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Abstract

This paper develops a model of time-varying expected returns and shows that, when
investors care about the long-run consumption risk, they also care about the persistence of
an asset’s exposure to this risk, and demand substantially higher compensation for more
persistent exposure. The model also implies a negative sensitivity of price-dividend ratios to
expected excess returns, and the magnitude of the sensitivity is substantially larger for more
persistent exposure. In an application of the model, I specify individual stocks’ dividend
growth as containing two time-varying components of exposure to the long-run consumption
risk — a fast mean-reverting component whose shocks are positively correlated with the
independent dividend growth shocks, and a slow mean-reverting component whose shocks
are negatively correlated with the independent dividend growth shocks. Firm level simu-
lations from this model produce short-run momentum and long-run reversal quantitatively
comparable to empirically documented patterns in the cross section as well as along the
time dimension. The simulations also show that the value premium across price-dividend
ratio sorted portfolios is driven by a spread in the slow mean-reverting risk exposure. To-
gether, these results propose potential interpretations of the value and momentum factors
as representing time-varying loadings of different persistence on the long-run consumption
risk factor.



1 Introduction

This paper develops a model of time-varying expected returns for individual stocks in an
economy where a representative agent with Epstein-Zin preferences cares about the risk
associated with a small and persistent expected component in the aggregate consumption
growth. In the model, an individual asset is only exposed to the risk associated with the
shocks to the expected consumption growth, which is assumed to carry a constant price of
risk.1 Consequently, time-varying expected returns on the asset arise as a result of time-
varying loadings (or “betas”) on the long-run consumption risk.2

There is a growing literature on consumption based asset pricing that suggests that ex-
posure to consumption growth over a long horizon provides an improved measure of risk over
the covariance between returns and contemporaneous consumption growth.3 In particular,
a consumption growth model featuring a small and persistent expected component is con-
sistent with the time series properties of the U.S. aggregate consumption data, and, when
combined with Epstein-Zin preferences, demonstrates promising capabilities in explaining
the risk premia of the aggregate market and benchmark portfolios (See, for example, Bansal
and Yaron (2004) and Kiku (2006)).4 Typical empirical and theoretical specifications in the
literature assume a constant exposure to the long-run consumption growth, resulting in a
permanent loading on the long-run consumption risk.5

The purpose of this paper is to bring the focus to time-varying loadings on the long-run
consumption risk, while holding constant the price of risk. More precisely, building on the
Bansal and Yaron (2004) framework of the long-run consumption growth and Epstein-Zin
preferences, I specify individual stocks’ expected dividend growth as linked to the expected
consumption growth through a leverage (or exposure) driven by mean-reverting state vari-
ables. The resulting model of time-varying loadings on the long-run consumption risk and
consequently, time-varying expected returns, is particularly suited for the study of the cross-
section and time-series behaviors of returns at the individual firm level.

A key result of the model is that when the exposure to the long-run consumption risk is
time varying, investors care about how persistent the exposure is, and demand substantially
higher compensation for a slow mean-reverting leverage than that driven by a fast mean-
reverting state variable. As an example, for monthly intervals, a leverage with a persistence
parameter of 0.91 (which implies that the impact of a shock attenuates by 50% after about
7 months) yields an expected excess return about only 1/4 of that resulting from a leverage
with the same magnitude but a persistence of 0.99 (for which the half-life of shocks is more

1Price of risk is defined as the expected excess return on an asset with a unit exposure to the risk. In the
language of factor pricing models, it is the factor risk premium.

2In other words, this is a conditional one-factor model.
3For measuring risk as exposure to long-run consumption growth, see Parker and Julliard (2005), Bansal,

Dittmar, and Lundblad (2005), Hansen, Heaton, and Li (2005), and Malloy, Moskowitz, and Vissing-
Jorgensen (2005). For measuring risk as covariance between returns and contemporaneous consumption
growth, see Hansen and Singleton (1982), Hansen and Singleton (1983), and Breeden, Gibbons, and Litzen-
berger (1989).

4Also see Bansal (2006) for a survey.
5The price of risk can be either constant or time-varying. See Bansal and Yaron (2004) and Kiku (2006).
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than 5 years), which, in turn, generates less than 3/4 of the expected excess return associated
with a constant, thus permanent, leverage.

In the model, a rise in the risk exposure increases the expected return, but decreases the
price-dividend ratio. This results in a negative sensitivity of price-dividend ratios to expected
returns — changes in expected returns are amplified into variations in price-dividend ratios
in the opposite direction. The magnitude of the sensitivity increases dramatically with the
persistence of the risk exposure. As an example, for the same variations in expected returns,
when the underlying risk exposure persistence is 0.91, the magnitude of the corresponding
variations in logarithm price-dividend ratios is only 1/8 of the magnitude of the variations
when the persistence is 0.99. Consequently, even if a fast mean-reverting risk exposure
generates considerable swings in the expected return, the corresponding variations in the
price-dividend ratio may still be small.

These results suggest that the persistence of the risk exposure bears critical asset pric-
ing implications. A highly persistent risk exposure not only implies that the risk premium
sustains longer along the time dimension. It also implies a larger magnitude of the risk pre-
mium. Moreover, it implies that variations in the risk premium are more strongly reflected in
the valuation ratio. These relations, borne out of the long-run consumption risk framework,
are likely missing if investors are assumed to care only about contemporaneous consumption
growth.

As an application, I supply additional assumptions and commit the model to an attempt
to reconcile short-run momentum and long-run reversal returns in portfolios sorted on past
returns.6 These two phenomena provide exemplary testing grounds, given their divergent
patterns of returns in both cross section and time series. More precisely, in addition to
independent shocks and a constant exposure to the long-run consumption risk, I specify in-
dividual stocks’ dividend growth as containing two components of time-varying risk exposure
— a fast mean-reverting component whose shocks are positively correlated with the dividend
shocks, and a slow-mean reverting component whose shocks are negatively correlated with
the dividend shocks. For parsimony, all stocks share the same model parameters and thus
only differ in the history of shocks. In particular, all firms have the same level of the con-
stant exposure; consequently, patterns in expected returns must result from the cross-section
distributions and the time-series evolutions of the time-varying loadings.

The positive and negative correlations between the dividend shocks and the state vari-
able shocks are respectively responsible for generating the positive and negative correlations
between past realized returns and future expected returns. All else being equal, positive (neg-
ative) returns are more likely associated with positive (negative) dividend growth shocks.
Consequently, when firms are sorted on realized returns, a winner portfolio tends to pick up
stocks with positive dividend growth shocks, which tend to associate with positive shocks
to the fast mean-reverting component of risk exposure, and negative shocks to the slow
mean-reverting component. Conversely, for a loser portfolio, the fast mean-reverting com-
ponent of risk exposure decreases, and the slow mean-reverting component increases. At the

6See Jegadeesh and Titman (1993) and Jegadeesh and Titman (2001) for momentum, and De Bondt and
Thaler (1985) and De Bondt and Thaler (1987) for reversal.
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end of the portfolio formation period, there are always both a positive spread in the fast
mean-reverting exposure and a negative spread in the slow-mean reverting exposure between
winner and loser portfolios.

The low and high levels of persistence determine how fast the spreads in the state variables
build up, and how long they sustain afterwards. A spread in the fast mean-reverting exposure
is quick to grow, but it also dissipates fast. A spread in the slow mean-reverting exposure
takes time to accumulate, but it also lasts longer. Consequently, a short formation period
(e.g., from month –12 to month –2) leads the positive spread in the fast mean-reverting
exposure to dominate, giving rise to the positive momentum spread. On the other hand,
after a long formation period (e.g., from month –60 to month –13) plus a one-year waiting
period, the negative spread in the slow mean-reverting exposure becomes dominant, giving
rise to the negative reversal spread. The momentum spread, driven by the fast mean-
reverting component, is doomed to be short-lived. The reversal spread, sustained by the
slow mean-reverting exposure, is long-lasting.

In a calibration of the model for monthly intervals, I set the low and high persistence
parameters at 0.91 and 0.99, and the associated correlations at 0.80 and –0.70, respectively.
I adopt a leverage function so that unconditionally the fast mean-reverting leverage is dis-
tributed uniformly between –28 and 28, while the slow mean-reverting leverage between
–7 and 7. In simulations of 2000 firms over a 40-year period, I find the model capable of
matching the empirically documented momentum and reversal patterns in the cross section
as well as along the time dimension. The model generates, after a portfolio formation pe-
riod of month –12 to month –2, a short-lived momentum spread that starts with a value
of about 1% (in monthly returns) between extreme deciles at month 0, narrows down and
turns negative after month 12, and remains at about –0.3% per month into year 5. With a
portfolio formation period of month –60 to month –13 and a one-year waiting period, the
model records a persistent reversal spread, varying between –0.4% and –0.6% per month
across extreme deciles from month 0 to the end of year 5.

Simulations also confirm a value premium across price-dividend ratio sorted portfolios.7

More importantly, underlying the value premium is a large spread in the slow mean-reverting
state variable. This is consistent with the model implication that changes in the high per-
sistence risk exposure generate much larger variations in the price-dividend ratio. The mag-
nitude of the value premium — about 1% per month between extreme price-dividend ratio
deciles — is broadly consistent with empirical documentations, such as in Fama and French
(1992).

As additional support to the model, the portfolio averages of the total exposure (or lever-
age) of the dividend growth to the long-run consumption growth obtained in the simulations
are largely consistent with the empirical results documented in Bansal, Dittmar, and Lund-
blad (2005). In simulations, accompanying the momentum spread is a large dispersion in
total leverage — about 12 for the top momentum quintile, and about –4 for the bottom

7Book value is not a part of the valuation model in this paper. I use the price-dividend ratio as the
classifier of value versus growth stocks. This approach is also used, for example, in Santos and Veronesi
(2005) and Lettau and Wachter (2006).
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quintile. For the lowest and the highest price-dividend ratio quintiles, the leverage values
are about 6 and 2.8

In spite of this seemingly monotonic relation between the leverage and portfolio returns,
the model in this paper does not imply a linear, or even a monotonic correspondence between
the total leverage and the expected returns. Rather, the expected returns are driven more
fundamentally by the underlying state variables. Therefore, for example, the simulations
show a small positive spread in total leverage accompanying the substantially negative spread
in reversal returns at month 0. The lack of a clear leverage-return relation results from the
competition between the two state variables that exhibit different speeds of mean reversion
and thus carry different weights in contributing to total leverage versus to expected returns.

The results also point to a potential connection between persistent firm characteristics
such as book-to-market and the slow mean-reverting state variable. On the other hand, the
fast mean-reverting exposure, apparently being mimicked by the momentum factor, seems
less likely to connect with any persistent firm characteristics. All together, these observations
suggest that value and momentum factors in empirical models may potentially represent
different components of risk exposure to the long-run consumption risk factor. They differ
in the levels of persistence and the responses to cash flow news.

This paper presents an attempt to account for both short-term momentum and long-run
reversal within a rational asset pricing framework.9 In explaining momentum, this paper
shares with Johnson (2002) the intuition that sorting on realized returns tends to allocate
stocks by realized dividend growth shocks. Two studies subsequently diverge in terms of the
mechanism relating dividend growth shocks to changes in risk.10

In accounting for the value premium, this paper also relates to a large literature that cor-
relates variations in returns with variations in systematic risks.11 A strand of this literature
investigates the separate roles of cash flow risks and discount rate risks (See, for example,
Campbell and Vuolteenaho (2004) and Santos and Veronesi (2005)). In this regard, the
model of this paper assumes a constant aggregate discount rate, while cash flow risks give
rise to time-varying expected returns. A number of other studies suggest that cash flows with
different maturities, or durations give rise to different returns to value and growth stocks
(Cornell (1999), Dechow, Sloan, and Soliman (2004), Santos and Veronesi (2005), and Lettau
and Wachter (2006)). In contrast to their focus on the time-varying patterns of cash flows,
the model of this paper emphasizes the time-varying exposure of cash flows to uncertainties
in the long-run consumption growth.

In the rest of the paper, I first present and obtain approximate analytical solutions to a

8Note the caveat that stocks are sorted by price-dividend ratio in the simulations, but by market-to-book
in empirical results. In addition, Bansal, Dittmar, and Lundblad (2005) assumes that the stock portfolios’
leverage on the long-run consumption risk is constant.

9The behavior based explanations are surveyed in Barberis and Thaler (2003).
10In Johnson (2002), which employs a reduced-form pricing kernel, positive shocks raise the dividend

growth rates, which entail higher expected returns.
11See Daniel and Titman (2006) and Lewellen, Nagel, and Shanken (2006) for the lists of the studies, and

critiques of the econometric methodology. See Campbell (2003) and Cochrane (2006) for general surveys of
the consumption based asset pricing literature.
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general model in Section 2. This is followed by the construction and the simulation of two
models separately addressing momentum and reversal, and finally a unified model resolving
both phenomena in Sections 3.1 through 3.3. I verify in Section 3.4 that simulated economies
also exhibit a value premium, and propose interpretations of empirical asset pricing factors.
The concluding section addresses the limitations of the paper, and the appendices collect
details of the model construction, solution, and simulation.

2 Model

2.1 Pricing kernel

I follow Bansal and Yaron (2004) in the specification of the aggregate consumption process
and the representative agent utility. More details are supplied in Appendix D, which recasts
the key results in Bansal and Yaron (2004) using the notation of this paper.

The logarithm aggregate consumption growth is modeled as consisting of independent
shocks plus a small and persistent expected component, as in

log
Ct+1

Ct
≡ ∆ct+1 = µc + σcεc,t+1 + xt, (1)

xt+1 = ρxxt + σxεx,t+1, (2)

where the shocks εx,t+1 and εc,t+1 are standard normal random variables that are independent
across time and of each other. In this model, the consumption growth has a mean of µc, and
the independent shocks have a standard deviation of σc. The expected component xt is a
zero mean AR(1) process; it has a persistence parameter ρx very close to 1 and is driven by
shocks with a small standard deviation σx. With carefully calibrated parameters, Bansal and
Yaron (2004) show that this model well replicates the time series properties of the observed
U.S. aggregate consumption growth data.

A representative agent is assumed to exhibit the Epstein and Zin (1989) and Weil (1989)
preferences. This leads to a logarithm pricing kernel

logMt+1 ≡ mt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1)rc,t+1,

where rc,t+1 ≡ logRc,t+1 is the logarithm gross return on the aggregate wealth, which pays
the aggregate consumption stream as dividends. The risk aversion parameter γ and the
intertemporal elasticity of substitution parameter ψ are separately specified. The parameter
0 < δ < 1 is the time discount factor, while θ = (1 − γ)/(1 − 1/ψ).

Log-linearization solution to the logarithm price-consumption ratio produces the follow-
ing result for the pricing kernel innovations

mt+1 − Et[mt+1] ≈ −γσcεc,t+1 − (γ − 1

ψ
)

K1c

1 −K1cρx
σxεx,t+1

= −λcσcεc,t+1 − λxσxεx,t+1, (3)
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where 0 < K1c < 1 is a log-linearization constant very close to 1.
This expression demonstrates the two sources of consumption risks. For the risk associ-

ated with the independent shocks εc,t+1, entering into its price of risk λcσc is the risk aversion
parameter γ. For the expected consumption growth shocks εx,t+1, the price of risk is λxσx.
Clearly, even if the long-run consumption shocks have a very small volatility σx, investors
may still demand a substantial compensation if such shocks have long-lasting implications, as
reflected in λx as an increasing function of the persistence parameter ρx. In this specification,
the price of the long-run consumption risk is constant.

The parameters are calibrated for monthly intervals and largely follow Bansal and Yaron
(2004), as listed in Table 1. In particular, the expected consumption growth has a persistence
of ρx = 0.98 and a volatility of σx = 0.00034; the representative agent exhibits a risk aversion
of γ = 10 and an intertemporal elasticity of substitution of ψ = 1.5.

2.2 Dividend

I model an individual stock as characterized by a dividend growth process consisting of
independent shocks and a time-varying leverage on the expected consumption growth xt, as
in

log
Dt+1

Dt

≡ ∆dt+1 = µd + σdεd,t+1 + L(s1,t, . . . , sN,t)xt, (4)

L(s1,t, . . . , sN,t) =
N

∑

n=1

Ln(sn,t), (5)

sn,t+1 = ρs,nsn,t +
√

1 − ρ2
s,n εs,n,t+1, n = 1, . . . , N. (6)

Here, the shocks εd,t+1 and εs,n,t+1 are standard normal random variables that are indepen-
dent across time. However, they may be correlated with each other contemporaneously. In
this specification, the logarithm dividend growth has a mean of µd and the independent in-
novations have a standard deviation of σd. In addition, there is an expected dividend growth
component, linked to the expected consumption growth xt through a time-varying leverage
L(s1,t, . . . , sN,t). For tractability, I assume L is a sum of functions Ln, separately driven
by underlying state variables sn,t. Each sn,t is a zero mean AR(1) process with a different
persistence parameter ρs,n, and unconditional variance is normalized to be 1.

I also assume that the shocks εd,t+1 and εs,n,t+1 exhibit zero correlations with the shocks
εc,t+1 and εx,t+1 in the consumption growth. Hence, risk premiums are solely driven by the
time-varying exposure L to shocks to the expected consumption growth, εx,t+1. The dividend
growth model is also calibrated for monthly intervals.

2.3 Solution

As will be shown in a moment, with a very mild regularity condition, a generally nonlinear
leverage function can be transformed into a linear function of multiple underlying state vari-
ables. Hence, I will first proceed with the approximate analytical solution of the model for a
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linear leverage function, which also serves to illustrate the intuition underlying the asset pric-
ing implications of the persistence of a time-varying exposure to the long-run consumption
risk.

2.3.1 A linear leverage function

Consider that the leverage is a linear function of the underlying state variables, as in

L(s1,t, . . . , sN,t) = α0 +
N

∑

n=1

αnsn,t,

sn,t+1 = ρs,nsn,t +
√

1 − ρ2
s,n εs,n,t+1, n = 1, . . . , N.

The constant α0 introduces a permanent component, while the slopes αn translate the vari-
ations in sn to the leverage.

I proceed to solve the model using log-linearization and leave the details to Appendix E.
In the solution, the logarithm price-dividend ratio is

log
Pt
Dt

≡ zt ≈ z̄ +

[

(α0 −
1

ψ
)

1

1 −K1ρx
+

N
∑

n=1

αnsn,t
1

1 −K1ρs,nρx

]

xt

−
N

∑

n=1

1

1 −K1ρs,n
αnsn,t

K1ρs,n
1 −K1ρs,nρx

λxσ
2
x, (7)

where 0 < K1 < 1 is a log-linearization constant very close to 1.
The return innovation is

rt+1 − Et[rt+1]

≈ σdεd,t+1 +

[

(α0 −
1

ψ
)

K1

1 −K1ρx
+

N
∑

n=1

αnsn,t
K1ρs,n

1 −K1ρs,nρx

]

σxεx,t+1. (8)

In the expected return,

Et[rt+1] − rf,t +
1

2
vart[rt+1] = − covt[mt+1, rt+1]

≈
[

(α0 −
1

ψ
)

K1

1 −K1ρx
+

N
∑

n=1

αnsn,t
K1ρs,n

1 −K1ρs,nρx

]

σx · λxσx. (9)

The results show that the permanent component α0 and the mean-reverting component
αnsn,t exhibit very different asset pricing implications. In the valuation (the terms involving
xt), the return innovation, and the expected return, the coefficients for the constant compo-
nent are determined only by the persistence of the expected consumption growth. On the
other hand, the coefficients for the time-varying component depend on both the persistence
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of the expected consumption growth and the persistence of the sn process. Moreover, the
coefficients for the time-varying component are always smaller, and can be substantially
smaller when the persistence parameter ρs,n is small. In other words, when investors cares
about the long-run consumption risk, they also care deeply how persistent the risk exposure
is. They demand substantially smaller compensation if the exposure is likely to be transitory.

Examining together the expected return in Eq. (9), and the valuation equation (7) sug-
gests that high values of the mean-reverting component αnsn,t not only induce high expected
excess returns, but also imply low price-dividend ratios. The variations in expected returns
are amplified in logarithm price-dividend ratios by a negative sensitivity of the magnitude

1

1 −K1ρs,n
. (10)

Hence, a high persistence of the mean-reverting component implies that the price-dividend
ratio varies more dramatically when the expected return varies.

The ratio between the risk premia for a permanent component and a time-varying com-
ponent of leverage is

K1

1 −K1ρx
:

K1ρs
1 −K1ρsρx

= β0 : βs. (11)

With ρs < 1, the permanent exposure always demands a higher premium than the time-
varying exposure. Table 2 shows the dramatic increase in the value of βs in comparison to
β0 as the persistence parameter ρs increases. The table also tabulates the half-life of a shock
to the s process, so defined that, when measured in months,

ρhalf-life
s = 0.5.

For example, when ρs = 0.91, the half-life is less than 8 months, and βs is about 1/5 of
β0. This implies that a mean-reverting component that momentarily exhibits the same
magnitude as that of a permanent component only yields an expected excess return less
than 20% of that associated with the latter. Even when ρs = 0.99, which is rather persistent
as indicated by a half-life of nearly 6 years, βs is still not up to 75% of β0.

Table 2 also shows the dramatic increase in the sensitivity of the logarithm price-dividend
ratio with respect to the expected return, as defined in Eq. (10). For the same variations in
expected returns, with a low persistence of ρs = 0.91, the magnitude of the corresponding
variations in logarithm price-dividend ratios is only 1/8 of the magnitude of the variations
when the persistence is ρs = 0.99.

Overall, a recurring theme in the results is that, while the leverage L measures the
total sensitivity of the expected dividend growth to the long-run consumption growth, the
model ends up with a decomposition of the leverage and the asset pricing implications being
driven more fundamentally by the multiple underlying state variables of different degrees of
persistence. As a result, there is no explicit relation between the leverage and the expected
returns.
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It is also worth noting that, in spite of the superficial resemblance of Eq. (9) to a
multi-factor model, the only risk factor in the model is the long-run consumption risk with
a constant factor risk premium, and the multiple terms represent different components of
time-varying loadings. The time-varying expected returns arise because these loadings, or
“betas” change as the underlying state variables evolve.

2.3.2 A general time-varying leverage function

For a general leverage function, an Hermite polynomial expansion proves to be a convenient
tool. Since the leverage function is additively separable, without loss of generality, I focus
on a general function of only one state variable s,

st+1 = ρsst +
√

1 − ρ2
s εs,t+1.

An Hermite expansion exists for L(s) as long as
∫

∞

−∞

L(s)e−
s2

2 ds <∞,

which admits a very broad range of functional forms. From the expansion (generally an
infinite series), one can derive an approximation using the first J + 1 terms

L(s) ≈
J

∑

j=0

αjHj(s),

where Hj(s) is the j-th degree Hermite polynomial and J is sufficiently large. A summary
of the properties of Hermite polynomials is provided in Appendix B.

Given st as a mean-reverting process with persistence ρs < 1, how persistent is the
transformed series L(st), which in general involves a nonlinear leverage function? Appendix
C, following Granger and Newbold (1976), shows that Hj(st) has an equivalent persistence
of ρjs, in that

corr[Hj(st+τ ), Hj(st)] = ρjτs . (12)

That is, the persistence declines geometrically with the degree j of Hermite polynomials.
Consequently, for a general L(st)

corr[L(st+τ ), L(st)] ≤ ρτs .

In a word, no transformation could generate a leverage process that is more persistent than
the underlying state variable.

More importantly, the geometric dependence of the autocorrelation on the lag τ in Eq.
(12) implies that Hj(st) may be viewed as an AR(1) process with a persistence parameter
ρjs. Consequently, the approximation

L(st) ≈
J

∑

j=0

αjHj(st)

9



essentially transforms a nonlinear L into a linear function of multiple state variables Hj(st),
each with a different persistence ρjs. A simple application of Eqs. (7) through (9) yields

Et[rt+1] − rf,t +
1

2
vart[rt+1]

≈
[

(α0 −
1

ψ
)

K1

1 −K1ρx
+

J
∑

j=1

αjHj(st)
K1ρ

j
s

1 −K1ρ
j
sρx

]

λxσ
2
x

=

[

(α0 −
1

ψ
)β0 +

J
∑

j=1

αjHj(st)βj

]

λxσ
2
x.

Note that in

βj =
K1ρ

j
s

1 −K1ρ
j
sρx

,

the persistence ρjs (of the αjHj(st) component) enters into both the nominator and the
denominator. With ρs < 1, βj decays faster with j than does ρjs. In other words, while
the persistence declines geometrically with j, the contribution to the risk premium from the
αjHj(st) component decreases even more dramatically. Hence, the expected returns are most
likely primarily determined by the leading terms of the Hermite polynomial approximation.

3 Models for momentum and reversal

In the following subsections I explore the potentials of the model in explaining the short-run
momentum and long-run reversal in returns when stocks are sorted on past returns. These
two phenomena, particularly the momentum, have remained notable challenges to rational
asset pricing theory.

To facilitate my investigations, I augment the generic model presented in the preceding
section with a few additional assumptions. I adopt the following functional form for the
leverage function,

L(s) = L̄+ Ω(2Φ(s) − 1).

Here, L̄ is the permanent component, Ω is a positive constant, and Φ(·) is the standard
normal cumulative distribution function.

This parameterization exhibits several interesting properties. The functional form re-
sults in the leverage being bounded between L̄ − Ω and L̄ + Ω. The mean is L̄, and the
amplitude of the variation is Ω. Moreover, the unconditional distribution of L over this
range is uniform.12 A symmetric leverage function, when applied subsequently to the study

12For a standard normal random variable X and the standard normal cumulative distribution function
Φ(·), Φ(X) is uniformly distributed on the interval [0, 1]. This follows from

Pr(Φ(X) ≤ u) = Pr(X ≤ Φ−1(u)) = Φ(Φ−1(u)) = u.
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of momentum, implies largely equal contributions from winner and loser portfolios to the
momentum profits, which accords well with the empirical evidence.

Additionally, the Hermite polynomial expansion of this function can be computed an-
alytically. The odd symmetry of (2Φ(s) − 1) implies that the coefficients are zero for all
H2j , j > 1. The leading terms of the expansion are

L(s) = L̄+
Ω√
π
s− Ω

12
√
π

(s3 − 3s) +
Ω

160
√
π

(s5 − 10s3 + 15s) + . . .

With fast diminishing expansion coefficients and the even faster decaying βj, the risk pre-
mium is essentially determined by the first 3 terms for a fairly wide range of s values.

Several of the parameters governing the dividend growth process will remain unchanged
while I explore the effects of the other parameters on the model performance. I set L̄ = 4,
which in the simulation generates an unconditional average return of about 8% per year,
broadly consistent with the equity premium on the aggregate market. I set the volatility
of independent dividend growth shocks σd = 0.1. This roughly implies an annual dividend
growth volatility of 35%, which for individual stocks appears reasonable, particularly when
viewed in the broader context of cash flow news. The mean dividend growth is µd = 0.0015.

I solve the models numerically, and then use simulations to evaluate the performance of
the models. The solution and simulation details are left to Appendices A.2 and A.3.

3.1 A model for momentum

Momentum refers to the short-run return differentials between the portfolios of stocks sorted
on returns over the past 6 to 12 months (Jegadeesh and Titman (1993)). Past winners
continue to outperform past losers. The spread in monthly returns between the top and
bottom deciles starts at about 1%, and gradually declines to zero over a horizon of about a
year (Jegadeesh and Titman (2001)).

To generate momentum returns, therefore, a model needs to supply several key ingredi-
ents: (1) a positive correlation between past realized returns and future expected returns;
(2) the short-lived nature of the return differentials along the time dimension; (3) substan-
tial cross-sectional spreads in expected returns immediately after the portfolio formation.
As will be shown subsequently, a model of dividend growth for individual stocks contain-
ing a mean-reverting exposure to the long-run consumption risk can potentially meet these
requirements. In the model, (1) the risk exposure is driven by shocks that are positively
correlated with the independent dividend growth shocks; (2) the risk exposure mean-reverts
quickly; (3) sufficiently large spreads in the risk exposure emerge across portfolios following
the formation.
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More precisely, for firm i,

∆dit+1 = µd + σdε
i
d,t+1 + L(mi

t)xt, (13)

L(mi
t) = L̄+ Ωm(2Φ(mi

t) − 1), (14)

mi
t+1 = ρmm

i
t +

√

1 − ρ2
m ε

i
m,t+1, (15)

εim,t+1 = χdmε
i
d,t+1 +

√

1 − χ2
dm ηim,t+1, χdm > 0. (16)

Here, the state variable m drives the leverage L on the long-run consumption growth. The
shocks to mi, εim,t+1, are positively correlated with the same firm’s dividend growth shocks
εid,t+1, while ηim,t+1 represents other sources of innovations to mi. The shocks εid,t+1 and ηim,t+1

are independent across firms, and for each firm, independent across time and of each other.
For parsimony, I use the same parameters for all firms. In particular, the correlation χdm is
a constant and the same for all firms. Firms in this model differ only in their histories of the
shocks εid,t+1 and ηim,t+1.

The model relies on the positive correlation between the independent dividend growth
shocks and the m shocks to generate the positive correlation between past realized returns
and future expected returns. It is seen from the logarithm return

rt+1 = log(ezt+1 + 1) + ∆dt+1 − zt

that, all else being equal, positive returns are more likely associated with contemporaneous
positive shocks to the dividend growth rate, while negative returns with negative dividend
shocks. Sorting by past realized returns from low to high, therefore, tends to allocate firms
into deciles of increasing realized dividend growth shocks. The positive correlation between
the dividend shocks and the m shocks subsequently translates this ordering to that in m,
and thus in the risk exposure and expected returns.

To match the fast decay of the momentum spread over the one-year horizon following the
portfolio formation, I rely on a fast mean-reverting process for the underlying state variable
m. I set the persistence parameter ρm = 0.91. This corresponds to a half-life of slightly over
7 months and implies that after 1 year, an initial spread of 1% in the expected returns will
decline to 1% × 0.9112 = 0.32%. The unconditional standard deviation of m is normalized
to be 1, and thus the volatility of the m shocks is

√

1 − ρ2
m = 0.41.

Earlier discussions have revealed that risk exposure with a fast mean reversion, or equiv-
alently, a low persistence, implies a small risk premium. Therefore, to generate large return
spreads across momentum deciles immediately following the portfolio formation, I rely on
sufficiently large values of the correlation χdm and the amplitude Ωm. A large χdm results
in a wide spread in m. However, this is not enough to warrant a large spread in expected
returns since Ωm is also a determinant of the risk loadings. Consequently, the model needs
to allow the leverage to vary with a large amplitude.

Panel A of Table 3 presents simulation averages of the results for the portfolio formation
period of month –12 to month –2 using χdm = 0.8 and Ωm = 24. The portfolio returns
increase largely uniformly from decile 1 to decile 10. The monthly return spread between
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the extreme deciles, R10 − R1, is 1.04% at month 0, and drops very quickly to 0.33% at
month 12. The t-statistic starts at 2.92, and also declines over time. Underlying the return
differential and its quick decline are the fast decaying spreads in the state variable m and
the leverage L. The m spread is 1.46 at month 0 with an accompanying leverage spread
of almost 19. Both decrease fast over time, as dictated by the low persistence parameter
ρm = 0.91.

Panel A of Table 3 also shows that there are small positive m and L spreads across the
deciles at month –12, the beginning month of the portfolio formation period. The spreads
widen very quickly, particularly during the first 6 months of portfolio formation. The pace
of widening appears to slow down with time. Such fast divergence in m and L is likely the
combined result of the high correlation χdm and the low persistence ρm and the associated
large volatility of m shocks. Additional summary statistics provided in Panel B of Table
3 suggest that fairly broad ranges of the results may be obtained when the economy is
simulated for many times. The distributions of the results across simulations appear to
exhibit a small amount of skewness.

Table 4 explores the complementary effects of the amplitude Ωm and the correlation χdm
on the results. When the amplitude is fixed, the return spread and the associated t-statistic,
and the m and L spreads all increase as the correlation becomes more positive. Similarly,
when the correlation is fixed, the results turn out stronger as the amplitude becomes larger.

3.2 A model for reversal

Reversal refers to the long-run return differentials between the portfolios of stocks sorted on
returns over the past 3 to 5 years (De Bondt and Thaler (1985) and De Bondt and Thaler
(1987)). After a one-year waiting period, past winners are found to have low returns while
past losers have high returns. For the portfolio period of month –60 to month –13, the spread
in monthly returns between the top and bottom deciles is about –0.7% at month 0 (Fama
and French (1996)), and the differential persists well into year 5.

Reversal suggests a negative association between past realized returns and future ex-
pected returns, and the return spreads are fairly persistent. These characteristics stand at
stark contrasts to those associated with momentum. To generate reversal returns, I model
the dividend growth of individual stocks as containing a slow mean-reverting exposure to
the long-run consumption risk. The risk exposure is driven by shocks that are negatively
correlated with the independent dividend growth shocks.

More precisely, for firm i

∆dit+1 = µd + σdε
i
d,t+1 + L(vit)xt, (17)

L(vit) = L̄+ Ω(2Φ(vit) − 1), (18)

vit+1 = ρvv
i
t +

√

1 − ρ2
v ε

i
v,t+1, (19)

εiv,t+1 = χdvε
i
d,t+1 +

√

1 − χ2
dv η

i
v,t+1, χdv < 0. (20)

Here, the state variable v drives the leverage L on the long-run consumption growth. The
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shocks to vi, εiv,t+1, are negatively correlated with the same firm’s dividend growth shocks
εid,t+1, while ηiv,t+1 represents other sources of innovations to vi. The shocks εid,t+1 and ηiv,t+1

are independent across firms, and for each firm, independent across time and of each other.
The negative correlation between the independent dividend shocks and the state variable

shocks gives rise to the negative association between past realized returns and future expected
returns. When firms are sorted on past returns, winner portfolios tend to pick up stocks that
have absorbed positive dividend growth shocks. The negative correlation implies that these
stocks also tend to experience negative v shocks, resulting in a decrease in the risk exposure.
Conversely, loser portfolios experience increases in the risk exposure.

The persistence of the reversal returns suggests a slow mean reversion for the state
variable v. I set ρv = 0.99, corresponding to a half-life of 5 years 9 months. In other words,
the reversal spread will only shrink to about half of its starting value over a horizon of 5
years. This also implies that the volatility of the v shocks is

√

1 − ρ2
v = 0.14.

Since a highly persistent risk exposure commands a large risk premium, a moderate
amplitude Ωv may be enough to generate the reversal return spreads. On the other hand,
a persistent v driven by shocks of a small volatility suggests that a correlation parameter
χdv of a sufficiently large magnitude is still necessary to achieve the spread in the v variable
across deciles. In addition, it may also take a long portfolio formation period to obtain the
needed separation.

Panel A of Table 5 presents the simulation averages of the results for the portfolio for-
mation period of month –60 to month –13 using Ωv = 5 and χdv = −0.7. The decile returns
are fairly evenly distributed and the reversal spread between the extreme winner and loser
portfolios is –0.56% (per month) at month 0. The spread narrows slowly over time to –0.35%
at the end of year 5. The t-statistics, and the spreads in the underlying state variable v and
the leverage L also decline slowly, all as a result of the large persistence ρv = 0.99. Panel B
supplies additional statistics, suggesting wide distributions of the results across simulations.

Panel A of Table 5 also displays the evolution of the spreads v10 − v1 and L10 − L1
during the portfolio formation period. Initially, the winner portfolio has a slightly higher
risk exposure than the loser portfolio. This positive spread then diminishes and becomes
increasingly negative at an almost linear pace over time. The steady appearance of the speed
of widening is attributable to the high persistence of v and the small volatility of its shocks.13

Table 6 shows that a rather wide range of reversal spreads can be obtained in the model
when the amplitude Ωv and the correlation χdv are properly adjusted. As expected, the
larger the magnitudes of the two parameters, the wider the reversal spreads.

3.3 A unified model of momentum and reversal

The preceding subsections have explored two models to separately obtain momentum and
reversal in stock returns. In the following, I put the ingredients from the two models together
in a unified framework to generate both short-run momentum and long-run reversal.

13If the portfolio formation period is long enough, the leveling off of the widening speed will become more
evident, as is the case for the state variable m.
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Building on the earlier results, I model a firm’s dividend growth rate as containing two
components of the exposure to the long-run consumption risk. The two components are
driven by separate underlying state variables — a fast mean-reverting m and a slow mean-
reverting v. The two state variables also differ in their correlation with the independent
dividend growth shocks. A positive dividend growth shock is more likely associated with a
positive shock to m, whereas a negative shock to v.

More precisely, for firm i,

∆dit+1 = µd + σdε
i
d,t+1 + L(mi

t, v
i
t)xt, (21)

L(mi
t, v

i
t) = L̄+ Ωm(2Φ(mi

t) − 1) + Ωv(2Φ(vit) − 1), (22)

mi
t+1 = ρmm

i
t +

√

1 − ρ2
m ε

i
m,t+1, (23)

εim,t+1 = χdmε
i
d,t+1 +

√

1 − χ2
dm ηim,t+1, χdm > 0, (24)

vit+1 = ρvv
i
t +

√

1 − ρ2
v ε

i
v,t+1, (25)

εiv,t+1 = χdvε
i
d,t+1 +

√

1 − χ2
dv η

i
v,t+1, χdv < 0. (26)

As before, all the shocks, εid,t+1, η
i
m,t+1, and ηiv,t+1, are independent across firms, and for each

firm, independent across time and of each other. The shocks to the state variables, εim,t+1

and εiv,t+1, are correlated with the dividend growth shocks, and as the model is constructed,
they are also negatively correlated with each other,14

corr[εim,t+1, ε
i
v,t+1] = χdmχdv < 0.

Based on the results from the previous sections, I expect the unified model to work with
the following mechanism. When firms are sorted by past realized returns, a winner portfolio
tends to pick up stocks with positive dividend growth shocks, which tend to associate with
positive shocks to m and negative shocks to v. Therefore, during the portfolio formation
period, the m value of the portfolio continually increases, while the v value continually
decreases. The m variable has low persistence (and thus shocks of a large volatility), and
so it grows very fast with time. The v variable is strongly persistent (and with shocks of a
small volatility), and drops only slowly over time. As a result, while one year is sufficient for
a dramatic m value to build up, a few years would be needed before the v variable declines
substantially. After the portfolio formation, the m value will only sustain for about a year,

14In general,

corr[εi
m,t+1, ε

i
v,t+1] = χdmχdv +

√

(1 − χ2
dm)(1 − χ2

dv) corr[ηi
m,t+1, η

i
v,t+1].

Hence, the admissible range is

χdmχdv −
√

(1 − χ2
dm)(1 − χ2

dv) ≤ corr[εi
m,t+1, ε

i
v,t+1] ≤ χdmχdv +

√

(1 − χ2
dm)(1 − χ2

dv),

as
∣

∣corr[ηi
m,t+1, η

i
v,t+1]

∣

∣ ≤ 1. Simulations confirm that the results are qualitatively insensitive to specific

choices of corr[ηi
m,t+1, η

i
v,t+1].
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owing to its fast mean reversion. The v value, on the other hand, is able to persist well over
5 years.

Conversely, for a loser portfolio, the m value decreases while the v value increases over
time. Since the m variable and v variable have opposite implications on the risk premia,
they compete with each other in deciding the ultimate distribution of expected returns
across the portfolios. Which one of them wins out depends on their respective levels of
persistence, associated amplitudes, the correlations of their shocks with the dividend shocks.
These dependencies are reflected in the relation between the observed return spreads and the
length of the portfolio formation period, the waiting period between the formation period
and the return measurement period, and the horizon of the measurement period.

Therefore, in order to form portfolios that demonstrate momentum, a relatively short
portfolio formation period is desirable, so that the m spread has sufficiently widened and
will dominate over the v spread that has not yet built up. In addition, one needs to start
to measure the momentum spreads immediately after the formation period, since beyond
one year, the m spread severely recedes, and the much more persistent v spread begins to
dominate and generate the reversal returns.

On the other hand, in order to form reversal portfolios, a long formation period is needed
so that the v spread can take time to grow. Immediately after the portfolio formation (that
is, month –12 if the formation period is month –60 to month –13), however, there is also a
substantial m spread that may cancel or even reverse the effect of the v spread. Therefore,
it is advisable to wait a year for the m spread to go away, while the v spread sustains largely
unabated. As a result, large reversal spreads will be observed at month 0, after the one-year
waiting period.

These observations are largely borne out in the simulation results presented in Table
7 for momentum portfolios sorted on returns over month –12 to month –2, and in Table
8, for reversal portfolios sorted on returns over month –60 to month –13. The previous
sections have provided valuable guidance on parameter calibration. The only adjustment is
the increase in both amplitudes Ωm and Ωv. Larger values are needed for both of them, now
that the effects of the m and v spreads cancel each other. The complementarity between the
amplitude and the correlation suggests that another alternative is to raise the magnitudes
of the correlation parameters χdm and χdv.

In particular, both Tables 7 and 8 present a pattern where momentum is observed im-
mediately after the portfolio formation, and then taken over by reversals. In Table 7, after
the month –12 to month –2 formation, the monthly return spread between the extreme
deciles starts with a value of about 1% at month 0, turns negative after month 12, and
then stays negative all the way beyond year 5. Similarly, Table 8 suggests that, at month
–12 (immediately after the formation period of month –60 to month –13), the return spread
also demonstrates momentum. The reversal becomes prominent after the one-year waiting
period, and measure between –0.4% to –0.6% per month from month 0 to month 60.

Table 8 also reveals a non-monotonic pattern of reversal spreads from month 0 to month
60. The return spread continues to widen during the first two years and then begins to
narrow down. This is the result of the interaction between the v spread and the remnant m
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spread. Over the one-year waiting period, the m spread only drop to 32% of its initial value.
As the m spread continues to decay, it decays faster than the v spread. Consequently, from
month 0 to month 24, the return spread actually increases. Beyond month 24, the v spread
decay becomes dominant and the spread narrows.

To provide additional support to the model, I compare the leverage of momentum portfo-
lios obtained from the simulations with the empirical results documented in Bansal, Dittmar,
and Lundblad (2005). In the simulations, the average values of the leverage are 12 for the
top momentum quintile, and –4 for the bottom quintile. These values are largely consistent
with the empirical findings.15

In contrast to a linear relation implied in Bansal, Dittmar, and Lundblad (2005) between
expected returns and the leverage, earlier discussions in this paper point out that expected
returns are fundamentally driven by the underlying state variables, and therefore in general
there is no linear or even monotonous relation between the expected returns and the leverage.
This is confirmed in the simulation results for the current model. Most notable example is
for reversal returns following the month –60 to month –13 sorting. As shown in Table
8, at month 0 the leverage spread is slightly positive, while the return spread is strong
negative. Moreover, while the return spreads subsequently display a non-monotonic pattern
from month 0 to month 60, the leverage spread monotonically becomes more negative. In
another example, Table 7 shows that at month 12 (following the month –12 to month –2
sorting) when the return spread is essentially zero, the leverage spread is still considerably
positive. All in all, although there may appear to be a broad pattern that high (low) leverage
spreads are associated with high (low) return spreads, the correspondence is not monotonic,
let alone one-to-one.

Figure 1 plots the momentum and reversal spreads for various portfolio formation periods,
and the results are consistent with the preceding discussions concerning the length of the
formation period. In cases where the portfolio formation ends at month –2 and momentum
is expected, the initial return spread declines as the portfolio formation period lengthens.
In particular, a formation period of month –6 to month –2 can potentially yield a higher
momentum spread than a formation period of month –12 to month –2. When the formation
period stretches to month –60 to month –2, the initial momentum profit largely disappears.
On the other hand, for portfolio formation periods ending at month –13, the longer the
formation periods, the more negative the reversal return differentials at month 0. These
results are consistent qualitatively and even quantitatively with the empirical evidence in
Fama and French (1996).

3.4 Value premium

Having demonstrated the potential of the unified model in generating both short-run momen-
tum and long-run reversal patterns quantitatively comparable to empirical documentations,
I now turn to the model performance in producing the empirically documented value pre-

15For momentum portfolios, Bansal, Dittmar, and Lundblad (2005) reports a leverage of about 9 to 10 for
the top quintile, and about –3 to –5 for the bottom quintile.
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mium (Fama and French (1992)). Since book value is not a part of the model, I use the
price-dividend ratio as an alternative classifier of value versus growth stocks. This is mo-
tivated by the use of earnings-price or cash flow-price ratios in Lakonishok, Shleifer, and
Vishny (1994) and Fama and French (1996). The same approach is also used in Santos and
Veronesi (2005) and Lettau and Wachter (2006).

As discussed earlier, the model implies a negative sensitivity of price-dividend ratios
to expected excess returns. This effect arises regardless of any additional assumption on
the correlation between dividend growth shocks and leverage shocks. The magnitude of
the sensitivity is considerably larger for higher persistence of the underlying time-varying
exposure to the long-run consumption risk.

For the unified model, this suggests that changes in the fast mean-reverting exposure only
generate small variations in the price-dividend ratio, while the variations in the slow mean-
reverting exposure generate much larger swings. This is consistent with the observation that
price-dividend ratios tend to be slow moving. In addition, it implies that sorting stocks by
this ratio from low to high is very much close to sorting by the value of the high persistence
state variable from high to low.

Adopting a similar methodology to that of Fama and French (1992), I sort the stocks in
simulated economies at each July by their price-dividend ratios at preceding December (see
Appendix A.3 for details). Table 9 shows that in simulated economies, low price-dividend
firms have high average returns. Between decile 1 and decile 10, the value premium is about
1% per month, quantitatively comparable to empirical documentations. More importantly,
the results indicate that the return differential is driven by the wide spread in the slow
mean-reverting v variable, at about –2. The spread in the fast mean-reverting m variable
is much narrower at about 0.2; in addition, the sign of the m spread is opposite to that
of the return differential. In other words, value firms exhibit high average returns because
their slow mean-reverting risk exposure is high. Finally, the resulting total leverage spread
is considerably large (about –5). The results also indicate that for the lowest and the highest
price-dividend ratio quintiles, the leverage values are about 6 and 2. These values are broadly
consistent with the empirical results in Bansal, Dittmar, and Lundblad (2005).16

The spread in the slow mean-reverting state variable underlying the value premium across
price-dividend ratio sorted portfolios proposes an interpretation of the HML factor as mim-
icking a highly persistent exposure to the long-run consumption risk. A significant spread in
this persistent risk exposure across stock portfolios implies a significant spread in loadings
on the HML factor. In particular, this suggests that the return differentials in reversal
portfolios, as driven by a negative spread in the slow mean-reverting risk exposure, can be
explained by a negative spread in the coefficients on HML. This is consistent with the
evidence in Fama and French (1996).

The proposed connection between the value characteristics, the slow mean-reverting risk
loading, and the HML factor also helps explain the inability of HML in accounting for
momentum. More precisely, the always negative spread in the slow mean-reverting exposure

16Bansal, Dittmar, and Lundblad (2005) reports leverage values of about 6 and –1 for extreme value and
growth quintiles sorted by book-to-market.
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between winner and loser portfolios, as implied by the model regardless of the portfolio
formation period, suggests that the HML factor would always predict reversals, even for
momentum portfolios based on a month –12 to month –2 sorting. This is indeed the case in
Fama and French (1996).

In the model of this paper, momentum returns emerge because the positive spread in
the fast mean-reverting exposure dominates the negative spread in the slow-mean reverting
exposure. The fast mean-reverting exposure only makes small contributions to the price-
dividend ratio. The low persistence also makes it unlikely to link to any other slow moving
firm characteristics. Rather, this exposure is apparently mimicked by a momentum factor,
as momentum portfolios differ more prominently in this fast mean-reverting exposure, as
already demonstrated in Table 7.

Taken together, these observations suggest that value and momentum factors in empir-
ical models may potentially represent different time-varying components of exposure to the
long-run consumption factor. They differ in the level of persistence and the response to
independent dividend shocks, or broadly, cash flow news.

4 Concluding remarks

In this paper, I show that in the long-run consumption risk framework, a time-varying risk
exposure with high persistence commands a substantially higher risk premium than a risk
exposure of low persistence. The resulting model of time-varying expected returns, when
augmented with additional assumptions, demonstrates promising potentials in matching the
momentum and reversal returns documented in the empirical literature. The model also
yields the value premium, and suggests interpretations of empirical pricing factors as re-
flecting risk loadings of different persistence on the long-run consumption risk factor. In
concluding the paper, I point out some limitations of this paper.

The model in this paper focuses on time-varying loadings on the long-run consumption
risk. For that purpose, I have made simplifying assumptions that (1) assets do not load
on the risk associated with independent consumption growth shocks, and (2) the long-run
consumption risk carries a constant price of risk. Consequently, the model by construction
only involves one consumption risk factor, and the absence of time-varying prices of con-
sumption risk implies a constant premium on the aggregate market. Relaxation of these two
restrictions may open up potentially interesting avenues for further research.

More compelling questions arise as to what are the firm-level, economically interpretable
sources of these time-varying risk exposures, and why they demonstrate differential mean
reversion and respond to cash flow news differently. Answers to these questions appear to
be out of the scope of the current paper, which presents a model of time-varying expected
returns within a consumption based asset pricing framework. Its partial equilibrium na-
ture and the parsimonious specification precludes an exploration of the relations between
risk, firm characteristics, and firm-level decisions. Such an exploration may lead to a more
informed evaluation of the reduced-form assumptions made in the model. Presumably, a
major source of time-varying risks is a firm’s investment dynamics resulting in changes in
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the firm’s portfolio of both assets in place and growth options. If dividend growth news is
viewed as containing information about the expansion and contraction of a firm’s investment
opportunities, then the risk exposure state variables evolve with dividend news as a result of
a firm’s time-varying profile of and decisions over both existing and new projects. A fruitful
approach to such investigations has been demonstrated in Berk, Green, and Naik (1999),
Carlson, Fisher, and Giammarino (2004), Gomes, Kogan, and Zhang (2003), Zhang (2005),
and Panageas and Yu (2006), among others.

Appendix

A Model solution and simulation

A.1 Analytical solution

The approximate analytical solution to the model involves log-linearization based on a Taylor
series expansion (Campbell and Shiller (1988)). Let zt denote the logarithm price-dividend
ratio

zt ≡ log
Pt
Dt

,

and z̄ be the long-run mean. An expansion around z̄ produces

log(ezt + 1) ≈ log(ez̄ + 1) +
ez̄

ez̄ + 1
(zt − z̄) = K0 +K1zt.

For large z̄, a typical value of K1 is very close to 1.
The gross return, by definition, is

Rt+1 =
Pt+1 +Dt+1

Pt
=
Pt+1 +Dt+1

Dt+1

Dt+1

Dt

Dt

Pt
,

which implies a logarithm return of

logRt+1 ≡ rt+1 = log(ezt+1 + 1) + ∆dt+1 − zt ≈ K0 +K1zt+1 + ∆dt+1 − zt.

The solution to the model ensues by substituting the linearized logarithm return into the
pricing equation

1 = Et
[

emt+1+rt+1
]

.

To derive the expected returns, it is noted that if the conditional distribution of mt+1 and
rt+1 is jointly normal, then

1 = Et[e
mt+1+rf,t ] = eEt[mt+1]+

1

2
vart[mt+1]+rf,t
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yields

rf,t = −Et[mt+1] −
1

2
vart[mt+1],

and

1 = Et[e
mt+1+rt+1] = eEt[mt+1+rt+1]+

1

2
vart[mt+1+rt+1]

= eEt[mt+1]+Et[rt+1]+
1

2
vart[mt+1]+

1

2
vart[rt+1]+covt[mt+1,rt+1]

yields

Et[rt+1] − rf,t +
1

2
vart[rt+1] = − covt[mt+1, rt+1].

A.2 Numerical solution

The numerical solution of the price-consumption and price-dividend ratios employs the pro-
jection method detailed in Judd (1998). In particular, I use the Galerkin method and
approximate the logarithm price-consumption and price-dividend ratios using Hermite poly-
nomials.

A.3 Simulation

To start the simulation, I assign to the relevant variables random values drawn from their
respective unconditional distributions, except that the initial monthly dividend is normalized
to be $1 for all firms. The number of shares is normalized to be 1 so the stock price is also the
market capitalization. I then discard the initial 480 months of simulated data and confirm
that, at this point, the simulated economy has reached steady state distributions across
firms. Ultimately, each simulated economy contains 2000 firms over a period of 480 months.
The actual simulation period is longer due to the lead and lag months.

Momentum or reversal portfolios are formed as follows. For each month t, firms are
sorted by compounded returns from month t − j to month t − k (t − 12 to t − 2, t − 60
to t − 13, and so on). Decile 1 contains the 10% stocks with the lowest past returns, while
decile 10 consists of the 10% stocks with the highest past returns.

For each decile, equally-weighted returns of the stocks in the portfolio are calculated for
months t− 60 to t + 60. Similarly, I calculate the equally weighted values of m, v, and the
leverage L for months t− 60− 1 to t+ 60− 1. Note the one-month lag. The monthly return
spread R10−R1 is defined as the 480-month average of decile 10 portfolio monthly returns
minus that of decile 1. The associated t statistic is then computed. The m spread m10−m1
is defined as the 480-month average of one-month lagged m values of decile 10 minus that
of decile 1. The v10 − v1 and L10 − L1 spreads are computed similarly.

Price-dividend ratio portfolios are formed as follows. Each July of year y, I sort stocks
by the price-dividend ratio at December of year y−1. Decile 1 contains the 10% stocks with
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the lowest price-dividend ratios, while decile 10 consists of the 10% stocks with the highest
price-dividend ratios.

For each decile, equally-weighted returns of the stocks in the portfolio are calculated at
each month from July of year 1 to June of year 40. Similarly, I calculate the equally weighted
values of m, v, and the leverage L at each month from June of year 1 to May of year 40. Note
the one-month lag. The monthly return spread R10−R1 is defined as the 480-month average
of decile 10 portfolio monthly returns minus that of decile 1. The associated t statistic is
then computed. The m spread m10−m1 is defined as the 480-month average of one-month
lagged m values of decile 10 minus that of decile 1. The v10− v1 and L10−L1 spreads are
computed similarly.

I conduct 1000 simulations, and report the average and distributions of the above quan-
tities across the 1000 simulations.

Table 1 tabulates the parameters for the aggregate consumption growth and Epstein-Zin
preferences, and the parameters for the dividend growth that remain fixed across models.
The remaining dividend parameters are reported separately with the results.

B Hermite polynomials

The standard reference is Abramowitz and Stegun (1964). I follow Granger and Newbold
(1976) and adopt the probabilists’ convention to define Hermite polynomials using the stan-
dard normal distribution density function.

Hj(x) = (−1)je
x2

2

dj

dxj
e−

x2

2 , j ≥ 0.

Hence,

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1,

H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3, H5(x) = x5 − 10x3 + 15,

and so on.
The orthogonality properties of the Hermite polynomials are illustrated using expecta-

tions with respect to standard normal random variables X and Y , where corr(X, Y ) = χ.
It is straightforward to rewrite the results as integrals involving normal distribution density
functions.

E[H0(X)] = 1, E[Hj(X)] = 0, j > 0,

E[Hj(X)2] = j!, ∀j, E[Hj(X)Hk(X)] = 0, j 6= k,

E[Hj(X)Hj(Y )] = χjj!, ∀j, E[Hj(X)Hk(Y )] = 0, j 6= k.

The Hermite polynomial expansion for a function L(x),

L(x) =

∞
∑

j=0

αjHj(x),
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exists if

E[L(X)] <∞.

The expansion coefficients are evaluated from

αj =
1

j!
E[L(X)Hj(X)] =

1

j!
E[L(j)(X)],

where L(j)(·) is the j-th derivative. In particular,

E[L(X)] = α0.

A good approximation for L(x) can then be derived by retaining only the first J + 1 terms
in the expansion, where J is a large enough integer.

C Autocorrelation of leverage process

The following results are largely reproductions of Granger and Newbold (1976). Suppose st
follows an AR(1) process,

st+1 = ρsst +
√

1 − ρ2
sεt+1, εt ∼ i.i.d. N(0, 1),

with ρs < 1 and an unconditional variance of 1. The autocorrelations decay geometrically
with the lag, as in

corr[st+τ , st] = ρτs .

One is interested in the time series properties of the leverage process L(st). Suppose L(s)
expands into a finite series of Hermite polynomials,

L(s) =
J

∑

j=0

αjHj(s),

then

cov[L(st+τ ), L(st)] = E

[

J
∑

j=1

αjHj(st+τ )
J

∑

k=1

αkHk(st)

]

=
J

∑

j=1

α2
jj!ρ

jτ
s ,

var[L(st)] =

J
∑

j=1

α2
jj!.

Note the summations start from j = 1 in the above.
It then follows that the autocorrelations

corr[L(st+τ ), L(st)] < ρτs = corr[st+τ , st], for J > 1.

In other words, except for a linear function, the series L(st) is less persistent, or mean-reverts
faster than the underlying s process. In particular,

corr[Hj(st+τ ), Hj(st)] = ρjτs ,

suggesting that Hj(st) may be viewed as an AR(1) process of a persistence parameter ρjs.
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D Pricing kernel

The specification of the aggregate consumption growth and the representative agent prefer-
ences follows Bansal and Yaron (2004). I replicate the solutions using the notation in this
paper.

The aggregate consumption growth is

log
Ct+1

Ct
≡ ∆ct+1 = µc + σcεc,t+1 + xt,

xt+1 = ρxxt + σxεx,t+1.

The logarithm pricing kernel is

logMt+1 ≡ mt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1)rc,t+1,

The approximate analytical solution for the price-consumption ratio is

log
Pc,t
Ct

≡ zc,t ≈ z̄c +
1 − 1

ψ

1 −K1cρx
xt.

This implies (suppressing constant terms)

logRc,t+1 ≡ rc,t+1 = log(ezc,t+1 + 1) + ∆ct+1 − zc,t

≈ 1

ψ
xt + (1 − 1

ψ
)

K1c

1 −K1cρx
σxεx,t+1 + σcεc,t+1,

and

mt+1 ≈ − 1

ψ
xt − γσcεc,t+1 − (γ − 1

ψ
)

K1c

1 −K1cρx
σxεx,t+1

= − 1

ψ
xt − λcσcεc,t+1 − λxσxεx,t+1.

E Price-dividend ratio and expected return

The logarithm dividend growth is

log
Dt+1

Dt

≡ ∆dt+1 = µd + σdεd,t+1 + L(s1,t, . . . , sN,t)xt,

L(s1,t, . . . , sN,t) = α0 +
N

∑

n=1

αnsn,t,

sn,t+1 = ρs,nsn,t +
√

1 − ρ2
s,n εs,n,t+1, n = 1, . . . , N.
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Conjecture that the logarithm price-dividend ratio is

log
Pt
Dt

≡ zt ≈ z̄ +

[

A0 +

N
∑

n=1

Ansn,t

]

xt +

N
∑

n=1

Bnsn,t.

This leads to (suppressing constants),

rt+1 = log(ezt+1 + 1) + ∆dt+1 − zt ≈ K0 +K1zt+1 + ∆dt+1 − zt

=

[

K1A0 +
N

∑

n=1

K1Ansn,t+1

]

xt+1 +
N

∑

n=1

K1Bnsn,t+1

+ σdεd,t+1 +

[

α0 +

N
∑

n=1

αnsn,t

]

xt − zt.

Hence, the return innovation is

rt+1 −Et[rt+1] ≈ σdεd,t+1 +

[

K1A0 +

N
∑

n=1

K1Anρs,nsn,t

]

σxεx,t+1,

where only the leading terms associated with εd,t+1 and εx,t+1 are retained.
The pricing equation

1 = Et[e
mt+1+rt+1]

and the conditional normal distribution imply that

0 = Et[mt+1] + Et[rt+1] +
1

2
vart[mt+1] +

1

2
vart[rt+1] + covt[mt+1, rt+1].

Apply the autocorrelation properties of xt+1 and sn,t+1 and track only the xt, sn,txt, and sn,t
terms in

Et[mt+1] ≈ − 1

ψ
xt,

Et[rt+1] ≈
[

K1A0 +
N

∑

n=1

K1Anρs,nsn,t

]

ρxxt +
N

∑

n=1

K1Bnρs,nsn,t

+

[

α0 +

N
∑

n=1

αnsn,t

]

xt

−
[

A0 +
N

∑

n=1

Ansn,t

]

xt −
N

∑

n=1

Bnsn,t,
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and

− covt[mt+1, rt+1] ≈
[

K1A0 +

N
∑

n=1

K1Anρs,nsn,t

]

σx · λxσx.

Comparison of the two sides of the pricing equation yields

A0 =
α0 − 1

ψ

1 −K1ρx
,

An =
αn

1 −K1ρs,nρx
, n = 1, . . . , N,

and

Bn = − 1

1 −K1ρs,n
K1Anρs,nλxσ

2
x

= − 1

1 −K1ρs,n

αnK1ρs,n
1 −K1ρs,nρx

λxσ
2
x, n = 1, . . . , N.

Back to the expected excess return,

Et[rt+1] − rf,t +
1

2
vart[rt+1] = − covt[mt+1, rt+1]

≈
[

K1A0 +

N
∑

n=1

K1Anρs,nsn,t

]

λxσ
2
x

=

[

(α0 −
1

ψ
)

K1

1 −K1ρx
+

N
∑

n=1

αnsn,t
K1ρs,n

1 −K1ρs,nρx

]

λxσ
2
x.

Now turn to the case of a general L function driven by a scalar state variable s,

log
Dt+1

Dt

≡ ∆dt+1 = µd + σdεd,t+1 + L(st)xt,

st+1 = ρsst +
√

1 − ρ2
s εs,t+1,

and the leverage function is well approximated by an Hermite polynomial series

L(st) ≈
J

∑

j=0

αjHj(st).

Note that

corr[Hj(st+τ ), Hj(st)] = ρjτs

suggests that Hj(st) may viewed as an AR(1) process with a persistence parameter of ρjs.
Consequently, the Hermite polynomial expansion essentially transforms a generally nonlinear
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L(st) into a linear leverage function driven by multiple state variables Hj(st) of persistence
ρjs. Simple substitution obtains

Et[rt+1] − rf,t +
1

2
vart[rt+1]

≈
[

(α0 −
1

ψ
)

K1

1 −K1ρx
+

J
∑

j=1

αjHj(st)
K1ρ

j
s

1 −K1ρ
j
sρx

]

λxσ
2
x.
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Table 1: Fixed simulation parameters

Consumption Preferences Dividend

ρx σx µc σc δ γ ψ µd σd L̄

0.98 0.00034 0.0015 0.008 0.998 10 1.5 0.0015 0.1 4

These parameters imply that the unconditional standard deviation for xt is

σx
√

1 − ρ2
x

= 0.0017,

and

θ =
1 − γ

1 − 1
ψ

= −27.

Table 2: Effect of state variable persistence

ρs 0.91 0.95 0.98 0.99 0.995

half-life (month) 7.35 13.5 34.3 69.0 138.3 β0 = K1

1−K1ρx

half-life (year) 0.61 1.13 2.86 5.75 11.52

βs = K1ρs

1−K1ρsρx
8.18 13.19 23.00 30.17 35.65 43.46

1
1−K1ρs

10.78 18.92 43.59 77.10 125.23

See Table 1 for simulation parameters. The log-linearization constants K1c

and K1 are set to 0.997, roughly corresponding to a value of 5.8 for the long-run
means of both the logarithm price-consumption and price-dividend ratios.
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Table 3: Simulation of the momentum model

Panel A: Average across simulations

Time Decile return (%) R10 −R1

(Month) 1 4 7 10 (%) t-stat m10 −m1 L10 − L1

–12 0.08 1.03

–6 1.13 14.74

0 0.23 0.52 0.87 1.27 1.04 2.92 1.46 18.78

6 0.42 0.63 0.78 1.02 0.60 2.83 0.83 11.05

12 0.55 0.68 0.75 0.88 0.33 2.49 0.47 6.33

18 0.63 0.69 0.74 0.80 0.18 1.97 0.27 3.61

24 0.66 0.70 0.73 0.76 0.10 1.34 0.15 2.05

Panel B: Distribution across simulations (t = month 0)

R10 − R1 (%) t-stat m10 −m1 L10 − L1

Mean 1.04 2.92 1.46 18.78

5% 0.08 0.27 0.25 2.72

Median 0.99 2.89 1.53 19.72

95% 2.21 5.55 2.37 30.85

The portfolio formation period is from month −12 to month −2. In Panel
A, the “Decile return” columns report the simulation averages of the portfolio
monthly returns. The remaining columns report the simulation averages of the
monthly return spreads R10 − R1 and the associated t-statistics, the m spreads
m10 − m1, and the leverage spreads L10 − L1. Panel B presents additional
summary statistics for month 0.

See Appendix A.3 for simulation details and variable definitions. See Table 1
for fixed simulation parameters.

The other dividend parameters are: ρm = 0.91, χdm = 0.80,Ωm = 24.
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Table 4: Momentum with different parameters

Ωm χdm R10 − R1 (%) t-stat m10 −m1 L10 − L1

22 0.8 0.95 2.83 1.23 16.09

24 0.7 0.94 2.80 1.18 15.32

24 0.8 1.04 2.92 1.46 18.78

24 0.9 1.12 2.94 1.71 21.95

26 0.8 1.11 2.94 1.70 21.51

The portfolio formation period is from month −12 to month −2. The table
reports, for different values of Ωm and χdm, the simulation averages of the monthly
return spreads R10−R1 and the associated t-statistics, the m spreads m10−m1,
and the leverage spreads L10 − L1.

See Appendix A.3 for simulation details and variable definitions. See Table 1
for fixed simulation parameters.

The other dividend parameters are: ρm = 0.91.
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Table 5: Simulation of the reversal model

Panel A: Average across simulations

Time Decile return (%) R10 − R1

(Month) 1 4 7 10 (%) t-stat v10 − v1 L10 − L1

–60 0.53 1.49

–48 –0.10 –0.26

–36 –0.67 –1.88

–24 –1.21 –3.37

–12 –1.72 –4.75

–6 –1.62 –4.48

0 0.93 0.70 0.57 0.37 –0.56 –2.71 –1.53 –4.23

12 0.90 0.70 0.58 0.40 –0.50 –2.69 –1.35 –3.77

24 0.87 0.69 0.58 0.43 –0.44 –2.63 –1.20 –3.35

36 0.84 0.68 0.59 0.45 –0.39 –2.58 –1.06 –2.98

48 0.81 0.67 0.60 0.47 –0.35 –2.53 –0.94 –2.64

60 0.79 0.67 0.60 0.49 –0.31 –2.48 –0.84 –2.35

Panel B: Distribution across simulations (t = month 0)

R10 − R1 (%) t-stat v10 − v1 L10 − L1

Mean –0.56 –2.71 –1.53 –4.23

5% –0.79 –4.20 –1.87 –5.22

Median –0.57 –2.72 –1.55 –4.32

95% –0.25 –1.12 –1.08 –2.96

The portfolio formation period is from month −60 to month −13. In Panel
A, the “Decile return” columns report the simulation averages of the portfolio
monthly returns. The remaining columns report the simulation averages of the
monthly return spreads R10 − R1 and the associated t-statistics, the v spreads
v10−v1, and the leverage spreads L10−L1. Panel B presents additional summary
statistics for month 0.

See Appendix A.3 for simulation details and variable definitions. See Table 1
for fixed simulation parameters.

The other dividend parameters are: ρv = 0.99, χdv = −0.70,Ωv = 5.
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Table 6: Reversal and different parameters

Ωv χdv R10 −R1 (%) t-stat v10 − v1 L10 − L1

4 –0.7 –0.43 –2.53 –1.31 –3.44

5 –0.6 –0.48 –2.60 –1.34 –3.72

5 –0.7 –0.56 –2.71 –1.53 –4.23

5 –0.8 –0.63 –2.78 –1.71 –4.73

6 –0.7 –0.68 –2.85 –1.81 –5.01

The portfolio formation period is from month −60 to month −13. The table
reports, for different value of Ωv and χdv, the simulation averages of the monthly
return spreads R10 −R1 and the associated t-statistics, the v spreads v10 − v1,
and the leverage spreads L10 − L1.

See Appendix A.3 for simulation details and variable definitions. See Table 1
for fixed simulation parameters.

The other dividend parameters are: ρv = 0.99.
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Table 7: Momentum in the unified model

Time R10 − R1

(Month) (%) t-stat m10 −m1 v10 − v1 L10 − L1

–12 0.12 0.16 2.49

–6 1.21 –0.46 16.81

0 1.04 3.18 1.54 –0.94 19.60

3 0.67 2.72 1.16 –0.91 14.32

6 0.39 1.99 0.87 –0.88 10.14

9 0.17 1.07 0.66 –0.85 6.94

12 0.01 0.12 0.49 –0.83 4.52

24 –0.27 –1.84 0.16 –0.73 –0.39

36 –0.33 –2.29 0.05 –0.65 –1.76

48 –0.33 –2.39 0.02 –0.58 –2.02

60 –0.30 –2.36 0.01 –0.51 –1.94

The portfolio formation period is from month −12 to month −2. The table
reports the simulation averages of the monthly return spreads R10−R1 and the
associated t-statistics, the m spreads m10−m1, the v spreads v10− v1, and the
leverage spreads L10 − L1.

See Appendix A.3 for simulation details and variable definitions. See Table 1
for fixed simulation parameters.

The other dividend parameters are: ρm = 0.91, χdm = 0.80,Ωm = 28; ρv =
0.99, χdv = −0.70,Ωv = 7.

35



Table 8: Reversal in the unified model

Time R10 − R1

(Month) (%) t-stat m10 −m1 v10 − v1 L10 − L1

–60 0.00 0.39 1.62

–48 0.88 –0.17 13.03

–36 1.16 –0.68 15.26

–24 1.26 –1.15 14.87

–12 0.38 1.68 1.24 –1.58 13.05

–6 –0.14 –0.67 0.71 –1.49 5.28

0 –0.42 –2.04 0.40 –1.40 0.84

3 –0.49 –2.37 0.30 –1.36 –0.55

6 –0.55 –2.58 0.23 –1.32 –1.57

9 –0.58 –2.73 0.17 –1.28 –2.31

12 –0.60 –2.82 0.13 –1.24 –2.83

24 –0.61 –2.98 0.04 –1.10 –3.66

36 –0.57 –2.99 0.01 –0.97 –3.62

48 –0.51 –2.95 0.00 –0.86 –3.33

60 –0.45 –2.88 0.00 –0.77 –2.99

The portfolio formation period is from month −60 to month −13. The table
reports the simulation averages of the monthly return spreads R10−R1 and the
associated t-statistics, the m spreads m10−m1, the v spreads v10− v1, and the
leverage spreads L10 − L1.

See Appendix A.3 for simulation details and variable definitions. See Table 1
for fixed simulation parameters.

The other dividend parameters are: ρm = 0.91, χdm = 0.80,Ωm = 28; ρv =
0.99, χdv = −0.70,Ωv = 7.
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Table 9: Returns spreads across price-dividend ratio sorted portfolios

R10 −R1 (%) m10 −m1 v10 − v1 L10 − L1

–1.03 0.24 –2.36 –5.21

Firms are sorted every July using the dividend-price ratios of preceding De-
cember.

The table reports the simulation averages of the monthly return spreads R10−
R1, the m spreads m10 −m1, the v spreads v10 − v1, and the leverage spreads
L10 − L1.

See Appendix A.3 for simulation details and variable definitions. See Table 1
for fixed simulation parameters.

The other dividend parameters are: ρm = 0.91, χdm = 0.80,Ωm = 28; ρv =
0.99, χdv = −0.70,Ωv = 7.
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Figure 1: Return spreads and portfolio formation period
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This figure plots, for different portfolio formation periods, month −j to month
−k, the simulation averages of the monthly return spreads R10 − R1.

See Appendix A.3 for simulation details and variable definitions. See Table 1
for fixed simulation parameters.

The other dividend parameters are: ρm = 0.91, χdm = 0.80,Ωm = 28; ρv =
0.99, χdv = −0.70,Ωv = 7.
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