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Abstract

We propose a new model of exchange rates, which yields a theory of the forward

premium puzzle. Our explanation combines two ingredients: the possibility of rare eco-

nomic disasters, and an asset view of the exchange rate. Our model is frictionless, has

complete markets, and works for an arbitrary number of countries. In the model, rare

worldwide disasters can occur and affect each country’s productivity. Each country’s

exposure to disaster risk varies over time according to a mean-reverting process. Risky

countries command high risk premia: they feature a depreciated exchange rate and a

high interest rate. As their risk premium reverts to the mean, their exchange rate ap-

preciates. Therefore, the currencies of high interest rate countries appreciate on average.

This provides an explanation for the forward premium puzzle (a.k.a. uncovered interest

rate parity puzzle). We then extend the framework to incorporate two factors: a disaster

risk factor, and a business cycle factor. We calibrate the model and obtain quantita-

tively realistic values for the volatility of the exchange rate, the forward premium puzzle

regression coefficients, and near-random walk exchange rate dynamics. Finally, we work

out a model of the stock market, which allows us to make a series of predictions about
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University of Virginia. XG thanks the NSF for support.
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the joint behavior of exchange rates, bonds, options and stocks across countries. The

evidence from the options market appears to be supportive of the model. (JEL: E43,

E44, F31, G12, G15)

1 Introduction

According to the uncovered interest parity (UIP) equation, the expected depreciation of a

currency should be equal to the interest rate differential between that country and the reference

region. A regression of exchange rate changes on interest rate differentials should yield a

coefficient of 1. Instead, empirical work starting with Hansen and Hodrick (1980) and Fama

(1984) consistently produces a regression coefficient that is less than 1, and often negative.

This invalidation of UIP has been termed the forward premium puzzle: currencies with

high interest rates tend to appreciate. In other words, currencies with high interest rate feature

positive predictable excess returns. There are three possible explanations: time-varying risk

premia, expectational errors, and illiquid markets.

Our paper provides a theory of time-varying risk premia, in a complete markets, frictionless

and rational framework. In our model, the exchange rate is both a relative price of non-

traded and traded goods, and an asset price: it is the net present value of the export sector’s

productivity.

We take up on the idea championed by Rietz (1988), Barro (2006) and Weitzman (2007)

that the possibility of rare but extreme events is a major determinant of risk premia in asset

markets. In our model, rare world crises can happen. In those episodes, the productivity of

each country drops. The country-specific exposure to disaster risk is a mean-reverting process.

Risky countries command high risk premia: they feature a depreciated exchange rate and a

high interest rate. As their risk premium reverts to the mean, their exchange rate appreciates.

Therefore, the currencies of high interest rate countries appreciate on average. This provides

an explanation for the forward premium puzzle.

The model is consistent with a forward premium puzzle, both in sample with and without

disasters. Therefore it does not suffer from a peso problem. The driving force of our result is

that the risk premium covaries positively with interest rate. In other words, our theory does

not rely on mismeasurement of expectations.
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The model is very tractable, and expressions for the exchange rate, interest rate, risk

premia, and forward premium puzzle coefficients obtain in closed forms. The framework is very

flexible. In a second part of the paper, we extend it to incorporate two factors: a slow moving

productivity factor, and a fast mean-reverting disaster risk factor. We calibrate the model

and obtain quantitatively realistic values for the volatility of the exchange rate, the forward

premium puzzle regression coefficients, and near-random walk exchange rate dynamics.

Moreover, the model offers a number of additional predictions. First, there should be a

clear link between equity and currency risk premia through interest rates. High domestic

interest rates imply high currency risk premia — an expected appreciation of the domestic

currency — and low equity risk premia in the form of low Sharpe ratios. Fama and Schwert

(1977) and Campbell and Yogo (2006) provide evidence of the link between equity excess

returns and nominal interest rates. Hau and Rey (2004) find that for Japan, France,Germany

and Switzerland, a negative shock to the foreign stock market — relative to the US— lead to s

foreign currency appreciation.

Second, the model has rich implications for the relation between the relative shape of the

yield curves between two countries and the expected change in the bilateral exchange rate.

Boudoukh, RichardsonWhitelaw (2006) propose to regress the exchange rate movement on the

T−period forward rate from T periods ago, and find that the regression coefficient increases

towards 1 with the horizon T. Indeed, our theory is consistent with this empirical finding in a

context where risk-premia are fast mean-reverting, and productivity is slowly mean reverting.

Curency option prices potentially contain a lot of information on currency risk premia.

Indeed, according to our model, a risky country will feature relatively more expensive out

of the money puts than out of the money calls. Carr and Wu (2007) and Farhi, Gabaix,

Ranciere and Verdelhan (2007) provide evidence that, as predicted by the model, when out

of the money put prices increase relative to out of the money call prices, the corresponding

currency simultaneously depreciates.

Time varying disasters are inherently difficult to assess, and as such might be especially

amenable to expectational errors. Hence, our model can interpreted along behavioral lines as

a consistent way to analyze the impact of investor sentiment on international asset prices.

Relation to the literature. This paper adds to a large body of empirical and theoretical

work on the UIP condition. To the best of our knowledge, we are the first to adapt the Rietz-
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Barro paradigm to exchange rates. Guo (2007), subsequently, also adopts this paradigm, in

the context of a monetary model.

On the empirical side, most papers test the UIP condition on nominal variables. Two recent

studies cast the puzzle in terms of real variables. Hollifield and Yaron (2003) decompose the

currency risk premium into conditional inflation risk, real risk, and the interaction between

inflation and real risk. They find evidence that real factors, not nominal ones, drive virtually

all of the predictable variation in currency risk premia. Lustig and Verdelhan (2007a) find

that real aggregate consumption growth risk is priced on currency markets. This provides

support for a model which — like ours — focuses on real risk, abstracting from money and

inflation. However, Burnside, Eichenbaum, Kleschelski and Rebelo (2007) document that

forward premium strategies yield very high Sharpe ratios, but argue that the payoffs of such

strategies are not correlated with traditional risk factors. This disagreement spurred a debate

on whether or not consumption growth risk explains excess returns on currency speculation

(Burnside 2007, Lustig and Verdelhan 2007b).

On the theory side, numerous studies have attempted to explain the UIP puzzle in rational

expectations settings. Few models, however, are able to reproduce the negative UIP slope

coefficient. Here we concentrate on some of the most successful studies. We start by reviewing

arguments that rely on counter-cyclical risk premia. We then go over the literature that

departs from rational expectations and introduces behavioral biases.

Frachot (1996) shows that a two-country Cox, Ingersoll, and Ross (1985) framework can

account for the UIP puzzle but it does not provide an economic interpretation of the cur-

rency risk premium. Alvarez, Atkeson, and Kehoe (2005) rely on a model with endogenously

segmented markets to generate qualitatively the forward premium anomaly. In their model,

higher money growth leads to higher inflation. This induces more agents to enter the asset

market because the cost of non-participation is higher. This, in turn, decreases risk premia.

Most recently, Verdelhan (2007) generates counter-cyclical risk premia via the varying habit

formation models pioneered by Abel (1990) and Campbell and Cochrane (1999). In his model,

the domestic investor expects to receive a positive foreign currency excess return in bad times

when he is more risk-averse than his foreign counterpart. Times of high risk-aversion corre-

spond to low interest rates at home. Thus domestic investors expect positive currency excess

returns when domestic interest rates are low and foreign interest rates are high. Finally,
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Colacito (2006) and Colacito and Croce (2006) apply Bansal and Yaron (2004)’s model with

Epstein-Zin-Weil preferences to international economics. Bansal and Shaliastovich (2007) have

two-country setting, rely on a perfect cross-country correlation among shocks to the long run

components of consumption growth rates to reproduce the UIP puzzle.

Bacchetta and van Wincoop (2006) develop a model where information is costly to acquire

and to process. Because of these costs, many investors optimally choose to assess available

information and revise their portfolios infrequently. This rational inattention mechanism

produces a negative UIP coefficient along the lines suggested by Froot and Thaler (1990) and

Lyons (2001): if investors are slow to respond to news of higher domestic interest rates, there

will be a continued reallocation of portfolios towards domestic bonds and a appreciation of the

currency subsequent to the shock. Finally, another strand of the literature departs from the

assumption of frictionless markets. Using microstructure frictions, Burnside, Eichenbaum and

Rebelo (2007) rely on asymmetric information and behavioral biases to explain the forward

premium puzzle.

Finally, the closed forms in this paper are made possibly by the “linearity-generating”

processes developed in Gabaix (2007a), and the modelling of environment with stochastic rare

disasters proposed in Gabaix (2007b).

2 Model setup

2.1 Macroeconomic environment: The stock view of the exchange

rate

We consider a stochastic infinite horizon open economy model. There are N countries indexed

by i. Each country i is endowed with two goods, a traded good, called a, and a non-traded

good, called bi. The traded good is common to all countries, the non-traded good is country-

specific.

Preferences. In country i, agents value consumption streams
¡
Ca
it, C

b
it

¢
t≥0 according to

E0

" ∞X
t=0

e−δt
(Ca

it)
1−γ +

¡
Cbi
it

¢1−γ
1− γ

#
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Note that the two goods enter separably in the utility function. Together with the as-

sumption of complete markets, this will allow us to derive a simple expression for the pricing

kernel.

Numéraires. Our choice of numéraires follows the Harberger convention: we choose

the traded good a to be the international numéraire, and the non-traded good bi to be the

numéraire in country i. We will sometimes call the traded good the “international good” or

the “world currency”.

We call eit the exchange rate of country i in terms of the international good, with the

convention that a high eit means a “high value” domestic currency (when eit increases, the

domestic currency appreciates).1 Hence, if a good has a price pit in the currency of country i,

it has price p∗t = eitpit in terms of the world currency. Stars (∗) denote values in terms of the

international good.

As the non-traded good bi is the numéraire in country i, its price in country i is pbiit = 1.

Hence, its price in terms of the traded good is pbi∗t = eitp
bi
it , so that

eit = pbi∗t (1)

The exchange eit rate of country i, in terms of the international currency (i.e., in terms of the

traded good), is simply the price of the non-traded good of country i in terms of the traded

good.

So, the exchange rate between country i and country j is the ratio of the e’s of the two

countries, eit/ejt.

Markets. Markets are complete: there is perfect risk sharing across countries in the

consumption of international goods. Let Ca∗
t be the world consumption of the traded good.

The pricing kernel in terms of the traded good can therefore be expressed as

M∗
t = e−δt (Ca∗

t )
−γ .

The pricing kernel means that an asset producing a stochastic stream (Dt+s)s≥0 of the traded

good, has a price: Et
£P∞

s=0M
∗
t+sDt+s

¤
/M∗

t .

1This choice of numéraire, although it does not follow the tradition which is to define the numéraire as a
basket of goods in the country, brings tractability to the analysis.
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Technology. There is a linear technology to convert the non-traded good of country i

into the traded good. By investing one unit of the non-traded good at time t, one obtains

e−λsωi,t+s units of the international good, at all periods s ≥ t. The interpretation is that ωit

is the productivity of the export technology, and the initial investment depreciates at a rate

λ.

Hence, the non-traded good is a capital good that produces dividends Dt+s = e−λsωi,t+s.

So, in terms of the traded good, the price of the non-traded good bi of country i is:

pbi∗t = Et

" ∞X
s=0

M∗
t+se

−λsωi,t+s

#
/M∗

t

Given that eit = pbi∗t (Eq. 1), the following obtains.

Proposition 1 (Stock view of the exchange rate) In terms of the “international currency,” the

exchange rate eit of country i is the discounted present value of its future export productivity:

eit = Et

" ∞X
s=0

M∗
t+se

−λsωi,t+s

#
/M∗

t (2)

with the convention that an increase in eit means an appreciation of country i’s currency.

In Eq. 2, ωi,t+s is the productivity of country i’s export sector at time t+ s. M∗
t+s is the

international pricing kernel, and is independent of country i.

To our knowledge, the above formulation is novel, complete-market microfoundation for

the “asset view” of the exchange rate (Engel andWest 2005 survey earlier “asset view” models,

that feature incomplete markets). The exchange rate is the relative price of two goods, the

traded and the non-traded good. At the same time, Eq. 2 gives us a stock view of the exchange

rate: the exchange is a present value of future levels of productivity in the country. The above

formulation could be used for many other models of the exchange rate. For instance, the

stochastic discount factor M∗
t+s could come from a model with habit formation (Abel 1990,

Campbell Cochrane 1999) or long run risk (Bansal and Yaron 2004). We choose to study

disasters, in part because they have been less studied.
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2.2 Macroeconomic environment: Disaster risk

World consumption of the traded good. We will study equilibria where the world con-

sumption of the traded good Ca∗
t follows the following stochastic process. As Rietz (1988) and

Barro (2006), we assume that in each period t+1, a disaster may happen, with a probability

pt. If a disaster does not happen, Ca∗
t+1/C

a∗
t = eg, where g is the normal-times growth rate

of the economy. If a disaster happens, then Ca∗
t+1/C

a∗
t = egB, with B > 0.2 For instance, if

B = 0.7, consumption falls by 30%. To sum up:

Ca∗
t+1

Ca∗
t

=

⎧⎨⎩ eg if there is no disaster at t+ 1

egBt+1 if there is a disaster at t+ 1
(3)

Hence the pricing kernel is given by

M∗
t+1

M∗
t

=

⎧⎨⎩ e−R if there is no disaster at t+ 1

e−RB−γt+1 if there is a disaster at t+ 1
(4)

where

R = δ + γgc

is the risk-free rate in an economy that would have a zero probability of disasters. For future

reference, we refer to it as the Ramsey interest rate.

Process (3) can be rationalized as the general equilibrium outcome in a model with a finite

number of countries, provided the endowments of those countries satisfy some conditions

spelled out in Lemma 1 of Appendix B.

Productivity. We assume that productivity of country i follows:

ωi,t+1

ωi,t
=

⎧⎨⎩ egωi if there is no disaster at t+ 1

egωiFi,t+1 if there is a disaster at t+ 1

i.e. during disaster, the relative productivity of the traded good is multiplied by Fi,t+1. For

instance, if productivity falls by 20%, then Fi,t+1 = 0.8. We define the “resilience” of country

2Typically, extra i.i.d. noise is added, but given that it never materially affects the asset prices, it is omitted
here.
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i as:

Hit = pit
¡
Et
£
B−γt+1Fit+1 | Disaster at t+ 1

¤
− 1
¢
= Hi∗ + bHit. (5)

where Hi∗ and bHit are respectively the constant and variable part of the resilience. This is a

measure of how well productivity is insulated from world disaster.3 In (5), the probability pt

and world intensity of disasters Bt+1 are common to all countries, but the recovery rate Fi,t+1

is country-specific. Of course, the recovery rates could be correlated across countries. In order

to facilitate taking the continuous time limit, it is useful to write write Hi∗ = ehi∗ − 1.
To obtain tractability, we postulate a Linearity-Generating process (Appendix A) for

M∗
t e
−λt (1, ωit). The law of motion for bHit is:

bHit+1 =
1 +Hi∗

1 +Hit
e−φHi bHit + εHi,t+1, (6)

where Et
£
εHi,t+1

¤
= Et

£
εHi,t+1 | Disaster at t+ 1

¤
= 0.

Eq. 6 means that bHt mean-reverts to 0, but as a “twisted” autoregressive process. As Hit

hovers around Hi∗, 1+Hi∗
1+Hit

is close to 1, so that the process behaves much like a regular AR(1):bHit+1 ' e−φHi bHit + εHi,t+1, an equation that holds up to second order terms. The
1+H∗
1+Ht

term

is a “twist” term that makes the process very tractable. It is best thought as economically

innocuous, and simply an analytical convenience. Gabaix (2007, Technical Appendix) shows

that the process, physically, behaves indeed like an AR(1).

Its continuous time analogue is:

bHit = −
³
φHi

+ bHit

´ bHitdt+ dNH
it , (7)

where where NH
t is a martingale, Et

£
dNH

t

¤
= Et

£
dNH

t | Disaster at t+ 1
¤
= 0.

This assumption allows us to derive the equilibrium exchange rate in closed form.

Proposition 2 (Level of the exchange rate) In terms of the “international currency,” the

exchange rate of country i is:

eit =
ωit

1− e−rei

µ
1 +

e−rei−hi∗

1− e−rei−φH
bHit

¶
(8)

3This model addresses the concern of Brandt, Cochrane and Santa-Clara (2006), who note that discount
factors must be highly correlated across countries. They are in this model, because the crisis affect all countries.
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where ωt is the current productivity of the country. In the limit of small time intervals, the

exchange rate is:

eit =
ωit

rei

Ã
1 +

bHit

rei + φHi

!
(9)

with

rei ≡ R+ λ− gωi − hi∗. (10)

Formula (9) is a modified version of Gordon’s formula. It can be verified that eit is

decreasing in rei: the exchange rate is decreasing in the Ramsey interest rate R, decreasing

in the depreciation rate of capital λ, increasing in the growth of productivity gω. Formula (9)

implicitly exhibits a Balassa-Samuelson effect: more productive countries — countries with a

higher ωt — have a higher real exchange rate.4 Countries with a high expected productivity

growth also have a high exchange rates.

Importantly, et is increasing in h∗ and bHt: Risky countries have a low exchange rate.

Finally, at this stage, the volatility of the exchange rate comes from the volatility of its

resilience bHt. Later, we generalize the setup and introduce other factors.

In Section (6), we explain how to infer a country’s resilience from currency options data

and provide evidence that riskier countries have depreciated real exchange rates.

2.3 The forward premium puzzle

Consider a one period domestic bond in country i, that yields 1 unit of the currency of country

i at time t+ 1. It will be worth ei,t+1 of the international currency. Hence the domestic price

of that bond is given by:5
1

1 + rit
= Et

∙
M∗

t+1ei,t+1
M∗

t ei,t

¸
(11)

4Our formula holds for more general specifications of the utility function. For example, we could allow
utility to be defined by

E0

" ∞X
t=0

e−δt
(Ca

t )
1−γ

1− γ

#
+ V ({Cb

t }t≥0)

where V is any consistent utility function over non-traded goods consumption processes {Cb
t }t≥0. Were we

to follow this route, our model would not generate a perfect correlation between total consumption and real
exchange rates, which Backus and Smith (1993) have demonstrated doesn’t hold in the data.

5The derivation is standard. In the international currency, the payoff of the bond is et+1, so its price is

Et
h
M∗t+1et+1

M∗t

i
, and its domestic price is (11).
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where rt is the domestic interest rate — the nominal interest rate in domestic currency.

Proposition 3 (Level of the domestic short term interest rate, when there is no inflation on

the home goods). The value of the domestic short term rate is

rit = erei−λ

"
1− (1− e−rei) e−hi∗ bHit

1− e−rei−φH + e−hi∗ bHit

#
− 1 (12)

In the limit of small time intervals, the interest rate is:

rit = rei − λ− rei bHit

rei + φH + bHit

(13)

When a country is very “risky”, ( bHit low), its interest rate is high (13), because its currency

has a high risk of depreciating in bad states of the world. Note that this risk is a risk of

depreciation, not a default risk.

Hence, countries with high interest rates will see their exchange rate appreciate — that’s the

“forward exchange rate premium puzzle” or “uncovered interest rate parity puzzle” highlighted

by Hansen and Hodrick (1980) and Fama (1984), and replicated for various countries and time

periods many times since (Engel 1996, Lewis 1995 provide surveys).

We analyze the predictions of our model for Fama regressions in two different types of

samples: with and with no disaster. We consider countries with identical constant parameters,

but possibly different bHt and ωt.

Fama regressions conditional on no disaster. In the continuous time limit, the

expected growth rate of the exchange rate, conditional on no disasters is, dropping the index

i for country i,

Et
∙
1

et

det
dt

¸
= gω +

Et
h
dHt

dt

i
re + φ+ bHt

= gω −

³
φ+ bHt

´ bHt

re + φ+ bHt

.

In a first order approximation in bHt:

Et
∙
1

et

det
dt

¸
= gω −

φ

re + φ
bHt
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When the country is very risky, bHt is high, and its exchange rate is low (9); as the exchange

rate mean-reverts, its exchange rate will appreciate, so that Et
£
det
dt

¤
/et > 0.

Similary, in a first order approximation in bHt:

rt = re − λ− re bHt

re + φ

Hence

Et
∙
1

et

det
dt

¸
=

φ

re
rt + gω −

φ (re − λ)

re

Consider the Fama (1984) regression of the changes in the exchange rate between countries

A and B regressed on the difference in interest rates, in a sample with no disasters:

Fama regression: Et
∙
eAt+1 − eAt

eAt
− eBt+1 − eBt

eBt

¸
= α− β(rAt − rBt ) (14)

The expectation hypothesis predicts β = 1. The present model however predicts a negative

coefficient. For simplicity, we consider the case where the two countries, A and B, have the

same re.

Proposition 4 (Coefficient in the Fama regression, conditionally on no disasters). In the

Fama regression (14), in a sample with no disasters, the coefficient is:

β = − φ

re
. (15)

With the calibrated numbers with φ = 20%/year, re = 10%/year, the coefficient in a

yearly regression should be β = −2, which is in the order of magnitude of the results of the
literature. We conclude that even quantitatively, the UIP puzzle seems accounted for by the

framework.

Unconditional Fama regressions. We next turn to the unconditional Fama regression.

Using Eq. 11, we have

1 + rBt
1 + rAt

=
Et
h
M∗
t+1e

A
t+1

M∗
t e

A
t

i
Et
h
M∗
t+1e

B
t+1

M∗
t e

B
t

i
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which in the continuous time limit can be expressed as

rBt − rAt = Et
∙
eAt+1 − eAt

eAt
− eBt+1 − eBt

eBt

¸
+ Covt

µ
M∗

t+1

M∗
t

,
eAt+1 − eAt

eAt
− eBt+1 − eBt

eBt

¶
i.e.

Et
∙
eAt+1 − eAt

eAt
− eBt+1 − eBt

eBt

¸
= rBt − rAt − Covt

µ
M∗

t+1

M∗
t

,
eAt+1 − eAt

eAt
− eBt+1 − eBt

eBt

¶

This expression highlights the role of the risk premium πA,Bt :

πA,Bt = −Covt
µ
M∗

t+1

M∗
t

,
eAt+1 − eAt

eAt
− eBt+1 − eBt

eBt

¶
Consider now the Fama (1984) regression of the changes in the exchange rate between

countries A and B regressed on the difference in interest rates in a full sample:

Fama regression: Et
∙
eAt+1 − eAt

eAt
− eBt+1 − eBt

eBt

¸
= αFull − βFull(rAt − rBt ) (16)

The coefficient βFull is now given by

βFull = 1− Cov(πA,Bt , rAt − rBt )

V ar (rAt − rBt )

Therefore, we can have βFull < 0 if and only if the risk premium covaries positively enough

with the interest rate differential. It is easy to compute

πA,Bt = (1− β)(rAt − rBt ) + ptEt
£
FA
t+1 − FB

t+1

¤
which leads to

βFull = β −
Cov

¡
ptEt

£
FA
t+1 − FB

t+1

¤
, rAt − rBt

¢
V ar (rAt − rBt )

βFull = β + (1− β)
Cov

³
ptEt

£
FA
t+1 − FB

t+1

¤
, bHA

t − bHB
t

´
V ar

³ bHA
t − bHB

t

´ (17)
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In the case whereBt+1 is constant and equal toB, and ptEt
£
FA
t+1 − FB

t+1

¤
=
³ bHA

t − bHB
t

´
Bγ

βFull = β + (1− β)Bγ = − φ

re
+

µ
1 +

φ

re

¶
Bγ

Proposition 5 (Coefficient in the Fama regression, unconditionally). In the Fama regression

(14), in a full sample, in the case where Bt ≡ B, the coefficient is:

βFull = 1− φ

re
(1−Bγ) (18)

In particular, for B = 1, there is no disaster risk (consumption doesn’t fall during dis-

asters), so that βFull = 1. Hence, the Fama regression yields a negative coefficient only if

disaster risk is high enough. We note that the negative βFull does not come from a peso

problem explanation, in the sense that, in the model, even in a sample that includes disasters,

there can a negative coefficient in the Fama regression.

3 A setup with a risk factor and a business cycle factor

The above setup gave the essence of the disaster mechanism, but it has only one factor, so that,

controlling for current productivity, exchange rate and risk premia are perfectly correlated,

which in a variety of context is not a desirable feature. Accordingly, we extend the framework

to a two-factor model, a risk factor, and a business cycle factor.

3.1 Setup with a risk factor and a business cycle factor

In the baseline model, the real rate varies only because of the risk premium. We can easily

extend the model to business cycle movements in the interest rates. For ease of notations,

we typically drop the index i for country i. We say that the country’s productivity is ωt =

ωt (1 + yt), where ωt is the “permanent” component of productivity, and yt is a “business

cycle” fluctuation or “deviation of productivity from trend”. We model:

ωt+1

ωt
=

⎧⎨⎩ egω in normal times

egωFt+1 if disaster
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and LG-twisted process for yt:

Et [yt+1] =
1 +H∗
1 +Ht

e−φyyt

with innovation uncorrelated to the ones of ωt and Mt. This allows to calculate the exchange

rate.

Proposition 6 (Exchange rate with a business cycle factor) The exchange rate is

et =
ωt

1− e−re

µ
1 +

e−re−h∗

1− e−re−φH
bHt +

1− e−re

1− e−re−φy
yt

¶
(19)

and in the continuous time limit:

et =
ωt

re

Ã
1 +

bHt

re + φH
+

reyt
re + φy

!
(20)

and the interest rate is:

rt = re − λ+
− re

re+φH
bHt +

reφy
re+φy

yt

1 + Ht

re+φH
+ reyt

re+φy

(21)

In this setup, the resilience bHt has the same effect as before. But there is an additional

factor, the deviation of productivity from trend yt, which is not associated with any risk

premium. As would be expected, when productivity is high, the exchange rate is high, and is

expected to depreciate, so that the interest rate rate is high.

3.2 Fama regression with two factors

Let us revisit the Fama regression (14):

Et
∙
eAt+1 − eAt

eAt
− eBt+1 − eBt

eBt

¸
= α0 − β0(rAt − rBt ).

The next Proposition relates the coefficient β0 in a sample with no disaster, and the coefficient

β0Full in full sample, to their corresponding values β and βFull previously derived for the

one-factor model.
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Proposition 7 (Value of the β coefficient in the Fama regression, with two factors). Up to

second order terms, in the Fama regression, the coefficients are:

β0 = νβ + 1− ν (22)

β0Full = νβFull + 1− ν (23)

where β and βFull are given in Eqs. 15 and 18, and ν is the share of variance in the interest

rate due to bHt,

ν =

³
re

re+φH

´2
var

³ bHt

´
³

re
re+φH

´2
var

³ bHt

´
+
³

reφy
re+φy

´2
var (yt)

. (24)

In Eq. 22, β0 is the weighted average of two Fama coefficients. One, β, comes from

the variations in the risk premium. The second, 1, comes from the cyclical variations in

productivity, and is the value predicted by the expectation hypothesis. The weight ν is the

relative share of the two factors in the variance of the interest rate.

4 Yield Curve, Forward Rates, and Exchange Rates,

Real and Nominal

4.1 Exchange rates and long term real rates

To study the forward premium puzzle for long term rates, we first derive the price of long

term bonds. The price of a bond yield one unit of the currency at time t + T is: Zt (T ) =

Et
h
M∗
t+T et+T
M∗
t et

i
.

The yield at maturity T , Yt (T ), and the forward rates ft (T ) are defined by Zt (T ) =

e−Yt(T )T = e−
T
T 0=1 ft(T

0).

Proposition 8 (Price of a domestic bond, when there is no inflation on the home goods) The

domestic price of a domestic bond of maturity T , in the continuous time limit:

Zt (T ) = e−(re−λ)T
1 +

re(1−e−φT )+φ
(re+φ)φ

bHt + e−φyT reyt
re+φy

1 + Ht

re+φ
+ reyt

re+φy

(25)
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and the forward rate is, up to second order terms in bHt and yt,

ft (T ) = re − λ− re
re + φH

e−φHT bHt +
reφy

re + φy
e−φyTyt (26)

The proof to this Proposition also calculates the expressions for bonds, yields, forward rates,

in discrete and continuous time.

The proof is in Appendix B.

To illustrate the economics, suppose that the country has a very high bHt, i.e. is very safe.

Future bHt will, on average, mean-revert to 0. Hence, by (9), the exchange rate (which is high

now) will depreciate. The short terms rates are low (Eq. 13), which is the forward premium

puzzle. Eq. 25 says that long term rates are low (the bond price is high because bHt.is high).

Hence, perhaps paradoxically at first, investors expect the exchange rate to depreciate in the

long term, and also, long term rates are low. In the model, this is because investors perceive

the country as very “safe”, and require a small risk premium on it.

4.1.1 Fama regression with forward rates

Boudoukh, RichardsonWhitelaw (BRW, 2006) propose to regress the exchange rate movement

on the T−period forward rate from T periods ago:

BRW regression: Et
∙
eAt+1 − eAt

eAt
− eBt+1 − eBt

eBt

¸
= αFwd (T )−βFwd (T ) (fAt−T (T + 1)−fBt−T (T + 1))

(27)

Our model’s prediction is in the next Proposition.

Proposition 9 (Value of the β coefficient in the Fama regression, with two factors, with

forward rates). Up to second order terms, in the BRW (27) regression with forward rates, the

coefficients are:

βFwd (T ) = ν (T )β + 1− ν (T ) (28)

and

βFwd,Full (T ) = ν (T )βFull + 1− ν (T ) (29)
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where β and βFull are given in Eqs. 15 and 18, and

ν (T ) =

³
re

re+φH

´2
var

³ bHt

´
e−2φHT³

re
re+φH

´2
var

³ bHt

´
e−2φHT +

³
reφy
re+φy

´2
var (yt) e

−2φyT
(30)

is the share of variance in the forward rate due to bHt. In particular, when φH > φy, the long

horizon regression have coefficient going to 1: limT→∞ eβ (T ) = limT→∞ eβFull (T ) = 1.
BRW (2006) find that βfwd (T ) increases toward 1 with the horizon. Our theory is consis-

tent with this empirical finding. Indeed, to interpret Proposition 9, consider the case where

risk-premia are fast mean-reverting, and productivity is slowly mean reverting, φH > φy.

Then, large T , ν (T ) tends to 0, which means that, at long horizons, the forward rate is

mostly determined by the level of yt, not of the risk premium. Hence, at long horizon the

model behaves like a model without risk premia, hence generates a coefficient β close to 1.

4.2 A simple model of exchange rates and nominal yield curves

Until recently, forward real interest rates were not available. Only their nominal counterparts

were the support of actively traded securities. Even today, most bonds are nominal bonds.

To model nominal bonds, we build on the real two factor model developed above. Let

Qt = Q0

tY
s=1

(1− is) be the value of money (the inverse of the price level). The nominal

interest rate ert satisfies 1
1+rt

= Et
h
M∗
t+1et+1

M∗
t et

(1− it)
i
, so that, in the continuous time limit,

ert = rt + it, (31)

the nominal interest rate is the real interest rate, plus inflation. The Fisher neutrality applies:

there is no burst of inflation during disasters. With a burst of inflation, even short term bonds

would command a risk premium.

Inflation hovers around i∗, according to the LG process:

it+1 = i∗ +
1− i∗
1− it

e−φi (it − i∗) + εit+1 (32)
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where εit+1 has mean 0, and is uncorrelated with innovations in Mt+1, in particular with

disasters. One could correlate this, but the analysis is a bit more complicated (the analysis is

available upon request). The expected value of 1 unit of currency T period later is:

Et
∙
Qt+T

Qt

¸
= (1− i∗)

T

µ
1− 1− e−φiT

1− e−φi
it − i∗
1− i∗

¶
(33)

or Et
h
Qt+T

Qt

i
= e−i∗T

³
1− 1−e−φiT

φi
(it − i∗)

´
in the continuous time limit.

To fix notations, we denote nominal variables with a tilde. The price of long term nominal

bonds yielding one unit of the currency at time t+ T is eZt (T ) = Et
h
M∗
t+T et+TQt+T

M∗
t etQt

i
. Because

we assume that shocks to inflation are uncorrelated with disasters, the value present value of

one nominal unit of the currency is

eZt (T ) = Et
∙
M∗

t+Tet+TQt+T

M∗
t etQt

¸
= Et

∙
M∗

t+Tet+T
M∗

t et

¸
Et
∙
Qt+T

Qt

¸
Hence, the value of the zero coupon bond is:

Proposition 10 (Price of a nominal domestic bond, with no inflation risk premia) The do-

mestic price of a domestic nominal bond of maturity T , in the continuous time limit:

eZt (T ) = e−(re−λ)T
1 +

re(1−e−φT )+φ
(re+φ)φ

bHt + e−φyT reyt
re+φy

1 + Ht

re+φ
+ reyt

re+φy

· e−i∗T
µ
1− 1− e−φiT

φi
(it − i∗)

¶
(34)

and the nominal forward rate is, up to second order terms in bHt and yt, it − i∗ :

ft (T ) = re − λ− re
re + φH

e−φHT bHt +
reφy

re + φy
e−φyTyt + i∗ + e−φiT (it − i∗) (35)

The proof to this Proposition also calculates the expressions for bonds, yields, forward rates,

in discrete and continuous time.

The nominal forward rate in (35) depends on real and nominal factors. The real factors

are the resilience of the economy (the bHt) term, the expected growth rate of productivity

(−φyyt). The nominal factor is inflation it.

19



Each of the three terms is multiplied by a term of the type e−φHT . For small speeds of

mean reversion φ’s, it means that the forward curve is fairly flat.

With Qt the value of money, the nominal exchange rate is: eet = etQt. The expected

depreciation of the nominal exchange rate is, up to second order terms, and conditionally on

no disasters:

Et
∙
deeteet
¸
/dt = gω −

φH bHt

re + φH
−

reφyyt

re + φy
− it (36)

We can derive the implications of our model for a Fama regression in nominal terms:

Et
∙
ẽAt+1 − ẽAt

ẽAt
− ẽBt+1 − ẽBt

ẽBt

¸
= α̃nom − β̃

nom
(r̃At − r̃Bt ) (37)

where r̃At and r̃Bt are now, with some a slight abuse of notational, the nominal interest rates

in countries A and B. Our model’s prediction is in the next Proposition.

Proposition 11 (Value of the β coefficient in the Fama regression in nominal terms). Up

to second order terms, in the nominal Fama regression (37) regression with forward rates, the

coefficients are:

β̃
nom

= νnomβ + 1− νnom and β̃
nom,Full

= νnomβFull + 1− νnom (38)

where β and βFull are the coefficients in the Fama regression defined in propositions (4) and

(5), and

νnom =

³
re

re+φH

´2
var

³ bHt

´
³

re
re+φH

´2
var

³ bHt

´
+
³

reφy
re+φy

´2
var (yt) + var(it)

(39)

is the share of variance in the forward rate due to bHt. In particular, when φH > φy, the long

horizon regression have coefficient going to 1: limT→∞ eβ (T ) = limT→∞ eβFull (T ) = 1.
In this simple model with no inflation risk premia, the higher the variance of inflation

, the closer to 1 is βnom. Hence, countries with very variable inflation (typically, those are

also countries with high average inflation) satisfy approximately the uncovered interest rate

parity conditions. When disaster risks are very variables –and the real exchange rate is very

variable — then βnom is more negative.
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4.3 A richer model with nominal risk premia

We now develop a richer model with an inflation-specific risk premium. We extend the frame-

work developed in the previous section by incorporating inflation risk along the lines of Gabaix

(2007).

The variable part of inflation now follows the process:

bit+1 = 1− i∗
1− it

·
³
e−φibit + 1{Disaster at t+1} ³j∗ +bjt´´+ εit+1 (40)

In case of a disaster, inflation jumps by an amount jt = j∗+bjt. This jump in inflation makes
long term bonds particularly risky. j∗ is the baseline jump in inflation, bjt is the mean-reverting
deviation from baseline. It follows a twisted auto-regressive process, and, for simplicity, does

not jump during crises: bjt+1 = 1− i∗
1− it

· eφπbjt + εjt+1 (41)

We define πit ≡ pB−γF
1+H

bjt, which is the mean-reverting part of the “risk adjusted” expected
increase in inflation if there is a disaster. We parametrize the typical jump in inflation j∗ in

terms of a number κ ≤ (1− ρi) /2:

pB−γFj∗
1 +H

= (1− i∗)
2 κ (1− ρi − κ) .

κ represents a risk premium for the risk that inflation increases during disasters. Also, we

define i∗∗ ≡ i∗ + κ and ψπ ≡ φπ − κ. They represent the “risk adjusted” trend and mean-

reversion parameter in the inflation process.

To fix notations, we denote nominal variables with a tilde. The price of long term nominal

bonds yielding one unit of the currency at time t+ T is

eZt (T ) = Et
∙
M∗

t+Tet+TQt+T

M∗
t etQt

¸

The yield at maturity T , eYt (T ), and the forward rates eft (T ) are defined by eZt (T ) =

e−Yt(T )T = e−
T
T 0=1 ft(T

0). The next Proposition calculates the forward rate.

Proposition 12 (Price of a domestic nominal bond, with inflation risk premia) In the con-
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tinuous time limit, in up to second order terms in
³ bHt, yt, it, π

i
t

´
:

eft (T ) = re−λ−
re

re + φH
e−φHT bHt+

reφy
re + φy

e−φyTyt+i∗∗
¡
1− e−φiT

¢
+e−φiT it+

e−φiT − e−ψπT

ψπ − φi
πit

(42)

The nominal forward rate in (42) depends on real and nominal factors. The real factors are

the resilience of the economy (the bHt) term, the expected growth rate of productivity (−φyyt).
The nominal factors are inflation it, and the variable component of the the risk premium for

inflation jump risk, πit.

When a disaster occurs, inflation increases (on average). As very short term bills are

essentially immune to inflation risk, while long term bonds lose value when inflation is higher,

long term bonds are riskier, hence they get a higher risk premium. Hence, the yield curve

slope up on average — as implied by the term i∗∗
¡
1− e−φiT

¢
∼ i∗∗φiT .

Each of the three terms is multiplied by a term of the type e−φHT . For small speeds of

mean reversion φ’s, it means that the forward curve is fairly flat. The last term, however, is

close to T for small maturities (e
−φiT−e−ψπT

ψπ−φi
∼ T ). It creates a variable slope in the forward

curve. Hence, we obtain a rich, potentially realistic, forward curve.

Nominal yield curves contain a lot of potentially information useful to predict exchange

rates. We now explain how to best extract the relevant information to compute exchange

rate risk premia. As above, the expected depreciation of the nominal exchange rate is, up to

second order terms, and conditionally on no disasters:

Et
∙
deeteet
¸
/dt = gω −

φH bHt

re + φH
−

reφyyt

re + φy
− it (43)

It involves three factors that are also reflected in the nominal forward curve. Note however,

that it does not involve the inflation risk premium πit. So, an optimal combination of forward

rates should predict expected currency returns with more accuracy than the simple Fama

regression. The next Proposition derive the minimal such combination.

Proposition 13 The expected appreciation of the currency can be expressed:

Et
∙
deeteet
¸
/dt = α− βiit − βrrt − βslope∂T eft (0)− βCurvature∂

2
T
eft (0) (44)
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where it is the inflation rate, rt is the short-term nominal rate, ∂T eft (0) is the slope of the
yield curve, ∂2T eft (0) is the curvature of the yield curve, and

βi = 1− φiψπ/K

βr =

∙
1

re
φy
¡
φy − φi − ψπ

¢
+ φH − φi − ψπ

¸
φH/K

βslope = − (φi + ψπ)

µ
φH
re
+ 1

¶
/K

βcurvature = −
µ
φH
re
+ 1

¶
/K

K =
¡
φi + ψπ − φy − φH

¢ ¡
φy − φH

¢
For instance, in the calibration where productivity yt is a near random walk (φy = 0),

βr = 1. Hence, in the regression (44), the coefficient in the nominal interest rate is 1 — the

one predicted by UIP — once we control for the risk premia terms encoded in the slope and

curvature of the yield curve.6

5 Equity premia and exchange-rate risk premia

Our model allows to think in a tractable way about the joint determination of exchange rate

and equity values.

5.1 Local market price of risk and local maximal Sharpe ratios

A clean way of getting at this question is to characterize the maximal Sharpe ratio and the

market price of risk in local currency. The stochastic discount factor in local currency is

mt+1 =
Mt+1et+1
Mtet

. The maximal Sharpe ratio is given by: St ≡ V ar
1/2
t (mt+1)

Et(mt+1)
. It is given by the

formula7

St =
s
σ2e,t + (1 + σ2e,t)

1− pt
pt

H2
t

(1 +Ht)
2

6For instance, the curvature can be approximated by the discrete formula: f (1)− 2f (2) + f (3). Another
discrete proxy is (the opposite of) the tent shape factor for Cochrane and Piazzesi (2006), that explains bond
risk premia.

7mt+1 = Et
h
et+1
et

| No disaster
i
e−R (1 + εt+1)

¡
1 +B−γt FtJt+1

¢
, where var (εt+1) = σ2e, and Jt+1 = 0 with

probability 1− pt, and 1 with probability pt.
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where σe,t = V ar
1/2
t (et+1 |No disaster)/Et(et+1 |No disaster) is the standard deviation of the

log exchange rate in normal times. In the continuous time, limit, we can derive a very simple

expression

St =

s
σ2e,t +

H2
t

pt
with σ2e,t = V art

µ
det
et
| No disaster

¶
The only source of time variation in σ2e,t comes from time variations in the variance and

covariance of the structural shocks to Ht and yt: εHt and εyt .

The maximum Sharpe ratio St is high when resiliency Ht is high. Therefore, countries that

demand low currency risk premia will feature high local Sharpe ratio and high local equity

premia.

5.2 Explicit stock values

Another way to proceed is to take a stand on what fraction of present and future endowments

is capitalized in each stock market. A route commonly taken in Lucas-tree economies is to

equate the market to a claim on the entirety of the present and future national endowments of

goods. However, listed stocks only account for a very small and potentially non-representative

fraction of future GDP. Hence, we model stocks without taking a specific stand on the link

between the aggregate dividend of listed stocks and GDP.

5.2.1 Firm producing the international good

Consider first the case of a of domestic firm, that produces the international good. More

precisely, the dividend Dt follows the following process

Dt+1

Dt
=

⎧⎨⎩ egD(1 + εD,t+1) in normal times

egD(1 + εD,t+1)FD,t if crisis

where an idiosyncratic shock uncorrelated with the stochastic discount factors.

Define the resilience HD,t of the stock as

HD,t = pt
¡
Et
£
B−γt+1FD,t+1

¤
− 1
¢
= HD∗ + bHD,t.
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It is convenient to define HD∗ = ehD∗ − 1. The law of motion for bHD,t is:

bHD,t+1 =
1 +HD∗

1 +HD,t
e−φHD bHDt + εHD

t+1,

where φHD
is the speed of mean reversion of the resilience of the stock.

Proposition 14 (Domestic stocks producing international goods). The domestic price of the

stock PD,t is

PD,t =
Dt

et

1 + e−rD−hD∗

1−e−rD−φHD
bHD,t

1− e−rD

In the continuous time limit

PD,t =
Dt

et

1 +
HD,t

rD+φHD

rD
(45)

A more resilient stock (high bHD,t) has a higher price-dividend and lower future returns.

Controlling for this resilience, if the currency is strong (because the country as a whole is safe),

then the stock price in domestic currency is low. As et is expected to depreciate, the expected

return of the stock in local currency is high. In this sense, currency risk premia and local

currency equity premia are negatively correlated. Hence, the theory provides an explanation

for Hau and Rey (2006)’s evidence that the home-currency stock price is decreasing in the

exchange rate.

5.2.2 Firm producing the domestic good

We now turn to a domestic producer producing Ds quantities of the domestic good. Its stock

price, in the international currency, is P ∗t = Et

£P
s≥tMsesDs

¤
, so that its domestic price is

Pt = P ∗t /et, hence:

Pt/Dt =
Et
£P

s≥tMsesDs

¤
etDt

(46)

We postulate the following process for Dt

Dt+1

Dt
=

⎧⎨⎩ eg if there is no disaster at t+ 1

egF i
t if there is a disaster at t+ 1
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F i
t is the recovery rate in the dividend of that firm. We postulate the F

i
t also follows a LG

process, hovering around F i
∗, and mean-reverts at a rate φF , with a twist spelled out in Eq.

(63).

Proposition 15 (Price of a domestic stock producing non-traded goods). To a first order

approximation, the price of stock producing domestic goods is, in terms of the international

currency:

P ∗t = Ptet = ωtDt

"
1

rD
+
(H∗ + p∗) bFit

rD (rD + φF )
+

µ
F i
∗

rD
+

1

re + φH

¶ bHt

rD + φH

#
(47)

and in the domestic currency,

Pt =
re
rD

Dt

"
1 +

(H∗ + p∗) bFit

rD + φF
+

µ
F i
∗ −

φH
re + φH

¶ bHt

rD + φH

#
(48)

where rD = R− gD − gω − (H∗ + p∗)F
i
∗.

To analyze the above expression, we take the polar case where bFit (the resiliency of the

firm’s technology) is uncorrelated with bHt (the country’s resilience). The international price

of the stock (47) increases with bHt, hence with the exchange rate.

The domestic price (48) of the stock can decrease or decrease with the exchange rate,

depending on the sign of F i
∗ −

φH
re+φH

. The price of resilient stock increases with the exchange

rate, while the price of non-resilient stocks decreases with the exchange rate. The reason

for this ambiguous result can be see in Eq. 46, where an increase in et increases both the

numerator and the denominator. Take a resilient stock, with F i
∗ close to 1. A increase in the

country’s resilience, bHt, increases the present value of future dividends (the numerator of Eq.

46), because future resiliences are high, and the discount rate is lower. Hence, the numerator

in (46) increases a lot. The denominator increases also, but not as much. The net effect is that

the domestic stock price increases: The cash flows that the firm produces are more valuable,

and less risky. However, take a stock with F i
∗ = 0, i.e. a stock that will be bankrupt after

a disaster. Then, there is no “discount rate effect” in the numerator of (46), as cash-flows

always have maximal riskiness (they disappear in a disaster). So, the effect due to the rise in

the denominator is stronger. Hence, the stock falls, when the exchange rate increases.
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All in all, we see that the price of domestic stocks producing nontradables increases with

the exchange rate, when it is expressed in international currency, but, expressed in domestic

currency, it increases only for the most resilient stocks. Again, one might hope to test that

prediction.

6 Option prices and exchange rate risk premia

6.1 Theory

Option prices incorporate direct information about the probability and severity of disasters. In

particular, consider the implied volatility smile of a pair of currencies: a risky currency and a

safe currency. The smile will be much steeper on the risky currency side. A high “smile-skew”

should predict currency appreciation, high interest rate differential and high bond returns.

In order to gain in tractability, we make two simplifying assumptions. First we assume

that if a disaster occurs in period t + 1, εHt+1 is equal to zero. Second, we assume that the

distribution of et+1 conditional on date t information and no disaster occurring in period t+1

is lognormal around its mean with standard deviation σe,it where i indexes countries.

Consider two countries A and B. The currency A price at date 0 of a call that gives the

option to buy at date T one unit of currency A for K = (1 + k)
eA0
eB0
units of currency B is

V Call =
1

eA0
E0
∙
M∗

T

M∗
0

¡
eAT −KeBT

¢+¸
= E0

"
M∗

T

M∗
0

µ
eAT
eA0
− (1 + k)

eBT
eB0

¶+#

Likewise, the currency A price at date 0 of a put that gives the option to sell at date T

one unit of currency A for K 0 = (1− k)
eA0
eB0
units of currency B is

V Put = E0

"
M∗

T

M∗
0

µ
(1− k)

eBT
eB0
− eAT

eA0

¶+#

Consider the price of a “risk reversal” position W = V Put−V Call. Calculations show that

it is approximately:

W = V Put − V Call = Ψ
³³ bHB − bHA

´
, kH∗

´
T
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where Ψ (x, k) = (x− k)+ − (−x− k)+. The risk reversal position is such that the Black-

Scholes component of the put and call have the same price in the limit of short maturities.

This allows us to extract the disaster intensities from option prices.

Hence, when k is small,and conditionally on no disasters:

END
t

∙
eAt+∆t − eAt

eAt
− eBt+∆t − eBt

eBt

¸
=

φH
re + φH

∆t

T
W (49)

That is, a currency with a high put price should have a low price, and should subsequently

appreciate. This is because it has a high risk premium, that affects both the put value, and a

low value of the exchange rate. Eq. 49 expresses quantitatively the magnitude of the effect.

6.2 Evidence

Carr andWu (2007) compute the risk-reversals for two pairs of countries: UK and Japan versus

the US. They find a high correlation between changes in the price of risk-reversal options and

changes in nominal exchange rates: currencies that become riskier — for which puts become

relatively more expensive than calls — experience a simultaneous depreciation. Farhi, Gabaix,

Ranciere and Verdelhan (2007) extends their analysis to a sample of 25 countries. Their

analysis confirms the finding of Carr and Wu (2007) and shows that it also holds for real

exchange rates, providing direct evidence in favor of our model.

7 A Calibration

7.1 Choice of Parameter Values

We use yearly units.

Preferences. The coefficient of relative risk aversion is γ = 4.

Macroeconomy. In normal times, consumption of nontradables grows at rate gc = 3%. We

set gω = gc, but values are not really sensitive to that parameter.

To keep the calibration parsimonious, the probability and intensity of disasters are con-

stant. The probability of disaster is p = 1.7%, as estimated by Barro (2006). We present

two calibrations. In disasters, the utility-weighted average recovery rate of consumption is
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E [B−γ]−1/γ = 0.55 (in Calibration 1), or E [B−γ]−1/γ = 0.45 (in Calibration 2). We make sure

that the riskless domestic short term rate is on average around 1%, which pins down the rate

of time preference, δ.

Exchange rate. An initial investment depreciates at a usual rate λ = 8%. To specify the

volatility of the recovery rate Ft, we specify that it has a baseline value F∗ = 0.8, and its

the range is Ft ∈ [Fmin, Fmax] = [0.2, 1.2]. That means that the technology of transforming

domestic goods into international goods could improve. This is because ωt is really the ratio

between two productivities — to produce domestic or international goods, so that relative

ratio could increase or decrease. This possibility of a worst-case fall of productivity to 0.2

of its initial level may seem high. Perhaps it proxies for disruptions not directly linked to

productivity, e.g. the introduction of taxes, regulation, or a loss of property rights (as in

Barro 2006), though we do not not model those interpretations here.

The speed of mean-reversion is φH = 0.2, which gives a high-life of ln 2/φH = 3.5 years,

and is in line with typical estimates from the exchange rate predictability literature (Rogoff

1996).

This translate into a range for bHt = p (B−γFt − 1),
h bHmin, bHmax

i
. We parametrize the

volatility according to Appendix C, with

σ2
³ bH´ = 2vφH ¯̄̄ bHmin

¯̄̄ bHmax

³
1− bH/ bHmin

´2 ³
1− bH/ bHmax

´2
(50)

which guaranties that bH remains within
h bHmin, bHmax

i
, as the volatility dies down fast enough

at the boundaries. The parameter v controls the volatility bH and F . For instance, a country

with volatile riskiness will have a high v.

To calibrate the exchange rate fluctuations, we start from (9), and take the benchmark

of a constant productivity ωt during the “normal times” period under study. Then, the only

changes in the real exchange rates are due to expectation about the “resilience” of a country if

a disaster happens. Differentiation of (9) gives a bilateral exchange rate volatility between two

uncorrelated exchange rates8 σeij '
√
2σH/ (Re + φ). If two countries are perfectly correlated,

then σei = 0, while if they have a correlation of −1, then σeij ' 2σH/ (Re + φ). We report

8This is because det
et
= Ht

r+φ+Ht
' Ht

r+φ , and the bilateral exchange rate eij = ei/ej has twice the variance

of any of the exchange rates, if the bHt shocks are uncorrelated.

29



the values for the uncorrelated case.

Default risk To keep the model parsimonious, we assume no default risk on debt. This

is the cleanest assumption for developed countries. Of course, in many cases (e.g. to price

sovereign debt), the It can be added without changing anything to the exchange rate.

7.2 Implications for levels and volatilities

Table 1 presents the result of the calibration. In Calibration 1, with v = 0.2, the volatility of

the bilateral exchange rate is 11%, and with v = 0.1, 8%. In Calibration 2, the corresponding

volatilities of the exchange rate are 25.7% and 18.7%, respectively. Hence, the model can

reasonably easily generate a high volatility of the exchange rate. The reason is that disasters

have a high importance: their importance is magnified by E [B−γ], which is 10.9 (in calibration

1), and 24.4 (Calibration 2). A disaster is E [B−γ] = 10.9 times more important for a risk

averse agent, that it would be for a risk-neutral agent.

For a high value of the volatility of F , with v = 0.2 (which might correspond to a country

with a very volatile F , like Brazil) we obtain a volatility of the bilateral exchange rate equal

to 19% / year, and a volatility of F equal to . For v = 0.1 (which might correspond to a more

stable country, like Germany), the volatility is 13.6%. The model parameters give a volatility

of the bilateral exchange rate equal to 8.2%, a value in line with the typical historical values

of 10%.

The volatility of Ft (defined as stdev (Ft+1 − Ft)) is, in the case, v = 0.1, 9% per year.

That means that means that expectations about recovery rate vary pretty rapidly from year

to year.

As bHt is quite volatile, the exchange rate is hard to forecast (the same way stocks are hard

to forecast). At short horizons, it behaves like a random walk (qualitatively consistent with

Meese and Rogoff 1983).

We conclude that while the above numbers are somewhat speculative, the model may

account for the magnitude of exchange rate volatility.
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Table 1: Two calibrations of the model

Calibration 1 Calibration 2
Medium riskiness High riskiness

Postulated values
Size of disasters E [B−γ]−1/γ 0.55 0.45
Time preference δ (in %) 4 22
Implied values
Range for domestic riskless short rate (in %) {−1.0, 1.3, 4.9} {−4.1, 1.0, 8.8}
Range for FX et/ (ωt/re) {0.62, 1, 1.25} {0.14, 1, 1.57}
Volatility of Ft, when v = 0.1, v = 0.2 0.090, 0.127 0.090, 0.127
Simple Fama Regression coefficient, −φ/re -2.1 -2.2
Bilateral FX volatility σe (in %) when v = 0.1, v = 0.2 8.1, 11.4 18.7, 25.7

Explanation: Each of the two calibration has, we postulate a value of the utility-weighted
average size of recovery in disasters, E [B−γ]−1/γ. We then fit the rate of time preference
δ, to get a typical value of the interest rate close to 1%. We report the minimum, typical
(corresponding to bHt = 0) and maximum range for the domestic short term interest rate; the
minimum, typical and maximum value for the exchange rate over “steady state fundamentals”
(ωt/re). Finally, we report for volatility of the bilateral exchange rate for currencies with two
uncorrelated fundamentals. Perfectly correlated currencies have 0 bilateral FX volatility,
perfectly anticorrelated currencies, a volatility equal to the one reported in the table, times√
2. The time unit is the year.

8 Conclusion

This paper proposes a simple, tractable model of exchange rates and interest rates, and offers

a theory of the forward premium puzzle. Its main modelling contributions are, first, to de-

velop an “exchange rate as a stock” view of the exchange rate, in a complete market setting

(Proposition 1). Second, to work out the exchange rate in a stochastic disaster framework,

and to obtain closed forms for the value of the exchange rate, and the forward premium puzzle

coefficients.

The paper suggests several questions for future research. First, it would be good to examine

new predictions that the model might generate, including the relationships between bonds,

options and exchange rate premia and predictability. Second, it would be interesting to

extend the model to stocks, so as to study the link between exchange rates and stock markets.

Third, given that the model is very simple to state, and to solve (thanks to the modeling
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“tricks” allowed by linearity-generating processes), it can serve as a simple framework for

various questions. This gives hope that a solution to more puzzles in international economics

(Obstfeld and Rogoff 2001) may be within reach.
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Appendix A. Some results on Linearity-Generating processes

The paper constantly uses the Linearity-Generating (LG) processes of Gabaix (2007). This

Appendix gathers the main results. LG processes are given byMtDt, a pricing kernelMt times

a dividend Dt, and Xt, a n-dimensional vector of factors (that can be thought as stationary).

For instance, for bonds, the dividend is Dt = 1.

Discrete time By definition, a process MtDt (1, Xt) is LG if and only if it follows, for

all t’s:

Et
∙
Mt+1Dt+1

MtDt

¸
= α+ δ0Xt (51)

Et
∙
Mt+1Dt+1

MtDt
Xt+1

¸
= γ + ΓXt (52)

Those conditions write more compactly:

EtYt+1 = ΩYt with Yt =

⎛⎝ MtDt

MtDtXt

⎞⎠ and Ω =

⎛⎝ α δ0

γ Γ

⎞⎠
Higher moments need not be specified.

The main result is that stocks and bonds have simple closed-form expressions. The price

of a stock, Pt = Et
£P

s≥tMsDs

¤
/Mt, is:

Pt/Dt =
1 + δ0 (In − Γ)−1Xt

1− α− δ0 (In − Γ)−1 γ
(53)

The price-dividend ratio of a “bond”, Zt (T ) = Et [Mt+TDt+T ] / (MtDt), is: (with 0n a

n−dimensional row of zeros):

Zt (T ) =
³
1 0n

´
· ΩT ·

⎛⎝ 1

Xt

⎞⎠
= αT + δ0

αT In − ΓT

αIn − Γ
Xt when γ = 0
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Continuous time In continuous time, MtDt (1,Xt) is LG if and if only it follows:

Et
∙
d (MtDt)

MtDt

¸
= − (a+ β0Xt) dt (54)

Et
∙
d (MtDtXt)

MtDt

¸
= − (b+ ΦXt) dt (55)

i.e. more compactly

Et [dYt] = −ωYtdt with Yt =

⎛⎝ MtDt

MtDtXt

⎞⎠ and ω =

⎛⎝ a β

b Φ

⎞⎠ .

The price of a stock, Pt/Dt = Et
£R∞

t
MsDsds

¤
/ (MtDt) , is:

Pt/Dt =
1− β0Φ−1Xt

a− β0Φ−1b

and the price-dividend ratio of a “bond” is: Zt (T ) = Et [Mt+TDt+T ] / (MtDt)

Zt (T ) =
³
1 0n

´
· exp

⎡⎣−
⎛⎝ a β0

b Φ

⎞⎠T

⎤⎦ ·
⎛⎝ 1

Xt

⎞⎠ (56)

= e−aT + β0
e−ΦT − e−aT In

Φ− aIn
Xt when b = 0

9 Appendix B. Proofs

For simplicity, we drop the country index i in most proofs.

Proof of Proposition 2 By proposition 1, we have

et
e−λtωt

= Et

" ∞X
s=0

M∗
t+s

e−λ(t+s)ωt+s

e−λtωt

#
/M∗

t
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Let Dt = e−λtωt and Xt = bHt. With this notation,

Et
∙
M∗

t+1Dt+1

M∗
t Dt

¸
= e−R−λ+gω

©
(1− pt) + ptEt

£
B−γt+tFt+1

¤ª
= e−R−λ+gω (1 +Ht) = e−R−λ+gω(1 +H∗) + e−R−λ+gω bHt

= e−R−λ+gω(1 +H∗) + e−R−λ+gωXt = e−re + e−re−h∗Xt,

using re = R+ λ− gω − h∗. Also:

Et
∙
M∗

t+1Dt+1

M∗
t Dt

Xt+1

¸
= Et

∙
M∗

t+1Dt+1

M∗
t Dt

¸
Et [Xt+1]

= e−R−λ+gω (1 +Ht)
1 +H∗
1 +Ht

e−φH bHt

= e−R−λ+gω−φH (1 +H∗) bHt = e−re−φHXt

Hence with the notations of Appendix A, we find that Yt = M∗
t Dt (1,Xt) is a LG process,

with generator Ω:

EtYt+1 = ΩYt with Ω =

⎛⎝ e−re e−re−h∗

0 e−re−φH

⎞⎠
Using equation 53, we find

et =
ωt

1− e−re

µ
1 +

e−re−h∗

1− e−re−φH
bHt

¶
which proves the proposition.

The lower bound for bHt is: e−re bHt > e−φH−1, i.e., in the continuous time limit, bHt > −φH .

A Lemma

Lemma 1 (Existence of the Equilibrium) There are (an infinity of) endowment processes that

generate the equilibrium described in the paper.

Proof. Call ηai,t and η
b
i,t country i’s endowment of the international good, and domestic good,

respectively. We work out under which conditions they generate the announced equilibrium.

Say that the equilibrium is described by a social planner’s maximization of
P

i λ
γ
i Ui, where

Ui = E0
∙P∞

t=0 e
−δt (C

a
t )
1−γ+(Cb

t )
1−γ

1−γ

¸
is country i’s utility, and λγi the Negishi weight on country
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i. We normalize
P

λi = 1. Calling qt the Arrow-Debreu price of 1 unit of the international

good at date t, and Yta the world production of the international good. Amongst other things,

the planner optimizes the consumptions of the domestic good, so solves:

max
Ca
it

X
i

λγi

∞X
t=0

e−δt
(Ca

it)
1−γ +

¡
Cb
it

¢1−γ
1− γ

+
X
t

qt

Ã
Y a
t −

X
i

Ca
it

!

where so that e−δtλγi (C
a
it)
−γ − qt = 0, and Ca

it = λiq
−1/γ
t eδt/γ. Using Y a

t =
P

iC
a
it, we get:

Ca
it = λiY

a
t .

Let us now study country i’s consumption and investment decisions. Country i at time

t, solves maxCa
it, C

b
it

(Ca
it)

1−γ
+(Cb

it)
1−γ

1−γ s.t.Ca
it + eitC

b
it =expenditure at time t, so

¡
Cb
it

¢−γ
=

eit (C
a
it)
−γ, hence Cb

it = e
−1/γ
it λiY

a
t . The investment in the capital good is η

b
it − Cb

it = ηbit −
e
−1/γ
it λiY

a
t , so that the accumulated quantity of the capital good isKit =

P∞
s=0 e

−λs
³
ηbi,t−s − e

−1/γ
i,t−sλiY

a
t−s

´
.

As country i produces Kitωit of the world good, and also has an endowment ηait of it, the total

available consumption of the world good at time t is:

Y a
t =

X
i

ηait +
X
i

ωit

∞X
s=0

e−λs
³
ηbi,t−s − e

−1/γ
i,t−sλiY

a
t−s

´
. (57)

The first term is the endowment of the world good, and second is the production of it.

The equilibrium is described as in the paper, if the endowment processes ηai,t and η
b
i,t satisfy

(57), with Y a
t = Ca∗

t . By inspection there is an infinity of such endowment processes.

Proof of Proposition 3 In this proof, it is useful to define xt = e−h∗ bHt. Then,

Et
h
M∗
t+1ωt+1
M∗
t ωt

i
= e−R+gω (1 +Ht) = e−re+λ (1 + xt). Also, Et [xt+1] = e−φ xt

1+xt
, and et =

ωtA (1 +Bxt), with A = 1/ (1− e−re), B = e−re

1−e−re−φH ,
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1 + rt =
M∗

t et

Et
£
M∗

t+1et+1
¤ = A (1 +Bxt)

Et
h
M∗
t+1ωt+1

M∗
t ωt

A (1 +Bxt+1)
i = 1 +Bxt

Et
h
M∗
t+1ωt+1

M∗
t ωt

i
Et [1 +Bxt+1]

=
1 +Bxt

e−re+λ (1 + xt)
³
1 +B e−φH xt

1+xt

´ = ere−λ
1 +Bxt

1 + xt (1 +Be−φH )
= ere−λ

1 + e−re

1−e−re−φH xt

1 + 1
1−e−re−φH xt

= ere−λ

"
1− (1− e−re) e−h∗ bHt

1− e−re−φH + e−h∗ bHt

#
.

Proof of Proposition 6 Derivation of the exchange rate. Call mt = M∗
t e
−λtωt. We

show that Yt = mt

³
1, bHt, yt

´
is a LG process. As in the Proof of Proposition 2:

Et
∙
mt+1

mt

¸
= e−re

³
1 + e−h∗ bHt

´
= e−re−h∗ (1 +Ht)

Et
∙
mt+1

mt

bHt

¸
= e−re−φH bHt

The new moment is:

Et
∙
mt+1

mt
yt+1

¸
= Et

∙
mt+1

mt

¸
Et [yt+1] = e−re−h∗ (1 +Ht)

1 +H∗
1 +Ht

e−φyyt = e−re−φyyt

So Yt is a LG process, with generator:

Ω = e−re

⎛⎜⎜⎝
1 e−h∗ 0

0 e−φH 0

0 0 e−φy

⎞⎟⎟⎠ . (58)

The exchange rate follows:

et
ωt

= Et

" ∞X
s=0

M∗
t+s

M∗
t

e−λsωt+s (1 + gt)

#
=

⎛⎜⎜⎝
1

0

1

⎞⎟⎟⎠
0

· (I3 − Ω)−1 ·

⎛⎜⎜⎝
1bHt

yt

⎞⎟⎟⎠
=

1

1− e−re

µ
1 +

e−re−h∗

1− e−re−φH
bHt

¶
+

1

1− e−re−φy
yt
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The last equation comes from the fact that I3−Ω is bloc-diagonal. This yields the announced

expression.

Derivation of the interest rate. In the continuous time limit,

Et
h
d bHt

i
= −

³
φH + bHt

´ bHtdt (59)

Et [dyt] = −
³
φy + bHt

´
ytdt (60)

so the interest rate satisfies:

−rt = Et
∙
d (M∗

t et)

M∗
t et

¸
/dt = Et

∙
dM∗

t

M∗
t

| no disaster
¸
+ Et

∙
det
et
| no disaster

¸
+pt

µ
Et
∙
Mt+et+

Mtet
− 1 | disaster

¸¶

= −R+ gω +

Et[dHt]/dt
re+φH

+ reEt[dyt]/dt
re+φy

1 + Ht

re+φH
+ reyt

re+φy

+ pt
¡
B−γt Ft − 1

¢

= −R+ gω +

−(φH+Ht)Ht

re+φH
+
−re(φy+Ht)yt

re+φy

1 + Ht

re+φH
+ reyt

re+φy

+H∗ + bHt

= −re + λ+

re
re+φH

bHt −
reφy
re+φy

yt

1 + Ht

re+φH
+ reyt

re+φy

.

Proof of Proposition 7 We start by the case of the regression in a sample that does

not contain disasters. As in the proof of Proposition 6,

Et
∙
det
et

¸
/dt = gω +

−(φH+Ht)Ht

re+φH
+
−re(φy+Ht)yt

re+φy

1 + Ht

re+φH
+ reyt

re+φy

So, up to second order terms in bHt and yt,

Et
∙
det
et

¸
/dt = gω +

−φH bHt

re + φH
+
−reφyyt
re + φy

≡ a bHt + byt + c

rt = re − λ− re
re + φH

bHt +
reφy

re + φy
yt ≡ A bHt +Byt + C
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so

β0 = −
Cov

³
Et
h
det
et

i
/dt, rt

´
V ar (rt)

= −
aAV ar

³ bHt

´
+ bBV ar (yt)

A2V ar
³ bHt

´
+B2V ar (yt)

= −ν a
A
− (1− ν)

b

B
= νβ + 1− ν

where

ν =
A2V ar

³ bHt

´
A2V ar

³ bHt

´
+B2V ar (yt)

.

The case of the full sample regression is proved similarly.

Proof of Proposition 8 The proof of Proposition 6 showed that M∗
t e
−λtωt

³
1, bHt, yt

´
is a LG process, with generating matrix given by (58). Writing et = ωt

³
a+ b bHt + cyt

´
, we

have

Zt = Et
∙
M∗

t+Tet+T
M∗

t et

¸
=

eλT

a+ b bHt + cyt
Et

⎡⎣M∗
t+T e

−λ(t+T )ωt+T

³
a+ b bHt + cyt

´
M∗

t e
−λtωt

⎤⎦

=
eλT

a+ b bHt + cyt

⎛⎜⎜⎝
a

b

c

⎞⎟⎟⎠
0

ΩT

⎛⎜⎜⎝
1bHt

yt

⎞⎟⎟⎠ by the rules on LG processes

=
eλT

a+ b bHt + cyt

⎛⎜⎜⎝
a

b

c

⎞⎟⎟⎠
0

e−reT

⎛⎜⎜⎝
1 e−h∗ 1−e

−φHT

1−e−φH 0

0 e−φHT 0

0 0 e−φyT

⎞⎟⎟⎠
⎛⎜⎜⎝
1bHt

yt

⎞⎟⎟⎠
= e−(re−λ)T

a+
³
ae−h∗ 1−e

−φHT

1−e−φH + b
´ bHt + ce−φyTyt

a+ b bHt + cyt

= e−(re−λ)T
1 +

³
ae−h∗ 1−e

−φHT

1−e−φH + b
´ bHt + ce−φyTyt

1 + e−re−h∗
1−e−re−φH

bHt +
1−e−re

1−e−re−φy yt
,
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So the zero-coupon price is:

Zt (T ) = e−(re−λ)T
1 +

1−e−re−φH−(1−e−re)e−φHT

(1−e−φH )(1−e−re−φH )
e−h∗ bHt + e−φyT 1−e−re

1−e−re−φy yt

1 + e−re−h∗

1−e−re−φH
bHt +

1−e−re
1−e−re−φy yt

Taking Taylor expansions,

Zt (T ) = e−(re−λ)T

"
1 +

(1− e−re)
¡
1− e−φHT

¢
(1− e−φH ) (1− e−re−φH )

e−h∗ bHt −
(1− e−re)

¡
1− e−φyT

¢
1− e−re−φy

yt

#
+o
³ bHt, yt

´

Yt (T ) = re − λ−
(1− e−re)

¡
1− e−φHT

¢
T (1− e−φH ) (1− e−re−φH )

e−h∗ bHt +
(1− e−re)

¡
1− e−φyT

¢¡
1− e−re−φy

¢
T

yt + o
³ bHt, yt

´
(61)

ft (T ) = re − λ− (1− e−re) e−φH(T−1)

1− e−re−φH
e−h∗ bHt +

(1− e−re)
¡
1− e−φy

¢
e−φy(T−1)¡

1− e−re−φy
¢ yt + o

³ bHt, yt
´

(62)

and in the continuous time limit,

ft (T ) = re − λ− re
re + φH

e−φHT bHt +
reφy

re + φy
e−φyTyt + o

³ bHt, yt
´

Proof of Proposition 12 The real part of the forward rate was calculated in Eq. 26.

The nominal part is calculated in Gabaix (2007). The two expressions add up, because we do

a Taylor expansions.

Proof of Proposition 13 By inspection of (42):

rt = re − λ− re
re + φH

bHt +
reφy

re + φy
yt + i∗∗ + it − i∗∗

∂T eft (0) =
re

re + φH
φH bHt −

reφ
2
y

re + φy
yt − φie

−φiT it + πit

∂2T
eft (0) = − re

re + φH
φ2H bHt +

reφ
3
y

re + φy
yt + φ2i e

−φiT it − (φi + ψπ)π
i
t

Combining this with (43) yields the Proposition.
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Proof of Proposition 15 Pt = Et

hP
s≥tMsωsDs

³
1 + Hs

Re+φ

´i
/ (etDt). We calculate

the corresponding LG moments. We start with:

Mt+1ωt+1Dt+1

MtωtDt
= e−R+gω+gD ×

⎧⎨⎩ 1 if there is no disaster at t+ 1

FtF
i
t if there is a disaster at t+ 1

where as before Ft is the reduction in the country productivity in producing the international

good. We postulate that the process for F i
t allows the decomposition:

ptB
−γ
t FtF

i
t − pt = (H∗ + p∗)F

i
∗ − p∗ + F i

∗
bHt + (H∗ + p∗) bF i

t

This decomposition is the natural one, as the central value of ptB
−γ
t Ft is H∗ + p∗, and the

central value of F i
t is called F i

∗. The process for Fit is a LG-twisted autoregressive process:

Et

h
d bFit

i
/dt = −

³
φFi + F i

∗
bHt + (H∗ + p∗) bF i

t

´ bFit (63)

We define rD = R−gD−gω−(H∗ + p∗)F
i
∗+p∗ The LGmoments are (normalizing gD = gω = 0

in the derivations):

Et

∙
d (MωD)t
(MωD)t

¸
/dt = −R+ pt

¡
B−γt FtF

i
t − 1

¢
= −rD + F i

∗
bHt + (H∗ + p∗) bF i

t

Et

⎡⎣d
³
MωD · bFit

´
t

(MωD)t

⎤⎦ /dt = −R bFit−
³
φFi + F i

∗
bHt +H∗ bF i

t

´ bFit+p
³
B−γFtF

i
t · F i

t − bFit

´
= − (rD + φF ) bFit

Et

⎡⎣d
³
MωD bHt

´
t

(MωD)t

⎤⎦ /dt = ³−rD + F i
∗
bHt + (H∗ + p∗) bF i

t

´ bHt−
³
φ+ bHt

´ bHt = − (rD + φ) bHt+h.o.t.

Hence the last expression involves a linearization. So, to a first order, MtωtDt

³
1, bHt, bFit

´
is a LG process, with generating matrix ω =

⎛⎜⎜⎝
rD −F i

∗ − (H∗ + p∗)

0 rD + φH 0

0 0 rD + φF

⎞⎟⎟⎠. So (46) gives, in
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virtue of the rule on LG processes (Gabaix 2007, Theorem 4 and Proposition 4):

Ptet =

⎛⎜⎜⎝
1

1/ (re + φH)

0

⎞⎟⎟⎠ω−1

⎛⎜⎜⎝
1bHtbFit

⎞⎟⎟⎠Dt,

which yields (47). Eq. 48 comes from a Taylor expansion.

Appendix C. Variance processes

Suppose an LG process centered at 0, dXt = − (φ+Xt)Xtdt + σ (Xt) dWt, where Wt is a

standard Brownian motion. Because of economic considerations, the support of the Xt needs

to be some (Xmin,Xmax), with −φ < Xmin < 0 < Xmax. The following variance process makes

that possible:

σ2 (X) = 2K (1−X/Xmin)
2 (1−X/Xmax)

2 (64)

with K > 0. K is in units of [Time]−3. The average variance of X is σ2X = E [σ2 (Xt)] =R Xmax

Xmin
σ (X)2 p (X) dX, where p (X) is the steady state distribution of Xt. It can be calculated

via the Forward Kolmogorov equation, which yields d ln p (X) /dX = 2X (φ+X) /σ2 (X) −
d lnσ2 (X) /dX.

Numerical simulations shows that the process volatility is fairly well-approximated by:

σX ' K1/2ξ, with ξ = 1.3. Also, the standard deviation of X’s steady state distribution is

well-approximated by (K/φ)1/2.

Asset prices often require to analyze the standard deviation of expressions like ln (1 + aXt).

Numerical analysis shows that the Taylor expansion approximation is a good one: Average

volatility of: ln (1 + aXt) ' aK1/2ξ, which numerical simulations prove to be a good approx-

imation too.

For the steady-state distribution to have a “nice” shape (e.g., be unimodal), the following

restrictions appear to be useful: K ≤ 0.2 · φ |Xmin|Xmax.

When the process is not centered at 0, one simply centers the values. For instance, in

our calibration, the recovery rate of the country productivity, Ft, has support [Fmin, Fmax],

centered around F∗. The probability and intensity of disasters (p and B) are constant. Define
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Ht = p (B−γFt − 1), and the associated Hmin, Hmax, H∗. The associated centered process

is Xt = bHt = Ht − H∗. We take the volatility parameter to be: K = v · φH |Xmin|Xmax,

with the volatility parameter v ∈ [0, 0.2]. This yields a volatility of bHt equal to σHt
=

ξ
³
v · φH

¯̄̄ bHmin

¯̄̄ bHmax

´0.5
, a volatility of Ft equal to σF = σHt

/ (pB−γ), and a volatility of the

bilateral exchange rate (between two uncorrelated countries) equal to
√
2σHt

/ (re + φH).
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