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Abstract

This paper develops a term-structure model in which investors with preferences for specific

maturities trade with risk-averse arbitrageurs. Arbitrageurs integrate the markets for different

maturities, incorporating information about expected short rates into bond prices. We show that

bond risk premia are negatively related to short rates and positively to term-structure slope.

Moreover, forward rates under-react to expected short rates, especially for long maturities, while

investor demand impacts mainly long maturities. Thus, the short end of the term structure is

mainly driven by short-rate expectations, while the long end by demand. Despite the presence of

two distinct economic factors, the first principal component “explains” about 90% of movement.

Our results are consistent with empirical evidence and generate novel testable implications.
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1 Introduction

The government-bond market involves many distinct investor clienteles. For example, pension funds

invest typically in maturities longer than fifteen years as a way to hedge their long-term liabilities.

Life-insurance companies also have preferences for long maturities, typically around the fifteen-year

mark. On the other hand, asset managers and banks’ treasury departments are the typical investors

for maturities shorter than ten years. Clienteles’ demands vary over time in response to regulatory

and other changes. This time-variation can be an important source of term-structure movements.

The UK pension reform provides a stark illustration of how clientele demands can impact the

term structure. Starting in 2005, pension funds were required to mark their liabilities to market,

discounting them at the rates of long-maturity bonds. As a result, hedging demands increased

significantly, especially for inflation-indexed bonds because pensions are linked to inflation. The

impact on the term structure was dramatic. For example, in January 2006 the inflation-indexed

bond maturing in 2011 was yielding 1.5%, while the 2055 bond was yielding only 0.6%. The 0.6%

yield is very low relative to the 3% historical average of long real rates in the UK. Moreover, the

downward-sloping term structure is hard to attribute to expectations of future spot rates since real

rates would have to drop below 0.6% after 2011. Section 2 presents more extensive evidence, and

argues that the reform had strong and long-lived effects both on the real and the nominal term

structure.

The role of clienteles is emphasized in some early work on the term structure. The market-

segmentation hypothesis of Culbertson (1957) and others posits that investors have strong prefer-

ences for specific maturities. Each maturity then constitutes a separate market and the yield is

determined by local demand and supply independently of other maturities. Modigliani and Sutch

(1966) appeal to market segmentation in formulating their preferred-habitat hypothesis. On the

other hand, modern theories such as Cox, Ingersoll and Ross (CIR 1985) do not build on these

ideas because they assume a representative agent rather than heterogeneous clienteles. In fact, CIR

criticize the market-segmentation hypothesis since it implies that bonds with similar maturities can

trade at very different prices.

In this paper we take the view that the time-varying demands of heterogenous clienteles are

an important source of term-structure movements. And while we acknowledge the criticism of the

market-segmentation hypothesis, we formalize a less extreme version in which investors with strong

maturity preferences trade with arbitrageurs. Arbitrageurs in our model integrate the markets

for different maturities, ensuring that bonds with similar maturities trade at similar prices. But

1



because arbitrageurs are risk averse, clientele demands impact the term structure. We characterize

the impact of demand shocks, and compare with shocks to short-rate expectations. We show that

consistent with common views held by practitioners, short-rate expectations are the main driver

of term-structure movements for short maturities, while demand dominates for longer maturities.

Our model also provides a theory for the risk premia inherent in the term structure that is both

consistent with a number of puzzling empirical facts and generates novel testable implications.

Our model, described in Section 3, is set in continuous time. The short rate follows an ex-

ogenous Ornstein-Uhlenbeck process, and the prices of zero-coupon bonds are determined endoge-

nously through trading between investors and arbitrageurs. Following the spirit of the market-

segmentation hypothesis, we assume that for each maturity there exists an investor clientele con-

suming at that maturity and demanding only the corresponding zero-coupon bond. Thus, in the

absence of arbitrageurs, each maturity would form a separate market. The (hypothetical) spot

rates clearing these markets can, in general, depend both on maturity and time, but we focus on

the case where they only depend on time. Thus, shocks to clientele demands are common across

maturities, and the term structure would be flat in the absence of arbitrageurs. Arbitrageurs can

invest in all maturities, and maximize a mean-variance objective over instantaneous changes in

wealth.

Section 4 considers the simple case where there are no demand shocks, meaning that the term

structure would be constant over time without arbitrageurs. This yields an one-factor model with

the short rate as the only risk factor. In the one-factor model, arbitrageurs bridge the disconnect

between the constant term structure and the time-varying short rate, incorporating information

about expected short rates into bond prices. Suppose, for example, that the short rate increases,

thus becoming attractive relative to investing in bonds. Investors do not take advantage of this

opportunity because they prefer the safety of the bond that matures at the time when they need

to consume. But arbitrageurs do take advantage by shorting bonds and investing at the short

rate. Through this reverse-carry trade, bond prices decrease, thus responding to the high short

rate. Conversely, following a negative shock to the short rate, arbitrageurs engage in a carry trade,

borrowing short and buying bonds.

Bond risk premia can be deduced from arbitrageurs’ trading strategies. Consider, for example,

the case where arbitrageurs are short bonds because the short rate is high. Since arbitrageurs

are the marginal agents and are risk-averse, bonds earn negative premia. Conversely, premia are

positive when the short rate is low. Premia are, therefore, negatively related to the short rate.

Moreover, since an increase in the short rate translates to a decrease in the slope of the term

2



structure, premia are positively related to slope. In this sense, our model can provide a natural

explanation for the puzzling empirical finding in Fama and Bliss (1987) that premia are positively

related to term-structure slope and are highly variable relative to their unconditional average.

The behavior of bond risk premia is reflected into that of forward rates. Because information

about expected short rates is incorporated into bond prices by risk-averse arbitrageurs, forward

rates under-react to changes in expected short rates. This relates to the behavior of bond risk

premia: for example, an increase in short rates raises forward rates, but the effect is tempered by

premia becoming negative. We show that under-reaction becomes stronger for longer maturities

because premia for those maturities are more important: speculating on a difference between a

long-maturity forward rate and the corresponding short rate involves more risk. Forward rates are

also influenced by investor demand (a constant parameter in the one-factor model) and the effect

is stronger for longer maturities. This suggests that short-rate expectations are the main driver

of term-structure movements for short maturities, while demand–manifested through risk premia–

is the main driver for long maturities. We confirm this result in Section 5, where we consider

stochastic demand shocks.

Our results are linked to properties of the risk-neutral measure (which exists in our model

because arbitrageurs render the term structure arbitrage-free). The risk-neutral measure solves a

fixed-point problem: it depends on the risk-averse arbitrageurs’ bond holdings, which in turn depend

on bond prices and thus on the risk-neutral measure. We show that the risk-neutral dynamics of

the short rate are Ornstein-Uhlenbeck, as are the true dynamics, but with faster mean-reversion

and a long-run mean influenced by demand. The under-reaction of forward rates to expected short

rates is linked to the fast mean-reversion, while the effects of demand are larger for long maturities

because demand enters through the long-run mean. Moreover, the market price of risk in our model

changes sign, in line with the reduced-form specifications proposed by Dai and Singleton (2002)

and Duffee (2002).1

Section 5 considers the case where there are demand shocks, meaning that in the absence

of arbitrageurs the term structure moves up (negative demand shock) or down (positive demand

shock) while remaining flat and independent of the short rate. Demand shocks reinforce the positive

relationship between bond risk premia and term-structure slope, derived in the one-factor model.

Indeed, an upward-sloping term structure can arise because the short rate is low or because demand

is low. In both cases arbitrageurs hold long positions in bonds and premia are positive. Demand
1Dai and Singleton (2002) and Duffee (2002) argue that CIR-type specifications in which premia are proportional

to volatility do not match important properties of the data, and they propose new specifications in which premia can
change sign. Such specifications arise naturally in our structural model.
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shocks also induce a negative relationship between term-structure slope and changes to long rates,

consistent with Campbell and Shiller’s (1991) empirical finding. Indeed, if an upward-sloping term

structure arises because the short rate is low, then long rates are likely to increase as the short

rate mean-reverts. But if it arises because demand is low, then long rates are likely to decrease as

demand mean-reverts.

Because demand shocks increase arbitrageurs’ risk, they accentuate the under-reaction of for-

ward rates to expected short rates. In fact, long-maturity forward rates can even move in the

opposite direction to short rates. The intuition is that arbitrageurs incorporate an increase in short

rates into prices by shorting bonds. Because, however, demand risk makes long-maturity bonds

particularly risky, arbitrageurs do not extend their shorting to long maturities, buying instead those

maturities to hedge the demand risk of their positions in shorter maturities. On the other hand,

demand risk accentuates the effect of any given demand shock, especially for long maturities as

arbitrageurs are reluctant to take large positions in those maturities.2 Therefore, demand risk both

makes precise and strengthens the intuition from the one-factor model that short-rate expectations

are the main driver of term-structure movements for short maturities, while demand is the main

driver for long maturities.

That independent shocks to demand and short-rate expectations drive different segments of

the term structure might seem at odds with Litterman and Scheinkman (1991), who find that one

principal component (PC) explains 90% of bond-return variation. We show, however, that PC

analysis generates the same result in our model even when shocks to the two factors have the same

variance. Moreover, the first PC is an amalgam of short-rate and demand shocks, and its effect on

yields can be very different than of each separate shock. Our results caution against interpreting

PCs as economic factors, and suggest what the effect of true factors should be.

Our explanation for the relationship between bond risk premia and term-structure slope dif-

fers from a number of recent papers. Wachter (2006) and Buraschi and Jiltsov (2007) consider

representative-agent models with habit formation, in which periods of low consumption are asso-

ciated with high short rates and bond risk premia. The time-variation in the premia generates a

positive relationship with slope, but in contrast to our model premia are positively related to the

short rate. Xiong and Yan (2006) consider a CIR-type model with two agents holding heteroge-

neous beliefs about the time-varying mean of the short rate. When agents are overly optimistic

about the mean, they undervalue the bonds, and this leads an econometrician who infers the mean
2This result is reminiscent of De Long, Summers, Shleifer and Waldman (1990), who show in an one-asset model

that the risk of noise trading in the future amplifies the effect of current noise trading.
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correctly to observe positive premia and positive slope. While we do not dispute the relevance

of habit formation or heterogeneous beliefs for asset pricing, we believe that in episodes such as

the UK pension reform, changes in risk premia were generated by an entirely different mechanism.

Considering this mechanism leads to a new set of intuitions and predictions.

A number of recent papers study the pricing of multiple assets within a class when arbitrage

is limited. In Barberis and Shleifer (2003), arbitrageurs absorb demand shocks of investors with

preferences for specific asset styles. These shocks generate comovement of assets within a style.3 In

Pavlova and Rigobon (2005), style arises because of portfolio constraints, and can be the source of

international financial contagion.4 Gabaix, Krishnamurthy and Vigneron (2007) assume that the

marginal holder of mortgage-backed securities is a risk-averse arbitrageur, whose wealth is tied to

a mortgage portfolio rather than to economy-wide wealth. They find empirical support for their

theory because pre-payment risk is priced according to the covariance with the mortgage portfolio.

Garleanu, Pedersen and Poteshman (2006) assume that the marginal options trader is a risk-averse

market maker who absorbs demand shocks of other investors. They characterize how demand for

a given option affects the prices of all options, and find empirical support for their theory by using

measures of demand pressure.5 Our work relates to the above papers because we study the role of

arbitrageurs in enforcing pricing relationships across a large number of bonds. In contrast to most

of these papers, we carry our analysis in continuous time, bringing ideas of limited arbitrage more

firmly into the continuous-time contingent-claims framework.

2 UK Pension Reform and the Term Structure

SECTION TO BE WRITTEN

3 Model

Time is continuous and goes from zero to infinity. The term structure at time t consists of a

continuum of zero-coupon bonds in zero net supply. The maturities of the bonds are in the interval

(0, T ], and the bond with maturity τ pays $1 at time t + τ . We denote by Pt,τ the time-t price of

3See also Spiegel (1998) for a general correlation structure of demand shocks.
4Kyle and Xiong (2001) derive financial contagion from the wealth effects of arbitrageurs with logarithmic pref-

erences. In Gromb and Vayanos (2002), wealth effects arise because of arbitrageurs’ margin constraints. These
constraints hinder the arbitrageurs’ ability to provide liquidity and to integrate segmented markets.

5See also Bollen and Whaley (2004) for an empirical analysis of demand effects for options, and Bates (2006) for
a model in which option demand is generated by crash-averse agents.
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the bond with maturity τ and by Rt,τ the spot rate for that maturity. The spot rate is related to

the price through

Rt,τ = − log(Pt,τ )
τ

. (1)

The short rate rt is the limit of Rt,τ when τ goes to zero. We take rt as exogenous and assume that

it follows the Ornstein-Uhlenbeck process

drt = κr(r − rt)dt + σrdBr,t, (2)

where (r, κr, σr) are constants and Br,t is a Brownian motion. The short rate rt could be determined

by the Central Bank and the macro-economic environment, but we do not model these mechanisms.

Our focus instead is on how exogenous movements in rt influence the bond prices Pτ,t that are

endogenously determined in equilibrium.

Agents are of two types: investors and arbitrageurs. Investors have preferences for bonds of

specific maturities. Examples are pension funds, whose typical preferences are for maturities longer

than fifteen years, life-insurance companies, with preferences for maturities around fifteen years,

and asset managers and banks’ treasury departments, with preferences for maturities shorter than

ten years. We assume that preferences take an extreme form whereby each investor demands only

a specific maturity. This assumption is very convenient analytically, and we argue below that

it should not affect the main intuitions and results. The set of investors demanding maturity τ

constitutes the clientele for the bond with the same maturity, and the maturity τ is the clientele’s

habitat. We assume that the demand of the clientele for the bond with maturity τ is an increasing

function of the bond’s yield Rt,τ , and we adopt a simple linear specification where the demand is

for

yt,τ = α(τ)τ(Rt,τ − βt,τ ) (3)

time-t dollars worth of the bond. We impose no restrictions on the function α(τ) except that it is

positive, and consider specifications for the demand intercept βt,τ later in this section.

Eq. (3) implies an extreme form of market segmentation. If investors were the only market

participants, then each maturity would constitute a separate market with the yield being deter-

mined by local demand and supply. Given the demand (3) and the bonds’ zero net supply, the

equilibrium yield for maturity τ would be Rt,τ = βt,τ . Of course, such segmentation does not occur

in equilibrium because of the arbitrageurs. Arbitrageurs integrate markets, ensuring that bonds

with similar maturities trade at similar prices.
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In Appendix A we provide a utility-based foundation for the demand (3) based on the notion

that investors have infinite risk aversion for consumption at specific times. In particular, we assume

that the clientele for maturity τ consumes at time t+τ and is infinitely risk-averse over consumption.

Infinite risk aversion ensures that the clientele considers only the bond with maturity τ and not

other bonds.6 Of course, infinite risk aversion is an extreme assumption, but we believe that it

should not affect the main intuitions and results. Indeed, under finite risk aversion, the clientele for

maturity τ would substitute between bonds with maturities close to τ , trading off risk and return.

In a sense, however, arbitrageurs are doing exactly this type of substitution. So endowing clienteles

with finite risk aversion would be qualitatively similar to reducing the risk aversion of arbitrageurs.

The advantage of allowing only arbitrageurs to substitute between bonds is analytical convenience:

if substitution can also be done by investors, the model would be complicated because we would

need to keep track of the portfolios of diverse clienteles.

We assume that the demand intercept βt,τ is independent of maturity τ , and denote it by βt.

Under this assumption, demand shocks are common across maturities and the term structure would

be flat in the absence of arbitrageurs. Allowing demand shocks to differ across maturities is an

important extension of our analysis and we leave it for future research. Section 4 considers the case

where βt is constant over time and equal to a constant β. This yields an one-factor model because

the only risk factor is the short rate rt. Section 5 assumes that βt is time-varying and follows the

Ornstein-Uhlenbeck process

dβt = κβ(β − βt) + σβdBβ,t, (4)

where (β, κβ, σβ) are constants and Bβ,t is a Brownian motion independent of Br,t. This yields a

two-factor model in (rt, βt).

Arbitrageurs choose a bond portfolio to trade off instantaneous mean and variance. Denoting

the arbitrageurs’ time-t wealth by Wt and their dollar investment in the bond with maturity τ by

xt,τ , the arbitrageurs’ budget constraint is

dWt =
(

Wt −
∫ T

0
xt,τ

)
rtdt +

∫ T

0
xt,τ

dPt,τ

Pt,τ
. (5)

6This is as long as prices involve no arbitrage, which is the case in equilibrium because of the arbitrageurs. No
arbitrage ensures that (i) any strategy that generates a riskless payoff at time t + τ is equivalent to buying the bond
with maturity τ , and (ii) any strategy that generates a risky payoff at time t + τ does not dominate uniformly the
strategy of buying the bond with maturity τ .
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Arbitrageurs solve a standard mean-variance problem

max
{xt,τ}τ∈(0,T ]

[
Et(dWt)− a

2
V art(dWt)

]
, (6)

over instantaneous mean and variance, where a is a risk-aversion coefficient. Arbitrageurs can be

interpreted as hedge funds or proprietary-trading desks, and their preferences over instantaneous

mean and variance could be arising from short-term compensation. Intertemporal optimization

under logarithmic utility would also give rise to such preferences, but the risk-aversion coefficient

a would then depend on wealth. In taking a to be constant, we suppress wealth effects. We appeal

informally to wealth effects, however, when drawing some of the model’s empirical implications.

4 One-Factor Model

This section considers the case where rt is the only risk factor. The one-factor model yields many

of the general intuitions and results, while being very simple and tractable. In the one-factor model

the term structure without arbitrageurs is constant and flat at β, while the short rate rt is time-

varying. Arbitrageurs bridge this disconnect, bringing information about the short-rate process

into the term structure. We determine the extent to which arbitrageurs are able to perform this

role by solving for equilibrium below.

4.1 Equilibrium

We conjecture that equilibrium bond yields are affine in rt, i.e.,

Pt,τ = e−[Ar(τ)rt+C(τ)] (7)

for two functions Ar(τ), C(τ) that depend on maturity τ . Applying Ito’s Lemma to (7) and using

the dynamics (2) of the short rate, we find that instantaneous bond returns are

dPt,τ

Pt,τ
= µt,τdt−Ar(τ)σrdBr,t, (8)

where

µt,τ ≡ A′r(τ)rt + C ′(τ)−Ar(τ)κr(r − rt) +
1
2
Ar(τ)2σ2

r . (9)
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Using (8), we write the arbitrageurs’ budget constraint (5) as

dWt =
[
Wtrt +

∫ T

0
xt,τ (µt,τ − rt)dτ

]
dt−

[∫ T

0
xt,τAr(τ)dτ

]
σrdBr,t,

and the arbitrageurs’ optimization problem (6) as

max
{xt,τ}τ∈(0,T ]

[∫ T

0
xt,τ (µt,τ − rt)dτ − aσ2

r

2

[∫ T

0
xt,τAr(τ)dτ

]2
]

.

The first-order condition is

µt,τ − rt = Ar(τ)λr, (10)

where

λr ≡ aσ2
r

∫ T

0
xt,τAr(τ)dτ. (11)

Eq. (10) is the key pricing equation of the one-factor model. The left-hand side is a bond’s expected

return µt,τ in excess of the short rate rt, and the right-hand side corresponds to the bond’s risk.

The term Ar(τ) is the bond’s loading on the short rate rt, the only risk factor. The term λr is the

factor risk premium, evaluated from the viewpoint of arbitrageurs who are the marginal agents.

The risk premium λr is the product of the arbitrageurs’ risk aversion coefficient a, the short rate’s

instantaneous variance σ2
r , and the loading

∫ T
0 xt,τAr(τ)dτ of the arbitrageurs’ aggregate position

on the short rate.

To solve for equilibrium, we combine the first-order condition (10) with market clearing. Since

bonds are in zero net supply, arbitrageurs’ and investors’ positions are opposites. Using (3) we find

xt,τ = −yt,τ = α(τ)τ(β −Rt,τ ) = α(τ) [βτ − [Ar(τ)rt + C(τ)]] . (12)

Substituting (9), (11) and (12) into (10), we find an affine equation in rt. Setting constant and

linear terms to zero yields two linear ODEs in Ar(τ), C(τ). Proposition 1 computes the solutions

to the ODEs.

Proposition 1. The functions Ar(τ), C(τ) are given by

Ar(τ) =
1− e−κ∗rτ

κ∗r
, (13)

C(τ) = κ∗rr
∗
∫ τ

0
Ar(u)du− σ2

r

2

∫ τ

0
Ar(u)2du, (14)
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where κ∗r is the unique solution to

κ∗r = κr + aσ2
r

∫ T

0
α(τ)Ar(τ)2dτ, (15)

and

r∗ ≡ r +
(β − r)zβ + zc

κ∗r
, (16)

zβ ≡
aσ2

r

∫ T
0 α(τ)τAr(τ)dτ

1 + aσ2
r

∫ T
0 α(τ)

[∫ τ
0 Ar(u)du

]
Ar(τ)dτ

, (17)

zc ≡
aσ4

r
2

∫ T
0 α(τ)

[∫ τ
0 Ar(u)2du

]
Ar(τ)dτ

1 + aσ2
r

∫ T
0 α(τ)

[∫ τ
0 Ar(u)du

]
Ar(τ)dτ

. (18)

To explain the intuition for Proposition 1, we consider the dynamics of the short rate under

the risk-neutral measure. Since the factor risk premium λr is affine in rt (from (11) and (12)), the

risk-neutral dynamics are Ornstein-Uhlenbeck, as the true dynamics. In the proof of Proposition 1

we show that the risk-neutral dynamics are

drt = κ∗r(r
∗ − rt)dt + σrdB̂r,t, (19)

where (κ∗r, r∗) are defined by (15) and (16), and B̂r,t is the Brownian motion under the risk-

neutral measure. Eqs. (13) and (14) are the standard term-structure equations when risk-neutral

dynamics are Ornstein-Uhlenbeck (Vasicek (1977)). The novel aspect of our analysis consists in

identifying how the risk-neutral parameters (κ∗r, r∗) differ from their true counterparts (κr, r). Any

such differences are driven by arbitrageurs’ risk aversion: with risk-neutral arbitrageurs (a = 0),

(15)-(18) confirm that the two sets of parameters coincide.

Eq. (15) implies that κ∗r > κr, i.e., the short rate mean-reverts faster under the risk-neutral than

under the true measure. This result plays a key role in our analysis, and the intuition is as follows.

Consider a positive shock to the short rate. This makes investing in the short rate attractive relative

to investing in bonds. Investors do not take advantage of this opportunity because they are locked

in their habitats: bonds give them a guaranteed return at the time when they need to consume,

while investing in the short rate gives a random return. On the other hand, arbitrageurs take

advantage of the opportunity by shorting bonds and investing at the short rate. This trade, known

as reverse-carry, leaves arbitrageurs exposed to the risk that the short rate goes down because bond

prices then increase. As a result, the risk-neutral probability of the short rate going down exceeds
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the true probability, meaning that mean-reversion is faster. Conversely, a negative shock to the

short rate leads arbitrageurs to engage in a carry trade, borrowing at the short rate and buying

bonds. Arbitrageurs’ risk is that the short rate goes up because bond prices then decrease. As a

result, the risk-neutral probability of the short rate going up exceeds the true probability, implying

again faster mean-reversion.

Eq. (16) shows that the short rate’s long-run mean r∗ under the risk-neutral measure depends

not only on the true mean r, but also on the demand parameter β. Thus, investor demand influences

bond prices, even when current and future expected short rates are held constant. Since zβ > 0,

r∗ is increasing in β, meaning that bond prices decrease when demand decreases. Moreover, r∗

increases less than one-to-one with r, meaning that bond prices do not respond fully to changes in

future expected short rates. Section 4.2 examines in more detail how the term structure responds

to changes in short-rate expectations and investor demand.

Lastly, it is worth noting that the solution in Proposition 1 involves a fixed-point problem.

The pricing functions Ar(τ), C(τ) are determined from the risk-neutral measure through standard

techniques. The novel aspect of our analysis, and the source of the fixed-point problem, is that the

risk-neutral measure is derived endogenously from the arbitrageurs’ risk aversion and bond holdings.

Arbitrageurs’ holdings depend on yields since these influence investors’ demand. Therefore, holdings

depend on the pricing functions Ar(τ), C(τ), giving rise to the fixed-point problem. In terms of

Proposition 1, the function Ar(τ) depends on the risk-neutral mean-reversion rate κ∗r through (13),

and κ∗r depends on Ar(τ) through (15).

4.2 Term-Structure Movements

Using our characterization of the equilibrium term structure, we can examine the impact of shocks

to short-rate expectations and investor demand. We determine how such shocks affect forward rates

and denote by ft,τ−∆τ,τ the time-t forward rate between maturities τ − ∆τ and τ . The forward

rate is related to the price through

ft,τ−∆τ,τ = −
log

(
Pt,τ

Pt,τ−∆τ

)

∆τ
. (20)
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We denote by ft,τ the instantaneous forward rate for maturity τ , defined as the limit of ft,τ−∆τ,τ

when ∆τ goes to zero. Eq. (20) implies that

ft,τ = −∂ log(Pt,τ )
∂τ

. (21)

Studying the term structure in terms of forward rather than spot rates has some conceptual ad-

vantages. In particular, the instantaneous forward rate for maturity τ can be compared to the

expected short rate at τ , while the spot rate for maturity τ combines expectations of all short rates

up to τ .7 Of course, mapping instantaneous forward rates into spot rates is straightforward: (1)

and (21) imply that

Rt,τ =

∫ τ
0 ft,udu

τ
,

i.e., the spot rate for maturity τ is the average of all instantaneous forward rates up to τ .

Proposition 2 determines how forward rates respond to changes in short-rate expectations.

Because the short rate follows a univariate process in our model, changes in short-rate expectations

are generated by changes in the short rate. Therefore, we consider a shock to the short rate at time

t and compare the responses of the instantaneous forward rate for maturity τ and the expected

short rate at τ .

Proposition 2 (Effect of Short-Rate Expectations).

• Forward rates under-react to changes in expected short rates: 0 <
∂ft,τ

∂rt
< ∂Et(rt+τ )

∂rt
.

• Under-reaction is more severe for longer maturities:
∂ft,τ
∂rt

∂Et(rt+τ )

∂rt

is decreasing in τ .

Proposition 2 shows that the expectations hypothesis (EH) fails to hold in our model: according

to the EH forward rates should move one-to-one with expected short rates, but we find under-

reaction. The intuition for the under-reaction is that in the absence of arbitrageurs, forward rates

are determined by investor demand and are not influenced by the short-rate process. This is because

investors hold the bonds that mature at the time when they need to consume, and do not take the

risk of investing in the short rate. Arbitrageurs bring information about the short-rate process into

the term structure, but the extent of their activity is limited by risk aversion. As a result, short-rate
7Suppose, for example, that the 29- and 30-year spot rates are 4% and 3.88%, respectively. The forward rate

between maturities 29 and 30 is 0.46%, and might appear very low in comparison to the expected one-year spot rate
in 29 years. This comparison is not as transparent if one looks at the 29- and 30-year spot rates.
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information is not fully incorporated, implying under-reaction. The intuition why under-reaction is

more severe for longer maturities is subtler and we elaborate on it below. But crudely put, longer

maturities are harder to arbitrage: speculating on a difference between a forward rate and the

corresponding expected short rate involves more risk for longer maturities.

To gain more intuition on the relation between forward rates and expected short rates, consider

the strategy that speculates on the difference between the two rates, e.g., lend at ft,τ and borrow

the same amount at rt+τ . Since this strategy requires no investment at time t, its expected payoff

under the risk-neutral measure is zero, i.e.,

E∗
t

[
e−

∫ τ
0 rt+udu(ft,τ − rt+τ )

]
= 0, (22)

where E∗
t denotes risk-neutral expectation. In the proof of Proposition 2 we show that under

Ornstein-Uhlenbeck dynamics, (22) becomes

ft,τ = E∗
t (rt+τ )− σ2

r

2
Ar(τ)2

= Et(rt+τ ) + [E∗
t (rt+τ )−Et(rt+τ )]− σ2

r

2
Ar(τ)2. (23)

The difference between the forward rate and the expected short rate is the sum of two terms: a risk

premium equal to the difference between the short rate’s risk-neutral and true expectation, and a

convexity adjustment that does not matter for our discussion.8 Because the short rate mean-reverts

faster under the risk-neutral than under the true measure, the risk-neutral expectation of rt+τ is

less sensitive to shocks to rt than the true expectation. Therefore, a positive shock to rt generates

a negative risk premium, while a negative shock generates a positive risk premium. Forward rates

under-react to the shocks because the risk premia are of opposite signs to the shocks. Moreover,

risk premia are small for short maturities because the expectations under the two measures are

similar. They cumulate, however, to larger values for longer maturities as the expectations diverge,

which is why the under-reaction becomes more severe.9

Proposition 3 determines how forward rates respond to changes in investor demand, measured

by the parameter β. This parameter is constant in the one-factor model so the effects in Proposition

3 concern an unanticipated, one-off change.

8The adjustment is because losses from the speculative strategy occur when short rates are high, and are thus
discounted more heavily than profits. This makes the strategy attractive and lowers the no-arbitrage forward rate.
The adjustment is zero for a futures rather than a forward rate because profits and losses are settled continuously.

9The risk premia converge to zero when τ goes to infinity. This does not contradict Proposition 2 because the
under-reaction is expressed as a ratio rather than a difference.
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Proposition 3 (Effect of Investor Demand).

• Holding expected short rates constant, forward rates increase when investor demand decreases:

0 <
∂ft,τ

∂β < 1.

• The effect is stronger for longer maturities: ∂ft,τ

∂β is increasing in τ .

The intuition for Proposition 3 mirrors that of Proposition 2. In the absence of arbitrageurs,

the term structure is flat at β, and an increase in β (decrease in demand) shifts it up uniformly.

Arbitrageurs dampen this effect because they bring the term structure more in line with expected

short rates. But because they are risk-averse, the change in β has an effect. Moreover, the effect

is stronger for longer maturities because these are harder to arbitrage. Eq. (23) confirms these

intuitions. Recall that the short-rate’s long-run mean r∗ under the risk-neutral measure is increasing

in β. Therefore, an increase in β raises the short rate’s risk-neutral expectation in (23), while leaving

the true expectation unchanged. This raises the risk premium and the forward rate. The effect is

small for short maturities because the risk-neutral and true expectation are close. It cumulates,

however, to larger values for longer maturities as the expectations diverge.

Taken together, Propositions 2 and 3 suggest that short-rate expectations are the main driver

of forward rates for short maturities, while demand–manifested through risk premia–is the main

driver for longer maturities. Of course, such a result cannot be a formal consequence of the one-

factor model because the demand parameter β is constant. But we show this result in the two-factor

model of Section 5. We should emphasize that this result is very much in line with practitioners’

view that the term structure is driven mainly by Central-Bank policy at the short end, inflation

and growth expectations at the medium end, and demand at the long end.

4.3 Risk Premia and Predictability

We next examine the implications of our model for bond risk premia and predictability. We argue,

in particular, that the combination of maturity clienteles and limited arbitrage can provide a natural

explanation for a number of puzzling empirical facts.

Fama and Bliss (FB 1987) find that expected returns on bonds vary only weakly with matu-

rity.10 This means that long-maturity bonds carry small risk premia relative to bonds of shorter

maturities. But while premia are small on average, they seem to vary dramatically over time. In
10See also Cochrane (1999) who updates the FB findings with more recent data.
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particular, they are positive when the term structure is upward sloping, and negative when it is

downward sloping. FB perform the regression

1
∆τ

log
(

Pt+∆τ,τ−∆τ

Pt,τ

)
−Rt,∆τ = αp + γp(ft,τ−∆τ,τ −Rt,∆τ ) + εt+∆τ . (24)

The dependent variable is the return on a zero-coupon bond with maturity τ held over a period ∆τ ,

in excess of the spot rate for maturity ∆τ . The independent variable is the forward rate between

maturities τ − ∆τ and τ , minus the the spot rate for maturity ∆τ . FB perform this regression

for ∆τ = 1 year and τ = 2, 3, 4, 5 years. They find that in all cases γp is positive and statistically

significant. This means that risk premia of long-maturity bonds are positive when forward rates

exceed spot rates, i.e., the term structure is upward sloping, and negative when the term structure

is downward sloping. The time-variation is significant: the standard deviation of predicted risk

premia is about 1-1.5%, while average premia are about 0.5%. FB’s finding is in violation of the

expectations hypothesis (EH) which predicts that premia are zero and γp = 0.

A positive relationship between risk premia and term-structure slope arises naturally in our

model. The term structure is upward sloping at times when the short rate rt is low. Expected

short rates are then low, and arbitrageurs incorporate this information into the term structure by

borrowing short and buying bonds. Since arbitrageurs are the marginal agents, bonds carry positive

premia. Conversely, the term structure is downward sloping at times when rt is high. Arbitrageurs

then short bonds and premia are negative. To show the positive relationship between premia and

slope in our model, we compute the FB regression coefficient γp in the analytically convenient case

where returns are over a short period ∆τ .

Proposition 4. For ∆τ → 0 and for all τ , the FB regression coefficient in (24) is γp = κ∗r−κr

κ∗r
> 0.

Additionally, our model generates a negative relationship between risk premia and the short

rate. To show this relationship, we compute the regression coefficient of expected excess returns

on the spot rate

1
∆τ

log
(

Pt+∆τ,τ−∆τ

Pt,τ

)
−Rt,∆τ = αs + γsRt,∆τ + εt+∆τ , (25)

for small ∆τ .

Proposition 5. For ∆τ → 0, the regression coefficient in (25) is γs = −(κ∗r − κr)Ar(τ) < 0.
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The negative relationship between premia and the short rate is reflected in the short rate’s

factor risk premium λr. In the proof of Proposition 5 we show that

λr = κ∗rr
∗ − κrr − rt(κ∗r − κr). (26)

Therefore, λr is an affine function of rt, positive for small values and negative for large values. The

changing sign of λr ensures that bond risk premia change sign with the short rate (and with term-

structure slope). It is worth noting that in many equilibrium term-structure models, λr does not

change sign and neither do bond risk premia. For example, in Cox, Ingersoll and Ross (CIR 1985),

this is because λr is proportional to the squared volatility of the short rate. CIR-type specifications

are adopted in many subsequent reduced-form models. Dai and Singleton (DS 2002) and Duffee

(2002) argue that such specifications do not match important properties of the data. They propose

a new class of specifications that generate a better match while retaining the tractability of affine

models. In their specifications risk premia can change sign. Our relative contribution is to show that

such specifications can arise naturally in an equilibrium model with maturity clienteles and limited

arbitrage. Moreover, because our model is structural rather than reduced-form, it can suggest which

specifications within the large class considered in DS and Duffee are more economically plausible.

Within our model, we can also give economic interpretations to term-structure factors and risk

premia, and relate them to exogenous variables.

We next explore the implications of our model for the predictability of long-rate changes.

Campbell and Shiller (CS 1991) find that the slope of the term structure can predict changes to

long rates, but to a weaker and typically opposite extent than implied by the EH. Their regression

is

Rt+∆τ,τ−∆τ −Rt,τ = αr + γr
∆τ

τ −∆τ
(Rt,τ −Rt,∆τ ) + εt+∆τ . (27)

The dependent variable is the change, between times t and t + ∆τ , in the yield of a zero-coupon

bond that has maturity τ at time t. The independent variable is an appropriately normalized

difference between the spot rates for maturities τ and ∆τ . According to the EH, the coefficient γr

should be one. CS find, however, that γr is smaller than one, typically negative, and decreasing

with τ . This finding is related to the behavior of risk premia documented in FB. Indeed, suppose

that risk premia are positive when the term structure is upward sloping. Then, because bonds

earn positive expected returns, their yields increase on average by less than in the EH benchmark.

Therefore, the CS regression coefficient γr is smaller than one. That γr is negative especially for long

maturities can be viewed as evidence that risk premia of long-maturity bonds are strongly time-
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varying. Proposition 6 computes the CS regression coefficient γr in our model, in the analytically

convenient case where ∆τ is small.

Proposition 6. For ∆τ → 0, the CS regression coefficient in (27) is

γr = 1− (κ∗r − κr)Ar(τ)

1− Ar(τ)
τ

< 1. (28)

It is increasing in τ , negative for small τ if κ∗r > 2κr, and positive for large τ .

Since our model generates a positive relationship between premia and slope, it also generates

a CS regression coefficient γr smaller than one. Contrary to CS, however, γr is increasing in τ and

becomes positive for large τ . This is because with the short rate as the only factor, risk premia

for long maturities do not exhibit sufficiently strong time-variation. The variation in these premia

becomes stronger, however, when the demand parameter β is stochastic. Indeed, the effects of β

are precisely through the premia, and are especially important for long maturities from Proposition

3. Section 5 shows that the coefficient γr in the two-factor model can be negative and decreasing

in τ .

An important message of Propositions 2-6 is that the combination of maturity clienteles and

limited arbitrage can underlie a wide range of phenomena: under-reaction of forward rates to short-

rate expectations (Proposition 2), demand effects on the term structure (Proposition 3), positive

relationship between premia and slope (Proposition 4), negative relationship between premia and

the short rate (Proposition 5), and CS coefficients smaller than one (Proposition 6). Some of

these phenomena have been documented empirically, while others constitute novel predictions of

our model. Moreover, because our model traces all these phenomena to risk-averse arbitrageurs

integrating markets for different maturities, it has novel implications on how the strength of the

phenomena should vary with arbitrageurs’ risk aversion.

Corollary 1. When arbitrageurs are more risk averse (larger a), or the short rate is more volatile

(larger σr):

• Forward rates under-react more strongly to changes in expected short rates.

• Demand has larger effects on forward rates.

• The FB regression coefficient γp of risk premia on term-structure slope, computed in Propo-

sition 4, is larger.

• The regression coefficient γs of risk premia on the short rate, computed in Proposition 5, is

smaller.
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• The CS regression coefficient γr of long-rate changes on term-structure slope, computed in

Proposition 6, is smaller if κ∗r < 5.27κr.

Corollary 1 is a comparative-statics result in our model because the parameters a and σr

are assumed constant over time. Stepping outside of the model, however, we can interpret the

corollary as concerning the effects of time-variation in a and σr. If, for example, a is decreasing in

arbitrageurs’ wealth, then time-variation in a could be measured by arbitrageurs’ returns. Empirical

proxies for the latter are the returns of hedge funds or the profit-loss positions of proprietary-

trading desks. But our model suggests an even more direct proxy (in the sense of requiring only

term-structure data), derived from arbitrageurs’ trading strategies. For example, at times when

the term structure is upward sloping, our model predicts that arbitrageurs are engaged in the carry

trade. Therefore, arbitrageurs’ wealth decreases when the carry trade loses money, i.e., when rt

increases. Conversely, when the term structure is downward sloping, arbitrageurs are engaged in

the reverse-carry trade. Therefore, their wealth decreases when the reverse-carry trade loses money,

i.e., when rt decreases.

5 Two-Factor Model

This section considers the case where investor demand, represented by the parameter βt, is an

additional risk factor to the short rate rt. The two-factor model confirms intuitions derived from

the one-factor model and generates several new results.

5.1 Equilibrium

We conjecture that equilibrium bond yields are affine in (rt, βt), i.e.,

Pt,τ = e−[Ar(τ)rt+Aβ(τ)βt+C(τ)] (29)

for functions Ar(τ), Aβ(τ), C(τ) that depend on maturity τ . Proceeding as in the one-factor model,

we find that instantaneous bond returns are

dPt,τ

Pt,τ
= µt,τdt−

∑

z=r,β

Az(τ)σzdBz,t, (30)
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where

µt,τ ≡
∑

z=r,β

[
A′z(τ)zt −Az(τ)κr(z − zt) +

1
2
Az(τ)2σ2

z

]
+ C ′(τ). (31)

The arbitrageurs’ first-order condition is

µt,τ − rt =
∑

z=r,β

Az(τ)λz, (32)

where

λz ≡ aσ2
z

∫ T

0
xt,τAz(τ)dτ. (33)

Eq. (32) is the counterpart of (10) in the context of the two-factor model. It relates a bond’s

expected excess return µt,τ − rt to the bond’s risk. Risk is measured by the bond’s loadings on the

factors rt and βt. The loading on factor zt ∈ {rt, βt} is Az(τ) from (30), and it is multiplied by the

factor risk premium λz. The premium λz depends on arbitrageurs’ bond holdings, and these can

be computed by generalizing the market-clearing condition (12) to

xt,τ = −yt,τ = α(τ)τ(β −Rt,τ ) = α(τ) [βτ − [Ar(τ)rt + Aβ(τ)βt + C(τ)]] . (34)

Substituting (31), (33) and (34) into (32), we find an affine equation in rt and βt. Setting constant

and linear terms to zero, yields three linear ODEs in Ar(τ), Aβ(τ), C(τ). Two ODEs constitute a

system in Ar(τ), Aβ(τ), and third determines C(τ) given Ar(τ), Aβ(τ).

Solving for Ar(τ), Aβ(τ) involves a fixed-point problem. Namely, the risk-neutral measure,

implicit in the coefficients of the linear ODEs, depends on arbitrageurs’ bond holdings, but the

latter depend on Ar(τ), Aβ(τ) because they depend on bond prices. More precisely, the 2×2 matrix

of coefficients of Ar(τ), Aβ(τ) in the two ODEs involves integrals of Ar(τ), Aβ(τ). This makes it

difficult to compute eigenvalues and eigenvectors of the matrix. In the one-factor model, the matrix

has only one element and the fixed-point problem reduces to one non-linear (scalar) equation. But

with two factors, the problem involves four equations. Solving the equations numerically is simple,

but proving analytical results is more difficult. So we leave proofs to a future revision of this paper,

and focus below on an extended numerical example. This example is not meant to be a full-fledged

calibration; it conveys, however, many intuitions on how demand risk affects the term structure.

To construct the example, we need to pick values for the exogenous parameters (T, κr, σr, κβ, σβ, a)

and the function α(τ). We set T = 30, meaning that bonds’ maturities go up to 30 years. We set
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κr = 0.15 and σr = 0.02, meaning that shocks to the short rate have a half-life of log(2)/0.15 = 4.62

years and a yearly standard deviation 2%. These numbers are consistent with the estimates

κr = 0.178 and σr = 0.02 in Chan, Karolyi, Longstaff and Sanders (1992). We set κβ = 0.15

so that shocks to βt have the same half-life as shocks to rt. Moreover, since βt is an interest rate

(the level of the term structure in the absence of arbitrageurs), we assume that σβ is comparable

in size to σr and set σβ = 0.02. We assume that the function α(τ) measuring the demand elasticity

for the bond with maturity τ decays exponentially with τ , so that bonds with longer maturities

have smaller demand in present-value terms. We set the decay parameter to 0.1, meaning that

α(τ) = αe−0.1τ for a constant α. Eqs. (33) and (34) imply that α(τ) matters only through its

product with the arbitrageurs’ risk-aversion parameter a. We set aα = 1.5 and discuss below the

sensitivity of our results to this parameter.

5.2 Term-Structure Movements

In the context of the numerical example, we can examine how shocks to short-rate expectations

and investor demand affect the term structure. Figure 1 shows the effect of short-rate expectations.
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Figure 1: Effect of a unit increase in the short rate rt on the term structure of expected
short rates and instantaneous forward rates. The dashed-dotted line represents the
effect on expected short rates. The dashed line represents the effect on instantaneous
forward rates when σβ = 0, and the solid line represents the effect when σβ = 0.02.

The dashed-dotted line shows how a unit increase in the short rate rt affects the term structure

of expected short rates. The effect decays exponentially with maturity, at a rate equal to the

short rate’s mean-reversion parameter κr. The dashed line shows how the increase in rt affects

instantaneous forward rates in the absence of demand risk (σβ = 0). Consistent with Proposition
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2, forward rates under-react relative to expected short rates since the dashed line is below the

dashed-dotted line. Moreover, under-reaction is more severe for longer maturities since the ratio of

the dashed to the dashed-dotted line decreases with maturity.

The solid line shows how the increase in rt affects instantaneous forward rates in the presence

of demand risk (σβ = 0.02). This line coincides approximately with the dashed line for short

maturities, but is significantly below for longer maturities. Moreover, it becomes negative, meaning

that an increase in expected short rates can lower long-maturity forward rates. This surprising effect

is driven by arbitrageurs’ hedging activity. Indeed, arbitrageurs incorporate the increase in short

rates into bond prices by shorting bonds. Their shorting activity is larger for bonds of shorter

maturities because the change in expected short rates is more pronounced for those maturities. At

the same time, shorting activity exposes arbitrageurs to the risk that bond prices increase, either

because the short rate decreases (r-risk) or because investor demand increases (β-risk). To hedge

demand risk, arbitrageurs buy long-maturity bonds, which are particularly sensitive to that risk.

The hedging activity of arbitrageurs on long-maturity bonds dominates their shorting activity,

leading to the increase in long-maturity forward rates. In other words, arbitrageurs buy long-

maturity bonds to hedge the demand risk of their short positions in bonds of shorter maturities.

Consider next the effect of investor demand. Figure 2 shows how a unit increase in βt, i.e., a

decrease in demand, impacts the term structure of instantaneous forward rates. The dashed line

corresponds to the case of no demand risk (where the demand shock should be interpreted as an one-

off) and the solid line to the case of demand risk. In both cases, the increase in βt has a hump-shaped

effect, impacting intermediate maturities the most. That the effect is not increasing with maturity

does not contradict Proposition 3 because the increase in βt is mean-reverting while it is permanent

in Proposition 3. Mean-reversion mitigates the effect of demand for long maturities: arbitrageurs

expect demand to increase back to its normal level before those maturities and, therefore, they buy

long-maturity bonds more aggressively. The effect of mean-reversion is weaker in the presence of

demand risk because arbitrageurs are deterred from taking aggressive positions in long-maturity

bonds. Thus, the hump in the solid line is to the right relative to the dashed line.

Figures 1 and 2 make precise the intuition derived from the one-factor model that short-rate

expectations are the main driver of the term structure for short maturities while demand is for

long maturities. Indeed, the two-factor model allows for shocks both to expectations (r-shocks)

and demand (β-shocks), and both types of shocks have the same standard deviation and mean-

reversion rate in the numerical example. Figures 1 and 2 confirm that the relative impact of r-

to β-shocks (ratio of the solid lines) is larger for short maturities. These figures also illustrate
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Figure 2: Effect of a unit increase in βt (decrease in demand) on the term structure
of instantaneous forward rates. The dashed line corresponds to the case σβ = 0, and
the solid line to the case σβ = 0.02.

the effect of demand risk. In particular, Figure 2 shows that β-shocks have larger impact in the

presence of demand risk, i.e., when arbitrageurs expect additional β-shocks in the future.

We next draw the implications of our model for principal-component analyses of the term

structure. Litterman and Scheinkman (LS 1991) decompose bond returns into principal compo-

nents (PC) and show that the first PC explains 89.5% of return variation. Thus, returns are highly

correlated across maturities, and a common interpretation of this finding is that one main economic

factor drives returns. This seems to contradict our two-factor model, at least in the context of the

numerical example. Indeed, returns in our model are driven by independent r- and β-shocks. More-

over, Figures 1 and 2 show that the relative impact of the two types of shocks varies significantly

with maturity.11

To map our model to the empirical findings, we perform the LS analysis with instantaneous

returns, considering bonds with maturities from six months to 30 years in six-month increments.

Eq. (30) shows that the loadings of a bond with maturity τ on r- and β-shocks are Ar(τ) and

Aβ(τ), respectively. Since r- and β-shocks are independent, the instantaneous covariance matrix

associated to the vector of 60 returns is

σ2
rArA

′
r + σ2

βAβA′β, (35)

where Az is the column vector with elements {Az(τ)}τ=0.5,..,30 for z = r, β. The principal compo-
11Figures 1 and 2 concern forward rates, but the effects are similar for bond returns. For example, r-shocks explain

99.92% of the variance of the one-year bond’s instantaneous return, 92.20% for the five-year bond, 65.22% for the
ten-year bond, 18.50% for the twenty-year bond, and 4.79% for the thirty-year bond.
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nents are the eigenvectors of this matrix and the fraction of variation they explain is the ratio of

the corresponding eigenvalue to the sum of all eigenvalues. Since in our model returns are driven

by two factors, the matrix (35) has two non-zero eigenvalues. The largest one is 94.61% of the sum,

meaning that the first PC explains 94.61% of return variation. Thus, the mere fact that one PC

explains a large fraction of term-structure movements does not mean that movements are caused

by one main economic factor. Our result also cautions against giving any economic interpretation

to PCs. For example, the first PC in the numerical example is 0.44Ar + Aβ (up to normalization),

meaning that the corresponding factor is 0.44rt + βt. This is an amalgam of r- and β-shocks, and

can neither be interpreted as shocks to short-rate expectations nor as shocks to demand.

Figure 3 draws the first PC in yield space, together with the effects of r- and β-shocks (which

are equal to Ar(τ)/τ and Aβ(τ)/τ , respectively, from (1) and (7)). The first PC is almost flat

with maturity but this obscures the stark difference between r- and β-shocks: the effect of r-shocks

is decreasing with maturity, while that of β-shocks is increasing. But because the first PC is an

amalgam of the two types of shocks, it turns out to be approximately flat.
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Figure 3: The solid line represents the first principal component of bond returns,
plotted in yield space and normalized. The dashed line represents the effect of an
r-shock on yields and the dashed-dotted line represents the effect of a β-shock.

The flat shape of the first PC in the numerical example is consistent with LS. Our model,

however, does not always generate a flat shape. For example, the first PC is decreasing with

maturity when σβ = 0 because there are only r-shocks, and increasing when σβ = 0.04 because

β-shocks dominate. Similar comparative statics hold when αa varies because demand shocks have

larger impact when arbitrageurs are more risk-averse. Therefore, the robust implication of our

analysis is not that the first PC is flat, but that it explains a large fraction of variation. For
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example, the fraction explained for σβ = 0 or σβ = 0.04 is larger than for σβ = 0.02 because in the

first two cases one type of shock is dominant.

5.3 Risk Premia and Predictability

We next examine how demand risk affects the relationship between term-structure slope, bond

risk premia and spot-rate changes. Consider the Fama-Bliss (FB) regression (24) with dependent

variable the excess return of a τ -year zero-coupon bond over an one-year interval (∆τ = 1), and

independent variable the difference between the one-year forward rate starting in year τ−1 and the

one-year spot rate. Figure 4 plots the regression coefficient γp for all maturities τ > 1. The figure

shows that demand risk reinforces the positive relationship between premia and slope, especially

for long maturities. The intuition is that the term structure is upward sloping at times when the

short rate rt is low or bond demand is low (high βt). In both cases arbitrageurs hold long positions

in bonds and premia are positive. Moreover, demand risk renders long-maturity bonds particularly

risky, thus raising the premia that arbitrageurs require for holding them. This strengthens the

relationship between premia and slope for long maturities.
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Figure 4: The coefficient γp of the Fama-Bliss regression (24). The dependent variable
is the excess return of a τ -year zero-coupon bond over an one-year interval (∆τ = 1).
The independent variable is the difference between the one-year forward rate starting
in year τ − 1 and the one-year spot rate. The coefficient γp is plotted for all maturities
τ > 1. The dashed line corresponds to the case σβ = 0, and the solid line to the case
σβ = 0.02.

Consider next the Campbell-Shiller (CS) regression (27) with dependent variable the change

in yield of a τ -year zero-coupon bond over an one-year interval (∆τ = 1), and independent variable

a normalized difference between the τ - and the one-year spot rate. The normalization is so that
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the regression coefficient γr is equal to one under the expectations hypothesis (EH). Figure 5 plots

γr for all maturities τ > 1. The figure shows that demand risk renders γr negative and decreasing

with maturity. The intuition is that demand risk generates strongly time-varying risk premia for

long-maturity bonds. Suppose, for example, that the term structure is upward sloping. If the

positive slope is due to the short rate rt being low, then long yields are likely to increase as the

short rate mean-reverts. But if the positive slope is due to bond demand being low (high βt),

then long yields are likely to decrease as demand mean-reverts. In other words, the low demand

generates large positive premia, which are expected to decrease as demand decreases.

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

Maturity (years)

gamma_r, sib=0
gamma_r, sib=0.02

Figure 5: The coefficient γr of the Campbell-Shiller regression (27). The dependent
variable is the change in yield of a τ -year zero-coupon bond over an one-year interval
(∆τ = 1). The independent variable is the difference between the τ - and the one-year
spot rate, normalized so that the regression coefficient γr is equal to one under the
expectations hypothesis. The coefficient γr is plotted for all maturities τ > 1. The
dashed line corresponds to the case σβ = 0, and the solid line to the case σβ = 0.02.

How do the coefficients in Figures 4 and 5 compare to their empirical counterparts? FB compute

γp for maturities τ = 2, 3, 4, 5 and find γp ≈ 1. CS compute γr for the same maturities and find that

it decreases from about −1 to −2. For those maturities, Figures 4 and 5 imply γp ≈ 0.5 and γr ≈ 0.

In both cases, our model implies weaker violations of the EH than in the data, but the numbers

are within the FB and CS confidence intervals. Note that demand risk reduces the discrepancy

between our results and the empirical estimates: it raises the FB coefficients, and renders the CS

coefficients negative and decreasing with maturity.

The coefficients γp and γr can be made closer to their empirical counterparts by choosing larger

values of demand risk σβ or arbitrageur risk aversion a. For such values, however, the first PC tends

to become non-flat because long yields become more variable than short yields. We leave a more

complete analysis of this issue, as well as a more detailed calibration of the two-factor model, to a
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future revision of this paper.

6 Conclusion

SECTION TO BE WRITTEN
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SECTION TO BE WRITTEN

B Proofs of Propositions 1-6 and Corollary 1

Proof of Proposition 1: Substituting (9), (11) and (12) into (10), we find

A′r(τ)rt + C ′(τ)−Ar(τ)κr(r − rt) +
1
2
Ar(τ)2σ2

r − rt

= Ar(τ)aσ2
r

∫ T

0
α(τ) [βτ − [Ar(τ)rt + C(τ)]]Ar(τ)dτ. (B.1)

This equation is affine in rt. Setting the linear terms to zero, we find the ODE

A′r(τ) + κrAr(τ)− 1 = −aσ2
rAr(τ)

∫ T

0
α(τ)Ar(τ)2dτ, (B.2)

and setting the constant terms to zero, we find the ODE

C ′(τ)− κrrAr(τ) +
1
2
σ2

rAr(τ)2 = aσ2
rAr(τ)

∫ T

0
α(τ) [βτ − C(τ)]Ar(τ)dτ. (B.3)

These ODEs must be solved with the initial conditions Ar(0) = C(0) = 0. The solution to (B.2) is

(13), provided that κ∗r is a solution to (15). Eq. (15) has a unique solution because the right-hand

side is decreasing in κ∗r and is equal to zero for κ∗r = ∞. The solution to (B.3) is

C(τ) = z

∫ τ

0
Ar(u)du− σ2

r

2

∫ τ

0
Ar(u)2du, (B.4)

where

z ≡ κrr + aσ2
r

∫ T

0
α(τ) [βτ − C(τ)]Ar(τ)dτ. (B.5)
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Substituting C(τ) from (B.4) into (B.5), we find

z = κrr + aσ2
rβ

∫ T

0
α(τ)τAr(τ)dτ − aσ2

rz

∫ T

0
α(τ)

[∫ τ

0
Ar(u)du

]
Ar(τ)dτ

+
aσ4

r

2

∫ T

0
α(τ)

[∫ τ

0
Ar(u)2du

]
Ar(τ)dτ

⇒ z =
κrr + aσ2

rβ
∫ T
0 α(τ)τAr(τ)dτ + aσ4

r
2

∫ T
0 α(τ)

[∫ τ
0 Ar(u)2du

]
Ar(τ)dτ

1 + aσ2
r

∫ T
0 α(τ)

[∫ τ
0 Ar(u)du

]
Ar(τ)dτ

.

The function C(τ) coincides with (14) if z = κ∗rr∗. Eqs. (16)-(18) imply that z = κ∗rr∗ if

κr + aσ2
r

∫ T
0 α(τ)τAr(τ)dτ

1 + aσ2
r

∫ T
0 α(τ)

[∫ τ
0 Ar(u)du

]
Ar(τ)dτ

= κ∗r. (B.6)

Eq. (B.6) follows from

κr + aσ2
r

∫ T

0
α(τ)τAr(τ)dτ

= κ∗r + aσ2
r

∫ T

0
α(τ) [τ −Ar(τ)]Ar(τ)dτ

= κ∗r + κ∗raσ2
r

∫ T

0
α(τ)

[∫ τ

0
Ar(u)du

]
Ar(τ)dτ,

where the first step follows from (15) and the second from (13).

To show that the risk-neutral dynamics are given by (19), we rewrite (B.1) as

A′r(τ)rt + C ′(τ)−Ar(τ)κr(r − rt) +
1
2
Ar(τ)2σ2

r − rt

= Ar(τ)aσ2
r

[∫ T

0
α(τ) [βτ − C(τ)]Ar(τ)dτ − rt

∫ T

0
α(τ)Ar(τ)2dτ

]

⇔ A′r(τ)rt + C ′(τ)−Ar(τ)κr(r − rt) +
1
2
Ar(τ)2σ2

r − rt = Ar(τ) [z − κrr − rt(κ∗r − κr)]

⇔ A′r(τ)rt + C ′(τ)−Ar(τ)κ∗r(r
∗ − rt) +

1
2
Ar(τ)2σ2

r − rt = 0, (B.7)

where the second step follows from (15) and (B.5), and the third from z = κ∗rr∗. The risk-neutral

dynamics are given by (19) because of (B.7).
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Proof of Proposition 2: Eqs. (7) and (21) imply that

ft,τ = A′r(τ)rt + C ′(τ). (B.8)

Therefore,

∂ft,τ

∂rt
= A′r(τ) = e−κ∗rτ , (B.9)

where the second step follows from (13). On the other hand, (2) implies that

Et(rt+τ ) = (1− e−κrτ )r + e−κrτrt. (B.10)

Therefore,

∂Et(rt+τ )
∂rt

= e−κrτ . (B.11)

The claims in the proposition follow from (B.9), (B.11), and κ∗r > κr.

We next prove the claim made in the text that (22) implies (23). We set T ≡ t + τ and treat

T as fixed when t varies. We first show that

E∗
t (rt+τ ) = A′r(τ)rt + Ĉ ′(τ), (B.12)

where Ĉ(τ) solves the ODE

Ĉ ′(τ)− κrrAr(τ) = aσ2
rAr(τ)

∫ T

0
α(τ) [βτ − C(τ)]Ar(τ)dτ (B.13)

with the initial condition Ĉ(0) = 0. (Eq. (B.13) differs from (B.3) because of the missing term

σ2
rAr(τ)2/2.) Since A′r(0) = 1 and Ĉ ′(0) = 0, (B.12) holds if the process A′r(τ)rt + Ĉ ′(τ) is a

martingale under the risk-neutral measure. Given the risk-neutral dynamics (19), the martingale

property holds if

−A′′r(τ)rt − Ĉ ′′(τ) + A′r(τ)κ∗r(r
∗ − rt) = 0. (B.14)

Multiplying (B.2)by rt and adding to (B.13), we find

A′r(τ)rt + Ĉ ′(τ)−Ar(τ)κr(r − rt)− rt

= Ar(τ)aσ2
r

[∫ T

0
α(τ) [βτ − C(τ)]Ar(τ)dτ − rt

∫ T

0
α(τ)Ar(τ)2dτ

]
.
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Following the same steps as when deriving (B.7), we find

A′r(τ)rt + C ′(τ)−Ar(τ)κ∗r(r
∗ − rt)− rt = 0. (B.15)

Eq. (B.14) follows by differentiating (B.15) with respect to τ .

We next show that

E∗
t

[
e−

∫ t+τ
t rudurt+τ

]
= e−[Ar(τ)rt+C(τ)]

[
E∗

t (rt+τ )− 1
2
Ar(τ)2σ2

r

]
. (B.16)

Since Ar(0) = C(0) = 0, (B.16) holds if the process

e−
∫ t
0 rudu−[Ar(τ)rt+C(τ)]

[
E∗

t (rt+τ )− 1
2
Ar(τ)2σ2

r

]

is a martingale under the risk-neutral measure. Substituting the diffusion of E∗
t (rt+τ ) from (B.12)

and using (B.7), we find that the martingale property holds. Combining (B.16) with (22) and

E∗
t

[
e−

∫ t+τ
t rudu

]
= e−[Ar(τ)rt+C(τ)]

we find (23).

Proof of Proposition 3: Eqs. (13)-(16) and (B.8) imply that

∂ft,τ

∂β
=

∂C ′(τ)
∂β

=
∂r∗

∂β
(1− e−κ∗rτ ) =

zβ

κ∗r
(1− e−κ∗rτ ). (B.17)

The claims in the proposition follow from (B.17), zβ > 0, and zβ/κ∗r < 1. (The latter inequality

follows from (17) and (B.6)).

Proof of Proposition 4: Eqs. (1), (7) and (20) imply that the dependent variable in (24) is

1
∆τ

[Ar(τ)rt + C(τ)− [Ar(τ −∆τ)rt+∆τ + C(τ −∆τ)]− [Ar(∆τ)rt + C(∆τ)]]

and the independent variable is

1
∆τ

[Ar(τ)rt + C(τ)− [Ar(τ −∆τ)rt + C(τ −∆τ)]− [Ar(∆τ)rt + C(∆τ)]] .
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Therefore, the FB regression coefficient is

γp =
Cov [[Ar(τ)−Ar(∆τ)]rt −Ar(τ −∆τ)rt+∆τ , [Ar(τ)−Ar(τ −∆τ)−Ar(∆τ)]rt]

Var [[Ar(τ)−Ar(τ −∆τ)−Ar(∆τ)]rt]
. (B.18)

Eqs. (2) and (B.10) imply that

Cov(rt+∆τ , rt) = Var(rt)e−κr∆τ .

Substituting into (B.18), we find

γp =
Ar(τ)−Ar(τ −∆τ)e−κr∆τ −Ar(∆τ)

Ar(τ)−Ar(τ −∆τ)−Ar(∆τ)
.

Taking the limit ∆τ → 0 and noting from (13) that Ar(∆τ)/∆τ → 1, we find

γp → A′r(τ) + κrAr(τ)− 1
A′r(τ)− 1

=
(κ∗r − κr)Ar(τ)

κ∗rAr(τ)
=

κ∗r − κr

κ∗r
,

where the second step follows from (B.2).

Proof of Proposition 5: Proceeding as in the proof of Proposition 4, we find

γs =
Ar(τ)−Ar(τ −∆τ)e−κr∆τ −Ar(∆τ)

Ar(∆τ)
.

Taking the limit ∆τ → 0, we find

γp → A′r(τ) + κrAr(τ)− 1 = −(κ∗r − κr)Ar(τ).

To show that the factor risk premium λr is given by (26), we note from (11) and (12) that

λr = aσ2
r

∫ T

0
α(τ) [βτ − [Ar(τ)rt + C(τ)]]Ar(τ)dτ

= z − κrr − (κ∗r − κr)rt,

where the second step follows from (15) and (B.5). Eq. (26) follows from z = κ∗rr∗.

Proof of Proposition 6: Eqs. (1) and (7) imply that the dependent variable in (27) is

Ar(τ −∆τ)rt+∆τ + C(τ −∆τ)
τ −∆τ

− Ar(τ)rt + C(τ)
τ
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and the independent variable is

∆τ

τ −∆τ

[
Ar(τ)rt + C(τ)

τ
− Ar(∆τ)rt + C(∆τ)

∆τ

]
.

Proceeding as in the proof of Proposition 4, we find

γr =
τ −∆τ

∆τ

Ar(τ−∆τ)e−κr∆τ

τ−∆τ − Ar(τ)
τ

Ar(τ)
τ − Ar(∆τ)

∆τ

.

Taking the limit ∆τ → 0, we find

γr =
A′r(τ)− Ar(τ)

τ + κrAr(τ)

1− Ar(τ)
τ

,

which coincides with (28) because of (B.2).

Eqs. (13) and (28) imply that γr is increasing in τ if the function

f(x) ≡ 1− e−x

1− 1−e−x

x

is decreasing in x for x > 0. The derivative f ′(x) has the same sign as

f1(x) ≡ −e
x
2 + e−

x
2 + x.

The function f1(x) is negative because f1(0) = 0 and f ′1(x) < 0. Therefore, f(x) is decreasing.

Eqs. (13) implies that for small τ , Ar(τ) = τ − κ∗rτ2

2 + o(τ2). Substituting into (28), we find

γr = 1− κ∗r − κr
κ∗r
2

+ o(1) = 2
κr

κ∗r
− 1 + o(1).

Therefore, γr is negative for small τ if κ∗r > 2κr. Eq. (13) implies that when τ →∞, Ar(τ) → 1/κ∗r.

Substituting into (28), we find

γr → 1− κ∗r − κr

κ∗r
=

κr

κ∗r
> 0.

Proof of Corollary 1: The key observation is that the mean-reversion parameter κ∗r under the

risk-neutral measure is an increasing function of aσ2
r . Indeed, κ∗r is defined implicitly by (15), whose

right-hand side is decreasing in κ∗r (because of (13)) and increasing in aσ2
r .
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To prove the first claim in the corollary, we recall from (B.9) and (B.11) that the response of

forward rates to expected short rates is

∂ft,τ

∂rt

∂Et(rt+τ )
∂rt

= e−(κ∗r−κr)τ .

The under-reaction of forward rates is stronger for larger a and σr because κ∗r is increasing in these

variables.

To prove the second claim, we recall from (B.17) that the effect of demand on forward rates is

∂ft,τ

∂β
=

zβ

κ∗r
(1− e−κ∗rτ ).

To show that the effect is stronger for larger a and σr, it suffices to show that zβ/κ∗r is increasing

in aσ2
r . Eqs. (17) and (B.6) imply that

zβ

κ∗r
= 1− κr

κ∗r

1

1 + aσ2
r

∫ T
0 α(τ)

[∫ τ
0 Ar(u)du

]
Ar(τ)dτ

= 1− κr

κ∗r + aσ2
r

∫ T
0 α(τ)[τ −Ar(τ)]Ar(τ)dτ

= 1− κr

κr + aσ2
r

∫ T
0 α(τ)τAr(τ)dτ

,

where the second step follows from (B.2) and the third from (15). Therefore, zβ/κ∗r is increasing in

aσ2
r if aσ2

r

∫ T
0 α(τ)τAr(τ)dτ is increasing in ασ2

r . To show the latter, it suffices from (13) to show

that aσ2
r/κ∗r is increasing in aσ2

r . Eq. (15) implies that

aσ2
r

κ∗r
=

1− κr
κ∗r∫ T

0 α(τ)Ar(τ)2dτ
.

The numerator in the right-hand side is increasing in aσ2
r , and the denominator is decreasing in

aσ2
r from (13). Therefore, aσ2

r/κ∗r is increasing in aσ2
r .

The third and fourth claim follow because the functions (κ∗r − κr)/κ∗r and (κ∗r − κr)Ar(τ) are

increasing in κ∗r. To prove the fifth claim, we note from (13) and (28) that γr is smaller for larger

a and σr if the function

g(κ∗r) ≡
κ∗r − κr
κ∗r

1−e−κ∗rτ − 1
τ
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is increasing in κ∗r. The derivative g′(κ∗r) is positive if κ∗r/κr < g1(κ∗rτ), where

g1(x) ≡ x
1− e−x − xe−x

(1− e−x)2 − x2e−x
.

The function g1(x) is minimized for x = 3.1676 and the minimum value is 5.2752. Therefore, the

function g(κ∗r) is increasing in κ∗r if κ∗r < 5.27κr.
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