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Conditional Risk, Overconditioning, and the Performance of Momentum

Strategies

Abstract

Recent empirical studies evaluate the performance of investment strategies using contempora-
neously measured loadings to proxy for conditional risk. We demonstrate that such procedures lead
to potentially large biases in alpha when payoffs are nonlinear. We combine lagged portfolio and
component realized betas with standard instruments to improve performance analysis, and find that
conditioning information reduces momentum alphas by 20-40% relative to unconditional estimates.

Overconditioned alphas are up to 2.5 times larger than appropriately conditioned measures.



1. Introduction

Under the conditional CAPM, risk is defined as the conditional exposure to market returns given
the information available to investors at the time of their portfolio decision. If an empiricist fails
to account for predictable variation in risk, a bias can occur in evaluating the performance of in-
vestment strategies (Jensen, 1968; Grant, 1977; Dybvig and Ross, 1985) and in testing the pricing
model (Hansen and Richard, 1987; Jagannathan and Wang, 1996). Standard empirical methods
attempt to mitigate this underconditioning bias by permitting loadings to depend on data observ-
able to investors, such as the lagged dividend yield, term spread, or other variables. For example,
Shanken (1990) specifies beta as a linear function of lagged instruments, followed by Ferson and
Schadt (1996), Ferson and Harvey (1999), the textbook exposition of Cochrane (2001), and others. !

In recent literature, an alternative approach dispenses with lagged instruments, and instead
directly estimates factor loadings in windows contemporaneous with the returns to be risk-adjusted.
For example, Grundy and Martin (2001, “GM”) proxy for the month 7 market and size betas of
momentum portfolios using loadings estimated from monthly returns in the window 7 to 7 + 5.
They favor these estimates over lagged loadings because “the relevant risk to an investor... is the
strategy’s factor exposure during the investment window.” (p. 43) Similarly, Ang, Chen, and Xing

(2006, “ACX”) argue:

The CAPM predicts an increasing relationship between realized average returns and
realized factor loadings, or contemporaneous expected returns and market betas. More
generally, a multifactor model implies that we should observe patterns between average
returns and sensitivities to different sources of risk over the same time period used to
compute the average returns and the factor sensitivities. (p. 1201)

Lewellen and Nagel (2006, “LN”) make the stronger claim of a new asset pricing test that cir-
cumvents the critique put forward by Hansen and Richard, explaining, “Our methodology... does
not require any conditioning information. As long as betas are relatively stable within a month or
quarter, simple CAPM regressions estimated over a short window — using no conditioning variables
— provide direct estimates of assets’ conditional alphas and betas.” (p. 291)

Our paper introduces the idea of overconditioning, which occurs when an empiricist uses a

conditional risk proxy, such as the contemporaneous realized beta, that is not entirely in the investor

'Numerous other studies specify CAPM or other loadings as a function of lagged instruments, and use a variety of
moment conditions for estimation. See, for example, Avramov and Chordia (2006), Bollerslev, Engle, and Wooldridge
(1988), Campbell (1987), Cochrane (1996), Duffee (2005), Ferson and Harvey (1991, 1993), Ferson, Kandel, and
Stambaugh (1987), Harvey (1989), Lettau and Ludvigson (2001b), Petkova and Zhang (2005), Santos and Veronesi
(2006), and Wang (2003).



information set. Note that any empirically calculated realized beta cannot be fully anticipated
by investors.? The component orthogonal to their information (“noise”) can be substantial and
problematic in the short windows recommended by LN, even under the optimistic assumption that
realized beta is an unbiased estimate of conditional risk. We show that if the noise in the empirical
risk estimate covaries with unexpected market returns, the associated alpha is biased.

The key theoretical insight of our paper is that the magnitude of the overconditioning bias
is directly tied to nonlinearity in the relation between asset and factor returns.? Intuitively, if an
asset has payoffs that are concave (convex) in market returns, the noise in realized beta over a fixed
window will be negatively (positively) correlated with the number and size of positive market sur-
prises during the window. To be clear, many pricing models imply a linear correspondence between
expected asset and factor returns, but the realized return relation may generally be nonlinear.*
Thus, performance measures based on the conditional CAPM and other pricing models should be
robust to payoff nonlinearities.

Evidence of payoff nonlinearities in stock returns is provided by Ang and Chen (2002) and ACX,
who show that many securities covary differently with negative and positive market surprises. ACX
sort days within a year by whether the excess market return is below or above its within-year
average, and run market model regressions on the subsets of “down” and “up” days. They sort
companies by the difference between the down and up betas and find considerable dispersion. For
the highest quintile, this beta asymmetry is almost one. ACX ask whether stocks with large down
betas earn abnormal profits.

Our interest in payoff nonlinearities has an almost entirely different motivation. Even in the
absence of a risk premium associated with beta asymmetries (e.g., the conditional CAPM), payoff
nonlinearities generate a bias in overconditioned alphas. Our goals in this paper are to (i) explain

the overconditioning bias and demonstrate its empirical importance, (ii) develop an improved con-

2In idealized settings, continuous record asymptotics permit perfect observability of local quadratic variations and
covariations (e.g., Foster and Nelson, 1991), but such environments are certainly more restrictive than necessary for
a conditional CAPM to hold, and the limitations imposed by finite data in empirical work are important.

3A payoff nonlinearity occurs when, conditional on the contemporaneous factor return, the relation between the
expected return on an asset and the realized factor return is nonlinear. For example, in a single-factor static setting
one can linearly project an asset return onto the factor return. If the projection errors can be predicted by any
function of the factor return, then payoffs are nonlinear.

4For example, under quadratic preferences the CAPM holds for arbitrary return specifications. Similarly, while
early versions of the APT assume a strict factor structure that implies all asset payoffs are linear in factor returns,
subsequent extensions are compatible with nonlinearities for an arbitrary number of individual assets provided that
these average out in large portfolios. Specifically, Chamberlain and Rothschild (1983) generalize Ross (1976) by
permitting an approximate factor structure with potentially correlated residuals. The residuals may then load on
squared market returns, for example. Grinblatt and Titman (1985) provide an intuition for the Chamberlain and
Rothschild result based on repackaging the initial assets into portfolios that obey the strict factor structure of Ross,
implying that the average nonlinearity must converge to zero.



ditional performance methodology that avoids overconditioning while incorporating information
from high-frequency realized betas, and (iii) use these methods to obtain more accurate estimates
of conditional momentum performance.

We first evaluate the effects of payoff nonlinearities in a calibrated dynamic CAPM with beta
asymmetry comparable to empirical values reported by ACX. Performance measures that use con-
temporaneous versus lagged risk proxies can systematically differ by as much as 40 basis points per
month, suggesting an economically significant overconditioning bias.

To illustrate the importance of appropriate conditioning in an empirical setting, we reexamine
the performance of momentum strategies, which buy recent winner stocks, sell recent losers, and
earn large medium term profits (Jegadeesh and Titman, 1993). Recent theoretical research proposes
that conditional risk could help to explain this apparent anomaly (Berk, Green, and Naik, 1999;
GM; Johnson, 2002; Sagi and Seasholes, 2007). Empirically, GM and LN determine that momentum
alphas increase or are unaffected by conditioning, but their conclusions are based on abnormal
returns computed from contemporaneous risk loadings.® Moreover, despite large monthly turnover
in momentum portfolios, GM and LN estimate betas at the portfolio level in windows ranging from
several months to several years. More accurate methods of measuring conditional beta could thus
lead to different conclusions regarding momentum performance.

Our empirical analysis shows that winner portfolios have more pronounced beta asymmetry than
losers, implying that overconditioning should affect the long side of the strategy more than the short
side. Confirming this prediction, momentum alphas are up to 75 basis points per month larger when
based on contemporaneous versus lagged risk loadings, indicating a substantial overconditioning
bias.

An independently important quantitative issue in our study is that compounding daily returns
affects loser and winner portfolios differently. To obtain monthly alphas from regressions using
daily returns, LN rescale estimated intercepts by the average number of trading days in a month.
We develop an analytical approximation for the difference between monthly and rescaled daily
(RD) average returns in terms of the monthly/daily variance ratio.® When daily returns are very
persistent, as in the loser portfolio, compounding has strong effects and the RD average considerably
understates the buy-and-hold average. The net impact in the winner minus loser portfolio is an RD

bias as large as 30 basis points per month.

5GM also calculate alphas based on lagged risk loadings, but as described previously argue that contemporaneous
loadings provide a better indicator of risk. They thus emphasize in their introduction that “hedging out the strategy’s
dynamic exposure to size and market factors... would have increased the mean monthly return to 1.34%” from 0.44%.
These figures are based on hedging with realized loadings calculated from the investment period.

SCampbell, Lo, and MacKinlay (1996) discuss variance ratios and provide references.



The performance evaluation methodology we advocate combines standard instruments with
lagged realized betas calculated at the portfolio and individual stock level, within a conditional
return specification similar to Shanken (1990), Ferson and Schadt (1996), and Ferson and Har-
vey (1999). Unlike previous performance measures that use realized betas as direct proxies for
conditional beta, treating the estimated betas as instruments corrects potential biases due to mi-
crostructure effects,” and combines information from different sources. Appropriately conditioned
alphas are statistically significantly lower than unconditional alphas by approximately 20-40%. The
overconditioned alphas recommended by LN are more than 2.5 times larger than appropriately con-
ditioned estimates.

Korajczyk and Sadka (2004) argue that the high trading costs associated with momentum
trading may substantially offset the strategy’s estimated abnormal profits. Our findings complement
their claims, since appropriate use of conditioning information significantly attenuates momentum
alphas, and thus further reduces the risk- and cost-adjusted profitability of momentum trading. By
contrast, overconditioned alpha estimates of almost 1.5% per month would make arguments based
on trading costs seem less plausible.

Section 2 demonstrates overconditioning in a simple setting. Section 3 calibrates payoff non-
linearities in a dynamic CAPM to assess the economic importance of the overconditioning bias.
Section 4 introduces momentum strategies, and Section 5 implements conditional CAPM perfor-
mance measures. Section 6 extends the empirical analysis to the conditional Fama-French model.

All proofs are in Appendix B.%

2. Overconditioning

For t = 1,2, ..., let conditional expected excess returns on asset ¢ be
E (Rit| Fi-1) = afy ' + By 'E(Rare| Fior), (2.1)

where {F;};2, is a filtration, Rz is the excess market return,

t—1 _ Cov (R, Rye| Fi—1)
i VCLT(RMt‘.E_l)

(2.2)

"Dimson (1979), Dimson and Marsh (1983) and Scholes and Williams (1977) discuss the impact of asynchronous
trading on beta estimates.

8Studies that cite the conclusions of LN include Campbell and Vuolteenaho (2004), Daniel and Titman (2006),
Fama and French (2006), and Petkova and Zhang (2005).



1is a conditional intercept. If aﬁt_ 1 — 0 and F,_; represents investor

is a conditional beta, and a’;t_
information, the conditional CAPM holds.
The underconditioning problem is well understood. Following Grant (1977) and Jagannathan

and Wang (1996),° we take expectations of (2.1) to obtain

R;=a; + Cov (B ', Rue) + BiRu,

where &; = E (o/;t_ 1) is the mean conditional alpha, 3; = E( ft_ 1) is the mean conditional beta,

R, = E (R;), and Ry = E (Rps¢). For comparison, consider the unconditional market model
R, = aZUC + ﬂ?CRM, where aZUC is the intercept, ﬁ?c = Cov(Rit,RMt)/a%w is the beta, and
O’?V[ = Var (Rpp). Failing to appropriately condition leads to the unconditional alpha bias

all — a; = Cov (ﬂit_l, RMt) - (ﬂgc — Bz) RM (23)

)

The first term captures the effects of market timing on returns holding the average conditional
beta constant, and the second term reflects that unconditional beta is generally a biased measure
of average risk.'?

Our paper develops the complementary idea of overconditioning. Suppose an empiricist calcu-
lates a beta estimate equal to the investor’s conditional beta plus error: Bit = ft_ Ly Vg, and

decompose the error by projecting it onto investor information:
ver = E(vge|Fi—1) + epe-

The first component of the decomposition represents underconditioning, and the second is due to
overconditioning. To see this, note that the second term equals zero with probability one if the
empiricist uses only information available to investors. By contrast, if Bit is a contemporaneous

realized beta, then €g; has strictly positive variance. We then show:

Proposition 1. Let fiit be unbiased under the investor information set: E(Bit’]:t—l) = ';ft_l. The

9See also Jensen (1968) who considers how market timing affects performance measures.
The beta bias is

- R _ 1 _
ﬂ?c — B, = —TMC’ov (ﬂft 1,RM,5) + —-Cov (ﬂgt 1,Rfm) , (2.4)
Om Om
allowing the alpha bias to be rewritten
R3 _ R _
ol —a; = <1 + %) Cov (B, 17RM,5) — TMC’ov (Cin 17R?\/1t) . (2.5)
Om Om

These decompositions can be easily applied given an empirical proxy for Bﬁ; L
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overconditioned alpha is then c_xioc =R,—E (BitRMt>a and the overconditioned alpha bias is &

o = —Cov (Z}zt — ﬂ:ft_l,RMt> .

Thus, even in the best case scenario that the contemporaneous realized beta is unbiased, an alpha
calculated from the realized beta may be biased. Specifically, if the unpredictable part of real-
ized beta covaries with the market return, the overconditioned alpha is a misleading measure of
performance.

Recent literature provides abundant evidence that many assets covary differently with down and
up markets (Ang and Chen, 2002; ACX; Hong, Tu, and Zhou, 2006). A simple example illustrates
how beta asymmetry and overconditioning interact to produce a bias. Assume a static CAPM:
R; = B;Ry where 8; = Cov(R;, Ryr) Jo3,. Let S € {G,B} be a variable that is not available
to investors at time zero, but is observable ex post. For example, G might be the event that
excess market returns are greater than Rj;, and B its complement. For s € {G, B}, define the

overconditioned betas
_ Cov(Ri,Ru|S =5s)

Bi= Var (Rpy|S = s) (2:6)

If payoffs are linear then ﬁiG = 85, but as discussed previously the CAPM does not require linear
payoffs.

We now consider the pitfalls associated with incorrectly using the contemporaneous information
S to evaluate performance. Denoting the overconditioned abnormal returns by af = E (R;|S = s)—

BiE (Rar| S = s), we show

B

Proposition 2. The overconditioned abnormal returns are zero, oziG = «a; = 0 if and only if

B¢ = BB, Furthermore, E (af) = [8; —E (ﬁf)] Ry — Cov [ﬁszE (RumlS)].

Thus, if contemporaneous information is used to test the CAPM and betas are asymmetric, then
alphas are biased.

We illustrate this proposition in a simple four-state example. Let Q = {wq ws w3 w4} describe
the state space, where each event is equally likely. Excess returns R; () and Ry (2) are chosen
to satisfy Ry; = 0.01, R; = 0.01, and 3; = 1. The variable S equals B in states w; and wy where
market returns are lower, and is G in w3 and w4. We assume ﬁZB = 1.5 and ﬁiG = 0.5, consistent with
a stock whose comovement is larger in down than up markets, and calculate the payoffs R s (Q2)
and R; () as shown in Appendix A.1.

Figure 1 plots the returns in each of the four states and the conditional and unconditional

regression lines. The CAPM holds with a slope of one, depicted by the solid line going through



the origin. The conditional regressions correspond to the two dashed lines with slopes ﬂfg and BZG
and intercepts ozZB = 0.017 and ozZ-G = 0.027. As required by Proposition 2, the concave payoff
structure in this example implies that Cov [BZS JE(Rn| S )] < 0 and the expected overconditioned
alpha is positive. If we had alternatively assumed BZB < ﬁiG then payoffs would be convex and the
mean overconditioned alpha would be negative. Thus, when an empiricist overconditions by using
information not available to investors, the size and direction of the resulting alpha bias depends on

the degree of concavity or convexity in payoffs.

3. Conditioning Biases in a Calibrated Dynamic CAPM

We calibrate a dynamic CAPM with time-varying risk premia and conditional market loadings.
Using simulated data, we analyze different performance measures. Substantial biases arise from
failing to account for the conditional nature of the pricing relationship (underconditioning), or
from using conditioning variables such as the ex post realized beta that are not in the investor

information set (overconditioning).

3.1. Time-Varying Risk Premia, Asymmetric Betas, and Stock Returns

We model a portfolio excess return R;; and a market excess return Ry for t = 0,1,..,T, where t
indexes observations at a short horizon such as one day. The relevant horizon of investors may be
longer. To accommodate this, define 7 (t) = [t/n] + 1, where |z] denotes the integer part of x,'!
as an index into n-day months.

Immediately prior to each window 7 = 1,2,..,7 (T), investors receive a signal Z,_; € {H, L}
about conditional returns in month 7. Assuming stationarity, denote for z € {H, L} the conditional

means

_f\/[ = E (RMt’ZT(t)—l = 2’)
RZZ = E (Rit‘ZT(t)—l = Z)

and the conditional beta
z Cov (RityRMt’ZT(t)—l = Z)

L Var (RMt‘ZT(t)—]_ = Z)

"'To be precise, || = max{z € Z| z < x} where Z is the set of integers.



The state variable Z, follows a symmetric regime-switching process:
P(Z,=z2Z;—1=2)=p

for z € {H, L}, where 0.5 < p < 1 is the persistence parameter.
To model nonlinearity of R; in the realization of R, an additional variable S; € {G, B}

simultaneously affects the conditional distribution of returns:
P (RitaRMt| ZT(t)—l =z, St = 8) ~N [(Rfszij) 72 ] ) (31)

where RZ* and _j;f, are the state-dependent means of ¢ and M, and

zs O’2 fSO'2
R B (3.2)

zs 2 2
Bitoy  on

is the state-dependent covariance matrix. The variable S is iid at a daily frequency and the states
G and B occur with equal probability.

Distinguishing the roles played by Z, and S, is critical. The variable Z, helps investors to
predict both market returns and the risk loading of portfolio i. The empirical literature establishes
that market returns are predictable primarily at low frequencies (e.g., Lettau and Ludvigson, 2001a;
Cochrane, 2001). We thus expect in empirical applications that candidate instruments for Z, should
have a persistent component.

By contrast, S; is iid and not anticipated by investors. This accords with the difficulty of
forecasting the daily “up market” and “down market” states used by ACX to calculate up and
down betas. The up and down betas do not directly relate to predictability in market returns and
loadings, but measure the tendency of an asset to respond differently to high versus low realized
market returns. The variable S; thus operates at a high daily frequency, is not persistent,'? and
produces asymmetric betas.

We give a simple structure to the state-conditioned mean market returns:

DZS D Z S
RM = RM + A]\/[ <1{Z7—(t)71:H} - 1{Z7—(t)71:L}) + AM (1{St=G} - l{St:B}) ) (33)

where R); is the unconditional mean, AJ@ is the increment for the states H and L, AJS\} is the

2The model can accommodate persistence in the latent state Sy, in which case investor learning is potentially
important. We focus on the iid case for expositional clarity.



increment for the states G and B, and for any event A the indicator function 1 4 equals one if the

event is true and zero otherwise. Similarly,

28 __ 1D A S
Bi° =B+ Af (1{27(”,1:1{} - 1{2,(t),1:L}) — A3 (Ls,=cy — Lsi=ny) (3.4)

where 3; is the average conditional beta and (Ag , Ag) are the beta increments corresponding to
the state variables Z and S respectively. When Ag and A}\q4 have the same sign, the stock covaries
more strongly with down markets than up markets.

For simplicity, set

B = E(B7°|Zry—1 = 2) = B;. (3.5)

In general, the distinction between 3; (expected beta) and 87 (conditional beta) is important, but
enforcing (3.5) for the remainder of the Monte Carlo analysis eliminates in a reasonable way a
parameter that would otherwise need to be specified, and focuses attention on the direct alpha bias

caused by covariance between the conditional beta and the conditional market risk premium.

3.2. The Conditional CAPM

Let F; = {(ZT(t/), Sy, Rare Rit/) it < t} denote investor information at date ¢. For all 1 <t < T,
the CAPM holds conditional on ¢ — 1 information:

E (Ri| Fi-1) = Bl "B (Rare| Fio1) (3.6)

where 3%, ! is the conditional beta as defined in equation (2.2).
The variable Z.;_; € Fi—1 is the only investor information useful for predicting the joint

distribution of R;; and Rys+. We correspondingly show:

Proposition 3. If the CAPM holds conditional on the investor information Fi_1, then

Rf = BfRZ , (3.7)
where
P2 D Z
i = Rar + By (1{Zr<t)—1=H} - 1{27(,5),1:L}) ’ (3:8)
and
zZ __ A Z
5 = Bt A (Lo oty = Yz 1=1}) (39)



Furthermore, the return generating process for portfolio i can be written as
R} = af* + B7° (R3] +em) +&i (3.10)

where
ai* = AF [A% + Riy (Lisi=ay — Lisi=n))] (3.11)

and ep; and g; are mean-zero, independent normal random variables with variances 0?\/1 and 022 —

(BZ5aar)?, respectively.

Equations (3.10) and (3.11) show that using the contemporaneous information S; can lead to non-
zero alphas even though the conditional CAPM holds. The overconditioned alpha a° is zero when
the asset i payoff is linear in Ry, i.e., Ag = 0, and more generally is proportional to the beta

asymmetry Ag.

3.3. Case I: Nonlinear Payoffs without Conditioning Information

To focus attention on payoff nonlinearities, we consider in this subsection that AJ%[ =0 and Ag =0,
implying that the investor information Z,)_; is irrelevant. For s € {G, B} and z € {H, L}, it then
simplifies notation to denote 35 = 37* and Rj; = R3j. The slope and the risk premium of the
conditional CAPM are state-independent and the unconditional CAPM holds.

Several parameters can be directly calibrated or assumed equal to reasonable values. We specify
B; = B; = 1, implying R? = R:, = R; = Ry The unconditional daily mean of excess market
returns is Ry; = 0.0003, or about 7.5% annually. We set 037 = 0.01 per day and o; = 0.02 per day,
which for reasonable values of A}% gives unconditional standard deviations slightly above 16% and

32% per year respectively.

3.3.1. Beta Asymmetry Specification

We calibrate the remaining parameters Ag and A}\q4 by approximately matching the empirical range

of beta asymmetries. Bawa and Lindenberg (1977) introduce the down-market beta

o Cov (RitaRMt| Ry < RM)

By = = 3.12
Var (RMt‘ Ry < RM) ( )

and ACX calculate this statistic annually for NYSE stocks from 1963-2001 using down market
subsamples of daily returns as described previously. ACX similarly define the up-market beta 3 j

and estimate it using up market subsamples.

10



The down and up betas can be calculated analytically for our model, and relate to the probabili-
ties of being in state GG or B conditional on a down or up market. Let P, =P (St =G| Ryt < RM)

and similarly define P&' . We then show:

Proposition 4. The conditional probabilities of state G satisfy P; =1 — ® (k) and Pj = ® (k),
where ®(k) is the standard normal cumulative distribution function evaluated at k = A%, /on. The

down and up betas are

s 20 (k) — 1

bi _ﬂ’+A51—|—kz2—(2¢(k)+k(2<1>(k:)—1))2 (3.13)
and

BF = 6, — AS 20 (k) ~1 (3.14)

PO TP k2 (20 (k) + k(2@ (k) — 1)) '

where ¢(k) is the standard normal probability density function.

The down beta deviates from average beta by the product of Ag and an “asymmetry multiplier”
that characterizes the informativeness of market returns for the latent state S;. The multiplier
depends only on the signal-to-noise ratio k: When k& = 0, the multiplier and market-conditioned
beta asymmetry are zero regardless of the state-conditioned beta asymmetry A g . The multiplier
rises monotonically from 0 to 1.073 as k increases to 1.131, and declines to 1 for k£ > 1.131. When &
is very large, the multiplier is approximately one and 3, —ﬂ:r ~ 2Ag. The maximal beta asymmetry
corresponds to k ~ 1.131, where 3, — 62’ ~~ 2.146A§.

Our calibration fixes A‘g = 0.5, which is sufficiently large to match the upper tail of empirical
absolute beta asymmetries ‘ B; — ﬁ;" ‘ ACX sort stocks by beta asymmetry, and for the quintile with
the largest difference (absolute as well as signed), the average difference is 3, — ﬁ;r =145-0.37 =
1.08. (See their Table 1, Panel F.) Our choice of 2.146A§ = 1.073 thus gives a maximal beta
asymmetry similar to the top quintile of all NYSE stocks. By Proposition 4, the full range of
empirical beta asymmetries can be captured by varying the single parameter A%.

We consider eleven values of AJSM ranging from —0.005 to 0.02 per day, reported in Table 1. The
second through fifth columns of the table give the resulting values of 3;, ﬂ;r, P;, and Pg in daily
data, calculated analytically using Proposition 4. For small Aﬁ}, the probabilities P and P&' are
close to 0.5 and beta asymmetry is near zero. When A}\qJ is positive, the down beta exceeds the up
beta and payoffs are concave, while negative values of Af/[ reverse the up and down betas and give

o . . . S
convex payoffs. As anticipated, a variety of payoff structures are produced by varying A%,.

11



3.3.2. Simulated Returns and Alternative Conditioning: An Example

Among the specifications in Table 1, the case A5, = 0.005 is a useful example with a large but
reasonable beta asymmetry of 1.42 — 0.58 = 0.84. This value falls between the averages of the first
and second quintiles of beta asymmetries reported by ACX for all NYSE stocks. When AJS\} = 0.005,
the state-conditioned means are R% = Ry + AJS\} = 0.0053 and R]@ = —0.0047 per day. This
variation may seem large, but to investors A}\qJ is a small component of the noise in market returns.
The market unconditional variance is 0%\44— (Af/[)2 = 0.01%2 + 0.005% ~ 0.01122 per day, and the
standard deviation is correspondingly about 17.7% per year. The binomial S; thus contributes 20%
of the total variance, or about 9.5% of the unconditional standard deviation of market returns.

Figure 2 visually demonstrates the reasonable impacts of S; when AJSM = 0.005. Panel A plots
12,000 randomly chosen draws from the joint distribution of (R, Ryst). The days when S; = B
are marked in gray, and draws where S; = G are black. The CAPM holds, as demonstrated by the
unconditional regression (solid line) going through the vertical axis at approximately zero with a
slope of one. The marginal distributions of R;; and Rjs¢ are unimodal because k£ = 0.005/0.01 = 1/2
is not too large. As a result, the gray and black points overlap considerably, which can be confirmed
by the values P, = 0.31 and P = 0.69 reported in Table 1. Despite the subtle nonlinearity in
returns, the fitted state-conditioned regressions (dashed lines) clearly show the beta asymmetry
with approximate slopes BZG = 0.5 and ﬁf = 1.5. Consistent with Proposition 3, the conditional
intercepts are positive reflecting that the contemporaneous state Sy is not appropriate conditioning
information.

Panel B shows how market returns act as a proxy for the latent state S;. The same points are
displayed as in Panel A, but here gray dots correspond to down markets Ry < Ras and black
dots represent up markets Ry > Rys. The market-conditioned regression lines have slopes close
to the population values 3, = 1.42 and ﬂj = 0.58 reported in Table 1. Thus, conditioning on
the contemporaneous market return biases alpha in the same manner as conditioning on the latent
state itself.

Similar biases occur in monthly data. Every month 7 has a random number of days S in which
S; = G. Conditioning on S, below or above its mean, as displayed in Panel C, nonlinearity is
present but weaker than in daily data due to averaging of the S; draws within months. A similar
averaging effect occurs when conditioning on the observable market return R ;.. For each value of
A}?m we simulate a long sample of monthly returns and sort the months by whether the market
return is below or above its mean. We estimate market model regressions on each subsample to

obtain monthly down and up betas, reported in Table 1. These results confirm that monthly market-
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conditioned beta asymmetry is considerably smaller than daily asymmetry.

Consistent with the monthly beta asymmetry calculations, Panel D plots the same returns as
Panel C but conditions on whether the market return is below or above its mean. Again, R,
acts as a partial proxy for the latent variable S,. The slopes of the fitted conditional regression
lines are close to their population values of 3, = 1.09 and B;r = 0.91 reported in Table 1. Despite
this apparently modest monthly beta asymmetry, both of the conditional intercepts are sizeable at
about 0.4% per month.

It seems unlikely that any empiricist would interpret the intercepts from daily or monthly
regressions conditioned on Ry;; > Ry as conditional CAPM alphas, but conceptually identical and
perhaps less obvious biases can arise. Any variable correlated with the latent state S; can produce
a contemporaneous conditioning bias as in the panels of Figure 2. Specifically, the realized beta
calculated within a month is correlated with both S, and R);,, and will thus lead to similar biases,

as we now show.

3.3.3. Contemporaneous Portfolio (CP) Risk Adjustment

We consider an empiricist who calculates conditional CAPM alphas by partitioning the data into ©
windows of N months (equivalently nN days), where 0 (¢) = |t/(nN)] 41 indexes the windows and
N =1,3,6. We define two CP risk adjustment methods and compare their accuracy in simulated

data with a benchmark unconditional alpha.

The Rescaled Daily (RD) Conditional Alpha: LN recommend running OLS regressions

within each window 6. We correspondingly specify:

Ryt = oS0 In + BT Rage + €, teo, (3.15)
where LN interpret the rescaled intercept aic(;P RD as a conditional CAPM alpha and 62-6(;13 is the
contemporaneous portfolio beta. The time-series average alpha is denoted @%DRD . The CPRD

approach uses daily data within each subperiod to simultaneously estimate factor loadings and
intercepts, and implicitly assumes that the relevant investor horizon for measuring abnormal returns

is one day.

The Buy-and-Hold (BH) Conditional Alpha: In contrast to the RD method, most asset
pricing tests assume that the pricing model holds over some longer horizon such as a month, quar-

ter, or year. We incorporate the contemporaneous portfolio beta into a buy-and-hold performance
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measure by specifying:

1
af"PH = N (Rio — B%" Rp) , (3.16)

where ﬁ%P is estimated from (3.15), and R;p and Ry are excess buy-and-hold returns over the
period 8. The mean alpha over all windows is Q%BH .
Unconditional (UC) Risk Adjustment As a benchmark, for each value of A, we estimate

the standard unconditional time-series regressions

Ry = oY’ n 4 BUCRDR 1 4 ey, t=1,.,T, (3.17)

Rig = Na{f&BH 4 gUCBHR 10 + s, 0=1,.,0(T), (3.18)

using daily and N-month data. The daily intercept is multiplied by n and the N-month intercept
is divided by N, similar to the conditional RD and BH alphas respectively.

3.3.4. Comparison of the Performance Measures, Case I

The final eight columns of Table 1 show average simulated alphas from CP and UC risk adjustment.
For each value of Aj\q/[, we simulate a single long sample of 108 months of 21 daily returns (R, Rast).
All statistics are essentially free of simulation error, and we do not report standard errors.

Both of the UC alphas (RD and BH) are indistinguishable from zero. The expected value of
the RD alpha is exactly zero because our model imposes that the conditional CAPM holds at a
daily horizon, and conditioning information is irrelevant when AJ%[ = Ag = 0. Longstaff (1989)
shows that when the CAPM holds for a given observation interval, it need not be satisfied at other
horizons. This effect is small in our model since the UCBH alpha at a monthly horizon is also
essentially zero, indicating that the monthly CAPM holds approximately. The RD and BH versions
of the CP alphas are also practically identical in Table 1, further confirming insignificant differences
between rescaled daily and monthly returns.

The results clearly show the impact of overconditioning. For both BH and RD, the moderate
calibration A}% = 0.005 results in an upward bias in alpha of 0.42 for monthly windows, 0.14 for
quarterly windows, and 0.07 for semiannual windows, where we henceforth report all alphas in
percent. Overconditioning has a large impact in small windows, and as N grows the conditional
regressions converge to the unconditional case. Larger nonlinearities Aj\q/[ produce larger CP alpha

biases.
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3.4. Case II: Nonlinear Payoffs with Conditioning Information

We now consider the more general setting where Z has predictive power for market returns and
covariances, i.e. AJ%[ # 0 and Ag # 0. We evaluate five sets of base parameters (Aﬁ, Ag, A}?m
Ag), detailed in Table 2. For each parameterization, we vary the persistence p € {0.50,0.75,0.9}
of Z; to demonstrate the impact of short- versus long-horizon information.

Figure 3 shows 12,000 randomly chosen draws from (R, Rps¢) in the third parameterization
(Aﬂ,Ag,A%,Ag): (0.001,0.2,0.005,0.5) with p = 0.9. Panels A and B display the full set of
draws, while C and D isolate the days when Z.;_; = H, and E and F isolate Z.;)_; = L. The
left-hand-side panels (A, C, and E) condition on the latent state Sy, and the right-hand-side panels
(B, D, and F) condition on R, above or is below its population mean. The figure shows that the
conditioning variable Z,;)_ tilts the properly conditioned beta upwards or downwards, while the
state S; creates nonlinear payoffs. The regression lines conditioned on Z,)_; go approximately
through zero, and the intercepts overconditioned on S; are positive.

For each combination of base parameters and p, we simulate as before a single long time series
of 10® months of 21 daily returns. We evaluate biases in the performance measures UC, CP, and

two others now described.

3.4.1. Lagged Portfolio (LP) Risk Adjustment

An ad-hoc method to avoid overconditioning is to risk adjust using the lagged CP loading %P =

ﬁggp_ 1- The RD and BH alphas are

1
a P = N Z [Rit — Bi" Raut] (3.19)
teo
1
a P = N [Rig — Bl Ruuo) - (3.20)

Although GM base most of their conclusions about abnormal performance on a CP alpha, they

calculate an LPBH alpha and refer to it as a “feasible hedged” return.

3.4.2. Z-conditioned Risk Adjustment and Other Methods

As a benchmark, we consider that the econometrician directly observes the investor conditioning
information Z_;)_;. If such data is available, it is clearly optimal.
Other performance evaluation methods are possible but not addressed in our Monte Carlo

experiments. For example, we could linearly forecast CP beta using the LP beta and other lagged
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information. Additionally, the model above does not address the impacts of portfolio turnover
or changing portfolio weights. We defer investigating these issues until our empirical analysis of
momentum performance, which helps to maintain focus on overconditioning in this section. Finally,
given the known Markov-switching structure of return dynamics in our model, an empiricist could
employ optimal nonlinear filtering or smoothing to infer the latent conditional beta. Such procedures
can potentially improve on linear forecasts, but depend critically on an appropriate specification
for return nonlinearities and dynamics. In this paper we emphasize simple, easily implemented
methods that incorporate useful information without overconditioning, and leave consideration of

more structural approaches to future research.

3.4.3. Comparison of the Performance Measures, Case II

Table 2 shows average BH alphas from the UC, CP, LP, and Z-conditioned performance evaluation
methods. The first base parameter set is the leading example from the previous subsection with
moderate nonlinearity (A% ,Ag): (0.005,0.5) and no investor predictability (A% ,Ag): (0,0).
The persistence p is irrelevant, the UC, LP, and Z-conditioned measures are unbiased, and the CP
alpha has positive bias declining in NV, as discussed previously.

The second base parameterization captures the opposite case where investor conditioning is
important (A]@,Ag) = (0.001,0.2) and payoffs are linear (A%,Ag) = (0,0). By design, under-
conditioning is as problematic as overconditioning in the previous example, and the UC alpha is
approximately 0.41. When investor information is not persistent (p = 0.5) LP conditioning is equiv-
alent to UC with noise for any window size N, and the biases are very similar. As p increases, LP
conditioning becomes more effective, and larger window sizes N dilute useful information. Because
payoffs are linear, the CP measure is unbiased for all p when N = 1, and for larger windows CP
suffers from underconditioning.

The third base case combines the investor information from the second example (A%, Ag )=
(0.001, 0.2) with the payoff nonlinearity from the first example (A%, A‘g): (0.005,0.5). The dangers
from overconditioning and underconditioning are now equal. For all persistence levels p and N =
1, the biases of 0.43 are the same for UC (underconditioned but not overconditioned) and CP
(overconditioned but not underconditioned). When p = 0.5, all performance measures except Z-
conditioning trade off overconditioning vs. underconditioning, and have approximately equal alphas.
As p increases, larger windows become helpful for the CP method as the harmful overconditioned

information is diluted and replaced with useful lagged information. By contrast, LP measures benefit
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from smaller windows with larger p, as these provide the most recent information.!3

Relative to example three, the fourth and fifth base cases respectively increase (A%, = 0.002)
or dampen (A%, = 0.0005) the importance of investor information while holding all else constant.
Thus, underconditioning is more damaging than overconditioning in case four, while the opposite
is true in case five, as reflected in the results.

Among all potential methods, only the true Z-conditioned alphas are reliably unbiased, which is
a straightforward implication of the Hansen and Richard (1987) critique. In practical applications,
empiricists must proceed without definitively knowing the true investor conditioning information.
One clear message from our experiment is that CP risk proxies are not in the investor information
set, and can cause substantial biases when used to evaluate abnormal performance. The only justi-
fications for using CP risk loadings are: (i) the empiricist calculates alphas with respect to a pricing
model predicated on a strict factor structure (i.e., the Ross APT), or (ii) the empiricist knows that
the specific assets or strategies being evaluated have payoffs that are linear in the proposed fac-
tors. In most cases, neither condition is satisfied. Many asset pricing models do not require a strict
factor structure, and there is abundant evidence of nonlinear payoffs in stock returns. Thus, con-
temporaneously measured factor loadings are not a panacea for the Hansen and Richard critique,
as suggested by LN. The ad hoc lagged portfolio approach provides one simple way to avoid over-
conditioning, but the empiricist should still search broadly for appropriate empirical instruments,

as we emphasize when assessing momentum performance in the remainder of the paper.

4. Momentum Investing: Raw Return and Risk Characteristics

Jegadeesh and Titman (1993) initiate the investigation of momentum strategies.'* In this section,
we define the momentum portfolios used in our study, and describe their return characteristics.
Winner portfolios have stronger beta asymmetries, which Section 3 suggests will cause a bias in
CP alphas. Loser portfolios have larger variance ratios (e.g., monthly/daily) which impacts RD

performance measures.

131f we used lagged rolling windows to risk-adjust one month returns, i.e. [r — 6,7 — 1] beta to risk adjust month
T returns, this effect would be weakened. For simplicity, the experiment here uses lagged non-overlapping windows
[t — 6,7 — 1] to risk-adjust returns over the same horizon length [, + 5].

' Jegadeesh and Titman (2001) confirm that momentum persists following their original study. Moskowitz and
Grinblatt (1999) argue that momentum is an industry phenomenon, and Hou (2007) attributes this to slow information
diffusion within industries, while GM dispute the importance of industry momentum. Lee and Swaminathan (2000)
document that momentum is more prevalent in high turnover stocks. Hong, Lim, and Stein (2000) find that small
firms with low analyst coverage exhibit higher momentum. Rouwenhorst (1998, 1999) and Griffin, Ji, and Martin
(2003) document momentum in international stock markets. Chan, Jegadeesh, and Lakonishok (1996) and Chordia
and Shivakumar (2006) show that return momentum is related to earnings momentum. Carhart (1997) and Daniel,
Grinblatt, Titman, and Wermers (1997) use momentum as a control in assessing abnormal returns.
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4.1. Momentum Portfolio Strategies

We consider three momentum strategies, denoted 6-d-h, with common 6 month formation periods
but different delays d and holding periods h, as is now explained. At the beginning of calendar month
T, we sort stocks into deciles based on their return over the formation period 7 —d—6 to 7 —d — 1.
To be included in the sort, stocks must have (i) valid monthly returns on the CRSP database over
the entire formation period, (ii) at least 12 additional valid monthly returns in the thirty months
prior to formation, (iii) at least 15 non-missing daily returns in each month of the formation period.
Immediately following the sort, the winner portfolio (W) makes a fixed $1 investment with equal
weights in the top decile stocks, and sells stocks that were added to the portfolio at the beginning
of month 7 — h. The loser portfolio (L) is defined by similarly timed investments and liquidations
in the bottom decile stocks. Momentum (WL) profits are the difference between W and L returns.
The portfolios we consider are 6-0-6, 6-1-1, and 6-1-6, which aids comparison with LN (6-0-6) and
GM (6-1-1).

To ensure sufficient data to calculate lagged market and Fama-French risk loadings, we begin
analyzing momentum profits in January 1930 and end in December 2005. The portfolios are seasoned
by implementing the strategies with holding period h for h — 1 months prior to the sample start

date. Our results are robust to reasonable variations of these portfolio formation rules.!?

4.2. Raw Profits

Table 3 summarizes return means and standard deviations for the momentum strategies and CRSP
value-weighted market index. The average returns at different horizons are rescaled to have similar
magnitudes: the daily mean is multiplied by the average number of trading days in one month,
denoted n;'® monthly, quarterly and semi-annual means are divided by N = 1,3,6 respectively.
The reported standard deviations of daily returns are similarly rescaled by the square root of n.

The momentum raw returns are uniformly large and positive. For example, the 6-0-6 average
monthly profit is 1.61 — 1.07 = 0.54, where we henceforth report all means and standard deviations
in percentages. The quarterly and semi-annual averages for 6-0-6 are similar (0.52 and 0.64), while
the daily rescaled mean is more than 50% larger (0.84). The 6-1-1 strategy has smaller profits and
proportionately larger horizon effects, while the opposite is true for 6-1-6.

The scaled daily standard deviation of the market index is moderately smaller than the monthly

'5We specifically confirm robustness to (i) including only NYSE and AMEX stocks, (ii) imposing a minimum price
screen of $1, (iii) restricting the sample period to January 1964-December 2005, and (iv) combinations of the above.

16The approximate number of days in a month is 24.5 for months prior to 1952, and 21 thereafter, due to the end
of Saturday trading. The overall average is approximately 22 days in a month.
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value (4.77 vs. 5.45). In winner portfolios, the horizon difference is somewhat larger (e.g., 5.65 vs.

7.52 for 6-0-6), and in loser portfolios the horizon difference is considerably larger (6.21 vs. 11.20).

4.3. The RD Bias in Raw Returns

We develop an analytical formula that approximates the difference between average RD and BH
returns over an arbitrary horizon. Roll (1983) shows how compounded average daily returns deviate
from mean buy-and-hold returns, which is a related but different comparison.'” Our formula is useful
for understanding the difference between daily mean returns and monthly, quarterly, or semi-annual
profits, and also explains the difference between RD and BH methods of calculating alphas.

Let ryy = In(RY) ~ N (,ui, 0?) denote a series of daily log returns. We further assume that log
returns aggregated over n/N days have a normal distribution with variance O‘?N, where N is the
relevant horizon in months. These assumptions are exactly satisfied if r;; is a stationary ARMA(p, q)
process with Gaussian innovations, and approximately hold in more general cases. The buy-and-hold
mean is RIJY = E(R{,, - R}, .n) and the rescaled daily mean is RIP = 14+nNE(RY —1). The
RD statistic has no intrinsic interest to a typical investor, but is often interpreted as a performance

measure, and we wish to understand its bias relative to the more relevant BH statistic. We show:

Proposition 5. The approzimate ratio of RD to BH mean returns is

RIGP 2
ViN = 7;%1—[ ~ eTLNO'i(l—VRiN)/2’ (41)
RiN

where VRN = U?N/ (nNJ?) 18 the variance ratio. The net return ratio is

RIED _q vin — 1
ViNt = Zr— ~vin + = 5x (4.2)
RzN -1 iN 1

The RD bias is thus determined by the daily mean x;, the daily variance a?, and return autocorrela-
tions as summarized by the variance ratio V R; . When the variance ratio is one, (e.g., if returns are
net __

iid), then v,y = v})§ = 1. For portfolios, Lo and MacKinlay (1988) show that asynchronous trading

typically leads to positive autocorrelations and variance ratios that exceed one. When VR;ny > 1,

17Other studies that consider horizon effects include Blume and Stambaugh (1983), who show how portfolio rebal-
ancing impacts average daily returns in the presence of bid-ask bounce, and Canina, Michaely, Thaler, and Womack
(1998), who also focus on high-frequency portfolio rebalancing. Bessembinder and Kalcheva (2007) show how bid-ask
spreads produce biases in estimated liquidity premia, and recommend an easily implemented weighting scheme to
correct this bias.
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then V?ﬁ,t <v;N <1and Rf’ﬁD has a downward bias relative to the BH average. All else constant,

the net bias is more severe when o7 is high and when p; is low.

Table 4 presents monthly average BH and RD net returns for several standard portfolios, their
exact RD biases, the approximate biases v¢f, and statistics relevant to the calculations. The ap-
proximate and actual biases are close for every portfolio, validating Proposition 5. In almost all
cases the RD average is below the BH average, and the bias is more substantial for equal weight-
ing than value weighting. The downward bias in RD is moderate for large cap portfolios (NYSE,
S&P 500, Large, Large Growth, and Large Value portfolios), and can be substantial for small-cap
portfolios. For example, the RD bias for small growth is approximately 30% (0.49/0.68 = 0.72). In
general, the portfolios that weight illiquid stocks more heavily have more positive autocorrelations,
larger variance ratios, and more pronounced RD biases.

Table 5 decomposes the RD bias for momentum portfolios and shows it is particularly severe
for L, which has lower liquidity than W (e.g., Korajczyk and Sadka, 2004). For the 6-1-6 strategy,
the loser RD mean is about one half of the BH mean (0.43/0.78 = 0.55) due to extremely high
autocorrelations and a correspondingly large variance ratio. The winner RD bias is much smaller
(1.60/1.74 = 0.92), and consequently the net WL profits are significantly overstated by RD relative
to BH. The RD measures are difficult to interpret since they mix useful return information with
microstructure effects such as high autocorrelations from asynchronous trading. By contrast, the

BH statistics directly reflect returns at the relevant horizon.

4.4. Beta Measurement, Dynamic Risk, and Beta Asymmetries

Table 6, Panel A, shows unconditional betas for momentum strategies. For daily, monthly, quarterly,
and semi-annual horizons, we report loadings from standard market model regressions. In daily data,
we additionally use Dimson (1979) regressions with the lag structure suggested by LN:

4
Ry = a; + BjoRyye + B Rari—1 + % Z Ryri—1 + €4t (4.3)

k=2
where Rj; and Rjs: are respectively excess returns on portfolio ¢ € {W, L, WL} and the value-
weighted CRSP index.'® The Dimson “sum” beta is 3,y + B;1 + Bio-
Dimson adjustment has a stronger impact on losers than winners, consistent with the lower

liquidity of losers. Similarly, the difference between monthly betas and daily sum betas is larger for

'8Qur results are robust to alternative lead/lag specifications. In particular, we considered: (i) no Dimson leads or
lags, and (ii) one lead of market returns in addition to the lags in (4.3).
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losers than winners. Thus, WL loadings are larger for daily returns and without Dimson adjust-
ments, and we henceforth always Dimson adjust when using daily returns. The unconditional WL
loadings are then negative for all horizons.

Panel B reports average CP betas. Following LN, we form non-overlapping windows of N &
{1, 3,6} calendar months, and within each window estimate the regression (4.3) from daily returns.
The CP beta is the sum beta associated with this regression. For W, the average CP betas are close
to the daily UC loadings (e.g., for 6-0-6: 1.14, 1.18, and 1.21 vs. 1.16), while for L the average CP
betas are smaller than the UC loadings (1.16, 1.22, and 1.24 vs. 1.38).

Figure 4 plots the time series of monthly 6-0-6 CP betas, showing both low-frequency move-
ments and high-frequency variations. If the predictable low-frequency dynamics are correlated with
expected market returns, then unconditional alphas suffer from underconditioning. Conversely, if
the high-frequency changes are unpredictable and correlated with realized market returns, then
overconditioning causes alphas to be biased.

Panels C and D of Table 6 show daily asymmetries without and with Dimson adjustments, and
Panel E reports monthly values. The Dimson adjusted daily WL beta differences are uniformly
positive (0.49 for 6-0-6, 0.60 for 6-1-1, and 0.41 for 6-1-6),'° as are the monthly values (0.91 for
6-0-6, 1.18 for 6-1-1, and 0.74 for 6-1-6).2° These beta asymmetries lead to overconditioning in

momentum CP alphas, as we now show.

5. The Conditional CAPM and Momentum Performance

This section uses the conditional CAPM to assess momentum performance. Proper conditioning
reduces alpha by a statistically significant 20-40% relative to unconditional levels. Overconditioned

alphas can be more than 2.5 times as large as appropriately conditioned performance measures.

5.1. Unconditional Risk Adjustment

Table 7 reports UC alphas in column (i). Intercepts calculated from daily returns use the Dimson
lag structure in (4.3) and are multiplied by n. Monthly, quarterly, and semi-annual alphas are from

the market model regressions (3.18).

9Hong, Tu, and Zhou (2006) report similar asymmetries using a different sample and estimation technique. Ang
and Chen (2002) and ACX do not report up or down betas for momentum portfolios.

20Table 6 shows larger asymmetries in monthly vs. daily returns, while the model in Section 3 implies that asym-
metry should decline in the return horizon. There are of course measurement issues such as microstructure effects
impacting the empirical results in Table 6, making a direct comparison imprecise. Nonetheless, it would be interesting
to consider how the model in Section 3 could be modified to capture these horizon effects in beta asymmetries, and
we leave this as a goal for future research.
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Consistent with the negative market exposure of the WL portfolios reported in Table 6, UC
risk-adjustment increases momentum performance relative to raw profits. For example, at a one

month horizon, the 6-0-6 strategy has alphas of 0.57 for W, —0.24 for L, and a net of 0.81 for WL.

5.1.1. The RD Bias in Alphas

The daily return UC alpha is an RD performance measure, while the monthly and longer horizon
alphas are BH measures. We can apply Proposition 4 to abnormal returns to show how the RD bias
in raw returns translates into a bias in alphas. The alpha difference a?CRD - agVCBH for N =1,3,6

is approximately equal to
ne ngBH ne >9BH 9B H
Wi - DRI —1) = 87 hiy — D(RYT = 1) = (B7C = BIN) RS, (5.1)

where ﬂZU ¢ is the unconditional beta calculated from daily data, and ﬂZUNC are unconditional betas
calculated from buy-and-hold returns over N month windows. The first term approximates the RD
bias in raw returns, and the second term is due to RD bias in market returns. The third term
accounts for horizon differences in beta.

We illustrate this decomposition for the 6-0-6 strategy at a monthly horizon using information
from Tables 3 and 6. Market returns have a small RD bias (0.89/0.93 = 0.96), and the average
risk-free rate is 0.31. Losers have a BH return of 1.07, a substantial RD bias (0.65/1.07 = 0.61),
and betas of fY¢ = 1.38 and BY{ = 1.61. Obtaining the same statistics for winners allows us to
decompose the WL alpha bias into the RD bias in raw returns (0.30) less the effect of RD bias in
market returns (< —0.01) less the impact of differences in monthly and daily betas (0.13), which

approximates the exact bias a%/%RD — a‘[,]VCL?H =0.97 — 0.81 = 0.16.

5.2. Contemporaneous Portfolio (CP) Risk Adjustment

Table 7 reports CP alphas using the RD (column ii) and BH (column iii) methodologies. Both
approaches partition the data into windows of N = 1, 3,6 months. Within each window 6 and for

each portfolio 7, we run regression (4.3), obtaining the intercept a;y and the sum beta ,BZ-CGP . The RD

alphas are the rescaled intercepts ozl%P RED — na,g, and their time-series mean is denoted @S\J,DRD . The
BH alphas apply the same risk adjustment to buy-and-hold returns, i.e., a%P BH — Ry — ﬁ%P R,

and have mean dS\J,DBH .

The CPRD methodology follows LN exactly, and indicates larger WL alphas than UC alphas of
the same horizon N. The effect is dramatic for N = 1 month (1.43 vs. 0.81 for 6-0-6), sizeable for
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quarterly intervals (1.16 vs. 0.89) and marginal for semi-annual windows (0.90 vs. 0.87). Almost all
of the effect of CPRD conditioning on the WL portfolio is driven by the winner side. For example,
the 6-0-6 winner alphas are 0.57 unconditionally, increasing to 1.18 for monthly CPRD. By contrast,
in the L portfolio the UC and CPRD alphas are nearly identical (—0.24 vs. —0.25).

Comparing CPRD to UC alphas while holding N constant mixes two effects. The CPRD alphas
are based on daily returns, while UC measures are based on BH returns over nN days. To isolate the
difference between CP and UC risk-adjustment, we must compare all CPRD alphas to UC alphas
at a daily horizon. The differences are then smaller than discussed in the previous paragraph, and
for N = 6 all CPRD alphas for WL are at least marginally lower than the daily UC alpha.

Consistent with our results for raw returns, the RD bias in CP alphas (i.e., aGF P — aGlBH) is
negative for both W and L, and is more pronounced for L. As a consequence, the WL portfolio RD
biases in CP alphas are positive. For example, the net RD bias is 1.43 — 1.15 = 0.28 for the 6-0-6
strategy with IV = 1, and does not vary substantially for different strategies and window sizes.

The RD bias in CP alphas has a similar decomposition to the RD bias in UC alphas discussed
in Section 5.1.1. One important difference is that CPRD and CPBH use the same beta, so the third
term in equation (5.1) becomes zero. Additionally, the second term becomes slightly more compli-
cated for CP measures, due to covariance between CP beta and the potentially time-varying level
of RD bias in market returns. The second term is generally small, however, and as a consequence
the RD bias in CP alphas is closely approximated by the RD bias in raw returns. For example, in
the 6-0-6 WL portfolio, the RD bias in CP alphas is 0.28 and the raw return bias is 0.30.

Holding the horizon N constant, the CPBH and UC alphas use identical BH returns, and differ
only by the betas they use for risk adjustment. For the 6-0-6 WL portfolio, the CPBH alpha is
larger than UC for N =1 (1.15 vs. 0.81), about the same for N = 3 (0.92 vs. 0.89), and smaller for
N =6 (0.67 vs. 0.87). As in Section 3, smaller horizons N give more recent information, leading
to less underconditioning but more overconditioning, making the results difficult to interpret. The
next subsection uses lagged information to eliminate the overconditioning bias and provide a more

accurate assessment of momentum performance under the conditional CAPM.

5.3. Lagged Portfolio (LP) Risk Adjustment

Define the lagged portfolio betas ﬂ%P = 5%3_1- For N = 1,3,6, the RD alphas are a%PRD =
% > ico [Rit — ﬁiL@PRMt] and the BH alphas are ail(’,PBH = % [R,-g — ﬁf(’,PRMg], presented in Table
7 columns (iv) and (v). The LP method eliminates overconditioning, and the alpha difference

aSPBH _ gLPBH approximates the overconditioning bias.
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The winner LP alphas are lower than the corresponding CP alphas, consistent with our overcon-
ditioning arguments (Sections 2-3) and the large winner beta asymmetry (Table 6). Overcondition-
ing is dramatic for N =1 (e.g., for 6-0-6, CPBH is 1.25 and LPBH is 0.55) and almost negligible
for N =6 (0.66 vs. 0.65). This pattern is consistent with the Monte Carlo results in Table 2. Long
windows contain diluted and increasingly irrelevant conditioning information, and hence both CP
and LP alphas approach UC for large N. By contrast, shorter windows result in large overcondi-
tioning for CP, but provide more accurate information when LP is used. These arguments suggest
that the inverse relation between CP alpha and window length (1.25, 0.87, 0.66 for N = 1,3,6) is
due to overconditioning, while the lower LP alphas with reversed horizon effects (0.55, 0.60, 0.65)
show the effect of more appropriate conditioning.

The L portfolios are much less impacted by overconditioning, consistent with their smaller
beta asymmetries in Table 6. For all strategies and horizons, the difference between CP and LP
alphas is no larger than 0.10 for losers. Combining the large overconditioning bias in W with the
near insensitivity of L, the WL portfolio has a positive bias that is very large for low N (e.g.,
af/ B — afif B = 1.15 — 0.53 = 0.62).

We draw particular attention to the LPBH alphas, which suggest that the conditional CAPM
reduces momentum performance relative to the unconditional alpha for all horizons and risk mea-
sures, calling into question the conclusions of LN. For example, with NV = 1 the CPRD methodology
advocated by LN produces alphas that are considerably larger than UC (1.43 vs. 0.81 for 6-0-6,
1.43 vs. 0.57 for 6-1-1, and 1.69 vs. 1.14 for 6-1-6). By contrast, the LPBH alphas, which eliminate
both the overconditioning and RD biases, are much smaller (0.53, 0.36, 0.87).

Despite the improvement in LP relative to CP, an important shortcoming in both approaches
is that they do not account for changing portfolio composition. For example, the LP winner beta
reflects W risk in previous periods, but momentum portfolios typically have high turnover and the
betas of entering and exiting stocks need not be similar. In particular, GM show that betas of
newly added winner and loser stocks vary with the market return in the formation period, due to
selection. Nonetheless, neither GM nor LN account for portfolio turnover in calculating risk adjusted
returns,?! and these weaknesses are present in the CP and LP alphas. Since portfolio composition is
an important determinant of momentum risk, we now develop a performance measure that accounts

for the dynamics of portfolio holdings.

21GM proxy for month 7 betas using portfolio loadings estimated in windows from months 7 to 7+5 or from 7 — 61
to 7 — 2. (See their Table 1 and Sections 4.1-4.2.) Similarly, LN assume constant loadings over periods as long as
twelve months.
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5.4. Lagged Component (LC) Risk Adjustment

Fama and MacBeth (1973) test the CAPM using monthly rebalanced equal-weighted portfolios, and
correspondingly calculate portfolio betas as equal-weighted averages of individual stock betas from
prior windows. For buy-and-hold momentum strategies, a natural extension is to use a portfolio-
weighted average of individual component loadings estimated from prior windows. This procedure
accounts for turnover, and also adjusts for the fluctuating portfolio weights of individual stocks in
buy-and-hold portfolios.

To implement the lagged component methodology, at the end of each calendar month 7 — 1 we
first estimate betas of the individual stocks (components) that will belong to a portfolio in month 7.
The component loading regressions in our study are primarily based on two combinations of return
frequencies and window lengths: (i) daily returns from the beginning of 7 —6 to the end of 7—1 with
the Dimson lag structure in (4.3); or (ii) monthly returns from 7 — 36 to 7 — 1. The corresponding
portfolio loadings, denoted BZLTCG and 511;7036 respectively, are obtained by summing over components
the product of (1) the component beta and (2) the beginning of month 7 component portfolio weight.
For lags [ = 6,36, the alphas are aiLTCl =R — @LTCI Ry with time-series averages &Z-LCZ, reported
in Table 7 Panel A columns (vi) and (vii).

For all strategies, the LC net WL alphas are smaller than the one month LPBH alphas to which
they are most comparable. The difference between LC and LPBH performance measures is most
noticeable for 6-1-1, presumably because of its high turnover.

Panel B shows the average LC betas. The LC6 averages (e.g., 1.23 and 1.22 for 6-0-6 W and L)
are larger than the one month CP beta averages (1.14 and 1.16, Table 6) by similar amounts for W
and L. Hence, the reduction in WL alpha for LC6 relative to LPBH (0.43 vs. 0.53) is primarily due
to a larger covariation between beta and the market return. By contrast, the 6-0-6 LC36 winner
beta is smaller than the loser beta (1.25 vs. 1.35), which almost entirely explains the larger WL
alpha for LC36 relative to LC6 (0.51 vs. 0.43). Microstructure issues may affect the average level of
any realized beta, hence we now turn to a more general conditioning method that corrects biases

and combines information in arbitrary risk predictors.

5.5. Forecast Component (FC) Risk Adjustment

The conditional performance measures CP, LP, and LC use fixed window betas as direct proxies
for the unobserved conditional CAPM beta. An alternative approach specifies beta as a function

of instruments, typically predictors of risk premia such as the dividend yield and T-bill rate. We
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combine these techniques by using LP and LC betas as additional instruments in conditional return

regressions, within the context of two related approaches.

5.5.1. The One-step Method (FC1)

Following Shanken (1990), Ferson and Schadt (1996), and Ferson and Harvey (1999), we specify

the conditional return regression:
RiT = O%FCI + /61 |: 1 Z‘r—l ] RMT + €ir, (52)

where the conditional beta 5117;01 = G, 1 Z,_; ] uses as instruments any lagged conditioning
information and 7 indexes months.?? Typical instruments are predictors of risk premia, and we
consider the dividend yield (DY), term spread (TS), one-month T-bill rate (TB), and default
spread (DS).2® We additionally use as instruments LP and LC betas. If individual stock betas are
greatly influenced by their portfolio membership (in vs. out), then the LP risk measures may be
useful. On the other hand, if individual stock loadings are highly persistent and portfolio loadings
change primarily due to fluctuating portfolio weights (including turnover), then the LC betas are
likely to be more accurate. Consistent with the high turnover of momentum portfolios, we focus
primarily on the lagged component betas LC6 and L.C36, and discuss robustness to other choices.

The conditional return specification (5.2) includes as special cases the CP, LP, and LC method-
ologies discussed previously, by placing a weight of one on the corresponding CP, LP, or LC beta
estimate, and zeros on all other instruments. The general specification has several advantages over
direct proxying. First, permitting conditional beta to be a linear combination of prior window beta
estimates and other potential predictors allows data-driven forecast averaging as opposed to an
ad hoc choice of empirical proxy. Second, the general specification allows instruments to be scaled
up or down, greatly mitigating concerns about using daily realized betas that may be attenuated
towards zero due to asynchronous trading. Finally, the timing convention in the conditional regres-

sion clarifies that lagged instruments should be used, and hence directly inserting a CP beta in the

22The specification is identical to equation (4) in Ferson and Schadt. Shanken permits the intercept to also be linear
in the instruments, and notes that the coefficients are zero under the null. Ferson and Harvey use the coefficient
restrictions in a time-varying intercept specification to reject the conditional Fama-French model. We specify a
constant intercept to maintain comparability with CP, LP, and LC alphas, and in Section 5.6 test for predictability in
the residuals. Related empirical approaches specify time-varying betas in a GMM framework (e.g., Campbell, 1987,
Ferson and Harvey, 1993; Harvey, 1989).

DY is computed following Fama and French (1988). TS is from Robert Shiller’s website
http://www.econ.yale.edu/ shiller /data.htm, measured at the end of the previous year. DS is the difference between
BAA and AAA corporate bond yields, obtained from the Federal Reserve, http://research.stlouisfed.org/fred2. TB
is the 30-day T-bill yield from CRSP.
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instrument set Z,_1 is not advisable.

5.5.2. The Two-Step Method (FC2)

If one wishes to introduce CP betas into the conditional return regression, then appropriate instru-

mentation is required. Consider the first-stage predictive regression:
BE = Yio + Vi1 Zr-1 + €ir- (5.3)

The second stage return regression specifies conditional beta as a linear function of the fitted
first-stage CP beta:
~CP
Rir = af %+ (90 + 618, ) Rarr + tir. (5.4)

The conditional beta is then 3572 = ®i0 +¢iﬁgp.24 If the fitted CP beta is an unbiased estimate of
the conditional beta then ¢;; + ¢;; = 1, and if it is an efficient predictor then additionally ¢,, = 0.
Specifying ¢,, and ¢;; to be unconstrained recognizes that the fitted CP beta and conditional beta
should be correlated, but due to microstructure biases in daily data and other potential horizon
effects it may be optimal to rescale and translate the fitted realized beta.

The two-step regression is a special case of the one-step regression. Whereas FC1 allows condi-
tional beta to be an unrestricted function of the instruments, FC2 requires the instruments to first
be projected on the CP beta. As a consequence, under the FC2 null the one-step coefficients are

the product of the FC2 first stage parameters and the second stage coefficient ¢;;.

5.5.3. Forecast Component Empirical Results

Table 8 shows 6-0-6 FC regressions for different instruments. The columns report the FC2 beta and
return regressions, and the FC1 alpha and R?. In all cases, the FC1 and FC2 alphas are very close,
and our discussion focuses on the two-step results.

With no instruments (specification 1), the first stage intercepts are by definition the mean
CP betas (1.14 and 1.16 for W and L, Table 6), and the second stage fitted CP beta coefficients
(¢;; = 1.02 and 1.39 for W and L) are ratios of the UC to average CP betas.?5 The FC1 and FC2

24Gimilar to our first stage regression, Ghysels and Jacquier (2006) regress CP betas on LP betas and other predictor
variables. They do not consider LC betas, which may be justifiable given that their focus is on forecasting betas of
industry portfolios, where turnover is generally low. Because of the emphasis of their paper, they also do not consider
the second stage regression, which is critical for performance analysis, and also mitigates microstructure biases in
realized betas calculated from daily data.

25 The coefficients ¢, and ¢, are not separately identified in (1) because the fitted CP beta is constant.
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return regression intercepts are the unconditional alphas previously reported in Table 7, and the
net WL alpha is 0.81.

The standard instruments (2) are useful to predict CP betas, particularly for losers (for W and
L, R? = 2.85 and 9.73 percent). The second stage fitted CP betas are highly significant, providing
an efficient predictor of conditional beta for winners (¢,y, ¢;; = —0.12,1.20), and a downward
biased but still useful predictor for losers (0.51,0.79). For W and L, the second stage R? increase
by approximately two percentage points relative to (1), the alphas attenuate towards zero, and the
net WL alpha decreases from 0.81 unconditionally to 0.70 conditionally.

Our paper emphasizes that lagged component betas are useful instruments for conditional return
regressions. Relative to the standard predictors (2), the isolated LC6 beta (3) substantially improves
the first stage CP beta regression (R? = 26.4,23.0 for W and L), the second stage R? increase by
2.6 and 0.2 points for W and L with both alphas attenuating toward zero, and the WL alpha drops
to 0.65.

Relative to LC6, the isolated LC36 beta (4) has less first stage predictive power (R? = 19.2,17.2),
and gives a marginally smaller WL alpha of 0.63. Combining LLC6 and LC36 (5), both are significant
with LC6 more heavily weighted in a ratio of approximately 2:1. Figure 5 shows the resulting
conditional betas ﬁf;cz, which appear smoother than the CP betas in Figure 4. The WL alpha
from this regression is 0.62.

Specification (6) combines the LC betas with instruments RU6 and RU36, the market runups
over 6 and 36 month prior windows. To motivate these instruments, recall that GM show the
formation period runup predicts W and L betas, due to selection. Additionally, when payoffs are
nonlinear the beta estimated in any window can covary with contemporaneous market returns.
Including market runup helps to control for this effect. The results show that RU6 positively
predicts winner beta and RU36 negatively predicts loser beta with a small overall impact on R?
and a WL alpha of 0.59.

Specification (7) combines LC betas with the standard instruments. For winners the LC beta
coeflicients are virtually unchanged, TB is driven out, and among the standard instruments only
DY is significant. For losers, the total weight on LC betas remains similar but shifts towards LC36
(approximate 1:1 ratio), TS and DY are driven out, and the significance of TB and DS declines
substantially. Combining all instruments in (8), the LC betas are stable and significant, the runup
variables are driven out, and among the standard instruments only DY for winners and TB for
losers remain significant. Relative to (1), the WL alpha falls by approximately 30% to 0.59.

As a robustness check, in untabulated results we also considered adding additional LC and LP
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betas to the regressions in Table 8. For example, the LP6 beta, calculated from six months of daily
lagged portfolio returns, is significant independently, but is completely driven out when combined
with LC6. In general, LC betas dominate LP betas, and the alphas reported in Table 8 with LC6
and LC36 betas are robust to adding component or portfolio betas measured over other horizons.

Table 9 abbreviates the forecast component analysis for 6-1-1 and 6-1-6 strategies. The results
are qualitatively similar to those reported for 6-0-6, and the net alpha reductions from conditioning
information are approximately 20% for 6-1-6 (0.93 vs. 1.14) and 40% for 6-1-1 (0.36 vs. 0.57).

We test the statistical significance of the reductions in alpha due to conditioning information
using the GMM procedure outlined in Appendix A.2. For each conditional regression in Tables 8
and 9, an asterisk next to the WL alpha denotes significance at the 5% level. When the standard
instruments alone are used, the decrease in alpha is significant only for the 6-1-1 strategy. In all
specifications with at least one LC beta as an instrument, the conditional alpha is significantly
lower than the unconditional alpha for all strategies.

These results contradict previous studies arguing that conditioning information increases mo-
mentum profits. GM and LN reach their conclusions using CP methods biased by overconditioning.
LN argue that their study differs from previous implementations of the conditional CAPM primarily
because they use a time-series method that imposes restrictions on risk premia not always enforced
in cross-sectional regressions. Our study illuminates other problems in their methodology, and is
not subject to their critique because we also use a time-series approach. We find that a standard
conditional return regression with LC betas as instruments reduces momentum performance by

approximately 20-40% relative to unconditional alphas.

5.6. Predicting Momentum Performance

Under the null hypothesis that the conditional CAPM holds, the time series of alphas should
be unpredictable. Ferson and Harvey (1999) correspondingly specify the conditional three-factor
intercept to be linear in lagged state variables, and test the collective significance of the coefficients.
We similarly test whether the alphas (intercept plus residuals) from the regressions in Tables 8 and
9 are predictable.

Table 10 regresses 6-0-6 unconditional alphas (Panel A), conditional alphas (B) and their dif-
ferences (C) on predictor variables. Panel B uses the FC2 version of regression (8) in Table 8, and
the results are not highly sensitive to the choice of FC methodology or instrument set, provided at
least one LC instrument is included.

The predictor variables for alpha are the standard instruments (DY, DS, TS, TB), the market
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runup RU36 and its square RU362, and five lags of alpha.?6 All t-statistics are based on Newey-West
standard errors with five lags. In Panel A, the mean unconditional WL alpha is highly significant
(regression 1), and the first two lagged alphas have significant (10% and 5%) negative coefficients
(2). Among the standard predictors, only DS and TB are significant (3). The runup variables
RU36 and RU36° have strong effects (4), consistent with Cooper, Gutierrez, and Hameed (2004).
Combining predictors (5-7), the runup variables drive out the standard predictors and cause the
magnitude and significance of lagged alphas to increase. The R? increase dramatically when runup
and lagged alphas appear together.

Panel B considers a similar analysis for conditional alphas. Relative to A, the conditional mean
is lower (1-2), and the R? for specifications (3-7) are slightly lower with coefficients generally closer
to zero and marginally less significant. In predicting the difference between UC and conditional
alphas, Panel C shows that only TS is significant. Specifications (1-2) confirm that the mean alpha
reduction due to the conditional CAPM is significant.

5.7. Decomposing the Alpha Biases

The difference between conditional and unconditional alphas can be decomposed into a direct alpha
bias and an indirect effect caused by beta bias using equation (2.3). Alternatively, equation (2.5)
states the alpha bias as a sum of weighted covariances of conditional beta with R+ and R?V[t‘
Table 11 provides the data necessary for these decompositions using FC2 conditioning and
the combinations of instruments considered previously. Panel B reports the average conditional

ve _ @fw. For

betas chz and their covariances with R%/I. Panel C decomposes the UC bias «;
specifications (3)-(8) which include LC betas as instruments, the direct bias is always positive (2 to
8 basis points), and the beta bias effect (9 to 19 basis points) explains the majority of the decrease
in conditional alpha relative to the unconditional benchmark. Using the information in Panels B
and C, we can determine that most of the beta bias is contributed by the second term in equation
(2.4), Cov(BEC%, B3,.) 0.

Similar calculations explain the differences between overconditioned and appropriately condi-

tioned alphas. We show

26For comparison, Ferson and Harvey (1999) use the standard instruments to test alpha predictability in size
and book-to-market portfolios. Chordia and Shivakumar (2002) argue that the standard instruments explain a large
part of momentum profits, and Cooper, Gutierrez, and Hameed (2004) show that market runup helps to explain
momentum performance.
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Proposition 6. The overconditioned alpha bias is
_ _FC FC FC
aGPEH —af = —Cov (87 = 85 Rarr ) = (B = BIYT) Rus

1T

where f € {1,2} and ﬂFcf E (ﬂFcf).

This generalizes Proposition 1, which assumed that the overconditioned beta was unbiased with
respect to the available information. In practice, mean CP betas are generally biased with respect
to available information, and the second term of Proposition 6 accounts for this. The first term is
identical to Proposition 1.

Panel D of Table 11 shows that the covariance between market returns and the difference of
CP and FC betas is large and negative for winners (e.g., —0.65 in regression 5), and almost zero
for losers, consistent with the beta asymmetries reported in Section 4. Additionally, the CP beta is
biased downwards relative to the forecasted beta for both W and L. The magnitude of the beta bias
is larger for losers, consistent with their lower liquidity. Applying Proposition 6, the overconditioned
alpha bias for regression (5) is —(—0.62) — 0.17 = 0.45, which except for rounding error is identical
to the directly calculated alpha difference of 0.46. The results are similar for other specifications.
Thus, the difference in mean alphas is overwhelmingly explained by the fact that loser realized
betas are insensitive to market conditions, while winner betas covary substantially more with down

markets than up markets.

6. The Conditional Three-Factor Model and Momentum Performance

This section extends our analysis of momentum performance to conditional versions of the Fama-

French (1993, “FF”) three-factor model based on market, value, and size portfolios.2”

6.1. Realized Loading Risk Adjustment

LC (vi-vii). Appendix A.3 provides calculation details. Consistent with prior research (e.g., Fama
and French, 1996), UC risk adjustment produces larger momentum alphas under the FF model
than the CAPM. For 6-0-6 at a one month horizon, the FF winner alpha is lower than the CAPM

2"We obtain partial time-series for the three factors and historical book equity values from Ken French’s website.
Pre-formed daily factors prior to 1963 are not available, hence we create the pre-1963 daily factors following the
procedure outlined by Fama and French (1993).
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alpha reported in Table 7 (0.44 vs. 0.55), the loser alpha is lower by a greater margin (—0.65 vs.
—0.30), and the net WL alpha increases by 0.29 to 1.10.

Overconditioning is again a significant problem for CP performance measures. For 6-0-6, the
alpha difference between CP and LP exceeds 1.0 for one month windows, is about 0.6 for NV = 3,
and ranges from 0.1 to 0.2 for N = 6, where we again report all alpha differences in percentages and
rescale by dividing by N. The RD bias is approximately 0.1-0.2 across all strategies and window
sizes.

To calculate LC loadings and performance measures we again use either six months of lagged
daily data (LC6) or 36 months of lagged monthly data (LC36) for each component in the W and
L portfolios, using Dimson sum betas for LC6 as previously. The LC6 alphas (column vi) are
moderately smaller than the LPBH alphas (0.73 vs. 0.82 for 6-0-6) and considerably smaller than
UC (1.10). The LC36 method (vii) further reduces performance (0.45 for 6-0-6), but we interpret
these alphas cautiously. The LC6 loadings capture recent movements in risk, but are calculated
with daily data and, even with Dimson adjustments, are likely to be biased downwards more
for the relatively illiquid loser side. The LC36 loadings help to address the asynchronous trading
problem by using monthly data, but over the measurement period winner HML and SMB loadings
are likely to decrease while loser loadings increase, and long window regressions will not capture
these changes. Using the LC realized betas as instruments in the conditional return framework

should help to correct these problems and provide an improved performance measure.

6.2. The Forecast Component Methodology with Three Factors

We focus on the one-step forecast component approach (FC1). The two-step approach uses as
instruments in the return regression fitted values from first stage regressions of CP loadings on
predictor variables. The FC2 results are similar to FC1, and are omitted for brevity.

The conditional three-factor regression is:
R = OZZFCl + ZﬁUFJT <|: 1 Zj:1 ]) + Eir,
J

where j € {MKT,HML,SMB} are the Fama-French factors. Table 13, Panel A presents results
for 6-0-6. The unconditional regression (1) shows that loadings are uniformly larger for L than
W (1.21 vs. 1.00 for MKT, 0.51 vs —0.06 for HML, and 1.52 vs. 0.88 for SMB). The standard
instruments (2) appear especially useful for predicting HML loadings. The regression R? improve

from 85.8 to 88.5 for W, and from 82.3 to 83.4 for L. The alphas for W and L attenuate toward
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zero, and the WL alpha falls to 0.93 from the unconditional 1.10.

Instrumenting with the LC loadings (3), both LC6 and LC36 are always highly significant for
W with roughly equal weightings for all factors. For L, the weightings are higher on LC36 than
LC6, and the latter are insignificant for HML and SMB. Relative to (1) and (2), the R? improve
considerably, increasing to 93.3 and 86.6 for W and L. The alphas further attenuate toward zero
for W and L, and the WL alpha is 0.85.

Combining the standard instruments and LC betas (4), the significance of the standard instru-
ments generally moderates for SMB and HML, and is mixed for MKT. The LC betas appear to have
more stable coefficients. Relative to (3), the R? improves marginally for W and is approximately
constant for losers. The alphas for W and L attenuate slightly towards zero, and the WL alpha is
0.83.

Regression (4) is a reasonable estimate of the conditional 3-factor performance of the 6-0-6 mo-
mentum strategy. It avoids the considerable CP and RD biases inherent in previous methodologies
and combines standard instruments with LC6 and LC36 betas. The ad hoc methods explored in
Table 12 deviate from the FC1 alphas as expected: CP and RD methods overstate performance,
while using LC6 and LC36 as direct risk proxies understates momentum performance.

We could of course incorporate other predictor variables into the analysis. Following our ap-
proach in Section 4, in untabulated results we add 6-month and 36-month factor runups to the
regressions in Table 13. These additional instruments are somewhat helpful in predicting condi-
tional loadings, but the WL alpha remains in all cases in the range of 0.83 to 0.87. Further, the
differences between unconditional alphas and FC1 conditioned alphas are always significant when
the LC betas are included as instruments. Panels B and C show similar results for the 6-1-1 and
6-0-6 strategies. We conclude that proper use of conditioning information reduces three-factor mo-
mentum performance by a statistically significant 20% to 25%, while overconditioned estimates can

overstate performance by more than 2.5 times.

7. Conclusion

We study the bias caused by overconditioning, which occurs when an empiricist uses a risk proxy
not in the information set of investors. If asset payoffs are nonlinear in factor returns, then overcon-
ditioned performance measures are generally biased. In a calibrated dynamic CAPM that matches
reasonable levels of beta asymmetry, the overconditioning bias can be as large as 40 basis points
per month.

In an empirical application, we show that inferences about momentum performance can be
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greatly influenced by overconditioning. Simply lagging the contemporaneously calculated realized
beta by one month reduces the winner minus loser alpha by up to one percent per month. The
purpose of conditioning is to capture predictable covariation between beta and risk premia. Since
market returns are forecastable primarily at low frequencies, we should be suspicious of any per-
formance measure that changes dramatically when the risk proxy is lagged by a period as short as
one month.

We show that portfolio-weighted lagged risk loadings of individual stocks are valuable instru-
ments in conditional performance analysis. Our lagged component betas account for both portfolio
turnover and changing portfolio weights, and are robustly informative whether used in isolation or
in combination with standard instruments and lagged portfolio loadings. Momentum alphas from
conditional regressions using lagged component betas as instruments decrease by a statistically sig-
nificant 20-40% relative to unconditional alphas. Overconditioned alphas are as much as 2.5 times
larger than the appropriately conditioned measures.

Bias in overconditioned alphas occurs when the market return covaries with the difference
between realized beta and forecasted conditional beta. This covariation provides an alternative
measure of beta asymmetry to statistics used in the prior literature. For momentum portfolios, the
surprise in loser realized beta is almost uncorrelated with market returns, while winner realized
beta innovations and the market have strong negative covariation. In this paper, our focus has been
to obtain appropriate conditional CAPM and three-factor model alphas in the presence of payoff
nonlinearities. A natural next step in performance analysis is to consider settings where investors
demand additional risk premia for assets like the winner portfolio that have more positive beta

surprises when market returns are low.
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Appendix
A. Detalils

A.1. Section 2 Simple Example

We define four equidistant points centered around Rj; such that the resulting variance of Ry is
equal to cr?w. The distance between any two neighboring points of R s is denoted by z. We want
to solve for aZG and af and the returns of asset i in the four states. These six unknowns require
six conditions, two of which are provided by the definitions of the conditional betas (2.6). We thus
require four additional equations.

The first two equations are the conditional alphas:

C1]af = E(Ri|S=G)—BE(RulS =G) = Ri (ws) + @ = 87 (R +2)
€2 af = E(RIS=B5)— BE(RulS = B) = Ri(wn) + 22— 67 (R — )
Further, the unconditional CAPM must hold
[C3] Ri = 03;Ru.
We use the fact that the unconditional beta can be written as
g = Cov (R, Ryr) _ Cov (R;, Ryr)
! Var (Ry) 1.2522
and A ‘
Cov (R;, Ry) = % (R,- (wj) — Ri) <_5 ;- 2j a:) )
j=1
which leads to ) 5 )
Bi= P [2(Ri (w3) = Ri (w1)) + 55?33 - 55?4 : (A1)

The CAPM can then be rewritten

1 2 _ 1 2 _
R; (wl) (5 + 5_wRM> + R; (wg) (5 — 5_wRM>

In addition, we impose one of the following two restrictions:

Cdal o = oF
[C4a] a; i
B G

Under C'4a the conditional regression lines intersect at the at the y-axis. To impose 6‘41)77 we use the
formula for unconditional beta (A.1), and the conditional regression lines intersect at Rj;. The ex-
ample in Figure 1 imposes C'4b, and implies that returns satisfy Ry, (©2) = [-0.057, —0.012,0.032, 0.077]
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and R; (Q) = [—0.068, —0.001, 0.044, 0.066].

A.2. A GMM Test of the Difference in Alphas

We compare the alphas of a long-short position in portfolios ¢ = 1, 2 under two different performance
specifications j = 1,2. Let

s

R, = [ 17 Xz'j ] |: " :| + €ij,

Bij
where 17, R;, and ;5 are column vectors of length 7', o;; are scalars, X;; are T' by (k;; —1) matrices,
and 3;; are column vectors of size k;; — 1.

Define the moment conditions

Ry — a1 — X118
(R1 — a11 — Xq1811) X
Ry — ag1 — X189
(R — a1 — X21891) Xo1

=K
g Ry — a1 — X128 ’
!
(R1 — a1z — Xi42612) X2
Ry — ana — X239
!
| (R2 — o2 — X2399) X2 |
the coefficient vector
b=[oan1 B} oo By o2 Bla o B |,
and the matrix
Dn 016117/621 016117/612 01@11,]922
d= @ — Ok k1y D2y Oz k2 Okay koo
ob Ok12,k11 016127/621 D12 Oklz,kzz 7

Okzz,kll Ok227/€21 Ok227/€12 Dy,
where 0,,1 2 denotes a matrix of zeros of dimensions nl by n2, and

1 E (Xi) ]

D. = —
i E (X;j> E (X;jxij)

are symmetric squared matrices of size k;;.
Using standard GMM results,

V=Var (b) - %d‘lsd‘l,

where
o0

S = Z E (ugu;_y)

k=—o00

and
/
u = [ e1r euXaw €210 cauXow €12 c12:Xaae E22 €22 XKoo | -
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We estimate V = (1/T)d~'Sd~" following Newey and West (1987):
=00+ Y wlhm) (O + %),
k=1

where

Let a; = a1 — ag;. The test statistic o — &1 is asymptotically normally distributed with a mean
of ay — a1 and a variance of ¢'Ve, where

/
5[1 Oﬁm_l -1 0221_1 -1 0212_1 1 0222_1].

Applying this methodology to test the difference between conditional and unconditional mo-
mentum alphas, we set Ry = Ry, Ry = Rr, X11 = X291 = Ry, X = (RM”m) * [ 1 Zw ] ,
and Xop = (RMlkm) * [ 1r Zp, ], where * denotes element-by-element multiplication. To test
the null hypothesis that the conditional alpha is greater than or equal to the unconditional alpha,
we use a one-tailed test. We implement the Newey-West procedure with m = 5. Our results are
unaffected by other choices of m < 12.

A.3. Fama-French Loading Calculations and Performance Measures

To obtain conditional FF performance measures, in each non-overlapping window 6 of length
N € {1,3,6} months, we run a Fama-French daily regression using the same structure of Dim-
son adjustments for each factor j € {M KT, HML,SM B} as previously:

Bi
Ry = CPRD/n + Z <ﬁ2]10FJt + ﬁzy2¢9FJ t-1t J30 Z —k | T Eit- (AQ)

Denoting ﬂue = Bijio t Bijoo + Bijsp as the sum beta from this regression, the CPBH alpha is

afy"P = = | Rip — Zﬁwe : (A.3)

The LPRD performance measure is

LPRD _
Qg - N Z Ry — E BUOFJt )

teo
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where Z-ng = 6%5_1. The LPBH alpha is

1

LPBH _ E LP

(0% = N Ri@ — /ng F}‘g
J

As robustness checks, we verify in untabulated results that eliminating the Dimson lags in (A.2)
and adding a Dimson lead (to account for asynchronous trading delays in the relatively illiquid long
side of HML and SMB) do not substantially alter the results reported in Tables 12 and 13.

B. Proofs
B.1. Proof of Proposition 1

Note that %! =T (th

.7-}_1). We rewrite the conditional expected return

E (Rl Fi-1) = o' +E(By

aly' = Cov (BitaRMt‘ »7'}—1) +E (BitRMt‘ .7-}_1) )

ft_l) E (Rt Fi1)

The overconditioned alpha bias is

a%—a; = -E [Cov (Bita RMt‘ ft—l)}
= —E[Cov(egs, Rure| Fi-1)]
= —K (EﬁtRMt) = _COU (gﬁtaRMt) .

B.2. Proof of Proposition 2
Recall the definition o® = E (R;| s) — 3°E ( R s). Taking expectations and using the CAPM yields:
E(af) = Ri—E(B]) Ry — Cov [57,E(Ru|S)]
= [8;—E(B7)] Ry — Cov [87,E (R 5)]

The remainder of the proof requires two technical assumptions. First, expected returns on R;
must be continuous in the realized return on Rjs, to avoid the special case where the conditional
regression lines are parallel, i.e., 5? = ﬂf with different conditional alphas. We further rule out
the situation where S is uncorrelated with Rj; and thus contains no relevant information. Ruling
out these special cases, it directly follows that aZG = af = 0 if and only if ,BZ-G = ﬂf .

B.3. Proof of Proposition 3

The market variance conditional on Z is
2
Var(Ru|Z = z) = o3, + (A%
Express the portfolio return as a function of the market return:

R} =af* + 37 (R3] +em) + & (B.1)
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We compute the covariance conditional on Z:

(7% — af” — 2R}, Af)

7

2 S \2 Aﬁq4
Cov(Ri,Ry| Z = 2) = 57 [UM + (AM) ] + 9
which implies
AS 2G 2B Dz S
g — Cov(R;, Ry | Z = 2) e % (ai -y = QRMAQ)
v Var(Ry|Z = z) ! O'?V[ + (A}?/[)2 ‘

For AJSM # 0, the state-contingent alphas must satisfy
af% — a7 = 2R5,A3. (B.2)

Imposing the CAPM further restricts alphas since

E(Ri| Z = 2) = B; Ry, + % (079 + 7P — 2A5,A7)
implying that
@Y+ aiP
2
This completes the proof as we know the difference between overconditioned alphas (B.2) and the
average alpha (B.3).

E(o|Z=2) = = AJAS. (B.3)

B.4. Proof of Proposition 4

To derive analytical expressions for 3~ and 31 from the Markov Model in Section 3, we repeatedly
use the following results from the normal distribution:

E(X|X<a) = u—a%,
2
Var(X| X <a) = o2 ll—ai((z))—<i((z))> ]

We further recall the well known properties ¢ (—a) = ¢ («) and ® (—a) =1 — ® (), and also note
that for any random variables X1, X5,Y, and S

E(X1]Y) = E[E(X1|Y,9)]Y]
Var (X1]Y) = E[Var(X1|Y,9)|Y]+ Var[E(X1]|Y,S)|Y]
Cov (Xl,X2’ Y) = E [COU (Xl,XQ‘ Y, S)’ Y} + Cov [E (Xl‘ Y, S) ,E(Xg’ Y, S)| Y} .

To simplify notation, we suppress the argument k when using the c.d.f. and p.d.f., i.e., ® = ® (k) and

¢ = ¢ (k). The Proposition assumes no relevant Z-information, and we hence omit all Z subscripts.

Let R~ denote the event that RM < Ryy.

A simple application of Bayes’ Theorem shows that

P (S = B] R_) =
P(S=G|R") = 1-9.
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We compute the expected values
E(RY|R™) = Ry — ko 20 — 1) — 204.
Using (B.1) and (B.2) from the proof of Proposition 3, we obtain
E(R|R™)=pE(RM|R")+a% - Ag(Ru + ko) .

The components of the variance are

E[Var (RM|R™, S)|R7] = o [1—¢2<®_1¢2>]

Var [E(RM|R™, S)|R7] = o? [¢2< —4>+4k:2 (® — %) — ko (20 — 1)

o — P2
Combining these yields the conditional market variance
Var (RM|R7) = o [1 R (20 + k(20 — 1))2} .
To compute the covariance, we again use (B.1) and (B.2) to obtain
Cov (R',RM|R™) = gVar (RM|R™) + Ago® (20 — 1).
This yields the down beta

20 (k) — 1

SO e ) k(22 () 1)

The derivation for 87 follows the same steps.

B.5. Proof of Proposition 5

We first observe that RfﬁD =1+nN (e“i“’?/ 2 1) ~ "N(1it7/2) yhere the approximation is
most accurate for expected daily returns near one. The RD measure depends only on the first and
second moments of daily returns. By contrast, buy-and-hold returns over a monthly horizon depend
on how daily returns aggregate. In particular, by assumption of joint normality of daily log returns,
the monthly log returns are also normally distributed, i.e., ;1 + -+ +7ripn ~ N (nN,uZ-, J?N). As a
consequence, the BH statistic is Rigf;H = enNuitoin /2 The ratio of the two statistics is

~gRD
Rg 2 2
vin = _ZN ~ e("NJi —JiN)/Z
RgBH
iN
_ enNa?(l—VRiN)/Z‘
The ratio in the net returns is
gRD
Vnet _ RiN 1 ~vin + vin — 1
RgBH -1 RgBH 1
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B.6. Proof of Proposition 6

Applying the definitions of the alphas from equations (3.16) and (5.4) leads immediately to the
decomposition.
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TABLE 3. — MOMENTUM PROFITS

Momentum Raw Profits Market
6-0-6 6-1-1 6-1-6
WL W L WL W L WL W L Excess Raw
A. Mean Returns
daily 0.84 1.49 0.65 0.64 1.56 0.92 1.18 1.60 0.43 0.59 0.89
1 month 0.54 1.61 1.07 024 168 1.44 0.91 1.73 0.83 0.62 0.93
3 month 0.52 1.70 1.18 0.18 1.77 1.59 091 1.84 0.93 0.64 0.95
6 month 0.64 1.73 1.10 0.26 1.80 1.53 1.04 1.88 0.84 0.62 0.94

B. Standard Deviations
daily 3.96 565 6.21 5.02 5.81 6.56 3.83 5.69 6.15 4.77 4.77
monthly 7.13 7.52 11.20 835 7.58 12.00 6.75 T7.67 10.97 5.46 5.45

Notes: This table reports means and standard deviations, in percent per month, of returns for momentum portfolios
and the market over the sample period from January 1930 to December 2005. We consider three momentum strategies,
denoted 6-d-h, with common 6 month formation periods but different delays d and holding periods h. At the beginning
of calendar month 7, stocks are sorted into deciles based on their return over the formation period 7—d—6 to 7—d—1.
To be included in the sort, stocks must have (i) valid monthly returns on the CRSP database over the entire formation
period, (ii) at least 12 additional valid monthly returns in the thirty months prior to formation, (iii) at least 15 non-
missing daily returns in each month of the formation period. Immediately following the sort, the winner portfolio
(W) makes a fixed $1 investment with equal weights in the top decile stocks, and sells stocks that were added to
the portfolio at the beginning of month 7 — h. The loser portfolio (L) is defined by similarly timed investments
and liquidations in the bottom decile stocks. Momentum (WL) profits are the difference between W and L returns.
Market return is the CRSP value-weighted index. Daily returns are computed as average daily returns scaled by
average number of days n in one month. To obtain 1-, 3-, and 6-month measures, returns from the monthly CRSP file
are compounded in overlapping windows of N = 1, 3,6 months and divided by N. Panel B reports monthly standard
deviations obtained from daily and monthly returns. The daily standard deviation is multiplied by /7.




Table 4. — THE RD BiASs IN MARKET INDEX AND STYLE PORTFOLIOS

Market Indices Size & B/M B/M Size
NYS NDQ NXN SP SV SG LV LG G \4 S L
A. Value-Weighted Portfolios
BH 096 1.05 0.95 097 1.60 0.68 1.07 0.87 0.82  1.37 1.21  0.88
RD 093 099 092 0.95 148 049 1.06 0.88 0.81 1.31 1.08  0.89

RD/BH 097 094 096 0.98 093 072 099 1.00 0.99 0.96 0.89 1.01

oivn 4.77 557 481 527 3.28 5.0 451 483 4.95 4.23 341 4.39
il 5.32  6.53 542  5.55 5.68 8.03 4.69 4.69 512 5.22 6.15  4.18
VRin 1.24 138 127 1.11 3.00 254 108 094 1.07  1.53 3.25 091
i 097 094 097 0.98 093 071 099 1.01 0.99 097 0.89 1.01
p1 9.90 970 10.03 5.26 31.51 2838 859 8.36 11.38 16.13 36.00 5.97
P2 -3.97 -2.00 -3.85 -3.75 1246 7.21 -2.06 -2.55 -2.10  1.00 12.39 -3.21
P5 1.38  0.13 136 0.75 11.08 821 090 -0.94 -0.59  3.28 12.95 -0.56
P10 1.57 0.85 1.58 1.65 531 316 042 -0.75 -0.21 191 6.19 -0.48
P15 -0.34 078 -0.27 -0.37 586 548 -0.11 -0.10 0.28 1.64 7.54 -0.26
P20 122 044 126 1.11 4.74 526 0.15 -0.65 -0.17  0.14 6.13 -0.67

B. Equal-Weighted Portfolios
BH 1.84 223 212 132 292 177 119 095 1.20  2.90 250 094
RD 1.69 2.08 195 1.25 276 154 117 094 1.05  2.73 233 093
RD/BH 092 093 092 0.94 094 087 0.98 0.98 0.88 0.94 0.93 0.99

o/ 4.89 347 483 5.72 288 450 429 493 483 3.03 3.08 4.41
oil 6.87 622 T7.14 6.73 5.81 7.97 462 5.15 7.24  5.81 6.23  4.48
VR 1.97 322 218 138 4.08 313 116 1.09 225  3.69 4.07  1.03
viet 094 094 093 0.95 096 088 099 0.99 0.88 0.96 094 1.00
P1 23.38 31.02 24.75 10.31 39.02 34.39 11.40 13.20 26.40 35.67 42.55 10.40
P2 -1.11 1247  0.13 -2.70 20.31 1225 -0.84 -3.28 4.70 17.55 19.22  -3.36
Ps 5.03 1215 6.24 1.78 16.82 1293 -0.92 -0.88 6.14 14.78 18.36  -0.37
P10 277 6.64 359 1.82 9.51 6.17 0.89 -0.88 1.88  8.26 9.60 -0.53
P15 1.00 6.63 1.59 -0.02 942 700 026 -0.09 3.86 8.43 10.06 -0.05
P20 1.84 459 247 1.13 6.73 6.13 0.23 -1.37 3.01  5.60 773 -1.35

Notes: This table reports the return characteristics and RD bias of the value-weighted (Panel A) and equal-weighted (Panel B)
market indexes and style portfolios. Returns, standard deviations, and autocorrelations are in percent. Market indices are NYSE
(NYS), NASDAQ (NDQ), combined NYSE, AMEX, and NASDAQ (NXN), and SP500 (SP). The style portfolios are obtained from
the Kenneth French data library and include small value (SV), small growth (SG), large value (LV), large growth (LG), growth (G),
value (V), small (S), and large (L). BH denotes the monthly average buy-and-hold return computed by compounding daily returns,
and RD denotes the average daily return multiplied by n, the average number of trading days in one month. The ratio RD/BH is the
actual RD bias. 0;4/n and ;1 are the standard deviations of log daily and log monthly returns. Variance ratios V R;1 are calculated as
o3 / (Ufn). The approximate RD bias is given by v** calculated from Proposition 5, and pj, are autocorrelations of daily log returns at
lag k. The sample period is January 1926 to December 2006 for market indices, and July 1963 to December 2006 for style portfolios.



Table 5. — THE RD B1As IN MOMENTUM PORTFOLIOS

6-0-6 6-1-1 6-1-6
W L W L W L
BH 1.62  1.02 1.69 1.34 1.74  0.78
RD 1.49  0.65 1.56  0.92 1.60  0.43

RD/BH 0.92 0.64 0.92  0.69 0.92  0.55

agivn 5.68  6.18 0.84  6.51 5.71  6.12
oi1 7.53 10.32 7.62 10.88 7.61 10.19
VR 1.76  2.79 1.70  2.79 1.78  2.77
et 0.92  0.66 093 0.71 0.93  0.57
p1 18.73 28.21 17.33  26.46 19.15 27.50
P2 -1.20  8.53 -0.72  9.32 -1.53  8.29
P5 2.42 10.01 1.71  10.33 2.60 1041
P10 204 444 2.00 4.66 1.93  4.55
P15 220 4.04 1.58  3.96 220 4.06
P20 1.76  1.12 2.01 -0.28 1.33  1.64

Notes: This table reports the return characteristics and RD bias of momentum port-
folios. Returns, standard deviations, and autocorrelations are in percent. BH denotes the
monthly average buy-and-hold return computed by compounding daily returns, and RD
denotes the average daily return multiplied by n, the average number of trading days in
one month. The ratio RD/BH is the actual RD bias. oi/n and o;1 are the standard
deviations of log daily and log monthly returns. Variance ratios V R;1 are calculated as
0% /(62n). The approximate RD bias is given by v calculated from Proposition 5, and
pr are autocorrelations of daily log returns at lag k. The sample period is January 1930
to December 2005.



TABLE 6. — MOMENTUM BETAS
6-0-6 6-1-1 6-1-6
WL \W L WL W L WL AW L
A. Unconditional Betas
daily 0.01 0.99 0.99 0.00 0.99 0.98 0.02 1.01 0.98
daily sum -0.22 1.16 1.38 -0.26 1.15 141 -0.19 1.17 1.36
1 month -043 1.17 1.61 -0.52 1.16 1.67 -0.37 1.20 1.57
3 month  -0.76 1.28 2.04 -1.10 1.21 231 -0.61 1.35 1.95
6 month  -0.51 1.37 1.88 -0.91 1.27 219 -0.31 1.46 1.77

B. Average CP Betas
1 month -0.01 1.14 1.16 -0.05 1.14 1.19 0.00 1.15 1.14
3 month -0.04 1.18 1.22 -0.06 1.18 1.24 -0.02 1.19 1.21
6 month -0.03 1.21 1.24 -0.06 1.21 1.27 -0.01 1.22 1.23

C. Beta Asymmetry, Daily
6~ 0.27 1.32 1.05 0.29 1.32 1.03 0.25 1.31 1.06
IChs 0.06 0.96 0.90 0.06 0.97 0.91 0.09 0.97 0.89
B~ — Bt 0.21 0.36 0.15 0.23 0.35 0.12 0.16 0.34 0.17

D. Beta Asymmetry, Daily Sum
6~ 0.20 1.51 1.31 0.23 152 1.29 0.19 1.50 1.31
Bt -0.29 0.89 1.19 -0.38 0.88 1.26 -0.22 0.93 1.15
B~ — BT 0.49 0.61 0.12 0.60 0.64 0.04 0.41 0.57 0.16

E. Beta Asymmetry, Monthly
6~ -0.15 1.25 141 -0.15 1.27 1.41 -0.16 1.25 1.41
el -1.07 094 2.01 -1.32 087 2.19 -0.90 1.02 1.92
B~ — B 091 0.31 -0.60 1.18 0.40 -0.78 0.74 0.23 -0.51

Notes: This table reports unconditional betas, contemporaneous portfolio betas, and beta asymmetry
measures for momentum portfolios. In Panel A, daily unconditional betas are the slope coefficients from
market model regressions on daily data. Daily sum betas are computed as the sum of the slope coefficients
from regressing daily portfolio excess returns on excess market, its lag, and the average of lags 2 through 4
of excess market returns. N-month unconditional betas are from market model regressions using N-month
returns. In Panel B, market model regressions are run on daily returns in nonoverlapping N-month windows,
and the loadings in each window are averaged. In Panel C, 3~ and 8" are market model loadings using
subsamples of days within a year where excess market returns are respectively below and above the annual
mean. The statistics 8~ and 87 are calculated in every calendar year using daily data and then averaged. In
Panel D, the regressions use the excess market return, its lag, and the average of lags 2 through 4 of excess
market returns as regressors. The down and up betas 3~ and 37 are the sum of the slope coefficients from
these regressions, calculated in each year, and averaged across years. The monthly down and up betas in
Panel E are calculated using monthly returns, sorting into subsamples based on whether the excess market
return is below or above its full sample mean. The sample period is from January 1930 until December 2005.
After 1963, we use the daily risk-free rate from Ken French’s website. Prior to 1963, we use the monthly
risk-free rate from his website to impute a daily equivalent.
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TABLE 8. - MOMENTUM PORTFOLIO FORECAST COMPONENT CONDITIONING

FC2 (Two-Step) FC1
Stage 1 Stage 2
Beta Regression Return Regression
v PECS BLC® RU6 RU36 DY TS TB DS R? a2 ¢ ¢ R? afcl  R2
(1) W 114 0.57 1.02 721 0.57 T72.1
[60] [4.3] 48] (4.3]
L 1.16 -0.24 1.39 60.9 -0.24  60.9
50] FL0) 38] FL0)
WL 0.81 0.81
(2) W 141 -4.58 1.13 -23.7 -1.89 285 0.53 -0.12 1.20 738 0.56 74.1
[21] [-3.4] [0.7] [-2.7 [-0.6] [4.1] [0.7] [7.9] (4.3]
L 1.39 -3.14 -793 -86.9 182 9.73 -0.17 051 0.79 62.7 -0.14  63.3
[18] [-2.0] [4.2] [-84] [5.3] [-0.8] [3.1] [6.7] [-0.6]
WL 0.70 0.69
3) W 020 0.76 26.4 0.52 0.13 1.00 76.4 0.52 76.4
[3.7] (18] [4.3]  [1.5] [13] [4.3]
L 0.30 0.70 23.0 -0.12  0.52 0.88 62.9 -0.12  62.9
[5.5] (17] [-0.5]  [3.2] [7.1] [-0.5]
WL 0.65* 0.65*
4 W 024 0.73 19.2 049 -0.05 1.14 76.0 0.49 76.0
(3.7] [15] [4.0] [-0.5] [12] [4.0]
L 0.03 0.83 17.2 -0.14  0.23 1.13 63.0 -0.14 63.0
[0.3] [14] [-0.6] [1.2] [7.2] [-0.6]
WL 0.63* 0.63*
(5) W 005 0.59 0.29 28.0 0.51 0.15 0.98 76.7 0.50 76.7
[0.9] [11] [4.6] [4.2]  [1.9] [14] [4.1]
L 0.09 0.55 0.30 24.0 -0.11 044 094 63.2 -0.11 63.3
1.1 [9.1] [3.6] [-0.5]  [2.7] [7.6] [-0.5]
WL 0.62* 0.62*
(6) W 010 0.62 0.22  0.32 -0.02 28.3 0.50 021 095 771 0.48 77.2
[1.5] (11] 3.1 [24] [-0.5] [4.1]  [2.9] [14] (4.0]
L 0.21  0.52 0.28 -0.04 -0.13 24.3 -0.09 032 1.01 63.7 -0.10 64.2
2.1]  [8.4] [3.3] [0.3] [-2.3] [-0.4] [2.0] [8.3] [-0.4]
WL 0.59% 0.58*
(7) W 018 0.57 0.29 -2.82 125 -234 0.62 284 0.50 0.26 091 77.0 0.52 77.1
[2.0] [10] [4.7] [-2.4] [0.9] [-0.3] [0.2] [4.2]  [3.8] [14] [4.3]
L 0.26  0.42 0.37 -1.02 -2.17 -44.8 7.20 259 -0.10  0.27 1.01 64.2 -0.05 65.2
[2.3]  [6.5] [4.3] [-0.7] [1.2] [-4.5] [2.2] [-0.4] [1.8] [9.2] [-0.2]
WL 0.60* 0.57*
(8) W 021 0.59 0.25 0.22 -0.04 -238 1.16 -1.85 -0.20 28.5 0.50 0.29 0.89 77.1 0.51 774
[2.2] [10.0] 3.5 [1.6] [-0.9] [-2.0] [0.8] [-0.2] [-0.1] [4.1] [4.3] [14] [4.2]
L 0.38 040 0.35 -0.12 -0.08 -1.40 -1.99 -44.5 5.67 26.0 -0.09 0.28 099 64.2 -0.06 65.2
2.8] [6.2] 8.9 [0.7] [-1.3] [-1.0] [-1.1] [4.4] [1.6] [-0.4]  [1.9] [9.1] [-0.3]
WL 0.59% 0.57*

Notes: This table reports the results for the forecast component (FC) conditioning method under the 6-0-6
momentum strategy. The first set of columns gives estimates, t-statistics, and adjusted R? values from the first stage
beta prediction regression, BZCTP = 7vio + Vi1Zr—1 + €ir, where i € {W, L}, 7 indexes months, and instruments Z,_;
include 6- and 36-month LC betas (8296 and $£93°), 6- and 36-month market runup (RU6 and RU36), dividend
yield (DY), term spread (TS), 30-day T-bill rate (TB), and default spread (DS). The second set of columns presents
the results from the second stage return regression Ry = of €2 + (dio + ¢i1§gP)RMT + wir. The third set of
columns reports alphas and adjusted R? values from a single-step regression, Rir = af ©! + Bill Z;-1]Rm+ + €ir-
The performance measures a2 and af©? are in percent. Conditional winner minus loser FC alphas that are
significantly smaller than UC alphas at the 5% level are marked with an asterisk. The sample period is from January
1930 to December 2005.



TABLE 9. — MOMENTUM PORTFOLIO FORECAST COMPONENT CONDITIONING
FC2 (Two-Step) FC1
Stage 1 Stage 2
Beta Regression Return Regression
7 PECS pLU® T RU6 RU36 DY TS TB DS R? ofC? ¢ & R? afCt  R2
A. 6-1-1 Strategy

(1) W 1.14 0.66 1.01 68.9 0.66 68.9
57] [4.6] [45] [4.6]
L 1.19 0.09 1.40 57.8 0.09 57.8
[47) [0.3] [35] [0.3]
WL 0.57 0.57
(2) W 1.43 -4.67 0.74 -279 -1.70 273 0.62 -0.11 1.18 70.6 0.64 70.7
[20] [3.3] [0.4] [3.0] [0.5] [45] [0.6] [7.2] [4.6]
L 1.37 -2.32 -697 -83.3 185 7.90 0.15 0.52 0.81 59.6 0.20 60.3
[16] [1.4] [3.3] [7.2] [48] (0.6 (2.8 [6.4] [0.8]
WL 0.46* 0.44*
3) W 0.05 0.59 0.30 31.2 0.60 0.23 0.92 74.0 0.60 74.0
08 11 [5.0] (47 3.2 [13] [4.6]
L 0.09 0.58 0.31 24.5 0.23 044 094 60.7 0.23 60.8
12 86 [37] 09 [2.8 [8.2] [0.9]
WL 0.37% 0.37*
(4 W 0.21  0.58 0.27 0.18 -0.03 -2.63 1.02 0.11 -1.02 31.7 0.59 038 0.81 743 0.61 75.0
(22 [11] [3.8) [12] [0.6 [22] [07] [0.0] [-0.4] [46] [63] [14] [4.8]
L 0.31 0.42 0.40 -0.07 -0.10 -0.74 -0.60 -44.9 5.85 26.7 0.23 0.37 091 61.5 0.26 62.4
[22] [59 [43 [0.3] [1.6 [0.5] [0.3] [41] [16] 09 (2.5 [9.4] [1.1]
WL 0.36* 0.34%

B. 6-1-6 Strategy

(1) w 1.15 0.68 1.05 73.0 0.68 73.0
[62] [5.1] [50] [5.1]
L 1.14 -0.46 1.37 60.9 -0.46  60.9
[50] -2.0] [38] [-2.0]
WL 1.14 1.14
(2) W 1.41 -4.14  0.79 -24.2 -2.07 2.65 0.64 -0.21 1.30 74.7 0.68 75.3
[22] [3.2] (0.5 [2.8 [0.7] (49 [1.2] [7.9] [5.3]
L 1.39 -3.34 -7.80 -86.8 18.0 9.80 -0.40 0.52 0.77 62.6 -0.37 63.1
18] [2.2] [42 [85 [5.3] (18] [3.1] [6.5] [1.6]
WL 1.03 1.05
3) W 0.07  0.60 0.28 29.3 0.62 0.18 0.97 77.7 0.62 77.7
11 11 (46 52 [23] [14 [5.1]
L 0.11  0.56 0.26 23.9 -0.34 040 0.97 634 -0.34 63.6
14 (95 [3.3] (15 [26] [7.8] [-1.5]
WL 0.96* 0.96*
4 W 0.21  0.59 0.25 0.22 -0.05 -2.00 0.84 -4.64 -0.28 29.7 0.61 0.28 0.90 78.0 0.64 78.5
23] [0 [37 7 [11] [17 [0.6 [0.6 [0.1] [5.1] [41 [14] [5.3]
L 0.37 0.42 0.31 -0.06 -0.07 -1.44 -2.03 -424 5.71 25.6 -0.32 022 1.04 644 -0.30 65.4
(29 [66 [3.8 [04] [1.2] [1.0] [1.2] [42] [17] (14 [15] [94] [1.4]
WL 0.93* 0.93*

Notes: This table reports the results for the forecast component (FC) conditioning method under the 6-1-1
and 6-1-6 momentum strategies. The first set of columns gives estimates, t-statistics, and adjusted R? values from
the first stage beta prediction regression, 35F = ~i0 + vi1Zr—1 + €ir, where i € {W, L}, 7 indexes months, and
instruments Z-_; include 6- and 36-month LC betas ( LC6 and BTLC%), 6- and 36-month market runup (RU6 and
RU36), dividend yield (DY), term spread (TS), 30-day T-bill rate (TB), and default spread (DS). The second set
of columns presents the results from the second stage return regression R;; = af €2 4 (dio + ¢¢1B¢€P)RMT + Uir.
The third set of columns reports alphas and adjusted R? values from a single-step regression, Rir = af 1 + B[l
Zr—1|Rm+ + €ir. The performance measures af®? and af'“! are in percent. Conditional winner minus loser FC
alphas that are significantly smaller than UC alphas at the 5% level are marked with an asterisk. The sample period

is from January 1930 to December 2005.



TABLE 10. — PREDICTING MOMENTUM ALPHAS

Market Runup Standard Instruments Lagged Alpha
Intercept RU36 RU362 DY TS TB DS Or_1  Qr_9  Qr_3  Qr_4  CQr_j R2
A. Unconditional Alphas
(1) 0.81
[4.2]
(2) 1.06 -0.13  -0.09 -0.03 0.03 -0.05 2.17
(3.9] [-1.8] [-2.1] [-0.8] [1.1] [-1.3]
(3) 2.03 -3.27 114 185.6 -152.3 3.02
[2.5] [-0.2] [0.8] [2.5] [-2.9]
(4) 0.29 4.58 -4.07 3.08
(0.9] 35]  [3.5]
(5) 1.63 241 -2.48 -717  6.39 103.1 -93.3 3.39
[1.9] [1.9] [-2.4] [-0.5] [0.4] [1.3] [-1.7]
(6) 0.30 7.05 -5.54 -0.19 -0.16 -0.10 -0.04 -0.10 8.21
[0.8] [4.0] [-3.8] [-3.0] [4.2] [29] [-1.0] [-2.3]
(7) 1.79 4.84 -3.90 -13.7 -0.56 1355 -86.5 -0.19 -0.16 -0.10 -0.04 -0.11 8.75
[1.9] [2.9] [-3.0] [-0.9] [0.0] [1.3] [-1.4] [-3.1] [4.2] [3.0] [-1.1] [-2.4]
B. FC2 Alphas
(1) 0.59
(3.5]
(2) 0.74 -0.15  -0.05 -0.03 0.06 -0.04 2.53
(3.4] [-2.8] [-1.2] [-0.7] [1.3] [-1.4]
(3) 1.46 0.22 -1.02 155.8 -118.9 2.35
[2.5] [0.0] [-0.1] [24] [-3.1]
(4) 0.16 3.58 -3.09 2.35
[0.6] B9 [3.7]
(5) 1.09 1.89 -1.81 -2.53 -5.12 924  -72.6 2.54
[1.6] [1.6] [-1.9] [-0.2] [-0.4] [1.3] [-1.5]
(6) 0.19 5.44 -4.47 -0.19 -0.11 -0.09 0.00 -0.09 7.12
[0.6] [4.1] [-3.9] 3.7 [-2.7] [-2.00 [0.1] [-2.7]
(7) 1.40 3.95 -3.32 -12.0 -19.7 92.6 -56.5 -0.20 -0.12 -0.10 0.00 -0.10 7.70
[1.7] [2.6] [-2.7] [-0.9] [-1.4] [1.1] [-1.0] [-4.0] [-2.9] [2.2] [-0.1] [-2.8]
C. Alpha Differences, ayc: — arca
(1) 022
2.5
(2) 0.26 0.02 -0.06 -0.16 0.00 0.03 2.88
(2.8] [0.2]  [-0.9] [-24] [0.0] [0.8]
(3) 0.57 -3.49 124 29.7 -334 0.82
[1.0] [-0.5] [2.1] [0.8]  [-1.1]
(4) 0.13 1.00 -0.97 0.70
0.7 12 [Ld
(5) 0.54 0.52 -0.67 -4.64 115 10.7  -20.7 0.86
[1.0] [0.8] [-1.1] [-0.6] [1.9] [0.2] [-0.7]
(6) 0.13 1.07 -0.91 0.02 -0.06 -0.16 0.00 0.03 3.63
[0.7] [1.2] [-1.3] [0.2] [-0.9] [-24] [0.1] [0.7]
(7) 0.45 0.59 -0.60 -3.15 144 183 -21.9 0.02 -0.07 -0.17 -0.01 0.02 3.86
[0.9] [0.8] [-0.9] [-0.4] [2.1] [0.4] [-0.8] [0.2] [-1.0] [-2.5] [-0.2] [0.5]

Notes: This table reports the estimates, ¢-statistics, and adjusted R? values from regressing momentum alphas, in
percent per month, on predictor variables, which include 36-month market runup (RU36), squared 36-month market
runup (RU36%), dividend yield (DY), term spread (TS), 30-day T-bill (TB), default spread (DS), and five lags of
alphas (ar—1 through a-_s5). Panel A regressions use unconditional alphas aﬂc = a?c + 7ir on the left-hand side.
Panel B uses conditional alphas a,°? from the second step of the forecast component (FC) regression that employs 6-
and 36-month LC betas, 6- and 36-month market runup, DY, TS, TB, and DS as instruments (regression 8 from Table
8). Panel C reports the results of regressing the difference a¥%¢ — o792 on the predictor variables. All t-statistics are
calculated using Newey and West (1987) standard errors with five lags. The sample period is from January 1930 to

December 2005.



TABLE 11. — DECOMPOSING THE ALPHA BIASES
o @ 6 @ 6 © O (®

A. Conditioning Variables

ﬂiLCG X X X X X
ﬂiLC?’G X X X X X
RU6, RU36 X X
DY, TS, TB, DS X b X

B. Conditional Beta Moments

W 117 1.25 127 126 128 1.29 1.30 1.30
prez L 1.61 143 154 154 1.53 1.48 144 143

WL -0.43 -0.17 -0.27 -0.28 -0.25 -0.19 -0.14 -0.13

W 0.00 -250 -2.99 -2.51 -3.14 -3.59 -3.75 -3.87
Cov(BEC? R2)) L 0.00 526 193 196 219 3.56 504 5.28
WL  0.00 -7.76 -4.92 -448 -5.33 -7.14 -879 -9.15

C. Decomposition of the Underconditioning Bias

Direct UC Bias W 0.00 -0.01 -0.01 003 0.00 0.00 -0.01 -0.01
Cov(BEC? Rayr) L 0.00 0.05 -0.07 -0.05 -0.08 -0.07 -0.03 -0.03

WL 0.00 -0.06 0.06 008 0.07 0.07 0.02 0.02
— Beta Bias - Ry W 0.00 -0.05 -0.06 -0.05 -0.07 -0.08 -0.08 -0.08
(BVC - BFC?) . Ry L 0.00 0.11 0.04 0.04 0.05 008 011 0.11

WL 0.00 -0.16 -0.10 -0.09 -0.11 -0.15 -0.18 -0.19

= UC Bias W 0.00 0.04 005 008 0.06 0.07 007 0.07
QlVC — qfc? L 0.00 -0.06 -0.11 -0.10 -0.12 -0.15 -0.14 -0.14
WL 0.00 010 0.16 018 0.19 022 021 0.22

D. Decomposition of the Overconditioning Bias
Direct OC Bias \W% 0.65 0.64 064 068 065 065 0.65 0.65
—Cov(B5F — BL°%, Rir) L 0.11 0.16 0.04 0.06 004 0.04 0.08 0.08
WL 054 048 060 0.62 0.61 0.61 056 0.56

— Beta Bias -Ry W -0.02 -0.07 -0.08 -0.07 -0.08 -0.09 -0.10 -0.10
(BET — BFC?) . Ry L  -028 -0.17 -024 -0.24 -0.23 -0.20 -0.17 -0.17

WL 026 0.10 0.16 0.17 015 0.11 0.08 0.07
= OC Bias W 067 071 072 075 073 074 074 0.74
afPBH _ qFO2 L 0.39 033 028 030 027 025 025 025

WL 028 038 044 046 046 050 049 0.50

Notes: This table decomposes the underconditioning and overconditioning biases. Panel A lists
the conditioning variables used in the forecast component (FC2) regressions: 6- and 36-month
lagged component betas, 6- and 36-month market runups, and the standard instruments (DY,
TS, TB, and DS). Panel B reports average FC2 conditional betas, and their covariances with
squared market return. Panel C decomposes the alpha bias oY ¢ — @&"®? into the direct alpha bias
Cov (ﬂﬁcz, RMT) and the indirect alpha bias, —(8Y¢ — Bf°?)Rys caused by the beta bias, as in
equation (2.3). Panel D decomposes the overconditioning bias aFPH# — af"“? into the direct OC
bias fC’ov( oP fﬂgcz,RMT) and the beta bias, —(8°F — BFY?) Ry, as in Proposition 6. CP
betas are calculated in windows of one month. The average excess market return Ry is 0.62% per
month. The sample period is from January 1930 to December 2005.
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Figure 1. — Overconditioning in a 4-state Example. This figure plots portfolio returns against the
market return to illustrate overconditioning in a 4-state example. The solid line passing through the origin shows
the investor-conditioned pricing relation, while the dashed lines represent the nonlinearity in payoffs, or the overcondi-
tioned pricing relations. Returns are Ry () = [—0.057, —0.012,0.032,0.077] and R;(2) = [—0.068, —0.001, 0.044, 0.066],
and conditional betas are 82 = 1.5 and 8¢ = 0.5.



A. Daily Sort by St B. Daily Sort by RMt
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Figure 2. — Overconditioning in Daily and Monthly Returns. Each Panel of this figure plots 12, 000 randomly
chosen draws of returns under the unconditional Markov Model with A%; = 0.005. Panels A and B plot daily returns,
and Panels C and D show monthly returns. In each Panel, the returns are split into two groups by the state S; (Panel
A), the daily market return (Panel B), the number of Sy = G states within a month (Panel C), or the monthly market
return (Panel D). The solid lines represent the unconditional pricing relationships, while the dashed lines show the
estimated pricing relationships within each subset of data.
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Figure 3. — Overconditioning in the Conditional CAPM, Daily Returns. This figure shows 12,000

randomly chosen draws from (R, Ras¢) for the parametrization (A%, Af, Af;, A3) = (0.001,0.2,0.005,0.5) with
p=0.9. Panels A and B show the full set of draws, while C and D isolate the days when Z,;)—_; = H, and E and F
isolate Z,(;y—1 = L. The left-hand-side panels (A, C, and E) condition on the latent state S;, and the right-hand-side

panels (B, D, and F) condition on Rz above or is below its population mean.
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Figure 4. — Contemporaneous Portfolio 1-Month Betas. This figure shows CP betas of winners, losers, and
winners minus losers for the 6-0-6 momentum strategy. The betas are estimated in each calendar month as the sum
of the three slope coefficients from regressing excess returns on excess market return, its lag, and the average of lags
2 through 4 of market excess return. The sample period is from January 1930 to December 2005.
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Figure 5. — Forecast Component Betas. This figure shows FC betas of winners, losers, and winners minus losers
for the 6-0-6 momentum strategy. Instruments are 6 and 36 month LC betas. The sample period is from January
1930 to December 2005.
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