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Abstract

Di erence in di erences methods have become very popular in applied work. This paper
provides a new method for inference in these models when there are a small number of policy
changes. This situation occurs in many implementations of these estimators. Identification
of the key parameter typically arises when a group “changes” some particular policy. The
asymptotic approximations that are typically employed assume that the number of cross
sectional groups, , times the number of time periods, , is large. However, even when N
or T is large, the number of actual policy changes observed in the data is often very small.
In this case, we argue that point estimators of treatment e ects should not be thought of as
being consistent and that the standard methods that researchers use to perform inference in
these models are not appropriate. We develop an alternative approach to inference under the
assumption that there are a finite number of policy changes in the data, using asymptotic
approximations as the number of non-changing groups gets large. In this situation we cannot
obtain a consistent point estimator for the key treatment e ect parameter. However, we can
consistently estimate the finite-sample distribution of the treatment e ect estimator, up to
the unknown parameter itself. This allows us to perform hypothesis tests and construct
confidence intervals. For expositional and motivational purposes, we focus on the di erence
in di erences case, but our approach should be appropriate more generally in treatment e ect
models which employ a large number of controls, but a small number of treatments. We
demonstrate the use of the approach by analyzing the e ect of college merit aide programs on
college attendance. We show that in some cases the standard approach can give misleading
results.



1 Introduction

Di erence in di erences methods have become very popular in applied work. These models

are typically quite easy to implement and to interpret. However, performing inference with

these models is often di cult. The goal of this paper is to address one particular aspect that

is likely to be very important in many implementations of these estimators. Identification

of the key parameter often arises when a group “changes” some particular policy. We use

the notation 0 to refer to the number of “treatment” groups that change their policy in

the data and 1 to refer to the number of “control” groups who do not change their policy.

The asymptotic approximations that are typically employed assume that the number of both

groups, 0 and 1 are large. However, even when the total number of groups is large, the

number of actual policy changes observed in the data is often very small. In this case, we

argue that point estimators of treatment e ects should not be thought of as being consistent

and that the standard methods that researchers use to perform inference in these models

are not appropriate. We develop an alternative approach to inference under the assumption

that 0 is finite, using asymptotic approximations that let 1 grow large. While our point

estimator of the treatment e ect parameter is not consistent, we can consistently estimate its

finite-sample distribution up to the true value of the parameter itself. This allows us to test

the hypothesis that this parameter takes on any given value and to construct a confidence

interval for it by ‘inverting’a test statistic. For expositional and motivational purposes, we

focus on the di erence in di erences case, but our approach is appropriate more generally in

treatment e ect models in which there are a large number of controls, but a small number

of treatments.

Our approach is related to a large body of existing work on di erence and di erence

models and inference in more general group e ect models.1 It is complementary to typical

approaches focusing on situations where the number of treatment and control groups, 0

and 1, are both large (e.g. Moulton, 1990) or both small (e.g. Donald and Lang, 2002).

Our approach is in the spirit of comparisons of changes in treatment groups to control

groups often done by careful applied researchers. Anderson and Meyer (2000) provide a

nice example of the type of question for which our methodology is particularly well suited.

They examine the e ect of changes in unemployment insurance payroll in Washington state

1See for example Angrist and Krueger (1999) and Meyer (1995) for overviews of di erence in di erence
methods. Wooldrige (2003) provides a concise survey of group e ect models.
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on a number of outcomes using a di erence in di erences approach with all other states

representing the control groups. In addition to standard analysis, they compare the change

in the policy in Washington state to the distribution of changes across other states during

the same period in time in order determine whether it is an outlier consistent with a policy

e ect. This application of exact inference is very much in the spirit of our approach. Our

approach can also be thought of as a generalization/formalization of other exact inference

type procedures like the ‘placebo laws’ experiments that Bertrand, Duflo, and Mullainathan

(2004) use to obtain critical values for hypotheses testing under a particular null hypothesis

about the distribution of the treatment indicator.2

There are so many examples of di erence-in-di erences-style empirical work that we do

not attempt to survey them. Bertrand, Duflo, and Mullainathan (2004) provide a nice

overview. However, we will mention a few examples for which our approach seems appro-

priate. As mentioned above, Anderson and Meyer (2000) look at changes in Washington

state using other states as controls. Another example is the e ects of merit aid programs

on college attendance. For example, in some of her specifications Dynarski (2004) identifies

the e ect using a policy change from a single state (Georgia). Finally, Gruber, Levine, and

Staiger (1999) use comparisons between the five treatment states that legalized abortion

prior to Roe v. Wade versus the remaining states.

One can also find many studies which use a small number of both treatments and controls.

However, if there exist group×time e ects, the usual approach for inference is inappropriate.

An alternative sample design is to collect many control groups. One could then use our

methods for appropriate inference. For example Card and Krueger (1994) examine the

impact of the New Jersey minimumwage law change on employment in the fast food industry.

Their sample design includes only one control group (eastern Pennsylvania), but they could

have collected data frommany “control states” to contrast with the available treatment state.

Another famous example is Card (1990) who examines the e ect of the Mariel Boatlift on

2Bertrand, Duflo, and Mullainathan (2004) concern themselves primarily with serial correlation and
mostly use a standard asymptotic approach, but at one point also discuss an exact test using a ‘placebo
laws’ experiment. The placebo laws experiment of Bertrand et. al. recovers the exact distribution of a
treatment e ect parameter (conditional on state and time fixed e ects) for group-time aggregates under
a particular null hypothesis. Our thought experiment is somewhat di erent as we use the control groups
to obtain a consistent estimate of the distribution of a treatment e ect parameter, which is then used to
conduct small sample inference for the treatment group. Our setup allows for a richer set of models in terms
of regressors and unobservable structure;special cases of our setup will result in inference analogous to that
obtained via the Bertrand et. al. simulation.
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the Miami labor market. He uses four comparison cities as controls, but could have used

many additional cites.

The closest analog to our approach to inference in econometrics is work on testing for

structural breaks. In particular, work on testing for end-of-sample stability/structural breaks

such as that by, e.g., Dufor, Ghysels, and Hall (1994) and Andrews (2003) is quite related

to our basic approach. These authors consider the problem of testing for a structural break

over a fixed and perhaps very short interval at the end of a sample, analogous to our 0

observations on policy changers. They develop tests that are asymptotically valid as the

number of observations before the potential break point grows, holding fixed the number of

points after the break point. This is analogous to our taking large 1 limits with fixed 0

Asymptotically valid critical values for these tests rely on using the time span before the

potential break to get consistent estimates of the distribution of a test statistic formed from

data during the fixed end-of-sample interval. Andrews accomplishes this via a procedure

akin to subsampling and Dufor, Ghysels, and Hall (1994) use semi-nonparametric density

estimators. Again, our method for constructing interval estimates is roughly analogous in

that we use consistent model estimates obtained from the 1 non-changers to characterize

the small-sample distribution of the treatment parameter.

Basic Model and Problem

We consider a case in which we have repeated cross section data3 from di erent groups (e.g.

U.S. states) and time periods. To give the main intuition for the result consider a simple

version of the model with an individual with outcome who is in group ( ) and observed

at time ( ) We model his outcome as

= ( ) ( ) + ( ) + ( ) + ( ) ( ) + (1)

where is the policy variable of interest.4 The parameter is a fixed e ect for group

= 1 0 + 1 that will be common to group across time, is a time e ect that is

common across all groups but varies across time = 1 , is a group×time random

e ect that varies across groups and time, and is an individual specific error term. We

assume that is i.i.d. with ( ) = 0and that it is independent of all other terms in the

3Extension of these results to panel data is straight forward. We assume throughout that we are using
cross sectional data to economize already complicated notation.

4We focus on linear models, but extensions to nonlinear models seem feasible combining the approach
here with Athey and Imbens (2002).
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model. Let ( ) be the set of individuals observed in group at time and | ( )|

denote the number of individuals in this set. We assume throughout this paper that is

fixed. The primary goal is to estimate the treatment parameter

Initial work using this model ignored which leads to the classic di erence in di erences

estimator. In this case one can obtain a consistent estimate of using only two groups and

two time periods. In particular assume that

0 for all (2)

and denote the two groups = {0 1} and two time periods = {0 1} Suppose further

that the policy variable is binary, and for group 0 there is no change in the treatment

( 00 = 01 = 0) but for group 1 the treatment is enacted between the periods zero and one

( 10 = 0 11 = 1) We define the notation and to denote the averages of and

across all the individuals in group j at time t, (i.e. = 1
| ( )|

P
( ) ). The classic

di erence in di erences estimator is:

b
¡

11 10

¢ ¡
01 00

¢

= ( + 1 + 1 1 0) ( 0 + 1 0 0) + ( 11 10) ( 01 00)

= ( + 1 0) ( 1 0) + ( 11 10) ( 01 00)

= + ( 11 10) ( 01 00)

The group and time e ects of course drop out due to the di erencing, with large samples

within each group/time the terms vanish, and if (2) holds b is a consistent estimator of

as | ( )| gets large for each group/period.

In the past decade or so, researchers have recognized that (2) is an extremely strong

assumption and they have tried to account for e ects in estimation (see e.g. Moulton,

1990). It is easy to show that two group/two time period di erences in di erence is not

consistent without assuming (2). In that case

b = + ( 11 10) ( 01 00)+

( 11 10) ( 01 00)

+ ( 11 10) ( 01 00)

The term involving ( 11 10) ( 01 00) does not vanish as the number of observed

individuals at each group time period increases. Our focus is on analogs of this situation
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where a fixed number of groups with policy changes imply that the randomness due to

cannot be eliminated by cross-group averaging.5

Many empirical economists recognize this problem and augment their ‘natural experi-

ment’ by collecting data from additional groups that do not experience treatment changes

and/or additional time periods. For simplicity, assume that only the first group experiences

a treatment change after period so the binary treatment indicator for group one can be

written as:

1 = 1( )

(where 1(·) is the indicator function) and for all other groups = for all and Also

to keep the exposition simple, assume that all cell sizes are the same (| ( )| = ) Note

that for control group could be all zeros or all ones. Consider estimating the model

(1) by using fixed e ects regression, controlling for group and time e ects through dummy

variables. Let b be the regression estimate of It is straight forward to show that this

can be written as a di erence of di erences

b = +

"
1 X

= +1

( 1 + 1 )
1 X

=1

( 1 + 1 )

#
(3)

Ã
1

( 1)

X

=2

1

( )

X

= +1

¡
+

¢ 1

( 1)

X

=2

1 X

=1

¡
+

¢
!

The terms involving will all vanish as within-group sample sizes grow (i.e. ) If

( | ) = 0 then this yields an unbiased estimate of However, b is not consistent as

the number of groups grows since the term in brackets approaches
³

1
P

= +1 1
1
P

=1 1

´

as either or get large.

This problem is rarely acknowledged in empirical work and researchers often ignore it

when calculating standard errors. In practice, if the error terms are truly normally distrib-

uted, standard methods will yield the correct standard errors (if degree of freedom correc-

tions are used, see Donald and Lang, 2001). However, if the distribution of is su ciently

di erent from normal, the standard errors may be very misleading.

The example presented in equation (3) considered the case of a single treatment group.

Clearly the same problem holds when the number of treatment groups is small.6 The goal of

5Of course with access to many groups that experience a policy change, averaging across groups can yield
a consistent estimator of under suitable assumptions about

6Clearly the precise sample size that constitutes “small” is an empirical question that is beyond the scope
of this paper.
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this paper is to show that even though one can not obtain consistent estimates of in these

cases, it is still possible to perform inference. We assume that there are a finite number of

policy changes in the data 0, but approximate the distribution of our estimator of taking

limits as the number of control groups ( 1) gets large.

The remainder of this paper is organized into four sections. In Section 2, we present

regression models for both group and individual-level data. In each case we show how to

perform inference about the parameter Extensions to limited dependent variables are

discussed in Section 3. Section 4 of the paper provides an illustrative example application

estimating the e ect of merit aid programs upon college attendance. Finally, Section 5 o ers

brief conclusions.

2 Models

This section presents two models. In the first, we assume that we have one observation per

group×time cell (e.g. data that is collected at the state×year level). In the second, we allow

multiple observations per group×time. For the second model we focus on approximations in

which the number of individuals in a group×time cell remains fixed, suitable for applications

where at least some of the groups are small.

2.1 Model 1

We start by discussing the analog of equation (1) defined at the group×time level and

allowing for regressors. We assume that

= + 0 + + + (4)

Note that we no longer restrict to be binary.

The crucial assumption for di erence in di erences is that changes in are unrelated

to imposition of the treatment. In order to perform inference in our case, we also assume

that ( 1 ) is independent and identically distributed across groups. Within a group,

we allow arbitrary correlation over time.

Assumption 1.1
¡¡

1 1

¢ ¡ ¢¢
is independent and identically distributed across

units;
¡

1

¢
is independent of( 1 ) and ( 1 ) and has a bounded den-

sity and bounded support; and all random variables have finite second moments.
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The key problem motivating our approach is that for many groups there is little variation

in . Following the notation in the introduction, define 0 as the number of groups for

which changes during the sample period and let 1 represent the number of remaining

groups. We will refer to the 0 changers as treatment groups and the remaining non-changing

groups as controls. Without loss of generality, define the index so that the = 1 0

represents the observations for which changes at some time and = 0+1 0+ 1

represents the observations for which is unchanged for the whole sample. Thus if 0

then for any = 1 = 1. We treat 0 and as fixed, taking limits as 1 grows

large. We are assuming throughout that at least one group changes its policy so that 0 1

For any random variable define

=
1X

=1

=
1

1 + 0

1+ 0X

=1

=
1 1

1 + 0

X

=1

1+ 0X

=1

f = +

The essence of ‘di erence in di erences’ is that we can rewrite regression model (4) as

e = e + e 0 + e (5)

One can then estimate by regressing e on e and e Let b and b denote the OLS
estimates of and in (5).

We need an assumption to guarantee that after taking out time and fixed e ects, e is

not collinear.

Assumption 1.2

1

1 + 0

1+ 0X

=1

X

=1

e e 0

where is finite and of full rank.

In Proposition 1.1 we show that OLS yields a consistent estimator of and we derive

the limiting distribution of b
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Proposition 1.1 Under Assumptions 1.1-1.2,

b

(b )

P
0

=1

P
=1

¡ ¢ ¡ ¢
P

0

=1

P
=1

¡ ¢2

as 1 .

In the expression above,
¡ ¢

appears rather than the original residual e This results

because both and converge in probability to zero as 1 gets large.

The fact that b is not consistent does not prevent us from conducting inference about

the true value of The di erence between b and depends on two variables: and
¡ ¢

The are observable and the distribution of
¡ ¢

can be estimated from

the control groups, 0. Therefore, we can estimate the asymptotic ( 1 ) conditional

distribution of (b ) given for the treatment groups. We state this as Proposition 1.2

below. Estimation of the distribution of b allows hypothesis testing on and construction

of confidence intervals for (b )

To see how the distribution of
¡ ¢

can be estimated, consider estimation of the

residual for a member of the control group (i.e. 0),

e e 0 ˆ = e 0 (ˆ ) +
¡

+
¢

¡ ¢

hence the distribution of
¡ ¢

is trivially identified using residuals for groups ˙ 0

From this it is straight forward to show how to estimate the asymptotic distribution of

b up to Let

( ) plim
1

Pr((b ) | { = 1 0 = 1 })

We will estimate ( ) with the analogous empirical distribution of residuals from the control

groups. For the 0=1 case we can estimate ( ) using

b ( ) 1

1

0+ 1X

= 0+1

1

P
=1

¡
1 1

¢ ³e e 0 ˆ
´

P
=1

¡
1 1

¢2

More generally

b ( )
µ
1

1

¶
0 0+ 1X

1= 0+1

0+ 1X

0
= 0+1

1

P
0

=1

P
=1

¡ ¢ ³e e 0 ˆ
´

P
0

=1

P
=1

¡ ¢2
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Proposition 1.2 Under Assumptions 1.1 and 1.2, b( ) converges uniformlyto ( )

To see the usefulness of this result, first consider testing the null hypothesis

0 : = 0

conditioning on the observedsequence = 1 0 = 1 We coulddefine an ap-

proximate 95% acceptance region by
³
b
1
b
2

´
as the maximum value of lower andminimum

value of upper such that

b ( upper 0) 0 975

b ( lower 0) 0 025

Then we reject if b is outside
h
b
1
b
2

i
Under the null hypothesis, the rejection probability

will converge to 5% as 1 .We define an approximate confidence interval of as the

set of 0 for which we do not reject the null hypothesis.As 1 the coverage probability

of this interval will converge to 95%.

2.2 M odel2

Nowwe augment the model to allow for individual data.Since di erence-in-di erences meth-

ods are most commonly usedwith repeatedcross-section data, we let indexan individual

who is observedwithin a single group at a single time period.As in the introduction, we

use the notation ( ) to represent the groupto which individual belongs, and ( ) to repre-

sent the time periodin which we observe individual W e also continue to assume that the

data come from repeatedcross sections so that we only observe individual during one time

period.We see no reason why extension to panel data wouldbe problematic.Our model is

analogous to (1)with the addition of regressors:

= ( ) ( ) +
0 + ( ) + ( ) + ( ) ( ) + (6)

Given that the model is definedsomewhat di erently than in the previous section, we need

to modify the assumptions slightly:

Assumption 2.1
©

{ : ( )}
ª
=1
is i.i.d. across groups is i.i.d. within group

for all and and allsecond moments exist. Furthermore the distribution of
¡

1

¢
is

independent of( 1 ) and { : ( )} =1 and has a bounded densityand bounded

support.
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We add the additional assumption that

Assumption 2.2 is i.i.d. across individuals and is independent of ( ) and

( ) = 0

We use notation analogous to the above for Model 1. First, we modify the notation for

averages across time within a group. For a generic variable define

=

P
=1

P
( )P

=1 | ( )|

Since in general, the number of individuals varies across ( ) cells, derivation of the

di erence in di erences operator requires additional notation. We need to formally define

the full set of indicators for groups { } 0+ 1

=1 and time periods, { } 1
=1 so that

1( = ( )) (7)

1( = ( )) (8)

Further define and as the vectors of these dummy variables,

£
1 2 + 1

¤
0

(9)
£

1 2 1

¤
0

(10)

Then for any individual-specific random variable let e be the residual from a linear

regression of on { } 0+ 1

=1 and { } 1
=1 That is

e
¸
0 0+ 1X

=1

X

=1

X

( )

¸ ¸
0

1
0+ 1X

=1

X

=1

X

( )

¸

We need a regularity condition to guarantee enough degrees of freedom that regressions

upon time and group indicators can be run.

Assumption 2.3
P

0+ 1

=1

P
=1

P
( )

0

P
0

=1

P
=1 | ( )|

P
0+ 1

=1

P
=1

P
( )

0

³P
0+ 1

=1

P
=1

P
( )

0

´ 1P
0+ 1

=1

P
=1

P
( )

0

P
0

=1

P
=1 | ( )|

where is of full rank.
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Under this condition, we can rewrite the model as:

e = e
( ) ( ) + e 0 + e ( ) ( ) +e (11)

We estimate and in equation (11) by OLS, letting b and b denote the corresponding
estimators. This requires the usual OLS rankcondition stated as

Assumption 2.4 P
1+ 0

=1

P
=1

P
( )

e e 0
P

1+ 0

=1

P
=1 | ( )|

where is finite and of full rank.

When each ( ) cell has a large sample, inference in model (11) can be conducted in

essentially the same manner as for Model 1 since averaging within time×group cells e ectively

eliminates e . For the sake of completeness, in the Appendix, we present a consistency result
for b and the distribution of b when | ( )| and 1 grow.

However, we focus on the fixed-| ( )| case because we anticipate that it will be more

appropriate for a majority of applications. This is because large | ( )| approximations

must work in all group time period cells-not just on average—in order for the resulting

approximation for the distribution of (b ) to perform well. There will routinely be

substantial heterogeneity in | ( )| across groups, e.g. states, with the smallest | ( )|

perhaps best considered a small rather than large sample. For example, in our illustrative

example application using states as groups, | ( )| ranges from 383to 15. We characterize

the fixed | ( )| case in the following manner:

Assumption 2.5 For each = 1 0 + 1, | ( )| for = 1 is fixed and finite.

In addition, (| ( )| = 1 ) is independent and identically distributed across for

0 and jointly independent of and

Note that we have assumed that | ( )| is i.i.d. for 0 but we allow the distribution

of | ( )| for 0 to di er from the distribution of | ( )| for 0 For example, if

larger states were likely to implement policy changes earlier, the distribution of | ( )| for

0 would stochastically dominate the distribution of | ( )| for 0

Proposition 2.1 provides a statement of consistency for b as 1 grows large and the asymp-

totic distribution of (b )

11



Proposition 2.1 Under Assumptions 2.1-2.5,

b

(b )

P
0

=1

P
=1

³P
( )

¡ ¢
( + )

´

P
0

=1

P
=1 | ( )|

¡ ¢2

as 1

Analogous to model 1, the expression for (b ) involves ( + ) rather than
¡
e ( ) ( ) +e

¢
To see why, consider the regression of ( ) ( )+ on group and time indicators.

The coe cient on each group indicator converges to
¡

+
¢
while the coe cients on the

time indicators converge to zero since these random variables both have expectation zero.

A number of di erent options are available for estimating the distribution of (b )

In principle, with enough groups, one could simply estimate the distribution of residuals

conditional on the values of | ( )| for the treatment states. We suspect that this procedure

would not work well in most applications since the number of control groups is likely not

large enough for this to be a useful approximation. Instead we take advantage of our model’s

structure to estimate the distribution of components of ( + ).

More specifically define

0 (12)

=
£

( ) ( ) + ( ) + ( ) + ( ) ( )

¤
+

( ) ( ) +

Note that since we are using control groups only, the term in brackets is constant across

individuals within the same time and group and is independent of Our goal is to simulate

the distribution of ( ) and ( ) Note that since
¡

( ) ( ) + ( )

¢
does not vary

across time within a group and does not vary across groups, knowledge of the joint

distribution of is su cient for knowledge of ( ) If we have a consistent estimate

of the distribution of we can consistently estimate the distribution of ( )

Thus our goal is to obtain consistent estimates of the distribution of and the dis-

tribution of This is a standard deconvolution problem. We will first show that these

distributions are identified making use of a well known result. We report Theorem 2.1.1 in

Prakasa Rao (1992) which he attributes to Kotlarski (1967) as Theorem 2.2.

12



Theorem 2.2 (Kotlarski, Prakasa Rao) Suppose that 1 2 and 3 are independent

real valued random variables. Define

1 = 1 3

2 = 2 3

if the characteristic function of ( 1 2) does not vanish then the joint distribution of ( 1 2)

determines the distributions of ( 1 2 3) up to a change of the location.

To apply the theorem we need one additional assumption.

Assumption 2.6 The characteristic functions of and do not vanish.

Given that, we can show identification of the distribution of b .

Proposition 2.3 Under Assumptions 2.1-2.6, the distribution of (b ) is identified from

knowledge of and | ( )| from the treatment groups and the joint distribution of for

the control groups.

Many options are available to estimate the distributions of and . In this section

we present one possible estimator which is perhaps the most common way to estimate this

type of mixture model in economics. We derive a sieve estimator assuming that ( 1 )

has finite support. This approach is most commonly associated with Heckman and Singer

(1984). We propose to estimate the model in two steps. First we run the fixed e ects model

(11). We can construct the residual for each individual in the control set

b 0b (13)

= 0

³
b
´
+ ( ) ( ) +

Our goal is to separately estimate the distribution of from We parameterize to take

on 1 values with each value taking the value
( 1) with probability

( 1)
1 for 1 = 1 1

We let be a mixture of normals that take on 2 values with mean and standard deviation

( ( 2) ) with probability
( 2)
2 for 2 = 1 2 The objective function is

0+ 1X

= 0+1

log
1X

1=1

Y

=1

Y

( )

2X

2=1

Ã
b ( 1) ( 2)

!
( 1)
1

( 2)
2 (14)
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where is prespecified. Asymptotically we allow 1 and 2 to grow with the sample size

which is why we interpret this model as a sieve model. Showing consistency of this estimator

is a straightforward application of sieve methodology, but involves introducing much new

notation. Since this is only one of numerous estimation options and to avoid introducing

this notation in the text, we leave the details of the estimation to the Appendix Section

A.7 where we show this provides a consistent estimator of the two distribution functions.

With consistent estimates of distributions of and the in hand, we can simulate the

distribution of(b ) foranyhypothesized value of .

3 Empirical Example: The E ectofM erit-Aid Pro-

gramson SchoolingDecisions

3.1 M erit-Aid Programs

In the last fifteen years a numberofstates have adopted merit-based aid programs. These

programs are run at the state level and provide subsidies fortuition and fees tostudents

whomeet certain merit-based criteria. The largest and probablythe best known program is

the Georgia HOPE (HelpingOutstandingPupils Educationally)scholarshipwhich started

in 1993. This program provides full tuition as well as some fees toeligible students who

attend in-state public colleges.7 Eligibilityforthe program requires maintaininga 3.0grade

point average duringhigh school. A numberofprevious papers have examined the e ect of

HOPE and othermerit based aid programs.8 Given the large amount ofprevious workon

this subject, we leave full discussion ofthe details ofthese programs tothese otherpapers

and focus on ourmethodological contribution.

Ourworkmost closelyrelates toDynarski (2004)byfocusingon the e ects ofHOPE

and othermerit aid programs on college enrollment of18 and 19yearolds usingthe October

CPSfrom 1989-2000. However, ouranalysis di ers from hers in several ways. Perhaps most

importantly, we use all states as controls while she just uses those from the South. Ofcourse

herpaperis a more complete empirical analysis while ourprimarygoal is todemonstrate

the use ofourmethod.

Duringthe 1989-2000time period, ten di erent states initiated merit-aid programs. W e

7A subsidyforprivate colleges is alsopart ofthe program.
8Examples include Dynarski (2000, 2004), Cornwell, M ustard, and Sridhar (2003), Cornwell, Lee,

and Mustard, (2003), Cornwell, Leidner, and Mustard (2003), Bugler, Henry, and Rubenstein (1999),
Berker(2001), Buglerand Henry(1997,1998), Henryand Rubenstein (2002).
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use two specifications with the first focusing on the HOPE program alone. In this case,

we ignore data from the other nine “treatment”states and use 41 controls (40 states plus

the district of Columbia). In the second case, we study the e ect of merit-based programs

together and use all 51 units.9 The dependent variable in our model is a dummy variable

representing whether the individual is currently enrolled in college. Given that we obtain

multiple observations of individuals in the same state at the same time, Model 2 is appro-

priate. However, since our dependent variable is binary we modify our approach somewhat

to deal with binary dependent variables. We discuss this approach in section 3.2. For esti-

mation we assume that the number of individuals in a state×year is large and present these

results in section 3.3. In section 3.4 we treat group size as fixed. We control for race and

gender throughout.

3.2 Limited Dependent Variable Models

Since our college attendance dependent variable is discrete, the analysis above can not be

applied directly. In this Subsection, we discuss an extension of Model 2 to handle limited

dependent variables.

We redefine the model letting the regression equation define a latent variable and

where the researcher observes only an indicator of its sign:

= ( ) ( ) +
0 + ( ) + ( ) + ( ) ( ) + (15)

= 1( 0) (16)

For computational simplicity, we assume that the distribution of is known with logistic

distribution . We first discuss the natural extension to the case in which | ( )|

We then turn to the discussion of the more di cult case where | ( )| is finite.

Consider the case in which | ( )| . As in section 2.2, define

= + + +

so that it incorporates all of the group×time variation. Then we can write

Pr( = 1| ( ) ( )) = ( 0 + )

9Note that these merit programs are quite heterogeneous. This exercise does not necessarily mean that
we are assuming that the impact of all of these programs is the same. One could interpret this as estimation
of a weighted average of the treatment e ects. Alternatively, we can think of this as a test of the joint null
hypothesis that all of the e ects are zero. Our methods could be extended to incorporate heterogeneous
e ects in which case one could look at complicated joint tests of the e ects of the programs.
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Since | ( )| this is a standard discrete choice model and we can obtain consistent

estimates of and for each and by maximum likelihood where can be estimated as

the coe cient on group×time dummy variables (a strategy analogous to that in Amemiya,

1978). Alternatively, we could relax the assumption that is logistic and use a semiparamet-

ric estimator. Having obtained consistent estimates of we are essentially in the conditions

of Model 1 and can apply the methodology in that Section using as the dependent vari-

able.

When | ( )| is assumed fixed, we can no longer obtain consistent estimates of in

this model and thus can not use the Model 1 methodology. To complicate things further,

the fixed e ects cannot be di erenced out in this nonlinear model. Typical solutions to

the presence of fixed e ects like Chamberlain’s (1980) conditional logit model or the fixed

e ects maximum score estimator (Manski, 1987) could be used to estimate but this is not

enough to perform hypothesis tests on which essentially require estimation of the joint

distribution of
¡

1

¢

Thus, in order to obtain estimates of the distribution of the error term we use somewhat

stronger assumptions. We have defined so that

= 0 + ( ) ( ) + (17)

and we assume that for the control groups, ( ) ( ) is independent of .10 As long as the

support of 0 is su ciently large we can identify the joint distribution of ( 1+ + )

up to scale. Given that this joint distribution is identified for various values of | ( )|

one can use an argument analogous to that in the proof of proposition 2.5 to show how to

identify the marginal distribution of and the joint distribution of ( 1 ).11

Given knowledge of and the distribution of and for any we can simulate the

conditional distribution of given and ( ) ( ) This allows us to identify the distribution

of any test statistic that is a function of observed variables, up to the parameter . Thus,

we can obtain interval estimates by ‘inverting’a test statistic. First, we must choose a test

statistic that depends on ( ( ) ( )) Since we have estimated a model that gives us the

10Note that is part of so that it seems as if we are assuming that is independent of In our
example this is not the case because = 0 for all of the control states (in all time periods). In other cases,
one may want to modify this assumption to allow for dependence.
11Cameron and Taber (1998) discuss identification of panel data logit models with unobserved heterogene-

ity. This model is more complicated in that is a vector, but this does not substantially complicate the
analysis.
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distribution of conditional on and ; we can simulate the distribution of the test

statistic under any null hypothesis = 0

The question then becomes which test statistic we should use. A natural choice would

be the di erence-in-di erence parameter from a linear probability model. That is we can

estimate the linear regression model

= ( ) ( ) +
0 + 0

( ) +
0

( ) + (18)

which has group e ects and time e ects. Here we use di erent notation than in the models

above because the “true” structural model is (17) while (18) represents a “reduced form”

regression equation for which the parameters are defined by the linear projection. We can

then use the estimated value of (call it b) as the test statistic itself. Given our estimated
model and a null hypothesis on , we can simulate the distribution of b While the estimator
is not a standard fixed e ect estimator, it still embodies the central idea behind di erence

in di erences;we would reject the null hypothesis that = 0 when the di erence between

the pretreatment and posttreatment outcomes is substantially di erent than what one might

predict based on variation from the control sample.

A number of di erent options exist for estimation of (18). For our application the most

convenient was to first run the regression model using only the control states to produce

consistent estimates of and (call these estimates b and b ). We then estimate by

running a (state) fixed e ect regression of
³

0b 0

( )
b
´
on ( ) ( ) The advantage of

this approach is that when we simulate the distribution of the test statistic we only need to

simulate the error distribution for the treatments which is all that we need in the second

stage of this procedure.

3.3 Confidence Interval Estimation under Standard Approach and

Large Group Sizes

We compare three estimation approaches in this subsection: linear probability estimators

with both population weighting across groups and equal weighting across groups, and a logit

estimator. For each estimator, we compare interval estimates for the treatment parameter

using our methods to those obtained under the typical approaches allowing clustering by

group and group-by-time.

To obtain population-weighted estimates, we estimate equation (5) via OLS using all

34,902 observations. These results are presented in the first column of Table 1. The de-
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pendent variable is a dummy variable for college enrollment and the sample only includes

individuals aged 18 and 19. The point estimates suggests that the HOPE scholarship in-

creased schooling enrollment of students who live in Georgia by about seven percentage

points. Interval estimates of the HOPE e ect are presented in the second panel of the table.

The first clusters by state and year, allowing the error terms of individuals within the same

state and year to be arbitrarily correlated with each other. One can see that the coe cient is

highly significant. We next cluster by state which allows for serial correlation in Bertrand

et. al (2004) discuss a case in which accounting for serial correlation can lead to standard

errors to increase, but in our case we find the opposite. The standard errors fall substantially

when one clusters by state. Clearly one should be worried about the asymptotic assump-

tions underlying these routine confidence interval estimates. The key assumption justifying

them is that the number of states that change status is large, but only one state (Georgia)

contributes to the estimate of the treatment e ect.

The estimated confidence intervals using our method are presented in the last row of

Column 1. These confidence intervals are formed by inverting the test statistic (ˆ 0)

using our large-sample approximation for its distribution. (For details see Appendix Section

A.4). These confidence intervals are substantially di erent from those obtained with typical

methods. The confidence interval increases by a factor of about 3 and the coe cient is not

significant. To see why, in Figure 1 we display the estimated distribution of (b ) under

the null hypothesis that the true value of is zero (after using a kernel smoother). This

distribution is estimated from the other 41 states. It appears very di erent from normal so

it is not surprising that the asymptotic approximation is very di erent.

In the second column we present linear probability estimates resulting from a commonly

used two-step approach (Amemiya 1978). In the first stage we regress schooling on the

individual X’s and on the full interacted state×year dummies. In a second stage we regress

the predicted state×year dummies on the HOPE indicator controlling for state dummies

and year dummies (separately). These results are presented in the second column and are

remarkably close to the first. The di erence between these estimates and those in the first

column is that the states are equally weighted while in the first column they are population-

weighted.

Finally we present a logit version of the model. The estimates in the third column were

obtained in exactly the same manner as in the second column, except that in the first stage
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we run a logit model of the school dummy on our 0 and state×year dummy variables.

In the second stage we once again regress the state×year dummies on the hope indicator

controlling for state dummies and year dummies (separately). Thus the predicted parameter

has the interpretation of a logit index. The pattern is very similar. In all three cases the

HOPE variable becomes marginally insignificant when we use our approach even though

the variable is highly significant using standard methods. To display the magnitude of the

program impact we calculate a 95% confidence interval for changes in college attendance

probability for a particular individual. We consider an individual (without the treatment)

whose logit index puts his probability of college attendance at the sample unconditional

average attendance probability of 45% (i.e. an individual with a logit index of -.20). The

bracketed intervals reported in column three are 95% confidence intervals for the change in

attendance probability for our reference individual.12

In Table 2 we present results estimating the e ect of merit aid using all ten states who

added programs during this time period. The format of the table is identical to Table 1.

There are a few notable features of the table. First, the weighting matters substantially as

the e ect is much smaller when we weight all the states equally as opposed to the population

weighted estimates. Second, in contrast to Table 1, the confidence intervals are quite similar

when we cluster by state compared to clustering by state×year. Most importantly our

approach changes the confidence intervals substantially, but less dramatically than in Table

1.

3.4 Confidence Interval Estimation assuming Small Group Sizes

We next turn to the case in which | ( )| is fixed. Given that we have 34,902 observations

one may wonder why we are worried about the number of individuals in the sample not being

substantially high. The problem is for the asymptotic approximation in Model 2 to work

well we need that the asymptotic approximation works well in all states×time periods not

just on average. The largest is California in 1991 with 383 people while the smallest is New

Hampshire in 1992 with 15 people. One very well might expect that individual components

contribute a substantial amount to the variance of the state component for the smaller states.

This would lead the variance of the e ect to be substantially larger for the smaller states

12These confidence intervals for changes in attendance probabilities are calculated directly from the 95% CI
for Specifically, when the CI for is [1 2] we report an interval for the change in predicted probability
for our reference individual of: ( ( 2+ 1) 45%) to ( ( 2+ 2) 45%).
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than the larger ones invalidating the previous exercise.

The deconvolution we discuss in Section 2 required that be independent of This is

not possible in a linear probability model since the dependent variable must be one or zero.

We instead use logit model (15)-(16).

We perform inference in this model in three stages. First we obtain consistent estimates of

using Chamberlain’s (1986) fixed e ect logit model using state×year fixed e ects. Second

we estimate the joint distribution of e up to a location normalization. Finally, after choosing

a test statistic, we simulate the distribution of the test statistic from the estimated model.

The first stage is straightforward, so we now describe the second. We use a Heckman and

Singer (1994) style nonparametric maximum likelihood method analogous to that in (14).

The Log-likelihood takes the form

0+ 1X

= 0+1

log
X

=1

Y

=1

Y

( )

( 0b + )
³
1 ( 0b + )

´1

We maximize this likelihood in terms of the and parameters.In practice we use =13

and we have 12years of data.13 That yields 168parameters.14 Naturally,local optima are a

problem in these cases so we randomlyselected manydi erent startingvalues to search for

a global optima.15 Given the number of parameters and their limited interpretation we do

not report these numbers.

The next goal is to obtain a confidence interval for We argue in section 3.2 that

a natural choice for a test statisticis the coe cient in the di erence in di erence model.

Followingthe discussion there,we can write the test statisticas

=

P
=1

P
0

=1

P
( )

e
( ) ( )

³
0b 0

( )
b
´

P
=1

P
0

=1

P
( )

e2
( ) ( )

We first estimate usingthe actual data.

Once we have estimated the data generation model,we can use it simulate the distribution

of under the null hypothesis = 0.Note that will varyin these simulations both because

of heterogeneityin and because | ( )| is finite.We reject the null hypothesis if is less

than the 0.025quantile or greater than the 0.975quantile of this simulated distribution.The

confidence intervals is the set of parameters for which the null hypothesis is not rejected.

13We experimented with alternative values,and the results are not sensitive to the choice.
14That is 13×12 parameters,and 12 parameters (since probabilities must add to one).
15Manyin this case was 5000.We found that this procedure ran surprisinglyfast takingonlyabout two

days to complete all 5000optimizations on a linux machine.
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In Table 3 we present confidence intervals constructed using this approach. The results

are similar, but not identical to those in Tables 1 and 2. The confidence interval for the

HOPE program is slightly bigger than those in the third column of Table 1. The interval for

all merit programs is similar in size but skewed slightly to the left of that in Table 2. For

this treatment e ect, a one sided test probably is perhaps most interesting. At the 5% level

a one-sided test rejects the null hypothesis of no e ect.

One may worry that the model we have estimated is too stylized or too flexible to ap-

proximate the data well. To examine this, we tried the following experiment somewhat like

the placebo law used in Bertrand, Duflo, and Mullainathan. We use all 41 of our control

states and construct the test statistic that we used for Georgia for testing the null hypothesis

that = 0. That is, for each of the 41 control states in turn, we act as if the HOPEprogram

were operating in the state after 1993 and used the remaining 40 states as controls. For

each alternate pretend treatment state we calculate the p-value for the test that = 0 using

our method. Since this null hypothesis is true by construction, these p-values should have

a uniform [0,1]distribution. We plot the distribution of -values in Figure 2. We present

a histogram of the values and along the horizontal axis plot the actual p-values. The fit

of the model looks surprisingly strong in the sense that the p-values are spread throughout

the distribution. This logit approach with this test statistic is not the only way to obtain

confidence intervals for and is almost certainly not the most e cient, but it appears to

work well.

4 Conclusions

The main goal of this paper is to construct a method to perform inference for di erence-

in-di erences models when the number of policy changes observed in the data is small. We

argue that point estimates of treatment e ects should not be thought of as being consistent

and that the standard methods that researchers use to perform inference in these models

are not appropriate. The main contribution of our work is to show how to perform inference

under the assumption that there are a finite number of policy changes in the data, using

asymptotic approximations as the number of control groups gets large. In this case, we

cannot obtain a consistent point estimator for the key parameter but are able to consistently

estimate its distribution, up to the unknown parameter itself. This allows us to perform

inference on the key parameter and construct confidence intervals.
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We develop this methodology in a number of di erent cases. Model 1 considers a regres-

sion model in which one observes group×time level data. Model 2 extend the idea to cases

in which we observe individual level data. Within Model 2 we focus on the case in which

the number of observations in a group/time cell is fixed.

We demonstrate the methodology by applying it the study of the e ects of merit-aid pro-

grams on schooling. We think this application is a good example of a situation with a few

treatment groups changing policy and many controls with unchanged policies. To accom-

modate our particular example, we extend the methodology to a logit model. Our empirical

results suggest that conventional methods understate the magnitude of the standard errors

considerably. However, we still find evidence of a positive e ect of merit aid programs.

We think our combination of large and small sample inference will be appropriate in many

other situations as well. For example, in applications studying the e ect of a law change in

a small number of states using other states as controls. While we have focused on di erence

in di erences estimators, our approach is more general and is straightforward to extend to

any type of regression model in which there are a large number of control observations, but

only a small number of treatments.
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Technical Appendix

A.1 Proof of Proposition 1.1

First a standard application of the partitioned inverse theorem makes it straight forward to
show that
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since and both have the same limit due to the finite number of groups with intertemporal
variation in treatments. Thus
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This result follows because the first term involves a sum of a finite number of (1) random

variables normalized by an (
1 2

1 ) term and the second term is identically zero due to
di erencing:
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Consistency for b follows upon plugging the pieces back into (A-1) and applying Slutsky’s
theorem.
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From the normal equation for b it is straightforward to show that
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f e 0

P
1+ 0

=1

P
=1
f2 ( b) 0

We showed above that

1+ 0X

=1

X

=1

e e =
0X

=1

X

=1

¡ ¢ ¡
+
¢

The variables and both converge to zero in probability as 1 therefore

0+ 1X

= 0+1

X

=1

¡ ¢
e

0X

=1

X

=1

¡ ¢ ¡ ¢

This gives the result.

A.2 Proof of Proposition 1.2

Since is defined conditional on for = 1 0, = 1 every probability in this proof
conditions on this set. To simplify the notation, we omit this explicit conditioning. Thus,
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every probability statement and distribution function in this proof should be interpreted as
conditioning on for = 1 0, = 1
For each = 1 0 define the random variable

P
=1

¡ ¢ ¡ ¢
P

0

=1

P
=1

¡ ¢2

and let be the distribution of for = 1 0.
Then note that

( ) = Pr

ÃP
0

=1

P
=1

¡ ¢ ¡ ¢
P

0

=1

P
=1

¡ ¢2

!

=

Z
· · ·

Z
1

Ã
0X

=1

!
1( 1) 0

(
0
)

We can alsowrite

b ( ) =
Z
· · ·

Z
1

Ã
0X

=1

!
b
1( 1; b) b

0
(

0
; b)

where b (·; b) isthe empirical c.d.f. one getsfrom the residualsusingthe control statesonly.
That ismore generally

b ( ; ) 1

1

1X

=1

1

P
=1

¡ ¢ ³e e 0
´

P
0

=1

P
=1

¡ ¢2

Toavoid repeatingthe expression we define

( ) Pr

P
=1

¡ ¢ ³e e 0
´

P
0

=1

P
=1

¡ ¢2

Note that ( ) = ( ) The proofstrategyisfirst todemonstrate that b ( ; b) con-
vergesto ( ) uniformlyover We will then show that b( ) isa consistent estimate of
( )

First,foreach = 1 0 considerthe dierence between b ( ; b) and ( )
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sup | b ( ; b) ( )| (A-2)

sup

¯̄
¯̄
¯̄
1

1

1X

= 0+1

1

P
=1

¡ ¢ ³e e 0 ˆ
´

P
0

=1

P
=1

¡ ¢2
³

b
´
¯̄
¯̄
¯̄

+sup
¯̄
¯
³

b
´

( )
¯̄
¯

sup

¯̄
¯̄
¯̄
1

1

1X

= 0+1

1

P
=1

¡ ¢ ³e e 0
´

P
0

=1

P
=1

¡ ¢2 ( )

¯̄
¯̄
¯̄

+sup
¯̄
¯
³

b
´

( )
¯̄
¯

First consider sup
¯̄
¯
³

b
´

( )
¯̄
¯ Using a standard mean-value expansion of for

some e

sup
¯̄
¯
³

b
´

( )
¯̄
¯ = sup

¯̄
¯̄
¯̄

³
e
´

e
³
b

´
¯̄
¯̄
¯̄

To see that the derivative
( )

is bounded first note that

( ) = Pr

P
=1

¡ ¢ ³
e + e 0 ( )

´

P
0

=1

P
=1

¡ ¢2

= Pr

Ã P
=1

¡ ¢ e 0 ( )
P

0

=1

P
=1

¡ ¢2

!

So

( )
=

Ã Ã P
=1

¡ ¢ e 0 ( )
P

0

=1

P
=1

¡ ¢2

! P
=1

¡ ¢ e 0
P

0

=1

P
=1

¡ ¢2

!

where is the density associated with Since is bounded and has first moments, this

term is bounded. Thus sup
¯̄
¯
³

b
´

( )
¯̄
¯ converges to zero since b is consistent.

Next consider the first term on the right side of (A-2). Note that the function

1

P
=1

¡ ¢ ³e e 0
´

P
0

=1

P
=1

¡ ¢2

is continuous at each with probability one and its absolute value is bounded by 1, so
applying Lemma 2.4of Newey and McFadden, 1994, b ( ; ) converges uniformly to ( )
Thus putting the two pieces of (A-2) together,

sup | b( ; b) ( )| 0
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Now to see that b ( ) converges to ( ) note that we can write
¯̄
¯b ( ) ( )

¯̄
¯

=

¯̄
¯̄
¯

Z
1

Ã
0X

=1

!
b
1( 1; b) b2( 2; b) b

0
(

0
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Z
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Ã
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1( 1) 2( 2) 0

(
0
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=
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Ã
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!
b
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0
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0
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Z
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Ã
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!
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0
(

0
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)

(
+

Z
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Ã
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=1

!
1( 1) b2( 2; b) b

0
(

0
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Z
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Ã
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1( 1) 2( 2) b3( 3; b) b

0
(

0
; b)
)

+(
+

Z
1

Ã
0X

=1

!
1( 1) 0 1( 0 1) b 0

(
0
; b)

Z
1

Ã
0X

=1

!
1( 1) 0 1( 0 1) 0

(
0
)

)¯̄
¯̄
¯

=

¯̄
¯̄
¯

(Z "
b
1

Ã"
0X

=2

#
; b
!

1

Ã
0X

=2

!#
b
2( 2; b) b

0
(

0
; b)
)
+

Z
b
2

0X

=1
6=2

; b 2

0X

=1
6=2

1( 1) b3( 3; b) b
0
(

0
; b)

+

+

(Z "
b

0

Ã"
0 1X

=1

#
; b
!

0

Ã
0 1X

=1

!#
1( 1) 0 1( 0

)

)¯̄
¯̄
¯

Since each b ( ; b) converges uniformly to ( ) the right hand side of this expression

must converge to zero so b ( ) converges to ( )

A.3 Projection Lemma

We use the following lemma in sections A.4 and A.5:
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Lemma A.1 Consider a regression of ( ) ( ) on group dummies ( ) and time dummy
variables ( ) as defined in equations (7)-(10) Letb be coe cienton the time variable for
time period = 1 1 and b 0 Under Assumption 2.3,and either Assumption 2.5
or Assumption A.1,

e
( ) ( ) = ( ) ( ) ( )

Ã
b ( )

P 1
=1 | ( ( ) |b

P
=1 | ( ( ) |

!

and b = ( 1
1

) = 1 1.

Proof. To streamline the notation, let
P

denote
P

1+ 0

=1

P
=1

P
( ) and let

0

0X

=1

X

=1

| ( )|

1

1+ 0X

= 0+1

X

=1

| ( )|

0 + 1

Note that 0 is fixed but 1 and get large as 1 . We will use this notation in a
number of proofs.
Now consider a regression of ( ) ( ) on group dummies and time dummies. We will write

this regression equation as

( ) ( ) =
0b+ 0b+ e ( ) ( )

where and are as defined equations (7)-(10)
The first part of our lemma is a standard regression result with dummy variables. Note

that we can rewrite this regression equation as

( ) ( ) b ( ) = 0b+ e ( ) ( )

Since e ( ) ( ) is orthogonal to we could construct residuals by regressing ( ) ( ) b ( ) on
a full set of group dummies and taking residuals. However, it is well known that this will
lead to taking deviations of the left hand side variable from group means so that

e
( ) ( ) =

¡
( ) ( ) b ( )

¢
P

=1

P
( ( ) )

¡
( ) b ( )

¢
P

=1 | ( ( ) )|

=
¡

( ) ( ) ( )

¢
Ã
b ( )

P 1
=1 | ( ( ) )|b

P
=1 | ( ( ) )|

!

Next consider the derivation of b Using the partitioned inverse theorem,

b =
1 1 X 0 1 X 0

Ã
X

0

! 1X
0

1

×

X
( ) ( )

X
0

Ã
X

0

! 1X
( ) ( )
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Assumption 2.3 implies that we can rewrite this as

b = 1
( + (1)) 1

X
( ) ( )

X
0

Ã
X

0

! 1X
( ) ( )

Now consider the last term,
P

0 (
P

0) 1P
( ) ( ) It is straightforward to show

that this is a ( 1)× 1 vector with generic element

0+ 1X

=1

| ( )|
P

=1 | ( )|
P

=1 | ( )|
=

0+ 1X

=1

| ( )|

Thus the ( 1) × 1 vector
£P

( ) ( )

P
0 (
P

0) 1P
( ) ( )

¤
has generic

element

0+ 1X

=1

| ( )|
0+ 1X

=1

| ( )| =
0+ 1X

=1

| ( )|
¡ ¢

=
0X

=1

| ( )|
¡ ¢

Under Assumption 2.5 this is just a random variable which is (1) so since

ˆ =
1
( + (1)) 1

X
( ) ( )

X
0

Ã
X

0

! 1X
( ) ( )

ˆ is ( 1
1
)

Under Assumption A.1 we can write

ˆ =
1

0 + 1
( + (1)) 1×

0 + 1
X

( ) ( )
0 + 1

X
0

Ã
X

0

! 1X
( ) ( )

As above the last term in brackets is a ( 1)× 1 vector with a generic element that can
be written as

0 + 1
0X

=1

| ( )|
¡ ¢

=

P
0

=1 | ( )|
¡ ¢

1

0+ 1

P
0+ 1
=1

P
=1| ( )|

=

P
0

=1
| ( )|

P
0
=1

P
=1 | ( )|

¡ ¢

1

0+ 1

P
0+ 1
=1

P
=1

Ã
| ( )|

P 0
=1

P
=1 | ( )|

!

P
0

=1

¡ ¢
P

=1

which is (1)
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A.4 Consistency Result for Large |M (j,t)|

In this Appendix we present a consistency result analogous to Proposition 2.1, but for the
case in which | ( )| can grow with the sample size. We assume that group sizes grow at
the same rate so that no group dominates in the limit. Formally we state this as

Assumption A.1 For each = 1 0 + 1 | ( )| grows at the same rate as 1 For
all and defining

lim
1

| ( )|
P

0

=1

P
=1 | ( )|

we assume that where 0 andboundedfrom above.For all defining

lim
1

1

0 + 1

0+ 1X

=1

| ( )|
P

0

=1

P
=1 | ( )|

we assume that 0

For this case, Proposition A.2 states that b is consistent and derives the asymptotic
distribution ofb

Proposition A.2 Under Assumptions 2.1-2.4,andA.1

b

b +

P
0

=1

P
=1

¡ ¢
( )

P
0

=1

P
=1

³
2
´

as 1

Proof:
In this proofwe make use ofthe notation defined in the proofofthe Lemma A.1 in

Section A.3.
First a standardapplication ofthe partitionedinverse theorem makes it straightforward

to show that

b = +
1 X e e 0 0

h
1
0

P e
( ) ( )

e
i h

1
0

P e
( ) ( )

e 0
i

1
0

P e2
( ) ( )

1

×
1 X e ¡e ( ) ( ) +e

¢ 0

h
1
0

P e
( ) ( )

e
i h

1
0

P e
( ) ( )

¡
e ( ) ( ) +˜

¢i

1
0

P e2
( ) ( )

Now consider each piece in turn.
Assumption 2.4states that

1 X e e 0
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Using Assumptions 2.1-2.2 and invoking the law of large numbers,

1 X e ¡e ( ) ( ) + ˜
¢

0

Define b as in the statement of Lemma 1 and then define

be
Ã
b

P 1
=1 | ( |b

P
=1 | ( |

!

LemmaA.1 states that e ( ) ( ) = ( ) ( ) ( )
be ( ) ( ). Note also that for 0 = 0

Thus
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Xe2
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This result follows because
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Next consider the object
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We used the fact that e is the residual from a regression on time and state dummies soP
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=1

P
( )

e = 0 and
P

=1

P
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e = 0
An analogous argument gives

1

0

Xe
( ) ( )

¡
e ( ) ( ) +e

¢
=

1

0

0X

=1

X

=1

X

( )

¡ ¢ ¡
e +e

¢

=
0X

=1

X

=1

¡ ¢
"

| ( )|
P

0

=1

P
=1 | ( )|

#
1

| ( )|

X

( )

¡
e +e

¢

0X

=1

X

=1

¡ ¢ ¡
e +e | ( )

¢

=
0X

=1

X

=1

¡ ¢ ¡ ¢

= (1)

The last term follows because for any = 1
¡ ¢

= ( | ( ) = ) = 0

So for a regression of either
¡ ¢

or ( ) on time dummies, the coe cient on the

dummy variables will converge to zero so e
¡ ¢

and e ( ) .
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Putting all the objects into the expression for b one can see that b is consistent.
Now consider b It is straight forward to show that

(b ) =
1
0

P e
( ) ( )

¡
e ( ) ( ) + e

¢

1
0

P e2
( ) ( )

+

1
0

P e
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( ) ( )

³
ˆ
´

1
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P e2
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We have shown that
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Thus we are left with:

(b ) =

P
0

=1

P
=1

¡ ¢ ¡ ¢
+ (1)

P
0

=1

P
=1

¡ ¢2
+ (1)

+ (1)

P
0

=1

P
=1

¡ ¢ ¡ ¢
P

0

=1

P
=1

¡ ¢2

This gives the result.

A.5 Proof of Proposition 2.1

We use the notation defined at the beginning of the proof of Lemma A.1 above. This proof
is almost identical to that of Proposition A.2.
First a standard application of the partitioned inverse theorem makes it straightforward

to show that

b = +
1 X e e 0

1
hP e

( ) ( )
e
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1
hP e
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e 0
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Now consider each piece in turn.
Assumption 2.4 states that

1 X e e 0
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Using Assumptions 2.1-2.2 and invoking the law of large numbers,

1 X e ¡e ( ) ( ) + ˜
¢

0

Define b as in the statement of Lemma 1 and then define
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This result follows because
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Next consider the object

Xe
( ) ( )

e =
0X

=1

X

=1

X

( )

¡ ¢ e +
0+ 1X

=1

X

=1

X

( )

be e

=
0X

=1

X

=1

X

( )

¡ ¢ e
0+ 1X

=1

1X

=1

X

( )

Ã
b

P 1
=1 | ( )|b

P
=1 | ( )|

!
e

+
0+ 1X

=1

X

( )

P 1
=1 | ( )|b

P
=1 | ( )|

e

=
0X

=1

X

=1

X

( )

¡ ¢ e
1X

=1

b
0+ 1X

=1

X

( )

e

+
0+ 1X

=1

P 1
=1 | ( )|b

P
=1 | ( )|

X

=1

X

( )

e

=
0X

=1

X

=1

X

( )

¡ ¢ e

= (1)

We used the fact that e is the residual from a regression on time and state dummies soP
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An analogous argument gives
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The last term follows because for any = 1
¡ ¢

= ( | ( ) = ) = 0 So

for a regression of either
¡ ¢

or ( ) on time dummies, the coe cient on the

dummy variables will converge to zero so e
¡ ¢

and e ( ) .

Putting all the objects into the expression for b one can see that b is consistent.
Now consider b It is straight forward to show that
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We showed above that
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( ) ( )

¡
e ( ) ( ) +e

¢ 0X

=1

X

=1

X

( )

¡ ¢ ¡
+

¢

Thus we are left with:

(b ) =

P
0

=1

P
=1

P
( )

¡ ¢ ¡
+

¢
+ (1)

P
0

=1

P
=1 | ( )|

¡ ¢2
+ (1)

+ (1)

P
0

=1

P
=1

P
( )

¡ ¢ ¡
+

¢
P
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=1

P
=1 | ( )|

¡ ¢2

= (1)

This gives the result.

A.6 Proof of Proposition 2.3

As in the text recall that

( ) ( ) +

+ + +

Since is the error term from the regression (6)after taking out time e ects and observables,
for each this is identified. is the component ofthis error term that is groupand time-
specific while is idiosyncratic.
Define 1( ) and 2( ) as anytwo dierent individuals from group at time W e can

identifythe joint distribution of

¡
1( ) 2( )

¢
=
¡

+
1( ) +

2( )

¢

Since is independent of applyingTheorem 2.2, from this joint distribution we can
identifythe marginal distributions of and .

W e next need to show that one can identifythe joint distribution of
¡

1

¢

Since there is a unique mappingbetween characteristic functions and distributions, we know
that the characteristic function of is identified. Define this to be (·)
Usinga similar argument to above, take ( ) to be anyindividual from group at time
we can identifythe joint distribution of

¡
( 1) ( )

¢
=
¡

1 + ( 1) + ( )

¢
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Let = ( 1 )0 be a ×1 vector. Then since is identified directly from the residuals
of the regression for the controls, we can identify

(exp( 0 ))

Y

=1

( )

=

³
exp

³
0 +

P
=1 ( )

´´

Y

=1

( )

=

¡
exp

¡
0
¢¢Y

=1

¡
( )

¢

Y

=1

( )

=
¡
exp

¡
0
¢¢

which is the characteristic function of e Thus the distribution of e is identified.
From the distribution of e and and with knowledge of and | ( )| for the control

states we can identify the distribution of

P
0

=1

P
=1

³P
( )

¡ ¢
(

¡ ¢
+ )

´

P
0

=1

P
=1 | ( )|

¡ ¢2

=

P
0

=1

P
=1

³P
( )

¡ ¢
( +

¡ ¢
+ )

´

P
0

=1

P
=1 | ( )|

¡ ¢2

=

P
0

=1

P
=1

³P
( )

¡ ¢
( + )

´

P
0

=1

P
=1 | ( )|

¡ ¢2

which is the distribution of (b )

A.7 Consistent Estimation of distribution of
£

1

¤
and

Our goal is to show consistency of the Sieve estimator (14). Since the likelihood function is
a continuously di erentiable function of and we ignore the fact that they are estimated
which can be addressed in the standard way. Our goal is to estimate the joint distribution
of
£

1

¤
and also the density of from the joint distribution of . Call the first

distribution . We assume that we can write as the convolution between a random variable
with distribution and a normal random variable with mean 0and standard deviation
In order to keep our underlying sets compact we assume that the support of and

are compact. Formally

Assumption A.2 G where G isthe setofdistributionfunctionswith support which
isacompactsubsetof<

Assumption A.3 F where F isthe setofdistribution functionswith support
which isacompactsubsetof<
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Thus our space of interest is F × G We use an 2 norm:

³
( )

³
e e

´´
=

Z ³
( ) e ( )

´2
+

Z ³
( ) e ( )

´2

Our model is a Sieve estimator in that we do not maximize the likelihood function with
respect to G and F but rather maximizes relative to a subset of these distributions
G and F which restrict the distributions to be step functions. The number of mass points
expand asymptotically in so that G × F becomes dense in G and F We denote

( )
1X

1=1

1
¡
( 1)

¢ ( 1)
1

( )
2X

2=1

1
¡

( 1)
¢ ( 2)

2

Under these conditions our model is consistent. That is

Proposition A.3 Let the objective function be

L( 1 2) =
1

1

0+ 1X

= 0+1

log
1X

1=1

Y

=1

Y

( )

2X

2=1

Ã
( 1) ( 2)

!
( 1)
1

( 2)
2

where we have parameterized
h

( ) ( )

i
to take on 1 values with each value takingthe value

( 1) =
³

( 1)
1

( 1)
´
with probability

( 1)
1 for 1 = 1 1 W e let be a mixture of

normals that take on 2 values with mean and standard deviation (
( 2) ) with probability

( 2)
2 for 2 = 1 2 Let

³
b 1 b 2

´
denote the maximum of the objective function.Under

Assumptions 2.1-2.6,and 1 3
³
b 1 b 2

´
converges in probabilityto the true values

of ( ) as longas 1and 2 as 1

Proof:We will verify the condition of the theorem in Matzkin (1994) section 3.2 which
is a restatement of Theorem 0 in Gallant and Nychka (1987).
The asymptotic limit of the likelihood function is

( ) = log

Z Y

=1

Y

( )

Z µ ¶
( )

¡ ¢

We prove consistency by verifying each of the four conditions that Matzkin (1994) requires.
Condition (iii)the set F × G is compact relative to the metric
Helly’s Selection Theorem guarantees that any sequence of distribution functions will

have a convergent subsequence which is a valid distribution function except that it may not
converge to zero as and may not converge to 1 as The fact that and
are compact guarantees that the limit of a subsequence in F × G will be an element of

F × G therefore the set is compact.
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Condition (i) The function ( ) converges uniformly over to a nonrandom con-
tinuous function : <
For this we apply Lemma 2.4 in Newey and McFadden (1994). The likelihood function

is clearly continuous and for any the log likelihood will be bounded since the support is
compact.
Condition ( ) There exists a sequence of function { } such that for all
= 1 2 and ( ) 0
We can always find a sequence of step functions that converges to the actual CDF. One

obvious way is to do this would be to take the number of support points = where

is an integer that depends on We then divide the support of into cubes, take
( 1)
1

to be the probability of lying in each cube, and take
( 1)
1 to be the median point. This will

converge to as gets large.
Condition ( ) the function uniquely maximizes over the set
We proved that the model is identified in Proposition 2.3. The fact that uniquely

maximizes the likelihood comes from the standard result that log likelihood function is
maximized at the true distribution (e.g. Lemma 2.2 of Newey and McFadden, 1994).
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