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Abstract

Difference in differences methods have become very popular in applied work. This paper
provides a new method for inference in these models when there are a small number of policy
changes. This situation occurs in many implementations of these estimators. Identification
of the key parameter typically arises when a group “changes” some particular policy. The
asymptotic approximations that are typically employed assume that the number of cross
sectional groups, IV, times the number of time periods, T, is large. However, even when N
or T is large, the number of actual policy changes observed in the data is often very small.
In this case, we argue that point estimators of treatment effects should not be thought of as
being consistent and that the standard methods that researchers use to perform inference in
these models are not appropriate. We develop an alternative approach to inference under the
assumption that there are a finite number of policy changes in the data, using asymptotic
approximations as the number of non-changing groups gets large. In this situation we cannot
obtain a consistent point estimator for the key treatment effect parameter. However, we can
consistently estimate the finite-sample distribution of the treatment effect estimator, up to
the unknown parameter itself. This allows us to perform hypothesis tests and construct
confidence intervals. For expositional and motivational purposes, we focus on the difference
in differences case, but our approach should be appropriate more generally in treatment effect
models which employ a large number of controls, but a small number of treatments. We
demonstrate the use of the approach by analyzing the effect of college merit aide programs on
college attendance. We show that in some cases the standard approach can give misleading
results.



1 Introduction

Difference in differences methods have become very popular in applied work. These models
are typically quite easy to implement and to interpret. However, performing inference with
these models is often difficult. The goal of this paper is to address one particular aspect that
is likely to be very important in many implementations of these estimators. Identification
of the key parameter often arises when a group “changes” some particular policy. We use
the notation Ny to refer to the number of “treatment” groups that change their policy in
the data and NV; to refer to the number of “control” groups who do not change their policy.
The asymptotic approximations that are typically employed assume that the number of both
groups, Ny and Ny, are large. However, even when the total number of groups is large, the
number of actual policy changes observed in the data is often very small. In this case, we
argue that point estimators of treatment effects should not be thought of as being consistent
and that the standard methods that researchers use to perform inference in these models
are not appropriate. We develop an alternative approach to inference under the assumption
that Nj is finite, using asymptotic approximations that let N; grow large. While our point
estimator of the treatment effect parameter is not consistent, we can consistently estimate its
finite-sample distribution up to the true value of the parameter itself. This allows us to test
the hypothesis that this parameter takes on any given value and to construct a confidence
interval for it by ‘inverting’ a test statistic. For expositional and motivational purposes, we
focus on the difference in differences case, but our approach is appropriate more generally in
treatment effect models in which there are a large number of controls, but a small number
of treatments.

Our approach is related to a large body of existing work on difference and difference
models and inference in more general group effect models.! It is complementary to typical
approaches focusing on situations where the number of treatment and control groups, N
and Ny, are both large (e.g. Moulton, 1990) or both small (e.g. Donald and Lang, 2002).

Our approach is in the spirit of comparisons of changes in treatment groups to control
groups often done by careful applied researchers. Anderson and Meyer (2000) provide a
nice example of the type of question for which our methodology is particularly well suited.

They examine the effect of changes in unemployment insurance payroll in Washington state

!See for example Angrist and Krueger (1999) and Meyer (1995) for overviews of difference in difference
methods. Wooldrige (2003) provides a concise survey of group effect models.



on a number of outcomes using a difference in differences approach with all other states
representing the control groups. In addition to standard analysis, they compare the change
in the policy in Washington state to the distribution of changes across other states during
the same period in time in order determine whether it is an outlier consistent with a policy
effect. This application of exact inference is very much in the spirit of our approach. Our
approach can also be thought of as a generalization/formalization of other exact inference
type procedures like the ‘placebo laws’ experiments that Bertrand, Duflo, and Mullainathan
(2004) use to obtain critical values for hypotheses testing under a particular null hypothesis
about the distribution of the treatment indicator.?

There are so many examples of difference-in-differences-style empirical work that we do
not attempt to survey them. Bertrand, Duflo, and Mullainathan (2004) provide a nice
overview. However, we will mention a few examples for which our approach seems appro-
priate. As mentioned above, Anderson and Meyer (2000) look at changes in Washington
state using other states as controls. Another example is the effects of merit aid programs
on college attendance. For example, in some of her specifications Dynarski (2004) identifies
the effect using a policy change from a single state (Georgia). Finally, Gruber, Levine, and
Staiger (1999) use comparisons between the five treatment states that legalized abortion
prior to Roe v. Wade versus the remaining states.

One can also find many studies which use a small number of both treatments and controls.
However, if there exist group xtime effects, the usual approach for inference is inappropriate.
An alternative sample design is to collect many control groups. One could then use our
methods for appropriate inference. For example Card and Krueger (1994) examine the
impact of the New Jersey minimum wage law change on employment in the fast food industry.
Their sample design includes only one control group (eastern Pennsylvania), but they could
have collected data from many “control states” to contrast with the available treatment state.

Another famous example is Card (1990) who examines the effect of the Mariel Boatlift on

2Bertrand, Duflo, and Mullainathan (2004) concern themselves primarily with serial correlation and
mostly use a standard asymptotic approach, but at one point also discuss an exact test using a ‘placebo
laws’ experiment. The placebo laws experiment of Bertrand et. al. recovers the exact distribution of a
treatment effect parameter (conditional on state and time fixed effects) for group-time aggregates under
a particular null hypothesis. Our thought experiment is somewhat different as we use the control groups
to obtain a consistent estimate of the distribution of a treatment effect parameter, which is then used to
conduct small sample inference for the treatment group. Our setup allows for a richer set of models in terms
of regressors and unobservable structure; special cases of our setup will result in inference analogous to that
obtained via the Bertrand et. al. simulation.



the Miami labor market. He uses four comparison cities as controls, but could have used
many additional cites.

The closest analog to our approach to inference in econometrics is work on testing for
structural breaks. In particular, work on testing for end-of-sample stability /structural breaks
such as that by, e.g., Dufor, Ghysels, and Hall (1994) and Andrews (2003) is quite related
to our basic approach. These authors consider the problem of testing for a structural break
over a fixed and perhaps very short interval at the end of a sample, analogous to our N
observations on policy changers. They develop tests that are asymptotically valid as the
number of observations before the potential break point grows, holding fixed the number of
points after the break point. This is analogous to our taking large N; limits with fixed Nj.
Asymptotically valid critical values for these tests rely on using the time span before the
potential break to get consistent estimates of the distribution of a test statistic formed from
data during the fixed end-of-sample interval. Andrews accomplishes this via a procedure
akin to subsampling and Dufor, Ghysels, and Hall (1994) use semi-nonparametric density
estimators. Again, our method for constructing interval estimates is roughly analogous in
that we use consistent model estimates obtained from the N; non-changers to characterize

the small-sample distribution of the treatment parameter.

Basic Model and Problem

We consider a case in which we have repeated cross section data® from different groups (e.g.
U.S. states) and time periods. To give the main intuition for the result consider a simple
version of the model with an individual 7, with outcome Y; who is in group j(i), and observed

at time ¢(7). We model his outcome as
Yi = adjau + 56) + Vi) + M & (1)

where dj; is the policy variable of interest.* The parameter ; is a fixed effect for group
Jj = 1,...,.N ¢+ N; that will be common to group j across time, v, is a time effect that is
common across all groups but varies across time ¢ = 1,... T, n; is a groupxtime random
effect that varies across groups and time, and ¢; is an individual specific error term. We

assume that ¢; is i.i.d. with E(g;) = 0 and that it is independent of all other terms in the

3Extension of these results to panel data is straight forward. We assume throughout that we are using
cross sectional data to economize already complicated notation.

4We focus on linear models, but extensions to nonlinear models seem feasible combining the approach
here with Athey and Imbens (2002).



model. Let M(j,t) be the set of individuals observed in group j at time ¢ and |M(j,t)]
denote the number of individuals in this set. We assume throughout this paper that T is
fixed. The primary goal is to estimate the treatment parameter «.

Initial work using this model ignored n;, which leads to the classic difference in differences
estimator. In this case one can obtain a consistent estimate of o using only two groups and

two time periods. In particular assume that
n; =0 for all j;t (2)

and denote the two groups j = {0,1} and two time periods ¢ = {0,1}. Suppose further
that the policy variable is binary, and for group 0, there is no change in the treatment
(doo = do1 = 0), but for group 1 the treatment is enacted between the periods zero and one
(dip = 0,d 1; = 1). We define the notation Y j; and £j to denote the averages of Y; and ¢;
across all the individuals in group j at time t, (ie. Y, = ngm > iem(jp Yi)- The classic
difference in differences estimator is:
Qpp = (?11 - ?10) - (701 - ?00)
= (a+01+7 =01 =) — (6o + 71— b0 — 7o) + (E11 — E10) — (Bo1 — Zoo)
=(a+71 = 7%) = (71 = 70) + (E11 — E10) — (Eor — Eoo)
=a + (E11 — E10) — (o1 — Zoo)
La.
The group and time effects of course drop out due to the differencing, with large samples
within each group/time the € terms vanish, and if (2) holds app is a consistent estimator of
« as |M(j,t)| gets large for each group/period.
In the past decade or so, researchers have recognized that (2) is an extremely strong
assumption and they have tried to account for 7 effects in estimation (see e.g. Moulton,

1990). It is easy to show that two group/two time period differences in difference is not

consistent without assuming (2). In that case
app =+ (11 — o) — (Nor — Meo) +
(B11 — Z10) — (Bo1 — Eoo)
—a+ (11 = M10) — (Mor — Too)-

The term involving (1, — 119) — (o1 — Mgo) does not vanish as the number of observed

individuals at each group/time period increases. Our focus is on analogs of this situation
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where a fixed number of groups with policy changes imply that the randomness due to n
cannot be eliminated by cross-group averaging.’

Many empirical economists recognize this problem and augment their ‘natural experi-
ment’ by collecting data from additional groups that do not experience treatment changes
and/or additional time periods. For simplicity, assume that only the first group experiences
a treatment change after period t*, so the binary treatment indicator for group one can be
written as:

dlt == 1(t>t *)

(where 1(-) is the indicator function) and for all other groups d; = d;. for all ¢ and 7. Also
to keep the exposition simple, assume that all cell sizes are the same (|M(j,t)| = m). Note
that dj for control group j could be all zeros or all ones. Consider estimating the model
(1) by using fixed effects regression, controlling for group and time effects through dummy
variables. Let app be the regression estimate of «. It is straight forward to show that this
can be written as a difference of differences

T t*

o~ 1 =
OFp = Q + AT Z (11 +Eu) — o Z (1 + E1e) (3)
t=t*+1 t=1
- : ZN: : » ZT: (77jt+§jt)—;il*i (01 +Ei)
(N —1) =2 (T =) t=t*+1 (N —1) =S

The terms involving £; will all vanish as within-group sample sizes grow (i.e. m —oo ). If

E(n;; | djr) = 0 then this yields an unbiased estimate of a. However, arg is not consistent as
1N

the number of groups grows since the term in brackets approaches (ﬁ Zfzt* Mt — 3 21 N

as either m or N get large.

This problem is rarely acknowledged in empirical work and researchers often ignore it
when calculating standard errors. In practice, if the error terms are truly normally distrib-
uted, standard methods will yield the correct standard errors (if degree of freedom correc-
tions are used, see Donald and Lang, 2001). However, if the distribution of 7, is sufficiently
different from normal, the standard errors may be very misleading.

The example presented in equation (3) considered the case of a single treatment group.

Clearly the same problem holds when the number of treatment groups is small.> The goal of

50Of course with access to many groups that experience a policy change, averaging across groups can yield
a consistent estimator of o under suitable assumptions about 7.

6Clearly the precise sample size that constitutes “small” is an empirical question that is beyond the scope
of this paper.
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this paper is to show that even though one can not obtain consistent estimates of « in these
cases, it is still possible to perform inference. We assume that there are a finite number of
policy changes in the data Ny, but approximate the distribution of our estimator of « taking
limits as the number of control groups (V;) gets large.

The remainder of this paper is organized into four sections. In Section 2, we present
regression models for both group and individual-level data. In each case we show how to
perform inference about the parameter «. Extensions to limited dependent variables are
discussed in Section 3. Section 4 of the paper provides an illustrative example application
estimating the effect of merit aid programs upon college attendance. Finally, Section 5 offers

brief conclusions.

2 Models

This section presents two models. In the first, we assume that we have one observation per
group xtime cell (e.g. data that is collected at the statexyear level). In the second, we allow
multiple observations per group xtime. For the second model we focus on approximations in
which the number of individuals in a group xtime cell remains fixed, suitable for applications

where at least some of the groups are small.

2.1 Model 1

We start by discussing the analog of equation (1) defined at the groupxtime level and

allowing for regressors. We assume that

Y IOCdjt+X]/'t5+9j+’Yt+77jt- (4)

Note that we no longer restrict dj to be binary.

The crucial assumption for difference in differences is that changes in 7, are unrelated
to imposition of the treatment. In order to perform inference in our case, we also assume
that (nﬂ,...,n jT) is independent and identically distributed across groups. Within a group,

we allow arbitrary correlation over time.

Assumption 1.1 ((X 51,1 jl) yeens (X 5T51) jT)) 18 independent and identically distributed across
units; (njl,...,n jT) is independent of (dj1,....d jv) and (Xj1,...,.X jr) and has a bounded den-

sity and bounded support; and all random variables have finite second moments.



The key problem motivating our approach is that for many groups there is little variation
in dj. Following the notation in the introduction, define Ny as the number of groups for
which dj; changes during the sample period and let N; represent the number of remaining
groups. We will refer to the Ny changers as treatment groups and the remaining non-changing
groups as controls. Without loss of generality, define the index j so that the j = 1,....N g
represents the observations for which dj; changes at some time ¢ and j = Ny +1,....N o+ N;
represents the observations for which dj is unchanged for the whole sample. Thus if >N ¢
then for any t = 1,....,T'd ;; = d;;. We treat Ny and T as fixed, taking limits as IN; grows
large. We are assuming throughout that at least one group changes its policy so that Ny > 1.

For any random variable Zj;, define

1 T

. 1 N1+No
7, = — 7.
TN+ N ; 7
1 1 T Ni+No
A Z;
TN1+N0; ; at

—~

The essence of ‘difference in differences’ is that we can rewrite regression model (4) as

}73'15 = O‘gjt + ‘)?]/tﬁ + ﬁjt- (5)
One can then estimate a by regressing ?}-t on th and X ;i Let @ and /B denote the OLS
estimates of a and /3 in (5).

We need an assumption to guarantee that after taking out time and fixed effects, X jt s

not collinear.

Assumption 1.2

1 Ni1+No T o
N, + N, Z ZXﬁX;‘t - %
1 0 =1 =1

where ¥, 1s finite and of full rank.

In Proposition 1.1 we show that OLS yields a consistent estimator of 5 and we derive

the limiting distribution of a.



Proposition 1.1 Under Assumptions 1.1-1.2,

BB
(a—a)& Z Zt 1( )(77Jt ﬁj)
Zj:l Zt:l ( gt j)2

as N; —oo.

In the expression above, (njt — ﬁj) appears rather than the original residual 7;,. This results
because both 7, and 7 converge in probability to zero as Ny gets large.

The fact that a is not consistent does not prevent us from conducting inference about
the true value of . The difference between @ and « depends on two variables: d; and
(njt — ﬁj) . The dj; are observable and the distribution of (njt — ﬁj) can be estimated from
the control groups, j>N . Therefore, we can estimate the asymptotic (IN; —oo ) conditional
distribution of (& — «) given dj; for the treatment groups. We state this as Proposition 1.2
below. Estimation of the distribution of a allows hypothesis testing on « and construction
of confidence intervals for (& — ).

To see how the distribution of (nﬁ — ﬁj)can be estimated, consider estimation of the

residual for a member of the control group (i.e. j>N o),
Xgl‘tﬁ = X;t(ﬁ —B) + (77jt — ;=M "’ﬁ)

= (77jt - ﬁj)

hence the distribution of (njt — ﬁj) is trivially identified using residuals for groups j>N .
From this it is straight forward to show how to estimate the asymptotic distribution of
a up to a. Let
['(a) = plim Pr((a@ —a) <a |{dj,j =1,.,Not =1,....T}).
Ni—o0
We will estimate I'(a) with the analogous empirical distribution of residuals from the control

groups. For the Ny=1 case we can estimate I'(a) using
NotNi (S0 (dyy — dy) (37& - X&B)
1

/F\((L) E——
(=Ny+1 Zthl (dlt - dl)

L <
— a
Ny

More generally

1 > No No+Ni No+N1 Z;V:Ol ?:1 (djt - E]) <§}£jt - Xéﬂ@)
<a

I(a)= (— —
M %—H tn, —ZNO—I—I Z;V:O1 23:1 (dj — dj)2



~

Proposition 1.2 Under Assumptions 1.1 and 1.2, I'(a) converges uniformly to I'(a).
To see the usefulness of this result, first consider testing the null hypothesis
HO 0= Q)

conditioning on the observed sequence d;;,j = 1,..,N¢,t =1,.../ 7. We could define an ap-
proximate 95% acceptance region by (ﬁl, 1@) as the maximum value of Ajyye; and minimum

value of A,,per such that

=)

(Aupper — @) > 0.975
f (Alower - a()) < 0.025.

Then we reject if @ is outside [ﬁl, ﬁg] . Under the null hypothesis, the rejection probability
will converge to 5% as N; —oo . We define an approximate confidence interval of « as the
set of ag for which we do not reject the null hypothesis. As N; —oo ,the coverage probability

of this interval will converge to 95%.

2.2 Model 2

Now we augment the model to allow for individual data. Since difference-in-differences meth-
ods are most commonly used with repeated cross-section data, we let ¢ index an individual
who is observed within a single group at a single time period. As in the introduction, we
use the notation j(i) to represent the group to which individual ¢ belongs, and ¢(7) to repre-
sent the time period in which we observe individual ;. We also continue to assume that the
data come from repeated cross sections so that we only observe individual ¢ during one time
period. We see no reason why extension to panel data would be problematic. Our model is

analogous to (1) with the addition of regressors:
Yi = adjyu) + XiB + 056) + Vi) + Mjane) + € (6)
Given that the model is defined somewhat differently than in the previous section, we need

to modify the assumptions slightly:

Assumption 2.1 {n;,,{X;:i ¢ ]\/[(j,t)}};‘tr:1 is i.i.d. across groups X; is i.i.d. within group
for all j and t,and all second moments exist. Furthermore the distribution of (773'17---777 jT) 18
independent of (dji,...,d jr) and {X; : i € M(j,;t)}_, and has a bounded density and bounded
support.



We add the additional assumption that

Assumption 2.2 ¢; is i.i.d. across individuals and is independent of (dj,Xim ;) and

We use notation analogous to the above for Model 1. First, we modify the notation for

averages across time within a group. For a generic variable Z; define

7- _ Zt 1ZzEM]t)Z
’ Zt:1|M(],t)]

Since in general, the number of individuals varies across (j,t) cells, derivation of the

difference in differences operator requires additional notation. We need to formally define

the full set of indicators for groups {g; éV:OfL tand time periods, {p;}'_; so that
g = 1(l=j(i)) (7)
pr = U7 = 1)) (8)

Further define GG; and P; as the vectors of these dummy variables,

Gi = [gu 92 -9 No+N1,i}/ (9)
b = [pu b2 -..p Tfl,i}/~ (10)

Then for any individual-specific random variable Z;, let Z; be the residual from a linear

regression of Z; on {g}noy " tand {p;} ] . That is

aQ 1 [ No+N1 G N\ No+N1
~ i h
zea-[GI(E = [2][0]) (S Xz [4]a
=1 t=1 heM(jt) Jj=1 t=1 heM(j,t)
We need a regularity condition to guarantee enough degrees of freedom that regressions

upon time and group indicators can be run.

Assumption 2.3
No+N-
Z o Zt IZieM(j,t) PP _
N N1 N N1 1 N Nl
=y Zt Vienio PO (SN T Cienrin GiG) ™ Y Sieni Gil
Zj:l Zt:l |M(5.0)]

20
where ) is of full rank.

10



Under this condition, we can rewrite the model as:

Yi = adjape) + XiB + 6 + i (11)
We estimate o and 3 in equation (11) by OLS, letting @ and 3 denote the corresponding

estimators. This requires the usual OLS rank condition stated as

Assumption 2.4
N1+N, T
Z o OZt 1216M]t)XXz{ P
=X

ZN1+N° S MGGt

where ¥, 1s finite and of full rank.

When each (j,t) cell has a large sample, inference in model (11) can be conducted in
essentially the same manner as for Model 1 since averaging within timex group cells effectively
eliminates €;. For the sake of completeness, in the Appendix, we present a consistency result
for 8 and the distribution of @, when |M(j,t)| and Ny grow.

However, we focus on the fixed-|M (j,t)| case because we anticipate that it will be more
appropriate for a majority of applications. This is because large |M(j,t)| approximations
must work in all group/time period cells-not just on average—in order for the resulting
approximation for the distribution of (& — a) to perform well. There will routinely be
substantial heterogeneity in |M(j,t)| across groups, e.g. states, with the smallest |M(j,t)]
perhaps best considered a small rather than large sample. For example, in our illustrative
example application using states as groups, |M(j,t )| ranges from 383 to 15. We characterize

the fixed | M (j,t)| case in the following manner:

Assumption 2.5 For each j = 1,...N o+ Ny, |M(j,t)| fort = 1,...,T is fixed and finite.
In addition, (|M(j,t)|,t =1,....T ) is independent and identically distributed across j for
J>N ¢ and jointly independent of n and ¢.

Note that we have assumed that |M(j,t)| isi.i.d. for j7>N ¢, but we allow the distribution
of |[M(j,t)| for j < Ny to differ from the distribution of |M(j,t )| for j>N . For example, if
larger states were likely to implement policy changes earlier, the distribution of |M(j,t )| for
J < Ny would stochastically dominate the distribution of |M(j,t)| for j>N .

Proposition 2.1 provides a statement of consistency for B as N, grows large and the asymp-

totic distribution of (@ — «).

11



Proposition 2.1 Under Assumptions 2.1-2.5,
858
N, T = _ _
y S (S (Ao = 8) (e =7, +5:—5))
H
. — 2
Z;V:O1 23:1 |M(5,t)]| (djt - dj)

~

(@—a)

as Ny —oo .

Analogous to model 1, the expression for (o — «) involves (n;, —7; +¢;; — ;) rather than
(ﬁj(i)t(i) + EZ-) . To see why, consider the regression of 7, +&; on group and time indicators.
The coefficient on each group indicator converges to (ﬁj + Ej) while the coefficients on the
time indicators converge to zero since these random variables both have expectation zero.

A number of different options are available for estimating the distribution of (a — «).
In principle, with enough groups, one could simply estimate the distribution of residuals
conditional on the values of | M (j,t )| for the treatment states. We suspect that this procedure
would not work well in most applications since the number of control groups is likely not
large enough for this to be a useful approximation. Instead we take advantage of our model’s
structure to estimate the distribution of components of (n;, —7; + &;: — &j).

More specifically define

Yi— Xij (12)

v;
= [adjeua + Ve + 056) + M) + €
= Miapa T i

Note that since we are using control groups only, the term in brackets is constant across
individuals within the same time and group and is independent of ;. Our goal is to simulate
the distribution of (1, —7;) and (¢; — ;). Note that since (ozdj(i)t(i) + 9]@)) does not vary
across time within a group and ~, does not vary across groups, knowledge of the joint
distribution of 7}, is sufficient for knowledge of (n;, —7;). If we have a consistent estimate
of the distribution of ¢;, we can consistently estimate the distribution of (&; — g;) .

Thus our goal is to obtain consistent estimates of the distribution of 77, and the dis-
tribution of ;. This is a standard deconvolution problem. We will first show that these
distributions are identified making use of a well known result. We report Theorem 2.1.1 in

Prakasa Rao (1992) which he attributes to Kotlarski (1967) as Theorem 2.2.

12



Theorem 2.2 (Kotlarski, Prakasa Rao) Suppose that X1,Xo,and X3 are independent

real valued random variables. Define

Z = X1 - X3
ZQ - XQ—Xg

if the characteristic function of (Z1,7 5) does not vanish then the joint distribution of (21,7 )
determines the distributions of (X1,X 2,X 3) up to a change of the location.

To apply the theorem we need one additional assumption.
Assumption 2.6 The characteristic functions of €; and n}, do not vanish.
Given that, we can show identification of the distribution of « .

Proposition 2.3 Under Assumptions 2.1-2.6, the distribution of (@ — «) is identified from
knowledge of dj and |M(jt)| from the treatment groups and the joint distribution of v; for

the control groups.

Many options are available to estimate the distributions of ¢; and 7j,. In this section
we present one possible estimator which is perhaps the most common way to estimate this
type of mixture model in economics. We derive a sieve estimator assuming that (77,...,n ir)
has finite support. This approach is most commonly associated with Heckman and Singer
(1984). We propose to estimate the model in two steps. First we run the fixed effects model

(11). We can construct the residual for each individual in the control set

% o= Y- X8 (13)

Xi (5 - 5) + M) + €i-

Our goal is to separately estimate the distribution of &; from n7,. We parameterize 7}, to take
on K, values with each value taking the value n(*1) with probability P Yfor k1= 1,.,K .
We let € be a mixture of normals that take on K5 values with mean and standard deviation

(u*2) o) with probability PQ(KZ) for ko = 1,...,KK 5. The objective function is

No+N1 (K1) (k2)
Z log ZH H Z¢< T T >P1(m)P2(nz) (14)

Jj=No+1 rk1=11t=14eM(j,t) ro=1

13



where o is prespecified. Asymptotically we allow K; and Ks to grow with the sample size
which is why we interpret this model as a sieve model. Showing consistency of this estimator
is a straightforward application of sieve methodology, but involves introducing much new
notation. Since this is only one of numerous estimation options and to avoid introducing
this notation in the text, we leave the details of the estimation to the Appendix Section
A.7 where we show this provides a consistent estimator of the two distribution functions.
With consistent estimates of distributions of € and the 7}, in hand, we can simulate the

distribution of (& — «) for any hypothesized value of .

3 Empirical Example: The Effect of Merit-Aid Pro-
grams on Schooling Decisions

3.1 Merit-Aid Programs

In the last fifteen years a number of states have adopted merit-based aid programs. These
programs are run at the state level and provide subsidies for tuition and fees to students
who meet certain merit-based criteria. The largest and probably the best known program is
the Georgia HOPE (Helping Outstanding Pupils Educationally) scholarship which started
in 1993. This program provides full tuition as well as some fees to eligible students who
attend in-state public colleges.” Eligibility for the program requires maintaining a 3.0 grade
point average during high school. A number of previous papers have examined the effect of
HOPE and other merit based aid programs.® Given the large amount of previous work on
this subject, we leave full discussion of the details of these programs to these other papers
and focus on our methodological contribution.

Our work most closely relates to Dynarski (2004) by focusing on the effects of HOPE
and other merit aid programs on college enrollment of 18 and 19 year olds using the October
CPS from 1989-2000. However, our analysis differs from hers in several ways. Perhaps most
importantly, we use all states as controls while she just uses those from the South. Of course
her paper is a more complete empirical analysis while our primary goal is to demonstrate
the use of our method.

During the 1989-2000 time period, ten different states initiated merit-aid programs. We

"A subsidy for private colleges is also part of the program.

8Examples include Dynarski (2000, 2004), Cornwell, Mustard, and Sridhar (2003), Cornwell, Lee,
and Mustard, (2003), Cornwell, Leidner, and Mustard (2003), Bugler, Henry, and Rubenstein (1999),
Berker(2001), Bugler and Henry (1997,1998), Henry and Rubenstein (2002).
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use two specifications with the first focusing on the HOPE program alone. In this case,
we ignore data from the other nine “treatment” states and use 41 controls (40 states plus
the district of Columbia). In the second case, we study the effect of merit-based programs
together and use all 51 units.” The dependent variable in our model is a dummy variable
representing whether the individual is currently enrolled in college. Given that we obtain
multiple observations of individuals in the same state at the same time, Model 2 is appro-
priate. However, since our dependent variable is binary we modify our approach somewhat
to deal with binary dependent variables. We discuss this approach in section 3.2. For esti-
mation we assume that the number of individuals in a statexyear is large and present these
results in section 3.3. In section 3.4 we treat group size as fixed. We control for race and

gender throughout.

3.2 Limited Dependent Variable Models

Since our college attendance dependent variable is discrete, the analysis above can not be
applied directly. In this Subsection, we discuss an extension of Model 2 to handle limited
dependent variables.

We redefine the model letting the regression equation define a latent variable Y,* and

(2

where the researcher observes only an indicator of its sign: Y.
Vi = adian) + XiB + 050 + Vi) + i) T E (15)
Y, = 1Y >0). (16)

For computational simplicity, we assume that the distribution of ¢; is known with logistic
distribution A. We first discuss the natural extension to the case in which |M(j,t)] —oo .
We then turn to the discussion of the more difficult case where |M(j,t )] is finite.

Consider the case in which |M(j,t)| —oo . As in section 2.2, define
77;1 = Oédjt + 9]' + v+ Nt
so that it incorporates all of the groupxtime variation. Then we can write

Pr(Y; =11 Xij (1)t (i) = AMXIB +15).

9Note that these merit programs are quite heterogeneous. This exercise does not necessarily mean that
we are assuming that the impact of all of these programs is the same. One could interpret this as estimation
of a weighted average of the treatment effects. Alternatively, we can think of this as a test of the joint null
hypothesis that all of the effects are zero. Our methods could be extended to incorporate heterogeneous
effects in which case one could look at complicated joint tests of the effects of the programs.
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Since |M(j,t )| —oo , this is a standard discrete choice model and we can obtain consistent
estimates of § and 7}, for each j and ¢ by maximum likelihood where 7}, can be estimated as
the coefficient on groupxtime dummy variables (a strategy analogous to that in Amemiya,
1978). Alternatively, we could relax the assumption that ¢; is logistic and use a semiparamet-
ric estimator. Having obtained consistent estimates of 77}, we are essentially in the conditions
of Model 1 and can apply the methodology in that Section using 7}, as the dependent vari-
able.

When |M(j,t)| is assumed fixed, we can no longer obtain consistent estimates of 7}, in
this model and thus can not use the Model 1 methodology. To complicate things further,
the fixed effects 0, cannot be differenced out in this nonlinear model. Typical solutions to
the presence of fixed effects like Chamberlain’s (1980) conditional logit model or the fixed
effects maximum score estimator (Manski, 1987) could be used to estimate (3, but this is not
enough to perform hypothesis tests on a which essentially require estimation of the joint
distribution of (njl,...,n jT) :

Thus, in order to obtain estimates of the distribution of the error term we use somewhat

stronger assumptions. We have defined 7}, so that
Y= X3+ Mty T Eis (17)

and we assume that for the control groups, M) 18 independent of X;.!1° As long as the

t(i
support of X; 3 is sufficiently large we can identify the joint distribution of (97, +e¢,...,n jr +€)
up to scale. Given that this joint distribution is identified for various values of |M(j,t)]|,
one can use an argument analogous to that in the proof of proposition 2.5 to show how to
identify the marginal distribution of ; and the joint distribution of (n3,,...,n %7)."

Given knowledge of X, and the distribution of 7} and ¢;, for any a, we can simulate the
conditional distribution of ¥; given X; and d;;)(;). This allows us to identify the distribution
of any test statistic that is a function of observed variables, up to the parameter o. Thus,
we can obtain interval estimates by ‘inverting’ a test statistic. First, we must choose a test

statistic that depends on (Y;,X ;,d j(i)t(i)). Since we have estimated a model that gives us the

19Note that ad;; is part of nj: so that it seems as if we are assuming that d;; is independent of X;. In our
example this is not the case because dj; = 0 for all of the control states (in all time periods). In other cases,
one may want to modify this assumption to allow for dependence.

" Cameron and Taber (1998) discuss identification of panel data logit models with unobserved heterogene-
ity. This model is more complicated in that 7 is a vector, but this does not substantially complicate the
analysis.

16



distribution of Y; conditional on X;,d ;;, and «; we can simulate the distribution of the test
statistic under any null hypothesis a = «y.

The question then becomes which test statistic we should use. A natural choice would
be the difference-in-difference parameter from a linear probability model. That is we can

estimate the linear regression model
Yi = adjn) + Xib+ Giae + P f + e (18)

which has group effects and time effects. Here we use different notation than in the models
above because the “true” structural model is (17) while (18) represents a “reduced form”
regression equation for which the parameters are defined by the linear projection. We can
then use the estimated value of a (call it @) as the test statistic itself. Given our estimated
model and a null hypothesis on «, we can simulate the distribution of @. While the estimator
is not a standard fixed effect estimator, it still embodies the central idea behind difference
in differences; we would reject the null hypothesis that « = 0 when the difference between
the pretreatment and posttreatment outcomes is substantially different than what one might
predict based on variation from the control sample.

A number of different options exist for estimation of (18). For our application the most
convenient was to first run the regression model using only the control states to produce
consistent estimates of b and f (call these estimates b and ]? ). We then estimate o by
running a (state) fixed effect regression of (Y; — XZ@ — Pt’(l.) f) on djy:)- The advantage of
this approach is that when we simulate the distribution of the test statistic we only need to

simulate the error distribution for the treatments which is all that we need in the second

stage of this procedure.

3.3 Confidence Interval Estimation under Standard Approach and
Large Group Sizes

We compare three estimation approaches in this subsection: linear probability estimators
with both population weighting across groups and equal weighting across groups, and a logit
estimator. For each estimator, we compare interval estimates for the treatment parameter
using our methods to those obtained under the typical approaches allowing clustering by
group and group-by-time.

To obtain population-weighted estimates, we estimate equation (5) via OLS using all

34,902 observations. These results are presented in the first column of Table 1. The de-
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pendent variable is a dummy variable for college enrollment and the sample only includes
individuals aged 18 and 19. The point estimates suggests that the HOPE scholarship in-
creased schooling enrollment of students who live in Georgia by about seven percentage
points. Interval estimates of the HOPE effect are presented in the second panel of the table.
The first clusters by state and year, allowing the error terms of individuals within the same
state and year to be arbitrarily correlated with each other. One can see that the coefficient is
highly significant. We next cluster by state which allows for serial correlation in 7;,. Bertrand
et. al (2004) discuss a case in which accounting for serial correlation can lead to standard
errors to increase, but in our case we find the opposite. The standard errors fall substantially
when one clusters by state. Clearly one should be worried about the asymptotic assump-
tions underlying these routine confidence interval estimates. The key assumption justifying
them is that the number of states that change status is large, but only one state (Georgia)
contributes to the estimate of the treatment effect.

The estimated confidence intervals using our method are presented in the last row of
Column 1. These confidence intervals are formed by inverting the test statistic (& — ap)
using our large-sample approximation for its distribution. (For details see Appendix Section
A.4). These confidence intervals are substantially different from those obtained with typical
methods. The confidence interval increases by a factor of about 3 and the coefficient is not
significant. To see why, in Figure 1 we display the estimated distribution of (@ — «) under
the null hypothesis that the true value of « is zero (after using a kernel smoother). This
distribution is estimated from the other 41 states. It appears very different from normal so
it is not surprising that the asymptotic approximation is very different.

In the second column we present linear probability estimates resulting from a commonly
used two-step approach (Amemiya 1978). In the first stage we regress schooling on the
individual X’s and on the full interacted statexyear dummies. In a second stage we regress
the predicted statexyear dummies on the HOPE indicator controlling for state dummies
and year dummies (separately). These results are presented in the second column and are
remarkably close to the first. The difference between these estimates and those in the first
column is that the states are equally weighted while in the first column they are population-
weighted.

Finally we present a logit version of the model. The estimates in the third column were

obtained in exactly the same manner as in the second column, except that in the first stage
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we run a logit model of the school dummy on our X’s and statexyear dummy variables.
In the second stage we once again regress the statexyear dummies on the hope indicator
controlling for state dummies and year dummies (separately). Thus the predicted parameter
has the interpretation of a logit index. The pattern is very similar. In all three cases the
HOPE variable becomes marginally insignificant when we use our approach even though
the variable is highly significant using standard methods. To display the magnitude of the
program impact we calculate a 95% confidence interval for changes in college attendance
probability for a particular individual. We consider an individual (without the treatment)
whose logit index puts his probability of college attendance at the sample unconditional
average attendance probability of 45% (i.e. an individual with a logit index of -.20). The
bracketed intervals reported in column three are 95% confidence intervals for the change in
attendance probability for our reference individual.'?

In Table 2 we present results estimating the effect of merit aid using all ten states who
added programs during this time period. The format of the table is identical to Table 1.
There are a few notable features of the table. First, the weighting matters substantially as
the effect is much smaller when we weight all the states equally as opposed to the population
weighted estimates. Second, in contrast to Table 1, the confidence intervals are quite similar
when we cluster by state compared to clustering by statexyear. Most importantly our
approach changes the confidence intervals substantially, but less dramatically than in Table

1.

3.4 Confidence Interval Estimation assuming Small Group Sizes

We next turn to the case in which |M(j,t )] is fixed. Given that we have 34,902 observations
one may wonder why we are worried about the number of individuals in the sample not being
substantially high. The problem is for the asymptotic approximation in Model 2 to work
well we need that the asymptotic approximation works well in all statesxtime periods not
just on average. The largest is California in 1991 with 383 people while the smallest is New
Hampshire in 1992 with 15 people. One very well might expect that individual components
contribute a substantial amount to the variance of the state component for the smaller states.

This would lead the variance of the effect to be substantially larger for the smaller states

12These confidence intervals for changes in attendance probabilities are calculated directly from the 95% CI
for a. Specifically, when the CI for « is [c1,c2], we report an interval for the change in predicted probability
for our reference individual of: (A(—.2 + ¢1) — 45%) to (A(—.2 + ¢c2) — 45%).
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than the larger ones invalidating the previous exercise.

The deconvolution we discuss in Section 2 required that € be independent of 7. This is
not possible in a linear probability model since the dependent variable must be one or zero.
We instead use logit model (15)-(16).

We perform inference in this model in three stages. First we obtain consistent estimates of
B using Chamberlain’s (1986) fixed effect logit model using statex year fixed effects. Second
we estimate the joint distribution of 77; up to a location normalization. Finally, after choosing
a test statistic, we simulate the distribution of the test statistic from the estimated model.

The first stage is straightforward, so we now describe the second. We use a Heckman and
Singer (1994) style nonparametric maximum likelihood method analogous to that in (14).
The Log-likelihood takes the form

No+N1 ~ 1-Y;
S~ lox [ ST TT A+t (1-AXB+nD)
j=No+1 (=1 t=1icI(jt)

We maximize this likelihood in terms of the 7{ and u, parameters. In practice we use L=13
and we have 12 years of data.'® That yields 168 parameters.!* Naturally, local optima are a
problem in these cases so we randomly selected many different starting values to search for
a global optima.!® Given the number of parameters and their limited interpretation we do
not report these numbers.

The next goal is to obtain a confidence interval for a. We argue in section 3.2 that
a natural choice for a test statistic is the coefficient in the difference in difference model.

Following the discussion there, we can write the test statistic as

Zt 1 ZNO1 ZkeM (1) k)t (Y XI P’@f)
31 25 Ckentior By

We first estimate 7 using the actual data.

T =

Once we have estimated the data generation model, we can use it simulate the distribution
of 7 under the null hypothesis & = . Note that 7 will vary in these simulations both because
of heterogeneity in 1 and because |M (j,t )| is finite. We reject the null hypothesis if 7 is less
than the 0.025 quantile or greater than the 0.975 quantile of this simulated distribution. The

confidence intervals is the set of parameters for which the null hypothesis is not rejected.

13We experimented with alternative values, and the results are not sensitive to the choice.

HThat is 13x12 nf parameters, and 12 p, parameters (since probabilities must add to one).

15Many in this case was 5000. We found that this procedure ran surprisingly fast taking only about two
days to complete all 5000 optimizations on a linux machine.
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In Table 3 we present confidence intervals constructed using this approach. The results
are similar, but not identical to those in Tables 1 and 2. The confidence interval for the
HOPE program is slightly bigger than those in the third column of Table 1. The interval for
all merit programs is similar in size but skewed slightly to the left of that in Table 2. For
this treatment effect, a one sided test probably is perhaps most interesting. At the 5% level
a one-sided test rejects the null hypothesis of no effect.

One may worry that the model we have estimated is too stylized or too flexible to ap-
proximate the data well. To examine this, we tried the following experiment somewhat like
the placebo law used in Bertrand, Duflo, and Mullainathan. We use all 41 of our control
states and construct the test statistic that we used for Georgia for testing the null hypothesis
that a = 0. That is, for each of the 41 control states in turn, we act as if the HOPE program
were operating in the state after 1993 and used the remaining 40 states as controls. For
each alternate pretend treatment state we calculate the p-value for the test that o = 0 using
our method. Since this null hypothesis is true by construction, these p-values should have
a uniform [0,1] distribution. We plot the distribution of p-values in Figure 2. We present
a histogram of the values and along the horizontal axis plot the actual p-values. The fit
of the model looks surprisingly strong in the sense that the p-values are spread throughout
the distribution. This logit approach with this test statistic is not the only way to obtain
confidence intervals for «, and is almost certainly not the most efficient, but it appears to

work well.

4 Conclusions

The main goal of this paper is to construct a method to perform inference for difference-
in-differences models when the number of policy changes observed in the data is small. We
argue that point estimates of treatment effects should not be thought of as being consistent
and that the standard methods that researchers use to perform inference in these models
are not appropriate. The main contribution of our work is to show how to perform inference
under the assumption that there are a finite number of policy changes in the data, using
asymptotic approximations as the number of control groups gets large. In this case, we
cannot obtain a consistent point estimator for the key parameter but are able to consistently
estimate its distribution, up to the unknown parameter itself. This allows us to perform

inference on the key parameter and construct confidence intervals.
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We develop this methodology in a number of different cases. Model 1 considers a regres-
sion model in which one observes groupxtime level data. Model 2 extend the idea to cases
in which we observe individual level data. Within Model 2 we focus on the case in which
the number of observations in a group/time cell is fixed.

We demonstrate the methodology by applying it the study of the effects of merit-aid pro-
grams on schooling. We think this application is a good example of a situation with a few
treatment groups changing policy and many controls with unchanged policies. To accom-
modate our particular example, we extend the methodology to a logit model. Our empirical
results suggest that conventional methods understate the magnitude of the standard errors
considerably. However, we still find evidence of a positive effect of merit aid programs.

We think our combination of large and small sample inference will be appropriate in many
other situations as well. For example, in applications studying the effect of a law change in
a small number of states using other states as controls. While we have focused on difference
in differences estimators, our approach is more general and is straightforward to extend to
any type of regression model in which there are a large number of control observations, but

only a small number of treatments.
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Technical Appendix

A.1 Proof of Proposition 1.1

First a standard application of the partitioned inverse theorem makes it straight forward to
show that

~ ZNﬁN‘) SELX B [ZNﬁNO >t JtXJti| [ZNIJFNO Zt 1 At X ]

B = B+ A-1)
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Now consider each piece in turn.
First Assumption 1.2 states that
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The i.i.d. sampling and conditional independence components of Assumption 1.1 imply that:
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For control groups j>N , the treatment does not vary over time so dj = Ej. Therefore,
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Now consider the other term



since d; and d both have the same limit due to the finite number of groups with intertemporal
variation in treatments. Thus
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This result follows because the first term involves a sum of a finite number of O, (1) random

variables normalized by an O(N; Y 2) term and the second term is identically zero due to
differencing;:

N1+Ng . No+N1 . L .
o Xy o= > (X -X;-X+X)
j=1 j=1
(No+ M) (X; — X - X, +X)
= 0.
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which is O,(1), thus
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VN + No Z Z e 0.

Consistency for B follows upon plugging the pieces back into (A-1) and applying Slutsky’s
theorem.
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From the normal equation for a it is straightforward to show that
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Now from above we know that
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We showed above that
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The variables 7, and 77 both converge to zero in probability as N; —oo , therefore
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This gives the result. B

A.2 Proof of Proposition 1.2

Since I is defined conditional on dj, for j = 1,...No, t = 1,..., 7, every probability in this proof
conditions on this set. To simplify the notation, we omit this explicit conditioning. Thus,

27



every probability statement and distribution function in this proof should be interpreted as
conditioning on dj for j =1,..No, t =1,....,T.
For each j = 1,...,N ¢ define the random variable

X (e =) (m =)
VVJ - No T —\2
(=1 Zt:l (dft - dﬁ)

and let F}; be the distribution of W, for j = 1,...IN .
Then note that
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We can also write
B (a) = //1 (ij <a) AB, (Wi B)...dFy, (Wi B),
j=1

where ﬁj(, B) is the empirical c.d.f. one gets from the residuals using the control states only.
That is more generally

N . Zthl (djt - EJ) <?mt - Xr/ntb>
—\2
m=1 é\f:ol Z?:l (d& - df)
To avoid repeating the expression we define
> (die — d;) <37mt - 5%&)
—\2
é\f:ol 23:1 (dﬁt - df)

<w

b; (w,b) =Pr

<w

Note that ¢;(w,3) = Fj (w) . The proof strategy is first to demonstrate that Z/ﬁj(w; B) con-

verges to ¢;(w,3 ) uniformly over w. We will then show that f(a) is a consistent estimate of
[(a).
First, for each j = 1,...,N o consider the difference between ﬁj(w; B) and ¢,(w,3 )
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sup | Fj(w; B) — ¢,;(w,3))| (A-2)
N , S (dy —dj) (~mt— mtﬁ>

. ~
< L <w | —¢; (w, B
W m%-{-l o2 i (de — df) : J <w )
j <w7 B) - ¢j (wvﬁ)’
1 Ny 23:1 (djt — EJ) (?mt - j\(:';ntb>
_ 1 R b
= Sbl,lwp M mzl\;rl 2 Y (e — 85)2 - b
s (w.B) =9, (wp)].

First consider sup,, |¢; <w, B) — 0 (w,B )‘ . Using a standard mean-value expansion of ¢, for

some [3 N
YO e e G G YR

is bounded first note that

o (wh) — Pr Zt 1( )(Uﬁ +Xit (f—b)) .

= Zt—l (dft - df)

i (e — ) X, w—b))
)

Zél tl(dft dfz

8¢j(w,b):E f, Ztl( )X/ (8—1b) Ztl( )X,
b ’ 6:1 thl (det - d€)2 4:1 Zt:l (dft - df)

where f; is the density associated with F}. Since f; is bounded and X, has first moments, this

To see that the derivative o

= Pr(VVj<w—

So

term is bounded. Thus sup,, ‘qzﬁj (w, B) —¢; (w,8 )‘ converges to zero since 3 is consistent.
Next consider the first term on the right side of (A-2). Note that the function

S (di — ;) (37mt - Xrlntb>
é\f:ol Zthl (dﬁ - EE)Q

is continuous at each b,w with probability one and its absolute value is bounded by 1, so

applying Lemma 2.4 of Newey and McFadden, 1994, ﬁj(w; b) converges uniformly to ¢ (w,b) .
Thus putting the two pieces of (A-2) together,

sup |F'(w; B) — o(w,3)] 2 0.

<w
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Now to see that I' (a) converges to I'(a) note that we can write

(a) = T (a)

/\

‘ / <ZW <a> AFy (Wy; B)dEy(Wa; B)...dFny (Way; B)

_ / 1 (Z W, <a> dEy (W) dEy(W)...d F, (W)

j=1

No
— H/l (ZWJ <a> dﬁl(Wl;B)dﬁg(Wz;6)~-dﬁNo(WNo;6>

=1

_/1 (i W, <a> dFl(Wl)dﬁg(Wz;B)...d?NO(WNO;B)}

J=1

No
{+/1 <ZVV] <CL> dFl(W]_)dF\Q(WQ;B)---dﬁNo(WNO;B)

J=1

_ / 1 (ZO Wj <a ) dFl(Wl)dFQ(WQ)dﬁg(W?n B)"'dﬁNo(WNo; B)}
+..

No
{+/1 (ZW] <a> AFy(W)....dFyy—1(Wp—1)dFn, (Wi )
1

j=

1 (% W; <CL> dFl(W1).--dFN01(WNO1)dFN0(WNo)}‘

(2o

= ‘{/ dF2 WQ’/B) 'dﬁNo(WNo;//B\)} +
/ Fy CL—ZW B - P Q—ZW dFl(Wl)dﬁ?)(W?);/B>~--dﬁNo(WN0;B)
1752 ] 1752
+...
~ No—1 ~
-5 -5

Since each ﬁ}(w; B) converges uniformly to F;(w), the right hand side of this expression

must converge to zero so I (a) converges to I'(a). B

dF, (W7).. dFNol(WNo)H

A.3 Projection Lemma

We use the following lemma in sections A.4 and A.5:
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Lemma A.1 Consider a regression of djuyus on group dummies (G;) and time dummy
variables (P;) as defined in equations (7)-(10). Let @y be coefficient on the time variable for

time period t = 1,...T — 1 and ar = 0. Under Assumption 2.3, and either Assumption 2.5
or Assumption A.1,

~ ~ . ST M3iG),r | a,
djane) = dieane) — dje) — (at@) -

ET L [ MGG
and a; = O, (NL) =1,..T —1.

Proof. To streamline the notation, let ) . denote ZN1+N° ST

mo = 33 M()]

€M) and let

j=1 t=1
Ni1+Nog T

o= > S IMG)
j=No+1 t=1

m = mg+my

Note that my is fixed but m; and m get large as N; —oo . We will use this notation in a
number of proofs.

Now consider a regression of d;;)(;y on group dummies and time dummies. We will write
this regression equation as

diiyy = Pla+ Gib + djgy

where P, and G, are as defined equations (7)-(10).
The first part of our lemma is a standard regression result with dummy variables. Note
that we can rewrite this regression equation as

i) — Quiy = Gib + djay)

Since c@(i)t(i) is orthogonal to G; we could construct residuals by regressing d;;)u;) — Gu(;) on
a full set of group dummies and taking residuals. However, it is well known that this will
lead to taking deviations of the left hand side variable from group means so that

T ~
Ay = (dipa) — ) Yorm1 Yeemiym (i — )
(i)t = i(i)t(i) — Qi) — -
] J > M)

_ 5 v (o E M) a
= (djone — di)) (tw S IM((i),T)] >

Next consider the derivation of @. Using the partitioned inverse theorem,

-1

-1
1 , 1 ' ’ /
E Zz: Psz - E zz: PiGi (Zl: GiGi> ZZ: GiPz‘ X
-1
Z Pid ;i) — Z PG, (Z GiG;) Z Gidjgin)
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Assumption 2.3 implies that we can rewrite this as

1
a= rln (Q+ op Z Py — Z PG <Z G; G’) Z Gidj(iy i)

Now consider the last term, 3 B,G/ (3" GiG?) ™ 3" Gid,jgiyiy- Tt is straightforward to show
that this is a (T'— 1) x 1 vector with generic element ¢

No+N; No+N1
M(j,7m)|d;r
§ MG MG 7)1 =S o

j=1 27:1 |M(j,7)]
Thus the (T'— 1) x 1 vector [ Pid;une — > PG, (3 GiGl)~ 'S Gid, )t(i)] has generic t
element
No+N; No+N, No+N

Z M (j,t)| djy — Z (M (j,t)|d; = Z M ()] (dje — dy)
= Z|M]t jt_d)

Under Assumption 2.5 this is just a random variable which is O,(1) so since

-1
.1 _
@ =—(2+0(1)) "D Pdjns — ) RG; (Z Gﬂé) > Gidian) | »

a is Op(5y)-
Under Assumption A.1 we can write
1

A -1
a_N0+N1 (Q+OP<1)) X

~1
No+ N No+ N
% > Pidsnes — % > PG (Z GZG2> > Gidsay

As above the last term in brackets is a (7' — 1) x 1 vector with a generic element ¢ that can
be written as

No No . 3
No+ N _ Yo 1M ()| (dy — d;
2024 §2 03 0 -2 = MU0 o =)
j=1 ot S S M)

N Mt =
252 S (dy — )

N
J 1 ZZ:Ol Z‘r:l ‘M 14

No+N M(j,t
Noile 0 1215 1( [ M(4,t)] )

00 ST M)
N
p Zj:ol ijt (djt - j)
- T

which is O,(1). ®
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A.4 Consistency Result for Large |M(j,t)|

In this Appendix we present a consistency result analogous to Proposition 2.1, but for the
case in which |M(j,t)| can grow with the sample size. We assume that group sizes grow at
the same rate so that no group dominates in the limit. Formally we state this as

Assumption A.1 For each j = 1,....N o+ Ny, |M(j,t)| grows at the same rate as Ny. For
all 7 and t, defining
[M(it)|

lim ,
NlHOOZ;'V:Ol 23:1 |M(j,t)]

we assume that where ¢, > 0 and bounded from above. For all t,defining

¢jt =

No+N1

| M)
o= lim ———— N
AN 2 ST i)

we assume that 0 <¢ , < oo.

For this case, Proposition A.2 states that B is consistent and derives the asymptotic
distribution of a.

Proposition A.2 Under Assumptions 2.1-2.4, and A.1

=

=)

D S R )
S S b (de — )

p

)

as N1 —oo .

Proof:

In this proof we make use of the notation defined in the proof of the Lemma A.1 in
Section A.3.

First a standard application of the partitioned inverse theorem makes it straightforward
to show that

o 7 Zidiono ¥ [75 X X1

1 72

g 2 dj(z‘)t(i)
mo [mo 5 dioecy } [m% 2 ditnt) (Mg +5i)}
ZX 77] (9)t(3) +€l) -

1 )
m ma =i L)

- 1 -~
B = B+ E;XiXil_

Now consider each piece in turn.
Assumption 2.4 states that

% Z)?f(’ Py
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Using Assumptions 2.1-2.2 and invoking the law of large numbers,

_ZX T]J(z (4) +5z> = 0.

Define @, as in the statement of Lemma A.1 and then define

T-1 . ~
s _ (A Dy |M<j,7|a7>
a]t = ay T - .
ZT:]_ ’M(]ﬂ- ’

Lemma A.1 states that Jj@t(i) = d(iy(s) E gj(i)t(i). Note also that for j>N ¢.d jt—aj =0.
Thus

1 ~ No+N1 T
ﬁzd?mt( ZZIMNI +— SN IM()
0 ]1t1 ]N0+1t1
1 T R _ No+N1
=—ZZ\MN (=)~ 2 (g~ ) | + == > SR MG
jltl ]No+1t1

T

¢jt (djt - Ea)
=1 t=1

3
-
7=1
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This result follows because

No+Ny T

) DD SALIERS]
] =Np+1 t=1
2
_ RN N (o S MGrla
=— > || M (jit)|
Mo j=No+1 | t=1 27:1 | M (5,7 |
No+N; T—1 No+Ny T—1
ilzﬂ'M” -2 3 3 a ke MU
j=No+1 t=1 j=No+1 t=1 mOZT M|
No+ N 2 .
+ Oz:lz S MG a, M)
j=No+1 t=1 1|M<J7')| Mo
T-1 No+N1 T-1T No+Ny
~2 |M]t |M(j,7)]
S 30 LTS 5 3 e L
t=1 7=1 j=No+1 on 1’ (4,5)]

= j=No+1

T—1T— No+N- .
o °*1|M<JT>||M<Jt>r

FL 2 DL T )

t=1 r=1 j=No+1
T-1 No+N1 T—-1T-1 No+Nq .
1 |M Jt)l |M ()
Yo (p) ¥ F- Yo (w) ¥ e
= Nl Jj=No+1 t=1 7=1 j=No+1 Zs:l ‘M(],S )|

Sy S MG MG
( ) 2 mo i 1M (3

Jj=No+1
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Next consider the object

1 d = =
_Zdj(Z X —mozz Z ]t +H0 : Z athi

j=1 t= 116m]t =

1
) —ZZ SE == (at il M(j,7)|a>> %
- J T R %
Mo J=1 t=1 iem(j,t) m j i€em(g,t) ZT:l ’M(j’T)’

1 MGG,
TP ST

Jj=1 zEm]t)

B 1 T-1 No+N1 -
ﬁzzz SR =SS M W
0 5=1 t=1 iem(j,t) 0 %=1 j=1 iem(jt)
N0+N1 T
L [M ()| a. v
X;
z:: S M) ;l%(;t)
No T .
_ M(jit)] ] 1 v
= dir — d; - X
JZ_;; ( ’ J> [Zjvol EtT:1 |M(j7t)| |M(]’t)| ieg(;,t)

2SSV, (e —0) B(R: | € M(jt)

j=1 t=1
= p(l)'

We used the fact that X, is the residual from a regression on time and state dummies so
No+N-
Z] 01 ' X 0 and Zt 1 Zzém(}t) X = 0.

iem(j,t)
An analogous argument gives

7]] (3)t(¢) +€Z —

m—OZ

i
i
L
b(1)-

1=
= \\Mg ng ||'M02 §|)—‘

) (7 + &)

[M(jit)]

(77]15

The last term follows because for any 7 = 1,...TFE (an

So for a regression of either (an — ﬁj) or

. . ~ p
dummy variables will converge to zero so 1, —

;)

)

= E(EZ -

— ﬁj) and Z; 5

d;)E (; + i€ M(jt))

gj ‘ t(Z) :7') =0.
(e —E;) on time dummies, the coefficient on the

(81' — 53) .

1 ~ ~
Z Z$1|M(j,t)|] |M(jt)| %t) (njt+€i

)



Putting all the objects into the expression for B, one can see that B is consistent.
Now consider a. It is straight forward to show that

~ = _ 1 7 v’ o
o 2oi i) Miape) + ) L 2 i) X jonci (6 —F )
1 ) 1 2
o > dj(z‘)t(i) mo 2 dj(i)t(i)

(@—-a)=

We have shown that

Z Z %: gt

jltl
1 N T
%ZWM o 2 303 b (s~ ) E(R |1 MG2)
% 7j=1 t=1
(B—B)HO
Ezd o) Mjon &) ZZ%:& i —d;) (e —75) -
=1 t=1

Thus we are left with:

> S G (e = d5) (e =70;) + 0,(1)
S S b (i — d5) + 0,(1)
», > S G (i — ;) (7 = 7))
S S b (=)

@—a) = +0p(1)

This gives the result.
|

A.5 Proof of Proposition 2.1

We use the notation defined at the beginning of the proof of Lemma A.1 above. This proof
is almost identical to that of Proposition A.2.

First a standard application of the partitioned inverse theorem makes it straightforward
to show that

- JRER @%uz} = [ o ]_1
IR PP e SR

[Z dg(z NA0) ] [Z dJ(Z )t(3) (77J( e(i) T g’)}
>

ZX 77] 1)4‘5)

Now consider each piece in turn.
Assumption 2.4 states that

%Zzzg%
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Using Assumptions 2.1-2.2 and invoking the law of large numbers,
— ZX Ticos) +&i) = 0.

Define @; as in the statement of Lemma A.1 and then define

T-1 . ~
s _ (A Dy |M<j,7|a7>
a]t = ay T - .
ZT:]_ ’M(]ﬂ- ’

In Lemma A.1 it is shown that d 1) = dj(ive(i) Ej(i) — gj(i)t(i). Note also that for j>N |,
dje d = (0. Thus

No+Ny T N
Zd%m—ZDMm Y D IMGH| &
Jj=1 t=1 j=No+1 t=1
T . No+Ny
_ZZ‘MJt [ jt_d) — 20 (dj — } Z Zajt|M]t
Jj=1 t=1 j=No+1 t=1
T
£>ZZ:HWJIt ]t_E)

7j=1 t=1
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This result follows because

No+Ny T
> (i)
j=No+1 t= 1
No+N T _ o~ 0\ 2
N - Yo MGrla
= > |I> @ T . [M(jit)]
j=No+1 | t=1 > M|
No+Ny T—-1 No+Ny T—1 |M]7-|a
=Y T@min-2 Y Ya :
j=No+1 t=1 j=No+1 t=1 71‘M(]7"
No+MN 2
M)l ) .
+ ) Z M(jt)]
j= No+1t 1 ( 1|M(J7')|
A2
= M(j;t)| —2 a0
t=1 j= N0+1 t=1 =1 j=No+1 Zs 1’MJS)|
T-1T-1 No+N;

Y aa y |MJT||M(Jt)|
t=1 =1

j=No+1 s 1|M(]5)|

.
:TZ:_IOP(NLQN%W ytl—szszle <N2)N§W MGl
Z

j=No+1 t=1 7=1 j=No+1 Zs 1|M(] 3)‘

TZ ( ) K MG MG

T ;
j=No+1 2321 |M(j,s)|

20.
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Next consider the object

5 _ No T . _ No+N1 T o
dDodiXi=) > D, (dp—d) Xit Y > a5 Xi
i J=1 t=1 iem(jt) J=1 t=1 iem(jt)
No T 1 T—

ASls Yoo MUTIE:
- (djr — d; X _ Z Z : X;
Jj=1 t=1 iem(j,t) 27'21 |M(]7T )|

J=1 t=1 iem(j,t)

R SENM @)@ <

We used the fact that X is the residual from a regression on time and state dummies so

No+N
Z] Or ' i€em(j,t) X =0 and Zt 1 Zlem(j,t) X =0.
An analOgOUS argument glV@S

No+N, T
Zdj(m(i) (Tip + %) ZZ Z (7 +5i) + Z Z Z aje (M + %)
i J=1 t=1 iem(j,¢) 1 iem(j,t)
No T _
=3 > > (du—dy) (1 +5)
Jj=1 t=1 iem(j,t)
No T B
DY D> (dp =) (=7 e - F)
Jj=1 t=1 iem(jt)
= Op(l)

The last term follows because for any 7 = 1,...TE (n;, —7;) = E(e; —%; | t (i) = 7) = 0.So
for a regression of either (n;, —7;) or (g; —Ej) on time dummies, the coefficient on the
dummy variables will converge to zero so ﬁjt ('r]]T —7;) and & — i (5 —gj) .

Putting all the objects into the expression for 6, one can see that 6 is consistent.
Now consider a. It is straight forward to show that

Z d](’L (@) (773(1 )t(4) +€1) Z d (8)t(2) ](z () (6 6)
ZZ 3(9)E(0) ZZ §(2)t(3)
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We showed above that

0

> By > 2 MG (b = T’

=1 t=1
Z 5 (4)t( z)X (3)t() :Op(l)
(B—B) %0
No T

Z ng(z)t(z) + 51) = Z Z Z (djt - Ej) (77jt - ﬁj +é&i— gj) :

Jj=1 t=1 iem(j,t)

Thus we are left with:

@—a) :Z Zt 1 ZzeM (it) (dﬁ _aj) (njt — 7t & _Ej) + 0p(1)
SN ST MGt )] (d — ;) + 0,(1)
ﬂ)z Zt 1 ZZGM]t) (djt _8j) (nﬁ _ﬁj & _gj)

SN ST MG (dye — d5)
= 0,(1).

+ 0p(1)

This gives the result.
|

A.6 Proof of Proposition 2.3
As in the text recall that

Vi = M tE
U;t = adjy+7,+0;+ Nt -

Since v; is the error term from the regression (6) after taking out time effects and observables,
for each 4,this is identified. n}, is the component of this error term that is group and time-
specific while ¢; is idiosyncratic.

Define ¢1(j,t ) and t5(j,t ) as any two different individuals from group j at time ¢. We can
identify the joint distribution of

(Va(0:V 2G)) = (M + €M e + €niin) -

Since 7, is independent of €, applying Theorem 2.2, from this joint distribution we can
identify the marginal distributions of ¢ and 7j;.
We next need to show that one can identify the joint distribution of n; = (njl,...,n ;“T) .

Since there is a unique mapping between characteristic functions and distributions, we know
that the characteristic function of ¢ is identified. Define this to be ¢_ (-) .

Using a similar argument to above, take ¢(j,t) to be any individual from group j at time
t, we can identify the joint distribution of

U = (VG- o)) = (1 + €yl 1+ €6im)) -
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Let I' = (v4,...,y 1)’ be a T x 1 vector. Then since ¥; is identified directly from the residuals
of the regression for the controls, we can identify

. % . T
E (exp (iT'¥;)) E(GXP (ZF’% 2 %&(j,t)))

H - () H - (7)

E (exp (il"n3)) H E (i7u50)

t=1

H ¢s (’yt)
= B (exp (il"n5))

which is the characteristic function of 7. Thus the distribution of 7; is identified.
From the distribution of 7); and &; and with knowledge of d;; and [M(j,t )| for the control
states we can identify the distribution of

S S (Sieniin (e = &) (05 =7 = B (0, =) +2 — %)
S S MG (e — )’
S S (Sientn (= &) e+ =7, =T = (32 = 7))+~ %))
S S MG (e — )
S S (Siearie (die = d5) (e = T+ = 5,)
SN S M) (de — ;)

which is the distribution of (& — ). W

A.7 Consistent Estimation of distribution of [77;1,...,77 ;‘T} and ¢

Our goal is to show consistency of the Sieve estimator (14). Since the likelihood function is
a continuously differentiable function of 3 and v, we ignore the fact that they are estimated
which can be addressed in the standard way. Our goal is to estimate the joint distribution
of [77;-‘1,...,77 ;‘T} and also the density of ¢ from the joint distribution of v;. Call the first
distribution F'. We assume that we can write € as the convolution between a random variable
with distribution GG and a normal random variable with mean 0 and standard deviation o.

In order to keep our underlying sets compact we assume that the support of G and F
are compact. Formally

Assumption A.2 G € G where G is the set of distribution functions with support = which
is a compact subset of R.

Assumption A.3 F € Fr where Fr is the set of distribution functions with support ©
which is a compact subset of R .
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Thus our space of interest is Fr x G. We use an Ly norm:

i((ro). (F.G)) —/6(F(x)—ﬁ(x))zder/E<G(z)—é(z)>2dz.

Our model is a Sieve estimator in that we do not maximize the likelihood function with
respect to G € G and F' € Fp, but rather maximizes relative to a subset of these distributions
GNand FY which restrict the distributions to be step functions. The number of mass points

expand asymptotically in N so that GV x F¥ becomes dense in G and Fr. We denote

K '
Z 1 (n(m) < LE) Pl(Jl)
J1=1

K>

Z 1 (M(’“) < z) P2(j2)

J2=1

e

=

=
I

Q

=

X
I

Under these conditions our model is consistent. That is

Proposition A.3 Let the objective function be

L:(FKl GK2 = Ngi\h log ZH H Z¢< 77t ) 'u(h)) pln) pl2)
) 1 2

J =Np+1 J1=1t=14eM(j,t) j2=1

where we have parameterized [n;(i)t(i)] to take on K1 values with each value taking the value
nb1) = (ngjl), N %”) with probability PV for j; = 1,.,K 1. We let ¢ be a mizture of

normals that take on Ky values with mean and standard deviation (V2,0 ) with probability
P2(j2) forjo=1,... K 5. Let <}/7’\7{(1, @K2> denote the maximum of the objective function. Under

Assumptions 2.1-2.6, and A.1 — A.3, <F\7{(1, 6K2> converges in probability to the true values

of (Fr,G) as long as Kyand Ky —oc0 as N; —o0 .

Proof: We will verify the condition of the theorem in Matzkin (1994) section 3.2 which
is a restatement of Theorem 0 in Gallant and Nychka (1987).
The asymptotic limit of the likelihood function is

vire) = (s M1 [ o (A=) acterar (v)

t=1ieM(j,t)

We prove consistency by verifying each of the four conditions that Matzkin (1994) requires.

Condition (i) the set Fr x G is compact relative to the metric d.

Helly’s Selection Theorem guarantees that any sequence of distribution functions will
have a convergent subsequence which is a valid distribution function except that it may not
converge to zero as © ——oo and may not converge to 1 as x —oo .The fact that = and
© are compact guarantees that the limit of a subsequence in Fr x G will be an element of
Fr x G therefore the set is compact.
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Condition (i) The function Ly(F,G) converges uniformly over M to a nonrandom con-
tinuous function L : M —

For this we apply Lemma 2.4 in Newey and McFadden (1994). The likelihood function
is clearly continuous and for any z the log likelihood will be bounded since the support is
compact.

Condition (iv) There exists a sequence of function {g,} C M such that gy € My for all
N =1,2,...and d(gn,m*) — 0

We can always find a sequence of step functions that converges to the actual CDF. One
obvious way is to do this would be to take the number of support points M = PT where P

is an integer that depends on N. We then divide the support of 1 into M cubes, take Pl(*“)

to be the probability of lying in each cube, and take Pl(m) to be the median point. This will
converge to Fp as M gets large.

Condition (ii) the function m* uniquely mazximizes L over the set M

We proved that the model is identified in Proposition 2.3. The fact that m* uniquely
maximizes the likelihood comes from the standard result that log likelihood function is
maximized at the true distribution (e.g. Lemma 2.2 of Newey and McFadden, 1994).
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Table 1
Estimated Parameters for

Effect of Georgia Hope Program on College Attendance

Population Weighted ~ State Weighted Logit
Linear Probability = Linear Probability Parameters

Hope Scholarship 0.072 0.077 0.359
Male -0.077 -0.076 -0.323
Black -0.155 -0.155 -0.673
Asian 0.173 0.172 0.726
State Dummies yes yes yes
Year Dummies yes yes yes

95% Confidence intervals for Hope Effect

Standard Cluster by Statex Year (0.025, 0.119) (0.025,0.130) (0.119,0.600)
[0.030,0.149]

Standard Cluster by State (0.050,0.094) (0.058,0.097) (0.274,0.444)
[0.068,0.111]

Conley-Taber (-0.006,0.212) (-0.008,0.207) (-0.030,0.905)
-0.007,0.219]

Sample Size
Number States 41 41 41
Number of Individuals 34902 34902 34902

Note: Confidence intervals for parameters are presented in parentheses. Brackets contain a confidence interval for the
program impact upon a person whose college attendance probability in the absence of the program would be 45%.



Table 2
Estimated Parameters for

Effect of Merit Aide Programs on College Attendance

Population Weighted ~ State Weighted Logit
Linear Probability = Linear Probability Parameters

Merit Scholarship 0.034 0.051 0.229
Male -0.079 -0.078 -0.331
Black -0.150 -0.150 -0.655
Asian 0.169 0.168 0.707
State Dummies yes yes yes
Year Dummies yes yes yes

95% Confidence intervals for Hope Effect

Standard Cluster by Statex Year (0.006,0.062) (0.024,0.078) (0.111,0.346)
[0.028,0.086]

Standard Cluster by State (0.008,0.059) (0.028,0.074) (0.127,0.330)
[0.032,0.082]

Conley-Taber (0.001,0.095) (0.012,0.075) (0.061,0.405)
[0.015,101]

Sample Size
Number States 51 51 51
Number of Individuals 42161 42161 42161

Note: Confidence intervals for parameters are presented in parentheses. Brackets contain a confidence interval for the
program impact upon a person whose college attendance probability in the absence of the program would be 45%.



Table 3
Confidence Interval for
Effect Merit Aide Programs on College Attendance
Using Model 2

Georgia Hope Merit Aide

Program Programs
95% Confidence Intervals (-0.170,0.917 (-0.017,0.367)
-0.041,0.222 [-0.004,0.092]

90% Confidence Intervals (-0.080,0.796

-0.020,0.195

— s —

(0.033,0.343
[0.008,0.086

—

Note: Confidence intervals for parameters are presented in parentheses. Brackets contain a confidence interval for the
program impact upon a person whose college attendance probability in the absence of the program would be 45%.



Figure 1: Estimated Density of & under Hy : g = 0
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Figure 2: Distribution of P-values from Control States
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