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Abstract

This methodological paper proposes a new class of stochastic processes with appealing

properties for theoretical or empirical work in finance and macroeconomics, the “linearity-

generating” class. Its key property is that it yields simple exact closed-form expressions for

stocks and bonds, with an arbitrary number of factors. It operates in discrete and continuous

time. It has a number of economic modeling applications. These include macroeconomic

situations with changing trend growth rates, or stochastic probability of disaster, asset pricing

with stochastic risk premia or stochastic dividend growth rates, and yield curve analysis that

allows flexibility and transparency. Many research questions may be addressed more simply

and in closed form by using the linearity-generating class. (JEL: G12, G13)
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1 Introduction

This methodological paper proposes a new class of stochastic processes that has a number of

attractive properties for economics and finance, the “linearity-generating” (LG) processes. It

is generates closed-form solutions for the prices of stocks and bonds. It is simple and flexible,

applies to an arbitrary number of factors with a rich correlation structure, and works in discrete

or continuous time. These features make it an easy-to-use new tool for pure and applied financial

modelling.

The main advantage of the LG class is that it generates, with very little effort, multifactor

stock and bond models, in a way that incorporates stochastic growth rates of dividend, and

stochastic equity premium. Stock and bond prices are linear in the factors — hence the name

“linearity-generating” processes.

Economically, a process is in the LG class if it satisfies two moment conditions: the expected

growth rate of the stochastic discount factor (multiplied by the dividend, if one prices stocks), is

linear in the factor. And, the expected growth rate of the stochastic discount factor, times the

vector of factors next period, is also linear in the factors. Given only those moments, one can

price assets. Higher order moments do not matter. In many applications, the variance of processes

can be changed almost arbitrarily, the prices will not change. The fact that a few moments are

enough to derive prices makes modelling easier.

Linearity-generating processes are meant to be a practical tool for several areas in economics.

They are likely to be useful in: (i) macroeconomics, in models with stochastic trend growth rate

or probability of disaster, (ii) asset pricing, for models with stochastic equity premium, interest

rate, or earnings growth rate, and (iii) fixed-income analysis.

Several literatures motivate the need for a tool such as the LG process. Many recent studies

investigates the importance of long-term risk for asset pricing and macroeconomics, e.g., Bansal

and Yaron (2004), Barro (2006), Bekaert et al. (2005), Croce, Lettau and Ludvigson (2006),

Gabaix and Laibson (2002), Hansen, Heaton and Li (2005), Hansen and Scheinkman (2006),

Julliard and Parker (2004), Lettau and Wachter (2007), Parker (2001). The LG process offers a

way to model long-term risk, while keeping a closed form for stock prices. In addition, there is

debate about the existence and mechanism of the time-varying expected stock market returns,

e.g., Campbell and Shiller (1988), Cochrane (2006), Goyal and Welch (2005) and many others.

Because of the lack of closed forms, the literature relies on simulations and approximations. The

LG process offers closed forms for stocks with time-varying equity premium, which is useful for

thinking about those issues.

The motivation for the LG class is inspired by the broad applicability and empirical success of
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the affine class identified by Duffie and Kan (1996), and further developed by Dai and Singleton

(2000) and Duffie, Pan and Singleton (2000), which includes the Vasicek (1978) and the Cox,

Ingersoll, Ross (1985) process as special cases. Much theoretical and empirical work is done with

the affine class. Some of this could be done with the LG class. Section 4.3 develops the link

between the LG class and the affine class. The two classes give the same quantitative answers

to a first order. The main advantage of the LG class is for stocks. The LG class gives a simple

closed-form expressions for stocks, whereas the affine class needs to express stocks as an infinite

sum. Hence, while the affine class can be expected to be remain for long the central model for

options and bonds, one can think that the LG class with be most useful for stocks.

Closed forms for stocks, or perpetuities, are not available with the current popular processes,

such as affine models those of Ornstein-Uhlenbeck / Vasicek (1977), Cox, Ingersoll, Ross (1985),

or models in the affine class (Duffie and Kan 1996). Several papers have derived closed forms

for stocks. Bhattacharya (1978) and, in another form, Menzly, Santos and Veronesi (2004),

derive a closed form for asset prices, and their process turns out to be to belong to the LG

class (see Example 11).1 Bakshi and Chen (1996) derive a closed form, which is an exponential-

affine function of a square root process. Mamayski (2002) derives another closed form, though

in a non-stationary setting. Cochrane, Longstaff and Pedro Santa (2006) contains nice closed

form solutions. Finally, we confirm results from Mele (2003, 2006), who obtains general results

(particularly with one factor) for having bond and stock prices that are convex, concave, or linear

in the factors. LG processes satisfy Mele’s conditions for linearity. Mele, however, did not derive

the closed forms for stocks and bonds in the linear case.

Finally, we contribute to the vast literature on interest rate processes, by presenting a new,

flexible process. The main advantage is probably that, because the LG processes are so easy to

analyze, they lend themselves easily to economic analysis. Gabaix (2007) develops a unified model

of stocks and bonds, and many financial puzzles, using the LG class.

This paper stipulates (“reverse-engineers”) a process for finding desirable properties for the

pricing kernel. In this it follows a productive literature represented by, e.g., Abel (2007), Campbell

and Cochrane (1999), Cox, Ingersoll, Ross (1985), Pastor and Veronesi (2005), Ross (1978), Sims

(1990), and, particularly, Menzly, Santos and Veronesi (2004).

Section 2 is a gentle introduction to LG processes, with some simple examples of LG processes.

Section 3 presents the discrete-time version of the process. Section 4 presents the continuous-time

1 It is indeed the Menzly, Santos and Veronesi (2004) paper that alterted me to the possibility of a class with
closed forms for stocks. On the economic side, this article originates from a lunch with Robert Barro, who was
expressing the desirability of a model with stochastic probability of disaster. That conversation made me search
for tractable ways to address this question, and led me to LG processes.
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version of the LG process. Section 5 shows some extensions, one to option pricing, one to time-

dependent coefficients. Section 6, which is more technical, studies the range of admissible initial

conditions. Section 7 concludes.

2 A simple introduction to linearity-generating processes

This section presents some examples, from very simple to slightly more complex, that give a flavor

for LG processes.

2.1 An elementary example: Generalized Gordon formula in discrete time

We start with a very simple, almost trivial example — the Gordon formula in discrete time.2 We

want to calculate the price:

Pt = Et

" ∞X
s=0

Dt+s

(1 + r)s

#
of a stock with dividend growth:

Dt+1

Dt
= 1 + gt (1)

gt is the trend growth rate of the stock, and we want it to be autocorrelated (the i.i.d. case

is trivial). This is a prototypical example of stock with stochastic trend growth. As the next

example will perhaps make clearer, even in this example, simple processes for gt typically give

intractable expressions.

Let us reverse engineer the process for gt, and see if we can find a way to obtain a linear

(“affine” to be more formal) expression for the price-dividend ratio, i.e. if the P/D ratio can have

the form:
Pt
Dt

= A+Bgt (2)

for some A,B. The arbitrage equation for the stock is

Pt = Dt +
1

1 + r
Et [Pt+1] (3)

i.e.
Pt
Dt

= 1 +
1

1 + r
Et

∙
Dt+1

Dt

Pt+1
Dt+1

¸
2This example is so simple that it would not be surprising if it had already been done elsewhere, even though

I did not find it in the previous literature. However, it is clear that LG processes (including the general structure
with several factors, stocks bonds and continuous time) as an identified class presented in the present paper first.
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Plugging in (1) and (2), the arbitrage equation reads:

A+Bgt = 1 +
1

1 + r
Et [(1 + gt) (A+Bgt+1)]

i.e.

A+Bgt = 1 +
A

1 + r
(1 + gt) +

B

1 + r
(1 + gt)Et [gt+1] (4)

If gt is an AR(1), i.e. Et [gt+1] = ρgt, then (4) cannot hold: we have linear terms on the left-hand

side, and non-linear terms on the right-hand side.

However, (4) can hold if we postulate that gt follows the following “twisted” AR(1):

Linearity-generating twist: Et [gt+1] =
ρgt
1 + gt

(5)

If gt is close to 0, then to a first order, Et [gt+1] ∼ ρgt, so that gt+1 behaves approximately like an

AR(1). It’s a twisted AR(1), because of the term 1 + gt in the denominator. However, in many

applications, gt will be say within a few percentage points from 0, so materially, the twist is small

(more on this later).

If (5) holds, then (4) reads:

A+Bgt = 1 +
A

1 + r
(1 + gt) +

B

1 + r
ρgt

which features only linear terms, and admits a solution. Indeed, we obtain A = 1 + A/ (1 + r),

i.e. A = (1 + r) /r, and B = A/ (1 + r) +Bρ/ (1 + r), i.e. B = A/ (1 + r − ρ). Finally, plugging

those values of A and B back in (2) gives:

Pt
Dt

=
1 + r

r

µ
1 +

gt
1 + r − ρ

¶
(6)

Conclusion: (6) is the solution of (3), and by the usual arguments, the price-dividend ratio is given

indeed by (6).

Example 1 (Simple stock example with LG stochastic trend growth rate) Consider a stock with

dividend growth rate gt, with Dt+1/Dt = 1+gt, and the linearity-generating “twist” for the growth

rate:

Et [gt+1] =
ρgt
1 + gt

(7)

with price Pt = Et

" ∞X
s=0

Dt+s/ (1 + r)s
#
. Suppose that, with probability 1, ∀t, gt > −1. Then, the
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price-dividend ratio, Pt/Dt is:

Pt
Dt

=
1 + r

r

µ
1 +

gt
1 + r − ρ

¶
. (8)

Also:

Et [Dt+T ] =

µ
1 +

1− ρT

1− ρ
gt

¶
Dt (9)

In other terms, we can price finite maturity claims — “bonds”. The rest of the paper develops this

systematically.

A few remarks are called for. Eq. 7 imposes just one moment conditions. Higher order

moments do not matter for the price. For instance, we could have a complicated nonlinear

function for the variance of the growth rate, it would not affect the stock price.

For gt > −1 to be possible for all t’s, we need restrictions. Stability analysis of the process
(and further analysis developed later in the paper) gives gt > ρ − 1. In particular, the variance
has to go to 0 near that boundary. 3

We next turn to the continuous time version of the above process, before then turning to richer

examples.

2.2 The generalized Gordon formula in continuous time

We extend the discrete-time process above to continuous time. Consider a stock with dividend

Dt = D0 exp
³R t
0 gtdu

´
. gt is the (stochastic) growth rate, and can be decomposed gt = g∗ + γt,

where the constant g∗ is a trend growth rate, and γt a fluctuation around the trend. The discount

rate is r, and the value of a stock at time t is, assuming R = r − g∗ > 0,

Pt = Et

∙Z ∞

t
exp (−r (s− t))Dsds

¸
= Et

∙Z ∞

t
exp

µ
−
Z s

t
(r − g∗ − γu) du

¶
ds

¸
Dt

so that the price-dividend ratio is:

Pt/Dt = Et

∙Z ∞

t
exp

µ
−R (s− t) +

Z s

t
γudu

¶
ds

¸
. (10)

This paper proposes a process for γt that yields a closed-form for (10). Before doing this, it

is useful to examine the most natural process, which is to take γt to be an Ornstein-Uhlenbeck,

3The reason is that the function g 7→ ρg/ (1 + g) has two fixed points, 0 and ρ− 1, and the process needs to stay
on the right side of the repelling fixed point, ρ− 1.
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dγt = −φγtdt+ σdBt. Calculating (10) yields:

Pt/Dt =

Z ∞

0
exp

∙
−RT + 1− e−φT

φ
γt +

σ2

2φ3

µ
φT + 2e−φT − e−2φT + 3

2

¶¸
dT (11)

which is complicated and has no known closed-form expression. Likewise, a Cox, Ingersoll Ross

(1985) process does not yield a closed form for the stock price.

However, a slight modification of the growth process makes prices completely tractable. Con-

sider, the continuous-time version of the discrete-time process (5).4

Example 2 (Generalized Gordon growth formula with LG stochastic trend growth rate) Consider

a stock with dividend growth rate gt = g∗ + γt, with

dγt = −
¡
φγt + γ2t

¢
dt+ σ (γt) dBt, (12)

where σ (γt) is an essentially arbitrary function, but γ
2
t must be −1. Consider the price Pt =

Et

£R∞
t exp (−rt)Dsds

¤
. If the process is defined in [t,∞), the price-dividend ratio, Pt/Dt is:

Pt/Dt =
1

r − g∗

µ
1 +

γt
r − g∗ + φ

¶
. (13)

The above example exhibits general traits of LG processes.5

As in (13), the price of assets are linear (affine) in the state variable — here, γt, which motivates

the name “linearity-generating” process for (12).

Surprisingly perhaps, the volatility term σ (γt) does not appear in the final expression of the

stock price: σ (γt) can by multiplied by any number without changing the stock price. This gives

much modelling flexibility.

4The limit comes from the following heuristic reasoning. Set gt = γt∆t, where ∆t will be small, and ρ = 1−φ∆t.
Eq. (5) becomes:

Et [gt+∆t]− gt =
ρgt
1 + gt

− gt =
(ρ− 1) gt − g2t

1 + gt

and dividing through by ∆t,

Et γt+∆t − γt =
−φγt − γ2t
1 + γt∆t

∆t

so, taking the limit ∆t→ 0, Et [dγt] = −φγt − γ2t dt.
5The result in Example 2 appear new to the literature. The Fisher-Wright process (e.g., Karlin and Taylor

1982) does contain a quadratic term, but it has not been applied to the pricing bonds or stocks. Also, it is more
special than the LG class, because it imposes a specific functional form on the variance. Driessen, Maenhout and
Vilkov (2005) and Cochrane, Longstaff, and Santa-Clara (2006) apply the Fisher-Wright process. Other papers
introduce different quadratic terms in stochastic process, for instance Ahn et al. (2002), Constantidines (1992),
Lonstaff (1989), but they do not take the form of this paper.
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There are drawbacks to having a stock price linear in the growth rate, and independent of

volatility, as in some models (Johnson 2002; Pastor and Veronesi 2003) the link between volatility

and stock price is important. Nonetheless, in many economic situations, this link is more an

annoying side effect. Arguably, in many situations where LG models can be used, the gain in

tractability in seeing the volatility terms drop out outweighs the cost. In any case, if when one

thinks that the volatility effects are important, LG processes can be modified to incorporate them

— see Example 12 below.

We need an extra term in the drift process, here −γ2tdt, to get the LG properties. In many

applications, the term is likely to be small quantitatively. For instance, if we think that the

deviation from the mean (|γt|) is less than 5% per year typically (which is plausible for the

predictable deviation from the trend growth rate, or the trend interest rate), then the extra

drift term is less than (5%)2 = 0.25% per year. Hence, often, the extra drift term will not

materially change the importance quantitative properties of the process. However, it confers a

great tractability to asset prices.

Some care must be taken to make the process defined in [t,∞). This will be developed later
in the paper, and is illustrated in Figure 1. In the context at hand, a sufficient condition is that

σ (γ) vanishes in a right neighborhood of γ = −φ, and that the initial value of γt is above −φ.
This is analogous to the fact that the volatility must go to 0 as the interest rate goes to 0 in the

Cox, Ingersoll and Ross (1985) process.

γ-φ 0

2( )μ γ φγ γ= − −

Figure 1: Illustration of the drift μ (γ) = −φγ − γ2 of the growth rate. If γ > −φ, the process
is stable, i.e. mean reverts to 0. However, if γ < −φ, the process is unstable, and diverges away
from 0. That is why we impose γ0 > −φ. To make sure that the process remains in (−φ,∞),
we impose that the volatility goes to 0 fast enough before at some γ ≥ −φ. See Appendix A for
details, and Section 6 for the generalization to several factors.
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The economic interpretation of (13) is the following. When the deviation of the growth

rate from its trend (γt = gt − g∗) is 0, then Pt/Dt = 1/ (r − g∗), which is the traditional Gordon

formula. When the growth rate is above trend (γt > 0), the P/D ratio is higher, as future dividends

have superior growth. This initial superior growth γt decays at rate φ, and is discounted at rate

r − g∗, so that its total duration is 1/ (r − g∗ + φ). So the cumulative impact of the superior

growth is the γt/ (r − g∗ + φ).

Let us now see why the price is a linear function of the initial growth rate.

A heuristic proof The proof of the result will be made fully rigorous in the rest of the

paper, but a simple “plug and verify” derivation is instructive. Call the price-dividend ratio

Vt = Pt/Dt = Et

R∞
t exp

¡
−
R s
t (R− γu) du

¢
ds, with R = r − g∗. It is analogue to the price of

a bond that gives 1 in every second, with an instantaneous interest rate of R − γu. Hence, the

arbitrage equation for Vt is:

0 = 1− (R− γ)Vt +Et [dVt] /dt.

As γt is the only state variable as far as Vt is concerned, we seek a solution of the form Vt = V (γt).

Call the drift of γ, where the drift of γ is

μ (γ) = −φγ − γ2

Ito’s lemma gives: Et [dVt] /dt = μ (γ)V 0 (γ)+ σ2(γ)
2 V 00 (γ), and the arbitrage equation is the classic

equation:

0 = 1− (R− γ)V (γ) + μ (γ)V 0 (γ) +
σ2 (γ)

2
V 00 (γ) (14)

We look for a solution affine in γ: V (γ) = A +Bγ. The functional form implies V 00 (γ) = 0,

so that, if the solution is correct, the σ2 (γ) term will not matter. This explains why there are no

σ terms in the final expression (13).

Substituting V (γ) = A+Bγ into (14), yields:

0 = 1− (R− γ) (A+Bγ) +
¡
−φγ − γ2

¢
B +

σ2 (γ)

2
· 0

= 1−RA+ γ (A−RB − φB) + γ2 (B −B) (15)

The key simplification is that the terms in γ2 cancel out — this is where the LG term γ2t matters.

To solve the last equation, we just set to 0 the constant and the γ term, which gives A = 1/R,
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and B = A/ (R+ φ), which gives.

V (γ) =
1

R

µ
1 +

γ

R+ φ

¶
which is the announced result, as with R = r − g∗.

If the term γ2 had been absent of the drift (as in an Ornstein-Uhlenbeck process), or been

present with a coefficient different from −1, the cancellation of the γ2 in (15) would not have
occurred. ¤

g(0)

g(t)

g(t)

P(0)

Figure 2: Why the price can be linear in the factor g0. The price P0, a sum of exp
³R T
0 gtdt

´
,

is a convex function of future growth rates gt. But, for instance in the deterministic version of
the process, future growth rates are a concave function of the initial growth rate, E0 [gt | g0] is
concave in g0. Hence the price is a composition of a convex function, composed with a concave
function the initial growth rate. Hence, its concavity is undertermined. For the LG process, the
price P0 is precisely a linear function of the initial growth rate g0.

Figure 2 illustrative an intuitive reason why the price can be linear in the initial growth rate

g0. The price, a sum of exp
³R T
0 gtdt

´
, is a convex function of future growth rates gt . But, for

instance in the deterministic version of the process, future growth rates are a concave function

of the initial growth rate, E0 [gt | g0] is concave in g0.6 Hence the price is a composition of a

convex function (namely, exp
³R T
0 gtdt

´
), with a concave function, (namely, gt (g0)) the initial

growth rate. Hence, its concavity is indeterminate. For the LG process, the price is precisely a

linear function of the initial growth rate.7

6 If the process is deterministic, then γt = e−φtγ0/ 1 + γ0 1− e−φt /φ , a concave function. This can be shown
directly, or by Proposition 1.

7However, Example 12 shows how to get convexity effect with the LG process. Mele (2003, and forth.) clarifies

10



The next example shows an example with several factors.

2.3 A richer example: A price-dividend ratio with time-varying growth rate
and risk-premium

LG processes generalize to several factors. Suppose that the stochastic discount factor Mt and

the dividend process Dt follow

dMt/Mt = −rdt− πt
σ
dzt

dDt/Dt = gtdt+ σdzt

The price of the stock is Pt = Et

£R∞
t MsDsds

¤
/Mt. πt is a the stochastic equity premium, and

gt is the stochastic growth rate of dividends.

We assume that πt and gt follow the following LG process, best expressed in terms of their

deviation from trend, bπt = πt − π∗, bgt = gt − g∗,

dbgt = −φgbgtdt+ bgt (bπt − bgt) dt+ σγ (bgt, bπt) · dBt

dbπt = −φπbπtdt+ bπt (bπt − bgt) dt+ σπ (bgt, bπt) · dWt

where the (Bt,Wt) is a Wiener process independent of zt, that can have arbitrary time- or state-

dependent correlations. We suppose that the process is defined in [t,∞). Again the processes
dbgt and dbπt are to a first order linear, but with quadratic “twist” terms added, bgt (bπt − bgt) dt andbπt (bπt − bgt) dt respectively.

Under the above assumptions, it is standard that Pt/Dt = Et

£R∞
t exp

¡
−
R s
t (r + πu − gu) du

¢
ds
¤
.

The LG terms imply the following Proposition.

Example 3 (Generalized Gordon formula, with stochastic trend in dividend growth, and stochas-

tic equity premium) In the above setup, the stock price is

Pt =
Dt

R

µ
1 +

gt − g∗
R+ φg

− πt − π∗
R+ φπ

¶
. (16)

with

R ≡ r + π∗ − g∗

how prices can be concave or convex as a function of state variables.
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In this expression the price-dividend ratio varies because of a stochastic equity premium (πt), and

a stochastic dividend growth rate (gt).

It is a good and simple exercise to derive the above formula directly, from the arbitrage

equation 1 − (r + πt − gt) (P/D)t + E [d (P/D)t] /dt = 0. Otherwise, formula (16) comes from

Theorem 4 below.

Equation 16 nests the three main sources of variations of stock prices in a simple and natural

way. Stock prices can increase because the level of dividends increases (that’s the Dt terms),

because the expected future growth rate of dividend increases (the gt − g∗ term), or because the

equity premium decreases (the πt − π∗ terms). The two growth or discount factors (gt and πt)

enter linearly, weighted by their duration (e.g., 1/ (R+ φπ)), which depends of the speed of mean-

reversion of the each process (parametrized by φπ, φg), and the effective discount rate, R. As in

the previous example, the volatility terms do not enter in (16), and the price does not change if

one changes the correlation between the instantaneous innovation in gt and πt.

We now start our systematic treatment of LG processes.

3 Linearity-generating processes in discrete time

This section studies the discrete-time version of the LG process. As several factors are needed to

capture the dynamics of stocks (Campbell and Shiller 1988, Fama and French 1996) and bonds

(Litterman and Scheinkman 1991), we study it in the multifactor case. We want to price an asset

with dividend Dt, given a discount factor Mt. The price at time t of a claim yielding a stochastic

dividend Ds at date S ≥ t is:8

Pt = E

" ∞X
T=0

Mt+TDt+T

#
/Mt. (17)

For instance, the price of a zero coupon bond of maturity T is, with Dt = 1,

Zt (T ) = Et [Mt+TDt+T ] / (MtDt) . (18)

8Some readers may not be familiar with the stochastic discount factor. The simplest example is Mt = (1 + r)−t,

if the interest rate is constant. If the interest rate rs is deterministic but not constant, Mt =
t

s=1

(1 + rs)
−1. If,

in Lucas economy, a representative consumer with utility t δ
tU (Ct) prices assets, then Mt = δtU 0 (Ct). With

the external habit of Cochrane and Cochrane (1999), one can define a habit level Ht such as Mt = δtU 0 (Ct −Ht).
Absence of arbitrage guaranties that the price is a linear functional of future dividends, and under weak technical
conditions this leads to the existence of factors Mt+T such that (17) holds.
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We will also calculate the price-dividend of a stock:

Pt/Dt = Et

" ∞X
T=0

Mt+TDt+T

MtDt

#
=

∞X
T=0

Zt (T ) (19)

3.1 Definition and main properties

The state vector is Xt ∈ Rn (n ∈ N)and can be generally thought of as stationary, while MtDt

generally trends, and is not stationary. The definition of the LG process is the following.

Definition 1 The process MtDt (1,Xt)
0
t=0,1,2,..., with MtDt ∈ R and Xt ∈ Rn, is a LG process

if there are constants α ∈ R, γ, δ ∈ Rn,Γ ∈ Rn2 , such that the following relations hold date

t = 0, 1, 2, ...:

Et

∙
Mt+1Dt+1

MtDt

¸
= α+ δ0Xt (20)

Et

∙
Mt+1Dt+1

MtDt
Xt+1

¸
= γ + ΓXt (21)

The above conditions mean that the expected value of the (dividend augmented) stochastic

discount factor is linear in the factors. As the examples below show, it is not difficult to write toy

economic models satisfying conditions (20)-(21), e.g. in Lucas (1978) - Abel (1990) - Campbell

Cochrane (1995) economies with exogenous consumption, dividend or marginal utility processes.

Gabaix (2007) presents a fully worked-out economic model satisfying the conditions of Definition

1.

Also, models that to not directly fit into the conditions of Definition 1, could be approximated

by projected linearly in (20)-(21). Also, by extending the state vector, equations (20)-(21) could

hold to an arbitrary degree of precision. Appendix C illustrates how to approximate a non-LG

process with an LG process, including to an arbitrary degree of precision.

One interpretation of (20)-(21) is that the specify the dynamics of the factors under the “risk-

neutral measure” induced by MtDt.

There is a more compact way to summarize LG processes. Define the (n+ 1)×(n+ 1) matrix:

Ω =

Ã
α δ0

γ Γ

!
(22)
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and the process with values in Rn+1

Yt :=

Ã
MtDt

MtDtXt

!
=

⎛⎜⎜⎜⎜⎜⎝
MtDt

MtDtX
1
t

...

MtDtX
n
t

⎞⎟⎟⎟⎟⎟⎠
so that with vector ν0 = (1, 0, ..., 0),

Mt = ν0Yt (23)

Yt stacks all the information relevant to the prices of the claims derived below. 9 Conditions

(20)-(21) can be written:

Et [Yt+1] = ΩYt. (24)

Hence, the (dividend-augmented) stochastic discount factor of a LG process is simply the projec-

tion (Eq. 23) of an autoregressive process, Yt.

The basic pricing properties are the following.

Theorem 1 (Bond prices, discrete Time) The price-dividend (18) of a zero-coupon equity or

bond of maturity T is, with In the identity matrix of dimension n

Zt (T ) =
³
1 0n

´
·
Ã

α δ0

γ Γ

!T

·
Ã

1

Xt

!
(25)

When γ = 0, it can be expressed:

Zt (T ) = αT + δ0
αT In − ΓT
αIn − Γ

Xt (26)

Proof. The proof is very easy. Recall (24), Et [Yt+1] = ΩYt. Iterating on T , it implies that for

all T ≥ 0,
Et [Yt+T ] = Ω

TYt (27)

9Other assets, e.g. options, require of course to know more moments.
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Hence, using the definition of the zero-coupon (18), and (23)

Zt (T ) = (MtDt)
−1Et [Mt+TDt+T ] = (MtDt)

−1Et

£
ν0Yt+T

¤
= (MtDt)

−1 ν0Et [Yt+T ]

= (MtDt)
−1 ν 0ΩTYt = ν0ΩT

³
(MtDt)

−1 Yt
´

= ν0ΩT
Ã

1

Xt

!
=
³
1 0n

´
ΩT

Ã
1

Xt

!

i.e. Eq. 25. The formula for γ = 0 comes from Lemma 3 in Appendix B.

For instance, when Dt ≡ 1, the above Theorem can price bonds, with n factors, in closed form.
In many applications (e.g., the examples in this paper), γ = 0, which means the state variables

are re-centered around 0. For instance, the state variable is the deviation of the equity premium

from its trend value.

The second main result is the most useful property of LG processes: the existence of a closed-

form formula for stock prices.

Theorem 2 (Stock prices, discrete time) Suppose that the process is defined from t on, and that

all eigenvalues of Ω have a modulus less than 1 (finiteness of the price). Then, the price-dividend

ratio of the stock (19) is:

Pt/Dt =
1

1− α− δ0 (In − Γ)−1 γ

³
1 + δ0 (In − Γ)−1Xt

´
(28)

=
³
1 0n

´
·
Ã
In+1 −

Ã
α δ0

γ Γ

!!−1
·
Ã

1

Xt

!
. (29)

Proof. We use (25), which gives the perpetuity price:

Pt/Dt =
∞X
T=0

Zt (T ) = ν0
Ã ∞X
T=0

ΩT

!Ã
1

Xt

!
= ν0 (In −Ω)−1

Ã
1

Xt

!
P∞

T=0Ω
T is summable because all eigenvalues of Ω have a modulus less than 1. We use Lemma

2 to calculate (In −Ω)−1, and conclude.10

10There is a more elementary heuristic proof. We seek a solution of the type Pt/Dt ≡ Vt = c− 1 + h0Xt, which

we know exists, by integration of (53). The arbitrage equation is: Vt = 1 +E
Mt+1Dt+1

MtDt
Vt+1 , i.e.

c+ h0Xt = 1 +E
Mt+1Dt+1

MtDt
c+ h0Xt = 1 + c α+ δ0Xt + h0 (γ + ΓYt) = 1 + cα+ h0γ + cδ0 + h0Γ Xt
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Theorem 2 allows to generate stock prices with an arbitrary number of factors, including

time-varying growth rate, and risk premia.

To make formulas concrete, consider the case where Γ is a diagonal matrix: Γ =

⎛⎜⎜⎝
Γ1 0 0

0
. . . 0

0 0 Γn

⎞⎟⎟⎠ ≡
Diag (Γ1, ...,Γn). Then,

αT In+1−ΓT
αIn+1−Γ = Diag

¡¡
αT − ΓTi

¢
/ (α− Γi)

¢
,11 so that (26) and (28) read:

Zt (T ) = αT +
nX
i=1

αT − ΓTi
α− Γi

δiX
i
t (30)

Pt/Dt =
1 +

Pn
i=1

δiXi
1−Γi

1− α−
Pn

i=1
δiγi
1−Γi

(31)

3.2 Some examples

Example 4 A Gordon growth formula with time-varying dividend growth.

In this example, we generalize our introductory stock example. Suppose that the interest rate

is constant at r, dividend Dt, and the growth rate of dividend is:

Dt+1

Dt
= (1 + g∗) (1 + xt)

¡
1 + ηt+1

¢
(32)

Et [xt+1] =
ρxt
1 + xt

(33)

where ηt is some unimportant i.i.d. noise, greater than -1, independent of the innovation to

xt+1. xt is the deviation from the trend growth rate. If xt was an AR(1), it would follow

Et [xt+1] = ρxt. Instead, the process is slightly modified, to (33), to make the process LG. Indeed,

with Mt = (1 + r)−t, and using the notation 1 +R = (1 + r) / (1 + g∗), we have:

Et

∙
Mt+1Dt+1

MtDt

¸
= (1 + xt) / (1 +R)

Et

∙
Mt+1Dt+1

MtDt
xt+1

¸
= Et

∙
Mt+1Dt+1

MtDt

¸
Et [xt+1] =

(1 + xt)

1 +R

ρxt
1 + xt

=
ρxt
1 +R

In the above equation, the 1+xt terms cancel out, because of the 1+xt term in the denominator

of (33). We designed the process so that the LG equation (21) holds.

i.e. (i) c = 1 + cα + h0γ and (ii) h0 = cδ0 + h0Γ. (ii) gives h0 = cδ0 (1− Γ)−1, and plugging in (i) yields
c 1− α− δ0 (1− Γ)−1 γ = 1, hence c and the announced result.
11 If A matrix, and f : R → R, is analytic with f (x) = ∞

n=0 fnx
n then f (A) = ∞

n=0 fnA
n. If

A = Diag (a1, .., an), f (A) = Diag (f (a1) , ..., f (an))
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We have a LG process, for MtDt (1, xt), with:

Ω =

Ã
1/ (1 +R) 1/ (1 +R)

0 ρ/ (1 +R)

!
=:

Ã
α δ0

γ Γ

!

Hence, we apply Theorem 2, with a dimension n = 1, γ = 0, δ = Γ = αρ. We obtain, for the

price, Pt = Et
P∞

s=0Dt+s/ (1 + r)s, Pt/Dt =
1

1−α−δ0(In−Γ)−1γ

³
1 + δ0 (In − Γ)−1Xt

´
, i.e.

Pt/Dt =
1 +R

R

µ
1 +

1

1 +R− ρ
xt

¶
(34)

Formula (34) is the discrete-time analogue of (13), with very small r and g∗, and the substitu-

tions ρ = 1− φ, for a small φ. The upshot of this example is that, in discrete time, LG processes

take the form (33).

Example 5 Flexible LG parametrization of state variables the stochastic discount factor

Take an n−dimensional process Xt, such that

Mt+1Dt+1

MtDt
= α+ β0Xt + εt+1 (35)

Xt+1 =
γ + ΓXt

α+ β0Xt
+ ηt+1 −

Et

£
εt+1ηt+1

¤
α+ β0Xt

(36)

with Et [εt+1] = 0, Et

£
ηt+1

¤
= 0, but no other restrictions are necessary. Then, Eq. 20-21 are

satisfied.

The above equations give the LG counterpart of the popular “affine” parametrization, Mt+1Dt+1

MtDt
=

exp (A+B0Xt), Xt+1 = γ + ΓXt + ut+1, with ut+1 Gaussian. It is at least as flexible.

To interpret (36), consider the case γ = Et

£
εt+1ηt+1

¤
= 0. Eq. 36 expresses that, when Xt is

small,

Et [Xt+1] =
ΓXt

α+ β0Xt
∼ Γ

α
xt

which means that Xt follows approximately at AR(1). The corrective 1+β0/α ·Xt in the denom-

inator is often small in practice, but ensures that the process is LG.

In many applications, there is no risk premium on the factor risk, so that Et

£
εt+1ηt+1

¤
= 0.

However, when there is a risk-premium equation (36) means that it is enough to know that

the process under the “risk-neutral” measure. Hence, in a first step, one can model the “risk-

neutral” process for Xt, fit it to prices, and then later extract the risk-premium component,

cov
³
Mt+1Dt+1

MtDt
,Xt+1

´
.
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Section 6 provides conditions to ensure Mt > 0 for all times.

Example 6 A multifactor bond model with bond risk premia (in discrete time).

There are n factors rit. The stochastic discount factor is:

Mt+1

Mt
=

1

1 + r∗

⎛⎝1− nX
j=1

rjt

⎞⎠+ εt+1 (37)

where Etεt+1 = 0, and the process has to be defined for all t0s, but otherwise εt+1 is unspecified,

and can be heteroskedastic. The short term rate is rt = 1/Et

h
Mt+1

Mt

i
− 1 ' r∗ +

P
rit if the r’s

are small. Each factor rit is postulated to evolve as:

ri,t+1 =
ρiri,t

1−
P

rjt
+ ηi,t+1 −

Et

£
εt+1 · ηi,t+1

¤
Et [Mt+1/Mt]

(38)

where Etηi,t+1 = 0, but the ηi,t+1 can otherwise have any correlation structure.

This is a LG process. Indeed, the last equation implies:

Et

∙
Mt+1

Mt
ri,t+1

¸
=

1

1 + r∗
ρiri,t

So the Ω matrix is for the process Mt (1, r1,t, ..., rn,t) is:

Ω =
1

1 + r∗

⎛⎜⎜⎜⎜⎜⎝
1 −1 · · · −1
0 ρ1 0 0

0 0
. . . 0

0 0 0 ρn

⎞⎟⎟⎟⎟⎟⎠
so that by (22) and (26), the price of the bond of maturity T is:

Zt (T ) =
1

(1 + r∗)
T

Ã
1−

nX
i=1

1− ρTi
1− ρi

rit

!
(39)

This expression is quite simple, and accommodates a wide variety of specifications for the

factors, Eq. 38.

The risk premium on the T maturity bond is:

Risk premium =
cov (εt+1, Zt+1 (T − 1))

Zt (T )
=

P 1−ρT−1i
1−ρi

cov
¡
εt+1, ηi,t+1

¢
1−

P 1−ρTi
1−ρi rit

(1 + r∗) (40)

18



Hence we easily generate an explicit yield curve. With a parametrization for cov
¡
εt+1, ηi,t+1

¢
,

the above expression makes prediction for bond risk premia across maturities. It would be in-

teresting to compare them with evidence, e.g. from Campbell and Shiller (1991), Cochrane and

Piazzesi (2005, 2006), Fama and Bliss (1987). The next example sketches such an example.

Example 7 A bond model that is consistent with the empirical findings of Fama-Bliss (1987),

Campbell Shiller (1991), and Cochrane Piazzesi (2006).

We normalize the central interest rate to 0. We postulate:

Mt+1

Mt
= 1− rt + εt+1

rt+1 =
ρr

1− rt
rt +

πtεt+1
vart (εt+1)

+ vt+1

πt+1 =
ρπ
1− rt

πt + ηt+1

where ε, v, η have mean 0, and εt is uncorrelated with (vs, ηs). This means that the short term

rate, rt, mean reverts, but shocks to it carry a risk-premium, πt. The size of the risk premium

is itself mean-reverting, at rate ρπ. We have Et

h
Mt+1

Mt

i
= 1 − rt,Et

h
Mt+1

Mt
rt+1

i
= ρrrt + πt, and

Et

h
Mt+1

Mt
πt+1

i
= ρππt.So Mt (1, rt, πt) is a LG process with matrix Ω =

⎛⎜⎜⎝
1 −1 0

0 ρr 1

0 0 ρπ

⎞⎟⎟⎠. Hence
by (25), the price of the bond of maturity T , is

Zt (T ) = 1−
1− ρTr
1− ρr

rt +

1−ρTr
1−ρr

− 1−ρTπ
1−ρπ

ρr − ρπ
πt (41)

The forward rate is f (T ) = (Z (T )− Z (T + 1)) /Z (T ), i.e.

ft (T ) =
1

Zt (T )

∙
ρTr rt +

µ
ρTr − ρTπ
ρr − ρπ

¶
πt

¸
(42)

The risk premium on the bond is: Πt (T + 1) =
cov(εt+1,Zt+1(T ))

Zt(T )
, i.e.

Πt (T ) =

1−ρTr
1−ρr

πt

Zt (T + 1)
(43)

Take the limit where the short rate is very persistent ρr ' 1, while the risk premium is less

persistent (e.g. ρπ = 0.7), e.g. moves at business cycle frequency (see Cochrane and Piazzesi
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(2006) for evidence supportive of this benchmark). Then

Πt (T ) =
Tπt

Zt (T + 1)
' Tπt (44)

e.g. we get the Cochrane and Piazzesi (2005) evidence that the risk premium on bonds grows

linearly with the bond maturity.

Gabaix (2007) develops this example further, with an economic microfoundation, and reaches

the following conclusions. We can explain the Fama-Bliss evidence, that forward rates predict

bond premia. That is, because ft (T ) contains a πt term. Likewise, the model generates the

Campbell-Shiller facts on the movement of yields. Finally, why the “tent shape” of Cochrane

and Piazzesi (2005)? Look at equation (42), in the limit ρr ' 1 (persistent short term rate), and

ρπ < 1 . As a function of maturity, the ρTr is roughly linear in T , while the −ρTπ term is very

concave in T . Hence, a concave tent-shape average of forward rate will capture the πt term,

and eliminate the πt terms. This is why the tent-shaped factor of Cochrane and Piazzesi (2005)

approximate risk premia: this linear combination of the forward rates purges rt, and still loads on

πt. Hence the above simple LG model is broadly consistent with the empirical findings of Fama

Bliss, Campbell Shiller, and Cochrane Piazzesi.

Example 8 Stock price with stochastic growth rate and stochastic equity premium

Consider a dividend process:

Dt+1

Dt
= 1 + gt + ηt+1

Mt+1

Mt
=

1

1 + r

Ã
1− πt

vart
¡
ηt+1

¢ηt+1
!

so that

Et

∙
Mt+1

Mt

Dt+1

Dt

¸
=

1

1 + r
(1 + gt − πt)

Postulate the following processes for bgt and bπt :
bgt+1 =

1 + g∗ − π∗
1 + gt − πt

ρgbgt + εgt+1

bπt+1 =
1 + g∗ − π∗
1 + gt − πt

ρπbπt + επt+1

where at time t εgt+1 and επt+1 have expected values 0 and are uncorrelated with ηt+1.The term
(1+g∗−π∗)
1+gt−πt will be close to 1 in many applications. Defining: α = (1 + g∗ − π∗) / (1 + r), the
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Gordon discount factor, and bπt = πt − π∗, bgt = gt − g∗,

Et

∙
Mt+1

Mt

Dt+1

Dt

¸
= α+

bgt − bπt
1 + r

and

Et

∙
Mt+1

Mt

Dt+1

Dt
bgt+1¸ = Et

∙
Mt+1

Mt

Dt+1

Dt

¸
Et [bgt+1] = 1

1 + r
(1 + gt − πt) ·

1 + g∗ − π∗
1 + gt − πt

ρgbgt = αρgbgt
The analogue expression holds for bπt. The process Yt =MtDt (1, bπt, bgt)0 is LG, with Ω matrix:

Ω =

⎛⎜⎜⎝
α 1/ (1 + r) −1/ (1 + r)

0 αρg 0

0 0 αρπ

⎞⎟⎟⎠ .

Applying (28) yields:

Pt/Dt =
1 + r

r + π∗ − g∗

µ
1 +

gt − g∗
1− αρg

+
πt − π∗
1− αρπ

¶
(45)

In the limit of small times, with ρg = 1−φg, ρπ = 1−φπ, with r and φ small (φg is the speed

of mean-reversion of g to its trend), we obtain:

Pt/Dt =
1

R

µ
1 +

gt − g∗
R+ φg

+
πt − π∗
R+ φπ

¶
with R = r + π∗ − g∗ (46)

which captures that the P/D ratio can change because of movements in the expected dividend

growth rate (gt)or the equity premium (πt).

Example 9 Markov chains

There are n states. In state i the factor-augmented dividend grows at a rateGi: Mt+1Dt+1/ (MtDt) =

Gi. Call Xit ∈ {0, 1}, equal to 1 if the state is i, 0 otherwise. The probability of going

from state j to state i is called pij . Then, MtDt (1,X1, ...,Xn) is a LG process. Indeed,

Et

h
Mt+1Dt+1

MtDt

i
=
P

iGiXit, and

Et

∙
Mt+1Dt+1

MtDt
Xi,t+1

¸
= Et

∙
Mt+1Dt+1

MtDt

¸
Et [Xi,t+1] =

ÃX
k

GkXkt

!⎛⎝X
j

pijXjt

⎞⎠ =
X
j

pijGjXjt
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as XktXjt = 0 if j 6= k, and otherwise is equal to XktXjt = Xjt, at exactly one of the Xjt is

different from 0.

Hence, a Markov chain belongs to the LG class.12 As many processes are (arbitrarily)

well-approximated by discrete Markov chains, they are (arbitrarily) well-approximated by LG

processes.

4 Linearity-generating processes in continuous time

We fix a probability space
¡
ΩP ,F , P

¢
and an information filtration Ft satisfying the usual tech-

nical conditions (see, for example, Karatzas and Shreve 1991). The stochastic discount factor

is Mt. For applications, we will express the results in terms of a dividend-augmented stochastic

discount factor, MtDt. Often, it is better to imagine Dt ≡ 1.

4.1 Definition and main properties

The definition in continuous time is the limit of the definition in discrete time. The vector of

factors is Xt.

Definition 2 The process (MtDt,Xt)t∈R+, with MtDt ∈ R and Xt ∈ Rn, is a LG process if the

following relations hold, for all t ≥ 0,

Et

∙
d (MtDt)

MtDt

¸
= −

¡
a+ β0Xt

¢
dt (47)

Et

∙
d (MtDtXt)

MtDt

¸
= − (b+ΦXt) dt (48)

with a ∈ R, b, β ∈ Rn,Φ ∈ Rn2 , and In the identity matrix of dimension n× n.

The above equations describe the process for Xt under the “risk-neutral” measure induced by

MtDt.

For instance, in the case Dt = 1 and dMt/Mt = −
¡
a+ β0Xt

¢
dt, Eq. 48 gives:

dXt = −b− (Φ− aIn)Xtdt+
¡
β0Xt

¢
Xtdt+ dNt (49)

with Nt ∈ Rn is a martingale. Hence, the process contains an AR(1) term, −b−(Φ− aIn)Xt, plus

a “twist” quadratic term,
¡
β0Xt

¢
Xt. It is a “twisted” AR(1). In many applications, Xt represents

12Veronesi and Yared (2000) and David and Veronesi (2006) have already seen that this type of Markov chain
yielded prices that are linear in the factors.
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a small deviation from trend, and the quadratic term
¡
β0Xt

¢
Xt is small. We are agnostic about

how empirically relevant the “twist” is. It could be that it is absent in the physical probability,

but present under the risk-neutral measure.

So Et [dNt] = 0, but its component dNit, dNjt can be correlated. The simplest type of

martingale is dNt = σ (Xt) dBt, for Bt a Brownian motion, but richer structures, e.g. with jumps,

are allowed. As in the one-factor process, the volatility of dNt must go to zero in some limit

regions for the process to be well-defined. We defer this more technical issue until section 6.

As in the discrete-time case, we define:

ω =

Ã
α β

b Φ

!
(50)

and the process with values in Rn+1

Yt =

Ã
MtDt

MtDtXt

!

which encodes the information needed for prices. Conditions (47)-(48) write more compactly as:

Et [dYt] = −ωYtdt. (51)

which is the analogue of (24). The above process leads to a discrete-time process with time

increments ∆t, with a matrix Ω = e−ω∆t. When ∆t is small, Ω = 1− ω∆t+O
³
(∆t)2

´
.

Hence, there is a (n+ 1) dimensional process Yt, and a vector ν 0 = (1, 0, ..., 0), such that (51)

holds, and

Mt = ν0Yt (52)

In other terms, there is a autoregressive process Yt in the background, following (51). The

(dividend-augmented) stochastic discount factor is the one-dimensional projection of it. LG

processes are tractable, because they are the one-dimensional projection of an AR(1) process.

The next Theorem prices claims of finite maturity.

Theorem 3 (Bond prices, continuous time). Given the LG process (MtDt,Xt), the price of a

claim on a dividend of maturity T , Pt = Et [Mt+TDt+T ], satisfies:

Zt (T ) = Pt/Dt =
³
1 0

´
· exp

"
−
Ã

a β0

b Φ

!
T

#
·
Ã

1

Xt

!
(53)
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an expression which, when b = 0, simplifies to:

Zt (T ) = Pt/Dt = e−aT + β0
e−ΦT − e−aT In
Φ− aIn

Xt (54)

Proof. Recall the definition of ω in (50), and Et [d (Yt)] /dt = −ωYt. It is well-known that this
implies:13

∀T ≥ 0, Et [Yt+T ] = e−ωTYt. (55)

Given (55) and Ms = ν0Ys,

Zt (T ) = (MtDt)
−1Et [Mt+TDt+T ] = (MtDt)

−1Et

£
ν0Yt+T

¤
= (MtDt)

−1 ν 0Et [Yt+T ]

= (MtDt)
−1 ν0e−ωTYt = ν 0e−ωT

³
(MtDt)

−1 Yt
´
= ν0e−ωT

Ã
1

Xt

!
=
³
1 0n

´
e−ωT

Ã
1

Xt

!
.

i.e. Eq. 53. The formula for b = 0 comes from Lemma 3 in Appendix B.

As an example, bond prices come from Dt = 1. In many applications, b = 0, which can

generically be obtained by re-centering the variables.

From this, we can now prove Theorem 4, which is probably the most useful of this section.

Theorem 4 (Stock prices, continuous time). Given the LG process (MtDt,Xt), suppose that

all eigenvalues of ω have positive real part (finite stock price). Then, the price/dividend ratio,

Pt/Dt = Et

£R∞
t MsDsds

¤
/ (MtDt) , is:

Pt/Dt =
1− β0Φ−1Xt

a− β0Φ−1b
(56)

Proof. We use (53). The perpetuity price is:

Pt/Dt =

Z ∞

0
Zt (T ) dT = ν 0

µZ ∞

0
e−ωTdT

¶
·
Ã

1

Xt

!
= ν 0ω−1 ·

Ã
1

Xt

!

13 Indeed, to prove (55) in the case t = 0 (which is enough), set T > 0, and define zt = eω(t−T )Yt. Then,

Et [dzt] = Etd eω(t−T )Yt = Et d eω(t−T ) Yt + eω(t−T )Et [d (Yt)] = eω(t−T )ωYtdt+ eω(t−T ) (−ωYt) dt = 0

Hence zt is a martingale, and E0 [zT ] = z0, i.e. E0 [YT ] = e−ωTY0.
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We use the Lemma 2 to calculate ω−1, and conclude. 14

To make things concrete, consider the case where Φ is a diagonal matrix: Φ = Diag (Φ1, ...,Φn).

Then, e−ΦT = Diag
¡
e−ΦiT

¢
, and (26) and (28) read:

Zt (T ) = e−at +
nX
i=1

e−ΦiT − e−aT

Φi − a
βiX

i
t (57)

Pt/Dt =
1−

Pn
i=1

βiXi

Φi

a−
Pn

i=1
βibi
Φi

(58)

Finally, the following Propositions show that one can price claims that have dividend a linear

function of DtXt. The proofs are exactly identical to those of the previous two Theorems.

Proposition 1 (Value of a single-maturity claim yielding Dt+T δ
0Xt+T ). Given the LG process

MtDt (1,Xt), the price of a claim that yields dt := Dt

¡
δ0 + δ0Xt

¢
= Dt

nX
i=1

δiXit, Pt = Et [Mt+Tdt+T ] /Mt,

is:

Pt =

Ã
0

δ

!0
· exp

"
−
Ã

a β0

b Φ

!
T

#
·
Ã

1

Xt

!
Dt (59)

an expression which, when b = 0, simplifies to:

Pt = δ0e−ΦTDtXt (60)

Proposition 2 (Value of an asset yielding Dtδ
0Xt at each period) Under the conditions of The-

orem 4, the price of a claim yielding dt := Dtδ
0Xt = Dt

nX
i=1

δiXit, Pt = Et

£R∞
t Msdtds

¤
/Mt,

satisfies,

Pt =

Ã
0

δ

!0
ω−1

Ã
1

Xt

!
Dt =

δ0Φ−1 (−b+ aXt)

a− β0Φ−1b
Dt. (61)

14The following elementary heuristic proof is useful to know. We seek a solution of the type Pt/Dt ≡ Vt = c+h0Xt,
which we know exists, by integration of (53). The arbitrage equation is: 1− rtVt +E [dVt] /dt = 0, i.e.

1− r∗ + β0Xt c+ h0Xt + h0 b−ΦXt + β0Xt Xt = 0

This is satisfies if and only if the constant and the term in Xt are zero, i.e. r∗h0+β0c+h0Φ = 0 and 1−r∗c+h0b = 0.
Hence h0 = −β0c (r∗ +Φ)−1 and 1 − c r∗ + β0 (r∗ +Φ)−1 b , which gives c = 1/ r∗ + β0 (r∗ +Φ)−1 b , and yields
(56).

25



4.2 Some examples

We start with some stock-like examples.

Example 10 Dividend growth rate as a sum of mean-reverting processes (e.g., a slow and a fast

process).

Suppose MT = e−rT , DT = D0 exp
³R T
0 gtdt

´
, with gt = g∗ +

Pn
i=1Xit and

Et [dXit] /dt = −φiXit − (gt − g∗)Xit

The growth rate gt is a steady state value g∗, plus the sum of mean-reverting processes Xit. Each

Xit mean-reverts with speed φi, and also has the quadratic perturbation (gt − g∗)Xitdt. The

initial example of this paper, Example 1, is a particular case, with n = 1. We verify that it is LG.

Et

∙
d (MtDt)

MtDt

¸
/dt = − (r − g∗) +

nX
i=1

Xjt

Et

∙
d (MtDtXit)

MtDt

¸
/dt =

"
− (r − g∗) +

nX
i=1

Xjt

#
Xit +

Ã
−φiXit −

Ã
nX
i=1

Xit

!
Xit

!
= − (r − g∗ + φi)Xit

Hence MtDt (1,X1t, ...,Xnt) is a LG process, with

ω =

⎛⎜⎜⎜⎜⎜⎝
r − g∗ −1 · · · −1
0 r − g∗ + φ1 0 0

0 0
. . . 0

0 0 0 r − g∗ + φn

⎞⎟⎟⎟⎟⎟⎠
We apply the Theorem 3, with a = r−g∗, β0 = (−1, ...,−1), Φ = Diag (r − g∗ + φ1, ..., r − g∗ + φn).

The price-dividend ratio is:

Pt/Dt =
1

r − g∗

Ã
1 +

nX
i=1

Xit

r − g∗ + φi

!
. (62)

Each component Xit perturbs the baseline Gordon expression 1/ (r − g∗). The perturbation is

Xit, times the duration of Xi, discounted at rate r − g∗, which is the term 1/ (r − g∗ + φi).
15

15The formula suggests the following non-LG variant. Suppose we have a process with dψt = (rtψt + αrt − β) dt+
dNt,where dNt is an adapted martingale, and is essentially arbitrary except for technical conditions. Then: Vt =
(ψt + α) /β is a solution of the perpetuity arbitrage equation: 1 − rtVt + E [dVt] /dt = 0. If the process well-
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Also, the price of a claim paying a dividend at t+ T is:

Et [Mt+TDt+T ] /Mt = e−(r−g∗)T
Ã
1 +

nX
i=1

1− e−φiT

φi
Xit

!
Dt.

Example 11 The aggregate model of Menzly, Santos and Veronesi (2004), and the Bhattacharya

(1978) mean-reverting process, belong to the linearity-generating class.

The following point is simple and formal. The Bhattacharya (1978) process is: , dDt =

φ
¡
D −Dt

¢
dt+σ (Dt) dzt. It actually belongs to the LG class, with the state variable Xt = 1/Dt.

Under another guise, it is used in the aggregate model of Menzly, Santos and Veronesi (2004),

where St is their consumption-surplus ratio, which, defining Yt = 1/St, satisfies Et [dYt] =

k
¡
Y − Yt

¢
dt, with . The price-consumption ratio in their economy is Vt = Y −1t Et

£R∞
0 e−ρsYt+s

¤
.

In terms of the LG process, the state variable isXt := Yt, andMt = e−ρt. We haveEt [dMt/dt] /Mt =

−ρdt, and Et [d (MtYt) /dt] / (MtDt) = −ρYt+k
¡
Y − Yt

¢
. So Mt (1, Yt) is a LG process with ma-

trix ω =

Ã
ρ 0

−kY ρ+ k

!
. The Menzly, Santos and Veronesi pricing equation 17 comes directly

from Proposition 2 of the present article, which yields Vt =
¡
kY + ρYt

¢
/ [ρ (ρ+ k)]. Hence, in

retrospect, the Menzly, Santos and Veronesi (2004) process is tractable because it belongs to the

LG class.

Example 12 A LG process where the stock price is convex (not linear) in the growth rate of

dividends

This example shows how one can obtain asset prices that are increasing in their variance, a

case property that is important in some applications (Johnson 2002, Pastor and Veronesi 2003).

Consider an economy with constant discount rate r (so thatMt = e−rt), and a stock with dividend

Dt = D0 exp
³R t
0 gsds

´
, where16

dgt = −
¡
g2t /2 + φgt

¢
dt+

p
k (G2 − g2)dzt

defined for t ≥ 0, then Vt is the price of a perpetuity, Vt = Et
∞
t

e−
s
t rududs . For instance, with the process

d (1/rt) = φ (rt − r∗) dt+ dNt, the price of a perpetuity is: Vt = (1/rt + φ/r∗) / (1 + φ).
16We assume 0 < G < 2 (φ− k), and that the support of gt is (−G,G), with end points natural boundaries.
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Direct computation shows that Yt = e−rT
¡
Dt,Dtg,Dtg

2
t

¢
is a LG process, with generator ω =⎛⎜⎜⎝

r −1 0

0 r + φ −1/2
−kG2 −b r + k + 2φ

⎞⎟⎟⎠. By Theorem 4, the price-dividend ratio is:

Pt/Dt =
2(φ+ r)(2φ+ k + r) + 2(2φ+ k + r)gt + g2t

2r (φ+ r) (2φ+ k + r)− kG2
(63)

which is increasing in the parameter G of the volatility. In this example, the state vector is¡
gt, g

2
t

¢
, which makes the price quadratic and convex in gt. More generally, by expanding the

state vector, the price could be a polynomial of arbitrary order in g.

We next present some bond-like examples. The general canonical LG bond case is the follow-

ing.

Example 13 A multifactor bond model, with bond risk premia (continuous time).

The following is Example 6 in continuous time. Suppose dMt/Mt = −rtdt+ dNt, where Nt is

a martingale, and decompose the short rate in rt = r∗ +
Pn

i=1 rit, with r∗ a constant and:

E [drit] + hdrit, dMt/Mti = [−φirit + (rt − r∗) rit] dt (64)

Hence, it is enough to specify the the process “under the risk-neutral measure”. One does not

need to separately specify the dynamics of Et [drit] and its risk premium, the hdrit, dMt/Mti term.
Only the sum matters.

Then the process Mt (1, r1t, ..., rnt) is LG, with:

ω =

⎛⎜⎜⎜⎜⎜⎝
r∗ 1 · · · 1

0 r + φ1 0 0

0 0
. . . 0

0 0 0 r + φn

⎞⎟⎟⎟⎟⎟⎠
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and bond price is given by:17

Zt (T ) = e−r∗T
Ã
1−

nX
i=1

1− e−φiT

φi
rit

!
(65)

The risk-premium at t on the T−maturity zero coupon, π (T ) := −
D
dZt(T )
Zt

, dMt
Mt

E
/dt, is:

π (T ) =

Pn
i=1

1−e−φiT
φi

hdrit, dMt/Mti

1−
Pn

i=1
1−e−φiT

φi
rit

. (66)

Gabaix (2007) uses such an expression to think about models that fit the known facts on bond

premia.

We study in more details the 1-factor process.

Example 14 A one-factor bond model, with an always positive nominal rate.

The following example is more here to illustrate LG process than a necessarily empirically rel-

evant interest rate process — multifactor models are necessary to capture the yield curve. Suppose

Mt = exp
³
−
R t
0 rsds

´
, with rt = r∗ + brt, with

dbrt = − (φ− brt) brtdt+ dNt

where Nt is a martingale, and φ > 0, and brt ≤ φ. We examine the LG conditions for this process:

dMt/Mt = −rtdt = − (r∗ + brt) dt, and:
d (Mtbrt) = brtdMt +MtdXt = −brtMt (r∗ + brt) dt+Mt (− (φ− brt) brtdt+ σtdNt)

= Mt (− (r∗ + φ) brtdt+ σtdNt)

Importantly, the br2t terms cancel out. So, using Et [dNt] = 0, we have a LG process:

Et [dMt/Mt] = −r∗dt− brtdt
Et [d (Mtbrt) /Mt] = − (r∗ + φ) brtdt

17As bond prices are independent of volatility, the process exhibits “unspanned volatility,” a relevant feature of
the data, as shown by Collin-Dufresne and Goldstein (2002). Of course, it could be the volatility depends on the
factors directly, so that there would be a correlation between volatility and prices, but that would be an indirect
correlation, rather than a direct one via the price formulas.
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with Yt =Mt (1, brt), and matrix ω = Ãr∗ 1

0 r∗ + φ

!
. So, the bond price is:

Zt (T ) = e−r∗T
µ
1 +

e−φT − 1
φ

brt¶ . (67)

The independence of bond prices from volatility greatly simplifies the analysis. In particular,

dNt could have jumps, which model a decision by the central bank, or fat-tailed innovations of

other kinds (Gabaix et al. 2003, 2006). One does not need to specify the volatility process to

obtain the prices of bonds: only the drift part is necessary. This leaves a high margin of flexibility

to calibrate volatility, for instance on interest rate derivatives, a topic we do not pursue here.

How can we ensure that the interest rate always remain positive? That is very easy (assuming

that the long rate r∗ is positive). We could have dNt = σ (rt) dzt, where zt is a Brownian process,

with σ (r) ∼ k0rκ
0
, κ0 > 1/2 for r in a right neighborhood of 0, and k0 > 0, so that the local drift

at rt = 0 is positive. By the usual Feller conditions on natural boundaries (see Appendix A), the

process admits a strong solution, and rt ≥ 0 always. And, the bond price (67) is not changed
by this assumption about the volatility process. One can indeed change the lower bound for the

process (if it is less than r∗) without changing the bond price.

Section 6 will detail the conditions for the existence of the process. The interest rate needs

to remains below some upper bound r ∈ (r∗, r∗ + φ), so as to not explode. One way is to assume

that σ (r) ∼ k (r − r)κ, for r in a left neighborhood of r, κ > 1/2 and k > 0. Given the drift is

negative around r, that will ensure that r is a natural boundary, and {∀t, rt ≤ r} almost surely,
as detailed in Appendix A.

Example 15 A model in the spirit of Brennan and Schwartz, where the factors are the short

term rate, and the perpetuity rate

A LG model answers the question that started with Brennan and Schwartz (1979): how to

provide an arbitrage-free model interest rates, where the short rate, and the console rate, are

factors. To the best of our knowledge, this is the first model that answers this question. Calling

c0t = Vt − 1/r∗, the deviation of the perpetuity price from its central value 1/r∗, consider the

following process:

Et

£
dr0t
¤
+
­
dr0t, dMt/Mt

®
=

£
− (φ+ ψ + r∗) r

0
t − (φ+ r∗) (ψ + r∗) c

0
t + r02t

¤
dt

Et

£
dc0t
¤
+
­
dc0t, dMt/Mt

®
=

£
rt/r∗ − r∗c

0
t + ctr

0
t

¤
dt
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and the short-term rate is rt = r∗ + r0t, i.e. Et [dMt/Mt] = − (r∗ + r0t) dt. Again, in the simple

case where Mt = exp
³
−
R t
0 rsds

´
, then hdr0t, dMt/Mti = hdc0t, dMt/Mti = 0. The price of a

zero-coupon bond is:

Zt (T ) = e−r∗T + e−r∗T
µ
r∗
φψ

+
(r∗ + φ) e−φT

φ (φ− ψ)
+
(r∗ + ψ) e−ψT

ψ (ψ − φ)

¶
r0t +

+e−r∗T
r∗ (r∗ + φ) (r∗ + ψ)

φψ

µ
1 +

ψe−φT − φe−ψT

φ− ψ

¶
c0t

while the price of the perpetuity is Vt = 1/r∗+ c0t. Hence, in this model, the factors are the short

term rate rt = r∗ + r0t, and the console price Vt = 1/r∗ + c0t.

Example 16 rt having a time-varying trend

In the post-Volcker era, interest rates tended to have predictable trends of increase or increase,

which may be captured by the following trend growth rate st of the interest rate:

Et [drt] /dt = st + (rt − r∗)
2

Et [dst] /dt = [−λμ (rt − r∗)− (λ+ μ) st] + (rt − r∗) st

with λ, μ ≥ 0, and λ + μ > 0. Economically, st is the predicted trend in interest rates, as per

the first expression. st mean-reverts for two reasons: first, because of the −λμ (rt − r∗) term (st

becomes negative if interest rates are too high); second, because of the − (λ+ μ) st term.

We apply Theorem 3, with X 0
t = (rt, st), β

0 = (1, 0), Φ =

Ã
0 −1
λμ λ+ μ

!
. We obtain:

Z (T ) = e−r∗T
∙
1 +

³
e−λT − 1

´ st + μ (rt − r∗)

λ (μ− λ)
−
¡
e−μT − 1

¢ st + λ (rt − r∗)

μ (μ− λ)

¸
.

Those examples show it is quite easy to obtain closed forms with processes that are easy to

interpret.

4.3 Relation to the affine-yield class

The affine class (Duffie and Kan 1996; Dai and Singleton 2000; Duffie, Pan and Singleton 2000) is

a very important class, that contains the processes of Vasicek/Ornstein-Uhlenbeck (1977), Cox,

Ingersoll, Ross (1985) and Balduzzi et al. (1996). It is a workhorse of much empirical and

theoretical in asset pricing. It comprises processes of the type: dXt = (b−ΦXt) dt+ wtdzt, with

wtw
0
t = σ2 (H 0

1Xt +H0), with b,Xt ∈ Rn, Φ ∈ Rn×n, (H0,H1) ∈ Rn×n × Rn×n×n, σ ∈ R, zt is a
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n−dimensional Brownian motion. The interest rate is rt = r∗ + β0 (Xt −X∗), where X∗ = Φ−1b,

is assumed to exist.

Under mild technical conditions, bond prices have the expression:

ZAfft (T ) = exp
¡
−r∗T + Γ (T )0 (Xt −X∗) + σ2a (T )

¢
where a (T ) and Γ (T ) satisfy coupled ordinary differential equations, that typically need to be

solved numerically. This is not a problem for empirical work, but that does hinder theoretical work.

The situation is simpler if H1 = 0. In that case, Γ (T ) = γ (T ), with γ (T )0 = β0
¡
e−ΦT − 1

¢
/Φ.

Then: ZAfft (T ) = exp
¡
−r∗T + γ (T )0 (Xt −X∗) + σ2a (T )

¢
. This expression can be contrasted

with the expression for the LG process (54):

ZLGt (T ) = e−r∗T
¡
1 + γ (T )0 (Xt −X∗)

¢
. (68)

If γ (T )0Xt is small, the two expressions are the same, up to terms of second order in γ (T )0Xt,

and second order in σ. Hence, a LG process is a good approximation if the underlying process is

in fact affine, and vice-versa. In most cases, the two values are likely to be close, so that existing

estimates of parameters in the affine class can be used to calibrate LG processes.18

What are the respective merits of the LG and affine classes? First, quantitatively, they will

often make close predictions, as the two models yield the same prices to a first order.

The distinctive advantage of the LG class is for stocks. LG yield simple closed forms for stock

prices. However, with the affine class, a stock price can be only be expressed

PAfft /Dt =

Z ∞

0
ZAfft (T ) dT

or, in discrete time, PAfft /Dt =
P∞

t=0 Z
Aff
t (T ). Those are infinite sums of exponential expressions,

which is a great progress over stochastic sums (see Ang and Liu 2004), but still not very tractable.

Beyond their advantage for stocks, LG processes have two lesser virtues. First, bond prices are

also quite simple, and that should prove useful to theorize on bonds (Gabaix 2007). Second, they

allow a free functional form for the innovations dNt, which can include jumps and non-Gaussian

behavior, and a free type of heteroskedascity.

18That equivalence gives a useful way to calculate easily functionals of LG processes, that can be expressed as
a linear combination of bonds. One first works with the affine process, setting volatility to 0, doing a first order
Taylor expansion of terms in (Xt −X∗). One gets an expression: PAff

t = a + b (Xt −X∗) + o (Xt −X∗) + o σ2 ,
for some constant a, b. Then, one knows that for the corresponding LG process, the value of the asset is: P LG

t =
a+ b (Xt −X∗), exactly.
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On the other hand, affine processes are the central technique to price derivatives, whereas

this paper barely begins to study options for LG processes (section 5.3). LG processes look less

convenient for options. Some variance needs to go to 0 at the borders, this may make the fit

difficult, e.g. when pricing bond options. Also, a potential drawback of pricing bonds with the

LG process, is that, in the simplest version at least, bonds have no convexity in the LG framework.

However, multifactor LG processes can have a flexible degree of convexity (Example 12).

A nice property of affine process is that if Mt is in the affine class, and γ is a constant, then

Mγ
t is always in the affine class too, whereas LG processes do not have that property. Otherwise,

advantages of affine models are that they are well-understood, they have been estimated. It would

be very desirable to do the same for LG models.

In conclusion, LG processes have a good advantage for stocks, affine processes have a strong

advantage for options. For bonds, affine models will continue to be tremendously successful, but

LG models may complement them usefully, particularly in theoretical research.

5 Extensions

5.1 Processes with time-dependent coefficients

It is simple to extend the process to time-dependent coefficient. Suppose the process is:

Et

∙
d (MtDt)

MtDt

¸
= −

¡
a (t) + β0 (t)Xt

¢
dt

Et

∙
d (MtDtXt)

MtDt

¸
= − (b (t) + Φ (t)Xt) dt

With Yt = (Mt,MtXt)
>, this is E [dYt] /dt = −ω (t)Yt, where ω (t) =

Ã
α (t) β (t)

b (t) Φ (t)

!
. The

solution is: E0 [YT ] = exp
³
−
R T
0 ω (t) dt

´
Y0. Hence, in the zero-coupon expressions, it is enough

to replace ωT by
R T
0 ω (t) dt. For instance, when ∀t, b (t) = 0, the equivalent of (54) is:

P0/D0 = e−
T
0 a(t)dt +

µZ T

0
β (t) dt

¶−1
e−

T
0 Φ(t)dt − e−

T
0 a(t)dt³R T

0 (Φ (t)− a (t) In) dt
´−1Xt.

5.2 Closedness under addition and multiplication

The product of two uncorrelated LG processes is LG. The same reasoning works for

the product of two LG process. The product of two uncorrelated LG processes with respective
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dimensions d1, d2 (i.e., with d1−1 and d2−1 factor respectively) is LG, with dimension d1d2 (i.e.,
with d1d2 − 1 factors). The idea is simple, though it requires somewhat heavy notations.

We start in discrete time. Take two LG processes
¡
M i

t , Y
i
t

¢
, and the product stochastic

discount factor mt = m1
tm

2
t . Assume that, for any index i, j of the components, Et

h
Y
1(i)
t+1 Y

2(j)
t+1

i
=

Et

h
Y
1(i)
t+1

i
Et

h
Y
2(j)
t+1

i
, a condition which is for instance verified if the processes are independent.

Then, it is easy to verify that for any vector ψi, Et

£¡
ψ1Y 1T

¢ ¡
ψ2Y 2T

¢¤
= Et

£
ψ2Y 2T

¤
Et

£
ψ2Y 2T

¤
. In

particular, Et

£
M1

TM
2
T

¤
= Et

£
M1

T

¤
Et

£
M2

T

¤
Then, mt = m1

tm
2
t is also the SDF of a LG process.19 The state vector is Y

1
t ⊗ Y

2
t , i.e. the

vector made of the d1d2 components Y
1(i)
t Y

2(j)
t , i = 0...nX , j = 0...nY . The corresponding Ω

matrix is Ω = Ω1 ⊗ Ω2. This comes simply from the fact that Et

£
mX

t+1m
Y
t+1Xt+1 ⊗ Y t+1

¤
=

Et

£
mX

t+1Xt+1

¤
⊗Et

£
mY

t+1Y t+1

¤
.

In continuous time, suppose E
£
d
¡
MX

t Xt

¢
/dt
¤
= −ωXMX

t Xtdt, and E
£
d
¡
MY

t Y t

¢
/dt
¤
=

−ωYMY
t Y tdt. Then, MX

t MY
t is also a pricing kernel that comes from a LG process. The state

vector is Xt⊗Y t (which has dimension d1d2), and the ω matrix is: ωX⊗Y = InX ⊗ωY +ωX⊗InY .
As an application, consider two LG processes, rt, and gt, with:We now merge the two previous

examples, to incorporate both a time-varying equity premium and a time-varying dividend growth

rate. The stochastic discount factor and dividend are given as follows:

Example 17 Stock with decoupled LG processes for the growth rate and the risk premium.

Consider processes with dMt/Mt = −rt−λtdBt, dDt/Dt = gtdt+ σtdBt, where gt follows the

LG process

dgt = −φg (gt − g∗) dt− (gt − g∗)
2 dt+ dNg

t .

The risk premium, πt = λtσt, follows the LG process:

dπt = −φπ (πt − π∗) dt+ (πt − π∗)
2 dt+ dNπ

t

where Ng
t , N

π
t are martingales. Assume that the processes dN

g
t , dN

π
t and dBt are uncorrelated.

Then, the price of a stock, Pt = E0
£R∞
0 MtDtdt

¤
/M0, is, by the reasoning of the previous section,

Pt/Dt = Et

£R∞
s=t exp

¡
−
R s
u=t (r + πu − gu) du

¢
ds
¤
. In virtue of the above reasoning,

Et

∙
exp

µZ s

t
−πu + gudu

¶¸
= Et

∙
exp

µZ s

t
−πudu

¶¸
Et

∙
exp

µZ s

t
gudu

¶¸
(69)

19This subsection probably contains typos.
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For general processes, the above equation would in general require the two processes to be in-

dependent — for instance, with stochastic volatility, the respective variance processes should be

independent. For LG processes, the property required is the weaker hdπt, dgti = 0 for all t’s.
Using the values of the LG processes, and integrating, we obtain, with R = r + π∗ − g∗,20

Pt/Dt =
1

R

"
1− πt − π∗

R+ φπ
+

gt − g∗
R+ φg

−
¡
2R+ φπ + φg

¢
(πt − π∗) (gt − g∗)

(R+ φπ)
¡
R+ φg

¢ ¡
R+ φπ + φg

¢ # . (70)

The central value is again the Gordon formula, Pt/Dt = 1/R. It is modified by the current level

of the equity premium, and the growth rate of the stock. A stock with a currently high growth

rate gt exhibits a higher price-dividend ratio, and this is amplified when the equity premium is

low, as shown by the term (πt − π∗) (gt − g∗).

The difference between formula (70) and formula (16) is the here, the processes for πt and

gt are decoupled, whereas in (16), they where coupled, i.e. in their drift term there was a term

(gt − g∗). The decoupling forces the presence of a cross term (πt − π∗) (gt − g∗) in the expression

of the price. In general, one obtains simpler expressions by having one multifactor LG processes,

rather than the product of many different ones.

The sum of two LG processes is LG. This property is quite trivial, and mentioned for

completeness. Suppose two LG process
¡
M i

t , Y
i
t , ν

i
¢
, with M i

t = νiY i
t , for i = 1, 2. Call di the

dimension of Y i
t , which is the number of factors plus 1. Then, the SDF Mt = M1

t + N2
t comes

from a LG process of dimension d1 + d2. Indeed, define Yt =
¡
Y 1t , Y

2
t

¢
, a vector of dimension

d1 + d2 and ν =
¡
ν1, ν2

¢
, and Ω =

Ã
Ω1 0

0 Ω2

!
. Then, Et [Yt+1] = ΩYt, and Mt = νYt.

5.3 A remark on option pricing with LG processes

One can express transforms of options in the LG framework, under some conditions. As in Duffie,

Pan and Singleton (2000), this requires Fourier transforms and ordinary differential equations,

but not solving partial differential equations.

Consider the case Dt = 1, and the price at time 0 of an option giving at time T the right to

buy a bond for a price K. Its price is: Pt = Et

£
MT (ZT (XT , S)−K)+

¤
. Given ZT (XT , S) is an

20Menzly, Santos and Veronesi (2004, Eq. 20) obtain a similar expression. This is natural because their model
belong to the LG class, as Example 11 shows.
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affine function of Xt, write ZT (XT , S)−K = w0 ·XT −K 0, so that the option price at time 0 is:

P0 = E0
£
MT (ZT (XT , S)−K)+

¤
= E0

h
MT

¡
w0 ·XT −K 0¢+i = E0

£
(ψ · YT )+

¤
with YT = (Mt,MtXt)

> ∈ Rn+1, and ψ = (−K 0, w)> ∈ Rn+1.

So the problem is solved if we know how to calculate E0
£
(ψ · YT )+

¤
. We can simply transpose

the results of Duffie, Pan and Singleton (2000). Assume the following affine process for Yt, dYt =

−ωYtdt + dNt, where dNt is a Brownian process with hdNt, dN
0
ti /dt = 2HYt, for which21 H ∈

R(n+1)
3
. Then, for λ ∈ Cn+1, when E0

£
eλYY

¤
is well-defined, one has the following “affine-yield”

representation:

E0

h
eλ

0YT
i
= eB(T )Y0 (71)

where B (T ) ensures that, with V (T, Y ) = eB(T )Y , AV − ∂TV = 0, which gives:

dB (T )

dT
= −B (T )ω +B (T )HB (T ) (72)

and B (0) = λ0. Typically, the ODE (72) needs to be solved numerically.

We are now done. The knowledge of (71) gives the distribution of YT by inversion of the

Fourier transform, hence the price of the option.

On the other hand, with the above approach, variances of Yt/Mt are not independent of Mt,

whereas it would be better if there were.

Decomposing more complicated functions g (X) on a basis of functions (w0 ·XT −K 0)+, one

can (in principle) express any option E0 [MT g (XT )] this way. Partial differential equations are

avoided, and replaced by comparatively simpler ordinary differential equations and Fourier trans-

forms.

6 Conditions to keep the process well-defined

The results of this paper require that the process be defined for t ∈ [0,∞). Appendix A reviews
standard sufficient conditions in the one-factor case. The present section present the analogue

conditions in the multifactor case. [This section is needs rewriting].

21H is a tensor, so that HYt has dimension (n+ 1)× (n+ 1). More explicitly, (HY )ij = kHijkYk.
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6.1 Simple conditions

First, diagonalize the matrix Ω (resp. −ω), i.e. find q and ∆ such that Ω = q∆q−1, with

∆ = Diag
¡
ψ1, ..., ψn+1

¢
, and ψ1 ≥ ... ≥ ψn+1. The eigenvector corresponding to eigenvalue

ψj is (qij)i=1...n. With MtDt = ν0Yt, call ξ = q0ν, and Kt = q−1Yt. This way: MtDt = ξ0Kt,

and Et [Kt+1] = q−1ΩYt = ∆Kt. In other terms, the state vector is now Kt, and the process is

diagonal, in the sense that Et [Kt+1] = ∆Kt, where ∆ is a diagonal matrix.

We need to find conditions on Kt such that, for all s ≥ t, ξ0Ks > 0.

Et [Mt+TDt+T ] = ξ0∆TKt =
X
i

ξiψ
T
i Kit

Sufficient conditions are given by the following proposition:

Proposition 3 (Sufficient conditions for the bond and stock prices to be always positive). Writing

the process in diagonal form, MtDt = ξ0Kt, EtKt+1 = ∆Kt, ∆ a diagonal matrix with ∆11 the

diagonal element with the largest value, a sufficient condition for prices at t to be positive is:

ξ1K1t −
X
i>1

(ξiKit)
− > 0 (73)

where, for a real x, x− = max (−x, 0).

Proof.

Et [Mt+TDt+T ] = ξ0∆TKt =
X
i

ξiψ
T
i Kit = ψT

1

X
i

ξi

µ
ψi

ψ1

¶T

Kit

≥ ψT
1

Ã
ξ1K1t −

X
i

(ξiKit)
−
!
> 0

as ψi/ψ1 ∈ (0, 1).

Applications Simple stock model. Take the simplest stock model. The basis is: Kt =Ã
MtDt (1 + γt/φ)

−MtDtγt/φ

!
, with ξ = (1, 1). So, the condition is: (1 + γt/φ) − (−γt/φ)− > 0, i.e.

1− γ−t /φ > 0, i.e. γt > −φ, the tightest possible condition.
Bond with n factors. The basis is: Kn+1,t = Mt (1−

P
rit/φi), Kit = Mtrit/φi, with ξ =
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(1, .., 1). Then, condition (73) becomes: 1−
P

rit/φi −
P
(rit/φi)

−, i.e.

1−
X
i

r+it/φi > 0 (74)

6.2 Another formulation

[Most of the material will likely go in Cheridito and Gabaix (2007)]

With one factor, the process is well-defined if it stays within r ≤ r, with r < r∗ + φ. Also,

the volatility of the process has to go to 0 near r. The following is the n−factor equivalent. We
start with a LG process (47)-(48).

Admissibility of the initial conditions

We start from a process EtdYt = −ωYtdt.
Step 1 — Diagonalization of the process.

Diagonalize the matrix ω, i.e., find q and∆ such that ω = q∆q−1, with∆ = Diag (δ1, ..., δn+1),

and δ1 ≤ ... ≤ δn+1. The eigenvector corresponding to eigenvalue δj is (qij)i=1...n.

Define Q = Diag (q1j) · q−1. Then, ω = Q−1∆Q, with (1, .., 1)Q = (1, 0, .., 0). 22

Define ∇ (“nabla”), a (n+ 1)× (n+ 1) matrix:23

∇ij : = (δi+1 − δj) 1i≥j for i = 1...n (75)

= 1 for i = n+ 1 (76)

Step 2 — Admissibility of the initial condition. The initial condition Y0 should satisfy:

∇QY0 > 0 (77)

where the inequality is meant to hold coordinate by coordinate. Condition (77) is the n−dimensional
analogue of rt − r∗ < φ in the one-factor process.

If the initial value of Yt satisfies (77), and increments are continuous, then all future Ys>t also

satisfy (77).

22 If q1j = 0 for some j, one just eliminates the space corresponding to eigenvector j, without changing the
economics of the process, in particular MtDt. (To be fleshed out).
23The alternative matrix defined by ∇ij = 1i≥j also works. It leads to more stringent conditions.
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Making the volatility go to zero near the boundaries We consider the region (+

(+ =
©
Y ∈ Rn+1 | ∇QY > 0

ª
As Y 1t =MtDt = (0n, 1) ·∇Q, Y ∈ (+ implies MtDt > 0.

We define a “killing” function κ : R → R+, such that (i) κ (x) = 0 for x ≤ 0; (ii) for x in a
right neighborhood of 0, κ (x) = O (xα), for some α > 1/2 and (iii); there is an x0 (in practice

small) such that κ (x) = 1 for x > x0. Define:

K (Y ) = κ

µ
min
i=1...n

(∇QY )i
(∇QY )n+1

¶
That is, K (Y ) = 1 most of the time, but when Y is close to the boundary of ρ+, then K (Y ) goes

to 0.

Transformation of the process to make sure it is defined for t ∈ [0,∞).
Start from the “target” process that could be written deYt = −ωeYtdt+ eYtdnt +MtdNt, nt is a

1-dimensional martingale, Nt a (n+ 1) dimensional martingale. σt captures the log-normal drift

in dividend, while dNt captures innovations to the factors, and var (dNt) /dt is bounded. The

target process eYt might explode in finite time, as in the one-factor process. To stabilize it, define
the modified process:

dYt = −ωYtdt+ Ytdnt +K (Yt)MtdNt (78)

Then, the modified process is defined for t ∈ [0,∞). The modified process is well defined, and
has correlations identical to those of the initial process when K (Y ) = 1, i.e. far enough from the

boundary of region ρ+. The K (Y ) dNt term makes the volatility go to 0 when Y is close to the

boundary of (77).24 Otherwise, it is equal to 1. We note that, in practice, the K (Yt) term will

affect the process very rarely.

6.3 Examples

Take 1-dimensional process, dMt/Mt = −rtdt, drt =
¡
−φrt + r2t

¢
dt + σ (rt) dzt. Take Yt =

(Mt,Mtrt). Then, ω =

Ã
0 1

0 φ

!
, Q =

Ã
1 −1/φ
0 1/φ

!
,∇ =

Ã
1 0

1 1

!
, and∇QYt =

Ã
Mt (1− rt/φ)

Mt

!
.

Condition (77), ∇QYt > 0, is equivalent to rt < φ and Mt > 0. Also, K (Yt) = κ (1− rt/φ). The

conditions above implies that it goes to 0 as rt is in a left neighborhood of φ.

24The above procedure works with continuous increments. When there are jumps, the jumps should not transport
Yt outside of ρ+.

39



6.4 Justification

The key lemma is the following.

Lemma 1 Given a matrix ω ∈ Rm×m, with a diagonalization ω = Q−1∆Q, with Q1j = 1 for

j = 1...m, and ∆ = Diag
¡
ψ0, ..., ψm−1

¢
. Define:

∇ij : =
ψi − ψj−1
ψi − ψ0

1i≥j for i = 1...m− 1 (79)

= 1 for i = m (80)

Define V := ∇QωQ−1∇−1. Then, for i < j, Vij = 0, and for i > j, Vji ≤ 0. Also, Vii = δi, and

V (1, ..., 1)0 = δ0 (1, ..., 1)
0. Finally, (0, .., 0, 1)∇Q = (1, 0, ..., 0).

Consider then Zt = ∇QYt. We have EtdZt/dt = −V Zt, which has non-negative non-diagonal

elements. Hence, an element Zi
t = 0, while Z

j
t > 0, then EdZi

t/dt ≥ 0. This means that, in the
deterministic version of the process, if Z0 > 0, then for all t > 0, Zt > 0.

In discrete time, we suppose that Ω has positive eigenvalues. We start from Yt+1 = ΩYt, and

call ω = In+1 − Ω. Zt = ∇QYt. We have Zt+1 = KZt, with K = In+1 −∇QωQ−1∇−1. K which

has weakly positive non-diagonal elements, and as diagonal elements, the eigenvalues of Ω, so that

finally K has weakly positive coefficients. Hence, if Zt ≥ 0, Zt+1 ≥ 0.

7 Conclusion

Linearity-generating processes are very tractable, as they yield closed forms for stocks and bonds,

and prices that are linear in factors. They are likely to be useful in several parts of economics,

when trend growth rates, or risk premia, are time-varying.

The results of this paper suggest the following questions.

First, it would be desirable to study explicit, non-toy, economic models that take advantage

of the tractability offered by the LG structure. Gabaix (2007) presents such a model.

Second, since the LG processes are defined by moment conditions (Eq. 20-21), they lend

themselves to estimation and testing by GMM techniques.

Third, LG processes suggest a new way to linearize models. Given a model, one could do

a Taylor expansion expressing moments Et [mt+1] and Et [mt+1Yt+1] as a linear function of the

factors, thereby making equations 20-21 hold to a first order approximation. The projected

model is then in the LG class, and its asset prices are approximations of the prices of the initial

problem. Hence the LG class offers a way to derive linear approximations of the asset prices of
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more complicated models. Appendix C studies such an example, where a non-LG process can be

approximated by an LG process to an arbitrary degree of precision.

Fourth, the LG class suggests a way to create further discount factor processes. The back-

ground state vector Yt could follow a process richer than an autoregressive process, and the

stochastic discount factor, which simply a linear projection of the state vector in LG processes,

could be a richer function of it.

We conclude that LG processes might be a useful addition to the economists’ toolbox.
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Appendix A. Regularity conditions for the one-factor process

This appendix details conditions for the existence and uniqueness of the solutions. We recommend

Karatzas and Shreve (1991 Chapter 5.5) and Revuz and Yor (1999, Chapter IX) for systematic

treatments, and Ait-Sahalia (1996, Appendix) for a pedagogical overview. We call D = (r, r) the
domain of existence of r, and c an arbitrary point in D. We call μ (r) the drift of r, and assume
dNt = σ (rt) dzt. We make the following assumptions.

(i) The drift and diffusion functions are continuously differentiable in r in D, and σ2 (r) > 0

in D.
(ii) The integral of m (r) = exp

¡R r
c 2μ (u) /σ

2 (u) du
¢
/σ2 (r) converges at both boundaries of

D.
(iii) The integral of s (r) = exp

¡
−
R r
c 2μ (u) /σ

2 (u) du
¢
diverges at both boundaries of D.

(iv) μ is Lipschitz continuous, and there is a function ρ (x) : R+ → R+, with ρ (0) = 0, such

that for any ε > 0,
R
(0,ε) ρ (x)

−2 dx = +∞, and |σ (x)− σ (y)| ≤ ρ (|x− y|) .
If conditions (i)-(iv) are satisfied, then there is a unique Ito process {rt, t ≥ 0} which is a

strong solution of the stochastic differential equation (86) with initial condition r0 = r. Moreover,

{rt, t ≥ 0} is Markov.
The key substantive point is that the process is defined for all t ≥ 0, and does not explode.

This condition is crucial, as if we started with r0 > β, the process would explode in finite time

with positive probability, so that the process would not be defined for all times.

Conditions (i), (ii) and (iv) guarantee the existence and uniqueness of the solution up to

the variable may hit the boundaries. Condition (iii) implies that the boundaries are actually

not reached. The intuition is as follows. Consider the correct boundary. Condition (iii) implies

μ (r) < 0, so that the process tends to return inside D, and also requires that σ2 (r) tends to 0
fast enough as r ↑ r.

Sufficient conditions to ensure (i)-(iv) Conditions (i) and (ii) guarantee that the sto-

chastic differential equation (86) admits a unique strong solution. Those conditions are verified

in the following cases. Condition (iii) guarantees that the end points D of are natural boundaries.
We assume μ (r) < 0 and limr→r μ (r) > 0, so that close to the end points of D, the process

tends to go back inside D. In the case μ (r) = (r − α) (r − β), with α < β, this corresponds to

r ∈ (α, β) and r ∈ [−∞, α).

Conditions (ii) and (iii) are verified if the following conditions (C-D) hold. For r in a left-
neighborhood of r, σ2 (r) ∼ k (r − r)κ, with (κ > 1 and k > 0) or (κ = 1 and 0 < k < −2m (r)).
If r > −∞, for r in a right neighborhood of r, σ2 (r) ∼ k0 (r − r)κ

0
, with (κ0 > 1 and k0 > 0) or
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(κ0 = 1 and 0 < k0 < 2m (r)). If r = −∞, then r is a natural boundary if, for r in a neighborhood
of −∞ σ2 (r) ∼ k |r|β, with k > 0 and β < 3. Those last conditions imply assumptions (ii), (iii).

For r = −∞, the situation is complex for condition (iv), as the standard conditions found in
textbooks do not apply. μ (r) is not Lipschitz continuous, as μ0 (r) is unbounded. We conjecture

that a simple weakening of condition (iv) will allow the case r = −∞.
If r > −∞, the above conditions (C-D) also imply (iv), as one can take ρ (x) = Kmax

³
xκ/2, xκ

0/2, x
´
,

for a large enough constant K.

Appendix B. Matrix Algebra

In some of the proofs, we will use the following Lemmas, which are standard facts.

Lemma 2 With a ∈ R, b, c ∈ Rn, and d ∈ Rn2, suppose that d is invertible and a − b0d−1c 6= 0.

Then the (n+ 1)× (n+ 1) matrix
Ã

a b0

c d

!
is invertible, and its inverse is:

Ã
a b0

c d

!−1
=

1

a− b0d−1c

Ã
1 −b0d−1

−d−1c ad−1

!
(81)

In the above equation, a− b0d−1c is a real number.

Lemma 3 With n ∈ N∗+, a ∈ R, b ∈ Rn, and d ∈ Rn2. Call 0n×1 is the zero n× 1 matrix made
of 0’s, and suppose that (aIn − d) is invertible. Then, for t ∈ N,

Ã
a b0

0n×1 d

!t

=

Ã
at b0

¡
atIn − dt

¢
(aIn − d)−1

0n×1 dt

!

and, for t ∈ R,

exp

"Ã
a b0

0n×1 d

!
t

#
=

Ã
eat b0

¡
eatIn − edt

¢
(aIn − d)−1

0n×1 edt

!

Appendix C. Approximating non-LG processes with LG processes

LG processes offer a way to approximate the price of stocks and bonds with non-LG processes,

often to an arbitrary degree of precision. This Appendix illustrates this in the example of section

2.2, where the stock dividend growth (detrended) follows an Ornstein-Uhlenbeck process : dgt =
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−φgtdt + σdzt. The general properties of approximation with LG processes would require a full

paper, but the present appendix simply illustrates that a preliminary investigation justifies being

optimistic.

First-order approximation We return to the model of section 2.2, with R = r − g∗, and

here we call gt = γt. Define Y 1t = e−RtDt, and Y 2t = e−RtDtgt. We have: Et [dY1,t] /dt =

(−R+ gt)Y1,t = −RY1,t + Y2,t and

dY2,t/dt = Y1,t
¡
− (φ+R) gt + g2t

¢
To approximate g2t , we replace it by its steady state mean. To find it, we observing that

Et

£
dg2t
¤
/dt = −2φg2t + σ2, so that taking the expectation at time 0, we obtain limt→∞E0

£
g2t
¤
=

σ2/ (2φ). Hence we approximate dY2,t ' Y1,t
¡
− (φ+R) gt + σ2/ (2φ)

¢
. Hence we approximate Yt

by Y ∗t , where

Et [dY
∗
t ] /dt = −

Ã
R −1

−σ2/ (2φ) R+ φ

!
Y ∗t

Applying Theorem 4, we obtain:

P ∗t /Dt =
gt +R+ φ

R (R+ φ)− σ2/ (2φ)
(82)
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Figure 3: The Figure plots the true value of the P/D ratio of a stock with an Ornstein-Uhlenbeck
process (solid line, Eq. 11), and the approximation by a LG process with 1 factor (dashed line,
Eq. 82). The annualized values are: R = 5%, φ = 15%, σ = 4%, which corresponds to a stock
price volatility of 11% solely caused by changes in gt. In the range of the Figure, the two curves
are within 1.5% of each other.
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Figure 4: The Figure plots the true value of the P/D ratio of a stock with an Ornstein-Uhlenbeck
process (solid line, Eq. 11), and the approximation by a LG process with n = 5 factor (solid line),
see Eq. 83, truncated at n = 5. The annualized values are: R = 5%, σ = 3%, φ = 15%, which
corresponds to a stock price volatility of 11% solely caused by changes in gt. In the range of the
Figure, the two curves are within 0.04% of each other.

Figure 3 plots the LG approximation, and the exact expression. We find only a small dis-

crepancy (less than 1.5%) between the two expressions. We conclusion is that the first order

approximation of the Ornstein-Uhlenbeck process by a LG process will be rather good, and useful

for theoretical purposes.

If the goal is high-level numerical accuracy, we turn to an approximation of arbitrary order.

Approximation of arbitrary order In some examples, and perhaps virtually always (at

least, when the processes defining the functions are analytic), it is possible to make LG processes

approximate the prices of non-LG process to an arbitrary degree of precision. We provide a

simple illustration of this. Define Yit = e−rtDtg
i−1
t for i = 1, 2, .... Hence, the vector of factors is

Xt =
¡
gt, g

2
t , g

3
t , ...

¢
. 25 We have:

Et [dYi,t] /dt = e−rtDt

µ
gi+1t + (i− 1) (−φ) git + (i− 1) (i− 2)

σ2

2
gi−3t

¶
− rYi,t

= (i− 1) (i− 2) σ
2

2
Yi−2,t − [r + (i− 1)φ]Yi,t + Yi+1,t

25Of course, the same reasoning could be done with another basis fi (gt) for the transforms of gt.
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so that Et [dYt] = −ωYtdt, with ωi,i−2 = − (i− 1) (i− 2)σ2/2,ωi,i = r+(i− 1)φ, ωi,i+1 = −1 and
ωij = 0 otherwise. So the price is:

Pt/Dt = (1, 0, ..., 0, ..)ω
−1 ¡1, gt, g2t , ..., gnt , ...¢ (83)

The sum can be truncated up to step n, i.e. be take to be the restriction of the vector to

the first n dimensions. We compare the LG (83) to the exact expression (11). Numerical results,

reported in Figure 3, show that the approximation is very good, even for n = 5.

It would be good to generalize the above procedure, probably in a future paper. It suggests

that LG processes allow to evaluate the price of many non-LG processes (e.g., those with analytic

expansions), to an arbitrary degree of precision.
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