the average ratio for the median product category.

Row 15 shows that, excluding price promotions, the frequency of prices changes is roughly
independent on whether pre-change prices are low or high (the ratio of frequencies conditional on
prices being high versus low is roughly 0.95). If we include price promotions, prices are slightly less

likely to change if the initial price levels is high.

G. High vs. Low Market Shares: Row 16 redoes the calculations in F, now conditioning
on high versus low initial market shares (instead of conditioning on price levels). We follow the
same steps as before, computing the average market share for each UPC, and separately computing
the frequency and magnitude of price changes for periods in which the market share of a UPC is
above or below average. The results in Row 16 suggest the that prices are more likely to change in

periods when the market share is high (the ratio of frequencies is roughly 1.2).
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Table 2 reports the statistics when we depart from the baseline calculations reported in Table
1 along five different dimensions: (1) construct one-week time-periods (I" = 1) instead of four-
week time periods (T" = 4), (2) compute weighted averages of relative prices and market shares,
instead of simple averages, across stores and weeks, (3) exclude from the calculation of the statistics
UPCs/time periods with average market shares lower than 1% (instead of 0.1% in the benchmark
case), (4) use data for only one store per product category (the one with the lowest number of
missing observations for each product category), and (5) construct the statistics on price and
market share changes using all individual store observations (as opposed to computing a single
chain-wide price and market share for each UPC). Overall, in terms of the basic moments of
the data, these perturbations from the baseline computations generate slightly lower frequencies
of price adjustment, slighly larger price changes, more volatile market shares, and correlations
between prices and market shares that are closer to zero. Also, there are only small changes in
the magnitude of the asymmetries (both the size of positive relative to negative price changes,
and frequency of price adjustment conditional on high and low relative prices). In Section 7, we
perform sensitivity analysis in our model and argue that small changes in the calibration targets in
the direction suggested by these robustness checks have only a minor impact on the inferred level
of firm-level pricing complementarities. Moreover, the choice of targets (especially the relatively
small size of price and market share fluctuations) biases our inference toward finding higher levels

of firm-level pricing complementarities.

5 Calibration Results: Steady-State

In this section, we report our steady-state calibration results. As in the data, we consider a period
to be 4 weeks. We set the persistence parameters p, = p, = 1/2 as a first pass (in section 7, we
present some sensitivity analysis regarding the persistence of idiosyncratic shocks. In subsequent
work, we plan to calibrate these parameters more rigorously). Finally, we set § = 0.995 to match a
steady-state real interest rate of 6%, and u = 0.0017 to match a steady-state inflation rate of 2.2%
annually, which is the sector-level price inflation that we measure in the Dominick’s data, for the

median sector.

2

This leaves us with five parameters, (9,a i Folo?

). To calibrate these parameters, we first

"1n related work, Dossche, Heylen and Dirk Van den Poel (2006) infer a relatively small degree of demand-based
pricing complementarities using a large scanner dataset of a European retailer. Their data, which covers a wide
variety of products such as clothing, equipment, and leisure goods, reveals a very high volatility of quantity changes,

as well as comovements between relative prices and quantitites that are significantly larger than —1.
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fix a at various levels between 0 and 1, and calibrate the other four parameters to match the four
benchmark moments we identified from the micro data. We then compare the calibrations for
different values of « in terms of how well they match our secondary targets, in order to assess what
values of o and 0 appear plausible, and hence determine the resulting pricing complementarities.
Before going to the full calibration, we present some results for menu cost models with ex-
clusively cost and demand shocks, setting o, = 0 or o, = 0. This preliminary step clarifies the
results in the existing literature (in terms of calibration successes and failures), and it provides

some illustration of the identification underlying our main calibration results.

Cost Shock Model: In Table 3, Columns 1-4, we report results for model with cost shocks
only. Since the demand curve is fixed in this case, the correlation between prices and market
shares must be —1 by assumption (Row 10). For different values of «, we then calibrate the other
parameters to match the remaining three benchmark moments (Rows 7-9).

In the first column, the case with constant returns to scale (« = 1) roughly replicates the
calibration results of Golosov and Lucas (2006). F and o, are adjusted to jointly match the
frequency and magnitude of price changes: lower F' implies more frequent, smaller price changes,
while higher o, implies more frequent, larger price changes, ceteris paribus. The demand elasticity,
which has only small effects on price changes, is then adjusted to match the variability of share
changes.

Columns 2-5 consider the cases with a = 0.95, a = 0.75, a = 0.55, and a = 0.35, in which
there are positive pricing complementarities. As « is lowered, the implied magnitude of cost shocks
that is required to match the magnitude of price changes explodes to levels of 25% month-to-month
(row 3), and the fixed cost of price changes explodes to a magnitude of 5%, much higher than the
existing estimates (row 5). With complementarities, firms have an incentive to make very frequent,
small price changes. To reduce this frequency, yet have price changes that are as big as in the data,
the menu costs and the shocks must both become large. This finding is similar to Klenow and
Willis (2006), who consider a model with idiosyncratic cost shocks and pricing complementarities
resulting from a scale-dependent demand elasticity.

The cost shock model also illustrates the idea underlying the identification derived from the
asymmetries: Row 11 shows that, as o becomes smaller, price increases become relatively smaller in
size compared to price decreases (their relative magnitude drops from 0.88 to 0.78). To compensate
while maintaining the same steady-state inflation, price increases become more frequent relative to
decreases.

Finally, notice the asymmetry between high and low relative prices: As expected from our
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earlier discussion, price changes are only about 60% as likely to occur when relative prices are high,
than when they are low (Row 12), and they are 1.6 times as likely to occur when market shares are
high (Row 13) rather than low. On both accounts, the model misses the data by a large margin.
Overall, if we were to disregard the fact that the model completely misses out on (i) the price-
share correlation, and (ii) the asymmetry between high and low relative prices and high and low
market shares, we would conclude that a cost shock model without pricing complementarities does
remarkably well in matching the other targets, matching an average menu cost of 0.7% of revenues,
and a relative magnitude of increases to decreases of about 0.88. Any introduction of decreasing
returns only worsens the calibration results, generating larger menu costs, and much stronger

asymmetries between increases and decreases.

Demand shock model: Table 3, Columns 6-9 report similar results for a model with demand
shocks only. If prices were perfectly flexible, such a model would imply that prices and shares
are perfectly, positively correlated. With positive menu costs, the correlation between prices and
market shares need not be perfect, but remains large and positive (Row 10). As before, we therefore
fix « at different levels, and adjust the remaining parameters to match all the benchmark moments
except the correlation (Rows 7-9).

When « is near 1, we are no longer able to match the magnitude and frequency of price increases:
with near constant returns to scale, demand shocks must become very large to match the frequency
and magnitudes of price changes. But that in turn would generate implausibly large changes in
market shares. We therefore abstract from the first column with o = 0.95.

Three observations stand out: first, as « decreases, the increase in idiosyncratic shocks that
is required to match the magnitude of price changes is much less dramatic than in the cost shock
model, going from 24% to 30%, as « falls from 0.75 to 0.35 (Row 4). Second, the required menu
costs are much smaller than in the cost shock model, although at a level of 2.5% of revenues, they
are still larger than existing estimates at high levels of pricing complementarity (Row 5). Third,
as in the cost shock model, lower values of « lead to stronger asymmetries between price increases
and decreases, to the extent that price increases are eventually substantially smaller than decreases
(the ratio of magnitudes drops from 0.95 to 0.80, Row 11). Likewise, price changes are about 1.3
times as likely to occur when prices are high as opposed to when they are low (Row 12), and 1.25
times as likely when shares are large as opposed to small (Row 13). This is again in line with our
earlier discussion which suggested that price changes are more likely in a menu cost model, when
demand is high. Notice also that these relative frequencies are a lot more in line with the data than

they are in the cost shock model.
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Overall, the model with demand shocks appears to be fairly successful at matching all moments,
except the correlation and the asymmetry regarding high vs. low prices and shares, if o ~ 0.55.
In particular, this gives a pretty reasonable measure of menu costs, and matches the asymmetry

between increases and decreases almost exactly.

Model with demand and cost shocks: In Table 4, we report our results for the model with
demand and cost shocks. As before, we fix « at different levels, and then determine the other four
parameters to match our four moments, including the price-share correlation.

For example, beginning with @ = 1, we can match a correlation 0, by setting 6 close to 1: if
a = 1, prices only respond to productivity shocks, and with 8 = 1, these price changes have no
impact on shares, and prices and share changes are therefore completely orthogonal to each other.
The parameters F', o, and o, are then set to match, respectively, the average duration and average
magnitude of price changes, and the variability of share changes. This parametrization, however,
would imply very large mark-ups.

As we lower «, the firms optimal prices begin to respond also to demand shocks, which, ceteris
paribus should lead to a positive correlation between prices and shares. To compensate for this, 0
increases (a higher demand elasticity reduces the correlation between prices and shares). The firms’
profits then become more sensitive to prices, and firms have an incentive to have more frequent
and smaller price adjustments. This in turn requires that holding the duration fixed requires a
larger value of F', and o, and o, also increase to maintain the same magnitudes of price and share
changes (Rows 2-5).

However, in contrast to the pure cost shock model, the magnitudes of the shocks do not appear
to be implausible, given the fluctuations we observe in the data. The 10% magnitude of cost shocks
is similar to the values used in other calibrations. In addition, this value is similar to the magnitudes
of changes in whole-sale prices in the Dominick’s data.'®> Our measure of the magnitude of demand
shocks is a bit larger, but this is to be expected given the fairly large variability in market shares.

In line with our inference strategy, the relative magnitude of price increases goes from 1 to
0.8, as « decreases (Row 11). Moreover, the adjustment probability when prices are high is also
gradually increasing as we lower « (from a value of 0.87 for a = 0.99 to a value of 0.99 for o = 0.25
- Row 11), a sign that demand shocks become more important as we move to stronger decreasing

returns. In addition, throughout, the adjustment probability when market shares is roughly 1.2

15The data report the cost of acquisition of the current inventory, not the current replacement costs. Whole-sale

prices therefore provide a reliable proxy for costs only for items that have a fast turn-over rate, such as certain

refrigerated food items.
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times the probability of adjustment when market shares are low - right on target.

How well do these different calibrations do in terms of matching our secondary targets? If we
consider the size of the menu costs, it appears that a value of « in the range of 0.55 to 0.75 is in
line with the existing empirical menu cost measures. It turns out that the same values of a also
do fairly well in matching the asymmetry between price increases and price decreases. A value of
a ~ 0.55 also matches the asymmetry between price increases and decreases almost exactly, and
comes very close to matching the asymmetry between high and low relative prices.

In contrast, lower values of a require significantly larger menu costs, and imply that price
increases become much smaller, relative to decreases. Higher values of « in turns are problematic,
because they would generate price increases that are too large in comparison to the price decreases,
relative to what is observed in the data, and they would generate too much asymmetry in adjustment
frequency between high and low relative prices. They also would imply implausibly low demand

elasticity and very large mark-ups and profit margins.

The degree of pricing complementarity that is implied by these values of @ and 6 depends on
the value of aggregate pricing complementarities v. For example, if v = 0 (flexible wages), a point
estimate of a = 0.65 and 6 = 4.2, which matches the asymmetries almost exactly and implies a
menu cost of 0.86% of steady-state revenues, leads to a pricing complementarity coefficient k& ~ 0.53.
As a range estimate for a € [0.55,0.75], we find that with flexible wages, the corresponding values
of k are between 0.41 and 0.60. Since these values are bigger than 0, there exist moderate levels of
pricing complementarities, but these are much less strong than the macro estimates by Rotemberg
and Woodford (1997) which suggest that a value of k =~ 0.85 to 0.9 is needed to match the aggregate
persistence of nominal shocks in the context of a Calvo model. On the other hand, if v — 1 (rigid
wages), our range estimate of k goes to k ~ 0.82 to 0.85, so that significantly stronger pricing
complementarities can be sustained, i.e. we find ourselves much closer to the range suggested by
Rotemberg and Woodford. Aggregate channels for pricing complementarities thus appear to be
essential for reconciling these macro estimates of pricing complementarities with our calibration to

micro data.

6 Aggregate impulse responses

We now turn from the steady-state calibration to the aggregate impulse response to a one-time
increase in M. Starting from the steady-state distribution of normalized prices ®, we consider

the effects of a one-time increase in M by a factor A (following by continued growth of M at a
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steady-state rate p) on the subsequent dynamics of P. This experiment is equivalent to computing
the transition path of this economy, starting from an initial distribution of relative prices ®g, where
Do (5;5) = @ () (1+ A)3 s).

In principle, this requires resolving the associated non-stationary optimization problem, in which
the firms take into account the entire future path of prices P> = {E}:O in forming their decisions,
and the resulting sequence of state-price distributions ®>* = {®,};° is consistent with the Law of
Motion induced by the resulting sequence of pricing strategies, and generates the sequence of prices
P>,

As a first pass, we will approximate the solution to this complicated dynamic equilibrium
problem using the steady-state Ss-bands and pricing strategies for each idiosyncratic state. Let
K (s)=Inp(s) —Inp* (s) and K (s) = Inp(s) —Inp* (s) denote the steady-state Ss-bands in terms
of their deviation from the target price p* (s), and let p* (s) = Inp* (s) — Inpf (5;1555> denote
the steady-state “front-loading factor”, by which firms who adjust their prices depart from the
ideal price which maximizes current profits. We then approximate dynamics out of steady-state by
holding the size of the Ss-bands K (s), K (s) and front-loading factor p* (s) constant, in which case
variation in pricing decisions enters through the effect of P, on the ideal flexible price pf (s; ]5,5):

npi (s) ~ p*(s) +np/ (s:71)
() + Inpj (5

Inp(s) ~ K
ln]_at(s) ~ K(s)+1Inpj(s)

In the future, we also plan to present exact solutions for the complete transition path to a one-time

shock.

Besides computational tractability, this approximation has the additional advantage that it
leads to a useful decomposition of the aggregate impulse response that allows us to separate the
effects of pricing complementarities from the role of distributional assumptions, i.e. the selection
effect that is emphasized in Golosov and Lucas (2006) and Midrigan (2006). This decomposition
is a special case of the one proposed in a recent paper by Caballero and Engel (2007).

To obtain this decomposition, notice that the approximated Ss-bands and the target price (in
logs) each change by the same magnitude § in response to a small monetary injection of size A.
Then, define & (p;s') as the distribution of prices and idiosyncratic states (p;s’) after the new

idiosyncratic shock has hit, and before prices are adjusted:
b (5:5) = [0 (1) 0 (35),
S
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Figure 5: Price adjustment after shock

and let <}5(p; s') denote the associated pdf. The aggregate response of prices (net of trend inflation,

and in logs) is then approximated by:

p(s’) 0o
AlogP =~ § o (p; s dpds’ + o (p; s') dpds’
o = s [ bttt | [ sty
+(5// [logp (s') — logp* (s')}&(ﬁ(s’);s’)ds’

=6 [ ogp () —1og " (+)] 6 (p (+) 1)

The logic behind this expression is illustrated in Figure 5, which plots the density gAb(, s"), for some
realization of the shock s’. The first line measures the intensive margin: all firms that originally
changed their price now raise it by an additional amount §. The second and third terms measure
the extensive margin of adjustment: some firms that prior to the shock decided to lower their price
now prefer to keep it constant (second term), their density is given by the steady-state density
qAb(ﬁ (s); '), times the magnitude of the shift in the upper ss band, ¢, and these firms would have
lowered their price on average by an amount logp (s') — log p* (s’). By the same logic, the third
term captures all the firms who originally chose to keep their price fixed, but now decide to increase
it by an amount logp (s") — logp* (s").

We rewrite this decomposition as

AlogP=~d[f+ 5],
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Figure 6: Frequency and selection effect

where

p(s’) 0o
f - / / & (p; ') dpds’ + / / b (1 &') dpds’
s J—oo s" Jp(s’)

is the steady-state frequency of price adjustment, and S measures the “selection effect”, defined as

S:/Sllogl?(s’)cgb(ﬁ(s’) ;3') ds’—//logﬁ(s’)fb(]_o(s') ;s’) ds’

s

Figure 6 illustrates the frequency and selection effects, if § is small. The red areas in the tails
measure the intensive margin, due to the fact that all firms that adjust in state s’ increase their
new price by ¢, relative to before the occurrence of the shock. The blue rectangles measure the
extensive margin, or the selection effect. At p(s'), a density ¢ (5 (s') ; ') of firms that initially would
have lowered their price by log K (s') now prefer to keep it fixed. Likewise, a measure ¢ (p(s);5)
of firms at p(s') now prefer to increase their price by an amount log K (s’), instead of keeping it
constant. To find the overall effect of a shock on impact we then simply integrate over all states s’.
The white area, integrated over all s/, then measures the residual, which corresponds to the real
effect of the shock on impact.

This figure also illustrates some of the key findings of the recent and not so recent literature on
menu cost models. For example, this formulation also recovers the well-known neutrality result by
Caplin and Spulber (1987) as a special case: in the case where qAb(p; s') is a uniform density w.r.t.
p, for each s’, over an interval that strictly includes [p(s’),p(s')], we can immediately see from

the picture that the white area disappears, so that the nominal shock has no real effects.' More

16This can also be derived using our decomposition: if g}ﬁ(p; s') is a uniform density w.r.t. p, for each s’, over an
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generally, this figure illustrates the important point made by Midrigan (2006), that distributional
assumptions determine the magnitude of the selection effect and hence matter a great deal for the
aggregate effects of nominal shocks. Midrigan shows that in a model with fat-tailed distributions of
the shocks, the density g?) inherits the fat tails, and the model’s calibration leads to a much smaller
selection effect.

Now, how does the approximated change in ss-bands and optimal pricing rules, §, related to
the nominal spending shock A? Our approximation of the ss-bands and the optimal pricing rule
implies that § corresponds to the change in Inpf <s; P) on impact, or § = kAlog P + (1 — k) A.
Combining this with our decomposition for Alog P, we approximate the response of prices on

impact as follows:
AlogP _(1-k)(f+5)
A T 1-k(f+9)

This decomposition enables us to isolate the effects of pricing complementarities and the se-

lection effect in accounting for the response of prices on impact. In the model, we can compute
S, f and k from the steady-state calibration (where f is also one of the targeted moments), and
therefore compare the approximated response to a shock to the one directly computed from the
model. In almost all cases, we find that this is a very accurate approximation.

To provide a simple illustration of the role the selection effect is playing, notice that in a
Calvo model, the same approximation would apply, but with S = 0. A menu cost model with an
adjustment frequency f and a selection effect S> 0 thus appears to have similar properties on

impact as a Calvo model with a frequency of price adjustment of f + S.

Results: Table 5 reports our results regarding the aggregate effects of a nominal shock. To
organize the discussion, we simply report the response of the aggregate price index and the CES
output index to the nominal spending shock on impact, focusing on the case with flexible wages,
in which v = 1. We also report the values we compute from the model for k and S. Since f = 0.22
throughout all calibrations, the above approximation enables us to decompose the output effects

of the spending shocks.!”

interval that strictly includes [p(s’),p (s")], we have

. log ﬁ(s/) .
f = 1—¢/ / dpds'zl—gb/ [logﬁ(s')—logp(s')]ds'
s" Jlogp(s’) s’ -
- 1 43/ log & (s) — log K (s')] ds’' =1 5,
and therefore f + S ~ 1.
1"We do not consider the full dynamic reponse of the model economy to a monetary policy shock in relation to the

estimates from a VAR analysis such as Christiano, Eichenbaum and Evans (2005), because we are abstracting from
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Several observations stand out. First, we notice that adding pricing complementarities to the
menu cost model does indeed reduce the price adjustment on impact. However, these effects are
small overall: whereas in a model with constant returns to scale, almost two thirds of the monetary
shock are absorbed by prices on impact, for the range of o we identified as quantitatively the
most plausible, prices still absorb roughly half of the shock on impact. Even if we were to go to
significantly stronger pricing complementarities, prices still adjust by a large amount on impact,
and shocks only have small real effects.

Second, we notice that the cost and the demand shock and the combined models all give roughly
similar output implications, for a given level of pricing complementarities. Therefore, there appear
to be no major differences in the aggregate implications of models that focus on cost vs. demand
shocks as the source of idiosyncratic variation.

Both of these findings can be explained by considering the selection effect. In our model, it is
large, and relatively stable across the different specifications, always around 0.45. In practice this
means that our menu cost model is comparable to a Calvo model in which over 65% of all prices
change every month!

We can further illustrate the importance of this selection effect with different comparisons.
Without complementarities (k = 0), the Calvo model would predict a response of prices on impact
of 22%, whereas the menu cost model predicts a response of prices of 70% - over two thirds of the
shock is absorbed on impact. For the moderate complementarities that we identify in the data
(a = 0.65, k = 0.53), the selection effect raises the response of prices on impact from 10% to 49%.
Even for much stronger pricing complementarities, in the range of k = 0.85 to 0.9 that is suggested
by Woodford, our decomposition suggests that a selection effect of S ~ 0.45 still raises the response
of prices on impact from roughly 4% to 23%.

Alternatively, we can use our decomposition for some simple back-of-the-envelope calculations to
determine how much pricing complementarities we would need to get substantial aggregate output
responses. Rotemberg and Woodford’s estimate is based on a Calvo model, without selection effect.
Setting S = 0 in our approximation formula, and using an adjustment frequency of 0.22, their
estimate is consistent with a response on impact of roughly 4%. To match the same number within
our model with a selection effect of S = 0.45, we would need a value of k> 0.97, which is much
higher than the Rotemberg-Woodford estimate, which is itself much higher than our estimates.

We conclude from this discussion that a menu cost model can hope to obtain substantial delays

in price adjustment only if (i) there is a very large degree of pricing complementarities, and (77)

a richer macroeconomic model that would be required to account for the response of various other aggregates.
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the selection effect is much smaller than what is suggested by our calibration. Moreover, among
these two, the complementarity appears to have only a secondary role: if f 4 S is sufficiently large,
then even with values of k£ that are close to 1, the model will imply a sizeable response on impact,
and a rapid adjustment to the new steady-state. As Midrigan (2006) shows, the latter of course
depends on distribution of the underlying idiosyncratic shocks. Pricing complementarities that are
purely driven by product-level decreasing returns appear to be unable to quantitatively account
for such strong pricing complementarities. Aggregate sources of complementarities appear to be
more promising. As discussed before, allowing for large aggregate complementarities lowers pricing
complementarities closer to the Rotemberg-Woodford range. In that case, however, product-level

decreasing returns appear to play only a secondary role for the resulting aggregate implications.'®

7 Extensions

In this section, we discuss a few extensions to our model, to explore the robustness of our results. In
principle, their is an infinite number of alternative modeling assumptions and robustness checks that
one might consider. Here, we restrict ourselves to a few for which one can make a plausible argument

that they might significantly alter the results of our inference on pricing complementarities.

Sensitivity Analysis: A first important consideration is, how sensitive our conclusions are
to the targets that we picked for our calibration. To this end, we performed some rather simple
sensitivity checks, recalibrating our model with different parameters or targets. We give a brief
summary here; complete results are available on request.

As a first check, we altered the steady-state inflation rate, over a range between 0 and 4% of
annual inflation.!? As predicted, we found that this mainly affects the fraction of price changes
that are increases, with little effects on the other moments. This confirms our earlier argument for
focusing on the relative magnitudes as the relevant target to match.

We then considered the effects of different targets for the frequency of price changes (Nakamura

18 Nakamura and Steinsson (2006a), for example, consider a version of the model with cost-shocks only, in which
they calibrate 7 to match the share of intermediate inputs used in the production of final goods. In their main
calibration, they use v = 0.75. In addition, they have constant returns to scale, and set § = 4. In practice, v = 0.75
and 0 = 4 implies that k£ =, i.e. the returns to scale have no effect on the overall pricing complementarity. This is

still approximately true for our preferred calibration with 6 ~ 4.2 and a ~ 0.65.
"Based on the model targets, the targeted rate of inflation would have to be 4% (instead of the 2.2% directly

measured from the data) to match both the relative magnitudes and the relative frequencies of increases and decreases,

along with the overall absolute magnitudes and frequencies of price changes.
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and Steinsson, 2006b, for example, argue for a significantly longer duration of prices). When we
raise the duration of prices in the model, this turns out to have little to no overall effects on the
calibration results: a longer duration leads to a higher menu cost, conditional on changing the
price, but since price changes occur less frequently, the average menu cost remains roughly the
same magnitude, and hence our inference remains roughly the same.

We also considered changes in the calibration targets for the magnitudes of price changes, the
variability and magnitude of share changes, and the correlation between price and share changes.
These results are summarized in Table 6, in which we report a summary of calibration results when
we change some of the model targets. These alternative results roughly cover the spectrum of
targets that one could possibly support using a different measurement of the moments in the data,
as reported for example in Table 2. The correlation between prices and shares turns out to have little
effect on the resulting inference for pricing complementarities, but the magnitudes of price changes
and of share changes do: lowering the average magnitude of price changes to 5% may increase k as
far as 0.78. This gets us closer to the range estimate of Rotemberg-Woodford, but it does require
magnitude of price changes that are much lower than any existing micro estimates. Along the same
lines, we also observe that raising the volatility of shares lowers pricing complementarities, and
lowering this volatility would increase them, but such a change does not appear to be supported by
the data moments. It also worsens the model’s fit along some of the dimensions such as how well
it can match the asymmetries.

We therefore conclude that based on the measures that our data support, it appears close to
impossible to support product-level pricing complementarities that are much stronger than k =~ 0.6.
Lowering the magnitude of price and share fluctuations would lead to more pricing complementar-
ities, but the target values that would sustain quantitatively important pricing complementarities
appear to be implausibly small, given what we observe in our micro data.

These results also suggest that if we had instead targetted the monents of the data that do
not exclude temporary price markups (reported in Tables 1 and 2), our inferred firm-level pricing
complementarities would be even smaller, since sales are generally associated with above average
magnitude price and share movements, and with no asymmetry between price decreases and the
subsequent increases. By filtering out sales, we thus also err on the side of caution with regards to
our conclusion that firm level complementarities appear to be relatively weak.

Finally, we also conducted some sensitivity analysis with regards to the persistence parameters
p- The findings of this are summarized in Table 7, where it can be seen that changing the persistence

of shocks has little effect on our inference for complementarities - the only thing that is affected by
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the persistence parameters is the asymmetry between high and low relative prices.

Modelling small price changes: Midrigan (2006) observes that almost 30% of all price
changes are small in magnitude, i.e. by less than 50% of the median absolute price change. He
rationalizes this observation by the idea that some firms may change more than one price at once,
which essentially allows them to change some prices ‘for free’, and hence by small amounts, when
they decide to undertake other, more important price changes.

We can embed a simple version of this mechanism in our model by assuming that in each period,
there is a probability ¢ that firms get to change their price for free. When we reformulate our model
to take this possibility into account, we find that our inference of pricing complementarities remains
roughly the same, although they are now the result of a slightly lower demand elasticity and slightly
more strongly decreasing returns to scale (Table 8). The inferred selection effect, however, is lowered

more significantly; S is now approximated by

S=(1-gq) [/S,logl_((s’)g%(ﬁ(s') ;s') ds'—/ylogﬁ(s')gb(]_o (s') ;5’) ds’

Also, the model is no longer able to replicate the asymmetry between price increases and decreases.
The reason is that this alternative formulation of menu cost begins to resemble more closely a
Calvo model (in the extreme case, where F' becomes infinite, the model is exactly like a Calvo
model, since price changes will occur only when they are free). In a Calvo model, however, price
increases tend to be larger on average than price decreases, since the firms want to front-load prices
to preempt the risk of being committed to a price that is far too low after long periods without

price adjustment and positive steady-state inflation.

Alternative Shock distributions: Another important consideration in our calibration is
the role played by the distribution of idiosyncratic shocks. Midrigan (2006) emphasizes that the
distribution of price changes has fat tails, which isn’t consistent with our or Golosov and Lucas’
assumption of normally distributed shocks. When he recalibrates the Golosov-Lucas model with
cost shocks to allow for fat tails, the selection effect becomes much smaller, and adjustment delays
become larger.

However, the shape of the distribution may also be important for our identification of pricing
complementarities. Many of our findings are driven by the observation that pricing complementar-
ities give firms an incentive to respond to the idiosyncratic shocks they face by frequently adjusting
their prices by small amounts. A model with stronger complementarities thus requires much larger
menu costs, and larger shocks to account for the magnitude of price and share fluctuations observed

in the data.
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Notice that the shape of the distribution is directly relevant for the strength of this argument.
Relative to a normal distribution, Midrigan’s fat-tailed beta distribution leads to a much bigger
mass of near-zero shocks, and a larger number of really big shocks, but fewer mid-sized shocks,
relative to a normal distribution. By exposing the firms to fewer medium-size shocks, where the
returns to scale have their strongest impact on the firms’ desire to change prices at the margin, and
more very small shocks (where the firms would not adjust in any case) or very large shocks (where
the firms would always adjust), the range of shocks in which decreasing returns to scale give the
firms an incentive to respond to the idiosyncratic shocks with frequent small price changes becomes
less important.?®

The fat-tailed distributions of shocks proposed by Midrigan might therefore provide a plausible
argument not only why the selection effect ought to be smaller than what is suggested by our
calibration results, but also provide an avenue for why pricing complementarities may be stronger
than the ones we inferred here. In a future version of our paper, we will present results discussing
how the assumption of fat-tailed shocks alters not only the measured selection effect, but also the

inferred degree of pricing complementarities.

Alternative Demand Structures: In future drafts, we will also investigate the role of firm-
level pricing complementarities based on variation in desired markups due to scale-dependent elas-
ticities of demand, as originally studied in Kimball (1995) and more recently in Klenow and Willis
(2006). In the presence of demand elasticities that are declining in market shares, a positive idio-
syncratic cost shock leads to incomplete pass-through to prices, as desired markups fall. Moreover,
in response to a positive idiosyncratic demand shock, desired markups and thus prices increase.
Given these considerations, we expect that our main insights on the inference of firm level pricing
complementarities will still hold. However, we think that our price and quantity data will not

enable us to distinguish the different sources of firm level pricing complementarities.

8 Conclusion

In this paper, we have calibrated a menu cost model with pricing complementarities using micro

data. As our central innovation, we have sought to directly identify the pricing complementarities

20T illustrate this point with an example, imagine that the idiosyncratic shocks are Poisson, i.e. are zero with
high probability and non-zero, but with a wide distribution otherwise. Then, price changes occur only if non-zero
shocks occur and their magnitude is driven essentially by the magnitude of the shocks, irrespective of the pricing

complementarities.
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using micro data, and we have calibrated our model to match facts not only regarding prices,
but also regarding quantities at the product level. In the process, we have developed some ideas
about how a menu cost model with pricing complementarities may be used to resolve the central
identification problem of jointly inferring the elasticity of demand and marginal cost using micro
data on prices and quantities.

At present, our results suggest that pricing complementarities at the micro level are at best
moderate, and thus seem unlikely to generate large amplification effects for nominal business cycles
in the aggregate. This conclusion, however, is based on several explicit and implicit modelling
assumptions, and we therefore view it more like a first attempt at answering the question of how
important pricing complementarities are, rather than as a definite final answer.

In addition to the robustness checks and possible extensions that we have already discussed
above, there are at least two important caveats to our results. First, we abstracted from sector-
level or aggregate shocks in the model. Our data however suggest that these shocks may be fairly
large and induce important fluctuations in sectorial price and spending levels. Second, we had to
rely on price-quantity data from a very small and highly specific set of goods to draw inference on
important aggregate questions. Whether or not our conclusions apply to the aggregate economy
thus depends on how representative our data is. This question, however cannot be answered without
similar data sources from other sectors.

Future work will have to resolve how robust our conclusions are to reasonable departures from
our baseline model or alternative calibrations. Throughout the paper, we have sought to give a
clear discussion of what we regard as the limitations of our approach, and what one might have to

consider, if one were to confirm or disprove our main quantitative results.
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