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Abstract

This methodological paper proposes a new class of stochastic processes with appealing
properties for theoretical or empirical work in finance and macroeconomics, the “linearity-
generating” class. Its key property is that it yields simple exact closed-form expressions for
stocks and bonds, with an arbitrary number of factors. It operates in discrete and continuous
time. It has a number of economic modeling applications. These include macroeconomic
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1 Introduction

This methodological paper proposes a new class of stochastic processes that has a number of
attractive properties for economics and finance, the “linearity-generating” (LG) processes. It
is generates closed-form solutions for the prices of stocks and bonds. It is simple and flexible,
applies to an arbitrary number of factors with a rich correlation structure, and works in discrete
or continuous time. These features make it an easy-to-use new tool for pure and applied financial
modelling.

The main advantage of the LG class is that it generates, with very little effort, multifactor
stock and bond models, in a way that incorporates stochastic growth rates of dividend, and
stochastic equity premium. Stock and bond prices are linear in the factors — hence the name
“linearity-generating” processes.

Economically, a process is in the LG class if it satisfies two moment conditions: the expected
growth rate of the stochastic discount factor (multiplied by the dividend, if one prices stocks), is
linear in the factor. And, the expected growth rate of the stochastic discount factor, times the
vector of factors next period, is also linear in the factors. Given only those moments, one can
price assets. Higher order moments do not matter. In many applications, the variance of processes
can be changed almost arbitrarily, the prices will not change. The fact that a few moments are
enough to derive prices makes modelling easier.

Linearity-generating processes are meant to be a practical tool for several areas in economics.
They are likely to be useful in: (i) macroeconomics, in models with stochastic trend growth rate
or probability of disaster, (ii) asset pricing, for models with stochastic equity premium, interest
rate, or earnings growth rate, and (iii) fixed-income analysis.

Several literatures motivate the need for a tool such as the LG process. Many recent studies
investigates the importance of long-term risk for asset pricing and macroeconomics, e.g., Bansal
and Yaron (2004), Barro (2006), Bekaert et al. (2005), Croce, Lettau and Ludvigson (2006),
Gabaix and Laibson (2002), Hansen, Heaton and Li (2005), Hansen and Scheinkman (2006),
Julliard and Parker (2004), Lettau and Wachter (2007), Parker (2001). The LG process offers a
way to model long-term risk, while keeping a closed form for stock prices. In addition, there is
debate about the existence and mechanism of the time-varying expected stock market returns,
e.g., Campbell and Shiller (1988), Cochrane (2006), Goyal and Welch (2005) and many others.
Because of the lack of closed forms, the literature relies on simulations and approximations. The
LG process offers closed forms for stocks with time-varying equity premium, which is useful for
thinking about those issues.

The motivation for the LG class is inspired by the broad applicability and empirical success of



the affine class identified by Duffie and Kan (1996), and further developed by Dai and Singleton
(2000) and Duffie, Pan and Singleton (2000), which includes the Vasicek (1978) and the Cox,
Ingersoll, Ross (1985) process as special cases. Much theoretical and empirical work is done with
the affine class. Some of this could be done with the LG class. Section 4.3 develops the link
between the LG class and the affine class. The two classes give the same quantitative answers
to a first order. The main advantage of the LG class is for stocks. The LG class gives a simple
closed-form expressions for stocks, whereas the affine class needs to express stocks as an infinite
sum. Hence, while the affine class can be expected to be remain for long the central model for
options and bonds, one can think that the LG class with be most useful for stocks.

Closed forms for stocks, or perpetuities, are not available with the current popular processes,
such as affine models those of Ornstein-Uhlenbeck / Vasicek (1977), Cox, Ingersoll, Ross (1985),
or models in the affine class (Duffie and Kan 1996). Several papers have derived closed forms
for stocks. Bhattacharya (1978) and, in another form, Menzly, Santos and Veronesi (2004),
derive a closed form for asset prices, and their process turns out to be to belong to the LG
class (see Example 11).! Bakshi and Chen (1996) derive a closed form, which is an exponential-
affine function of a square root process. Mamayski (2002) derives another closed form, though
in a non-stationary setting. Cochrane, Longstaff and Pedro Santa (2006) contains nice closed
form solutions. Finally, we confirm results from Mele (2003, 2006), who obtains general results
(particularly with one factor) for having bond and stock prices that are convex, concave, or linear
in the factors. LG processes satisfy Mele’s conditions for linearity. Mele, however, did not derive
the closed forms for stocks and bonds in the linear case.

Finally, we contribute to the vast literature on interest rate processes, by presenting a new,
flexible process. The main advantage is probably that, because the LG processes are so easy to
analyze, they lend themselves easily to economic analysis. Gabaix (2007) develops a unified model
of stocks and bonds, and many financial puzzles, using the LG class.

This paper stipulates (“reverse-engineers”) a process for finding desirable properties for the
pricing kernel. In this it follows a productive literature represented by, e.g., Abel (2007), Campbell
and Cochrane (1999), Cox, Ingersoll, Ross (1985), Pastor and Veronesi (2005), Ross (1978), Sims
(1990), and, particularly, Menzly, Santos and Veronesi (2004).

Section 2 is a gentle introduction to LG processes, with some simple examples of LG processes.

Section 3 presents the discrete-time version of the process. Section 4 presents the continuous-time

'Tt is indeed the Menzly, Santos and Veronesi (2004) paper that alterted me to the possibility of a class with
closed forms for stocks. On the economic side, this article originates from a lunch with Robert Barro, who was
expressing the desirability of a model with stochastic probability of disaster. That conversation made me search
for tractable ways to address this question, and led me to LG processes.



version of the LG process. Section 5 shows some extensions, one to option pricing, one to time-
dependent coefficients. Section 6, which is more technical, studies the range of admissible initial

conditions. Section 7 concludes.

2 A simple introduction to linearity-generating processes

This section presents some examples, from very simple to slightly more complex, that give a flavor

for LG processes.

2.1 An elementary example: Generalized Gordon formula in discrete time

We start with a very simple, almost trivial example — the Gordon formula in discrete time.? We

want to calculate the price:

P = FE;

of a stock with dividend growth:

=149 (1)

g+ is the trend growth rate of the stock, and we want it to be autocorrelated (the i.i.d. case
is trivial). This is a prototypical example of stock with stochastic trend growth. As the next
example will perhaps make clearer, even in this example, simple processes for g; typically give
intractable expressions.

Let us reverse engineer the process for g;, and see if we can find a way to obtain a linear
(“affine” to be more formal) expression for the price-dividend ratio, i.e. if the P/D ratio can have

the form:
L2
Dy

for some A, B. The arbitrage equation for the stock is

= A+ By (2)

1
P.=D E, [P, 3
t t+1+r ¢ [Prit1] (3)
i.e.
P, 1 D P,
Sy Et{ t+1 t+1]
Dy 147 Dy Dy

2This example is so simple that it would not be surprising if it had already been done elsewhere, even though
I did not find it in the previous literature. However, it is clear that LG processes (including the general structure
with several factors, stocks bonds and continuous time) as an identified class presented in the present paper first.



Plugging in (1) and (2), the arbitrage equation reads:

A+Bg =1+ Ei (14 gt) (A+ Bgiy1)]

1+r

i.e.

A B
A+Bgt—1+1—_H(1+gt)+1—+r(1+gt)Et[gt+l] (4)

If g is an AR(1), i.e. Et[gi+1] = pgt, then (4) cannot hold: we have linear terms on the left-hand
side, and non-linear terms on the right-hand side.

However, (4) can hold if we postulate that g; follows the following “twisted” AR(1):

Linearity-generating twist: Ey [g¢11] = lifh (5)
gt

If g; is close to 0, then to a first order, Ey [gi+1] ~ pgt, so that g;+1 behaves approximately like an
AR(1). It’s a twisted AR(1), because of the term 1+ g; in the denominator. However, in many
applications, g; will be say within a few percentage points from 0, so materially, the twist is small
(more on this later).

If (5) holds, then (4) reads:

A B
A+Bg =1+ —(1 —_—
+ DGt +1+r( +gt)+1+7,,09t

which features only linear terms, and admits a solution. Indeed, we obtain A =1+ A/ (1 +r),
ie. A=(1+r)/r,and B=A/(1+r)+ Bp/(1+7),ie. B=A/(1+7r—p). Finally, plugging
those values of A and B back in (2) gives:

Pt 147 gt

=t = 1+ 6

Dy r < * 14+r—p (6)
Conclusion: (6) is the solution of (3), and by the usual arguments, the price-dividend ratio is given
indeed by (6).

Example 1 (Simple stock ezample with LG stochastic trend growth rate) Consider a stock with
dividend growth rate g, with Dyy1/Dy = 1+ g4, and the linearity-generating “twist” for the growth

rate:
Pt
1+ g

Eylgi+1] = (7)

oo
with price P, = E; ZDt+s/ (1+7)°

s=0

. Suppose that, with probability 1, Vt,g: > —1. Then, the




price-dividend ratio, Py/Dy is:

Pt 147 gt
= = 14+ ———. 8
Dy r <+1+r—p> ®
Also:
1—p"
E¢[Dypr] = 1+ =, % Dy (9)

In other terms, we can price finite maturity claims — “bonds”. The rest of the paper develops this

systematically.

A few remarks are called for. Eq. 7 imposes just one moment conditions. Higher order
moments do not matter for the price. For instance, we could have a complicated nonlinear
function for the variance of the growth rate, it would not affect the stock price.

For g > —1 to be possible for all ¢’s, we need restrictions. Stability analysis of the process
(and further analysis developed later in the paper) gives g; > p — 1. In particular, the variance
has to go to 0 near that boundary. 3

We next turn to the continuous time version of the above process, before then turning to richer

examples.

2.2 The generalized Gordon formula in continuous time

We extend the discrete-time process above to continuous time. Consider a stock with dividend
Dy = Dgexp < fg gtdu>. g¢ s the (stochastic) growth rate, and can be decomposed g = g« + 7y,
where the constant g, is a trend growth rate, and ~, a fluctuation around the trend. The discount

rate is r, and the value of a stock at time ¢ is, assuming R =r — g, > 0,

P, =E [/tooexp(—r(s—t))l)sds] =FE [/tooexp (—/ts(r—g*—vu)du> ds] Dy

so that the price-dividend ratio is:

P/D, = E, [/too exp (—R (s— ) + /t vudu> ds] . (10)

This paper proposes a process for v, that yields a closed-form for (10). Before doing this, it

is useful to examine the most natural process, which is to take 7, to be an Ornstein-Uhlenbeck,

3The reason is that the function g — pg/ (1 + g) has two fixed points, 0 and p — 1, and the process needs to stay
on the right side of the repelling fixed point, p — 1.



dry; = —¢y,dt + 0dB;. Calculating (10) yields:

—¢T 2

—2¢T 3
Ve + ;7)3 (ng +2e97 — %)} ar - (11)

Pt/Dt—/ exp [—RT—i—1L
0 ¢

which is complicated and has no known closed-form expression. Likewise, a Cox, Ingersoll Ross
(1985) process does not yield a closed form for the stock price.
However, a slight modification of the growth process makes prices completely tractable. Con-

sider, the continuous-time version of the discrete-time process (5).*

Example 2 (Generalized Gordon growth formula with LG stochastic trend growth rate) Consider
a stock with dividend growth rate gy = g« + v;, with

dv, = — (¢, +77) dt + o (v,) dBy, (12)

where o () is an essentially arbitrary function, but v? must be —1. Consider the price P, =
E; U;oo exp (—rt) Dsds]. If the process is defined in [t,00), the price-dividend ratio, P;/Dy is:

1 YVt
P,/D; = 1+ —" . 13
/D T—g*< +7‘—g*+¢> (13)

5

The above example exhibits general traits of LG processes.

As in (13), the price of assets are linear (affine) in the state variable — here, 7,, which motivates
the name “linearity-generating” process for (12).

Surprisingly perhaps, the volatility term o (vy,) does not appear in the final expression of the
stock price: o (v,) can by multiplied by any number without changing the stock price. This gives
much modelling flexibility.

1The limit comes from the following heuristic reasoning. Set g; = ~,At, where At will be small, and p = 1—@At.
Eq. (5) becomes:

-1 —q?
Ei [ge+at] — gt = 1+ta /—)ftgt — gt = 7@ 1 _)'_g;t I
and dividing through by At,
—¢v =i
E; [7t+At} — Yt = L LAt

147, At

so, taking the limit At — 0, E; [dy,] = (—¢y, —77) dt.

’The result in Example 2 appear new to the literature. The Fisher-Wright process (e.g., Karlin and Taylor
1982) does contain a quadratic term, but it has not been applied to the pricing bonds or stocks. Also, it is more
special than the LG class, because it imposes a specific functional form on the variance. Driessen, Maenhout and
Vilkov (2005) and Cochrane, Longstaff, and Santa-Clara (2006) apply the Fisher-Wright process. Other papers
introduce different quadratic terms in stochastic process, for instance Ahn et al. (2002), Constantidines (1992),
Lonstaff (1989), but they do not take the form of this paper.



There are drawbacks to having a stock price linear in the growth rate, and independent of
volatility, as in some models (Johnson 2002; Pastor and Veronesi 2003) the link between volatility
and stock price is important. Nonetheless, in many economic situations, this link is more an
annoying side effect. Arguably, in many situations where LG models can be used, the gain in
tractability in seeing the volatility terms drop out outweighs the cost. In any case, if when one
thinks that the volatility effects are important, LG processes can be modified to incorporate them
— see Example 12 below.

We need an extra term in the drift process, here —7y7dt, to get the LG properties. In many
applications, the term is likely to be small quantitatively. For instance, if we think that the
deviation from the mean (]v,|) is less than 5% per year typically (which is plausible for the
predictable deviation from the trend growth rate, or the trend interest rate), then the extra
drift term is less than (5%)? = 0.25% per year. Hence, often, the extra drift term will not
materially change the importance quantitative properties of the process. However, it confers a
great tractability to asset prices.

Some care must be taken to make the process defined in [t,00). This will be developed later
in the paper, and is illustrated in Figure 1. In the context at hand, a sufficient condition is that
o () vanishes in a right neighborhood of 7 = —¢, and that the initial value of ~, is above —¢.
This is analogous to the fact that the volatility must go to 0 as the interest rate goes to 0 in the

Cox, Ingersoll and Ross (1985) process.

u(y)=—dy—r*

Figure 1: Illustration of the drift i (7) = —¢y — 4% of the growth rate. If v > —¢, the process
is stable, i.e. mean reverts to 0. However, if v < —¢, the process is unstable, and diverges away
from 0. That is why we impose 7y > —¢. To make sure that the process remains in (—¢, 00),
we impose that the volatility goes to 0 fast enough before at some v > —¢. See Appendix A for
details, and Section 6 for the generalization to several factors. B



The economic interpretation of (13) is the following. When the deviation of the growth
rate from its trend (v, = g: — g«) is 0, then P,/D; = 1/ (r — g«), which is the traditional Gordon
formula. When the growth rate is above trend (v, > 0), the P/D ratio is higher, as future dividends
have superior growth. This initial superior growth ~, decays at rate ¢, and is discounted at rate
T — gx, so that its total duration is 1/ (r — g« + ¢). So the cumulative impact of the superior
growth is the v,/ (r — g« + @).

Let us now see why the price is a linear function of the initial growth rate.

A heuristic proof The proof of the result will be made fully rigorous in the rest of the
paper, but a simple “plug and verify” derivation is instructive. Call the price-dividend ratio
Vi = P;/Dy = Ey [P exp (— [ (R—1,)du) ds, with R = r — g,. It is analogue to the price of
a bond that gives 1 in every second, with an instantaneous interest rate of R — ,. Hence, the

arbitrage equation for V4 is:
0=1-(R—7)Vi+ E[dV] /dL.

As v, is the only state variable as far as V} is concerned, we seek a solution of the form V; = V (vy,).

Call the drift of ~y, where the drift of v is

w(y) =—¢y—~>

Ito’s lemma gives: Ey [dVi] /dt = u () V' (v)+ @V” (7), and the arbitrage equation is the classic

equation:

—1_ _ / m "
0=1-(R-=V)+prMV () +—=V"(7) (14)

We look for a solution affine in v: V () = A + B7. The functional form implies V" (v) = 0,
so that, if the solution is correct, the o2 () term will not matter. This explains why there are no
o terms in the final expression (13).

Substituting V (y) = A+ By into (14), yields:

0 = 1-(R=7)(A+By)+ (-7 —7%) B+ 022(7) 0
= 1-RA+~(A—RB—¢B)++*(B—-B) (15)

The key simplification is that the terms in 72 cancel out — this is where the LG term 7 matters.

To solve the last equation, we just set to 0 the constant and the < term, which gives A = 1/R,



and B = A/ (R + ¢), which gives.

1 gl
Vi) == (14T
which is the announced result, as with R =r — g..
If the term 72 had been absent of the drift (as in an Ornstein-Uhlenbeck process), or been
present with a coefficient different from —1, the cancellation of the 42 in (15) would not have

occurred. [

RO o)

90 9

Figure 2: Why the price can be linear in the factor gg. The price Py, a sum of exp ( fg gtdt>,

is a convex function of future growth rates g;. But, for instance in the deterministic version of
the process, future growth rates are a concave function of the initial growth rate, Eg[g: | go] is
concave in gg. Hence the price is a composition of a convex function, composed with a concave
function the initial growth rate. Hence, its concavity is undertermined. For the LG process, the
price Py is precisely a linear function of the initial growth rate gq.

Figure 2 illustrative an intuitive reason why the price can be linear in the initial growth rate
go- The price, a sum of exp ( f(;F gtdt>, is a convex function of future growth rates ¢g; . But, for
instance in the deterministic version of the process, future growth rates are a concave function
of the initial growth rate, Eg[g: | go] is concave in go.5 Hence the price is a composition of a
convex function (namely, exp < fOT gtdt>), with a concave function, (namely, g: (go)) the initial
growth rate. Hence, its concavity is indeterminate. For the LG process, the price is precisely a

linear function of the initial growth rate.”

STf the process is deterministic, then ~, = eiét’yo/ (1 + Yo (1 - efm) /gzﬁ)7 a concave function. This can be shown
directly, or by Proposition 1.
"However, Example 12 shows how to get convexity effect with the LG process. Mele (2003, and forth.) clarifies

10



The next example shows an example with several factors.

2.3 A richer example: A price-dividend ratio with time-varying growth rate

and risk-premium

LG processes generalize to several factors. Suppose that the stochastic discount factor M; and

the dividend process D; follow

th/Mt = —rdt—%dzt
th/Dt = gtdt+0'd2’t

The price of the stock is P, = E; [ ftoo M SDsds] /M. m is a the stochastic equity premium, and
gt is the stochastic growth rate of dividends.
We assume that m; and g; follow the following LG process, best expressed in terms of their

deviation from trend, 7y = T — T«, G+ = Gt — Gx,

dge = —¢,gdt + gy (Te — Gi) dt + o+ (Gt, 7t) - dBy
dry = —¢ mdt + 7 (T — g¢) dt + o (G4, 7)) - AW

where the (B, W;) is a Wiener process independent of z;, that can have arbitrary time- or state-
dependent correlations. We suppose that the process is defined in [¢,00). Again the processes
dg; and d7y are to a first order linear, but with quadratic “twist” terms added, g; (7¢ — g;) dt and
7t (T — i) dt respectively.

Under the above assumptions, it is standard that P;/D; = By [ [ exp (— [ (r + 7y — gu) du) ds].
The LG terms imply the following Proposition.

Example 3 (Generalized Gordon formula, with stochastic trend in dividend growth, and stochas-

tic equity premium) In the above setup, the stock price is

Dy Gt — gx 7rt_7r*>
p=2t(y _ . 16
t R<+R+¢g R+ o, (16)

with
R=r+m— g«

how prices can be concave or convex as a function of state variables.

11



In this expression the price-dividend ratio varies because of a stochastic equity premium (), and

a stochastic dividend growth rate (g4 ).

It is a good and simple exercise to derive the above formula directly, from the arbitrage
equation 1 — (r +m — g¢) (P/D), + E[d(P/D),] /dt = 0. Otherwise, formula (16) comes from
Theorem 4 below.

Equation 16 nests the three main sources of variations of stock prices in a simple and natural
way. Stock prices can increase because the level of dividends increases (that’s the D; terms),
because the expected future growth rate of dividend increases (the g; — g« term), or because the
equity premium decreases (the m; — 7, terms). The two growth or discount factors (g; and )
enter linearly, weighted by their duration (e.g., 1/ (R + ¢,.)), which depends of the speed of mean-
reversion of the each process (parametrized by ¢, qbg), and the effective discount rate, R. As in
the previous example, the volatility terms do not enter in (16), and the price does not change if
one changes the correlation between the instantaneous innovation in g and my.

We now start our systematic treatment of LG processes.

3 Linearity-generating processes in discrete time

This section studies the discrete-time version of the LG process. As several factors are needed to
capture the dynamics of stocks (Campbell and Shiller 1988, Fama and French 1996) and bonds
(Litterman and Scheinkman 1991), we study it in the multifactor case. We want to price an asset
with dividend Dy, given a discount factor M;. The price at time ¢ of a claim yielding a stochastic
dividend Dj at date S >t is:8

P=E|Y MHTDHT] /M. (17)

T=0

For instance, the price of a zero coupon bond of maturity 1 is, with D; = 1,

Z (T) = Et [Mty1Deyr] [ (MiDy) . (18)

8Some readers may not be familiar with the stochastic discount factor. The simplest example is M; = (1 + 7')7t7
t

if the interest rate is constant. If the interest rate rs is deterministic but not constant, M; = H (1+7r)" " If,
s=1

in Lucas economy, a representative consumer with utility >, 6°U (Ct) prices assets, then M; = §'U’ (Cy). With

the external habit of Cochrane and Cochrane (1999), one can define a habit level H; such as M; = §'U’ (C; — Hy).

Absence of arbitrage guaranties that the price is a linear functional of future dividends, and under weak technical

conditions this leads to the existence of factors Miir such that (17) holds.

12



We will also calculate the price-dividend of a stock:

My 1Diyr
Z 19
I R "

P,/D,=E

3.1 Definition and main properties

The state vector is X; € R™ (n € N)and can be generally thought of as stationary, while M;D;

generally trends, and is not stationary. The definition of the LG process is the following.

Definition 1 The process M;D; (I’Xt);=0,1,2,...7 with MyDy; € R and X; € R"™, is a LG process
if there are constants o € Ry, € R*", T € R”z, such that the following relations hold date
t=0,1,2,...:

Mi1Dp 1 /
B | —————— = OX 2
t [ M,D, ] at o (20)
M 11Dy
E X = I'X 21
t[ M,D t+1 v+ LA (21)

The above conditions mean that the expected value of the (dividend augmented) stochastic
discount factor is linear in the factors. As the examples below show, it is not difficult to write toy
economic models satisfying conditions (20)-(21), e.g. in Lucas (1978) - Abel (1990) - Campbell
Cochrane (1995) economies with exogenous consumption, dividend or marginal utility processes.
Gabaix (2007) presents a fully worked-out economic model satisfying the conditions of Definition
1.

Also, models that to not directly fit into the conditions of Definition 1, could be approximated
by projected linearly in (20)-(21). Also, by extending the state vector, equations (20)-(21) could
hold to an arbitrary degree of precision. Appendix C illustrates how to approximate a non-LG
process with an LG process, including to an arbitrary degree of precision.

One interpretation of (20)-(21) is that the specify the dynamics of the factors under the “risk-
neutral measure” induced by M;D;.

There is a more compact way to summarize LG processes. Define the (n + 1) x (n + 1) matrix:

a &
=2 9) o

13



and the process with values in R*+!

M; Dy
v ( M, D, ) _ | mDix}
My Dy Xy
M, D, X7
so that with vector v/ = (1,0, ...,0),
M, =Y, (23)

Y; stacks all the information relevant to the prices of the claims derived below. ? Conditions
(20)-(21) can be written:
By [Yi1] = QY. (24)

Hence, the (dividend-augmented) stochastic discount factor of a LG process is simply the projec-
tion (Eq. 23) of an autoregressive process, Y;.

The basic pricing properties are the following.

Theorem 1 (Bond prices, discrete Time) The price-dividend (18) of a zero-coupon equity or

bond of maturity T is, with I, the identity matriz of dimension n

T
21 = (1 oﬁ(ji)(}é) (25)

When v = 0, it can be expressed:

al'l, —TT

_ 7T
Zt<T)—C¥ +4 aIn—F

Xi (26)
Proof. The proof is very easy. Recall (24), E; [Yi41] = QY;. Iterating on T, it implies that for
all T > 0,

E; [Yiyr] = Q'Y (27)

90ther assets, e.g. options, require of course to know more moments.

14



Hence, using the definition of the zero-coupon (18), and (23)

Zi(T) = (MyDy)™ ' By [MyyrDiyr) = (MiDy) " By [V'Yiir| = (MDy) ™ V' E [Yiir)
—  (MD) /Oy, = /T ((Mtz)tr1 Yt>

= Z/IQT();>:(1 0n>QT<;t>

i.e. Eq. 25. The formula for v = 0 comes from Lemma 3 in Appendix B. =

For instance, when D; = 1, the above Theorem can price bonds, with n factors, in closed form.

In many applications (e.g., the examples in this paper), v = 0, which means the state variables
are re-centered around 0. For instance, the state variable is the deviation of the equity premium
from its trend value.

The second main result is the most useful property of LG processes: the existence of a closed-

form formula for stock prices.

Theorem 2 (Stock prices, discrete time) Suppose that the process is defined from t on, and that
all eigenvalues of Q have a modulus less than 1 (finiteness of the price). Then, the price-dividend

ratio of the stock (19) is:

1
l—a—0 I, —T)y

e GO ()

Proof. We use (25), which gives the perpetuity price:

[ee] 00 1 )
=Sz o (S0) (1) o ()
TZ:O TZ:O Xi Xy

S5 o O is summable because all eigenvalues of  have a modulus less than 1. We use Lemma

2 to calculate (I, — Q) ™', and conclude.’’ m

P/D; = (1 4§ (I, D)t Xt) (28)

""There is a more elementary heuristic proof. We seek a solution of the type P;/D: = Vi = ¢ — 1 + k' Xy, which
we know exists, by integration of (53). The arbitrage equation is: V; =1+ FE [% Vt+1}, ie.

Mt+1Dt+1

! —
c+hXi=1+FE M, D,

(c+hXe)| =14c(a+8X)+h (v+TY:) = [L+ca+h'y] + [cd +h'T] X,
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Theorem 2 allows to generate stock prices with an arbitrary number of factors, including

time-varying growth rate, and risk premia.

ry o o0
To make formulas concrete, consider the case where I' is a diagonal matrix: '=| o -, 0
0o 0 I,
Diag (T'y,...,T'y). Then, % = Diag ((o® —=T7) /(o —T})),' so that (26) and (28) read:
"ol —TT ;
i=1 !

n o 0;X;
L+ 1

n 0
l—a—=300 e

3.2 Some examples

Example 4 A Gordon growth formula with time-varying dividend growth.

In this example, we generalize our introductory stock example. Suppose that the interest rate

is constant at r, dividend Dy, and the growth rate of dividend is:

D
%tl = (14+g0) @ +z) (1+741) (32)

o
E; [l‘t+1] = %;t (33)

where 7, is some unimportant i.i.d. noise, greater than -1, independent of the innovation to
Z¢41. xy is the deviation from the trend growth rate. If z; was an AR(1), it would follow
Ey [x441] = pxy. Instead, the process is slightly modified, to (33), to make the process LG. Indeed,
with M; = (1 4+ 7)7", and using the notation 14+ R = (14 7) /(1 + g.), we have:

M1 D
E, [3\}1—5“} (1+z)/(1+R)
tDt
M 1Dy M 11Dy (1+z¢) pay PT
B | —————= E,|————— | E = =
t{ M,D, ! v e R A ey o gy

In the above equation, the 1+ x; terms cancel out, because of the 1+ x; term in the denominator

of (33). We designed the process so that the LG equation (21) holds.

ie. (i) e =14ca+h'yand (i) B = ¢ + W'T. (i) gives ' = ¢ (1 —T)"", and plugging in (i) yields
c[l—a—¥¢(1- ! 7] =1, hence ¢ and the announced result.

LTt A matrix, and f : R - R, is analytic with f(z) = >.0° ) faz™ then f(A) = > 07, faA". If
A = Diag (a1,.an), f (4) = Diag ( (a1) - f (an))
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We have a LG process, for M;D, (1, x;), with:

g (V@+R) 1a+R) ) _ [a ¥
- 0 p/A+R) ) "\ 4 T

Hence, we apply Theorem 2, with a dimension n =1, v =0, § = I' = ap. We obtain, for the

price, P = Bt Y232 Divs/ (147)%, P/ Dy = == (140 (1L = 1) 7 X0 e
1+ R 1
P/Dy=—= (14— 34
t/ Dy R <+1+R—pwt> (34)

Formula (34) is the discrete-time analogue of (13), with very small 7 and g, and the substitu-
tions p = 1 — ¢, for a small ¢. The upshot of this example is that, in discrete time, LG processes
take the form (33).

Example 5 Flexible LG parametrization of state variables the stochastic discount factor

Take an n—dimensional process X;, such that

Myi1Dypiq
ﬁ = o+ ,B/Xt + Et+1 (35)
v+ TX; Ey [et417011]
X = Ll -t =l 36
t+1 atgx, T T T, (36)

with Ej [et41] = 0, Bt [nt +1] = 0, but no other restrictions are necessary. Then, Eq. 20-21 are
satisfied.

The above equations give the LG counterpart of the popular “affine” parametrization, %
exp (A+ B'Xy), Xiy1 =7+ Xy + wpgr, with ugq Gaussian. It is at least as flexible.

To interpret (36), consider the case v = Fj |:€t+177t +1] = 0. Eq. 36 expresses that, when X} is

small,
I'X; r

EXenl = 257%, ~ &

Tt

which means that X; follows approximately at AR(1). The corrective 1+ 3’/ - X; in the denom-
inator is often small in practice, but ensures that the process is LG.

In many applications, there is no risk premium on the factor risk, so that F; [5t+177t +1] = 0.
However, when there is a risk-premium equation (36) means that it is enough to know that
the process under the “risk-neutral” measure. Hence, in a first step, one can model the “risk-

neutral” process for X;, fit it to prices, and then later extract the risk-premium component,

Mir1Dgy1
cov <TDt’ Xt+1 .

17



Section 6 provides conditions to ensure M; > 0 for all times.
Example 6 A multifactor bond model with bond risk premia (in discrete time).

There are n factors r;;. The stochastic discount factor is:

M 1 n
t+1

_ 1 } T £ 37
n[t 1 Tx = Jt t+1 ( )

where Eye;11 = 0, and the process has to be defined for all ¢'s, but otherwise ;11 is unspecified,

and can be heteroskedastic. The short term rate is r, = 1/FE} [M]\Z—Jtrl} — 1 ~r,+ > ry if the r's

are small. Each factor r;; is postulated to evolve as:

- _ _ Pilit T B E; [5t+1 : 777,’7t+1]
L= TN S i t+1 By [Myor /My

(38)

where Fin; ;.1 = 0, but the n; ,,; can otherwise have any correlation structure.

This is a LG process. Indeed, the last equation implies:

My 1
Ey [Ttn’tﬂ] = mﬂﬂ"z’,t

So the € matrix is for the process M; (1,714, ..., 7n¢) is:

1 -1 ~1
1 0 pp 0 O
T 0
0 0 0 p,

so that by (22) and (26), the price of the bond of maturity 7 is:

Zt(T)—;)T <l—zn:1_p?7’it> (39)

(1+7ﬂ* i=1 1_p7,

This expression is quite simple, and accommodates a wide variety of specifications for the
factors, Eq. 38.

The risk premium on the T" maturity bond is:

T—1

lfpz-
Z T-1 —,  COU \Et+1, 1)
Risk premium = cov (r41, Zia ( ) = 27 i 1( 0y ZytH) (1+7s) (40)
Zu(T) 1= =oeru
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Hence we easily generate an explicit yield curve. With a parametrization for cov (€t+17 Mit +1),
the above expression makes prediction for bond risk premia across maturities. It would be in-
teresting to compare them with evidence, e.g. from Campbell and Shiller (1991), Cochrane and
Piazzesi (2005, 2006), Fama and Bliss (1987). The next example sketches such an example.

Example 7 A bond model that is consistent with the empirical findings of Fama-Bliss (1987),
Campbell Shiller (1991), and Cochrane Piazzesi (2006).

We normalize the central interest rate to 0. We postulate:

Mg
—— = l—rtem
M, +
p TtEt4+1
Ti+1 — + Vi1
1—17 vary (e441)
Pr
(L s el + N4

where €, v,n have mean 0, and &; is uncorrelated with (vs,7n,). This means that the short term

rate, 1, mean reverts, but shocks to it carry a risk-premium, ;. The size of the risk premium

is itself mean-reverting, at rate p,.. We have Ej [Mj\gl} =1—r,E [Mj\zrlrtﬂ} = p,r¢ + w4, and

1 -1 0
E, [M]\zglﬂ't+1:| = pam.50 My (1,74, m) is a LG process with matrix @ = |0 p, 1 [. Hence
0 0 p
by (25), the price of the bond of maturity T, is
L—pl  1-pf
1—pl T=p, ~ Top,
Zthl— T’I”t—i- - ﬂ—’ﬂ't 41
( ) 1- Pr Pr = Px ( )
The forward rate is f(T) = (Z(T) - Z(T'+ 1)) /Z (T), i.e.
5 e (5 =5e) 7]
T) — T?“ + ( T ™\ r 42
5:(T) Zy (T) [th pr—pn) “2)
The risk premium on the bond is: II; (T'+ 1) = %Z;)“(T)), ie.
1—pl
1—p, Tt
IL(T) = =————— 43
D=z (43)

Take the limit where the short rate is very persistent p, ~ 1, while the risk premium is less

persistent (e.g. p, = 0.7), e.g. moves at business cycle frequency (see Cochrane and Piazzesi
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(2006) for evidence supportive of this benchmark). Then

T7Tt

W=z

~ T'm (44)
e.g. we get the Cochrane and Piazzesi (2005) evidence that the risk premium on bonds grows
linearly with the bond maturity.

Gabaix (2007) develops this example further, with an economic microfoundation, and reaches
the following conclusions. We can explain the Fama-Bliss evidence, that forward rates predict
bond premia. That is, because f; (T') contains a m; term. Likewise, the model generates the
Campbell-Shiller facts on the movement of yields. Finally, why the “tent shape” of Cochrane
and Piazzesi (2005)? Look at equation (42), in the limit p, ~ 1 (persistent short term rate), and
px < 1. As a function of maturity, the pl is roughly linear in 7', while the —pZ term is very
concave in T. Hence, a concave tent-shape average of forward rate will capture the m; term,
and eliminate the 7; terms. This is why the tent-shaped factor of Cochrane and Piazzesi (2005)
approximate risk premia: this linear combination of the forward rates purges r;, and still loads on
m;. Hence the above simple LG model is broadly consistent with the empirical findings of Fama

Bliss, Campbell Shiller, and Cochrane Piazzesi.
Example 8 Stock price with stochastic growth rate and stochastic equity premium

Consider a dividend process:

D1
D, - L+gt+n1
M1 _ 1 1— ¢ n
M, 1+7r varg (77t+1) i
so that
M1 Dy 1
E = 1 —
| - s )
Postulate the following processes for g; and 7 :
~ - 1+ Ox — T g
gi+1 = [p—— Pg9t T €ryq
~ 14+ge —me T
T = ———p; Tt +E
t+1 1+ g — 7 PrTt T €ty

where at time ¢ f,; and €] ; have expected values 0 and are uncorrelated with 7;,,.The term

(A+gs—)

1o~ will be close to 1 in many applications. Defining: o = (1+ g, —m)/(1+7r), the
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Gordon discount factor, and 7 = ¢ — Tx, Gt = gt — Gx,

M; 1 D G — 7
E, t+1 Pit1 | a gt — Tt
M; Dy 1+7r

and

M1 Diyq M1 Diy
E — g, | =4
’*[ M, D, It 1M, D,

~ 1 1+ Ox — Tx ~
E - - 1 — —_— —
t [Gt+1] 1 (14 g¢ — ) T +g—m Pgdt = QPyGt

The analogue expression holds for 7;. The process Y; = M;D; (1,7, g:) is LG, with Q matrix:

a 1/1+r) =1/(1+7)

Q=10 ap, 0
0 0 op,
Applying (28) yields:
1 —+7r gt — gx T — Ty
P/Di=——|1 45
t/ t 7’+7T*—9*< +1—Ong+1—ap7r ( )

In the limit of small times, with p; =1—¢,, pr =1 — ¢, with r and ¢ small (qﬁg is the speed
of mean-reversion of g to its trend), we obtain:
gt — g« Tt — Tx

1
P/D;=—= 11 ith R = % — Ox 4
y | Dy R( +R+¢9+R—i—q§ﬂ> with R=r+m, —g (46)

which captures that the P/D ratio can change because of movements in the expected dividend

growth rate (g)or the equity premium (7).
Example 9 Markov chains

There are n states. In state i the factor-augmented dividend grows at a rate G;: M1 Dyv1/ (MyDy) =
G;. Call X;; € {0,1}, equal to 1 if the state is i, 0 otherwise. The probability of going
from state j to state 4 is called p;;. Then, M;D;(1,Xq,...,Xy) is a LG process. Indeed,
Et [—Mt&ig?l} = Zz GiXih and

M1 Dy M1 D41
Et [WXi’t+l = Et W Et [Xi7t+1] = ;Gkat zj:p’L]X]t = Z]:pZ]GjX]t
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as X Xjs = 01if j # k, and otherwise is equal to X;;X;; = X}, at exactly one of the Xj; is
different from O.

12 As many processes are (arbitrarily)

Hence, a Markov chain belongs to the LG class.
well-approximated by discrete Markov chains, they are (arbitrarily) well-approximated by LG

processes.

4 Linearity-generating processes in continuous time

We fix a probability space (QP , F, P) and an information filtration JF; satisfying the usual tech-
nical conditions (see, for example, Karatzas and Shreve 1991). The stochastic discount factor
is My. For applications, we will express the results in terms of a dividend-augmented stochastic

discount factor, M;D;. Often, it is better to imagine D; = 1.

4.1 Definition and main properties

The definition in continuous time is the limit of the definition in discrete time. The vector of

factors is X;.

Definition 2 The process (MtDt,Xt)teR+, with MyD; € R and Xy € R™, is a LG process if the
following relations hold, for all t > 0,

d (M, Dy) )
E [%] ~(b+ X)) dt (48)

with a € R, b, € R", ® € an, and I, the identity matrix of dimension n X n.

The above equations describe the process for X; under the “risk-neutral” measure induced by
M, Dy.
For instance, in the case Dy = 1 and dM;/M; = — (a + B’Xt) dt, Eq. 48 gives:

dX; = —b— (® — al,) Xydt + (B'X;) Xydt + dNy (49)

with V; € R" is a martingale. Hence, the process contains an AR(1) term, —b—(® — al,,) X3, plus
a “twist” quadratic term, (ﬁ’Xt) X;. It is a “twisted” AR(1). In many applications, X; represents

2Veronesi and Yared (2000) and David and Veronesi (2006) have already seen that this type of Markov chain
yielded prices that are linear in the factors.
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a small deviation from trend, and the quadratic term (ﬂ’ Xt) X, is small. We are agnostic about
how empirically relevant the “twist” is. It could be that it is absent in the physical probability,
but present under the risk-neutral measure.

So E;[dNy] = 0, but its component dNj, dNj; can be correlated. The simplest type of
martingale is dN; = o (Xy) dBy, for B; a Brownian motion, but richer structures, e.g. with jumps,
are allowed. As in the one-factor process, the volatility of dV; must go to zero in some limit
regions for the process to be well-defined. We defer this more technical issue until section 6.

As in the discrete-time case, we define:

(o8
w_<b‘1>> (50)

M, Dy
Y, =
M;D X,y

which encodes the information needed for prices. Conditions (47)-(48) write more compactly as:

and the process with values in R?*!

B, [dY;] = —wYidt. (51)

which is the analogue of (24). The above process leads to a discrete-time process with time
increments At, with a matrix Q = e=“2*, When At is small, Q = 1 — wAt + O ((At)2>.
Hence, there is a (n 4 1) dimensional process Y;, and a vector v/ = (1,0, ...,0), such that (51)
holds, and
My =Y, (52)

In other terms, there is a autoregressive process Y; in the background, following (51). The
(dividend-augmented) stochastic discount factor is the one-dimensional projection of it. LG
processes are tractable, because they are the one-dimensional projection of an AR(1) process.

The next Theorem prices claims of finite maturity.

Theorem 3 (Bond prices, continuous time). Given the LG process (MyDy, Xy), the price of a

claim on a dividend of maturity T, P, = Ey [Myy7Dyy7], satisfies:

Zt(T):Pt/Dt:<1 O)’expl—<z i>T]<;}) (53)
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an expression which, when b =0, simplifies to:

T /e—q)T _ e—aTIn
Zi(T)=P/Dy=e" + WXt (54)

Proof. Recall the definition of w in (50), and E} [d (Y:)] /dt = —wY;. It is well-known that this
implies:'3
VT >0, F; [Yiir] = e 7Y, (55)

Given (55) and M, = V'Y,

Zy(T) = (MyDy)™" Ey [MyyrDisr) = (MyDy) " By [V'Yoyr] = (MyDy) ™'V By [Yisr]
1 1
_ -1 7 —wT 1 —wT —1 _ . —uwT _ —wT
— (MyD) e Ty, = Ve ((MtDt) Yt>_ye ( t>_(1 On)e ( t).

i.e. Eq. 53. The formula for b = 0 comes from Lemma 3 in Appendix B. =
As an example, bond prices come from D; = 1. In many applications, b = 0, which can
generically be obtained by re-centering the variables.

From this, we can now prove Theorem 4, which is probably the most useful of this section.

Theorem 4 (Stock prices, continuous time). Given the LG process (MyDy, Xy), suppose that
all eigenvalues of w have positive real part (finite stock price). Then, the price/dividend ratio,
P,/Dy = Ey [ [7° MsDyds| | (M;Dy), is:

1-— B/q)ilXt

Blbe= g5

(56)

Proof. We use (53). The perpetuity price is:

Pt/Dt:/OooZt(T)dT:y’ (/Oooe—wTdT> . ( ); ) — V. ( ;t )

¥Indeed, to prove (55) in the case t = 0 (which is enough), set T' > 0, and define z, = e“=1Y,. Then,

E, [dz) = Ed (e““*T)Yt) - B, [d (eW“*T))] Y, + e B d (V)] = [eW“*T)wYtdt et (Cwy;) dt] =0

Hence z; is a martingale, and Eo [zr] = 20, i.e. Eo[Yr] = e “TY).
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We use the Lemma 2 to calculate w™!, and conclude. * m
To make things concrete, consider the case where @ is a diagonal matrix: ® = Diag (®q, ..., ;).
Then, e~ *7 = Diag (=), and (26) and (28) read:

L e T al ‘
Z(T) = e ¢ —3.X; 57
15 BiXi
P/D, = ﬂ (58)

n Bibi
a—= 5,

Finally, the following Propositions show that one can price claims that have dividend a linear

function of D;X;. The proofs are exactly identical to those of the previous two Theorems.

Proposition 1 (Value of a single-maturity claim yielding Dyy76' Xiy7). Given the LG process
n

Mt_Dt (1, Xt), the pT’iCG ofa claim that yzelds dt = Dt (50 + 5,Xt) = Dt Z (51'X¢t, Pt = Et [Mt+Tdt+T] /Mt,

i=1
18: ,
0 a [ 1
P = -exp | — T - D 59
an expression which, when b = 0, simplifies to:
P, =de DX, (60)

Proposition 2 (Value of an asset yielding D6’ X at each period) Under the conditions of The-
n

orem 4, the price of a claim yielding dy := D' X; = DtZ(siXit, P, = By [[° Mydyds] /My,
i=1

!
0 _, (1 §D1 (—b+ aX)
" (5) ’ (Xt) b= (61

" The following elementary heuristic proof is useful to know. We seek a solution of the type P;/D; = V; = c+h' Xy,
which we know exists, by integration of (53). The arbitrage equation is: 1 —r,V; + E [dVi] /dt = 0, i.e.

satisfies,

1= (re +8'Xs) (c+ W' X)) + 1 [b— X, + (B'X:) Xi] =0
This is satisfies if and only if the constant and the term in X; are zero, i.e. r.h'+8c+h'® =0and 1 —r.c+h'b = 0.

Hence B’ = —f'c(r. + ®)~" and 1 — ¢ [r. + ' (r« + ®) "' b, which gives ¢ = 1/ [r. + ' (r« + ®) "' b], and yields
(56).
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4.2 Some examples

We start with some stock-like examples.

Example 10 Dividend growth rate as a sum of mean-reverting processes (e.g., a slow and a fast

process).
Suppose My = e™"T, Dy = Dyexp (foT gtdt>, with g; = g. + 3 ;2 Xir and
Ey[dXy] Jdt = —¢; X5t — (g — g+) Xit

The growth rate g; is a steady state value g, plus the sum of mean-reverting processes X;;. Each
Xt mean-reverts with speed ¢;, and also has the quadratic perturbation (g — g«) Xydt. The

initial example of this paper, Example 1, is a particular case, with n = 1. We verify that it is LG.

E, [%] Jdt = —(r—g.)+ ;Xﬁ

Hence M;Dy (1, Xi¢, ..., Xnt) is a LG process, with

Xit + <—¢iXit - (Z Xi ) X ) =—(r—g«+¢;) Xu

=1

T — G -1 -1
0 r—g«+¢; O 0
w =
0 0 0
0 0 0 r—g«+0o,

We apply the Theorem 3, with a = r—g., 8 = (=1, ..., —1), ® = Diag (r — g« + @1, ..., 7" — Gu + ).

The price-dividend ratio is:

=1

1 " X;
P/D; = p— (HZir—gw@)' (62)

Each component X;; perturbs the baseline Gordon expression 1/ (r — g,). The perturbation is

X, times the duration of X;, discounted at rate r — g, which is the term 1/ (r — g, + ¢,)."

" The formula suggests the following non-LG variant. Suppose we have a process with dip, = (r4, + ary — 3) dt+
dN¢,where dN; is an adapted martingale, and is essentially arbitrary except for technical conditions. Then: V; =
(¥, + @) /B is a solution of the perpetuity arbitrage equation: 1 — r,V; + E[dVi] /dt = 0. If the process well-
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Also, the price of a claim paying a dividend at ¢ + T is:

7

n
Et [Mt—l—TDt—l-T] /Mt =€ (r—g)T (1 + Z TXZt> Dt'
i=1
Example 11 The aggregate model of Menzly, Santos and Veronesi (2004), and the Bhattacharya

(1978) mean-reverting process, belong to the linearity-generating class.

The following point is simple and formal. The Bhattacharya (1978) process is: , dD; =
10) (E - Dt) dt+ o (Dy) dz. It actually belongs to the LG class, with the state variable X; = 1/D;.
Under another guise, it is used in the aggregate model of Menzly, Santos and Veronesi (2004),
where S; is their consumption-surplus ratio, which, defining Y; = 1/S;, satisfies E;[dY;] =
k (? — Y}) dt, with . The price-consumption ratio in their economy is V; = leEt [ fooo e*PSY}/H].
In terms of the LG process, the state variable is X; := Y;, and M; = e~*t. We have E; [dM,/dt] /M; =
—pdt, and Fy [d (MY) /dt] /| (M¢Dy) = —pYi +k (? — Yt) So M, (1,Y;) is a LG process with ma-
trix w = ( p_ 0 ) The Menzly, Santos and Veronesi pricing equation 17 comes directly

—-kY p+k

from Proposition 2 of the present article, which yields V; = (k:? + th) /lp(p+Ek)]. Hence, in

retrospect, the Menzly, Santos and Veronesi (2004) process is tractable because it belongs to the
LG class.

Example 12 A LG process where the stock price is convex (not linear) in the growth rate of

dividends

This example shows how one can obtain asset prices that are increasing in their variance, a
case property that is important in some applications (Johnson 2002, Pastor and Veronesi 2003).
Consider an economy with constant discount rate r (so that M; = e~"), and a stock with dividend
D; = Dy exp (fg gsd8>, where!6

dge = — (97/2 + ¢gr) dt + /& (G2 — g2)dz

defined for ¢ > 0, then V; is the price of a perpetuity, V; = E; [ftoo e ¢ T“d”ds] For instance, with the process

d(1/ry) = ¢ (re — r*) dt + dNy, the price of a perpetuity is: Vi = (1/r¢ + ¢/7s) / (1 + ¢).
We assume 0 < G < 2(¢ — k), and that the support of g; is (=G, G), with end points natural boundaries.
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Direct computation shows that ¥; = ™71 (Dt,Dtg,Dtgtz) is a LG process, with generator w =
T —1 0
0 r+ ¢ -1/2 . By Theorem 4, the price-dividend ratio is:
—kG?  —b r+k+2¢

200 +7)20 + k+71)+2(20 + k +1)g; + g7
2r(p+1) 20+ k+r) — kG?

P,/Dy = (63)
which is increasing in the parameter G of the volatility. In this example, the state vector is
(gt, gf), which makes the price quadratic and convex in ¢;. More generally, by expanding the
state vector, the price could be a polynomial of arbitrary order in g.

We next present some bond-like examples. The general canonical LG bond case is the follow-

ing.
Example 13 A multifactor bond model, with bond risk premia (continuous time).

The following is Example 6 in continuous time. Suppose dM;/M; = —ridt + dNy, where Ny is

a martingale, and decompose the short rate in r, = ry + > | 73, with 7, a constant and:
E [d’l“it] + (dT’it, th/Mt> = [—¢iTit + (Tt - T*) Tit] dt (64)

Hence, it is enough to specify the the process “under the risk-neutral measure”. One does not
need to separately specify the dynamics of F; [dr;] and its risk premium, the (dry, dM; /M;) term.
Only the sum matters.

Then the process M; (1,71, ..., "nt) is LG, with:

0 7"+¢1 0 0
w =
0 0 0

0 0 0 r+o,
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and bond price is given by:!7

Zy(T) = e ™7 (1 - z”: 1_;&7%) (65)

i=1

The risk-premium at ¢ on the T—maturity zero coupon, 7 (7)) := — <%§T), dett> /dt, is:

Sy S iy, d M)

1- Z?:l lied,i_lT?“it

(66)

Gabaix (2007) uses such an expression to think about models that fit the known facts on bond
premia.

We study in more details the 1-factor process.
Example 14 A one-factor bond model, with an always positive nominal rate.

The following example is more here to illustrate LG process than a necessarily empirically rel-
evant interest rate process — multifactor models are necessary to capture the yield curve. Suppose
M; = exp (— f(f rsds>, with ry = ry + 73, with

dry = — (¢ — 1p) Tydt 4 dNy

where NV, is a martingale, and ¢ > 0, and 73 < ¢. We examine the LG conditions for this process:
dMy /My = —ridt = — (1« + 7¢) dt, and:

d (Mﬁ“\t) = 7mdM; + MydX; = =7 M, (’I“* + ?t) dt + M; (— (¢ — ?t) redt + O'tht)
= My (= (r« + @) Tidt + 01dNy)

Importantly, the 72 terms cancel out. So, using E; [dNy] = 0, we have a LG process:

Et [th/Mt] = —T*dt — ;'\tdt
Et [d (Mt?t) /Mt] = — (T* + (25) ?tdt

17 As bond prices are independent of volatility, the process exhibits “unspanned volatility,” a relevant feature of
the data, as shown by Collin-Dufresne and Goldstein (2002). Of course, it could be the volatility depends on the
factors directly, so that there would be a correlation between volatility and prices, but that would be an indirect
correlation, rather than a direct one via the price formulas.
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” 1
with ¥; = My (1,7;), and matrix w = " . So, the bond price is:
0 re+0o
Z,(T) = T (1 + . a) . (67)

The independence of bond prices from volatility greatly simplifies the analysis. In particular,
dN; could have jumps, which model a decision by the central bank, or fat-tailed innovations of
other kinds (Gabaix et al. 2003, 2006). One does not need to specify the volatility process to
obtain the prices of bonds: only the drift part is necessary. This leaves a high margin of flexibility
to calibrate volatility, for instance on interest rate derivatives, a topic we do not pursue here.

How can we ensure that the interest rate always remain positive? That is very easy (assuming
that the long rate r is positive). We could have dN; = o (r;) dz;, where z; is a Brownian process,
with o (r) ~ K'7%', k' > 1/2 for r in a right neighborhood of 0, and &’ > 0, so that the local drift
at r, = 0 is positive. By the usual Feller conditions on natural boundaries (see Appendix A), the
process admits a strong solution, and r, > 0 always. And, the bond price (67) is not changed
by this assumption about the volatility process. One can indeed change the lower bound for the
process (if it is less than r,) without changing the bond price.

Section 6 will detail the conditions for the existence of the process. The interest rate needs
to remains below some upper bound 7 € (74,7« + ¢), so as to not explode. One way is to assume
that o (r) ~ k(7 — )", for 7 in a left neighborhood of 7, k > 1/2 and k > 0. Given the drift is
negative around 7, that will ensure that 7 is a natural boundary, and {V¢,r, <7} almost surely,

as detailed in Appendix A.

Example 15 A model in the spirit of Brennan and Schwartz, where the factors are the short

term rate, and the perpetuity rate

A LG model answers the question that started with Brennan and Schwartz (1979): how to
provide an arbitrage-free model interest rates, where the short rate, and the console rate, are
factors. To the best of our knowledge, this is the first model that answers this question. Calling
¢, = Vi — 1/ry, the deviation of the perpetuity price from its central value 1/r,, consider the

following process:

Ey [dri] 4 (dr,dMy /M) = [=(¢+ ¢ +r)ri— (p+1) (Y +71)ch + ] dt
By [dej] + (dcj, dMy/My) = [re/re —recy + cory) di
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and the short-term rate is r, = 7, + 7}, i.e. Ey[dMy/M;] = — (r« +7}) dt. Again, in the simple
case where M; = exp (— fg rsd5>, then (dry,dM;/My) = (dc;,dM;/M;) = 0. The price of a

zero-coupon bond is:

_ —r.T —rT ﬁ (T* + ¢) eiqu (’I”* + w) €¢T> /
4l) = e te (w T 69 T ew_9 )T
1T (1 + ) (re +9) <1 pe T — ¢e“> ,
+ c

e o0 r—

while the price of the perpetuity is V; = 1/r. + ¢}. Hence, in this model, the factors are the short

term rate r, = r. + 7}, and the console price V; = 1/r, + ¢;.
Example 16 7; having a time-varying trend

In the post-Volcker era, interest rates tended to have predictable trends of increase or increase,

which may be captured by the following trend growth rate s; of the interest rate:

Eyldry] Jdt = s;+ (ry —14)?
Eildsy] Jdt = [-Ap(re—1re) — (A + @) s + (e —74) 8¢

with A, u > 0, and A + g > 0. Economically, s; is the predicted trend in interest rates, as per
the first expression. s; mean-reverts for two reasons: first, because of the —Ap (r — ry) term (s
becomes negative if interest rates are too high); second, because of the — (A + p) s; term.

0o -1

We apply Theorem 3, with X] = (r¢, s¢), 8 = (1,0), ® =
AL A4

) . We obtain:

Those examples show it is quite easy to obtain closed forms with processes that are easy to

interpret.

4.3 Relation to the affine-yield class

The affine class (Duffie and Kan 1996; Dai and Singleton 2000; Duffie, Pan and Singleton 2000) is
a very important class, that contains the processes of Vasicek/Ornstein-Uhlenbeck (1977), Cox,
Ingersoll, Ross (1985) and Balduzzi et al. (1996). It is a workhorse of much empirical and
theoretical in asset pricing. It comprises processes of the type: dX; = (b — ®X) dt + widz;, with
wpw, = o2 (H} Xy + Hp), with b, X; € R?, @ € R™ " (Hp, Hy) € R™" x RV 5 € R, z is a
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n—dimensional Brownian motion. The interest rate is r; = ry + /3’ (X — X.), where X, = <I>*1b,
is assumed to exist.

Under mild technical conditions, bond prices have the expression:
ZM(T) = exp (—rT +T (1) (Xi — X.) + 0%a (T))

where a (T') and T'(T') satisfy coupled ordinary differential equations, that typically need to be
solved numerically. This is not a problem for empirical work, but that does hinder theoretical work.
The situation is simpler if H; = 0. In that case, I'(T) = v (T), with v (T)" = g’ (e7*T — 1) /®.
Then: ZM(T) = exp (—r.T + v (T) (Xy — X.) + 0%a(T)). This expression can be contrasted
with the expression for the LG process (54):

2y (T) = e T (1+4(T) (Xe — X2)). (68)

If v (T)" X; is small, the two expressions are the same, up to terms of second order in v (T) X3,
and second order in ¢. Hence, a LG process is a good approximation if the underlying process is
in fact affine, and vice-versa. In most cases, the two values are likely to be close, so that existing
estimates of parameters in the affine class can be used to calibrate LG processes.'®

What are the respective merits of the LG and affine classes? First, quantitatively, they will
often make close predictions, as the two models yield the same prices to a first order.

The distinctive advantage of the LG class is for stocks. LG yield simple closed forms for stock

prices. However, with the affine class, a stock price can be only be expressed
oo
PMYD, = / ZM(T)dT
0

or, in discrete time, PAT/Dy = 3°0° ) ZAT (T'). Those are infinite sums of exponential expressions,
which is a great progress over stochastic sums (see Ang and Liu 2004), but still not very tractable.

Beyond their advantage for stocks, LG processes have two lesser virtues. First, bond prices are
also quite simple, and that should prove useful to theorize on bonds (Gabaix 2007). Second, they
allow a free functional form for the innovations d/V¢, which can include jumps and non-Gaussian

behavior, and a free type of heteroskedascity.

18That equivalence gives a useful way to calculate easily functionals of LG processes, that can be expressed as
a linear combination of bonds. One first works with the affine process, setting volatility to 0, doing a first order
Taylor expansion of terms in (X; — X.). One gets an expression: P = a4+ b(X; — Xu) +0(Xe — X&) + 0 (0?),
for some constant a,b. Then, one knows that for the corresponding LG process, the value of the asset is: PG =
a+b (X, — X.), exactly.
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On the other hand, affine processes are the central technique to price derivatives, whereas
this paper barely begins to study options for LG processes (section 5.3). LG processes look less
convenient for options. Some variance needs to go to 0 at the borders, this may make the fit
difficult, e.g. when pricing bond options. Also, a potential drawback of pricing bonds with the
LG process, is that, in the simplest version at least, bonds have no convexity in the LG framework.
However, multifactor LG processes can have a flexible degree of convexity (Example 12).

A nice property of affine process is that if M; is in the affine class, and ~ is a constant, then
M, is always in the affine class too, whereas LG processes do not have that property. Otherwise,
advantages of affine models are that they are well-understood, they have been estimated. It would
be very desirable to do the same for LG models.

In conclusion, LG processes have a good advantage for stocks, affine processes have a strong
advantage for options. For bonds, affine models will continue to be tremendously successful, but

LG models may complement them usefully, particularly in theoretical research.

5 Extensions

5.1 Processes with time-dependent coefficients

It is simple to extend the process to time-dependent coefficient. Suppose the process is:

E, [%} = —(a(t)+ 7 (t) Xy)dt
B [%} C(b(t) + O () X,) dt

With V; = (M, MyX;)", this is E[dY;] /dt = —w () Y;, where w (t) = ( alt) A > The

b(t) @(t)
solution is: FEy [Yr]| = exp ( fo dt) Yp. Hence, in the zero-coupon expressions, it is enough

to replace w1’ by fo t)dt. For instance, when V¢, b (t) = 0, the equivalent of (54) is:

Ll ewadt _ - [ at)dt

T a(t)dt ’
Fo/Dy =l #% + </0 0 dt) (Jo @@ —a) In)dt)IXt.

5.2 Closedness under addition and multiplication

The product of two uncorrelated LG processes is LG. The same reasoning works for

the product of two LG process. The product of two uncorrelated LG processes with respective
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dimensions dj, dz (i.e., with d; — 1 and ds — 1 factor respectively) is LG, with dimension d;ds (i.e.,
with dijds — 1 factors). The idea is simple, though it requires somewhat heavy notations.
We start in discrete time. Take two LG processes (M[,Y?), and the product stochastic
1

discount factor m; = mim?. Assume that, for any index i, j of the components, E; [Y#? Y;i({)] =

E; [Y;]ﬁ) } E; [Yﬁé{)}, a condition which is for instance verified if the processes are independent.
Then, it is easy to verify that for any vector ¥¢, F; [(¢1Y1¥) (@Z)QY%)] = FE; [wQYﬁ] Ey [¢2YT2]. In
particular, Ey [M}MZ] = Ey [M}] E, [MZ)]

Then, m; = m{m? is also the SDF of a LG process.!? The state vector is ?2 ® ??, i.e. the
vector made of the dids components 72@)7?0)7 1 = 0..nx,7 = 0..ny. The corresponding {2
matrix is Q = Q' ® Q2. This comes simply from the fact that E; [mﬁlmﬁlyﬁl ®?t+1] =
By [m 1 Xi1] @ By [m) Y]

In continuous time, suppose E [d (M{*X;) /dt] = —wXMF*Xdt, and E [d (M]}Y,) /dt] =
—wYMYYdt. Then, MM} is also a pricing kernel that comes from a LG process. The state
vector is X; ®Y; (which has dimension dyds), and the w matrix is: WwX®Y — Iny RQwY +wX ®1Iny .

As an application, consider two LG processes, ¢, and g¢, with:We now merge the two previous
examples, to incorporate both a time-varying equity premium and a time-varying dividend growth

rate. The stochastic discount factor and dividend are given as follows:
Example 17 Stock with decoupled LG processes for the growth rate and the risk premium.

Consider processes with dM;/M; = —rt — \edBy, dDy/ Dy = gidt + 01d By, where gy follows the
LG process
dgs = —¢, (gt — g+) dt — (g — g+)” dt + N}

The risk premium, 7y = Aoy, follows the LG process:
dry = —¢ (w1 — ) dt + (my — 74)2 dt + ANT

where N/, N[ are martingales. Assume that the processes dNJ,dNJ and dB; are uncorrelated.
Then, the price of a stock, P, = Ey [ fooo MtDtdt] /Moy, is, by the reasoning of the previous section,
P,/Dy = E; [[Z,exp (— [7_, (r + 7y — gu) du) ds]. In virtue of the above reasoning,

E [exp ( | e gudu>] -y [exp ( | _Wudu)] B, [exp ( | gudu>] (69)

9This subsection probably contains typos.

34



For general processes, the above equation would in general require the two processes to be in-
dependent — for instance, with stochastic volatility, the respective variance processes should be
independent. For LG processes, the property required is the weaker (dmy, dg:) = 0 for all ¢’s.
Using the values of the LG processes, and integrating, we obtain, with R = r + 7, — g,
1 Tt — Tx gt — gx (2R+¢7r+¢g) (Wt _W*) (gt _g*)

P = R\ "R T s, TRY o, (R+on) (R+0y) (Rt+onta,) |

(70)

The central value is again the Gordon formula, P;/D; = 1/R. It is modified by the current level
of the equity premium, and the growth rate of the stock. A stock with a currently high growth
rate g; exhibits a higher price-dividend ratio, and this is amplified when the equity premium is
low, as shown by the term (7m; — my) (gt — g«)-

The difference between formula (70) and formula (16) is the here, the processes for m; and
g+ are decoupled, whereas in (16), they where coupled, i.e. in their drift term there was a term
(9t — g+). The decoupling forces the presence of a cross term (m; — 74) (¢¢ — g«) in the expression
of the price. In general, one obtains simpler expressions by having one multifactor LG processes,

rather than the product of many different ones.

The sum of two LG processes is LG. This property is quite trivial, and mentioned for
completeness. Suppose two LG process (Mti,}/;i,ui), with M} = 'Y}, for i = 1,2. Call d; the
dimension of Y}, which is the number of factors plus 1. Then, the SDF M; = M} + N? comes
from a LG process of dimension di + dy. Indeed, define Y; = (Y}l,Yf), a vector of dimension
Q2 0

di+do and v = (1/1,1/2), and ) =
0 Q9

). Then, E; [Yi+1] = QY;, and M; = vY;.

5.3 A remark on option pricing with LG processes

One can express transforms of options in the LG framework, under some conditions. As in Duffie,
Pan and Singleton (2000), this requires Fourier transforms and ordinary differential equations,
but not solving partial differential equations.

Consider the case Dy = 1, and the price at time 0 of an option giving at time T the right to
buy a bond for a price K. Its price is: P, = E; [MT (Zr (X1, S) — K)+] Given Zp (X7, S) is an

2'Menzly, Santos and Veronesi (2004, Eq. 20) obtain a similar expression. This is natural because their model
belong to the LG class, as Example 11 shows.
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affine function of Xy, write Zp (X7, 5) — K = w' - Xp — K, so that the option price at time 0 is:
Py = By [Mr (Zr (Xr,S) = K)'] = o | Mr (- Xr = K')"| = Bo [ - Y7)"]

with Y7 = (M, My X;)" € R™™ and ¢ = (—K',w)" € R,

So the problem is solved if we know how to calculate Ey [(w . YT)+] . We can simply transpose
the results of Duffie, Pan and Singleton (2000). Assume the following affine process for Y;, dY; =
—wY;dt + dNy, where dN; is a Brownian process with (dN;,dN}) /dt = 2HY;, for which?' H €
RV’ Then, for A € C"!, when Ey [e*Yr] is well-defined, one has the following “affine-yield”

representation:

Ey [e)‘,YT} = B(MYo (71)
where B (T) ensures that, with V (T,Y) = eBMY AV — 97V = 0, which gives:

dB (T)
T

=-B(T)w+ B(T)HB(T) (72)

and B (0) = X. Typically, the ODE (72) needs to be solved numerically.

We are now done. The knowledge of (71) gives the distribution of Y7 by inversion of the
Fourier transform, hence the price of the option.

On the other hand, with the above approach, variances of Y;/M; are not independent of M,
whereas it would be better if there were.

Decomposing more complicated functions g (X) on a basis of functions (w' - X7 — K')", one
can (in principle) express any option Eg [Mpg (X7)] this way. Partial differential equations are
avoided, and replaced by comparatively simpler ordinary differential equations and Fourier trans-

forms.

6 Conditions to keep the process well-defined

The results of this paper require that the process be defined for ¢ € [0, 00). Appendix A reviews
standard sufficient conditions in the one-factor case. The present section present the analogue

conditions in the multifactor case. [This section is needs rewriting).

2L H is a tensor, so that HY; has dimension (n + 1) x (n + 1). More explicitly, (HY);; = >, HijiYe.
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6.1 Simple conditions

First, diagonalize the matrix  (resp. —w), i.e. find ¢ and A such that Q = gAq~!, with
A = Diag (wl, "'71/}n+1)7 and ¢¥; > ... > ¢,,.1. The eigenvector corresponding to eigenvalue
V; 8 (Gij)imq n- With MyDy = V'Y, call £ = ¢'v, and K; = ¢~ 'Y;. This way: M;D; = £ K,
and E; (K1) = ¢ 1QY; = AK,. In other terms, the state vector is now K, and the process is
diagonal, in the sense that E; [Ky11] = AK}, where A is a diagonal matrix.

We need to find conditions on K; such that, for all s > ¢, 'K, > 0.

Ei [MyyrDiir] = € ATK, = Zﬁﬂb?Kit

Sufficient conditions are given by the following proposition:

Proposition 3 (Sufficient conditions for the bond and stock prices to be always positive). Writing
the process in diagonal form, MyD; = ¢' Ky, EyK;v1 = AKy, A a diagonal matriz with A1y the

diagonal element with the largest value, a sufficient condition for prices at t to be positive is:

&K =) (§Ki)™ >0 (73)

i>1
where, for a real x, v~ = max (—z,0).

Proof.
v\
B [MyrDiyr] = §ATK, = &l Ky =97 > ¢ <w—z> Ki
i i 1

of <§1K1t -> (§iKz~t>‘) >0

)

v

as /¢y € (0,1). =

Applications Simple stock model. Take the simplest stock model. The basis is: K; =

(MtDt (1+/9)

—M Dy /
1—7;/¢>0,1ie. v, > —¢, the tightest possible condition.

Bond with n factors. The basis is: Kpi14 = My (1 =Y rie/d;), Kix = Myrie/¢;, with £ =

), with & = (1,1). So, the condition is: (14 ~;/¢) — (—v,/¢)" > 0, i.e.
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(1,..,1). Then, condition (73) becomes: 1 —> rit/d; — > (rie/d;) ", i.e.

1= "rt/¢; >0 (74)

6.2 Another formulation

[Most of the material will likely go in Cheridito and Gabaix (2007)]

With one factor, the process is well-defined if it stays within » <7, with 7 < r, + ¢. Also,
the volatility of the process has to go to 0 near 7. The following is the n—factor equivalent. We
start with a LG process (47)-(48).

Admissibility of the initial conditions
We start from a process E:dY; = —wYidt.

Step 1 — Diagonalization of the process.

Diagonalize the matrix w, i.e., find ¢ and A such that w = ¢Aq~!, with A = Diag (61, ..., 6n11),
and 01 < ... < 6,41. The eigenvector corresponding to eigenvalue d0; is (gij),_; -
Define @ = Diag (q1;) - ¢*. Then, w = Q7AQ, with (1,..,1) Q = (1,0,..,0). 22
Define V (“nabla”), a (n+ 1) x (n + 1) matrix:?

Vz'j : = (51'4_1 - (5J) 11‘23’ fori=1..n (75)
= lfori=n+1 (76)

Step 2 — Admissibility of the initial condition. The initial condition Yy should satisfy:
VQYy >0 (77)

where the inequality is meant to hold coordinate by coordinate. Condition (77) is the n—dimensional
analogue of 7, — r, < ¢ in the one-factor process.
If the initial value of Y; satisfies (77), and increments are continuous, then all future Yy also

satisfy (77).

22Tf ¢1; = 0 for some j, one just eliminates the space corresponding to eigenvector j, without changing the
economics of the process, in particular M;D;. (To be fleshed out).
*The alternative matrix defined by V,; = 1;>; also works. It leads to more stringent conditions.
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Making the volatility go to zero near the boundaries We consider the region o™
ot ={Y e R"" | VQY >0}

As Y} = MyD; = (0,,1) - VQ, Y € o implies M;D; > 0.

We define a “killing” function x : R — Ry, such that (i) x (z) = 0 for = < 0; (ii) for z in a
right neighborhood of 0, & (z) = O (z%), for some o > 1/2 and (iii); there is an zo (in practice
small) such that x (z) = 1 for x > xy. Define:

K(Y)=r (ﬂ%% %)

That is, K (Y) = 1 most of the time, but when Y is close to the boundary of p*, then K (Y') goes
to 0.

Transformation of the process to make sure it is defined for t € [0, 00).

Start from the “target” process that could be written df/t = —w}N/tdt + ﬁdnt 4+ MdNy, ng is a
1-dimensional martingale, Ny a (n + 1) dimensional martingale. o; captures the log-normal drift
in dividend, while dN; captures innovations to the factors, and var (dNy) /dt is bounded. The
target process }7} might explode in finite time, as in the one-factor process. To stabilize it, define
the modified process:

dY; = —wYidt + Yidny + K (V) Myd Ny (78)

Then, the modified process is defined for ¢t € [0,00). The modified process is well defined, and
has correlations identical to those of the initial process when K (Y') =1, i.e. far enough from the
boundary of region p*. The K (V) dN; term makes the volatility go to 0 when Y is close to the
boundary of (77).24 Otherwise, it is equal to 1. We note that, in practice, the K (Y;) term will

affect the process very rarely.

6.3 Examples
Take 1-dimensional process, dM;/My = —rydt, dry = (—d)rt+rt2) dt + o (r¢) dz;. Take Yy =

01 1 -1 10 M (1 -

(Mg, Myre). Then, w = ,Q = /¢ ,V = ,and VQY; = t(1—=72/9) .
0 ¢ 0 1/¢ 11 M,

Condition (77), VQY; > 0, is equivalent to r; < ¢ and M; > 0. Also, K (Y;) = k(1 —r;/¢). The

conditions above implies that it goes to 0 as ry is in a left neighborhood of ¢.

24The above procedure works with continuous increments. When there are jumps, the jumps should not transport
Y; outside of p™.

39



6.4 Justification

The key lemma is the following.

Lemma 1 Given a matrizc w € R™ ™ with a diagonalization w = Q TAQ, with Q1j =1 for
j=1..m, and A = Diag (1/10, "'7wm71)' Define:

Vi o :%%¥%thJMW:1mm—l (79)
= 1 fori=m (80)

Define V := VQwQ VL. Then, fori < j, Vij =0, and fori > j, V;; <0. Also, Vi; = 0;, and
V(,..,1) =6(1,..,1). Finally, (0,.,0,1)VQ = (1,0, ...,0).

Consider then Z; = VQY;. We have EidZ;/dt = —V Z;, which has non-negative non-diagonal
elements. Hence, an element Z} = 0, while Zf > 0, then EdZ}/dt > 0. This means that, in the
deterministic version of the process, if Zy > 0, then for all ¢ > 0, Z; > 0.

In discrete time, we suppose that ) has positive eigenvalues. We start from Y;11 = QY;, and
call w = I y1 — Q. Zy = VQY;. We have Z; 1 = KZ;, with K = I,,11 — VQwQ 'V ~!. K which
has weakly positive non-diagonal elements, and as diagonal elements, the eigenvalues of €2, so that

finally K has weakly positive coefficients. Hence, if Z; > 0, Z;41 > 0.

7 Conclusion

Linearity-generating processes are very tractable, as they yield closed forms for stocks and bonds,
and prices that are linear in factors. They are likely to be useful in several parts of economics,
when trend growth rates, or risk premia, are time-varying.

The results of this paper suggest the following questions.

First, it would be desirable to study explicit, non-toy, economic models that take advantage
of the tractability offered by the LG structure. Gabaix (2007) presents such a model.

Second, since the LG processes are defined by moment conditions (Eq. 20-21), they lend
themselves to estimation and testing by GMM techniques.

Third, LG processes suggest a new way to linearize models. Given a model, one could do
a Taylor expansion expressing moments Fy [myy1] and E; [my11Y;41] as a linear function of the
factors, thereby making equations 20-21 hold to a first order approximation. The projected
model is then in the LG class, and its asset prices are approximations of the prices of the initial

problem. Hence the LG class offers a way to derive linear approximations of the asset prices of
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more complicated models. Appendix C studies such an example, where a non-LG process can be
approximated by an LG process to an arbitrary degree of precision.

Fourth, the LG class suggests a way to create further discount factor processes. The back-
ground state vector Y; could follow a process richer than an autoregressive process, and the
stochastic discount factor, which simply a linear projection of the state vector in LG processes,
could be a richer function of it.

We conclude that LG processes might be a useful addition to the economists’ toolbox.
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Appendix A. Regularity conditions for the one-factor process

This appendix details conditions for the existence and uniqueness of the solutions. We recommend
Karatzas and Shreve (1991 Chapter 5.5) and Revuz and Yor (1999, Chapter IX) for systematic
treatments, and Ait-Sahalia (1996, Appendix) for a pedagogical overview. We call D = (r,T) the
domain of existence of r, and ¢ an arbitrary point in D. We call p (r) the drift of r, and assume
dNy = o (1) dz;. We make the following assumptions.

(i) The drift and diffusion functions are continuously differentiable in r in D, and o2 (1) > 0
in D.

(ii) The integral of m (r) = exp ([ 2u (u) /o? (u) du) /o* (r) converges at both boundaries of
D.

(iii) The integral of s (r) = exp (— [ 2u (u) /o (u) du) diverges at both boundaries of D.

(iv) p is Lipschitz continuous, and there is a function p (z) : Ry — Ry, with p(0) = 0, such
that for any € > 0, f(o,s) p(x) 2 de = 400, and |o (z) — o ()] < p(|z —y|).

If conditions (i)-(iv) are satisfied, then there is a unique Ito process {r:, ¢ > 0} which is a
strong solution of the stochastic differential equation (86) with initial condition ro = r. Moreover,
{r¢,t > 0} is Markov.

The key substantive point is that the process is defined for all ¢ > 0, and does not explode.
This condition is crucial, as if we started with ry > 3, the process would explode in finite time
with positive probability, so that the process would not be defined for all times.

Conditions (i), (ii) and (iv) guarantee the existence and uniqueness of the solution up to
the variable may hit the boundaries. Condition (iii) implies that the boundaries are actually
not reached. The intuition is as follows. Consider the correct boundary. Condition (iii) implies
u(F) < 0, so that the process tends to return inside D, and also requires that o2 (r) tends to 0

fast enough as r T 7.

Sufficient conditions to ensure (i)-(iv) Conditions (i) and (ii) guarantee that the sto-
chastic differential equation (86) admits a unique strong solution. Those conditions are verified
in the following cases. Condition (iii) guarantees that the end points D of are natural boundaries.

We assume () < 0 and lim,_,, pu(r) > 0, so that close to the end points of D, the process
tends to go back inside D. In the case pu(r) = (r — a) (r — ), with a < f3, this corresponds to
7€ (o, f) and T € [—00, ).

Conditions (ii) and (iii) are verified if the following conditions (C-D) hold. For r in a left-
neighborhood of 7, 02 (1) ~ k (F — )", with (k > 1 and k > 0) or (k =1 and 0 < k < —2m (7)).
If r > —o0, for 7 in a right neighborhood of r, o2 (r) ~ k' (r — )", with (x' > 1 and k¥’ > 0) or
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(k' =1and 0 < k' < 2m(r)). If r = —o0, then r is a natural boundary if, for r in a neighborhood
of —00 02 (r) ~ k|r|®, with k> 0 and 8 < 3. Those last conditions imply assumptions (ii), (iii).
For r = —o0, the situation is complex for condition (iv), as the standard conditions found in
textbooks do not apply. w (r) is not Lipschitz continuous, as y/ (r) is unbounded. We conjecture
that a simple weakening of condition (iv) will allow the case r = —cc.
If r > —o0, the above conditions (C-D) also imply (iv), as one can take p (z) = K max (m””/ 2 g2, x),

for a large enough constant K.

Appendix B. Matrix Algebra

In some of the proofs, we will use the following Lemmas, which are standard facts.

Lemma 2 With a € R,b,c € R", and d € ]R”Q, suppose that d is invertible and a — b'd~1c # 0.
a bV

Cc

-1
b 1 —¥d!
A -
c d a—bdle\ —qg-l¢c qd?

In the above equation, a — b'd~'c is a real number.

Then the (n+ 1) x (n+ 1) matriz ( > is invertible, and its inverse is:

Lemma 3 Withn e N}, a €e R,b € R", and d € R™. Call 0,,x1 18 the zero n x 1 matriz made
of 0’s, and suppose that (al,, — d) is invertible. Then, fort € N,

t
a Y\ [ a V(dl,-d)(al,—d"
On><1 d 0n><1 dt

a v e’ Y (eI, — e™) (aly, — d)~t
exp t| =
Onx1 d Onx1 edt

Appendix C. Approximating non-LG processes with LG processes

and, fort e R,

LG processes offer a way to approximate the price of stocks and bonds with non-LG processes,
often to an arbitrary degree of precision. This Appendix illustrates this in the example of section

2.2, where the stock dividend growth (detrended) follows an Ornstein-Uhlenbeck process : dg; =
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—o¢gidt + odz:. The general properties of approximation with LG processes would require a full
paper, but the present appendix simply illustrates that a preliminary investigation justifies being

optimistic.

First-order approximation We return to the model of section 2.2, with R = r — g4, and
here we call g; = 7,. Define ;! = e f'D;, and Y2 = e fD;g;. We have: E; [dY14] /dt =
(—R+g1) Y14 = —RY1; + Yo, and

dYay/dt = Y1y (— (¢ + R) g + g7)

To approximate g7, we replace it by its steady state mean. To find it, we observing that
E; [dgf] /dt = —2¢g? + 02, so that taking the expectation at time 0, we obtain lim; ., Fo [g?] =
0%/ (2¢). Hence we approximate dYa2; ~ Y1, (— (¢ + R) g: + 02/ (2¢)). Hence we approximate Y;

by Y, where
R -1
E,[dY/] /dt = — Y/
L [4Y;] fdt (_UQ/W) RW)t

Applying Theorem 4, we obtain:

g+R+0¢
(R+¢) —0?/(2¢)

Pt*/Dt:R

0.02 0.04

Figure 3: The Figure plots the true value of the P/D ratio of a stock with an Ornstein-Uhlenbeck
process (solid line, Eq. 11), and the approximation by a LG process with 1 factor (dashed line,
Eq. 82). The annualized values are: R = 5%, ¢ = 15%, 0 = 4%, which corresponds to a stock
price volatility of 11% solely caused by changes in g;. In the range of the Figure, the two curves
are within 1.5% of each other.
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Figure 4: The Figure plots the true value of the P/D ratio of a stock with an Ornstein-Uhlenbeck
process (solid line, Eq. 11), and the approximation by a LG process with n = 5 factor (solid line),
see Eq. 83, truncated at n = 5. The annualized values are: R = 5%, o = 3%, ¢ = 15%, which
corresponds to a stock price volatility of 11% solely caused by changes in g;. In the range of the
Figure, the two curves are within 0.04% of each other.

Figure 3 plots the LG approximation, and the exact expression. We find only a small dis-
crepancy (less than 1.5%) between the two expressions. We conclusion is that the first order
approximation of the Ornstein-Uhlenbeck process by a LG process will be rather good, and useful
for theoretical purposes.

If the goal is high-level numerical accuracy, we turn to an approximation of arbitrary order.

Approximation of arbitrary order In some examples, and perhaps virtually always (at
least, when the processes defining the functions are analytic), it is possible to make LG processes
approximate the prices of non-LG process to an arbitrary degree of precision. We provide a
simple illustration of this. Define Y;; = e*"tDtgi_l for ¢ = 1,2, .... Hence, the vector of factors is
X = (gt,gf,gf,...). 25 'We have:

Bi[dYi,) /dt = e'D, (gz‘“ (= 1) (=9) g+ (i —1) (i —2) %Qg;i?’) Y,

2
. . o .
= (=1)@-2) 5 Yo —[r+ (0= 1) ] Yie + Visry

25 0Of course, the same reasoning could be done with another basis f; (g;) for the transforms of g;.
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so that Fy [dY;] = —wYidt, with w; ;0 = — (i — 1) (i — 2) 0%/2,w;; =+ (i — 1) ¢,w; ;41 = —1 and

wi; = 0 otherwise. So the price is:

P;/D; = (1,0,...,0,..)w! (1,gt,gt2, s GF ) (83)

The sum can be truncated up to step n, i.e. be take to be the restriction of the vector to
the first n dimensions. We compare the LG (83) to the exact expression (11). Numerical results,
reported in Figure 3, show that the approximation is very good, even for n = 5.

It would be good to generalize the above procedure, probably in a future paper. It suggests
that LG processes allow to evaluate the price of many non-LG processes (e.g., those with analytic

expansions), to an arbitrary degree of precision.
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