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Abstract

We propose a new model of exchange rates, which yields a theory of the forward
premium puzzle. Our explanation combines two ingredients: the possibility of rare eco-
nomic disasters, and an asset view of the exchange rate. Our model is frictionless, has
complete markets, and works for an arbitrary number of countries. In the model, rare
worldwide disasters can occur and affect each country’s productivity. Each country’s
exposure to disaster risk varies over time according to a mean-reverting process. Risky
countries command high risk premia: they feature a depreciated exchange rate and a
high interest rate. As their risk premium reverts to the mean, their exchange rate ap-
preciates. Therefore, the currencies of high interest rate countries appreciate on average.
This provides an explanation for the forward premium puzzle (a.k.a. uncovered interest
rate parity puzzle). We then extend the framework to incorporate two factors: a disaster
risk factor, and a business cycle factor. We calibrate the model and obtain quantita-
tively realistic values for the volatility of the exchange rate, the forward premium puzzle
regression coefficients, and near-random walk exchange rate dynamics. Finally, we work

out a model of the stock market, which allows us to make a series of predictions about
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the joint behavior of exchange rates, bonds, options and stocks across countries. The
evidence from the options market appears to be supportive of the model. (JEL: E43,
E44, F31, G12, G15)

1 Introduction

According to the uncovered interest parity (UIP) equation, the expected depreciation of a
currency should be equal to the interest rate differential between that country and the reference
region. A regression of exchange rate changes on interest rate differentials should yield a
coefficient of 1. Instead, empirical work starting with Hansen and Hodrick (1980) and Fama
(1984) consistently produces a regression coefficient that is less than 1, and often negative.

This invalidation of UIP has been termed the forward premium puzzle: currencies with
high interest rates tend to appreciate. In other words, currencies with high interest rate feature
positive predictable excess returns. There are three possible explanations: time-varying risk
premia, expectational errors, and illiquid markets.

Our paper provides a theory of time-varying risk premia, in a complete markets, frictionless
and rational framework. In our model, the exchange rate is both a relative price of non-
traded and traded goods, and an asset price: it is the net present value of the export sector’s
productivity.

We take up on the idea championed by Rietz (1988), Barro (2006) and Weitzman (2007)
that the possibility of rare but extreme events is a major determinant of risk premia in asset
markets. In our model, rare world crises can happen. In those episodes, the productivity of
each country drops. The country-specific exposure to disaster risk is a mean-reverting process.

Risky countries command high risk premia: they feature a depreciated exchange rate and a
high interest rate. As their risk premium reverts to the mean, their exchange rate appreciates.
Therefore, the currencies of high interest rate countries appreciate on average. This provides
an explanation for the forward premium puzzle.

The model is consistent with a forward premium puzzle, both in sample with and without
disasters. Therefore it does not suffer from a peso problem. The driving force of our result is
that the risk premium covaries positively with interest rate. In other words, our theory does

not rely on mismeasurement of expectations.



The model is very tractable, and expressions for the exchange rate, interest rate, risk
premia, and forward premium puzzle coefficients obtain in closed forms. The framework is very
flexible. In a second part of the paper, we extend it to incorporate two factors: a slow moving
productivity factor, and a fast mean-reverting disaster risk factor. We calibrate the model
and obtain quantitatively realistic values for the volatility of the exchange rate, the forward
premium puzzle regression coefficients, and near-random walk exchange rate dynamics.

Moreover, the model offers a number of additional predictions. First, there should be a
clear link between equity and currency risk premia through interest rates. High domestic
interest rates imply high currency risk premia — an expected appreciation of the domestic
currency — and low equity risk premia in the form of low Sharpe ratios. Fama and Schwert
(1977) and Campbell and Yogo (2006) provide evidence of the link between equity excess
returns and nominal interest rates. Hau and Rey (2004) find that for Japan, France,Germany
and Switzerland, a negative shock to the foreign stock market — relative to the US— lead to s
foreign currency appreciation.

Second, the model has rich implications for the relation between the relative shape of the
yield curves between two countries and the expected change in the bilateral exchange rate.
Boudoukh, Richardson Whitelaw (2006) propose to regress the exchange rate movement on the
T—period forward rate from 1" periods ago, and find that the regression coefficient increases
towards 1 with the horizon T'. Indeed, our theory is consistent with this empirical finding in a
context where risk-premia are fast mean-reverting, and productivity is slowly mean reverting.

Curency option prices potentially contain a lot of information on currency risk premia.
Indeed, according to our model, a risky country will feature relatively more expensive out
of the money puts than out of the money calls. Carr and Wu (2007) and Farhi, Gabaix,
Ranciere and Verdelhan (2007) provide evidence that, as predicted by the model, when out
of the money put prices increase relative to out of the money call prices, the corresponding
currency simultaneously depreciates.

Time varying disasters are inherently difficult to assess, and as such might be especially
amenable to expectational errors. Hence, our model can interpreted along behavioral lines as
a consistent way to analyze the impact of investor sentiment on international asset prices.

Relation to the literature. This paper adds to a large body of empirical and theoretical

work on the UIP condition. To the best of our knowledge, we are the first to adapt the Rietz-



Barro paradigm to exchange rates. Guo (2007), subsequently, also adopts this paradigm, in
the context of a monetary model.

On the empirical side, most papers test the UIP condition on nominal variables. Two recent
studies cast the puzzle in terms of real variables. Hollifield and Yaron (2003) decompose the
currency risk premium into conditional inflation risk, real risk, and the interaction between
inflation and real risk. They find evidence that real factors, not nominal ones, drive virtually
all of the predictable variation in currency risk premia. Lustig and Verdelhan (2007a) find
that real aggregate consumption growth risk is priced on currency markets. This provides
support for a model which — like ours — focuses on real risk, abstracting from money and
inflation. However, Burnside, Eichenbaum, Kleschelski and Rebelo (2007) document that
forward premium strategies yield very high Sharpe ratios, but argue that the payoffs of such
strategies are not correlated with traditional risk factors. This disagreement spurred a debate
on whether or not consumption growth risk explains excess returns on currency speculation
(Burnside 2007, Lustig and Verdelhan 2007b).

On the theory side, numerous studies have attempted to explain the UIP puzzle in rational
expectations settings. Few models, however, are able to reproduce the negative UIP slope
coefficient. Here we concentrate on some of the most successful studies. We start by reviewing
arguments that rely on counter-cyclical risk premia. We then go over the literature that
departs from rational expectations and introduces behavioral biases.

Frachot (1996) shows that a two-country Cox, Ingersoll, and Ross (1985) framework can
account for the UIP puzzle but it does not provide an economic interpretation of the cur-
rency risk premium. Alvarez, Atkeson, and Kehoe (2005) rely on a model with endogenously
segmented markets to generate qualitatively the forward premium anomaly. In their model,
higher money growth leads to higher inflation. This induces more agents to enter the asset
market because the cost of non-participation is higher. This, in turn, decreases risk premia.
Most recently, Verdelhan (2007) generates counter-cyclical risk premia via the varying habit
formation models pioneered by Abel (1990) and Campbell and Cochrane (1999). In his model,
the domestic investor expects to receive a positive foreign currency excess return in bad times
when he is more risk-averse than his foreign counterpart. Times of high risk-aversion corre-
spond to low interest rates at home. Thus domestic investors expect positive currency excess

returns when domestic interest rates are low and foreign interest rates are high. Finally,



Colacito (2006) and Colacito and Croce (2006) apply Bansal and Yaron (2004)’s model with
Epstein-Zin-Weil preferences to international economics. Bansal and Shaliastovich (2007) have
two-country setting, rely on a perfect cross-country correlation among shocks to the long run
components of consumption growth rates to reproduce the UIP puzzle.

Bacchetta and van Wincoop (2006) develop a model where information is costly to acquire
and to process. Because of these costs, many investors optimally choose to assess available
information and revise their portfolios infrequently. This rational inattention mechanism
produces a negative UIP coefficient along the lines suggested by Froot and Thaler (1990) and
Lyons (2001): if investors are slow to respond to news of higher domestic interest rates, there
will be a continued reallocation of portfolios towards domestic bonds and a appreciation of the
currency subsequent to the shock. Finally, another strand of the literature departs from the
assumption of frictionless markets. Using microstructure frictions, Burnside, Eichenbaum and
Rebelo (2007) rely on asymmetric information and behavioral biases to explain the forward
premium puzzle.

Finally, the closed forms in this paper are made possibly by the “linearity-generating”
processes developed in Gabaix (2007a), and the modelling of environment with stochastic rare

disasters proposed in Gabaix (2007b).

2 Model setup

2.1 Macroeconomic environment: The stock view of the exchange

rate

We consider a stochastic infinite horizon open economy model. There are N countries indexed
by <. Each country i is endowed with two goods, a traded good, called a, and a non-traded
good, called b;. The traded good is common to all countries, the non-traded good is country-
specific.

Preferences. In country ¢, agents value consumption streams (C;;, C’f’t) according to

t>0
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Note that the two goods enter separably in the utility function. Together with the as-
sumption of complete markets, this will allow us to derive a simple expression for the pricing
kernel.

Numéraires. Our choice of numéraires follows the Harberger convention: we choose
the traded good a to be the international numéraire, and the non-traded good b; to be the
numéraire in country . We will sometimes call the traded good the “international good” or
the “world currency”.

We call e; the exchange rate of country ¢ in terms of the international good, with the
convention that a high e; means a “high value” domestic currency (when e; increases, the
domestic currency appreciates).! Hence, if a good has a price p;; in the currency of country 4,
it has price p; = eup;; in terms of the world currency. Stars (*) denote values in terms of the
international good.

As the non-traded good b; is the numéraire in country i, its price in country 7 is pft =1.

Hence, its price in terms of the traded good is pfi* = eitpfg', so that
b;
€it = Dy (1)

The exchange e;; rate of country 4, in terms of the international currency (i.e., in terms of the
traded good), is simply the price of the non-traded good of country i in terms of the traded
good.

So, the exchange rate between country ¢ and country j is the ratio of the e’s of the two
countries, e;/e;q.

Markets. Markets are complete: there is perfect risk sharing across countries in the
consumption of international goods. Let C{* be the world consumption of the traded good.

The pricing kernel in terms of the traded good can therefore be expressed as
Mt* — 6—(5t (Cta*)*’y .

The pricing kernel means that an asset producing a stochastic stream (Dt+5)520 of the traded

good, has a price: By Y00 My Dyys| /M.

!This choice of numéraire, although it does not follow the tradition which is to define the numéraire as a
basket of goods in the country, brings tractability to the analysis.
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Technology. There is a linear technology to convert the non-traded good of country ¢
into the traded good. By investing one unit of the non-traded good at time ¢, one obtains
e’ASw@HS units of the international good, at all periods s > t. The interpretation is that w;
is the productivity of the export technology, and the initial investment depreciates at a rate
A

Hence, the non-traded good is a capital good that produces dividends D; , = e w; ;.

So, in terms of the traded good, the price of the non-traded good b; of country ¢ is:

pii* =

)

§ * —As *
Mt+86 Cdi7t+S] /Mt

s=0

Given that e; = pl* (Eq. 1), the following obtains.

Proposition 1 (Stock view of the exchange rate) In terms of the “international currency,” the

exchange rate ey of country i is the discounted present value of its future export productivity:

eir = By

Z M:Jrse)\swi,ﬁrs] /‘]\41‘/>|< (2)

s=0

with the convention that an increase in e; means an appreciation of country i’s currency.

In Eq. 2, w4 is the productivity of country i’s export sector at time ¢ + s. M/ , is the
international pricing kernel, and is independent of country .

To our knowledge, the above formulation is novel, complete-market microfoundation for
the “asset view” of the exchange rate (Engel and West 2005 survey earlier “asset view” models,
that feature incomplete markets). The exchange rate is the relative price of two goods, the
traded and the non-traded good. At the same time, Eq. 2 gives us a stock view of the exchange
rate: the exchange is a present value of future levels of productivity in the country. The above
formulation could be used for many other models of the exchange rate. For instance, the
stochastic discount factor M, could come from a model with habit formation (Abel 1990,
Campbell Cochrane 1999) or long run risk (Bansal and Yaron 2004). We choose to study

disasters, in part because they have been less studied.



2.2 Macroeconomic environment: Disaster risk

World consumption of the traded good. We will study equilibria where the world con-
sumption of the traded good C{* follows the following stochastic process. As Rietz (1988) and
Barro (2006), we assume that in each period t 4 1, a disaster may happen, with a probability
pt. If a disaster does not happen, Cf;,/C¢* = €9, where g is the normal-times growth rate
of the economy. If a disaster happens, then Cff,/Cf* = e/B, with B > 0.2 For instance, if

B = 0.7, consumption falls by 30%. To sum up:

A _ ed if there is no disaster at ¢ + 1 3)
O eIB;,q if there is a disaster at t + 1

Hence the pricing kernel is given by

My, ek if there is no disaster at ¢t + 1 (1)
Mg e ®B, if there is a disaster at ¢ + 1

where

R:6+r}/gc

is the risk-free rate in an economy that would have a zero probability of disasters. For future
reference, we refer to it as the Ramsey interest rate.

Process (3) can be rationalized as the general equilibrium outcome in a model with a finite
number of countries, provided the endowments of those countries satisfy some conditions
spelled out in Lemma 1 of Appendix B.

Productivity. We assume that productivity of country ¢ follows:

Witt1 edwi if there is no disaster at ¢ + 1

Wit ed«i [ 11 if there is a disaster at ¢ 41

i.e. during disaster, the relative productivity of the traded good is multiplied by F; ;. For
instance, if productivity falls by 20%, then F; ;11 = 0.8. We define the “resilience” of country

2Typically, extra i.i.d. noise is added, but given that it never materially affects the asset prices, it is omitted
here.



7 as:

Hiy = py (By [Bi)Fyuy1 | Disaster at ¢t + 1] — 1) = H;, + Hy. (5)

where H;, and ﬁit are respectively the constant and variable part of the resilience. This is a
measure of how well productivity is insulated from world disaster.® In (5), the probability p;
and world intensity of disasters B, are common to all countries, but the recovery rate Fj ;11
is country-specific. Of course, the recovery rates could be correlated across countries. In order
to facilitate taking the continuous time limit, it is useful to write write H;, = e+ — 1.

To obtain tractability, we postulate a Linearity-Generating process (Appendix A) for

Mre > (1,w;). The law of motion for H,, is:

14 H;,

77 —bu. 17 H
Hipq = T Hite o [ T Eitt1s (6)

where B [ef,,] =B, [, | Disaster at ¢ + 1] = 0.
Eq. 6 means that f[t mean-reverts to 0, but as a “twisted” autoregressive process. As Hy

hovers around H,, iig’f is close to 1, so that the process behaves much like a regular AR(1):

~

Hiyq ~ e~ ﬁit + 5{?@ 41, an equation that holds up to second order terms. The % term
is a “twist” term that makes the process very tractable. It is best thought as economically
innocuous, and simply an analytical convenience. Gabaix (2007, Technical Appendix) shows
that the process, physically, behaves indeed like an AR(1).

Its continuous time analogue is:
Hy = = (6, + Hy) Hudt + AN}, (7)

where where N is a martingale, F; [d]\QH } =E [dNtH | Disaster at t + 1] =0.

This assumption allows us to derive the equilibrium exchange rate in closed form.

Proposition 2 (Level of the exchange rate) In terms of the “international currency,” the

exchange rate of country i is:

—7 _h
- Wit e Tei i% Al
Cit = 1 — e—Tei (1 + 1 — e Tei—%n Hi ) (8)

3This model addresses the concern of Brandt, Cochrane and Santa-Clara (2006), who note that discount
factors must be highly correlated across countries. They are in this model, because the crisis affect all countries.
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where w; s the current productivity of the country. In the limit of small time intervals, the

exchange rate is:

Wit ﬁit
=1+ —" 9
cit Tei ( Tei + ¢HZ) ( )
with
Tei = R+ X — gu, — hix- (10)

Formula (9) is a modified version of Gordon’s formula. It can be verified that e; is
decreasing in r.;: the exchange rate is decreasing in the Ramsey interest rate R, decreasing
in the depreciation rate of capital A, increasing in the growth of productivity g,. Formula (9)
implicitly exhibits a Balassa-Samuelson effect: more productive countries — countries with a
higher w; — have a higher real exchange rate.* Countries with a high expected productivity
growth also have a high exchange rates.

Importantly, e, is increasing in h, and f[t: Risky countries have a low exchange rate.
Finally, at this stage, the volatility of the exchange rate comes from the volatility of its
resilience Hj. Later, we generalize the setup and introduce other factors.

In Section (6), we explain how to infer a country’s resilience from currency options data

and provide evidence that riskier countries have depreciated real exchange rates.

2.3 The forward premium puzzle

Consider a one period domestic bond in country 7, that yields 1 unit of the currency of country
¢ at time ¢ + 1. It will be worth e, ;1 of the international currency. Hence the domestic price

of that bond is given by:’

1 E, |:Mt*+1€i7t+1:| (11)
L+

*
Mt eiyt

4Our formula holds for more general specifications of the utility function. For example, we could allow
utility to be defined by

S (o b
Eo [ e | TV izo)
t=0

where V' is any consistent utility function over non-traded goods consumption processes {Cf}tzo. Were we
to follow this route, our model would not generate a perfect correlation between total consumption and real
exchange rates, which Backus and Smith (1993) have demonstrated doesn’t hold in the data.

5The derivation is standard. In the international currency, the payoff of the bond is e;11, so its price is

E; {%?“}, and its domestic price is (11).
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where 7; is the domestic interest rate — the nominal interest rate in domestic currency.

Proposition 3 (Level of the domestic short term interest rate, when there is no inflation on

the home goods). The value of the domestic short term rate is

(]. — 67%1) Gihi* ﬁit

rig =€ |1 — — 1 (12)
1—erei=%n + e~hix H,,
In the limit of small time intervals, the interest rate is:
Teili\[i
rit:Tei_)\_ i (13)

Tei+¢H+ﬁit

When a country is very “risky”, (ﬁ[lt low), its interest rate is high (13), because its currency
has a high risk of depreciating in bad states of the world. Note that this risk is a risk of
depreciation, not a default risk.

Hence, countries with high interest rates will see their exchange rate appreciate — that’s the
“forward exchange rate premium puzzle” or “uncovered interest rate parity puzzle” highlighted
by Hansen and Hodrick (1980) and Fama (1984), and replicated for various countries and time
periods many times since (Engel 1996, Lewis 1995 provide surveys).

We analyze the predictions of our model for Fama regressions in two different types of
samples: with and with no disaster. We consider countries with identical constant parameters,
but possibly different ﬁt and wy.

Fama regressions conditional on no disaster. In the continuous time limit, the
expected growth rate of the exchange rate, conditional on no disasters is, dropping the index

1 for country i,

Elldetl_ Et[%] B <¢+ﬁt)ﬁt
e dt reto+H T reto+d,

In a first order approximation in ﬁt:

1d€t QS =5
E, | ——| = qg, — H,
t{etdt} 9 Te+ @ !
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When the country is very risky, I/{Tt is high, and its exchange rate is low (9); as the exchange

rate mean-reverts, its exchange rate will appreciate, so that E, [%] Je. > 0.

Similary, in a first order approximation in ﬁt:

7neI{t
—r,— A —
Tt T Y +¢
Hence
1d . — A
Et |:_ﬁ:| — f/]ﬂt + gw . M
e, dt . Te

Consider the Fama (1984) regression of the changes in the exchange rate between countries

A and B regressed on the difference in interest rates, in a sample with no disasters:

A A B B
€, —€ € — €
Fama regression: [E; l Lt Mt —a— 5(7"24 ) (14)

e ef

The expectation hypothesis predicts § = 1. The present model however predicts a negative
coefficient. For simplicity, we consider the case where the two countries, A and B, have the

same 7.

Proposition 4 (Coefficient in the Fama regression, conditionally on no disasters). In the

Fama regression (14), in a sample with no disasters, the coefficient is:

f=-—— (15)

Te

With the calibrated numbers with ¢ = 20%/year, r. = 10%/year, the coefficient in a
yearly regression should be § = —2, which is in the order of magnitude of the results of the
literature. We conclude that even quantitatively, the UIP puzzle seems accounted for by the
framework.

Unconditional Fama regressions. We next turn to the unconditional Fama regression.

Using Eq. 11, we have

* A
Mt+let+1]

1—|—TtB B By [ M; el
1+ Tf‘ - Et [Mf+1etB+1:|

* B
Mfe;
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which in the continuous time limit can be expressed as

A A B B % A A B B
B_,A_ERg i1 — 6 Gl TG C My el —ef ey —e
Ty =Ty = Ly iy - B + Cou . iy - B
e; ey M; e; ey
i.e.
A A B B % A A B B
€41 — & €31~ €% | B A M, e —¢€f i1 — &
E, - — 5 =r. —r; —Couy —, = — 5
e; e; M; e; e;
. . . . . . A.B
This expression highlights the role of the risk premium 7, "":
* A A B B
AB _ M, e —¢€ €iy1 — €
w0 = —Cou U 7 — =
t € €

Consider now the Fama (1984) regression of the changes in the exchange rate between

countries A and B regressed on the difference in interest rates in a full sample:

A _ A B _ B
. 1 1
Fama regression: B, l L 1 = ol — gt (e — P (16)

The coefficient 57" is now given by
A,B
Cov(m; ", rjt —1f)

Full
=1
p Var (rit —rpP)

Full

Therefore, we can have 3 < 0 if and only if the risk premium covaries positively enough

with the interest rate differential. It is easy to compute
AB 1 — A __ B E FA _ FB
" = ( B)(ri — 1) + pily [ t+1 t+1}

which leads to

8- Cov (P [y — FiL] it —17)
Var (rf —rpP)

Cov <ptEt [Fiil - Ftil] 71?54 - ?IE)

BFull —

gt = p+(1-7)

Var <ﬁ[;4 — f[f)
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In the case where By is constant and equal to B, and p, B [Ff, — FE,]| = (ﬁ{‘ — HB ) B

6F“”:6+(1—5)sz—ﬂ+<1+2) B

Te Te

Proposition 5 (Coefficient in the Fama regression, unconditionally). In the Fama regression

(14), in a full sample, in the case where B, = B, the coefficient is:

gran—1- 2 (1- p) (18)

Te
In particular, for B = 1, there is no disaster risk (consumption doesn’t fall during dis-
asters), so that 8" = 1. Hence, the Fama regression yields a negative coefficient only if
disaster risk is high enough. We note that the negative 87 does not come from a peso

problem explanation, in the sense that, in the model, even in a sample that includes disasters,

there can a negative coefficient in the Fama regression.

3 A setup with a risk factor and a business cycle factor

The above setup gave the essence of the disaster mechanism, but it has only one factor, so that,
controlling for current productivity, exchange rate and risk premia are perfectly correlated,
which in a variety of context is not a desirable feature. Accordingly, we extend the framework

to a two-factor model, a risk factor, and a business cycle factor.

3.1 Setup with a risk factor and a business cycle factor

In the baseline model, the real rate varies only because of the risk premium. We can easily
extend the model to business cycle movements in the interest rates. For ease of notations,
we typically drop the index ¢ for country i. We say that the country’s productivity is w; =
Wi (1 4+ y¢), where @, is the “permanent” component of productivity, and y; is a “business

cycle” fluctuation or “deviation of productivity from trend”. We model:

Wit e9« in normal times

W e Fyyq if disaster

14



and LG-twisted process for y,:

Ey [yt+1] =

with innovation uncorrelated to the ones of w; and M;. This allows to calculate the exchange

rate.

Proposition 6 (Exchange rate with a business cycle factor) The exchange rate is

—_ —re—h —r
Wy e TeT o 1—eTe
= (14+———H _ 1
€ o ( + 1 ore—on 11t + [ o=, yt) (19)

and in the continuous time limit:

e = ﬂ (1 + Ht + Telt ) (20)

and the interest rate 1s:

H, Tey
1 + T'e+:ﬁH + 7"e+(;y

In this setup, the resilience I/{Tt has the same effect as before. But there is an additional
factor, the deviation of productivity from trend w;, which is not associated with any risk
premium. As would be expected, when productivity is high, the exchange rate is high, and is

expected to depreciate, so that the interest rate rate is high.

3.2 Fama regression with two factors

Let us revisit the Fama regression (14):

A A B B
et —e e’ —e
141 t 41 t 1A B
B oA - oB =a = f(r] —r))
¢ ¢

The next Proposition relates the coefficient 5 in a sample with no disaster, and the coefficient

ﬁ/Full Full

in full sample, to their corresponding values § and [ previously derived for the

one-factor model.
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Proposition 7 (Value of the B coefficient in the Fama regression, with two factors). Up to

second order terms, in the Fama regression, the coefficients are:

g o= vBt1-v (22)
6/Full _ VBFUU +1—v (23)

where B and 7 are given in Eqs. 15 and 18, and v is the share of variance in the interest

rate due to f[t,

2 N
() vor (1)
y= eton ~ | (24)
r -~ T'e¢y
(TeJr‘in) var (Ht) + <T6+¢y) var (y)

In Eq. 22, 5 is the weighted average of two Fama coefficients. One, [, comes from

the variations in the risk premium. The second, 1, comes from the cyclical variations in
productivity, and is the value predicted by the expectation hypothesis. The weight v is the

relative share of the two factors in the variance of the interest rate.

4 Yield Curve, Forward Rates, and Exchange Rates,

Real and Nominal

4.1 Exchange rates and long term real rates

To study the forward premium puzzle for long term rates, we first derive the price of long

term bonds. The price of a bond yield one unit of the currency at time ¢t + 7 is: Z;, (T) =

M¥ e
t+Tt+T
By | Mot .

The yield at maturity 7', Y; (7)), and the forward rates f; (') are defined by Z;, (T') =

e_Yt(T)T = e Z;’Zl ft(Tl)_

Proposition 8 (Price of a domestic bond, when there is no inflation on the home goods) The

domestic price of a domestic bond of maturity T', in the continuous time limit:

7€*¢T)+¢ ~

re(l
1+ 76( - H, + ef%T—TTeyt
Z,(T) = e~ (re=NT retd)o_ +oy (25)
1+ Hy TeYt
Te+¢ T'e+¢y
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and the forward rate is, up to second order terms in I;Tt and 1,

T o 7"5¢
TY=r,—\— ¢ e nTH, 4+ Y_e=¢yT 26
ft( ) e+ p t T6+¢y Yt ( )

The proof to this Proposition also calculates the expressions for bonds, yields, forward rates,

in discrete and continuous time.

The proof is in Appendix B.

To illustrate the economics, suppose that the country has a very high ﬁt, i.e. is very safe.
Future H, will, on average, mean-revert to 0. Hence, by (9), the exchange rate (which is high
now) will depreciate. The short terms rates are low (Eq. 13), which is the forward premium
puzzle. Eq. 25 says that long term rates are low (the bond price is high because PAIt.is high).
Hence, perhaps paradoxically at first, investors expect the exchange rate to depreciate in the
long term, and also, long term rates are low. In the model, this is because investors perceive

the country as very “safe”, and require a small risk premium on it.

4.1.1 Fama regression with forward rates

Boudoukh, Richardson Whitelaw (BRW, 2006) propose to regress the exchange rate movement

on the T'—period forward rate from 7" periods ago:

. e —e  epa—ef _ Fud Fuwd A B
BRW regression: E; — 5 =" ()= (T) (fLr (T+1)—f7 7 (T+1))

(27)

€t €t
Our model’s prediction is in the next Proposition.

Proposition 9 (Value of the 3 coefficient in the Fama regression, with two factors, with
forward rates). Up to second order terms, in the BRW (27) regression with forward rates, the

coefficients are:
grNT) =v(T)B+1—v(T) (28)

and
pred Pl (py = (T) g5 1 — v (T) (29)
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where B and S are given in Egs. 15 and 18, and

) (T) = CJ}H) var (fft> o264 )

2 2
_re 7\ =20, T TePy —2¢,T
(s255) var () em2on™ + (52 ) var (y) e 2

is the share of variance in the forward rate due to ﬁt. In particular, when ¢y > ¢,, the long
~Full

horizon regression have coefficient going to 1: limp_,o 3 (T) =limyr_.. 3 (T)=1.

BRW (2006) find that 4/ (T) increases toward 1 with the horizon. Our theory is consis-
tent with this empirical finding. Indeed, to interpret Proposition 9, consider the case where
risk-premia are fast mean-reverting, and productivity is slowly mean reverting, ¢y > ¢,.
Then, large T, v (T) tends to 0, which means that, at long horizons, the forward rate is
mostly determined by the level of 1;, not of the risk premium. Hence, at long horizon the

model behaves like a model without risk premia, hence generates a coefficient 5 close to 1.

4.2 A simple model of exchange rates and nominal yield curves

Until recently, forward real interest rates were not available. Only their nominal counterparts
were the support of actively traded securities. Even today, most bonds are nominal bonds.
To model nominal bonds, we build on the real two factor model developed above. Let
t

Q: = QOH (1 —is) be the value of money (the inverse of the price level). The nominal

s=1
M et
Mfet

interest rate 7, satisfies ﬁ =, (1— it)], so that, in the continuous time limit,

T =1+ 4, (31)

the nominal interest rate is the real interest rate, plus inflation. The Fisher neutrality applies:
there is no burst of inflation during disasters. With a burst of inflation, even short term bonds
would command a risk premium.

Inflation hovers around i,, according to the LG process:

e iy — 1.) + by (32)
1-— 1t

itJrl =14+
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where ¢! 41 has mean 0, and is uncorrelated with innovations in M;,, in particular with
disasters. One could correlate this, but the analysis is a bit more complicated (the analysis is

available upon request). The expected value of 1 unit of currency T period later is:

t . 1—e T —i,
i {QQiTl =i’ (1 T f) (33)

or By || = ¢~ (1 — 1= %% (j, _4)) in the continuous time limit.
Qt ?;

To fix notations, we denote nominal variables with a tilde. The price of long term nominal

M peryrQeyr
M etQ1

we assume that shocks to inflation are uncorrelated with disasters, the value present value of

bonds yielding one unit of the currency at time ¢ + 71" is Z, (T)=E; [ ] Because

one nominal unit of the currency is

~ M M
Z, (T) —E, { t+T€*t+TQt+T:| — E, { t+j;€t+T:| E, |:Qt+T:|
Mt e:Qy Mt & Q:

Hence, the value of the zero coupon bond is:

Proposition 10 (Price of a nominal domestic bond, with no inflation risk premia) The do-

mestic price of a domestic nominal bond of maturity T, in the continuous time limait:

14 re(l—e*¢T)+¢ﬁI + —¢, T _Treyt T
oo T T Rekey | i (1 _loe?

Zt (T) = e~ (re=NT 5

_ (i1 — m) (34)
Hﬁ TeYt
1 + Te+¢ + T5+¢)y

and the nominal forward rate is, up to second order terms in H; and y;, iy — i

~ Te . . .
Te 6—¢HTHt _|_ &e_ﬁﬁyrpyt _|_ is + 6_¢iT (Zt _ 7/*) (35)

) = e A e, =y

The proof to this Proposition also calculates the expressions for bonds, yields, forward rates,

in discrete and continuous time.

The nominal forward rate in (35) depends on real and nominal factors. The real factors
are the resilience of the economy (the ﬁt) term, the expected growth rate of productivity

(=¢,¥:)- The nominal factor is inflation .
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Each of the three terms is multiplied by a term of the type e=?#”. For small speeds of
mean reversion ¢’s, it means that the forward curve is fairly flat.

With @, the value of money, the nominal exchange rate is: ¢; = ¢;Q);. The expected
depreciation of the nominal exchange rate is, up to second order terms, and conditionally on

no disasters: N
. ¢ H, _ r€¢yyt B
Te + ¢H Te + ¢y

We can derive the implications of our model for a Fama regression in nominal terms:

it (36)

€

=7 — — dnom _ Bnom (ffiA _ ftB) (37)

A ~A =B ~B
€ € ]

€1 —€ € — €
Et|:t+ t t+ t

where 7 and 7P are now, with some a slight abuse of notational, the nominal interest rates

in countries A and B. Our model’s prediction is in the next Proposition.

Proposition 11 (Value of the 5 coefficient in the Fama regression in nominal terms). Up
to second order terms, in the nominal Fama regression (37) regression with forward rates, the

coefficients are:

nom ~nom, Full

B — Vnomﬁ +1— 0" and 6 — ynomﬂF’ull 41— pnom (38)

where B and BT are the coefficients in the Fama regression defined in propositions (4) and

(5), and

2 ~
() vor ()
Jnom _ etou (39)

~

P P
<Tef¢H> var <Ht> + (ﬁ) var (y) + var(i)

1s the share of variance in the forward rate due to f[t. In particular, when ¢ > ¢, the long

~ ~Full
horizon regression have coefficient going to 1: limy o, 5(T) =limr_ 8  (T) = 1.

In this simple model with no inflation risk premia, the higher the variance of inflation
, the closer to 1 is 5"°™. Hence, countries with very variable inflation (typically, those are
also countries with high average inflation) satisfy approximately the uncovered interest rate
parity conditions. When disaster risks are very variables —and the real exchange rate is very

variable — then "™ is more negative.
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4.3 A richer model with nominal risk premia

We now develop a richer model with an inflation-specific risk premium. We extend the frame-
work developed in the previous section by incorporating inflation risk along the lines of Gabaix
(2007).

The variable part of inflation now follows the process:

41 =

1 i : (e_(piit + 1{Disaster at t+1} (]* + .]t)) + €i+1 (40)
i
In case of a disaster, inflation jumps by an amount j; = j, +;t This jump in inflation makes
long term bonds particularly risky. j, is the baseline jump in inflation, ;t is the mean-reverting
deviation from baseline. It follows a twisted auto-regressive process, and, for simplicity, does
not jump during crises:
Jeg1 = —— - ePj + 111 (41)
1-— 1t
We define 7} = pi;;fz, which is the mean-reverting part of the “risk adjusted” expected
increase in inflation if there is a disaster. We parametrize the typical jump in inflation j, in

terms of a number x < (1 — p;) /2:

pBF .

G =(1—i)* k(1= p; — k).

k represents a risk premium for the risk that inflation increases during disasters. Also, we
define i, = i, + ~ and ¢, = ¢, — k. They represent the “risk adjusted” trend and mean-
reversion parameter in the inflation process.

To fix notations, we denote nominal variables with a tilde. The price of long term nominal

bonds yielding one unit of the currency at time t + T is

= M re 7Qiir
Z T —_ E t+TCt+T :|
' ( ) ' l MeQy

The yield at maturity T, Y; (T), and the forward rates f, (T) are defined by Z, (T) =

e VDT = o= X7 1i(T) | The next Proposition calculates the forward rate.

Proposition 12 (Price of a domestic nominal bond, with inflation risk premia) In the con-
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tinuous time limit, in up to second order terms in (Ht, Y, Ut Wi) :

[ ¢HTH 4— ¢ ¢yTyt+Z'** (1 _ e—¢iT) +6_¢iTit+Mﬂ-i
r6+¢H r6+¢y wﬂ_¢z
(42)

fo(T) = re=

The nominal forward rate in (42) depends on real and nominal factors. The real factors are
the resilience of the economy (the f[t) term, the expected growth rate of productivity (—¢,y:).
The nominal factors are inflation i;, and the variable component of the the risk premium for
inflation jump risk, .

When a disaster occurs, inflation increases (on average). As very short term bills are
essentially immune to inflation risk, while long term bonds lose value when inflation is higher,
long term bonds are riskier, hence they get a higher risk premium. Hence, the yield curve
slope up on average — as implied by the term 4., (1 — e~ *7) ~ i,,¢,T.

Each of the three terms is multiplied by a term of the type e=?#7. For small speeds of

mean reversion ¢’s, it means that the forward curve is fairly flat. The last term, however, is

e ¢l e~ ¥nT
hr—¢;
curve. Hence, we obtain a rich, potentially realistic, forward curve.

close to T' for small maturities ( ~ T). Tt creates a variable slope in the forward
Nominal yield curves contain a lot of potentially information useful to predict exchange
rates. We now explain how to best extract the relevant information to compute exchange
rate risk premia. As above, the expected depreciation of the nominal exchange rate is, up to
second order terms, and conditionally on no disasters:
O H, r€¢yyt

d@t .
E{ ]/dt s (43)

It involves three factors that are also reflected in the nominal forward curve. Note however,
that it does not involve the inflation risk premium 7¢. So, an optimal combination of forward
rates should predict expected currency returns with more accuracy than the simple Fama

regression. The next Proposition derive the minimal such combination.

Proposition 13 The expected appreciation of the currency can be expressed:

|:det1 /dt =a— B Zt - B Tt — leopeaTﬁ (O) - BCurvaturea%ﬁ (O) (44)
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where iy is the inflation rate, r; is the short-term nominal rate, 8Tft (0) is the slope of the

yield curve, (9%}?; (0) is the curvature of the yield curve, and

Bi = 1=0¢4,/K

e

ﬁslope = _(¢z+¢7r) (gi_H—i_l) /K

ﬁcurvature = - <Q;_H + 1) /K

e

K = (¢;+ ¢ — 6, — ou) (&, — our)

For instance, in the calibration where productivity y; is a near random walk (¢, = 0),
B, = 1. Hence, in the regression (44), the coefficient in the nominal interest rate is 1 — the
one predicted by UIP — once we control for the risk premia terms encoded in the slope and

curvature of the yield curve.b

5 Equity premia and exchange-rate risk premia
Our model allows to think in a tractable way about the joint determination of exchange rate

and equity values.

5.1 Local market price of risk and local maximal Sharpe ratios

A clean way of getting at this question is to characterize the maximal Sharpe ratio and the

market price of risk in local currency. The stochastic discount factor in local currency is

1/2
Mip1 = % The maximal Sharpe ratio is given by: S; = chf(m—(le) It is given by the
formula’
1-— H?
S =)o+ (1402 b L
Dt (]. + Ht)

SFor instance, the curvature can be approximated by the discrete formula: f (1) —2f (2) + f (3). Another
discrete proxy is (the opposite of) the tent shape factor for Cochrane and Piazzesi (2006), that explains bond
risk premia.

"my 1 =By <22 | No disaster] e B(14+ei41) (1 + Bt_WFtJtH), where var (g441) = 02, and Jy11 = 0 with

€t

probability 1 — p;, and 1 with probability p;.
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where o,y = Var, / *(e41 |No disaster) /Eq(er1 [No disaster) is the standard deviation of the

log exchange rate in normal times. In the continuous time, limit, we can derive a very simple

/ H? de
S; = (|02, + =+ with 02, = Var, (—t | No disaster)
R 2 ’ €t

2
e,t

expression

The only source of time variation in o2, comes from time variations in the variance and
covariance of the structural shocks to H; and y;: gf{ and &Y.

The maximum Sharpe ratio S; is high when resiliency H; is high. Therefore, countries that
demand low currency risk premia will feature high local Sharpe ratio and high local equity

premia.

5.2 Explicit stock values

Another way to proceed is to take a stand on what fraction of present and future endowments
is capitalized in each stock market. A route commonly taken in Lucas-tree economies is to
equate the market to a claim on the entirety of the present and future national endowments of
goods. However, listed stocks only account for a very small and potentially non-representative
fraction of future GDP. Hence, we model stocks without taking a specific stand on the link

between the aggregate dividend of listed stocks and GDP.

5.2.1 Firm producing the international good
Consider first the case of a of domestic firm, that produces the international good. More

precisely, the dividend D; follows the following process

Dy eI (14 ¢eptt1) in normal times

Dy eI (1 +epyr1)Fpe  if crisis

where an idiosyncratic shock uncorrelated with the stochastic discount factors.

Define the resilience Hp; of the stock as

Hp:=p (Et [B;leD,tH] - 1) = Hp. + ﬁD,t-

24



It is convenient to define Hp, = e"P+ — 1. The law of motion for H Dy 18

where ¢y is the speed of mean reversion of the resilience of the stock.

Proposition 14 (Domestic stocks producing international goods). The domestic price of the

stock Pp; 1s
D, 1+ 1 AL LT Hp,

[Ey—
Ppy=— — 7 7:1 =
e 1—e"p
In the continuous time limit R
D 1 + HD,t
D+
PD,t _ pt+omuy, (45)
€t D

A more resilient stock (high H p+) has a higher price-dividend and lower future returns.
Controlling for this resilience, if the currency is strong (because the country as a whole is safe),
then the stock price in domestic currency is low. As e; is expected to depreciate, the expected
return of the stock in local currency is high. In this sense, currency risk premia and local
currency equity premia are negatively correlated. Hence, the theory provides an explanation
for Hau and Rey (2006)’s evidence that the home-currency stock price is decreasing in the

exchange rate.

5.2.2 Firm producing the domestic good

We now turn to a domestic producer producing D, quantities of the domestic good. Its stock
price, in the international currency, is P} = E; [Zs>t Msest], so that its domestic price is

P, = P} /e;, hence:

Et [Zszt Msest]

P,/D; = 46
/D) 2 (46)
We postulate the following process for Dy
Dyw ) € if there is no disaster at t + 1
Dy eIF} if there is a disaster at ¢ + 1
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F} is the recovery rate in the dividend of that firm. We postulate the F} also follows a LG
process, hovering around F?, and mean-reverts at a rate ¢, with a twist spelled out in Eq.

(63).

Proposition 15 (Price of a domestic stock producing non-traded goods). To a first order

approximation, the price of stock producing domestic goods is, in terms of the international

currency:
1 (H.+p)F Fi 1 H
o rp(rp+¢p) \rp  Tetoy) D+ 04
and in the domestic currency,
‘ H,+p.)F, . J2i
P =Lep, 14 Wt pe) t+<F1— Ou ) ! (48)
D D+ ¢p Tet+ ¢/ o+ oy

where rp = R — gp — g, — (Hy + ps) F'.

To analyze the above expression, we take the polar case where ﬁit (the resiliency of the
firm’s technology) is uncorrelated with H, (the country’s resilience). The international price
of the stock (47) increases with H,, hence with the exchange rate.

The domestic price (48) of the stock can decrease or decrease with the exchange rate,

¢H
Tetdy

rate, while the price of non-resilient stocks decreases with the exchange rate. The reason

depending on the sign of F! — . The price of resilient stock increases with the exchange
for this ambiguous result can be see in Eq. 46, where an increase in e; increases both the
numerator and the denominator. Take a resilient stock, with F? close to 1. A increase in the
country’s resilience, ﬁt, increases the present value of future dividends (the numerator of Eq.
46), because future resiliences are high, and the discount rate is lower. Hence, the numerator
in (46) increases a lot. The denominator increases also, but not as much. The net effect is that
the domestic stock price increases: The cash flows that the firm produces are more valuable,
and less risky. However, take a stock with F* = 0, i.e. a stock that will be bankrupt after
a disaster. Then, there is no “discount rate effect” in the numerator of (46), as cash-flows
always have maximal riskiness (they disappear in a disaster). So, the effect due to the rise in

the denominator is stronger. Hence, the stock falls, when the exchange rate increases.

26



All in all, we see that the price of domestic stocks producing nontradables increases with
the exchange rate, when it is expressed in international currency, but, expressed in domestic
currency, it increases only for the most resilient stocks. Again, one might hope to test that

prediction.

6 Option prices and exchange rate risk premia

6.1 Theory

Option prices incorporate direct information about the probability and severity of disasters. In
particular, consider the implied volatility smile of a pair of currencies: a risky currency and a
safe currency. The smile will be much steeper on the risky currency side. A high “smile-skew”
should predict currency appreciation, high interest rate differential and high bond returns.
In order to gain in tractability, we make two simplifying assumptions. First we assume
that if a disaster occurs in period ¢ + 1, e}, is equal to zero. Second, we assume that the
distribution of e;,; conditional on date ¢ information and no disaster occurring in period ¢+ 1
is lognormal around its mean with standard deviation ¢’ where i indexes countries.
Consider two countries A and B. The currency A price at date 0 of a call that gives the

option to buy at date T' one unit of currency A for K = (1 + k):—'z units of currency B is
0

Mz (e BT
v (d-aend) |

Likewise, the currency A price at date 0 of a put that gives the option to sell at date T’

1. [M; i
Vel — — [ L (ep — Kep ] = Eo
e [ Mg (er )

A
one unit of currency A for K’ = (1 — k)% units of currency Bis
0

M* B AN\ T
a-nZ-4)
M; €o €0

VPut — EO

Consider the price of a “risk reversal” position W = V% — /¢4l (Calculations show that

it is approximately:
W = yPut _yCal _ g ((ﬁfB - ﬁIA) ,k;H*) T
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where W (z,k) = (z — k)" — (—z — k)*. The risk reversal position is such that the Black-
Scholes component of the put and call have the same price in the limit of short maturities.
This allows us to extract the disaster intensities from option prices.

Hence, when £ is small,and conditionally on no disasters:

A A B B
Coont — 6 Cnt — G o At

A etB :T6+¢H?

ND
[,
€t

W (49)

That is, a currency with a high put price should have a low price, and should subsequently
appreciate. This is because it has a high risk premium, that affects both the put value, and a

low value of the exchange rate. Eq. 49 expresses quantitatively the magnitude of the effect.

6.2 Evidence

Carr and Wu (2007) compute the risk-reversals for two pairs of countries: UK and Japan versus
the US. They find a high correlation between changes in the price of risk-reversal options and
changes in nominal exchange rates: currencies that become riskier — for which puts become
relatively more expensive than calls — experience a simultaneous depreciation. Farhi, Gabaix,
Ranciere and Verdelhan (2007) extends their analysis to a sample of 25 countries. Their
analysis confirms the finding of Carr and Wu (2007) and shows that it also holds for real

exchange rates, providing direct evidence in favor of our model.

7 A Calibration

7.1 Choice of Parameter Values

We use yearly units.

Preferences. The coefficient of relative risk aversion is v = 4.

Macroeconomy. In normal times, consumption of nontradables grows at rate g. = 3%. We
set g, = ¢., but values are not really sensitive to that parameter.

To keep the calibration parsimonious, the probability and intensity of disasters are con-
stant. The probability of disaster is p = 1.7%, as estimated by Barro (2006). We present

two calibrations. In disasters, the utility-weighted average recovery rate of consumption is
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E[B~"]""" = 0.55 (in Calibration 1), or E[B~]""/? = 0.45 (in Calibration 2). We make sure
that the riskless domestic short term rate is on average around 1%, which pins down the rate
of time preference, 0.

Exchange rate. An initial investment depreciates at a usual rate A = 8%. To specify the
volatility of the recovery rate Fj, we specify that it has a baseline value F, = 0.8, and its
the range is F; € [Fiin, Finax] = [0.2,1.2]. That means that the technology of transforming
domestic goods into international goods could improve. This is because w; is really the ratio
between two productivities — to produce domestic or international goods, so that relative
ratio could increase or decrease. This possibility of a worst-case fall of productivity to 0.2
of its initial level may seem high. Perhaps it proxies for disruptions not directly linked to
productivity, e.g. the introduction of taxes, regulation, or a loss of property rights (as in
Barro 2006), though we do not not model those interpretations here.

The speed of mean-reversion is ¢, = 0.2, which gives a high-life of In2/¢, = 3.5 years,
and is in line with typical estimates from the exchange rate predictability literature (Rogoff
1996).

This translate into a range for f[t =p(BF, —1), [ﬁfmm, f[max]. We parametrize the
volatility according to Appendix C, with

2

7 () = 2003 | B B (1= B/ Frs) (1~ 7/ F (50)

which guaranties that H remains within [ﬁmin, I;Tmax] , as the volatility dies down fast enough
at the boundaries. The parameter v controls the volatility H and F. For instance, a country
with volatile riskiness will have a high v.

To calibrate the exchange rate fluctuations, we start from (9), and take the benchmark
of a constant productivity w; during the “normal times” period under study. Then, the only
changes in the real exchange rates are due to expectation about the “resilience” of a country if
a disaster happens. Differentiation of (9) gives a bilateral exchange rate volatility between two
uncorrelated exchange rates® o, ~ V205 / (R. + ¢). If two countries are perfectly correlated,

then o.; = 0, while if they have a correlation of —1, then o.,; ~ 20/ (R. + ¢). We report

8This is because 4& = —fr _ ~ M , and the bilateral exchange rate e;; = e; /e; has twice the variance
€t r+¢+Hy r+¢ -

of any of the exchange rates, if the H; shocks are uncorrelated.
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the values for the uncorrelated case.
Default risk To keep the model parsimonious, we assume no default risk on debt. This
is the cleanest assumption for developed countries. Of course, in many cases (e.g. to price

sovereign debt), the It can be added without changing anything to the exchange rate.

7.2 Implications for levels and volatilities

Table 1 presents the result of the calibration. In Calibration 1, with v = 0.2, the volatility of
the bilateral exchange rate is 11%, and with v = 0.1, 8%. In Calibration 2, the corresponding
volatilities of the exchange rate are 25.7% and 18.7%, respectively. Hence, the model can
reasonably easily generate a high volatility of the exchange rate. The reason is that disasters
have a high importance: their importance is magnified by E [B~?], which is 10.9 (in calibration
1), and 24.4 (Calibration 2). A disaster is E[B~7] = 10.9 times more important for a risk
averse agent, that it would be for a risk-neutral agent.

For a high value of the volatility of F', with v = 0.2 (which might correspond to a country
with a very volatile F', like Brazil) we obtain a volatility of the bilateral exchange rate equal
to 19% / year, and a volatility of F' equal to . For v = 0.1 (which might correspond to a more
stable country, like Germany), the volatility is 13.6%. The model parameters give a volatility
of the bilateral exchange rate equal to 8.2%, a value in line with the typical historical values
of 10%.

The volatility of F; (defined as stdev (Fyy1 — F})) is, in the case, v = 0.1, 9% per year.
That means that means that expectations about recovery rate vary pretty rapidly from year
to year.

As ﬁt is quite volatile, the exchange rate is hard to forecast (the same way stocks are hard
to forecast). At short horizons, it behaves like a random walk (qualitatively consistent with
Meese and Rogoff 1983).

We conclude that while the above numbers are somewhat speculative, the model may

account for the magnitude of exchange rate volatility.
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Table 1: Two calibrations of the model

Calibration 1 Calibration 2
Medium riskiness High riskiness

Postulated values

Size of disasters B [B~] /7 0.55 0.45

Time preference § (in %) 4 22

Implied values

Range for domestic riskless short rate (in %) {-1.0,1.3,4.9} {-4.1,1.0,8.8}
Range for FX e;/ (w¢/7e) {0.62,1,1.25} {0.14,1,1.57}
Volatility of F}, when v = 0.1,v = 0.2 0.090,0.127 0.090,0.127
Simple Fama Regression coefficient, —¢/r, -2.1 -2.2

Bilateral FX volatility o, (in %) when v =0.1,v = 0.2 8.1, 11.4 18.7, 25.7

Explanation: Each of the two calibration has, we postulate a value of the utility-weighted

average size of recovery in disasters, F [B*V]fl/ 7. We then fit the rate of time preference
J, to get a typical value of the interest rate close to 1%. We report the minimum, typical

(corresponding to H; = 0) and maximum range for the domestic short term interest rate; the
minimum, typical and maximum value for the exchange rate over “steady state fundamentals”
(wi/1e). Finally, we report for volatility of the bilateral exchange rate for currencies with two
uncorrelated fundamentals. Perfectly correlated currencies have 0 bilateral FX volatility,
perfectly anticorrelated currencies, a volatility equal to the one reported in the table, times

V2. The time unit is the year.

8 Conclusion

This paper proposes a simple, tractable model of exchange rates and interest rates, and offers
a theory of the forward premium puzzle. Its main modelling contributions are, first, to de-

” view of the exchange rate, in a complete market setting

velop an “exchange rate as a stoc
(Proposition 1). Second, to work out the exchange rate in a stochastic disaster framework,
and to obtain closed forms for the value of the exchange rate, and the forward premium puzzle
coefficients.

The paper suggests several questions for future research. First, it would be good to examine
new predictions that the model might generate, including the relationships between bonds,
options and exchange rate premia and predictability. Second, it would be interesting to

extend the model to stocks, so as to study the link between exchange rates and stock markets.

Third, given that the model is very simple to state, and to solve (thanks to the modeling
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“tricks” allowed by linearity-generating processes), it can serve as a simple framework for

various questions. This gives hope that a solution to more puzzles in international economics

(Obstfeld and Rogoff 2001) may be within reach.
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Appendix A. Some results on Linearity-(GGenerating processes

The paper constantly uses the Linearity-Generating (LG) processes of Gabaix (2007). This
Appendix gathers the main results. LG processes are given by M, D;, a pricing kernel M, times
a dividend Dy, and X, a n-dimensional vector of factors (that can be thought as stationary).

For instance, for bonds, the dividend is D; = 1.

Discrete time By definition, a process M;D; (1, X;) is LG if and only if it follows, for
all t’s:

Mt+1Dt+1 !
B | —————| = X 1
¢ { ) 1 a+ 0 X, (51)
M; 1D
o [Hgpeea] - e g

Those conditions write more compactly:

. MtDt (6] (5,
Et}/t-‘rl = Qift Wlth }/t = and Q=
MtDtXt Yy r

Higher moments need not be specified.
The main result is that stocks and bonds have simple closed-form expressions. The price

of a stock, P, = E; [ZsZt MSDS] /My, is:

1+ (I, -D)7' X,

l—a—6(I,-0)"'y (53)

P/Dy =

The price-dividend ratio of a “bond”, Z; (T) = By [My 7 Dyi7)|/ (M Dy), is: (with 0, a

n—dimensional row of zeros):

T 1
Z(T) = (1 On)-Q : X,

TI—T

= o +82

WX,: when Y= 0
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Continuous time In continuous time, M, D, (1, X;) is LG if and if only it follows:

d(MDy)] :
d (M;D;X;)
E | ————= — dX
¢ l D, (b+DX,)dt (55)
i.e. more compactly
. M, D, a [
E; [dY;] = —wYidt with Y; = and w =

M, DX, b o

The price of a stock, P,/D; = By [ [ M,Dyds] / (M,Dy), is:

1- 81X,

P/Dy = —— 3o-1p

and the price-dividend ratio of a “bond” is: Z; (T') = Ey [MyyrDyir] / (M Dy)

a 1

21 = (1 0,) exp |- N EA R I (56)
t
—o7T —aTIn
= e_“T—i—B'e ¢ X, when b =0

® —al,

9 Appendix B. Proofs

For simplicity, we drop the country index ¢ in most proofs.

Proof of Proposition 2 By proposition 1, we have

> —A(t+s)

(o (& Wi
—— =E g Mt*—ks—,M 21 /M
e Wt 0 e Wit
s—
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Let D; = e Mw, and X, = H,. With this notation,

M D )

B l%} = e {1 —pe) + peB [BthgFtJrl}}
t Mt

e e_R—>\+gw (]_ —I— Ht) — e_R—X“l‘gw(l + H*) _I_ e_R_)\+gwﬁt

= MO (L4 H) fe iAo X, =T e X

using 7. = R+ X\ — g, — h,. Also:

M D, 4 M Dy
E, [—AZ b Xt+1} E, {—AZ b }Et [Xi44]
_R— ]-+H* — s
= e R—A+gu (1 -+ Ht) 1+ Hte ¢HHt

RNt (14 B By = e Tt X,

Hence with the notations of Appendix A, we find that Y; = M; D, (1, X;) is a LG process,

with generator :

—Te —7re—hx

€ €

E,Y, 1 = QY with Q =
0 e Te—%H

Using equation 53, we find

which proves the proposition.

The lower bound for f[t is: e_TEﬁt > ¢~%1 —1, i.e., in the continuous time limit, fIt > —¢y.

A Lemma

Lemma 1 (Exzistence of the Equilibrium) There are (an infinity of ) endowment processes that

generate the equilibrium described in the paper.

Proof. Call ', and 77?,75 country i’s endowment of the international good, and domestic good,
respectively. We work out under which conditions they generate the announced equilibrium.

Say that the equilibrium is described by a social planner’s maximization of >, \/U;, where

a\l—vy b\ 1=

I—y

is country ¢’s utility, and A} the Negishi weight on country
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i. We normalize > \; = 1. Calling ¢; the Arrow-Debreu price of 1 unit of the international
good at date t, and Y}, the world production of the international good. Amongst other things,

the planner optimizes the consumptions of the domestic good, so solves:

oo a\1— b1
max A Z e 0 (@) "+ (G) + Z q <Y;a - Z Cﬁt)
it t i

i t=0 1=
where so that =%\ (C4)™" — ¢, = 0, and C% = Mg, */7e®/7. Using Y = 3. C4, we get:
Cq = NY/
Let us now study country i’s consumption and investment decisions. Country i at time
(ca) et

1—y
eir (C2)77, hence Cf, = egl/ "\;Y;%. The investment in the capital good is 7%, — C% = nb, —

ei;l/w)\th“, so that the accumulated quantity of the capital good is K;y = > o0 e (nfyt,s — eil/VAiY;‘iS) .

i, t—s

a b _ : : b\~
t, solves maxga cn s.6.C% 4 €,CY, =expenditure at time t, so (C}) " =

As country ¢ produces K;;w;; of the world good, and also has an endowment 7¢ of it, the total

available consumption of the world good at time ¢ is:

Ve =3 > wn e (e e (57)
i i s=0

The first term is the endowment of the world good, and second is the production of it.
The equilibrium is described as in the paper, if the endowment processes 7}, and U?,t satisfy

(57), with Y,* = C¢*. By inspection there is an infinity of such endowment processes.

Proof of Proposition 3 In this proof, it is useful to define z; = e‘h*f[t. Then,
B, [MA}I—T} = e e (14 Hy) = e (1+x). Also, Bylri1] = e 1%, and ¢, =
wiA (1 + Bxy), with A=1/(1—e"), B= %’
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1+B117t

1 . Mt*et . A (]_ + Bl[‘t) .
= E [M* e } n M wita o M wigr
t t+1%t+1 Et [WA (]. + B$t+1):| Et [W] Et [1 + thJrl]
1 + th g e""e*A 1 + th = e’re*)\]- + ]f::ﬁxt
BGTSH%) 1+ 2 (1+B€_¢H) 1+ ﬁxt
+xt ¢

e*’r‘e“l’)\ (1 + l't) <1 +
(1—e")eH, ]

= M1 — =
1 —e"e=%m + e H,

Call m; = M}e Mw,. We

Proof of Proposition 6 Derivation of the exchange rate.
show that Y; = my <1, ﬁt, yt> is a LG process. As in the Proof of Proposition 2:

] — (1 + e*h*ﬁt> = e~"emhe (14 H,)

m
Etl 41
my
M1 ~ ~
Et |: il H;| eireid)HHt
my
The new moment is:
m 1+ H, _ e
t+1 e %yt — e %yt

M1
my

yt+1] = [ l - ] B [yr41] = e 7™ (1+ Hy) 117,

g

So Y, is a LG process, with generator:

1 e™ 0
Q=e" [0 e 0
0 0 e %
The exchange rate follows:
- . 1 , 1
% - ZO ML}SG—,\%HS I+g)| =0 - (- |H
- 1 Yt
1 e e s 1
T 1—er ( 1—creon t) U
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The last equation comes from the fact that I3 — € is bloc-diagonal. This yields the announced
expression.

Derivation of the interest rate. In the continuous time limit,

B, [dﬁ[t] - (¢H + ﬁlt> H,dt (59)
By [dy] = — (% + ﬁt) (s (60)

so the interest rate satisfies:

MY MY
-y = B l%} Jdt =B, ldM; | no disaster} + E; lde_ett | no disaster}

Mt+ Cr+ . ] >
+ E — 1| disaster
pt( t l Me, |

Be[dH:]/dt | 1 E,[dy,)/dt
Te +¢H Te +¢y

TelYt
L i+ o

*(¢H+Ht)Ht *Te(¢y+ﬁt)yt
e+¢H T'e+¢y

Tel.
14+ —=— —|—m

+p (B F, - 1)

= —Rtg,+ + H, + H,

Te +¢H

~

Te Te ¢y

. Hy -+ Yt
— _/r.e + A + e+¢)H A e+¢)
+ TeYt

1+ 45 ey

Proof of Proposition 7 We start by the case of the regression in a sample that does

not contain disasters. As in the proof of Proposition 6,

*(¢H+ﬁt)ﬁt *Te(¢y+ﬁt)yt
E, ldet} Jdt et on retdy
TeYt
1 + re+¢H + r5+¢y
So, up to second order terms in }AIt and y,
de; _¢Hﬁt —TePyYi =
E; dt = g,+ + Y =aH; +by; +c
|: 1 / g Te + ¢H Te + ¢y ! v
Te = Te¢y o o
ry = —)\— H—|— yt:AHt+Byt+C

re+¢H re+¢y
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SO

Cov (Et [de—e;] /dtﬂ"t> B aAVar <ﬁt> +bBVar (yt)

go= = =
Var (r,) A?Var (Ht> + B*Var (y;)
= —V%—(l—u)%zyﬁ—i—l—y

where R
A%2Var <H t)
U=

 AWar (ﬁ[t) + B*Var (yt)

The case of the full sample regression is proved similarly.

Proof of Proposition 8 The proof of Proposition 6 showed that M e, (1, ﬁ[t, yt>
is a LG process, with generating matrix given by (58). Writing ¢; = @, (a + bﬁt + cyt>, we

have
M e | e My pe 205G, (CL +bH; + C?Jt)
Z, = [ — = - E, —
Mge: | a+0bH, +cy, Mre= N,
/
e ¢ i
— —bﬁ b| QU | H, | by the rules on LG processes
a+ 0 + cyy
c Yt
/
—hy l—e=®HT
€>\T a Le 1—e %H 0 1
= ———|bo|e™|o e~ ¢uT 0 H,;
a+ bH; + cy:
c 0 0 e 9T n
e (aefh*% + b) H, + ce=y,
e Ve —
a+bH; + cy;
oyt 1+ (ae‘h* —lff;fif + b) H, + ce Ty,
- € ‘ —Tre—Nnx jl —e—Te Y
L+ Tt By 2y,
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So the zero-coupon price is:

l—e e~ %H —(l—e*”f )e‘d’HT

Te

—h« [ —¢,T _1—e”
e Ht+€¢y T —re—a, Yt

1+

DS R ) () =
—re—hx
1 + 1— e*Te PH Ht + _ *Te <f>y yt
Taking Taylor expansions,
1—e7)(1—e%uT) (I—e) (1 —e®T) ~
—(re=NT ( _ (
AT)=e R T vy L o, | o (A
(I—eTm)(1—eT) o~ (1—eT)(1—e ") ~
Y;(T)—7’6_)\—T(1_€_¢H)(1_€_TC_¢H>€ Ht+ (1—€_T€_¢y)T yt—|—0<Ht,yt>
(61)
L—e)eouT-D . (1—eT)(1 %) e~ (T—1) .
ft (T) = - A ( = e) r—— e h*Ht + (1(_ . Te_¢3) Yt + o0 (Ht, yt)
(62)
and in the continuous time limit,
T S Te¢ e
T)=r.—\— e tuTH, 4y —L 9T +0<H, )
ft( ) et bp t 7’e+¢y Yt ts Yt

Proof of Proposition 12 The real part of the forward rate was calculated in Eq. 26.
The nominal part is calculated in Gabaix (2007). The two expressions add up, because we do

a Taylor expansions.

Proof of Proposition 13 By inspection of (42):

- e_>\ H .** e — *%
& ' Te+¢H t+7’e+¢yyt+z e
2

_ Te )
8 0 = Y — ,e—¢iTZ' +7TZ
Tft( ) re+¢H¢H T€+¢yyt ?; t t
27 Ted)z?; 2 —$.T:
orfi(0) = T +¢H¢H e+ o ye + e Ui — (¢ )T

e e Yy

Combining this with (43) yields the Proposition.
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Proof of Proposition 15 P, = E, ZsZt Mw,D, (1 + R?i¢)] / (e:D;). We calculate

the corresponding LG moments. We start with:

My w1 Diiy _ o Régtan o 1 if there is no disaster at ¢ + 1

Myw; Dy F,F} if there is a disaster at ¢ + 1

where as before F; is the reduction in the country productivity in producing the international

good. We postulate that the process for F} allows the decomposition:
peB"FF} = py = (Ho +p.) Fi = po + FIH, + (H, +p.) F

This decomposition is the natural one, as the central value of p;B;, " F; is H, + p,, and the

central value of F} is called F!. The process for Fj; is a LG-twisted autoregressive process:
By [dFa] Jat = = (65, + FIH, + (H. +p.) F) Fi (63)

We define rp = R—gp— g, — (H, + pi) F'+p. The LG moments are (normalizing gp = g, = 0

in the derivations):

d(MwD) - i i 77 [
= lm] fdt = =R +p, (B "FF = 1) = —rp+ F{H, + (H. + p.) By

(d (MwD - Fy) N N T .
B | = ropy | 14 = ~REe(6r.+ FiBl+ HF) Furp (BORE - F = i) =~ (ro+ 6¢) By
[d (MwDH, - N\ - IR .
E, —< )t /dt = (—TD + F,H, + (H, + p.) F,f) Ht—<¢ + Ht) Hy = —(rp + ¢) Hi+h.o.t.
(MwD),

Hence the last expression involves a linearization. So, to a first order, Mw;D; <1, }AIt, Et>
is a LG process, with generating matrixw = | 0 rp + ¢g 0 . So (46) gives, in

0 0 TD+¢F

41



virtue of the rule on LG processes (Gabaix 2007, Theorem 4 and Proposition 4):

1 1
Pey= |1/ (re+¢5) | @™ | H | De,
0 Fi

which yields (47). Eq. 48 comes from a Taylor expansion.

Appendix C. Variance processes

Suppose an LG process centered at 0, dX; = — (¢ + X;) Xydt + o (X;) dW;, where W, is a
standard Brownian motion. Because of economic considerations, the support of the X; needs
to be some (Xmin, Xmax), With —¢ < X < 0 < Xpax- The following variance process makes

that possible:
0% (X) =2K (1 — X/Xmin)” (1 = X/ Xinax)’ (64)

with K > 0. K is in units of [Time] . The average variance of X is 7% = F[0? (X;)] =
| )f;:" o (X)?p(X)dX, where p (X) is the steady state distribution of X;. It can be calculated
via the Forward Kolmogorov equation, which yields dInp (X) /dX = 2X (¢ + X) /o? (X) —
dlno?(X) /dX.

Numerical simulations shows that the process volatility is fairly well-approximated by:
Tx ~ K'2¢, with € = 1.3. Also, the standard deviation of X’s steady state distribution is
well-approximated by (K/¢)"/2.

Asset prices often require to analyze the standard deviation of expressions like In (1 + aX;).
Numerical analysis shows that the Taylor expansion approximation is a good one: Average
volatility of: In (1 + aX;) ~ aK'/2¢, which numerical simulations prove to be a good approx-
imation too.

For the steady-state distribution to have a “nice” shape (e.g., be unimodal), the following
restrictions appear to be useful: K < 0.2 - ¢ | Xpin| Xmax-

When the process is not centered at 0, one simply centers the values. For instance, in
our calibration, the recovery rate of the country productivity, F;, has support [Fuin, Finax),

centered around F,. The probability and intensity of disasters (p and B) are constant. Define
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H; = p(B77F, — 1), and the associated Hpin, Humax, Hi«. The associated centered process
is Xy = I/-jt = H, — H,. We take the volatility parameter to be: K = v - ¢y | Xmin| Xmax
with the volatility parameter v € [0,0.2]. This yields a volatility of ﬁt equal to o5 =
3 (U O )[/—\[min

bilateral exchange rate (between two uncorrelated countries) equal to /2& A,/ (re + o).

N 0.5
Hmax> , a volatility of F} equal to op =7g, / (pB~™7), and a volatility of the
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