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Abstract

This paper presents a simple dynamic Mirrleesian model. There are two main

goals for this paper: (i) to review some recent results and contrast the Mirrlees

approach with the Ramsey framework in a dynamic setting; and (ii) to present

new numerical results for a flexible two-period economy featuring aggregate

shocks.
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1 Introduction

New Dynamic Public Finance is a recent literature that extends the static Mirrlees

(1971) framework to dynamic settings.1 This approach addresses a much broader set

of issues related to dynamic policy than its static counterpart and does not rely on

exogenously specified tax instruments as in Ramsey approach.

We show that New Dynamic Public Finance delivers three results that contrast

with predictions from a Ramsey approach. First, it is optimal to introduce a pos-

itive distortion in savings. This wedge improves the provision of incentives over

time by implicitly discouraging savings (Diamond and Mirrlees, 1978; Rogerson, 1985;

Golosov, Kocherlakota, and Tsyvinski, 2003). This contrasts with the important

Chamley-Judd (Judd, 1985; Chamley, 1986) result obtained in Ramsey models that

capital should go untaxed, at least in the long run.2 Second, when agents skill evolve

stochastically, their marginal labor income tax rates are affected by aggregate shocks.

Thus, a perfect version of labor tax smoothing prevalent in Ramsey models (Barro,

1979; Lucas and Stokey, 1983; Judd, 1989; Zhu, 1992; Chari, Christiano, and Kehoe,

1994) does not hold in dynamic Mirrlees models with uncertain and evolving skills.3

However, it is optimal to smooth labor distortions when skills are heterogenous but

constant (Werning, 2005b). Finally, the nature of time consistency problems in dy-

namic Mirrleesian models is very different from those arising within Ramsey setups.

A benevolent government without full commitment cannot refrain from exploiting the

information that it has collected at previous dates. The time consistency problem is,

essentially, about learning agents’ private information, rather than taxing sunk capi-

tal. Even if the government were to control all capital accumulation in the economy,

a time consistency problem would arise in a dynamic Mirrlees model.

1.1 User’s Guide

We call this paper “a user’s guide” because our main goal is to provide the reader with

an overview of the three implications of the dynamic Mirrlees literature that differ

from Ramsey. Our workhorse model is a two-period setup with and without aggregate

uncertainty, regarding government purchases or rates of returns on savings. The

1 However, see Diamond and Mirrlees (1978, 1986, 1995) for important early work with dynamic
economies with private information.

2 Judd (1999) extends the analysis to cover cases where no steady state may exist.
3 Aiyagari, Marcet, Sargent, and Seppälä (2002) and Werning (2005a) study tax-smoothing of

labor income taxes when markets are incomplete. Farhi (2005) studies capital income taxation and
ownership in this context.
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model is flexible enough to illustrate some key results. Moreover, its tractability allows

us to explore some new issues. The aim of the paper is to comprehensively explore the

structure of distortions and its dependence on parameters within our dynamic Mirrlees

economy. Papers by Albanesi and Sleet (2006), Golosov and Tsyvinski (2006) and

Kocherlakota (2005b) have some of the insights that we derive here but our model

allows a broader overview of the issue.4 Although some of our work is numerical, the

focus is qualitative: we do not seek definitive quantitative answers from our numerical

exercises, rather our goal is to illustrate qualitative features and provide the feel for

their quantitative importance.

Theoretically, we know that presence of private information regarding skills and

the stochastic evolution of skills introduces distortions in the marginal decisions of

agents. We focus on two types of wedges. The first wedge is a consumption-labor

wedge that we would often call a labor wedge. This wedge is a ratio of the marginal

utility of consumption of an agent to a marginal utility of labor. The second wedge

arises because of the stochastic nature of the problem. We call that wedge a capital or

intertemporal wedge. This is a wedge between marginal rate of substitution between

periods (ratio of marginal utilities) and the return on savings. Our focus in this paper

is distinctively on wedges rather than on taxes implementing them, although we do

devote a section to discussing the latter.

1.2 Ramsey and Mirrlees approaches

Representative agent Ramsey tax theory has used extensively by Macroeconomists to

study optimal policy problems in dynamic settings.5 Examples of particular interest

to macroeconomists include: the smoothing of taxes and debt management over the

business cycle, the taxation of capital in the long run, monetary policy and a variety

of time inconsistency problems.

This approach studies the problem of choosing taxes within a given set of available

tax instruments. Usually, to avoid the first-best, it is assumed that taxation must be

proportional. Lump-sum taxation, in particular, is prohibited. The benevolent gov-

ernment sets taxes so as to finance its expenditures and maximize the representative

agent’s utility.

If lump-sum taxes were allowed then the first welfare theorem would apply, and the

4 An interesting paper by Diamond, Helms, and Mirrlees (1980) is an early quantitative study of
models in which taxes are not linear.

5 A few papers have departed from the representative agent setting. For example, the analysis
of optimal capital taxation in Judd (1985) allowed some forms of heterogeneity.
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unconstrained optimum would be achieved. One criticism of the Ramsey approach is

that the main goal of the government is to mimic lump-sum taxes with an imperfect

set of instruments. However, very little is usually said about why tax instruments are

restricted and why they take such a particular form. As such, it is often recognized

that Ramsey representative agent models do not deliver a theoretical foundation for

distortionary taxation. Distortions are assumed, and their overall level are largely

determined exogenously by the level of government expenditure.

The Mirrlees approach to optimal taxation is built on a different foundation.

Rather than starting with a restricted set of tax instruments as in Ramsey, Mirrlees

(1971) assumed that an informational friction endogenously restricted the set of taxes

that implement the optimal allocation. In these models workers are heterogenous

with respect to their skills or productivity. Importantly, worker skills and work effort

are not observed by the government. The private information creates a tradeoff

between insurance and incentives, making perfect insurance impractical. Even when

tax instruments are not unduly constrained, distortions generally arise at the solution

to the planning problem.

Since tax instruments are not restricted, without heterogeneity the first-best would

be attainable. That is, if everyone shared the same skills then a simple lump-sum

tax—that is, an income tax with no slope—would be optimally imposed. The plan-

ning problem is then equivalent to the first-best problem of maximizing utility subject

only to the economy’s resource constraints. This extreme case emphasizes the more

general point that a key determinant of marginal tax rates is the desire to redistribute

or insure skill draws. Thus, taxes are affected by the distribution of skills and risk

aversion, among other things.

1.3 Numerical results

We begin by summarizing the finding from our numerical simulations for the case

without aggregate uncertainty. We found that the main determinants for the size

of the labor wedge are agents’ skills, the probability with which skill shocks occurs,

risk aversion, and the elasticity of labor supply. Specifically, labor wedges are higher

for agents who receive an adverse skill shock. We find that the labor wedge in the

first period or the labor wedge in the second for those not suffering the adverse

shock period are largely unaffected by the size or probability of the adverse shock;

these parameters affect such agents only indirectly through the ex-ante incentive

compatibility constraints.
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We also find that higher risk aversion leads to higher labor wedges because it

leads to higher desire for the planner to redistribute or insure agents. As for the

elasticity of labor supply we show two opposing effects that affect the labor wedge:

a lower elasticity leads to smaller welfare losses from redistribution but also leads to

less pre-tax income inequality, for a given distribution of skills, making redistribution

less desirable.

We find that the two key determinants of the size of the capital wedges are the

size of the adverse future shock and its probability. We found that a higher elasticity

of labor decreases the savings wedge because it decreased the desire to redistribute.

We derive some novel predictions for capital wedges when preferences over con-

sumption and labor are nonseparable. Most of the theoretical results in dynamic

Mirrleesian taxation are derived assuming additive separability between consumption

and labor. In particular, the analytical Inverse Euler results, which ensures a positive

capital wedge is proven only for the case of separable utility. Indeed, the effects of

nonseparable utility on the intertemporal wedge are largely unexplored. Here we feel

the gap by showing the effects of nonseparability of utility. Most importantly, we

find that when utility is nonseparable, the capital wedge may become negative. The

sign of the wedge depends on whether labor and consumption are complements or

substitutes and on whether an agent expects to experience an upward or downward

shock to skills in the future.

We now discuss our numerical findings for the case with aggregate uncertainty.

Most of these findings are novel, since aggregate shocks have not been extensively

explored with the Mirrleesian approach. One exception is Kocherlakota (2005b) who

extends the inverse Euler equation to the case of aggregate uncertainty and also

considers a numerical illustration of his tax implementation in a model with two skill

types.

An important result in the representative agent Ramsey framework, due to Barro

(1979) and Lucas and Stokey (1983), is that tax rates on labor income should be

smoothed across time and states.6 As shown by Werning (2005b), this important

benchmark does not rely on the Ramsey framework, and extends to situations with

heterogenous agents subject to linear taxation or nonlinear taxation. In the our setup

this result obtains as long as all the idiosyncratic uncertainty for skills is resolved in

the first period. In our numerical exercises we consider the case with aggregate

uncertainty while allowing individual skills to evolve stochastically.

6 See also Zhu (1992) for a perfect tax smoothing result within a representative agent Ramsey
economy with proportional taxation.
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There are two main implications of aggregate uncertainty. First, we find that labor

wedges vary across aggregate shocks. Thus, perfect tax smoothing, where the wedges

for each skill type are invariant to aggregate states, does not hold. Tax rates vary

because individual skill shocks and aggregate shocks are linked through the incentive

constraints. Second, we find that a positive aggregate shock (from a higher return on

savings or a lower government expenditure) lowers the spread between labor wedges

across skill types in the second period. Formally, a lower government expenditure

is equivalent to a higher endowment in the hands of the government. Intuitively,

these extra resources, in government hands, reduce the relative importance of income

inequality from the second period skill shocks. As a result, insuring the second period

shocks becomes less valuable, so the optimal allocation behaves more like that of

an economy where there is no second period skill uncertainty, where perfect tax

smoothing obtains, so the spread in the wedge across skill types is reduced.

2 An Overview of the Literature

The dynamic Mirrleesian literature builds on the seminal work of Mirrlees (1971),

Diamond and Mirrlees (1978), Atkinson and Stiglitz (1976) and Stiglitz (1987).7 These

authors laid down a foundation for the analysis of optimal non-linear taxation with

heterogeneous agents and private information. Many of the more recent result build

on the insights first developed in those papers. The New Dynamic Public Finance

literature extends previous models by focusing on aggregate shocks and the stochastic

evolution of individual skills.

Werning (2002) and Golosov, Kocherlakota, and Tsyvinski (2003) incorporated

Mirrleesian framework into the a standard neoclassical growth model. Werning (2002)

on conditions for the optimality of smoothing labor income taxes over time and across

states. Building on the work of Diamond and Mirrlees (1978) and Rogerson (1985),

Golosov, Kocherlakota, and Tsyvinski (2003) showed that it is optimal to distort sav-

ings in economies where skills of agents evolve stochastically over time. Kocherlakota

(2005b) extended this result to the economy with aggregate shocks. We discuss

these results in Section 4. Golosov and Tsyvinski (2005) and da Costa (2005) fur-

ther extended the analysis by considering economies where not only skills but also

financial transactions such as borrowing and lending are not observable. In such set-

tings they show that non-linear distortions of savings is not feasible. The government

may uniformly influence the rate of return by taxing observable capital stock. Al-

7 See also Brito, Hamilton, Slutsky, and Stiglitz (1991).
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though the optimal savings distortion still remains positive, Golosov and Tsyvinski

(2005) show examples when it is optimal to subsidize capital. Werning (2002),

Shimer and Werning (2005) Abraham and Pavoni (2003) and Kocherlakota (2005b)

study optimal taxation when capital is not observable and its rate of return is not

taxed. Kocherlakota (2005a) provides a comprehensive review of the literature.

Unlike taxation of savings, less work has been done for studying optimal labor

wedges in the presence of stochastic skills shocks. Battaglini and Coate (2005) show

that if the utility of consumption is linear, labor taxes of all agents asymptotically

converge to zero. Risk neutrality, however, is crucial to this result. Section 5 of

this paper explores dynamic behavior of labor wedges for risk averse agents in our

two-period economy.

Due to space constraints we limit our analysis in the main body of the paper only

to capital and labor taxation. At this point we briefly mention recent interesting work

on other aspects of tax policy. Farhi and Werning (2005) analyze estate taxation in

a dynastic model with dynamic private information. They show that estate taxes

should be progressive in wealth. The intuition for their result is that the need to

redistribute resources among the future generations implies that relatively rich, high

skilled parents should face higher distortions on bequests than poor, low skilled ones.

This equalizes opportunities for the generation which is born in the next period.

Albanesi (2006) considers optimal taxation of the entrepreneurs. In her set up an

entrepreneur exhorts unobservable effort that affects the rate of return of the project.

She shows that the optimal intertemporal wedge for the entrepreneurs can be either

positive or negative. da Costa and Werning (2005) study to a monetary model with

a continuum of heterogeneous agents with privately observed skills, where they prove

the optimality of Friedman rule, so that the optimal inflationary tax is zero.

The analysis of the optimal taxation in response to aggregate shocks has tradi-

tionally been primarily studied in macro-oriented Ramsey literature. Werning (2002,

2005b) reevaluated the results on tax smoothing in a model with private information

where agents skills are constant over a worker’s lifetime. We further explore the ex-

tent of tax smoothing in response to the aggregate shocks in a general model in which

agents’ skills are stochastic in Section 6.

Some papers, for example Albanesi and Sleet (2006), Kocherlakota (2005b) and

Golosov and Tsyvinski (2006), consider implementing optimal allocations by the gov-

ernment using tax policy. Those analyses assume that no private markets exist to

insure idiosyncratic risks and agents are able to smooth consumption over time by

saving at a market interest rate. Prescott and Townsend (1984) shows that the first
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welfare theorem holds in economies with unrestricted private markets and the ef-

ficient wedges can be implemented privately without any government intervention.

When markets are very efficient, distortionary taxes are redundant. However, if some

of the financial transactions are not observable, the competitive equilibrium is no

longer constrained efficient. Applying this insight, Golosov and Tsyvinski (2005) and

Albanesi (2006) explore the implications of unobservability in financial markets on

the optimal tax interventions. We discuss some of these issues in Section 4.

Following theoretical advances, several authors carry out a quantitative analysis

of the size of the distortion and welfare gains from improving tax policy. For ex-

ample, Albanesi and Sleet (2006) study the size of the capital and labor wedges in

a dynamic economy. However they are able to conduct their analyses only for the

illustrative case of i.i.d. shocks to skills. Moving to the other side of the spectrum,

with permanent disability shocks, Golosov and Tsyvinski (2006) show that the wel-

fare gains from improving disability insurance system might be large. Recent work

by Farhi and Werning (2006) develops a general method for computing the welfare

gains from partial reforms, starting from any initial incentive compatible allocations

with flexible skill processes, that introduce optimal savings distortions.

All the papers discussed above assume that the government has full commitment

power. The more information is revealed by agents about their types, the stronger the

incentive of the government is to deviate from the originally promised tax sequences.

This motivated several authors to study optimal taxation in environments where the

government cannot commit. Optimal taxation without commitment is technically a

much more challenging problem since the simplest versions of the Revelation Princi-

ple does not hold in such an environment. One of the early contributors was Roberts

(1984) who studies an economy where individual have constant skills which are private

information. Bisin and Rampini (2006) study a two period version of this problem.

Sleet and Yeltekin (2005) and Acemoglu, Golosov, and Tsyvinski (2006) show con-

ditions under which even the simplest versions of the Revelation Principle can be

applied along the equilibrium path. We discuss these issues in Section 4.

3 A Two-Period Mirrleesian Economy

In this section we introduce a two-period Mirrleesian economy with uncertainty.

Preferences. There is a continuum of workers that are alive in both periods and
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maximize their expected utility

E[u(c1) + v(n1) + β(u(c2) + v(n2))],

where ct represents consumption and nt is a measure of work effort.

With two periods, the most relevant interpretation of our model is that the first

period should represent relatively young workers, say those aged 20–45, while the

second period represents relatively older workers and retired individuals, say, those

older than 45. It is straightforward to extend the model by allowing the third period

to explicitly distinguish retired individuals from older workers. However, with no

labor decision in the third period, nothing is lost by lumping consumption into the

second period, as we do here.

Skills. Following Mirrlees (1971), workers are, at any time, heterogenous with respect

to their skills, and these skills are privately observed by workers. The output y

produced by a worker with skill θ and work effort n is given by the product, effective

labor: y = θn. The distribution of skills is independent across workers, so that by an

informal appeal to the law of large numbers, there is no aggregate uncertainty.

For computational reasons, we work with a finite number of skill types in both

periods. Let the skill realizations for the first period be θ1(i) for i = 1, 2, . . . , N1

and denote by π1(i) their ex ante probability distribution, equivalent to the ex post

distribution in the population. In the second period, the skill becomes θ2(i, j) where

j = 1, 2, . . . , N2(i) with probability π2(j|i) is the conditional probability distribution

for skill type j in the second period, given skill type i in the first period. We start by

assuming that the aggregate shock does not affect the distribution of the populations

relative skills π.

Technology. We assume production is linear in efficiency units of labor produced

by workers. In addition, there is a linear savings technology.

We consider two types of shocks in the second period: (i) a shock to the rate of

return; and (ii) a shock to government expenditures in the second period. To capture

both shocks we introduce a state of the world s ∈ S, where S is some finite set,

which is realized at the beginning of period t = 2. The rate of return and government

expenditure in the second period are now functions of s. The probability of state s

is denoted by µ(s).
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The resource constraints are

∑

i

(c1(i) − y1(i))π1(i) +K2 ≤ R1K1 −G1, (1)

∑

i,j

(c2(i, j) − y2(i, j))π2(j|i)π(i) ≤ R2(s)K2 −G2(s), for all s ∈ S, (2)

where K2 is capital saved between periods t = 1 and t = 2, and K1 is the endowed

level of capital.

An important special case is one without aggregate shocks. In that case we can

collapse both resource constraints into a single present value condition by solving out

for K2:

∑

i

(

c1(i)− y1(i)+
1

R

∑

j

[c2(i, j) − y2(i, j)] π2(i, j)
)

π1(i) ≤ R1K1 −G1 −
1

R
G2. (3)

Planning problem. Our goal is to characterize the optimal tax policy without im-

posing any ad-hoc restrictions on the tax instruments available to a government. The

only constraints on taxes come endogenously because of the informational frictions.

It is convenient to carry out our analysis in two steps. First, we describe how to find

the allocations that maximize social welfare function subject to the informational

constraints. Then, we discuss how to find taxes that in competitive equilibrium lead

to socially efficient allocations. Since we do not impose any restrictions on taxes a

priori, the tax instruments available to the government may be quite rich. The next

section describe features that such a system must have.

To find the allocations that maximize social welfare it is useful to think about a

fictitious social planner who collects reports from the workers about their skills and

allocates consumption and labor according to those reports, as well as decides on

the aggregate investments in the first period. Workers make skill reports ir and jr

to the planner in the first and second period, respectively. Given each skill type i,

a reporting strategy is a choice of a first-period report ir and a plan for the second

period report jr(j, s) as a function of the true skill realization j and the aggregate

shock. Since skills are private information, the allocations must be such that no

worker has incentives to misreport his type. Thus the allocations must satisfy the
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following incentive constraint

u(c1(i)) + v

(

y1(i)

θ1(i)

)

+ β
∑

s,j

[

u(c2(i, j, s)) + v

(

y2(i, j, s)

θ2(i, j, s)

)]

π2(i|j)µ(s) ≥

u(c1(ir))+v

(

y1(ir)

θ1(i)

)

+β
∑

s,j

[

u(c2(ir, jr(j, s), s)) + v

(

y2(ir, jr(j, s), s)

θ2(i, j)

)]

π2(j|i)µ(s),

(4)

for all alternative feasible reporting strategies ir and jr(j, s).
8 If one assumes that

the support of skills does not shift then it is possible to parcel out the incentive

constraints into simpler first and second period incentive constraints, where only one-

shot deviations are considered. For our numerical work, however, it is important to

allow the support of the skill distribution to shift.

In our applications we will concentrate on maximizing a utilitarian social welfare

function.9 The constrained efficient planning problem maximizes expected discounted

utility

∑

i

[

u(c1(i)) + v

(

y1(i)

θ1(i)

)

+ β
∑

s,j

[

u(c2(i, j, s)) + v

(

y2(i, j, s)

θ2(i, j)

)]

π2(j|i)µ(s)

]

π1(i),

subject to the resource constraints in (1) and (2) and the incentive constraints in (4).

Let (c∗, y∗, k∗) denote the solution to this problem. To understand the implications

of these allocation for the optimal tax policy, it is important to focus on three key

relationships or wedges between marginal rates of substitution and technological rates

of transformation:

The consumption-labor wedge (distortion) in t = 1 for type i is

τ y1
(i) ≡ 1 +

v′ (y∗1(i)/θ1(i))

u′(c∗1(i))θ1(i)
, (5)

The consumption-labor wedge (distortion) at t = 2 for type (i, j) in state s is

τ y2
(i, j, s) ≡ 1 +

v′ (y∗2(i, j, s)/θ2(i, j))

u′(c∗1(i, j, s))θ2(i, j)
, (6)

8A powerful Revelation Principle guarantees that the best allocations can always be achieved by
a mechanism where workers makes report about their types to the planner.

9See Diamond (1998) and Tuomala (1990) how choice of the welfare function affects optimal taxes
in static framework.
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The intertemporal wedge for type i is

τ k(i) ≡ 1 −
u′(c∗1(i))

β
∑

s,j R2(s)u′(c∗2(i, j, s))π2(j|i)µ(s)
(7)

Note that in the absence of government interventions all the wedges are equal to

zero.

4 Theoretical Results and Discussion

In this section we review some aspects of the solution to the planning problem that

can be derived theoretically. In the next sections we illustrate these features in our

numerical explorations.

4.1 Capital Wedges

We now derive implications of the intertemporal distortion, or implicit tax on capital.

We first work with an important benchmark with no skill shocks in the second period.

For this case we recover Atkinson and Stiglitz’s (1976) classical uniform taxation re-

sult, which implies no capital taxation in our context. Then, with shocks in the second

period we obtain an Inverse Euler Equation, which implies a positive intertemporal

wedge (Diamond and Mirrlees, 1978; Golosov, Kocherlakota, and Tsyvinski, 2003)

4.1.1 Benchmark: Constant Types and a Zero Capital Wedge

In this section, we consider a benchmark case in which skills of agents are fixed over

time, and there is no aggregate uncertainty. Specifically, assume that N2(i) = 1 for

∀i and that θ1(i) = θ2(i, j) = θ(i). In this case the constrained efficient problem

simplifies to:

max
∑

i

[

u(c1(i)) + v
(y1(i)

θ(i)

)

+ u(c2(i)) + v
(y2(i)

θ(i)

)]

π1(i)
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subject to the incentive compatibility constraint that for ∀i′ ∈ {1, ..., N1}, and ir ∈

{1, ..., N1} :

u(c1(i)) + v
(y1(i)

θ(i)

)

+ β
[

u(c2(i)) + v
(y2(i)

θ2(i)

)]

≥

u(c1(ir)) + v
(y1(ir)

θ(i)

)

+ β
[

u(c2(ir)) + v
(y2(ir)

θ(i)

)]

,

and subject to the feasibility constraint,

∑

i

[

c1(i) − y1(i) +
β

R

∑

j

(

c2(i) − y2(i)
)

]

π1(i) ≤ 0.

We can now prove a variant of a classic Atkinson and Stiglitz (1976) uniform

commodity taxation theorem which states that the marginal rate of substitution

should be equated across goods and equated to the marginal rate of transformation.

To see this note that only the value of total utility from consumption u(c1)+βu(c2)

enters the objective and incentive constraints. It follows that for any total utility

coming from consumption u(c1(i)) + βu(c2(i)) it must be that resources c1(i) + c2(i)

are minimized, since the resource constraint cannot be slack. The next proposition

then follows immediately.

Proposition 1 Assume that the types of agents are constant. A constrained efficient

allocation satisfies

u′(c1(i)) = βRu′(c2(i)) ∀i

Note that if β = R then c1(i) = c2(i). Indeed, in this case the optimal allocation

is simply a repetition of the optimal one in a static version of the model.

4.1.2 Inverse Euler Equation and Positive Capital Taxation

We now return to the general case with stochastic types and derive a necessary con-

dition for optimality: the Inverse Euler Equation. This optimality condition implies

a positive marginal intertemporal wedge.

We consider variations around any incentive compatible allocation. The argument

is similar to the one we used to derive Atkinson and Stiglitz’s (1976) result. In par-

ticular, it shares the property that for any realization of i in the first period we shall

minimize the resource cost of delivering the remaining utility from consumption.

Fix any first period realization i. We then increase second period utility u(c2(i, j))

in a parallel way across second period realizations j. That is define u(c̃2(i, j; ∆)) ≡
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u(c2(i, j))+∆ for some small ∆. To compensate, we decrease utility in the first period

by β∆. That is, define u(c̃1(i; ∆)) ≡ u(c1(i)) − β∆ for small ∆.

The important point is that such variations do not affect the objective function

nor the incentive constraints in the planning problem. Only the resource constraint

is affected. Hence, for the original allocation to be optimal it must be that ∆ = 0

minimizes the resources expended

c̃1(i; ∆) +R−1
∑

j

c̃2(i, j; ∆)π(j | i)

= u−1(u(c1(i)) − β∆) +R−1
∑

j

u−1(u(c2(i, j)) + ∆)π(j | i)

for all i. The first order condition for this problem evaluated at ∆ = 0 then

yields the Inverse Euler equation summarized in the next proposition, due originally

Diamond and Mirrlees (1978) and extended to an arbitrary process for skill shocks

by Golosov, Kocherlakota, and Tsyvinski (2003).

Proposition 2 A constrained efficient allocation satisfies an Inverse Euler Equation:

1

u′(c1(i))
=

1

βR

∑

j

1

u′(c2(i, j))
π2(j|i). (8)

There are two cases for which this condition reduces to a standard Euler equation.

Both cases involve situations where there is no uncertainty in second period consump-

tion, after conditioning on the first period shock. The first case is when there is no

heterogeneity in skills in the second period, i.e., for some i, N2(i) = 1. Alternatively,

consider the case in which skills evolve deterministically, i.e. π(j|i) = 1 for some i, j.

In the two-type example above, if θ2(1) = θ2(2), c2(1) = c2(2) = c̄2, and the condition

becomes
1

u′(c1)
=

1

βR

1

u′(c̄2)
. (9)

The second case is when there is no private information. Suppose that, for some

i, skills θ2(i, j) are observable. Then the planner can ensure that full insurance is

achieved c2(i, j) = c2(i, j
′) = c̄2 for all j and j′ following such j.

In the context of the two type example above, for the two cases we outlined,

c2(1) = c2(2) = c̄2, and the Inverse Euler equation would then reduce to the standard

Euler equation (9).

We can now derive an important proposition that shows that, if skills are stochas-

tic, i.e., if the probability of a change in skill is interior, than the Euler equation is
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distorted.

Proposition 3 Suppose that for some i, there exists j such that 0 < π(j|i) < 1.Then

constrained efficient allocation satisfies:

u′(c1(i)) < βR
∑

j

u′(c2(i, j))π2(j|i) ⇒ τ k(i) > 0.

The intuition for this intertemporal wedge is that implicit savings affect the in-

centives to work. Specifically, consider an agent who is contemplating a deviation.

Such an agent prefers to implicitly save more than the agent who is planning to tell

the truth. An intertemporal wedge worsens the return to such deviation. We use

the phrase ”implicitly save” here to indicate that all savings are controlled by the

planner here. A reader of this intuition should think about such ”implicit savings”

as perturbations of the optimal allocation.

The Inverse Euler Equation can be extended to the case of aggregate uncertainty

(Kocherlakota, 2005b). At the optimum

1

u′(c1(i))
=

1

βE

[

R(s)
[

∑

j π(j|i) [u′(c2(i, j, s)]
−1

]−1
]

If there is no heterogeneity in skills in the second period, this expression reduces to

u′(c1) = βE [R(s)u′(c2(s))]

so that the intertemporal marginal rate of substitution is undistorted. However, if the

agent faces idiosyncratic uncertainty about his skills and consumption in the second

period, Jensen’s inequality implies that there is a positive wedge on savings:

u′(c1(i)) < β
∑ ∑

µ(s)π(j|i)R(s)u′(c2(i, j, s)).

4.2 Tax Smoothing

An important result in the representative agent Ramsey framework is that tax rates on

labor income should be smoothed across time (Barro, 1979) and states (Lucas and Stokey,

1983).

This important benchmark does not rely on the Ramsey framework, and extends

to situations with heterogenous agents subject to linear taxation or nonlinear taxa-

tion (Werning, 2005b). In our setup this result obtains as long as all the idiosyncratic
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uncertainty for skills is resolved in the first period, so that θ2(j, i) = θ1(i) = θ(i). We

can then write the allocation entirely of the first period skill shock and the second pe-

riod aggregate shock. The incentive constraints then only require truthful revelation

of the first period skill,

u(c1(i)) + v

(

y1(i)

θ1(i)

)

+ β
∑

s

[

u(c2(i, s)) + v

(

y2(i, s)

θ2(i)

)]

µ(s) ≥

u(c1(ir)) + v

(

y1(ir)

θ1(i)

)

+ β
∑

s

[

u(c2(ir, s)) + v

(

y2(ir, s)

θ2(i, s)

)]

µ(s) (10)

for all i, ir. Let ψ(i, ir) represent the Lagrangian multiplier associated with each of

these inequalities.

The Lagrangian for the planning problem that incorporates these constraints can

be written as

∑

i,ir,s

{

(1 + ψ(i, ir))
[

u(c1(i)) + v
(y1(i)

θ1(i)

)

+ β
(

u(c2(i, s)) + v
(y2(i, s)

θ2(i, s)

))]

− ψ(i, ir)
[

u(c1(ir)) + v
(y1(ir)

θ1(i)

)

+ β
(

u(c2(ir, s)) + v
(y2(ir, s)

θ2(i, s)

))]}

µ(s)π1(i)

The first order conditions are then

u′(c1(i))γ
c(i) = λ1π(i) βu′(c2(i, s))γ

c(i) = λ2(s)π(i)

−
1

θ(i)
v′

(y1(i)

θ(i)

)

γy(i) = λ1π(i) −
1

θ(i)
v′

(y2(i, s)

θ(i)

)

γy(i) = λ2(s)π(i)

where λ1 and λ2(s) are first and second period multipliers on the resource constraints

and where we define

γc(i) ≡ π(i) +
∑

i′

(ψ(i, i′) − ψ(i′, i))

γy(i) ≡ π(i) +
∑

i′

(

ψ(i, i′) − ψ(i′, i)
θ(i)

θ(i′)

)

for notational convenience. Combining and canceling terms then leads to

τ 1 ≡
1

θ(i)

−v′
(

y1(i)
θ(i)

)

u′(c1(i))
=
γc(i)

γy(i)
τ 2(s) ≡

1

θ(i)

−v′
(

y2(i,s)
θ(i)

)

u′(c2(i, s))
=
γc(i)

γy(i)

which proves that perfect tax smoothing is optimal in this case. We summarize this
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result in the next proposition, due to Werning (2005b).

Proposition 4 When idiosyncratic uncertainty for skills is resolved in the first pe-

riod, so that θ2(j, i) = θ1(i) then it is optimal to perfectly smooth marginal taxes on

labor τ 1 = τ 2(s) = τ̄ .

Intuitively, tax smoothing results from the fact that the tradeoff between insurance

and incentives remains constant between periods and across states. As shown by

Werning (2005b), even without additional uncertainty in the second period, if the

skill distribution varies marginal taxes should also vary. Intuitively, the tradeoff

between insurance and incentives then shifts and taxes should adjust accordingly.

In the numerical work in Section 6 we examine another source for departures from

the perfect tax smoothing benchmark. We consider the case in which idiosyncratic

uncertainty continues to evolve after the first period, with skill shocks in the second

period.

4.3 Tax Implementations

In this section we describe the general idea behind decentralization or implementation

of the optimal allocations with tax instruments. The general goal is to find taxes such

that the resulting competitive equilibrium yields the socially optimal allocations. In

general, the required taxes are complex nonlinear functions of all past observable

actions, such as capital and labor supply, as well as aggregate shocks.

It is tempting to interpret the wedges defined in (5)–(7) as actual taxes on capital

and labor in the first and second periods. The relationships between wedges and

taxes may be less straightforward. Intuitively, each wedge controls only one aspect

of worker’s behavior (labor in the first or second period, or saving) taking all other

choices fixed at the optimal level. For example, assuming that an agent supplies the

socially optimal amount of labor, a savings tax defined by (7) would ensure that that

agent also makes a socially optimal amount of savings. However, agents choose labor

and savings jointly.10

In the context of our economy, taxes in the first period τ 1(y1) can depend only on

the observable labor supply of agents in that periods, and taxes in the second period

10For example, if an agent considers changing her labor, then, in general, she also considers
changing her savings. Golosov and Tsyvinski (2006), Kocherlakota (2005b) and Albanesi and Sleet
(2006) showed that such double deviations would give an agent a higher utility that the utility
from the socially optimal allocations, and therefore the optimal tax system must be enriched with
additional elements in order to implement the optimal allocations.
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τ 2(y1, y2, k, s) can depend on labor supply in both first and second period, as well as

agents’ wealth. In competitive equilibrium, agent i solves

max
{c,y,k}

{

u(c1(i), y1(i)/θi) + β
∑

s,j

[

u(c2(i, j, s)) + v

(

y2(i, j, s)

θ2(i, j)

)]

π2(j|i)µ(s)

}

subject to

c1(i) + k(i) ≤ y1(i) − τ 1(y1(i))

c2(i, j) ≤ y2(i, j) +R(s)k(i) − τ 2(y1(i), y2(i, j, s), k(i), s)

We say that a tax system implements the socially optimal allocation {(c∗1(i), y
∗
1(i),

c∗2(i, j), y
∗
2(i, j, s)} if this allocation solves this agent’s problem given τ 1(y1(i)) and

τ 2(y1(i), y2(i, j, s), k(i), s).

Generally, an optimal allocation may be implementable by various tax systems so

τ 1(y1(i)) and τ 2(y1(i), y2(i, j, s), k(i), s)may not be uniquely determined. In contrast,

all tax systems introduce the same wedges in agents’ savings or consumption-leisure

decisions. For this reason, in the numerical part of the paper we focus on the dis-

tortions defined in Section 3, and omit the details of any particular implementation.

In this section, however, we briefly review some of the literature on the particular

details of implementation.

Formally, the simplest way to implement allocations is a direct mechanism, which

assigns arbitrarily high punishments if individual’s consumption and labor decisions

in any period differ from those in the set of the allocations {(c∗1(i), y
∗
1(i), c

∗
2(i, j),

y∗2(i, j, s)} that solve the planning program. Although straightforward, such an im-

plementation is highly unrealistic and severely limits agent’s choices. A significant

body of work attempts to find less heavy handed alternatives. One would like im-

plementations to come close to actual tax systems employed in the US and other

advanced countries. Here we review some examples.

Albanesi and Sleet (2006) consider an infinitely repeated model where agents face

i.i.d. skill shocks over time and there are no aggregate shocks. They show that the

optimal allocation can be implemented by taxes that depend in each period only on

agent’s labor supply and capital stock (or wealth) in that period. The tax function

τ t(yt, kt) is typically non-linear in both of its arguments. Although simple, their

implementation relies critically on the assumption that idiosyncratic shocks are i.i.d.

and cannot be easily extended to other shocks processes.

Kocherlakota (2005b) considers a different implementation that works for a wide

range of shock processes for skills. His implementation separates capital from labor
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taxation. Taxes on labor in each period t depend on the whole history of labor

supplies by agents up until period t and in general can be complicated non-linear

functions. Taxes on capital are linear. The rate at which the capital stock is taxed

depends on the whole history of labor supplies by an agent, and thus is highly history

dependent. The tax rate is defined by

τ(i, j, s) = 1 −
u′(c∗(i))

βR(s)u′(c∗(i, j, s))
(11)

It turns out that an interesting implication of this implementation is that, at the

optimum, taxes on capital average out to zero and raise no revenue. Although the av-

erage net return on savings is unaffected, it does induce savings distortions by making

this return risky: capital taxes are higher in those states where consumption is lower

(see equation (11)). Since net returns are positively correlated with consumption—

thus, negatively correlated with marginal utility—this makes saving less attractive.

However, it is important to emphasize that the intertemporal wedge is positive for

each agent.

In some applications the number of shocks that agents face is small and allow for

simple decentralizations. Golosov and Tsyvinski (2006) study a model of disability

insurance, where the only uncertainty agents face is whether, and when, they receive

a permanent shock that makes them unable to work. In this scenario, the optimal

allocation can be implemented by paying disability benefits to agents who have assets

below a specified threshold, i.e., asset testing the benefits.

4.4 Time Inconsistency

In this section we argue that the dynamic Mirrlees literature and Ramsey literature

both prone to time consistency problems. However, the nature of time inconsistency

is very different in those two approaches.

An example that clarifies the notion of time inconsistency in Ramsey models

is taxation of capital. A Chamley-Judd (Judd, 1985; Chamley, 1986) result states

that capital should be taxed at zero in the long run. One of the main assumptions

underlying this result is that a government can commit to a sequence of capital

taxes. However, a benevolent government would choose to deviate from the prescribed

sequence of taxes. The reason is that, once capital is accumulated, it is sunk, and

taxing capital is no longer distortionary. A benevolent government would choose

high capital taxes once capital is accumulated. The reasoning above leads to the
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necessity of the analysis of time consistent policy as a game between a policy maker

(government) and a continuum of economic agents (consumers).11

To highlight problems that arise when we depart from the benchmark of a benevo-

lent planner with full commitment, it is useful to start with Roberts’ (1984) example

economy, where, similar to Mirrlees (1971), risk-averse individuals are subject to

unobserved shocks affecting the marginal disutility of labor supply. But differently

from the benchmark Mirrlees model, the economy is repeated T times, with individ-

uals having perfectly persistent types. Under full commitment, a benevolent planner

would choose the same allocation at every date, which coincides with the optimal

solution of the static model. However, a benevolent government without full commit-

ment cannot refrain from exploiting the information that it has collected at previous

dates to achieve better risk sharing ex post. This turns the optimal taxation prob-

lem into a dynamic game between the government and the citizens. Roberts showed

that as discounting disappears and T → ∞, the unique sequential equilibrium of

this game involves the highly inefficient outcome in which all types declare to be

the worst type at all dates, supply the lowest level of labor and receive the lowest

level of consumption. This example shows the potential inefficiencies that can arise

once we depart from the case of full commitment, even with benevolent governments.

The nature of time inconsistency in dynamic Mirrlees problems is, therefore, very

different from time inconsistency in Ramsey model. In dynamic Mirrlees model the

inability of a social planner not to exploit information it learns about agents types is

a central issues in designing optimal policy without commitment. As well as Roberts

(1984), a recent important paper by Bisin and Rampini (2006) considers the problem

of mechanism design without commitment in a two-period setting. Bisin and Rampini

extend Roberts’s analysis and show how the presence of anonymous markets acts as

an additional constraint on the government, ameliorating the commitment problem.

Acemoglu, Golosov, and Tsyvinski (2006) depart from Roberts’ (1984) framework

and consider instead of a finite-horizon economy an infinite-horizon economy. This

enables them to use punishment strategies against the government to construct a

sustainable mechanism, defined as an equilibrium tax-transfer program that is both

incentive compatible for the citizens and for the government (i.e., it satisfies a sustain-

11A formalization of such game and an equilibrium concept, sustainable equilibrium, is due
to Chari and Kehoe (1990). They formulate a general equilibrium infinite horizon model in
which private agents are competitive, and the government maximizes the welfare of the agents.
Benhabib and Rustichini (1997), Klein, Krusell, and Rios-Rull (2005) and Phelan and Stacchetti
(2001) and Fernandez-Villaverde and Tsyvinski (2004) solve for equilibria in an infinitely lived agent
version of the Ramsey model of capital taxation.
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ability constraint for the government). The (best) sustainable mechanism implies that

if the government deviates from the implicit agreement, citizens switch to supplying

zero labor, implicitly punishing the government. The infinite-horizon setup enables

them to prove, that a version of the revelation principle, the truthful revelation along

the equilibrium path, applies and is a useful tool of analysis for this class of dynamic

incentive problems with self-interested mechanism designers and without commit-

ment.12 The fact that truthful revelation principle applies only along the equilibrium

path is important, since it is actions off the equilibrium path that place restrictions

on what type of mechanisms are allowed (these are encapsulated in the sustainability

constraints). This enables them to construct sustainable mechanisms with the rev-

elation principle along the equilibrium path, to analyze substantially more general

environments, and to characterize the limiting behavior of distortions and taxes.

4.5 The Government’s Role as Insurance Provider

In the previous discussion we assumed that a government is a sole provider of in-

surance. However, in many circumstances, markets can provide insurance against

shocks that agents experience. The presence of competitive insurance markets may

significantly change optimal policy prescriptions regarding desirability and extent of

optimal taxation and social insurance policies.

We assumed that individual asset trades and, therefore, agents’ consumption

is publicly observable. In that environment Golosov and Tsyvinski (2005) follow

Prescott and Townsend (1984) and Atkeson and Lucas (1992) to show that alloca-

tions provided by competitive markets are constrained efficient and the first welfare

theorem holds. Intuitively, the argument for constrained efficiency of the competitive

equilibrium is as follows. Consider an economy populated by competitive firms. In

the absence of governmental policy, firms and agents can write contracts that pro-

vide agents with insurance. The competitive nature of the insurance markets would

lead to agents receiving the constrained efficient allocation. They conclude that,

even in the presence of private information, markets can provide optimal insurance if

consumption is observable. This result, however, does not mean that unconstrained

efficient allocation can be achieved. Individual insurance contracts between agents

and firms would feature exactly the same wedges as the social planner’s problem.

This implementation again highlights that it is important to focus on wedges rather

than the taxes implementing them. In this paper we do not model explicitly the

12See also Sleet and Yeltekin (2005) who prove similar result when agents’ shocks follow an i.i.d
process and the government is benevolent.
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reasons why private insurance markets may provide the inefficient level of insur-

ance. Arnott and Stiglitz (1986), Arnott and Stiglitz (1990), Greenwald and Stiglitz

(1986), Golosov and Tsyvinski (2005) show why markets might fail in the presence

of asymmetric information.

5 Numerical Exercises

We now perform numerical exercises with baseline parameters and perform sev-

eral comparative static experiments. The exercises we conduct strike a balance

between flexibility and tractability. The two period setting is flexible enough to

illustrate the key theoretical results and explore a few new ones. At the same time,

it is simple enough that a complete solution of the optimal allocation is still possi-

ble. In contrast, most work on Mirrleesian models focused on either partial char-

acterization of the optimum, e.g., showing that the intertemporal wedge is posi-

tive (Golosov, Kocherlakota, and Tsyvinski, 2003) or on numerical characterizations

for a particular skills processes, e.g., i.i.d. skills in Albanesi and Sleet (2006) or

absorbing disability shocks in Golosov and Tsyvinski (2006). A recent paper by

Farhi and Werning (2006) takes a different approach by studying partial tax reforms—

that capture the savings distortions implied by the Inverse Euler equation—that are

possible in a general model.

While we can only conjecture whether the results of our two-period model can be

extended to a more general multi-period setup, we are confident that many insights

developed here would hold true in a more general model.

Parameterization. When selecting parameters it is important to keep the following

neutrality result in mind. With logarithmic utility, if productivity and government

expenditures are scaled up within a periods then: (i) the allocation for consumption is

scaled by the same factor; (ii) the allocation of labor is unaffected; and (iii) marginal

taxes rates are unaffected. This result is relevant for thinking about balanced growth

in an extension of the model to an indefinite horizon. It is also convenient in that

it allows us to normalize, without any loss of generality, the second period shock for

our numerical explorations.

Below we discuss how we choose parameters for the benchmark example. We

use the following baseline parameters. We first consider the case with no aggregate

uncertainty. Assume that there is no discounting and that the rate of return on

savings is equal to the discount factor: R = β = 1.

We choose the skill distribution as follows. In the the first period, skills are
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distributed uniformly. Individual skills in the first period, θ1(i), are equally spaced

in the interval [θ1, θ̄1]. The probability of realization of each skill are equal to π1(i) =

1/N1 for all i. We choose baseline parameters to be θ1 = 0.1, θ̄1 = 1 and N1 = 50.

Here, a relatively large number of skills allows us to closely approximate a continuous

distribution of skills such as in Mirrlees (1971). In the second period, an agent can

receive a skill shock. For computational tractability, we assume that there are only

two possible shocks to an agent’s skill in the second period. Specifically, the number

of shocks N2(i) = 2 for all i. Skill shocks take the form of a proportional increase

θ2(i, 1) = α1θ1(i) or proportional decrease θ2(i, 2) = α2θ1(i). For the baseline case,

we set α1 = 1, and α2 = 1/2. This means that an agent in the second period can

only receive an adverse shock α2. We also assume that there is uncertainty about

realization of skills and set π2(1|i) = π2(2|i) = 1/2. The agent learns his skill in

the second period only at time t = 2. We chose the above parametrization of skills

to allow a stark characterization of the main forces determining the optimum. The

assumption of uniformity of distribution of skills is not innocuous. Saez (2001), a

state of the art treatment of static Mirrlees models, provides a calibrated example of

distribution of skills. Diamond (1998) also uses Pareto distribution of skills. Here,

we abstract from the effects of varying the skill distribution.

We choose the utility function to be power utility. The utility of consumption is

u(c) = c1−σ

1−σ
. As our baseline we take σ = 1, so that u(c) = log(c). The utility of

labor is given by v(l) = −lα; as our benchmark we set α = 2. The choice of the

baseline utility to be separable is motivated by the fact that most of the theoretical

results in the dynamic Mirrlees literature are derived for the case of separable utility

functions. Most importantly, the inverse Euler equation and the optimality of a

positive intertemporal wedge are derived only for separable utility functions. In the

sections that follow, we provide a numerical characterization of the optimum for the

utility function more common in macroeconomic literature on optimal taxation, a

nonseparable utility function consistent with a balanced growth path.

In the sections that follow, we use the following conventions in the figures below:

1. The horizontal axis displays the first period skill type i = 1, 2, . . . , 50;

2. The wedges (distortions) in the optimal solutions are labelled as follows:

(a) “Distortion t=1” is a consumption-labor wedge in period 1– τ y1
;

(b) “Distortion high t=2” is a consumption-labor wedge in period 2 for an

agent with a high skill shock – τ y2
(i, 1);
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(c) “Distortion low t=2” is a consumption-labor wedge in period 2 for an agent

with a low skill shock – τ y2
(i, 2);

(d) “Distortion capital” is an intertemporal (capital) wedge – τ k(i);

5.1 Characterizing the benchmark case

In this section, we describe the numerical characterization of the optimal allocation.

Suppose first that there were no informational friction, and agents’ skills were observ-

able. Then the solution to the optimal program would feature optimal insurance. The

agent’s consumption would be equalized across time and across realizations of shocks.

Labor of agents would be increasing with their type. It is obvious that when skills are

unobservable the unconstrained optimal allocation is not incentive compatible, as an

agent of a higher skill would always prefer to claim to be of a lower type to receive the

same consumption as before the deviation but work less. The optimal allocation with

unobservable types balances two objectives of the social planner: providing insurance

and respecting incentive compatibility constraints.

The optimal allocation for the benchmark case with unobservable types is shown

in Figure 1 and Figure 2. There is no bunching in either period: agents of different

skill are allocated different consumption and labor bundles.

First note that there is a significant deviation from the case of perfect insurance:

agents’ consumption increases with type, and consumption in the second period for

an agent who claims to have a high shock is higher than the that of an agent with the

low shock. The intuition for this pattern of consumption is as follows. It is optimal

for an agent with a higher skill to provide a higher amount of effective labor. One

way to make provision of higher effective labor incentive compatible for an agent is

to allocate a larger amount of consumption to him. Another way to reward an agent

for higher effort is to increase his continuation value, i.e., allocate a higher amount of

expected future consumption for such an agent.

We now turn our attention to the wedges in the constrained efficient allocation.

In the unconstrained optimum with observable types, all wedges are equal to zero.

We plot optimal wedges for the benchmark case in Figure 3.

We see that the wedges are positive, indicating a significant departure from the

case of perfect insurance. We notice that the consumption-labor wedge is equal to

zero for the highest skill type in the first period and for the high realization of the

skill shock in the second period: τ y1
(θ̄1) = τ y2

(θ̄1, 1) = 0. This result confirms a

familiar “no distortion the top” result due to Mirrlees (1971) which states that in
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Figure 1: Consumption allocation.
Middle dotted line shows first period
consumption; outer solid lines are sec-
ond period consumption.
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Figure 2: Effective labor allocation.
Dashed line is for first period. Solid
lines are for second period, top is high
shock, bottom low shock.

a static context the consumption-labor decision of an agent with the highest skill is

undistorted in the optimal allocation. The result that we obtain here is somewhat

novel as we consider an economy with stochastically evolving skills, for which the ”no

distortion at the top” result have not yet been proven analytically.

We also see that the labor wedges at the bottom {τ y1
(θ1), τ y2

(θ1, 1), τ y2
(θ1, 1)}

are strictly positive. A common result in the literature is that with a continuum of

types, the tax rate at the bottom is zero if bunching types is not optimal. In our

case, there is no bunching, but this result does not literally apply because we work

with a discrete distribution of types.

We see that the intertemporal wedge is low for agents with low skills θ1 in the

first period yet is quite high for agents with high skills. The reason is that it turns

out that lower skilled workers are quite well insured: their consumption is not very

volatile from the second period. It follows from the Inverse Euler optimality condition

that the intertemporal distortion required is smaller. The intuition is that it is costly

to the planner to elicit large effort from those agents and the planner chooses to

effectively insure them. To illustrate the intuition, note that Figure 1 shows that

consumption uncertainty in the second period increases with the first period shock.

Effects of the size of second period shocks

We now consider the effects of an increase in the size of the adverse second period

shock affecting agents. This is an important exercise as it allows us to identify forces

25



10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

distortion t=1

10 20 30 40 50

0.1

0.2

0.3

0.4

0.5
distortion high t=2

10 20 30 40 50

0.2

0.3

0.4

0.5

distortion low t=2

10 20 30 40 50

0.01

0.02

0.03

0.04

0.05

distortion capital

Figure 3: Benchmark implicit marginal tax rates.

that distinguish the dynamic Mirrlees taxation in which skills stochastically change

over time from a dynamic case in which types of agents do not change over time. We

consider a range of shocks: from a very large shock (α2 = 0.05) that makes an agent

almost disabled in the second period to a small drop (α2 = 0.95) in which agent’s

skill barely changes from previous period. In Figure 4 we plot in red the results for

α2 = 0.05. The other lines show α2 = 0.1, 0.3, 0.5, 0.6, 0.8, 0.9 and 0.95 respectively.

We now describe effects of an increase in the size of the skill shocks on the labor

wedges. First notice that the size of the second period shocks practically does not af-

fect the first period wedge schedule τ y1
(θ1), and the shape and the level are preserved.

This is a surprising result because even when agents experience a high shock to their

skills (e.g., α2 = 0.05), the schedule of labor wedges in the first period is, essentially,

identical to the case when an agent experiences a very small shock (α2 = 0.95). Sim-

ilarly, we don’t see large changes in the marginal labor wedge schedule, τ y2
(·, 1), in

the second period for the high realization of the shocks (i.e, if skills remain the same
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Figure 4: Varying α2.

as in the previous period). The labor wedge schedule does become steeper as α2

increases, i.e. when downward drops are smaller. Interestingly, the marginal tax on

labor in the second period after a downward drop, τ y2
(·, 2) changes significantly. As

α2 increases, the shock to skill becomes smaller and the level of wedges at the top

falls. To see this effect, compare the red line with α2 = 0.05 with the bottom black

line with α2 = 0.95. The results are intuitive as an increase in α2 makes the infor-

mational frictions smaller and allows us to distort agents’ decisions less to provide

optimal distortion and redistribution.

To summarize the discussion above, we conclude that the size of the second period

shock has significant effects on labor wedges of only the agents who experience that

shock and only in that period, while these agents’ previous labor decisions and the

labor decisions of agents not experiencing the adverse shocks are not affected by the

shock. Intuitively, the skill distribution for agents not affected by the shocks matters

only indirectly, and, therefore, the labor wedge for those agents is affected only to a

small degree.

We now proceed to characterize the effects of the size of the shocks on the capital

wedge. The intertemporal wedge becomes smaller and flatter when α2 increases –

compare, for example, the lower curve associated with α2 = 0.95 to the highest curve
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associated with α2 = 0.05. The reason is that consumption becomes less volatile in

the second period when the skill drop is smaller. The inverse Euler equation then

implies a smaller distortion. The intuition for this result is simple. If there were no

skill shocks in the second period (α2 = 1) then, as we discussed above, the capital

wedge is equal to zero. The higher is the wedge in the second period, the further

away from the case of constant skills we are, therefore, the distortion increases. Also

note that low α2 (large shocks in the second period) significantly steepens the capital

wedge profile.

We conclude that the shape and size of the capital wedge responds significantly

to the shocks that an agent may experience in the future.

Effects of the probability of second period shocks and uncer-

tainty

We now consider effects of changing the probability of the adverse second period

shock. This exercise is interesting as it allows us to investigate the effects of uncer-

tainty about future skill realizations on the size and shape of wedges.

In Figure 5 we show in red the benchmark case where π2(2|·) = 0.5. In blue,

π2(2|·) = 0.1; in black, π2(2|·) = 0.3; in yellow, π2(2|·) = 0.7.; in green, π2(2|·) = 0.9.

We first notice that the effects of the change in the probability of the adverse

shock on labor wedge are similar to the case of increase in size of the adverse shock.

That is, as the probability π2(2|·) of a drop in skills rises, the informational friction

increases and so does the labor wedge.

For the intertemporal wedge there is an additional effect of changing the proba-

bility of the adverse skill shock. We can see from the red line that the wedge is the

highest when uncertainty about skills is the highest: at the symmetric baseline case

with π2(2|·) = 0.5. Intuitively, the reason is that the uncertainty about next period’s

skill is maximized at π2(2|·) = 0.5. We conclude that it is uncertainty about future

skills rather than the level of next period’s skill shock that matters for the size of the

capital wedge.

Effects of Changing Risk Aversion

We proceed to explore effects of risk aversion on optimal wedges and allocations.

This exercise is important as risk aversion determines the need for redistribution or

insurance for an agent which is a primary motive for the social planner. Specifically,

we change the risk aversion parameter σ in the utility function. The results are shown
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Figure 5: Varying the probability of skill drop π2(2|·).

in Figure 6. Our benchmark case of logarithmic utility σ = 1 is shown in red. In

black we plot lower risk aversions: σ = 0.8, 0.5, 0.3 and 0.1. In blue we plot higher

risk aversions: σ = 1.5 and 3. The immediate observation is that a higher degree

of risk aversion leads to uniformly higher distortions. The intuition is again rather

simple. We know that if σ = 0, so that utility is linear in consumption and an

agent is risk neutral, private information about the skill would not affect the optimal

allocation and the unconstrained allocation in which all wedges are equal to zero can

be obtained. The higher is risk aversion, the higher is the desire of the social planner

to redistribute and insure agents. Therefore, all distortions rise.

The effects of higher risk aversion on the intertemporal wedge are very interesting.

Intuitively, there are two forces: (1) for a given distribution of consumption in both

periods, a higher risk aversion σ increases the wedge directly (recall that the capital

wedge was derived by applying Jensen’s inequality to the inverse Euler equation.

Here, loosely speaking, Jensen’s inequality is more powerful for higher is σ); (2) on

the other hand, with higher risk aversion it is optimal to insure more, which would
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Figure 6: Varying Risk Aversion

reduce the wedge — this is an indirect effect. For the parametrization we considered

the direct effect is stronger.

We conclude that higher risk aversion through increasing the desire to redistribute

among agents has significant effects on the size of the wedges.

Effects of changing elasticity of labor supply

We further investigate the properties of the optimum by considering three modifica-

tion of the disutility of labor. Figure 7 shows the results. Our benchmark case, as

before, is v(l) = −l2 (plotted in red in the figure). We also display two more inelastic

cases: v(l) = −l3 (plotted in blue), and v(l) = −l4 (plotted in black).

We see that the effect on labor distortions is ambiguous. Intuitively, there are two

opposing forces. On the one hand, as labor becomes more inelastic, wedges introduce

smaller inefficiencies. Thus, redistribution or insurance is cheaper. On the other

hand, since our exercises hold constant the skill distribution, when labor supply is

more inelastic the distribution of earned income is more equal. Hence, redistribution

or insurance are less valuable. Thus, combining both effects, there is less uncertainty

or inequality in consumption, but marginal wedges may go either up or down.
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Figure 7: Changing elasticity of labor.

The distortion on capital unambiguously goes down. The intuition is that con-

sumption becomes less variable (as argued above) and that the Jensen inequality

argument applied to the Inverse Euler equation is less powerful.

5.2 Exploring nonseparable utility

We now consider a modification to the case of non-separable utility between con-

sumption and labor. When the utility is nonseparable, the analytical Inverse Euler

results that ensure a positive intertemporal wedge do not hold. Indeed, the effects of

nonseparable utility on the intertemporal wedge are largely unexplored.
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5.2.1 Building on a baseline case

We start with the specification of the utility function that can be directly comparable

with our baseline specification

u(c, l) =
(ce−l2)1−σ

1 − σ
.

Here, the baseline case with separable utility is equivalent to σ = 1. When σ < 1 risk

aversion is lower than in our baseline and consumption and work effort are substitutes

in the sense that ucl < 0, that is, an increase in labor decreases the marginal utility of

consumption. When σ > 1 the reverse is true, risk aversion is higher and consumption

and labor are complements, in that ucl > 0. For both reasons, the latter case is widely

considered to be the empirically relevant one.

We first consider σ < 1 cases. The figure shows the schedules for σ = 1, 0.9, 0.7,

0.65. The baseline with σ = 1 is plotted as a dotted line. Lower σ correspond to the

lower lines on the graph.
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Figure 8: Nonseparable utility with σ ≤ 1.
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We notice that lower σ pushes the whole schedule of labor distortions down.

Intuitively, with lower risk aversion it is not optimal to redistribute or insure as much

as before: the economy moves along the equality-efficiency tradeoff towards efficiency.

The results for capital taxation are more interesting. First, lower σ is associated

with a uniformly lower schedule of capital distortions. Second, lower σ introduces a

non-monotonicity in the schedule of capital distortions, so that agents with intermedi-

ate skills have lower capital distortion than those with higher or lower skills. Finally,

for all the cases considered with σ < 1, we always find an intermediate region where

the intertemporal wedge is negative.

To understand this result it is useful to think of the case without uncertainty

in the second period. For this case, Atkinson and Stiglitz (1976) show that, when

preferences are separable, savings should not be taxed, but that, in general, whenever

preferences are non-separable some distortion is optimal. Depending on the details

of the allocation and on the sign of ucl this distortion may be positive or negative.

We now turn to the case with σ > 1 and consider σ = 1, 2, 3. The baseline with

σ = 1 is plotted as the dotted line. Away from the baseline, higher σ correspond to

lower lines on the graph.

We notice that higher σ pushes the whole schedule of labor distortions up. The

intuition is again that higher risk aversion leads to more insurance and redistribution,

requiring higher distortions.

A higher σ is associated with a uniformly higher schedule of capital distortions

and these are always positive. Second, higher σ may create a non-monotonicity in the

schedule of capital distortions, with the highest distortions occurring for intermediate

types.

To show that it is not only the value of the σ that determines the sign of the

wedge, we now turn to the case where the skill shocks in the second period have

an upward trend so that α1 = 1.5 and α2 = 1, that is an agent may experience a

positive skill shock. The results in this case are reversed. Intuitively, the trend in

skills matters because it affects the trend in labor. We first plot the results for σ = 2.

The capital wedge is negative in a range. We now plot the results for σ = 0.65 and

see that the capital wedge is positive.

We obtained similar results with the alternative specification of utility also com-

mon in macroeconomic models:

u (c, l) =
(c1−γ (L− l)γ)

1−σ

1 − σ
.
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Figure 9: Nonseparable utility with σ ≥ 1.
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This utility function was used by Chari, Christiano, and Kehoe (1994) in their quan-

titative study of optimal monetary and fiscal policy.
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5.3 Summarizing the case with No Aggregate Uncertainty

The exercises above give us a comprehensive overview of how the optimal allocations

and wedges depend on the parameters of the model. We now summarize what seems

to be most important for the size and the shape of these wedges.

1. Labor wedges on the agent affected by an adverse shock increase with the size or

the probability of that shock. However, labor wedges in other periods and labor

wedges for agents unaffected by the adverse shock are influenced only indirectly

by this variable and the effects are small.

2. Higher risk aversion increases the demand for insurance and significantly in-

creases the size of both labor wedges. However, the effect of on capital wedges

may be ambiguous as the uncertainty about future skills also matters.

3. Capital wedges are affected by the size of the adverse wedge and by the uncer-

tainty over future skills.

4. Higher elasticity of labor decreases the capital wedge but may have ambiguous

effects on labor wedge.

5. If utility is nonseparable between consumption and labor, the capital wedge

may become negative. The sign of the wedge in that case depends on whether

labor is complementary or substitutable with consumption and on whether an

agent expects to experience a higher or a lower shock to skills in the future.

6 Aggregate Uncertainty

In this section we explore the effects of aggregate uncertainty on the optimal allo-

cations. In Section 4.2 we showed that if agents’ types are constant it is optimal to

perfectly smooth labor taxes, i.e., the labor wedges are constant across states and

periods. The main result of this section is to show numerically that if agents’ types

change over time, the labor wedge smoothing result may no longer hold. This is a

novel prediction of this paper.

The literature on new dynamic public finance virtually has not explored impli-

cations of aggregate uncertainty on the optimal allocations. A notable exception is

Kocherlakota (2005b) who derives a version of the Inverse Euler Equation for the

economy with aggregate shocks and explores some quantitative implications of a ver-

sion of the model with two types of agents.
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Baseline Parameterization. We use, unless otherwise noted, the same benchmark

specifications as in the case with no aggregate uncertainty. Additional parameters

that we have to specify are as follows. We assume that there are two aggregate states,

s = 2. The probability of the aggregate states are symmetric: µ (1) = µ (2) = 1/2.We

take the number of skills in the first period to be N1 = 30. As before, skills are

equispaced and uniformly distributed. We set R1 = 1.

6.1 Effects of Government Expenditure Fluctuations

We now turn to analyzing the effects of government expenditures on optimal allo-

cations. There is a sense in which both return and government expenditure shocks

are similar in that they both shock the amount of resources in the second period —

that is, for a given amount of savings K2 they are identical. Comparative statics

in both exercises, however, are different in that they may induce different effects on

savings. In the exercises that follow we assume that there are no return shocks, and

R2 (1) = R2 (2) = 1.

Effects of permanent differences in G

We first consider a comparative static exercise of increases in government expenditure.

Suppose we increase G1 = G2 (1) = G2 (2) = 0.2, i.e., there is no aggregate uncer-

tainty. Figure 12 shows labor wedges for this case. We plot in black the benchmark

case of no government expenditures, G1 = G2 (1) = G2 (2) = 0,and in red the case of

G1 = G2 (1) = G2 (2) = 0.2. We see that higher G leads to significantly higher labor

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
cons−labor distortion

Figure 12: Labor Distortion
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wedges. Intuitively, if the wedge schedule were not changed then higher expenditure

would lead to lower average consumption and higher labor. Relative differences in

consumption would become larger and increase the desire for redistribution, given

our constant relative risk aversion specification of preferences. The intuition also par-

allels the case in which there is a shock to the rate of return. Here, an increase in

government consumption leads to the planner needing to extract a larger amount of

resources from the economy than in the absence of government purchases.

In the Figure 13 we plot the intertemporal wedges for our case of government

expenditures (in red) and for the case of no government expenditures (in black).

As in the case of labor wedges, we see that the size of the wedge is higher in the

case of government expenditures. A minor point is that introduction of government

expenditures may lead to nonmonotonicity in the capital wedge schedule especially

at the lower levels of skills.
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Figure 13: Intertemporal Distortion

We could have always considered a case of transitory changes in government ex-

penditures, i.e., keep government expenditure deterministic but make it higher or

lower in the second period versus the first. This case is very similar to the one above

as it is the present value of the government expenditures that matters rather than

the distribution of them across time.

Effects of aggregate shocks to government expenditures

We now consider the effects of stochastic shocks to government expenditures. In this

specification we have G1 = 0.2, G2 (1) = 0.3, G2 (2) = 0.2 and µ (1) = 0.7;µ (2) = 0.3.
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In Figure 14 we plot labor wedges. The black line is τ y1
; the blue solid line is τ y1 1

(., 1)

(i.e. high type in state 1); the blue dashed line is τ y1 1
(., 2) (i.e. low type in state

1); the red solid line is τ y1 2
(., 1) (i.e. high type in state 2); the red dashed line is

τ y1 2
(., 2) (i.e. low type in state 2)
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Figure 14: Shocks to government expenditure

The most important observation is that there is a difference in taxes across real-

izations of government expenditure. This contradicts one interpretation of perfect tax

smoothing, which would lead one to expect wedges to remain constant across these

shocks. This finding is new to both the literature on dynamic Mirrlees taxation and

to the Ramsey taxation literature. For example, Ramsey models calls for smoothing

labor tax distortions across states of the economy. As reviewed in subsection 4.2,

with fixed types tax smoothing also obtains in a Mirrleesian model.

Interestingly, the distortions do not move in the same direction for the low and

high types. This is in contrast to the comparative static exercise in Figure 12, where

lower government expenditure leads to lower taxes overall. Here, instead, the spread

between the distortions on the low and high types become smaller when government

expenditures are low. Our intuition is that when government expenditure is low,

resources are more abundant. As a consequence output from labor becomes relatively

less important. Thus, insuring the new skill shocks becomes less valuable. The

economy then behaves closer to the benchmark where there are no new skill shocks,

where perfect tax smoothing obtains.

We now turn to Figure 15 that shows the intertemporal distortion. in that figure,

the upper line is µ1 = 0.7, the solid line is µ1 = 0.5 and the lower line is µ1 = 0.3.
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We see that intertemporal wedge becomes higher the higher µ1 is, indicating a higher

informational distortion.

6.2 Effects of rate of return shocks

In this section we consider the effects of shocks to returns. We consider a case in

which R2 (1) = 1 and R2 (2) = 4, i.e., there is an upward shock to the return on

savings technology. In Figure 16 we plot labor distortions. We plot labor wedges as

follows. The black line is τ y1
; the blue solid line is τ y1 1

(·, 1) (i.e., wedge for the high

shock type in state 1); the blue dashed line is τ y1 1
(·, 2) (i.e., wedge for the low type

in state 1); the red solid line is τ y1 2
(·, 1) (i.e., wedge for the high type in state 2); the

red dashed line is τ y1 2
(·, 2) (i.e., wedge for the low type in state 2).

As in the case of government expenditure shocks, here we also observe that the

spread between wedges on low and high type in a bad state are higher, indicating

that in that state the informational friction is higher.

We now turn to the analysis of the behavior of the capital wedge under aggregate

uncertainty. Figure 17 plots the intertemporal distortion τ k for various values of the

shock to the rate of return R2 = 1, 1.2, 2, 3 and 4. The red line shows R2 = 4 while

the cyan line shows R2 = 1 (i.e. a case with no uncertainty).

We see that distortions decrease with the rate of return shock R2. Intuitively,

a higher R leads to more resources, with more resources one could distribute them

in a way that reduces the relative spread in consumption, making the desire for

redistribution lower (given our CRRA preferences) and thus, lowering the need to
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Figure 16: Rate of Return Shocks

distort. We also explored the effects of upwards shocks for R2 = 1, 1.2, 2, 3 and 4 on

labor distortions. Qualitatively they are similar to the ones in the picture above.

6.3 Summary

We can now summarize the main implications of our analysis. There are two main

points to take away from this section: (1) aggregate shocks lead to labor wedges

differing across shocks, and (2) a positive aggregate shock (either a higher return on

savings or lower realization of government expenditures) leads to lower capital wedges

and to a lower spread between labor wedges.

7 Conclusions

In this paper we reviewed some main results of the recent literature on New Dynamic

Public Finance in a tractable two-period model. In addition, we explored how capital

and labor wedges, are affected by the model’s parameters and how they respond to

aggregate shocks.

We argued that this dynamic Mirrlees literature may be an important alternative

to Ramsey models of taxation. Ramsey models have developed many important

insights into optimal policy. However, as is well understood, their limitation is the ad

hoc nature of the tax instruments assumed. The main premise of Mirrleesian optimal

taxation literature is to model heterogeneity or uncertainty, which gives rise for a

desire to redistribute or insure. An informational friction then prevents the first-best
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Figure 17: Intertemporal distortion varying R2.

allocation and endogenously determines the feasible tax instruments.

We also argued that, in addition to having more solid theoretical foundations,

Mirrleesian models have novel implications for the dynamic policy issues that Macro-

economists have been interested in: capital taxation, the smoothing of labor income

taxes, and the nature of the time consistency problem. In addition, some new issues

directly arise from the focus on richer tax instruments, such as the progressivity of

taxation.

In what follows we outline what we think are largely unresolved questions that we

hope are explored in future research.

Given the numerical focus of this paper we first discuss what we think the chal-

lenges are in this area. It is important to analyze quantitative implications of the

theory in more standard multiperiod calibrated model. The goal is to explore a

plausible parameterized model with a realistically calibrated skill dynamics such as

in, for example, Storesletten, Telmer, and Yaron (2004). The main difficulty is that

there are virtually no methods for solving multiple period models with such a general

structure of skill shocks. One interesting recent route is work by Farhi and Werning

(2006) who study partial reforms in a dynamic Mirrlees setting to evaluate the gains

from distorting savings. They provide a simple method that is tractable even with

rich skill dynamics. There is also some preliminary progress in analyzing dynamic

Mirrlees models with persistent shocks using a first-order approach in Kapicka (2005).

An ideal goal would be to derive a rich set of quantitative predictions similar in

spirit to what a quantitative Ramsey model such as Chari, Christiano, and Kehoe

(1994) deliver. Within a quantitative model one can also address a common criticism
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of New Dynamic Public Finance literature that it delivers tax schedules that are “too

complicated”. For example, one could compare welfare of the fully optimal scheme

to ones where some elements of the tax code are simplified. It would be interesting

to compute welfare losses of a tax system comprised of linear taxes on capital and

nonlinear labor income tax, or a tax system that has a limited dependence on history.

The main reason we stress the importance of quantitative work is as follows.

In our view, the approach to optimal taxation pioneered by Mirrlees (1971) and

Atkinson and Stiglitz (1976) was seen as extremely promising in the 70s and early

80s, but received relatively less interest later. One possible explanation is that the

approach was difficult to apply quantitatively. We hope that we now will be able to

to solve much more complicated dynamic models and use them to guide policy. Some

policy relevant quantitative work is already emerging from this framework (see for

example, disability insurance in Golosov and Tsyvinski, 2006), but more is needed.

Another route to take is to take some of the insights in the nature of optimal

taxes from dynamic Mirrlees models and include them in the Ramsey style models of

optimal taxation. The papers by Conesa and Krueger (2005) and Smyth (2005) may

be interpreted as one step towards that goal. These papers compute the optimal tax

system in a model where the tax function is still exogenously given but is flexibly pa-

rameterized to allow for a variety of taxes including progressive taxes, uniform lump

sum taxes, and various exemptions. We think more work can be done in that area

to use state-of-the-art computational models to consider general tax systems perhaps

including joint conditioning on capital and labor incomes or some form of history

dependence. This may be fruitful area of research to those who are also interested

in the design of optimal Social Security systems where history dependent taxes are

more natural to arise. Another important area of research in this quantitative spirit

is to consider implications of New Dynamic Public Finance to classic macroeconomic

questions such as the conduct of fiscal policy over the business cycle. We only per-

functorily touched on this topic but there is much more to be done to consider many

of the issues that macroeconomists delivered in the Ramsey traditions.

The second main direction of future research that we see as important is to move

away from the assumption of the mechanisms run by a fictitious benevolent social

planner. A relevant and important question in this context is whether the insights of

the dynamic Mirrlees literature apply to real world situations where politicians care

about reelection, self-enrichment or their own individual biases, and cannot com-

mit to sequences of future policies. To this end, Acemoglu, Golosov, and Tsyvinski

(2006) consider both the informational constraints on tax instruments and the incen-
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tive problems associated with politicians are taken into account. A related question

is under what conditions markets can be better than optimal mechanisms. The po-

tential misuse of resources and information by the government makes mechanisms

less desirable relative to markets than in the standard mechanism design approach.

Certain allocations resulting from anonymous market transactions cannot be achieved

via centralized mechanisms. Nevertheless, centralized mechanisms may be preferable

to anonymous markets because of the additional insurance they provide to risk-averse

agents. We think of this question as one of the central issues that need to be ad-

dressed.

Finally, we want to point out that New Dynamic Public Finance can be used to

analyze a larger variety of new topics. One interesting venue of research is to con-

sider intergenerational issues. Phelan (2005) and Farhi and Werning (2005) consider

how intergenerational incentives should be structured. Farhi and Werning (2005) and

Farhi, Kocherlakota, and Werning (2005) derive implications for optimal estate tax-

ation. This is just one example of how the study of New Dynamic Public Finance

models promise more than new answers to old questions, but can also lead to insights

for a large set of new questions.
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Appendix: Numerical Approach

In this appendix we describe the details of the numerical computations that we per-

formed in this paper. The major conceptual difficulty with computing this class of

models is that there are a large number of incentive constraints, and there is no re-

sult analogous to static models that guarantee that only local incentive compatibility

constraints can bind to reduce them. Our computational strategy in this regard is as

follows:

1. We start with solving several examples in which we impose all of the IC con-

straints. This step gives us a conjecture on what kind of constraints may bind.

2. We then impose constraints that include deviations that bind in step 1. In fact,

we include a larger set that also includes constraints in the neighborhood (of

reporting strategies) to the ones that bind.

3. Finally, once the optimum is computed we check that no other constraints bind.

This approach is very much like the active set approach in constrained optimiza-

tion: one begins with a set of constraints that are likely to be the binding ones, one

then solves the smaller problems, checking all constraints, and adding the constraints

that are violated in the set of constraints that are considered for the next round (and

possibly dropping some of those that were not binding) and repeat the procedure.13

13 We thank Ken Judd for pointing this to us.
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