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Abstract

While the effects of rising mean temperatures on agricultural output have been studied
extensively, there is limited discussion of the impact of inter-annual weather variation on
crop yields. This paper estimates the link between weather and crop yields separating the
influence of (i) mean weather outcomes (i.e., climate) to which a farmer can adapt from (ii)
unpredictable year-to-year weather fluctuations to which a farmer can only partially adapt
as crops are planted before the weather shock is realized.

We find that corn in extreme climates, both hot and cold, are more sensitive to inter-
annual weather variation than the ones in moderate climates. Global warming has two
effects on corn yields: first, warming will induce farmers in moderate-temperate climates to
plant varieties that are less robust to weather fluctuations, while farmers in cool climates
will plant varieties that are more robust to weather fluctuations. Second, the elasticity of
reductions in expected corn yields with respect to an increase in the standard deviation of
weather fluctuations is -0.4. Since most farmers are eligible for subsidized crop insurance,
an increase in weather variation also directly translates into added government payments.
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Agriculture is the sector of the economy most directly linked to weather, as precipitation

and temperature directly enter the production function. Most of the existing literature that

addresses the potential consequence of climate change focuses exclusively on the effects of

a shift in mean weather outcomes (i.e., climate). This paper examines the influence of the

second moment of the temperature distribution, i.e., year-to-year variance, on crop yields.

The economic implications of mean shifts and changes in inter-annual variance are quiet

distinct: farmers can adapt to shifts in mean weather outcomes by switching to various

varieties of the same crop, by using various planting practices (e.g., sowing densities), or

switching to a completely different crop. For example, corn varieties are often classified

by the required degree days, i.e., the optimal sum of daily temperatures above a certain

baseline.1

However, while mean weather (climate) is known, actual weather outcomes are random

and unpredictable at the time of planting in spring. The time lag between the time of

planting and weather realization is the crucial component that distinguishes a shift in mean

weather outcomes from year-to-year variations. Once a farmer has committed to a certain

crop by choosing a particular seed and planting practise, the weather outcome is realized

and, in retrospect, it might have been better to grow a different variety or use a different

planting practice.

Variation in weather hence has two dimensions: Average weather (or climate) varies in

space, i.e., between different location. Year-to-year weather variation adds a time dimension,

as weather outcomes at a given location vary between years. This paper utilizes a panel data

set of corn yields to simultaneously estimate the outer envelope of corn yields attainable

by adapting to various climates as well as the effect of inter-annual variation that reduce

expected yields below the highest attainable one if the weather outcome would have been

known in advance. The drop inside the outer envelope occurs because a suboptimal variety

was grown for the particular weather outcome. The curvature or robustness of individual

crop varieties determines how much weather fluctuations reduce observed yields below the

outer envelope. If the curvature was zero or the plant was completely robust to inter-annual

variations, one would remain on the outer envelope. However, if a crop is very sensitive,

fluctuations will push observed yields within the outer envelope. We allow these additional

productivity losses due to weather fluctuations to vary by crop variety. For example, corn

species bread in the highlands of Peru show much more resistance to weather variation than

the ones used in the Mediterranean. In the preferred model estimate below, the curvature of

1For a more elaborate discussion of degree days, see the data section below.
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the outer envelope is a magnitude lower than the one of individual corn varieties, suggesting

that year-to-year weather variations can have significant effects.

Another unique feature of our estimation strategy is that we allow for an endogenous

choice of the planted crop variety which we index by the tangency point with the outer enve-

lope. If the effect of inter-annual variation on crop losses is uniform for all varieties, farmers

will choose a point of tangency that equals the average growing condition (climate). If,

however, various crop varieties exhibit changing robustness to weather fluctuations, farmers

might decide to grow a variety that has a lower yield at the mean weather outcome (climate)

but suffers less productivity losses in response to weather fluctuations, hence giving a higher

expected yield.

There are two channels through which climate change can alter the influence of inter-

annual weather variation on expected crop yields: First, if the robustness of plant varieties

to withstand varies between varieties, an increase in mean temperature might alter expected

yields even if the inter-annual variance were to remain constant. This effect is due to the fact

that farmers will adapt to a variety that might be more or less robust to these presumably

constant fluctuations. Second, inter-annual variations might increase. If the relationship

between weather and yields of an individual variety are concave, an increase in the variance

of year-to-year fluctuations will unambiguously reduce expected yields by Jensen’s inequality.

Several authors argue that an increase in extreme weather outcomes appears likely, yet

it is very difficult to detect a statistically significant trend.2 The large variability in weather

outcomes makes it difficult to reject any Null hypothesis of an unaltered climate, yet the

power of such test is also extremely low, i.e., one might be incapable of rejecting such a

hypothesis in many circumstances even if the climate system were to change. Since one

might only be able to detect such a trend after our climate is irreversible altered, it appears

imperative to estimate the economic consequences of a potential increase in extreme weather

outcomes. The relevance of this debate is manifested by the fact that almost all reinsurance

companies by now have several climate scientists on staff to assess insurance risks under

various climate scenarios. The market recognizes that these effects might potentially be

large and significant and warrant further study. Moreover, there have been several episodes

of extreme weather events in recent years. During the 2004 hurricane season, a record

number of four hurricanes hit Florida, while a record number of ten cyclones hit Japan

(Trenberth 2005). Similarly, a heat wave scorched Europe in 2003 and resulted in the

2For example, Trenberth (2005) argues that ”although variability is large, trends associated with human
interference are evident in the environment in which hurricanes form, and our physical understanding suggests
that the intensity of rainfalls from hurricanes are probably increasing.”
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warmest August ever recorded in the northern hemisphere. Accordingly, vegetative gross

primary productivity decreased by 30% (Ciais et al. 2005). Only 30 months later, the winter

of 2005/2006 brought historic low temperatures to large parts of Eastern Europe and Russia

suggesting that not only the mean temperature might be increasing, but also year-to-year

variability.

The paper proceeds as follows: Section 1 presents a short model to highlight the decision

problem of a farmer. The unique feature is the timing of the problem: a crop variety has

to be chosen before yearly weather outcomes are realized. At the point when the decision

is made, a farmer has only information about the distribution of weather outcomes, more

specifically its mean and variance. Given this information, we derive an optimality condition

for the variety a farmer should grow. Section 2 presents our data sources before the model

is estimated in Section 3. The challenge is that the optimal variety, which is used in the

square of the demeaned variable, is endogenous and a function of the parameters that need

to be estimated. We hence jointly estimate the optimal variety and regression coefficients.

The empirical results are used to identify the consequences of changes in the inter-annual

weather variance in Section 4 before Section 5 concludes.

1 Model

Before we proceed with our model it might be helpful to contrast it with previous approaches

in the literature. Cross-sectional studies have been designed to estimate the outer envelope

of adaptation to mean growing conditions. For example Mendelsohn et al. (1994) use a

reduced-form regression to explain farmland values as a function of climatic, socio-economic

and soil variables. The idea behind such an approach is that in an efficient market farmland

values will equal the discounted net present value of future profits, and hence capture the

maximum attainable profit if the land was put to its best use. Since there is no time

variation in climate for most of the last century, it is impossible to include a fixed effect for

each location and the study relies purely on the cross-section. However, under specific error

term assumptions, Timmins (2006) shows how use-specific error terms for forest, pasture,

permanent and temporary crops can be recovered at a given location from the share of land

devoted to each use. Lobell and Asner (2003) regress corn and soybean yield trends on

temperature trends for counties with a negative correlation between yield and temperature

anomalies and find the average impact between limited, but observable, climate change and

yields for counties that would suffer under climate change.
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Time series data of crop yields traditionally have been used to examine how year-to-year

weather fluctuations influence yields, either for a specific location or by relying on a panel.

Rosenzweig and Parry (1994) use calibrated crop-models that examine the effect of year-to-

year weather fluctuations on crop yields to estimate the effect of changing climate conditions

on yields and simulate farm adaptation. Deschenes and Greenstone (2004) use a panel data

set to estimate the relation between profits and climatic variables. The authors regress

profits in a county on climatic variables using county fixed effects.3 Schlenker and Roberts

(2006) link corn, soybeans, and cotton yields to weather outcomes over a 55 year period

and find a highly significant nonlinear relationship. This second set of empirical studies do

not capture farmer adaptations to various climates when identification comes from weather

shocks that are random and unknown at the point of planting.

The idea behind this paper is to model both the effects of mean weather outcomes

(climate) and year-to-year fluctuations simultaneously. For example, corn, one of the most

prelevant crops world wide is grown in various climatic regions and various varieties have

been bread to better adapt to local conditions. Assume there is a continuum of varieties

that can be grown by a farmer. These varieties are indexed by γi, where γi is the point

of tangency between the yield function of a particular variety and the outer envelope of all

varieties. Log yields yit in county i and year t are given as a function of the weather index

xit, other exogenous variables zit, and a county-fixed effect ci, i.e.,

yit = β1xit + β2x
2
it + β3(γi)[xit − γi]

2 + zitδ + ci + εit

Yields in a particular year depend on the weather index xit in two ways: The cross-sectional

component specifies an outer envelope of the maximum attainable yield if the optimal variety

is grown, i.e., yit = β1xit +β2x
2
it +zitδ+ci. The second component, β3(γi)[xit−γi]

2 measures

additional productivity losses if weather xit turns out to be different from γi, as shown in

Figure 1. The additional yield loss β3(γi)[xit − γi]
2 is due to the time lag of the decision

problem, where farmers first pick a variety γi (in spring), and nature than randomly draws

a weather outcome xit that might differ from γi. Hence, in hindsight, if the weather turns

out to be warmer / cooler than expected, it might have been better to grow a different

”warm-weather” or ”cool-weather” variety instead.4 Unfortunately, a farmer can only base

3It should be noted that fixed effects with a quadratic functional form in weather imply that profits are
identified by the average weather variable, i.e., climate, as the demeaned squared variable is different from
the square of the demeaned variable. This paper uses both the demeaned squared variable and the square of
the demeaned variable.

4The empirical section below will use local regression techniques to check whether the assumed quadratic
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his or her planting decisions on expectations about the weather, as the ultimate outcome is

random. Note that the curvature of the additional crop loss β3(γi) can depend on the variety

γi.

The outer envelope has an extremum at the level β1

−2β2
> 0, and the above functional

form combined with β1 > 0, β2 < 0, β3 < 0 therefore implies that the first-order effect

of temperature increases at the point of tangency are positive (negative) if γi is smaller

(greater) than β1

−2β2
as displayed in the left graph of Figure 2. While it appears realistic

to assume that farmers in cold climates appreciate warmer than-average weather outcomes,

and vice versa, we would like to emphasize that our setup does not impose such a structure.

If β1 = β2 = 0, β3 < 0, any crop-specific constant would be picked up by the fixed effect

ci, and the first-order effect for a temperature increase at γi would be zero, i.e., the yield

function of the specific variety would peak at γi as displayed in the right graph of Figure 2.

The above modeling framework hence superimposes two curves that have been estimated

in the past. Cross-sectional hedonic studies have been specifically aimed at estimating the

outer envelope ȳi = β1x̄i + β2x̄
2
i + z̄iδ + εi (where ȳi is the average log yield, x̄i the average

weather, or climate, over all xit, and z̄i are average values of other outcomes within a county).

Time series data of crop yields have traditionally been used to examine how year-to-year

fluctuations in weather influence yields on a particular plot i, i.e., yt = c+β1xt+β2x
2
t +ztδ+εt.

The purpose of this paper is to disentangles the outer-envelope of attainable corn yields

from yield functions of individual corn varieties in a joint estimation. We hence present an

application of two different forms of non-linearity in models with fixed effects: (i) changing

marginal impacts that are a function of the absolute level of an exogenous variable, and (ii)

changing marginal impacts that are a result from deviations from the group mean. Previous

studies have sometimes mixed the two or used the former in the estimation, yet interpreted

the results as if the they were estimated by the latter. A quadratic functional form combined

with standard fixed effects implies that the marginal impact is still identified by the mean of

the exogenous variable, i.e., in our case, climate. While fixed effects imply a joint demeaning

of both the dependent and independent variables, the demeaned squared variable is different

from the square of the demeaned variable, and we include both variables in our specification.

Before estimating our model, we need some theory as to which crop a farmers should

grow. In the following we will derive the optimal solution given a continuum of crop varieties

functional form is consistent with real world observations. For example, one might wonder whether in hot
climates, positive deviations from the mean climate produce larger reductions inside the outer envelope than
negative deviations. The assumed symmetry as well as the other functional form assumptions appear to be
in line with the data.
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γi. Assume weather in county i is distributed with mean µi and standard deviation σi. Hence

the expected yield as a function of the chosen variety γi is

E[yit] = E
[
β1xit + β2x

2
it + β3(γi)[xit − γi]

2 + zitδ + ci + εit

]

= β1µi + β2

[
µ2

i + σ2
i

]
+ β3(γi)

[
σ2

i + [µi − γi]
2
]
+ E [zit] δ + ci

The derivation is given in the appendix. Maximizing the expected yield with respect to the

chosen variety γi we get the following first-order condition5

∂E[yit]

∂γi

= β′3(γi)
[
[µi − γi]

2 + σ2
i

]− 2β3(γi)[µi − γi] = 0

First, note that if β′3(γi) = 0, i.e., if the curvature on squared weather deviations does not

depend on the variety, the solution is to choose variety γi = µi. It would be best for a

farmer to grow a variety that is tangent with the outer envelope of adaption possibilities at

the average weather (climate) in the given county (Variety γi is indexed by their point of

tangency with the outer envelope).

On the other hand if β′3(γi) 6= 0, then there is no closed-form solution. However, we have

the following equation that implicitly defines γi

µi − γi =
2β3(γi)±

√
4β3(γi)2 − 4β′3(γi)2σ2

i

2β′3(γi)
=

β3(γi)

β′3(γi)
±

√[
β3(γi)

β′3(γi)

]2

− σ2
i

The deviation from the average climate µi − γi depends on how large β3(γi)
β′3(γi)

is compared to

the variance of year-to-year weather fluctuations σ2
i . Recall that β′3(γi) measures the change

in how a variety can withstanding year-to-year fluctuations in weather, i.e., its robustness

to random shocks. If crop varieties become more robust to random weather fluctuations, a

risk-neutral farmer will decide to grow a variety that has a lower yield at the mean weather

outcome (climate) but suffers less productivity losses in response to weather fluctuations,

hence giving a higher expected yield. This behavior is illustrated in Figure 3. If all crop

varieties exhibit the same robustness to squared weather deviations (i.e., the same curvature)

as shown in the left panel, the largest expected yield will be obtained for the the variety

that is tangent to the outer envelope at the mean weather variable. The right panel displays

5While farmers will maximize expected profits, corn is a fairly homogenous good with a uniform price,
and hence maximizing expected profits is equivalent to maximizing expected yields as long as cost for seeds
do not vary by variety. As will be shown below, the chosen γi is very close to µi, and as long as input cost
vary smoothly with climate, they will not impact the choice of the optimal variety.
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an example where the warmer-weather variety γ2 (grey line) is more robust to weather fluc-

tuations than the colder-weather variety γ1 (black line). The former variety is more robust

as the curvature is lower and can better withstand random weather shocks. For simplicity

assume there is an equal probability that weather will turn out to be µ − x or µ + x. At

the mean weather outcome µ = γ1, the black line lies above the grey line, indicating that if

the weather had no variability but would always equal the mean weather outcome, variety

γ1 would be preferable. However, given that the grey line has less curvature, the expected

yield is higher for γ2 under the equally likely weather outcomes µ− x and µ + x.

So far we have talked about an appropriate weather index xit and control variables zit

without defining them. In the following we will discuss the exact nature of each of these

variables. Most crop varieties, especially corn, are classified by the number degree days they

require to mature. Degree days are the sum of degrees between two bounds, where the lower

bound for corn is usually set at 8◦C, and the upper bound for corn was found to be 29◦C

(Schlenker and Roberts 2006).6 The rational behind the concept of degree days is that plant

growth is approximately linear in temperature between the two bounds. Farmers can adapt

to various climates by growing different corn varieties that require more or less degree days

to mature. We therefore chose the weather index xit to be the sum of degree days between

8-29◦C. The quadratic functional form β1xit + β2x
2
it allows for decreasing marginal value of

additional degree days in this category.

While temperatures between 8-29◦C are beneficial to plant growth, temperatures above

29◦C quickly become harmful (Schlenker and Roberts 2006). The set of control variables

zit therefore include the square root of degree days above 29◦C. The square root has a

higher R-square than a linear specification. It is also preferable on theoretical grounds as

it implies decreasing marginal damages that remain negative, while a positive quadratic

term under a quadratic specification implies that additional degree days eventually become

beneficial, which is at odds with empirical observations.7 As a sensitivity check, the model

is reestimatd using both a linear and quadratic specification and the results remain robust

(See Table 4 and Table 5) in the empirical section below. One noteworthy fact is that these

harmful effects appear consistent for northern and southern counties, suggesting that there

is limited potential for adaptation. If adaptation possibilities were readily available, one

would expect that southern counties should engage more in them as higher temperatures are

6A day of 5, 8, 10, 29, and 30 degrees Celsius would constitute 0, 0, 2, 21, and 21 degree days respectively.
7Note that there is an upper bound on the total number of degree days 8-29◦C, but there is no upper

bound on degree days above 29◦C.
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more frequently observed. Moreover, while average yields have increased almost threefold

over the last 50 years, the critical value when temperatures become harmful has remained

unchanged at 29◦C. Since this critical value is robust across time and various climatic regions,

it appears appropriate to include it in the set of control variables zit: In contrast to degree

days 8-29◦C, there appears limited adaptation potential. An increase in year-to-year variance

might increase the expected occurrence of heat waves E[zit] and lower expected yields, but

the distinction to xit is that this loss is not impacted by the choice of the variety. Other

control variables included in zit are a quadratic functional form of precipitation, as well as

year-fixed effects to account for the almost threefold increase in average yields over the last

55 years.

The data sources are outlined in more detail in the following section before we jointly

estimate individual yield functions, the outer envelope, and the point of tangency γi in

Section 3. Most of the time γi turns out to be close to µi. However, an inaccurate choice of

γi will give inconsistent estimate for β3, the parameter of interest.

2 Data

The dependent variable in our study are yearly county-level log corn yields as reported by

the National Agricultural Statistics Service (NASS) for the years 1950-2004. The counties

in our sample as well as the number of observations in each county are displayed in Figure 4.

In this study we focus on corn, one of the crops with the largest planting area. In 2002,

roughly 20% of total cropland in the United States was used to grow corn. Furthermore,

corn is grown in various climatic regions both within the United States as shown in Figure 4

as well as internationally.

There is ample evidence that highly irrigated agriculture in the arid Western United

States is fundamentally different from dryland agriculture in the Eastern United States

(Schlenker et al. 2005). We therefore exclude all counties east of the 100 degree meridian,

the traditional boundary between irrigated and dryland agriculture (Reisner 1986). The 100

degree meridian is included as a line in Figure 4. Since we are particularly interested in the

effects of weather deviations from the mean outcome in a county, we only include counties

that report yields in at least half of our 55 year period, i.e., that have at least 28 observations.

Table 1 lists the descriptive statistics for the entire sample, as well as for all counties east

of the 100 degree meridian, and the ones that have at least 28 observations. Our default

data set of counties east of the 100 degree meridian with at least 28 observations is not only
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representative of the full data set, but also includes 86% of all observations. We present a

sensitive analysis to various cutoff rules other than 28 in the empirical section below.

We match the yield data with yearly climatic variables derived from the PRISM grid,

a fine-scale (2.5x2.5 mile grid) monthly weather history for the contiguous United States.

The derivation of the climate variables is outlined in further detail in Schlenker and Roberts

(2006). We link each grid of the ”Parameter-elevation Regressions on Independent Slopes

Model” (PRISM) to the surrounding NOAA weather stations with daily weather records

to uncover the spatial smoothing procedure underlying PRISM. This smoothing procedure

is then utilized to derive the daily temperature distribution at each grid cell between the

minimum and maximum observed value. Finally, the climate variables are then averaged over

the agricultural areas in all PRISM grids within a county obtained from Landsat satellite

images. The distribution of temperatures within each day is used to derive the number of

degree days between 8◦C to 29◦C. Degree days are simply the number of degree above the

lower threshold of 8◦C up to a maximum of 21 for the upper bound of 29◦C. Plant growth is

approximately linearly increasing in temperature between 8◦C and 29◦C, i.e., plant growth

under 12◦C is approximately twice as large as under 10◦C.8 The number of degree days

are summed over all days in the growing season.9 Table 1 also gives the average absolute

deviation from a county’s mean weather as a measure of year-to-year variability. A county

with a constant climate in each year would have zero deviations from the mean. Increasing

values imply increasing year-to-year variation. Finally, temperatures above 29◦C become

harmful and negatively influence plant growth, damaging the plant.

We choose a quadratic functional form for the beneficial degree days category 8-29◦C.

The presumption is that we will observe an inverted U-shape, where the negative quadratic

term implies decreasing marginal impacts of additional degree days in this category. The

coefficient on degree days above 29◦C is expected to be negative to capture the harmful

effects of heat waves. We choose the square root of harmful degree days above 29◦C to

account for decreasing marginal damages - once a plant is severely damaged, further heat

episodes have limited negative impacts. Intuitively, a plant can only die once. The square

root fits the data better than a linear functional form. The third climatic variable we include

is total precipitation during the six-months period April-September as well its squared term.

The presumption is that there is an interior maximum, as too much or too little precipitation

8The former constitutes 12◦C - 8◦C = 4 degree days, while the latter are only 10◦C - 8◦C = 2 degree
days.

9We use the 6-months period April through September as planting dates vary between regions, but our
results are insensitive the the chosen months.
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is harmful for a plant. It should be noted that we use log yields as the dependent variable

and hence our independent variables interact multiplicatively.

The functional from assumptions are compared to nonparametric local regression in the

empirical section below where we find that assumed functional forms are consistent with the

data and robust to various specification checks.

3 Empirical Results

In the following we will estimate the functional relationship between log yields yit in county

i at time t and the weather index xit, which equals the number of degree days 8-29◦C. As

mentioned in the previous section, corn varieties are classified by the required number of

degree days for the variety to mature. Hence farmers can adapt to various climates by

choosing the appropriate corn variety. The outer envelope of adaption possibilities is given

by β1xit + β2x
2
it. Weather is random and unknown at the time of planting, and might differ

from the optimal degree days requirements of a particular crop variety. Deviation from the

optimal degree days requirement result in crop yields that lie within the outer envelope (as

it would have been better to grow a different variety in retrospect) and are given by the term

β3(γi)[xit − γi]
2, where γi is the optimal degree days requirement.

Other climatic variables included in the control variables zit are precipitation (as well

its squared term) and the square root of degree days above 29◦C, which capture the effects

of harmful heat waves. The distinction between xit and zit is that a farmer can adapt

to the former, while the negative impacts of the latter can not be influenced by choosing

between various varieties. Other controls in zit are year fixed effects to account for the

almost threefold increase in average yields in our data set. The error terms εit are allowed

to be spatially correlated within a year, but are assumed to be independent between years

as weather is random. The estimation equation is

yit = β1xit + β2x
2
it + β3(γi)[xit − γi]

2 + zitδ + ci + εit

The challenge in the estimation is the endogeneity of the optimal variety γi. The optimal

variety depends on how the curvature for year-to-year weather fluctuations β3 changes in

degree days 8-29◦C. However, β3 can only be estimated consistently if yearly weather out-

comes xit are demeaned by the correct point of tangency γi. Hence we need to estimate them

jointly.

A simple example will motivate this point: β3 measures the curvature of the yield function
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in excess of the constant curvature of the outer envelope. Recall the right panel of Figure 2

where the curvature of the outer envelope was zero, and all black solid lines peak at the

mean climate. The term β3 is the curvature of this black line, which was assumed to be

largest for county 1, i.e., the slope changes rapidly for deviations from the mean. The

curvature is lowest for county 2, which exhibits less rapid changes in the slope. In the left

panel of Figure 2, this curvature is superimposed on top of the (constant) curvature of the

outer envelope. In general, incorrectly assuming a constant curvature of β3 in Figure 2

will imply that the curvature of the outer envelope might be inaccurately estimated as the

variation in β3 is picked up by outer envelope β2. For example, if β3 is increasing in γi,

weather deviations in hot climates would be more harmful and push observed yields, and

hence average yields, further inside the outer envelope than in cold climates. Inaccurately

assuming a constant β3 implies that the curvature of the outer envelope (β2) is overestimated

as it inaccurately reduces observed yields in hot climates, which in reality are lower due to

a larger β3. Similarly, demeaning by an inaccurate γi will give a biased estimate of β3.

We hence allow for an endogenous choice of γi when we minimize the sum of squared

residuals from the model. The exact description of the estimation strategy is given in the

appendix. To allow for a flexible functional form of the β3(γ), we use a fifth-order Chebyshev

polynomial.10

Results for the preferred model are given in the first column of Table 2. The outer

envelope of degree days 8 − 29◦C peaks at 3029, while the maximum number of degree

days for our 183 days growing period is 3843 degree days. Both the linear and quadratic

terms are highly statistically significant, even after adjusting for the spatial correlation of

the error terms. There are two approaches in the literature: Anselin and Florax (1995)

impose a parametric structure of the spatial auto-correlation, which requires a weighting

matrix that specifies how error terms are correlated up to a multiplicative constant, i.e., the

spatial equivalent of a time-series AR(1) process. The potential problem of this approach

is that the estimate of the variance-covariance matrix will be inconsistent if the weighting

matrix is incorrectly specified. This problem is avoided in the second variant pioneered by

Conley (1999) who instead relies on a non-parametric approach that does not require the

specification of a weighting matrix, but might be less efficient. In this study we follow the

latter as we have a set of counties that is not contiguous and a standard row-normalized

contiguity-matrix becomes less appropriate.11

10We use different order Chebyshev polynomials but obtain similar results.
11The approach of Conley (1999) is an application of Newey and West (1987). Accordingly, we use a

Barlett window in the longitude and latitude dimensions with a cutoff value of 5 degrees, or 350 miles. We
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The coefficient on squared weather deviations from the point of tangency (xit − γi)
2 is

negative and highly significant. We use a mth-order Chebyshev approximation with coeffi-

cients α = [α1, α2, . . . , αm] to approximate β3(γi) = β3

[
1 +

∑m
j=1 αjTj(γi)

]
, where Tj()

is the jth-order Chebyshev polynomial. The reported coefficient on ”degree days 8 − 29◦C

deviation squared” in Table 2 is the term β3. The curvature is almost 20-fold the size of

the curvature of the outer envelope, suggesting that yield curves of individual crop varieties

lie strictly within the outer envelope and deviations from the tangency point can lead to

significant additional reductions in yields.

Since the individual coefficients α are difficult to interpret, we instead display the sum of

the function β3(γi) and the constant β2 = −0.298 in the top left panel of Figure 5. The term

β2 +β3(γi) measures the influence of inter-annual weather variation on expected crop yields.

Strikingly, crop varieties in moderate temperate climates with degree days 8-29◦C between

1750 and 2750 are the most robust varieties. Figure 5 shows that crop varieties found in

either cool or hot climates are much less capable of withstandanding year-to-year fluctuations.

Recall that we allow the point of tangency between individual yield curves and the outer

envelope to be determined endogenously. Since the range of crop varieties show different

degrees of robustness to inter-annual weather variation in Figure 5, it is indeed optimal to

grow varieties that have a tangency point different from the average weather (climate) but

are more robust. Deviations from the average weather (climate) range from -16.5 to +29.4

degree days 8 − 29◦C, with an average absolute deviation of 5.05. For comparison, the

average within-county standard deviation of degree days 8−29◦C for this subset of the data

is 98.9.

The coefficient on the square root of degree days above 29◦C is negative and highly

significant, suggesting that there are large damaging effects from heat waves. Finally, the

precipitation variable peaks at 24.8inches, which is close to predictions obtained in laboratory

experiments.

Before presenting sensitivity checks for various subsets of the data, the functional form

assumption of the preferred model can be cross-checked with the help of nonparametric local

regressions. In each of the graphs of Figure 6, coefficient estimates from the first column in

Table 2 are used to derive error terms while omitting one explanatory variable at a time.12

The local regression of these error terms are then plotted against the exogenous variable that

was omitted in the construction of the error terms. In case a functional form assumption

force the identification to come from contemporaneous correlation of the error terms in our panel data set.
12For example, in the top left graph, the error terms were constructed as uit = yit−β1xit−β2x

2
it−zitδ−ci,

omitting the term β3(γi)[xit − γi]2
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was incorrect, the smoothed error terms from the local regression will exhibit a shape differ-

ent from the one assumed in the model. For example, one might wonder whether positive

deviations from county means are more harmful than negative deviations in warm climates,

and vice versa in cold climates. However, the top four graphs of Figure 6 suggest that a

quadratic (and hence symmetric) functional form assumption for deviations from the mean

weather outcome in a county are appropriate for all four quartiles of counties sorted by mean

weather. Similarly, the quadratic functional form for the outer envelope appear reasonable

as shown in the bottom left graph.13 Finally, the evidence whether a linear or square root

is more appropriate to measure the harmful effects of heat above 29◦C is mixed. While the

harmful effects appear to be tapering off for higher levels, there is again very little probability

mass in the upper end of the support. Since a large fraction of the predicted impacts under

a changing climates in the next section rests on the frequency and extend of temperatures

above 29◦C, the sensitivity of these results to various functional form assumption for degree

days above 29◦C is checked as well.

Columns two to four in Table 2 uses various modelling checks. The corresponding within-

curvature for each model is displayed in Figure 5. We will first discuss the results on the

coefficient on weather deviations. Column (2) in Table 2 and the top right panel of Figure 5

exogenously forces the tangency point between inner and outer envelope to occur at the

mean number of degree days 8-29◦C in each county. A farmer has an incentive to grow

a variety different from the mean weather outcome if the curvature is changing rapidly.

Accordingly, it is predominantly farmers in cool or hot climates that choose crop varieties

different from the mean weather outcome as the curvature is changing most rapidly for these

subgroups. Exogenously fixing the tangency point at the mean weather variable leads to

a misspecification for these counties and hence the curvature is estimated incorrectly for

cold and hot varieties as shown in Figure 5. Column (3) in Table 2 and the bottom left

panel of Figure 5 further restricts the within curvature β3(γi) to be constant among all crop

varieties. This is unduely restrictive in light of the other panels in Figure 5. Note how the

curvature of the outer envelope (β2) is larger in column (3) than in column (1), because the

former inaccurately assumes uniform damages of squared weather deviations and the larger

damages in both hot and cool climates are partially picked up by the outer envelope. The

change in coefficient, however, is limited.14 Finally, column (4) in Table 2 and the bottom

13The one exception is for very hot climates, but there are very few observations in this range. The
probability density function of the underlying observations is added in grey.

14Partly because the number of counties in both hot and cool climates is limited.
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right panel of Figure 5 use quadratic yield trends by state instead of year fixed effects. If

weather was highly spatially correlated, the impact of a weather shock in a particular year

would be absorbed by the year dummy. Any identifications comes from weather deviations

within a year. A quadratic yield trend by state avoids this problem. The main difference of

yield trends is a tighter significance band for warm climates. This is not surprising as heat

waves tend to be spatially correlated.

Other climatic variables remain fairly constant for various specifications in Table 2. The

peak level of degree days 8-29◦C changes from 3029 in the first column to 2971, 2973, and

2730 in the remaining three columns, respectively. Similarly, the optimal precipitation level

moves very slightly from 24.8inches in the first column to 24.8, 24.8, and 24.1 inches in the

remaining three columns. Degree days above 29◦C hardly change at all and remain very

significant. Only in the case of quadratic yield trends by state do they change slightly, which

again might be explained by the fact that heat waves are spatially correlated and impact

most counties in our sample in a given year, and hence part of the effect of heat waves is

picked up by the year fixed effects in the first column.

Our results are also robust to what counties are included in the analysis. Table 3 gives the

regression coefficients if the sample includes (1) counties east of the 100 degree meridian that

report yields in all 55 years, (2) counties east of the 100 degree meridian that report yields

in at least 14 out of the 55 years, (3) all counties east of the 100 degree meridian with corn

yields, and (4) all counties in the United States with corn yields. Regression coefficients

remain fairly robust. The peak level of degree days 8-29◦C changes to 2656, 3001, 3013,

and 2959, respectively, while optimal precipitation levels become 24.0, 24.9, 24.9, and 24.7

inches. The largest differences are that the subsample of counties with 55 records is limited to

northern counties that are cooler, and the data set using all counties includes highly irrigated

counties in the West. Irrigation makes weather deviations less harmful, which is shown in

the bottom right graph of Figure 7 that displays the corresponding within-curvature on the

squared weather deviations term.

One might wonder whether the effects of climate show up in the fixed effects as climate,

the weather average, is fairly stable over the period of this study and hence there is no

variation in climate for a given county over time. In this case one might observe fixed effects

to vary systematically in the variable degree days 8− 29◦C. The fixed effects are displayed

in Figure 8, as well as a linear regression line linking the fixed effects to corresponding values

in the average degree days 8 − 29◦C. While there is a small negative relationship, it could

14



also be the result of cooler climates being correlated with better soils or other time-invariant

variables that positively influence yields.

The next section will use the regression results to examine the effects of potential changes

in the variance on expected corn yields.

4 Impacts

The regression results from the previous section can now be used to evaluate the potential

impacts of a change in climatic conditions. We focus on the impact of inter-annual variance

on corn yields, which, to our knowledge, have not been examined before. Year-to-year

fluctuations enter expected yields in two distinct ways through the terms [β2 + β3(γi)]σ
2
i +

E[zit].

First, an increase in the variance σ2
i will lower expected yields as individual yield functions

are concave functions, i.e., [β2 + β3(γi)] is the sum of two negative terms. Furthermore,

as outlined in Schlenker and Roberts (2006), heat above 29◦C (84.2 degrees Fahrenheit)

consistently becomes harmful for corn in various geographic regions, suggesting that extreme

heat is uniformly harmful and there is limited adaptation potential. If adaptation possibilities

were readily available, we would expect that warmer regions should be less sensitive to

these high temperatures, as farmers have larger incentives to adapt to the more frequently

observed high temperatures. An increase in the variance therefore also increases the sum

of daily degrees above 29◦C, and the square root of degree days 29◦C is a control variable

in E[zit].
15 Table 4 reports the decrease in yields attributable to the increased standard

deviation σi. The distribution of impacts as a function of the current climate is displayed

in Figure 9. One special feature might warrant further explanation: the combined impacts

(which are in larger parts driven by the increased frequency of temperatures above 29◦C) are

not necessarily largest for warmer counties. This is partly due to the reason that counties with

hotter temperatures have lower inter-annual variances in temperature to begin with. While

increases in mean temperatures primarily impact agriculture in currently warm regions,

15The increased frequency in observed temperatures above 29◦C is derived in the following way: We
jointly estimate the variance-covariance matrix of minimum and maximum temperature deviations from
daily temperature averages in a county for our 55 year data set. The variance-covariance matrix is allowed
to vary by month but held constant within a month. We then increase each element of the variance-covariance
matrix by the stipulated uniform increase in the standard deviation. Finally we simulate 1000 years by adding
random draws from the variance-covariance matrix of minimum and maximum temperatures to the observed
corresponding averages in the past for each day and derive the average number of degree days above 29◦C
during the growing season in each year.
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increases in the variance would hit cool and moderate-temperate regions as well.

Table 4 reveals that the average elasticity of expected yields with respect to an increase

in the standard deviation of year-to-year weather fluctuations is about -0.4, which is rather

large. It should be noted that the larger share of these damages is attributable to an increased

frequency of temperatures above 29◦C. The concept of degree days 8-29◦C assumes time

separability as it simply sums the truncated temperatures between these bounds. Since a

growing season includes approximately 120 days, randomness in daily outcomes gets averaged

out as long as these randomness stays within these bounds. This explains why the resulting

impact of degree days 8-29◦C is outweighted by the impact of temperatures above 29◦C.

Since the frequency of these hot temperatures above 29◦C is the largest driver behind the

impacts, we check the sensitivity of the results to the functional form assumption for degree

days above 29◦C in Table 5. The local regression in the bottom right graph of Figure 6

suggests that other plausible specification could be linear or quadratic. Both are evaluated,

with very limited effect on the overall results.

The combined effect of an increase in the standard deviation can be quiet substantial and

would have large impacts on current crop insurance programs, which covered a total liability

of 47 billion dollars in 2004. More than 75% of all acres planted were insured for both corn

and soybeans in 2004, while the number exceed 90% of the planted area for cotton. Crop

insurance premiums in the United States are not high enough to cover expected losses, and

hence the government is currently subsidizing these programs. Total subsidies amounted

to US$2.5billion in 2004. A potential increase in the variability would result in even larger

indemnities, which, given current subsidized rates, would imply significant additional cost

for the government.

There is a second indirect effect attributable to the inter-annual variance under climate

change. If average temperatures were to change, farmers will grow different crop varieties

which various robustness to inter-annual variation. Intuitively, regions that currently have

cool climates will switch to more robust corn varieties with lower reductions caused by

inter-annual variation in weather. On the other hand, regions that currently have moderate-

temperate climates will switch to corn varieties that are less robust to weather variations.

Table 6 reports changes in expected yields due to changing robustness of corn varieties to

withstand year-to-year fluctuations under the Hadley III climate change scenario which will

underlie the next report by the Intergovernmental Panel on Climate Change (IPCC).16 In

the medium term (2020-2049), impacts range from a 10% reduction in yields for moderate-

16We us the predicted changes in minimum and maximum temperature to derive changes in degree days.
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temperate counties that become warmer and are forced to grow corn varieties which are less

robust to year-to-year fluctuations in weather, to an increase in expected yields by 6% for

cooler counties that become warmer and hence can grow corn varieties that are more robust

to changes in weather variations. Average impacts are relatively small at approximately two

tenth of a percent. For the period 2070-2099, impacts range between a 29% reduction in

yields and a 7% increase. Average impacts vary between a small decline of 0.7% to a 6%

decline, depending on the chosen climate change scenario.

5 Conclusions

We use a panel data set of corn yields to jointly estimate (i) the outer envelope of adaptation

possibilities by switching to various corn varieties and cropping practises and (ii) additional

reductions in expected yields due to unpredictable weather fluctuations between years. The

latter effect arises from a timing problem, where farmers have to commit to a corn variety

in spring when actual weather outcomes for the main growing season (summer) are random

and unknown.

Crop varieties in cool and warm climates, which are already stressed, exhibit more sen-

sitivity to weather fluctuations. Farmers hence have an incentive to grow a variety whose

yield lies strictly inside the outer envelope of possible adaption strategies at average weather

(climate), but which is more robust. Omitting this endogenous crop choice biases the results

for cool and warm climates where the robustness of plants changes most rapidly and hence

the incentive to grow a variety with a tangency point at the outer envelope that is different

from the mean weather outcome is largest.

We next examine the implications of inter-annual weather variation on corn yields under

global warming and separate two effects: First, there is an increase (decrease) in expected

yields for currently cool-temperate (moderate-temperate) counties as warming implies that

farmers will switch to corn varieties that are more (less) robust to weather fluctuations, even

holding weather variation constant. Second, we calculate the effects of increased year-to-year

fluctuations on expected corn yields, attributable to the concavity of the yield function of

individual corn varieties as well as the increased likelihood of crossing the 29◦C threshold

where temperatures become harmful. The effect due to concavity of the yield function are

lower than the ones attributable to an increased frequency of temperatures above 29◦C.

These results are in line with the concept of degree days, which assumes time separability

in temperatures between 8 and 29◦C. Increasing daily fluctuations while leaving the mean
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unchanged has limited effects as long as temperatures do not cross these bounds. However, if

an increase in the variance results in more frequent or larger crossing of the upper threshold

at 29◦C, expected yields might be significantly reduced. The elasticity of expected corn yields

with respect to an increase in the standard deviation of weather fluctuations is approximately

-0.4.

The increased exposure to weather variations would have to be reflected in crop insurance

premiums. Currently, premiums are not high enough to cover liabilities, and premium sub-

sidies totaled 2.5 billion in 2004. The total liability of the crop insurance program amounted

to 47 billion. An across the board reduction in yields of 10% due to increased variability

would require additional subsidies of 3.3 billion at a coverage rate of 70%, assuming the

premium structure is not adjusted.

Finally, there are several caveats to our analysis. First, it relies on a panel data set of

past corn yields, and hence will not be able to pick up technological innovations in corn

varieties (e.g., varieties that are more robust to weather fluctuations), or the effects of CO2

fertilization. However, while average corn yields have gone up almost threefold in our 55

year sample period, the harmful upper threshold has remained unchanged, suggesting there

is limited potential to adaptation and the effects of CO2 fertilization are still debated (Long

et al. 2005). Second, since we limit the data to corn yields, we do not capture adaptation

possibilities by switching to other crops. Yet, corn is currently grown in various climatic

regions all over the world.
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6 Appendix

6.1 Derivation of expected yield

The expected yield in county i becomes

E[yit] = E
[
β1xit + β2x

2
it + β3(γi)[xit − γi]

2 + zitδ + ci + εit

]

= β1E [xit] + β2E
[
x2

it

]
+ β3(γi)E

[
[xit − γi]

2
]
+ E [zit] δ + ci

Define E [xit] = µi and E [[xit − µi]
2] = σ2

i , and we get using E [x2
it] = σ2

i +[E [xit]]
2 = σ2

i +µ2
i

E[yit] = β1µ + β2

[
µ2

i + σ2
i

]
+ β3(γi)E

[
[xit − µi + µi − γi]

2
]
+ E [zit] δ + ci

= β1µ + β2

[
µ2

i + σ2
i

]
+ E [zit] δ + ci

+β3(γi)[E
[
[xit − µ]2

]
︸ ︷︷ ︸

σ2
i

+E [[xit − µi][µi − γi]]︸ ︷︷ ︸
0

+E
[
[µi − γi]

2
]

︸ ︷︷ ︸
[µi−γi]2

]

= β1µi + β2

[
µ2

i + σ2
i

]
+ β3(γi)

[
σ2

i + [µi − γi]
2
]
+ E [zit] δ + ci

The first-order condition for the optimal variety γi hence is

∂E[yit]

∂γi

= β′3(γi)
[
[µi − γi]

2 + σ2
i

]− 2β3(γi)[µi − γi] = 0

In the numerical implementation we look for the minimum of the following function for each
of the counties i (groups) in our data set17

f(γi) =
[
β′3(γi)

[
[µi − γi]

2 + σ2
i

]− 2β3(γi)[µi − γi]
]2

with the following gradient and second derivative

f ′(γi) = 2
[
β′3(γi)

[
[µi − γi]2 + σ2

i

]− 2β3(γi)[µi − γi]
] [

β′′3 (γi)
[
[µi − γi]2 + σ2

i

]− 4β′3(γi)[µi − γi] + 2β3(γi)
]

f ′′(γi) = 2
[
β′′3 (γi)

[
[µi − γi]2 + σ2

i

]− 4β′3(γi)[µi − γi] + 2β3(γi)
]2

+2
[
β′3(γi)

[
[µi − γi]2 + σ2

i

]− 2β3(γi)[µi − γi]
] [

β′′′3 (γi)
[
[µi − γi]2 + σ2

i

]− 6β′′3 (γi)[µi − γi] + 6β′3(γi)
]

17Using MATLAB’s routine fminunc.
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6.2 Estimation procedure

Using a mth-order Chebyshev approximation with coefficients α = [α1, α2, . . . , αm] and

β3(γi) = β3

[
1 +

∑m
j=1 αjTj(γi)

]
the model becomes

yit = β1xit + β2x
2
it + β3

[
1 +

m∑
j=1

αjTj(γi(α))

]

︸ ︷︷ ︸
β3(γi)

[xit − γi(α)]2 + zitδ + ci + εit

Accordingly, the first-order condition of choosing the best crop-variety γi is

∂E[yit]

∂γi

= β3

[
m∑

j=1

αjT
′
j(γi)

]
[
[µi − γi]

2 + σ2
i

]− 2β3

[
1 +

m∑
j=1

αjTj(γi)

]
[µi − γi] = 0

6.2.1 Endogenous choice of crop variety

Total differentiation gives

0 =



β3




m∑

j=1

αjT
′′
j (γi)


 [

[µi − γi]2 + σ2
i

]− 4β3[µi − γi]




m∑

j=1

αjT
′
j(γi)


 + 2β3


1 +

m∑

j=1

αjTj(γi)






 dγi

+
{
β3T

′
k(γi)

[
[µi − γi]2 + σ2

i

]− 2β3Tk(γi)[µi − γi]
}

dαk

And hence

dγi

dαk
=

2Tk(γi)[µi − γi]− T ′k(γi)
[
[µi − γi]2 + σ2

i

]

[[µi − γi]2 + σ2
i ]

[∑m
j=1 αjT ′′j (γi)

]
− 4[µi − γi]

[∑m
j=1 αjT ′j(γi)

]
+ 2

[
1 +

∑m
j=1 αjTj(γi)

]

We will use this relationship in the nonlinear least squares procedure. The sum of squared
residuals over counties i = 1 . . . N and time periods t = 1 . . . T as a function of the parameters
α,β, δ is

S =
N∑

i=1

T∑
t=1

[
yit − β1xit − β2x

2
it − β3

[
1 +

m∑
j=1

αjTj(γi(α))

]
[xit − γi(α)]2 − zitδ − ci

]2

Using the following abbreviations:

eit =


yit − β1xit − β2x

2
it − β3


1 +

m∑

j=1

αjTj(γi(α))


 [xit − γi(α)]2 − zitδ − ci
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x1 =




x11

x12

...
x1T

x21

...
xNT




x2 =




x2
11

x2
12
...

x2
1T

x2
21
...

x2
NT




x3 =




[
1 +

∑m
j=1 αjTj(γ1(α))

]
[x11 − γ1(α)]2[

1 +
∑m

j=1 αjTj(γ1(α))
]
[x12 − γ1(α)]2

...[
1 +

∑m
j=1 αjTj(γ1(α))

]
[x1T − γ1(α)]2[

1 +
∑m

j=1 αjTj(γ2(α))
]
[x21 − γ2(α)]2

...[
1 +

∑m
j=1 αjTj(γN (α))

]
[xNT − γN (α)]2




The partial derivatives become (where z
(k)
it is the k-th column of z)

∂S

∂β1
= −2

NX

i=1

TX

t=1

eitxit = −2e′x1

∂S

∂β2
= −2

NX

i=1

TX

t=1

eitx
2
it = −2e′x2

∂S

∂β3
= −2

NX

i=1

TX

t=1

eit

2
41 +

mX

j=1

αjTj(γi(α))

3
5 [xit − γi(α)]2 = −2e′x3

∂S

∂αk
= −2

NX

i=1

TX

t=1

eitβ3

2
4
2
4Tk(γi(α)) +

mX

j=1

αjT ′j(γi(α))
dγi

dαk

3
5 [xit − γi(α)]2 − 2

2
41 +

mX

j=1

αjTj(γi(α))

3
5 [xit − γi(α)]

dγi

dαk

3
5

∂S

∂δk
= −2

NX

i=1

TX

t=1

eitz
(k)
it = −2e′zk

We use the function fminunc in MATLAB to jointly solve for optimal variety γi as well
as parameters α, β, and δ that minimize the sum of squared residuals while providing the
gradient.

6.2.2 Fixed crop variety

In a sensitivity check the point of tangency is exogenously set to equal the average outcome
in a county, i.e., γi = µi. In this case the problem simplifies to

S =
N∑

i=1

T∑
t=1

[
yit − β1xit − β2x

2
it − β3

[
1 +

m∑
j=1

αjTj(µi)

]
[xit − µi]

2 − zitδ − ci

]2

22



The partial derivatives become (where z
(k)
it is the k-th column of z)

∂S

∂β1
= −2

NX

i=1

TX

t=1

eitxit = −2e′x1

∂S
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And the following Hessian (where x
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Table 1: Descriptive Statistics

Variable Mean Min Max σ σwithin

All Counties
Log Yield 4.20 -3.19 5.51 0.56 0.41
Degree Days 8-29◦C (thousand) 2.17 0.78 3.45 0.46 0.10
Degree Days 8-29◦C Deviation from Mean 81.65 0.00 464.45 61.75 56.50
Square Root Degree Days above 29◦C 6.97 0.00 27.09 3.51 1.48
Precipitation (cm) 55.59 0.00 159.24 18.40 11.48
Number of observations 119091
Number of counties 2791

Counties East of the 100 Degree Meridian
Log Yield 4.18 -3.19 5.32 0.54 0.40
Degree Days 8-29◦C (thousand) 2.21 0.91 3.45 0.45 0.10
Degree Days 8-29◦C Deviation from Mean 81.53 0.00 464.45 61.64 55.96
Square root Degree Days above 29◦C 6.85 0.00 22.85 3.48 1.51
Precipitation (cm) 59.41 12.06 159.24 15.24 12.26
Number of observations 105591
Number of counties 2325
Counties East of the 100 Degree Meridian With at Least 28 Observations
Log Yield 4.20 -3.19 5.32 0.53 0.40
Degree Days 8-29◦C (thousand) 2.20 0.96 3.45 0.45 0.10
Degree Days 8-29◦C Deviation from Mean 81.78 0.00 464.45 61.85 57.30
Square Root Degree Days above 29◦C 6.75 0.00 22.85 3.40 1.50
Precipitation (cm) 59.31 12.86 159.24 15.06 12.16
Number of observations 102029
Number of counties 2092

Notes: The first four columns give the mean, minimum, maximum, and standard deviation of each variable
in the years 1950-2004. The fifth column gives the average within-county year-to-year standard deviation.
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Table 2: Log Corn Yields as a Function of Climate and Year-to-Year Weather Fluctuations

Variable (1) (2) (3) (4)
Degree Days 8-29◦C 1.81 1.93 1.92 2.02

( 7.99) ( 8.37) ( 8.42) ( 8.61)
Degree Days 8-29◦C Squared -0.298 -0.325 -0.324 -0.370

( 5.46) ( 5.79) ( 5.83) ( 6.58)
Degree Days 8-29◦C Deviation Squared -5.22 -6.82 -2.46 -6.92

( 5.46) ( 4.32) ( 5.67) ( 6.70)
Degree Days 29◦C -9.68E-02 -9.69E-02 -9.69E-02 -9.91E-02

(17.73) (17.75) (17.90) (22.06)
Precipitation 1.01E-02 1.02E-02 1.02E-02 1.08E-02

( 6.79) ( 6.87) ( 6.81) ( 7.22)
Precipitation Squared -8.06E-05 -8.11E-05 -8.06E-05 -8.81E-05

( 7.47) ( 7.55) ( 7.52) ( 7.91)
County fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes No
Yield trend by state No No No Yes
Number of observations 102029 102029 102029 102029
Number of counties 2092 2092 2092 2092
Minimum observations per county 28 28 28 28

Notes: Table lists coefficient estimates with t-values in brackets. Standard errors are adjusted for spatial
correlation following Conley (1999). The first column presents results from the preferred model where the
point of tangency between individual yield curves with heterogenous curvature β3(γi) and the outer envelope
are endogenous. The second column forces the point of tangency to occur at the average weather (climate).
The third column forces the curvature β3(γi) to be constant for all crop varieties. Finally, the fourth column
uses the same setup as column 1 but relies on quadratic yield trends by state instead of year-fixed effects.
The reported coefficient on ”degree days 8 − 29◦C deviation squared” is the term on weather deviations
(xit − γi)2. In columns 1, 2, and 4 we report the value β3 from the mth-order Chebyshev approximation
β3(γi) = β3

[
1 +

∑m
j=1 αjTj(γi)

]
, where Tj() is the jth-order Chebyshev polynomial. The function β3(γi) is

displayed in Figure 5.
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Table 3: Specification Checks: Log Corn Yields as a Function of Climatic Variables for
Different Subsets of the Data

Variable (1) (2) (3) (4)
Degree Days 8-29◦C 2.58 1.81 1.79 1.78

( 9.55) ( 8.26) ( 8.23) ( 9.43)
Degree Days 8-29◦C Squared -0.485 -0.301 -0.298 -0.301

( 7.20) ( 5.71) ( 5.67) ( 6.50)
Degree Days 8-29◦C Deviation Squared -3.80 -4.85 -4.64 -3.27

( 5.73) ( 5.40) ( 5.38) ( 5.14)
Degree Days 29◦C -1.07E-01 -9.57E-02 -9.57E-02 -8.98E-02

(16.50) (17.65) (17.72) (18.20)
Precipitation 1.47E-02 1.02E-02 1.00E-02 8.72E-03

( 7.97) ( 7.02) ( 6.96) ( 6.85)
Precipitation Squared -1.21E-04 -8.08E-05 -7.95E-05 -6.93E-05

( 8.66) ( 7.75) ( 7.70) ( 7.52)
County fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
Number of observations 52800 105177 105591 119091
Number of counties 960 2241 2325 2791
Minimum observations per county 55 14 1 1

Notes: Table lists coefficient estimates with t-values in brackets. Standard errors are adjusted for spatial
correlation using Conley (1999). The four columns use different subsets of the data. Model (1), (2), and (3)
include all counties east of the 100 degree meridian with at least 55, 14, and 1 reported corn yields for the
55-year period 1950-2004. Model (4) uses all counties, including the ones west of the 100 degree meridian
that mainly rely on irrigation.
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Table 4: Changes in Expected Corn Yields Due to a Potential Increase in Weather Variation
(Percent)

Variable Mean Min Max σ Losers
Increase in Standard Deviation By 10 Percent
Variance Degree Days 8-29◦C -0.62 -2.12 -0.16 0.25 1873
Sum Degree Days 29◦C -3.82 -5.70 -1.12 0.99 2092
Combined Impact -4.41 -6.83 -1.36 1.14 2092
Increase in Standard Deviation By 25 Percent
Variance Degree Days 8-29◦C -1.64 -5.58 -0.42 0.67 1873
Sum Degree Days 29◦C -9.45 -12.88 -3.25 2.26 2092
Combined Impact -10.93 -16.93 -3.87 2.65 2092
Increase in Standard Deviation By 50 Percent
Variance Degree Days 8-29◦C -3.61 -11.98 -0.94 1.45 1867
Sum Degree Days 29◦C -18.49 -24.19 -7.02 4.02 2092
Combined Impact -21.40 -32.21 -8.18 4.73 2092
Increase in Standard Deviation By 100 Percent
Variance Degree Days 8-29◦C -8.41 -26.39 -2.23 3.28 1858
Sum Degree Days 29◦C -34.67 -42.76 -15.21 6.30 2092
Combined Impact -40.03 -57.01 -17.69 7.42 2092

Notes: Table lists the percentage impact on expected crop yields for various increases in the standard
deviation of minimum and maximum temperatures while holding mean temperatures constant. Increases in
the standard deviation have two effects: Increasing fluctuations in the sum of degree days 8-29◦C, as well
as an increased frequency of harmful degree days above 29◦C. The table uses the regression results of the
preferred model in the first column of Table 2. The first four columns give the mean, minimum, maximum,
and standard deviation of the predicted impacts for the 2092 counties, while the last column gives the number
of counties with statistically significant reductions at the 95% level after adjusting for spatial correlation.
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Table 5: Sensitivity Check of Changes in Expected Corn Yields Due to a Potential Increase
in Weather Variation (Percent)

Variable Mean Min Max σ Losers
Linear Specification in Degree Days Above 29◦C

Increase in Standard Deviation By 10 Percent
Variance Degree Days 8-29◦C -0.52 -1.86 0.05 0.26 2048
Sum Degree Days 29◦C -2.79 -5.71 -0.22 0.83 2092
Combined Impact -3.29 -6.30 -0.77 0.87 2092
Increase in Standard Deviation By 25 Percent
Variance Degree Days 8-29◦C -1.38 -4.90 0.13 0.69 2048
Sum Degree Days 29◦C -7.30 -13.70 -0.74 2.00 2092
Combined Impact -8.58 -15.15 -2.20 2.11 2092
Increase in Standard Deviation By 50 Percent
Variance Degree Days 8-29◦C -3.04 -10.57 0.29 1.50 2048
Sum Degree Days 29◦C -15.56 -26.53 -2.40 3.79 2092
Combined Impact -18.12 -29.21 -5.57 4.00 2092
Increase in Standard Deviation By 100 Percent
Variance Degree Days 8-29◦C -7.10 -23.52 0.69 3.43 2048
Sum Degree Days 29◦C -33.50 -50.42 -8.41 6.42 2092
Combined Impact -38.18 -54.65 -15.39 6.75 2092

Quadratic Specification in Degree Days Above 29◦C
Increase in Standard Deviation By 10 Percent
Variance Degree Days 8-29◦C -0.54 -2.46 -0.16 0.26 1826
Sum Degree Days 29◦C -3.58 -6.21 -0.07 1.01 2090
Combined Impact -4.10 -6.85 -0.85 1.05 2092
Increase in Standard Deviation By 25 Percent
Variance Degree Days 8-29◦C -1.43 -6.46 -0.43 0.68 1823
Sum Degree Days 29◦C -9.18 -14.39 -0.05 2.38 2090
Combined Impact -10.48 -15.94 -2.51 2.47 2092
Increase in Standard Deviation By 50 Percent
Variance Degree Days 8-29◦C -3.14 -13.78 -0.95 1.47 1821
Sum Degree Days 29◦C -18.81 -27.13 0.49 4.34 2088
Combined Impact -21.35 -30.29 -6.65 4.51 2092
Increase in Standard Deviation By 100 Percent
Variance Degree Days 8-29◦C -7.34 -29.95 -2.26 3.30 1808
Sum Degree Days 29◦C -36.96 -48.14 4.74 7.13 2084
Combined Impact -41.54 -55.17 -17.60 7.32 2092

Notes: Table uses same approach as Table 4 except that the first twelve rows use a linear specification for
degree days above 29◦C, while the last twelve use a quadratic specification (compared to the square root
used in Table 4).
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Table 6: Changes in Expected Corn Yields Due to Changing Robustness of Plants for a Shift
in Mean Temperatures while Holding Inter-annual Variance Constant (Percent).

Variable Mean Min Max σ Gainers Losers
Predictions for the Medium-term (2020-2049)
Hadley HCM3-B1 -0.12 -7.56 5.13 1.10 113 251
Hadley HCM3-B2 -0.22 -9.67 5.50 1.41 107 258
Hadley HCM3-A2 -0.21 -9.47 5.57 1.38 105 273
Hadley HCM3-A1 -0.15 -8.98 6.05 1.26 106 256
Predictions for the Long-term (2070-2099)
Hadley HCM3-B1 -0.70 -15.71 7.17 2.33 69 330
Hadley HCM3-B2 -1.05 -19.04 7.24 2.97 60 356
Hadley HCM3-A2 -2.97 -25.70 7.21 5.21 42 347
Hadley HCM3-A1 -5.83 -29.19 6.63 7.25 29 554

Notes: Table lists the percentage impact on corn yields for increases in temperatures as outlined in the
Special Report on Emissions Scenarios (SRES) for the IPCC 3rd Assessment Report (Nakicenovic, ed 2000).
The rows are ordered from the lowest to the largest increase in average temperatures. The first four columns
give the mean, minimum, maximum, and standard deviation of the impacts for the 2092 counties used in
the first column of Table 2. The last two columns give the number of counties with statistically significant
gains and reductions at the 95% level after adjusting for spatial correlation.
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Figure 1: Yield as a Function of Weather - Illustrating the Possibility of Adaptations
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Notes: The above graph illustrates the adaptation potential to various climates. The x-axis can be any
weather variable, e.g., temperature or degree days, while the y-axis displays yields. Individual varieties
peak at various climates. The point of tangency between the yield function of an individual variety and
the outer envelope is denoted by γi. For example, if the weather were known to be γ3, it would be best to
grow the variety that is tangent to the outer envelope at γ3, as it will result in the highest yield. Two facts
are noteworthy: First, due to the time-lag between planting (spring) and weather realization (summer), a
farmer might grow variety γ3 (i.e., the one that is tangent to the router envelope at γ3 but weather turns
out to be γ4. Hence the yield will be suboptimal. Second, the first-order effect of a weather change at the
average weather (climate) can be non-zero, i.e., farmers in cooler climates are predicted to welcome warmer-
than-average weather outcomes while farmers in hot climates should welcome cooler-than-average weather
outcomes.
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Figure 2: Yield as a Function of Weather - Allowing for County Fixed Effects
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Notes: The above two graphs motivate the relationship we are estimating. The x-axis can be any weather
variable, e.g., temperature or degree days, while the y-axis displays yields. For illustrative purposes three
counties with distinct weather ranges are displayed. The dashed black line displays the outer envelope of
attainable corn yields. The ci are county fixed effects that shift this envelope up or down. The tangency
occurs if actual weather equals the optimal weather requirement of the variety. The solid black line indicates
that there will be additional reductions in corn yields if weather turns out to be different from the optimal
weather for the specific variety. The left graph displays the case when the first-order effect at the point of
tangency is non-zero, while the right graph displays the case where it is zero. Note that in the right graph
the effects of changing climate conditions are captured by county fixed effects.
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Figure 3: Modeling the Choice of the Optimal Crop Variety
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Notes: The above two graphs motivate the optimal crop choice. The x-axis can be any weather variable,
e.g., temperature or degree days, while the y-axis displays yields. The dashed black line displays the outer
envelope of attainable corn yields, while the solid lines indicate that there will be additional reductions
in corn yields if weather turns out to be different from the optimal weather for the specific crop variety.
Specifically we assume that there are only two weather outcomes with equal probability: µ − x and µ + x.
Each graph displays the expected yield if variety γ1 = µ (black line) and γ2 (grey line) are chosen. The left
graph displays the case where the curvature of the solid lines is the same for both crop varieties and hence
the yield is maximized by choosing variety γ1 = µ, as E[γ1] > E[γ2]. The right graph displays a case where
variety γ2 is more robust, i.e., resulting yield losses due to weather deviations are less for variety γ2 than for
γ1. It now becomes optimal to grow a crop γ2 6= µ as E[γ2] > E[γ1]
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Figure 4: Number of Of Reported Corn Yields in the Years 1950-2004.
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Figure 5: Within-curvature as a Function of Planted Corn Variety (Degree Days 8-29◦C)
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Notes: Expected yields E[yit] include a multiplicative term on the variance of weather in county i, i.e.,
[β2 + β3(γi)] ∗ σ2

i , where γi is the point of tangency with the outer envelope. The above panels display
the term β2 + β3(γi) as solid line, and a 95% confidence band as dashed lines after adjusting for spatial
correlation. Panels displays results corresponding to columns (1) through (4) of Table 2. The top left panel
allows for an endogenous tangency point between individual corn varieties and the outer envelope. The top
right panel forces this tangency to occur at average weather (climate) in a county. The lower left panel
assumes a uniform within-curvature, while the lower right panel uses quadratic yield trends by state instead
of year fixed effects.
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Figure 6: Local Regression to Test Functional Form Assumptions
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Notes: The above graphs use coefficient estimates from the preferred model (column 1 of Table 2). In each
graph, a local regression of the error terms (using Epanechnikov weights) is plotted against the explanatory
variable that was omitted from the model when the error terms are predicted. In the first two rows,
deviations from county averages are omitted (β3(γi)[xit − γi]2) when the error terms are predicted and the
data is split into four quartiles according to the average climate of a county. The bottom left graph omits the
outer envelope (β1xit + β2x

2
it), while the bottom right graph omits the effect of harmful heat waves (δzit).

Bandwidths are 0.15 for the top four graphs, 0.5 for bottom left, and 125 for the bottom right graph.
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Figure 7: Within-curvature as a Function of Planted Corn Varieties (Degree Days 8-29◦C)
for Various Subsets of the Data
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Notes: Expected yields E[yit] include a multiplicative term on the variance of weather in county i, i.e.,
[β2 + β3(γi)] ∗ σ2

i , where γi is the point of tangency with the outer envelope. The above panels display
the term β2 + β3(γi) as solid line, and a 95% confidence band as dashed lines after adjusting for spatial
correlation. Panels displays results corresponding to columns (1) through (4) of Table 3. All panels allow
for an endogenous tangency between individual crop varieties and the outer envelope.
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Figure 8: Fixed Effects Plotted Against Mean Degree Days 8-29◦C
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Notes: Fixed effects are shown as black dots. The solid grey line displays the result from a linear model
regressing county fixed effects on the climate in a county. The 95% confidence band after adjusting for the
spatial correlation of the error terms is displayed as dashed grey lines. The data set includes all counties
east of the 100 degree meridian with at least 28 reported yields in the years 1950-2004.
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Figure 9: Distribution of Changes in Expected Corn Yields for Various Increases in the
Variance of Temperatures
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Notes: Stars indicate the impacts of an increase in variance of both minimum and maximum temperature
as function of the grown variety. Impacts are show for the 2092 counties with at least 28 observations east
of the 100 degree meridian.
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