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I.  Introduction 

 
 For several reasons, reducing automobile-based gasoline consumption is a major U.S. 

public policy issue.  Gasoline consumption accounts for 44 percent of the U.S. demand for 

crude oil, and the nation’s dependence on imported crude raises significant national security 

concerns.  National security impacts can be regarded as an externality from gasoline 

consumption that gives a potential rationale for public policy.  Gasoline use generates 

environmental externalities as well. The combustion of gasoline yields emissions of carbon 

dioxide (CO2), the principal anthropogenically sourced “greenhouse gas” that can contribute 

to global climate change.  In 2004, approximately 22 percent of U.S. CO2 emissions derived 

from gasoline use.  Gasoline combustion also generates emissions of several “local” air 

pollutants, including carbon monoxide, nitrogen oxides, and volatile organic compounds.  

Reduced gasoline use could lead to improved air quality and associated benefits to health.1,2

 Recently, many analysts have called for new or more stringent policies to discourage 

gasoline consumption.  Proposals include a tightening of corporate average fuel economy 

(CAFE) standards, subsidies to retirements of older (gas-guzzling) vehicles, subsidies toward 

the purchase of high-mileage vehicles such as hybrid cars, and  increments to the federal 

gasoline tax.3,4

                                                 
1 Parry and Small (2005) and the National Research Council (2002) examine the various externalities from 
gasoline use and offer estimates of the overall marginal damages.  The former study estimates the overall 
external cost from U.S. gasoline consumption (including effects relating to local pollution, climate change, 
congestion, and accidents) to be about 75 cents per gallon.  This suggests that U.S. taxes on gasoline are below 
the efficiency-maximizing level, since the federal tax plus average state tax totals 37 cents. 
   
2 The extent of the health improvement from improved air quality depends on both the reduction in gasoline use 
and possible changes in pollution per gallon of gasoline used.  Air districts currently in compliance with air 
pollution regulations under the 1990 Clean Air Act amendments might well respond to reductions in gasoline 
use by relaxing “tailpipe” emissions requirements, that is, on the allowable emissions per unit of fuel 
combusted.  This would offset the air-quality and health improvements from reduced gasoline consumption. 
 
3 The National Research Council (2002) has recommended increases in corporate average fuel economy 
(CAFE) standards on both passenger cars and light trucks.  AB 1493, a recently passed bill in California, 
mandates carbon dioxide emissions reductions and significant improvements in automobile fuel economy. . 
  
4 Although there is considerable political opposition to many of these proposals, the general public appears to 
have grown increasingly sympathetic to the need for a significant policy response.  A February 2006 New York 
Times / CBS News Poll found that a majority of Americans would support a higher gasoline tax if it reduced 
global warming or made the U.S. less dependent on foreign oil.  
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 This paper examines the gas-tax option, employing an econometrically-based multi-

market simulation model to evaluate the policy’s efficiency and distributional implications.  

We investigate the economy-wide costs of gasoline tax increases and the impacts on fuel 

consumption, and we diagnose the sources of the reductions in fuel consumption in terms of 

changes in fleet composition (shifts to higher mileage automobiles) and vehicle miles 

traveled (VMT).  We also explore how the costs are distributed across households that differ 

by income, region of residence, race, and other characteristics, and consider how the 

distribution of impacts depends on the ways revenues from the tax are returned to the private 

sector. 

 Some prior studies have examined the impact of gasoline taxes by estimating the 

demand for gasoline as a function of gasoline price and household income.  For example, 

Hausman and Newey (1995) and West and Williams (2005) use household-level data on 

gasoline consumption to estimate deadweight loss and the optimal gasoline tax, respectively. 

 Other studies obtain the demand for gasoline indirectly by deriving it from estimates 

of the demand for VMT.  For example, Berkovec (1985), Mannering and Winston (1985), 

Train (1986), and West (2004) sequentially estimate households’ automobile ownership and 

VMT decisions.5  The ownership decision is based on discrete choice of a range of 

automobile types, while the VMT decision is a continuous choice.  Feng, Fullerton, and Gan 

(2005) estimate jointly households’ ownership and VMT decisions. 

 A third set of studies considers supply-side phenomena that influence the composition 

of the automobile fleet and gasoline consumption.  In contrast with the previously mentioned 

studies, which tend to focus on issues in public economics (e.g., the deadweight loss from 

gasoline taxation), this third set of studies emphasizes market structure (e.g., the imperfectly 

competitive nature of the new car market) and the impacts of policies on new car prices and 

sales.  For example, Berry et al. (1995), Goldberg (1998) and Austin and Dinan (2005) 

develop models of new car market that combine supply decisions by imperfectly competitive 

producers with discrete demand choices by households.  The latter two studies explore 

impacts of automobile policies on the new car market.  Goldberg (1998) analyzes tighter 

                                                 
5 Poterba (1991) generates elasticities of demand for gasoline use by transforming Train’s (1986) estimated 
elasticities for VMT. 
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CAFE standards; Austin and Dinan (2005) examine CAFE standards and a gasoline tax 

increase. 

 The present study differs from earlier work in several ways.  First, in contrast with 

nearly all prior work,6  this study considers supply and equilibrium not only in the new car 

market but in the used car and scrap markets as well.  The wider scope helps provide a more 

complete picture of the impact of a gasoline tax.  In addition, addressing the equilibrium in 

all three car markets enables us to capture important dynamic effects.  Higher gasoline taxes 

are likely to cause an increase in the share of relatively fuel-efficient cars among new cars 

sold.  The extent to which the fuel-efficiency of the overall (new and used car) fleet improves 

will depend on the rate at which the newer, more efficient cars replace older cars.  This 

depends on the relative size of the stocks of new and used cars and the rate at which older 

cars are taken out of operation (scrapped).  By considering the new, used, and scrapped car 

markets, the model is able to consider the dynamics of changes in fleet composition and 

related short- and long-run impacts on gasoline consumption.  As in Goldberg (1995), Berry, 

Levinsohn, and Pakes (1995), Petrin (2003), and Austin and Dinan (2005), we consider the 

imperfectly competitive nature of the new car market.  However, in contrast with these 

studies, we connect this market to the used and scrap markets, which allows us to consider 

how policies affect the entire fleet of cars and associated demands for gasoline. 

 A second major difference from earlier work is the model’s ability to capture 

distributional effects.  The model considers over 20,000 households that differ in terms of 

income, family size, employment status (working or retired), region of residence, and ethnic 

background.  This enables us to trace distributional impacts in several important dimensions. 

All household demands stem from a consistent, utility maximization framework, enabling us 

to measure distributional impacts in terms of theoretically sound welfare indexes.  In contrast 

with prior simulation studies, the model considers both the acquisition and disposition 

(recycling) of government revenue, which allows us to examine how distributional impacts 

are influenced by the way gasoline tax revenues are recycled to the private sector.   

 Finally, the model differs in its econometric approach to estimating consumer demand 

for automobiles and gasoline/VMT.  Some prior studies have focused separately on the 

                                                 
6 One exception is Berkovec (1985), who develops a model with interactions among these markets.  His model 
assumes pure competition among auto producers, however. 
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demand for automobiles versus the demand for gasoline or VMT.7  Other earlier studies have 

accounted for the simultaneity of automobile and gasoline/VMT demand by exploiting 

reduced-form, two-step estimators.8  We adopt a one-step (i.e., full-information) estimation 

strategy that integrates each household’s automobile and VMT decisions within a utility-

theoretic framework and permits us to recover sound welfare estimates.9  In addition, we 

assume that all parameters entering preferences vary randomly across households.  Random 

coefficients allow us to account for correlations in the unobservable factors influencing a 

household’s discrete car choice and continuous VMT demand while simultaneously allowing 

for more plausible substitution patterns among automobiles (McFadden and Train, 2000; 

Bunch et al., 2000).   

 The rest of the paper is organized as follows.  Section 2 describes the equilibrium 

simulation model.  Section 3 outlines the model’s data sources, with emphasis on the data 

employed to estimate household demands for vehicles and travel.  Section 4 presents our 

approach for estimating households’ automobile purchase and driving decisions.  In Section 

5 we present and interpret results from simulations of a range of gasoline tax policies.  

Section 6 offers conclusions. 

 

 

2.  Structure of the Simulation Model 

 

a.  Overview 

 

 The economic agents in the model are households, producers of new cars, used car 

suppliers, and scrap firms.  The model considers the car-ownership and vehicle-miles-

                                                 
7 Berry, Levinsohn, and Pakes (2004), Goldberg (1995), and Petrin (2003) focus on the demand for 
automobiles; Goldberg (1998) and West (2004) estimate the demand for VMT; Hausman and Newey (1995), 
Schmalensee and Stoker (1999), and West and Williams (2005) concentrate on the demand for gasoline.  Austin 
and Dinan (2005) obtain demand functions for cars by calibrating the parameters of their simulation model to be 
consistent with internal estimates by General Motors. 
 
8 Examples are Berkovec (1986), Mannering and Winston (1986), Goldberg (1998), and West (2004). 
 
9 A difficulty with welfare measurement from two-step estimators is that each step generates a different set of 
estimates for the same parameters.  Each set may have different welfare implications for the same policy.  One-
step estimators generate a unique set of parameter estimates and therefore avoid this difficulty.  The only other 
automobile study to incorporate a one-step procedure is that of Feng, Fullerton, and Gan (2005). 
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traveled (VMT) decisions of 20,429 households.  The car-ownership and VMT decisions are 

made simultaneously in accordance with utility maximization. 

 The model distinguishes cars according to age, class, and manufacturer.  Table 2-1 

below displays the different car categories in the model.  These categories imply 350 distinct 

cars, of which 284 appear in our dataset and simulation.10

 The used-car market equates the supply of used cars (after scrapping) with the 

demand for those cars.  Producers of new cars decide on new-car prices in accordance with 

Bertrand (price) competition.  These producers consider households’ demand functions in 

determining optimal pricing.  Price-markups reflect the various price elasticities of demand 

for cars as well as existing regulations (CAFE standards). 

 The model solves for a sequence of market equilibria at one-year intervals.  Car 

vintages are updated each year, so that last year’s new cars become one-year-old cars, last 

year’s one-year-old cars become two-year-old cars, etc.  Once a car is scrapped, it cannot re-

enter the used car market.  Characteristics of given models of new cars change through time 

based on specified growth rates of horsepower and fuel-economy, as described in Section 5. 

 

b.  Household Demands 

 

 Households obtain utility from car ownership and use, as well as from consumption 

of other commodities.  The utility enjoyed from driving depends on characteristics of the 

automobile, as well as VMT.  The decision whether to own a car is integrated with the 

decision about VMT.  Each household has exogenous income; most households also are 

endowed with cars.  If a household has a car endowment, it chooses whether to hold or 

relinquish (sell or scrap) that car; if it relinquishes the car it also decides whether to purchase 

a different car (new or used).  If a household does not have a car endowment, it chooses 

whether to purchase a car. 

 If household i owns car j, its utility can be expressed by:   

 

(2.1)   ( , , )i i j i iU U M x= z

                                                 
10 The number of distinct cars increases over time as some unique new models become old and enter the used 
car fleet.  
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where zj  is a vector of characteristics of car j, and Mi and xi respectively refer to household 

i’s vehicle miles traveled and its consumption of the outside good.  The household’s utility 

conditional on choosing car j can be expressed through the following indirect utility function: 

 

(2.2)   
  
Vij = Vij

' + μiε ij

with  

(2.3)   
   
Vij

' = Vij
' ( yi ,rij , pij

M , pix ,z j ,zi ,zij )

where 
 
   = income to household i  iy

  = rental price of car j to household i rij

  = per-mile operating cost pij
M

  = price of the outside good, x pix

  = vector of characteristics of household i zi

  = vector of characteristics of household i, interacted with characteristics 
of car j 

zij

 

Household income yi is devoted toward purchasing a car (or cars11), car operation, and the 

purchase of the outside good.  We treat car purchases as rentals, so that payments are spread 

over many years.  The household budget constraint can then be written as: 

 

(2.4)   yi = rij + pij
M Mi + pix xi

 

If a household owns a vehicle, the stream of rental income from that vehicle is included in its 

income.  A household that chooses to retain its existing car effectively makes a rental 

payment equal to its implicit rental income from that car.  Income also includes the 

household’s share of profits to new car producers, government transfers, and capital gains or 

                                                 
11 In Section 4 we discuss how we allow for multiple car ownership. 
 

 7



losses resulting from changes in automobile prices.12  The government transfer component of 

income includes revenue from the gasoline tax and adjusts as policy changes.  

 The operating cost  includes the fuel cost (including gasoline taxes) as well as 

maintenance and insurance costs.  The rental price  rij  accounts for depreciation, registration 

fees, and insurance.  As indicated in expression (2.2) above, indirect utility includes the 

random component μiεij, where ε  has an extreme value distribution (following the 

econometric model) and μ is a scale parameter.  We assume the household chooses the 

vehicle (or vehicles) yielding the highest conditional utility, given V’ and the random error.  

The probability that a given car j maximizes utility for household i is: 

pij
M

(2.5)  
  
exp(

Vij
'

μi

) exp(
Vij

'

μi

)
j
∑  

 The indirect utility function V  can be differentiated following Roy’s identity to yield 

the optimal choice of miles traveled, Mij, conditional on the purchase of each vehicle.  We 

allow the car purchase decision of each household (which actually represents a group of 

similar households) to be fractional following the probabilities above.  Total (or average) 

VMT for each household is then the demand weighted sum of the conditional VMT’s 

determined from Roy’s identity. 

ij
'

 

c.  Supply of New Cars 

 

 Each of the seven producers in the model sets prices for its fleet of automobiles to 

maximize profits, given the prices set by its competitors and subject to fleet fuel economy 

                                                 
12 If a household is endowed one vehicle of type j entering the period, its gain is computed as: 

 1' '

2
( ) (1 ) ( )(

j j j j j j j
r r r r ' )θ θ θ− ⋅ − + − −  

where rj  and rj’ respectively denote the rental price of car j in the reference and policy-change cases, and θj  and 
θj’  represent the probability of the car’s being scrapped in the two cases.  The first term represents the gain in 
value of cars supplied in the baseline, while the second is a triangle approximating the increase or decrease in 
surplus associated with changes in the number of vehicles scrapped. 
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constraints.  Thus we assume Bertrand competition.  Producers face less than perfectly elastic 

demands for their cars:  that is, two new cars of the same class can sell at different prices if 

produced by different producers. 

 The producer problem is influenced by the presence of CAFE standards.  These 

standards require that each manufacturer’s fleet-wide average fuel-economy be above a 

certain level in each of two general categories of cars: “light trucks” and “passenger cars.”  

The classes in the passenger car category are non-luxury compact, non-luxury midsize, non-

luxury fullsize, luxury compact, and luxury midsize/fullsize.  Those in the light truck 

category are small truck, large truck, small SUV, large SUV/van, and minivan.13   

 In the following, the subscript k refers to the cars made by a particular manufacturer.  

The boldface vector p includes prices of the cars made by all seven manufacturers.14  T and 

C denote the sets of cars (for a given manufacturer) in the light truck and passenger car 

categories, respectively.  Te  and Ce  refer to the efficiency requirements for light trucks and 

passenger cars and ek is the fuel economy of car k.  The profit-maximization problem solved 

by a given producer in our model is: 

 
(2.6) max

{ pk }
(pk − ck ) ⋅ qk (p)

k
∑  

   
subject to: 
 

qk
k∈C
∑

qk

ekk∈C
∑

≥ e C   and  
qk

k∈T
∑

qk

ekk∈T
∑

≥ e T  

 
where pk and ck refer to the purchase price and marginal cost, respectively, of a particular car 

and qk is the demand as a function of all prices.15  Marginal cost is assumed to be exogenous 

                                                 
13 We remove a small (fixed) fraction of the largest vehicles from CAFE in order to incorporate the fact that the 
very largest trucks and SUV's are exempt from CAFE standards. 
 
14 The purchase price is the same as the present value of rental prices over the life of the car. 
 
15 Our treatment ignores some complexities of the CAFE regulations.  The actual regulations allow for 
intertemporal banking and borrowing:  the standard can be exceeded in one year if the firm overcomplies in 
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and constant.  We employ data automobile markups, prices, and quantities sold, along with 

our estimated household demand elasticities for different automobiles, to identify the cost 

parameters.  Details are provided in the appendix.  

We must solve the constrained optimization problem for all of the firms 

simultaneously since the residual demand curve faced by a given firm depends on the prices 

set by the others.  The solution method is discussed in subsection e below.   

 
 
d.   Used Car and Scrap Markets 

 

i.  The Used Car Market 

 

 In the model, “used car” refers to all cars that are neither new nor scrapped.  For any 

given make and class of vehicle, , the quantity of used cars evolves according to:  A

 

 (2.7) 
   

 qA,t+1
U = (1−θA )qA,t

U + qA,t
N

 

where  and  refer to the quantity of used and new cars of make and class   available 

in year t, and  

   qA,t
U

   qA,t
N A

θA  represents the average probability that used cars of type  A  are scrapped.   

In general, each car type, or age-make-model combination, will have a different price.  

The model determines the set of prices for all car types that allows market-clearing in the 

used-car market, that is, that causes every car to be sold.  Since the demand for a given car 

will depend on the prices of other used cars (and on new car prices), all used car prices need 

to be solved simultaneously.   

 
 
ii.  The Scrap Market 
 
 We assume that households will scrap a car when the car’s scrap value exceeds its 

resale value.  However, each car (class-age-manufacturer combination) in our model actually 

                                                                                                                                                       
another.  In addition, manufacturer can elect to pay a fine rather than meet the standards.  Work in progress 
(Jacobsen, [2006]) addresses these issues.    

 10



represents a group of cars of varying quality and value, some of which may fall under the 

cutoff for scrapping even if the average car in the group does not.  To allow for scrapping of 

some cars of a given type, we assign a scrap probability to each car.  The scrap decision 

depends on pj, the purchase price or resale value of a used car.  This is computed as the 

discounted sum of future rental prices, adjusted for the possibility that a car will be scrapped 

before reaching each progressively older age.  The household is assumed to have myopic 

expectations regarding future rental values; that is, it assumes that future rental values will be 

the same as the current-period rental values.   

 Once we have arrived at resale values for each used car, the scrap probability θ j  is 

modeled simply as: 

 
(2.8) θ j = bj ⋅ (p j )

η j  
 

where b  is a scale parameter used for calibration and j η j  is the elasticity controlling the 

change in scrap probability as the price of the car changes.  Scrap rates increase with car age. 

 
 
e.  Solution Method 

 

 Solution of the model requires obtaining the full vector of new and used car prices 

that meets the following two conditions:   (1) every available (not scrapped) used car has a 

buyer (or retainer) and (2) for every new car producer, the first-order conditions for 

constrained profit-maximization are satisfied.  Note that the second requirement is a function 

of all prices, not just new-car prices.  Since each household demands a range of vehicles with 

varying probabilities, we determine demands for a given car by aggregating across 

households the probability-weighted demands for that car.   

 The solution method embeds the used-car problem within the broader problem of 

solving for both used- and new-car prices.  Specifically, we solve for the used-car prices that 

satisfy requirement (1), conditional on a set of posited prices for the new cars.  We then 

adjust the new car prices in an attempt to meet condition (2), and solve again for used-car 

prices that meet requirement (1) conditional on the adjusted new-car prices.  We repeat this 

procedure until conditions (1) and (2) are met within a desired level of accuracy.  The 
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government’s revenue from gasoline taxes is returned to households according to the various 

“recycling” methods described in Section 5.  Government revenues and household demands 

are mutually dependent.  Hence solving the model also requires that we arrive at  the level of 

aggregate government transfers consistent with government’s receipt of tax revenue.  The 

overall solution is a set of prices for each car that simultaneously clears all markets, and an 

aggregate transfer level that equals the government’s revenues from the gasoline tax.  To 

solve the multidimensional system we use Broyden’s method, a derivative-based quasi-

Newton search algorithm. 

 

 

3.  Data 

 

 Our dataset has two main components:  (1) a random sample of U.S. households’ 

automobile ownership choices from the 2001 National Household Travel Survey (NHTS) 

and (2) new and used automobile price and non-price characteristics from Wards Automotive 

Yearbook, The National Automobile Dealer’s Association (NADA) Used Car Guide, and the 

Department of Energy (DOE) fueleconomy.org website.  By merging these two types of 

information, we obtain an unusually rich data set, one that allows us to consider household 

choices among a wide range of new and used cars and that permits us to distinguish 

households along many important dimensions.  In the appendix, we offer details on how we 

merged the different data sets and constructed needed variables.   

 

a. The NHTS Sample 

 

 The 2001 NHTS consists of 26,038 households living in urban and rural areas of the 

United States.  With the help of Department of Transportation staff, we obtained the 

confidential version of the NHTS data files that contained the relevant data for our analysis.  

For each household we have information on income, automobile holdings (by make, model, 

and year), and vehicle miles traveled.  In addition, we have data on the household’s 

demographic characteristics (including household size, composition, gender, education and 
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employment status) and geographical identifiers (including the state, metropolitan statistical 

area, and zip code of the residence). 

After cleaning the data our final sample consists of 20,429 households from the original 

26,038.  Table 3-1 presents major demographic statistics of our final sample.  

 

b.  The Automobile Sample 

 

 The 1983- 2002 Wards Automobile Yearbook provided most of the car and truck 

characteristics used in our analysis.  Automobile characteristics include horsepower, weight, 

length, height, width, wheelbase, and city and highway miles per gallon (MPG) by make, 

model, and year for all cars and trucks sold during this period.  We obtained information on 

car and truck prices from the National Automobile Dealer’s Association (NADA), which 

publishes this information in the monthly NADA Used Car Guide.  We used price 

information from the April 2001 and 2002 editions of the Car Guide, which we obtained in 

electronic format.  Each edition contained the manufacturer’s suggested retail price and 

current resale price (a weighted average of recent transaction prices) for all new and used 

cars and trucks dating back to 1983.  As indicated in the appendix, we calculated 

depreciation based on changes in prices for a given car over the 2001-2002 period.   

  Combining information from the Wards and NADA data sets yielded a vector of 

prices and various automobile characteristics for roughly 4,500 automobiles distinguished by 

manufacturer, model, and year.  We aggregated these data into the seven manufacturer 

categories, ten class categories, and five age categories indicated in Table 2-1.  We used a 

weighted geometric mean formula to aggregate price and non-price characteristics within 

each make, class, and age category, where the weights were proportional to the holdings 

frequencies in the NHTS.   

 Table 3-2 displays statistics on miles per gallon and horsepower from our data.  The 

data show significant MPG differences across classes and age categories.  A new compact, 

for example, is 1.48 times more efficient than a large SUV.  The newest compacts yield 1.47 

more miles per gallon than those in the oldest age category.  In contrast, the newest midsize 

and large SUVs are less fuel-efficient than the older models.  As for horsepower, we note that 
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most of the increases apply to compacts and full size cars.  Average horsepower of compacts 

increased 60 percent, and average horsepower of full size cars rose 75 percent.  

 

c.  Calculation of Rental Prices and Per-Mile Operating Costs 

 

Two important variables we must construct from our data are the automobile rental 

prices and per-mile operating costs (the “price per mile” variable in Section 2) for all 284 

autos.  The underlying inputs into these prices and costs differ by region as well as 

automobile type.  For household i owning car j,  the rental price is given by: 

 

rij = Dj + 0.85Iij
A + Fij + R ⋅ pj  

where 

 
Dj  = depreciation in the real value of car j 

 
Iij

A  = household i’s annual insurance costs for car j 

 
Fij  = household i’s automotive registration fees for car j 

 R  = real interest rate 
 

Thus, the one-year rental price of a car is the sum of depreciation, insurance, and registration 

costs, plus the forgone real return on the principal value of the car.16  For the real interest rate, 

R, we use a value of 3.89 percent, the 2001 average daily real rate on 30-year T-bills.  We 

include insurance costs in both the rental price (associated with the choice of car) and the 

per-mile operating cost (associated with VMT).  Representatives from State Farm Insurance 

suggested to us that roughly 85 percent of auto insurance premiums are fixed and 

independent of VMT.  Hence, 85 percent of insurance costs appear in the rental price formula, 

with the remaining 15 percent applying to operating costs. 

 The per-mile operating cost, M
ijp ,  is expressed by: 

* 0.15
gas

M Mi
ij j ij

j

pp N I
MPG

= + +  

where 
                                                 
16 If the household has purchased the car using a loan, this term can be equivalently interpreted as the interest 
payment on that loan. 
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gas
ip  = household i’s per gallon price of gasoline 

MPGj =  miles per gallon for car j 17

jN  = per-mile maintenance and repair costs for car j  
M
ijI  = household i’s per-mile insurance costs for car j 

 
 

 

4.  Estimation of Household Ownership and Utilization Decisions 
 
 
a.  The Econometric Model 
 
 
(i) Challenges 
 
 Two overarching concerns significantly influenced our approach to estimating 

household automobile demand.  The first was our desire to consistently integrate car 

ownership and utilization decisions.  Given our interest in assessing the welfare implications 

of gasoline taxes, linking these decisions within a utility-theoretic framework was crucial for 

generating consistent welfare estimates.  The second concern arose from an important feature 

of the data – households frequently own more than one car.  In the 2001 NHTS, 41.5 percent 

of households own zero or one car, another 43.6 percent own two cars, and the remaining 

14.9 percent own three or more autos.  This implies that many households have a potentially 

enormous number of auto bundles from which to choose.  If, for example, there are J 

different cars and trucks and we consider only bundles consisting of two or fewer than two 

cars, there are 1+J+J(J+1)/2 bundles that households can potentially choose.  With our 

automobile data set consisting of 284 composite cars and trucks, there are 40,755 distinct 

bundles that households might choose (and this large number ignores all bundles with three 

or more autos). 

Past efforts to integrate automobile ownership and utilization decisions have relied on 

reduced-form, sequentially-estimated models (Berkovec, 1985; Mannering and Winston, 

1985; Train, 1986; Goldberg, 1998; West, 2004; Bento et al., 2005).  We adopt a consistent, 

utility-theoretic approach that links ownership and utilization decisions through Roy’s 

                                                 
17 For MPG we use a weighted harmonic mean of the city and highway EPA mileage rating.  
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identity and estimates both choice margins simultaneously.  To account for different 

households owning different quantities of cars, we adopt a variation of Hendel (1999) and 

Dube’s (2004) repeated discrete-continuous framework.  In the context of automobile choice, 

the framework assumes that a household’s ownership and utilization choices arise from 

separable choice occasions.  On each choice occasion, the household makes a discrete choice 

of whether to own one of J automobiles.  If an auto is chosen, the household conditionally 

decides how much to drive it during the year.  The discrete and continuous decisions are 

linked through Roy’s identity.  To account for ownership of multiple automobiles, 

households have multiple choice occasions on which different automobile services may be 

demanded.  Intuitively, different choice occasions in our framework correspond to different 

primary tasks or purposes for which households might demand automobile services (e.g., 

commuting to work, family travel, shopping excursions, or any combination thereof).  We 

assume their number depends on the number of adults in a given household.18

Our approach to modeling automobile demand has advantages and disadvantages.  Its 

main advantages are that it consistently links ownership and utilization decisions and reduces 

the dimension of the households’ choice set on a given choice occasion to J+1 alternatives (J 

autos and the no auto alternative).   The latter feature implies that our approach is 

econometrically tractable with our 284 composite auto data set.  It also has the virtue of 

allowing for households to own any quantity of autos as long as they are given a sufficiently 

large number of choice occasions.  Our framework’s main drawback, however, is that it does 

not allow for interaction effects among the fleet of autos held by households.  In particular, it 

would fail to account for car-interactions:  for example, a four-person household’s utility 

from holding a second minivan being less than holding a single minivan.  To account for 

such interactions, one would need to treat bundles of automobiles, rather than individual cars, 

as the objects of choice.  However, as suggested above, employing such an approach would 

require considerably more aggregation of cars beyond what we have pursued.19  This would 

                                                 
18 There is some evidence in the non-market valuation literature that the specification of the number of choice 
occasions, as long as it is larger than the chosen number of goods, does not have significant effects on estimated 
welfare measures (von Haefen, Massey, and Adamowicz, 2005).  Moreover, we do not expect that it has much 
if any effect on the relative efficiency rankings of policies. 
 
19 Feng, Fullerton, and Gan’s (2005) bundling approach aggregates all automobiles into one of two composites 
– cars and trucks. 
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imply less product differentiation and thus could limit our ability to account for the 

imperfectly competitive nature of the automobile industry.  In addition, it could necessitate 

our putting a limit of two on the number of cars owned by a household, which would 

eliminate from our sample those individuals likely to be most adversely affected by gasoline 

taxes. 

 

(ii) Specifics 

 

Our repeated discrete-continuous model of automobile demand works as follows.  

Household i (i = 1,…,N) is assumed to have a fixed number of choice occasions, Ti.   We let 

Ti  equal the number of adults in each household plus one.20  On choice occasion t, household 

i is assumed to have preferences for car j (j=1,…,J) that can be represented by the following 

conditional indirect utility function: 
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where ( ,  are household i’s income, rental price for the jth auto, utilization (or 

VMT) price for the jth car, and the Hicksian composite commodity price, respectively, 

, , )M
i ij ij ixy r p p

( , , )ij ij ij
α β τz z z  are alternative automobile characteristics (including make, age, and class 

dummies) interacted with household demographics, i
λz  contains just household 

characteristics, ( *, , , ,i i i i iα β λ τ μ� �� � ) are parameters that vary randomly across households, and 

ijtε  contains additional unobserved heterogeneity that varies randomly across households, 

                                                 
20 The 2001 NHTS suggests that a significant percentage of households hold an additional automobile relative to 
the number of adults.  For the 1.84 percent of household with more autos than the one plus the number of adults, 
we set the number of choice occasions equal to the number of held autos.   
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automobiles, and choice occasions.  If the household instead decides not to rent a car (i.e., 

automobile 0), its conditional indirect utility function is: 

(4.2) 0 0
1 /exp i i
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where i
φz  and iφ  are individual characteristics and parameters, respectively.  The rational 

household is assumed to choose the alternative that maximizes its utility on each choice 

occasion.  Assuming each ijtε  ( 0,...,j J= ) can be treated as independent draws from the 

normalized type I extreme value distribution, the probability that individual i chooses 

alternative j on choice occasion t condition on the model’s structural parameters is: 
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 Assuming the household chooses automobile j, Roy’s identity implies that the 

household’s conditional VMT demand is: 
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We assume the analyst imperfectly observes itjM  due to measurement error in our data.21    

The analyst observes j itj itj itjM M η= + , where itjη  is an independent draw from the normal 

distribution with mean zero and standard deviation *exp( )i iσ σ= .  The likelihood of 

observing j itjM  conditional on the model parameters is: 
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Given our assumed structure, the full likelihood of household i’s automobile demand 

conditional on * *( , , , , , , )i i i i i i iδ α β λ τ φ μ σ= � �� �  is then: 
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21 Due to recall biases with the 2001 NHTS, it is highly probable that measurement error is present in the VMT 
data.  We believe it is therefore appropriate to account for this source of error explicitly in our econometric 
model. 
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where 1  is an indicator function equal to one if car j is chosen on individual i’s tth choice 

occasion and zero otherwise. 

itj

 
 
b.  Estimation Strategy 

 

 Past econometric efforts to model vehicle ownership and derived VMT demand 

decisions have used variations of Dubin and McFadden’s (1984) sequential estimation 

strategy that accounts for the induced selectivity bias in derived VMT demand with a 

Heckman-like (1979) correction factor.  We employ a full-information estimation approach 

that allows for correlations in the unobserved determinants of choice across discrete and 

continuous dimensions through random parameters (McFadden and Train, 2000).  We 

assume that all parameters, * *( , , , , , , )i i i i i i iδ α β λ τ φ μ σ= � �� � , are distributed multivariate normal 

with mean δ  and variance-covariance matrix δΣ .  For each observation, the same 

parameters enter the automobile ownership and VMT demand equations, and thereby induce 

correlations between the two margins of choice.  Given the nonlinear nature of our likelihood 

function, the large number of households and sites in our data set, and the potentially large 

number of parameters on which we wish to draw inference, classical estimation procedures 

such as maximum simulated likelihood (Gourieroux and Monfort, 1996) would be 

exceptionally difficult, if not impossible, to implement.  In light of these computational 

constraints, we adopt a Bayesian statistical perspective and employ a variation of Allenby 

and Lenk’s (1994) Gibbs sampler estimation procedure that is less burdensome to implement 

in our application.22  

 The Bayesian framework assumes that the analyst has initial beliefs about the 

unknown parameters ( , δδ Σ ) that can be summarized by a prior probability distribution, 

( , )f δδ Σ .  When the analyst observes a set of choices x, she combines this choice 

                                                 
22 Although the Bayesian paradigm implies a very different interpretation for the estimated parameters relative 
to classical approaches, the Bernstein-von Mises theorem suggests that the posterior mean of Bayesian 
parameter estimates, interpreted within the classical framework, are asymptotically equivalent to their classical 
maximum likelihood counterparts assuming a correctly specified data generating process.  Following Train 
(2003), we interpret this result as suggesting that both approaches should generate qualitatively similar 
inference, and thus the analyst’s choice of which to use in practice can be driven by computational convenience. 
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information with the assumed data generating process to form the likelihood of x conditional 

on alternative values of ( , δδ Σ ), ( | , )L δδ Σx .  The analyst then updates her prior beliefs 

about the distribution of ( , δδ Σ ) to form a posterior distribution for ( , δδ Σ ) conditional on 

the data, ( , | )f δδ Σ x .  By Bayes’ rule, ( , | )f δδ Σ x  is proportional to the product of the prior 

distribution and likelihood, i.e., ( , | ) ( , ) ( | , ) /f f Lδ δδ δ δΣ = Σ Σx x Cδ  where C is a constant.   

In general, ( , | )f δδ Σ x  will not have an analytical solution, and thus deriving inference 

about the moments and other relevant properties of ( , δδ Σ ) conditional on the data is difficult.  

However, Bayesian econometricians have developed a number of Markov Chain Monte 

Carlo (MCMC) procedures to simulate random samples from ( , | )f δδ Σ x  and in the process 

draw inference about the posterior distribution of ( , δδ Σ ). 

 Following Allenby and Lenk (1994), we specify diffuse priors for ( , δδ Σ ) and use a 

Gibbs sampler with an adaptive Metropolis-Hastings component to simulate from 

( , | )f δδ Σ x .  By decomposing the parameter space into disjoint sets and iteratively 

simulating from each set conditionally on the others, the Gibbs sampler generates simulations 

from the unconditional posterior distribution after a sufficiently long burn-in.  The 

implementation details of the algorithm are described in the appendix. 

One further dimension of our estimation approach is worth noting.  Because of the 

large number of households in our data set (N = 20,429) and our desire to account for 

differences in automobile demand across different household types (e.g., single males, two-

adult households with and without children, retired couples), we stratified the sample into 12 

groups based on demographic characteristics and estimated separate models within each 

strata.  In addition to decomposing a computationally burdensome estimation problem on a 

large data set into a series of more manageable estimation problems on smaller data sets, 

stratification allows us to better account for observable and unobservable differences among  

households. 
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c.  Empirical Results 

 

For all 12 strata, we obtain precisely estimated posterior mean values for ( , δδ Σ ).23  

Many of the parameters that are common across the 12 strata vary in magnitude considerably, 

suggesting that there is significant preference heterogeneity across the different 

subpopulations.  We also find that the diagonal elements of δΣ  are generally large, which 

suggests that there is considerable preference heterogeneity within each stratum as well.  The 

latter preference heterogeneity and the highly nonlinear structure of our preference function 

mean that the estimated parameters do not have a simple economic interpretation.  It seems 

more informative to examine the VMT and car-ownership elasticities implied by these 

parameters.  We display these elasticities in Table 4.1, broken down by household and 

automobile types. 

 The first column of Table 4.1 reports short-run VMT elasticities with respect to 

operating costs.  Across all households and cars, our model suggests a mean estimate of -0.69.  

Because gasoline makes up slightly less than half of per mile operating costs, this implies an 

average VMT elasticity with respect to gasoline price of -0.32.  Graham and Glaister’s 

(2002) concluded that past short-run estimates of VMT elasticity with respect to gasoline 

price average -0.15 but are quite sensitive to the data and modeling assumptions employed.  

Across household and different car types, we found elasticities that were higher for families 

with children and owners of older, luxury cars.  The second column of the table reports VMT 

elasticities with respect to income.  On average, we find estimates of around 0.62.  Graham 

and Glaister do not report comparable estimates for VMT, but instead report short-run 

gasoline demand elasticities with respect to income of 0.35 to 0.55.  In the short run, one 

would expect these estimates to be comparable.  This elasticity was highest for families with 

children and owners of new luxury cars and SUVs.   

 The final column of Table 4.1 reports car ownership elasticities with respect to own 

rental price.  For new cars, rental price elasticities should track purchase price elasticities if 

rental and purchase prices vary proportionally.  Our results imply mean elasticities of -0.88 

                                                 
23 Parameter estimates for each of the 12 strata are reported in the appendix.   
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and -1.97 for all and new cars and trucks, respectively.  Luxury cars, large SUVs, and large 

trucks, which have the highest rental prices, have the highest rental price elasticities among 

automobile classes.  These elasticity estimates are generally lower than recent new car 

purchase elasticity estimates from the industrial organization (IO) literature that range in 

magnitude from -3 to -4.5 (e.g., Berry, Levinsohn and Pakes, 1995; Petrin, 2003).  The 

limited cross-sectional variation in our rental price data may play a role in explaining these 

differences.  Berry, Levinsohn, and Pakes (1995), for example, have 20 years of new car data 

at the model level (roughly 200 models per year), while our data set consists of a single cross 

section of new and used cars aggregated to the make/class level (59 new cars, 284 total cars).  

The additional temporal variation in price greatly assists their efforts to reliably identify price 

effects.24  By contrast, Berry, Levinsohn, and Pakes (2004), using a single cross section with 

218 new cars, find lower new car elasticities that are closer in magnitude to ours.25   

 

 
 
5.  Simulation Results 

 

A.  Assumptions Underlying Simulation Dynamics 

 

 The simulation model generates a time path of economic outcomes over 10 years at 

one-year intervals.  As mentioned, the model solves in each period for the market-clearing 

new and used car prices.  The time-profile of equilibria reflects assumptions about income 

growth and automobile technology over the 10-year simulation interval.  We assume that 

household incomes grow at an annual rate of one percent.  In addition, we assume that 

automobile horsepower and weight increase at an annual rate of five percent, which is 

roughly consistent with historical trends.  In our central case we adopt the “Path 1” 

                                                 
24 Similarly, Goldberg (1995) uses five years of new car data and finds elasticities that are comparable to Berry, 
Levinsohn, and Pakes’. 
 
25 We explored the sensitivity of estimates to several alternative specifications and estimation strategies.  For 
example, we experimented with allowing the income coefficient to vary across car classes and age groups, 
restricting a subset of parameters to be fixed across the sample, including alternative specific constants to 
account for unobserved automobile characteristics, and jointly estimating our model with five years of 
aggregate new car data on prices and quantities.  None of these alternatives generated larger or more intuitive 
elasticities than those from our chosen approach. 

 22



assumptions of the National Research Council (2002) regarding improvements in fuel-

economy:  over a 10-year period, such improvements range from 11 percent for compacts to 

20 percent for large SUVs.  As part of a sensitivity analysis below, we adopt the more 

optimistic NAS “Path 3” assumptions regarding growth in fuel-economy.  In all simulations, 

the pre-tax price of gasoline is $1.04 and is taken as exogenous and unchanging over time.26

 

B.  Baseline Simulation 

  

 The baseline simulation offers a reference situation with which we compare the 

outcomes from various gasoline tax policies.  Table 5-1 displays the equilibrium quantities of 

new and used cars under the baseline simulation.  Our reference case overpredicts the size of 

the vehicle fleet by about 8 percent, ranging from 4 percent for midsize cars to 21 percent for 

luxury compacts.  

 

C.  Impacts of Gasoline Tax Increases under Alternative Recycling Methods 

 

 Here we present results from simulations of permanent increases in gasoline taxes.  

We start by focusing on the impacts of a tax-increase of 25 cents per gallon (other tax-

increases are considered below) under the following alternative ways of recycling the 

additional revenues from the tax increase: 

 

-- “flat” recycling:  revenues are returned in equal amounts to every household 
 
-- “income-based” recycling:  revenues are allocated to households according to each 

household’s share of aggregate income 
 
-- “vmt-based” recycling:  revenues are allocated according to each household’s 

share of aggregate vehicle miles traveled 
 

All of these recycling cases are consistent with a situation where the government mails rebate 

checks to households.  Under flat recycling, the value of the rebate check is the same for all 

households; under the other forms of recycling, the value differs across households. 

                                                 
26 Pre-existing federal taxes are $0.185 and average state taxes are $0.225. 
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i.  Aggregate Impacts 

 

Gasoline Consumption 

 

 Table 5-2 presents the impacts of this policy on gasoline consumption.  In the short 

run (year 1), the percentage reduction is about 5.1 percent under flat and income-based 

recycling, and about 4.5 percent under VMT-based recycling.  Compared with other 

recycling methods, VMT-based recycling gives a larger share of gasoline tax revenue to car 

owners, who tend to have larger income elasticities of gasoline use.  As a result, there is a 

larger offsetting income effect on gasoline use under VMT-based recycling than under other 

recycling methods, and the overall reduction in gasoline consumption is smaller. 

 The percentage change in gasoline use is approximately equal to the percentage 

change in miles traveled (VMT) minus the percentage improvement in fuel economy (miles 

per gallon).  The table shows the contributions of these two components.  Most of the 

reduction in gasoline use comes from the reduction in VMT:  there is relatively little change 

in fleetwide fuel economy. 

 In the short run, the major channel for improved fuel economy is an increase in the 

scrapping rate for vehicles with unusually low fuel-economy.  The augmented gasoline tax 

raises per-mile operating costs, which makes vehicles with low fuel economy relatively less 

desirable, causing their demand and prices to fall and their scrap rates to rise.  In the first year 

of the policy, an additional 160,000 used large trucks and large SUVs are scrapped.   Over 

the longer term, average fuel-economy is influenced by changes in fleet-composition 

attributable to increased relative sales of new cars that are more fuel-efficient.  Our 

simulations indicate that the percent increase in fuel-economy is larger in the long run, 

although the fuel-economy improvement still accounts for a small share of the overall 

reduction in gasoline consumption.27      

                                                 
27 As indicated at the beginning of this section, our simulation model specifies an exogenous time-profile for the 
fuel-economy of new cars of each type.  It thus does not allow for endogenous fuel-economy improvements for 
a given car model.  As a result it may understate the economy-wide improvements in fuel economy from a 
gasoline tax. 
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 Table 5-3 summarizes the changes in fleet composition.  On impact, the higher 

gasoline tax occasions a shift away from cars (more cars are scrapped) and, among cars that 

remain in operation, a shift toward used cars (which, on average, are more fuel-efficient).  In 

the long run, the percentage reduction in new cars is smaller.  This is the case because 

(according to our “Path 1” assumptions) new cars become increasingly efficient relative to 

the overall car fleet as time passes. 

 Several prior studies28 suggest that the overall reduction in gasoline consumption 

should be larger in the long run than in the short run, since the fleet-composition (fuel-

economy) channel requires considerable time to take effect.  Interestingly, our simulations 

indicate that the long-run reduction is smaller than the short-run reduction in percentage 

terms.  This occurs because VMT per household falls by a smaller percentage in the long run 

than in the short run (see Table 5-2).  This in turn stems from the fact that although in the 

long run there is a larger percentage reduction in the number of cars owned by the average 

household, there is a smaller percentage reduction in miles traveled.29

   The results in Table 5-2 imply that each percent increase in the price of gasoline leads 

to a reduction of between .25 and .30 percent in the equilibrium demand for gasoline.  It is 

difficult to compare this result with other studies, since other studies do not consider market 

equilibrium for both new and used cars, and do not consider time explicitly.  However, it 

may be noted that Austin and Dinan (2005) report that a 30 cent per gallon increase in the 

gasoline tax would reduce gasoline consumption (by new cars) by 10 percent (cumulatively) 

over a 14-year period.  

 

 Efficiency Costs 

 

 Table 5-4 displays the efficiency cost of gasoline tax increases of 10, 25, and 75 cents 

per gallon.  This cost is the weighted sum of the negative of each household’s equivalent 

variation, where a household’s weight is proportional to its share of the total population.  

                                                                                                                                                       
 
28 Examples are Agras and Chapman (1999), Glaister and Graham (2000), and Johansson and Schipper (1997). 
 
29 In the long run, the cost of gasoline represents a smaller fraction of per-mile operating cost, a reflection of 
both exogenous and endogenous improvements in fleet fuel economy. 
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Here “cost” should be interpreted as a gross measure, since it does not net out the 

environmental or national security benefits stemming from the policy change. 

 Under flat recycling, the (gross) cost per dollar raised is $.16, $.18, and $.24, for 

gasoline tax increases of 10, 25, and 75 cents per gallon, respectively.  The costs under the 

alternative recycling cases are not much different from those in the flat recycling case:  the 

nature of recycling does not much affect the gross costs.  This result requires careful 

interpretation.  Another choice in the recycling decision is whether to return revenues in 

lump-sum form or instead by way of cuts in the marginal rates of prior taxes such as income 

or sales taxes.  Prior studies have shown that returning revenues through marginal rate 

reductions can significantly reduce policy costs, relative to lump-sum recycling.30  Because 

our simulation model does not include prior taxes (except for taxes on gasoline), we can only 

consider recycling through lump-sum transfers, and cannot contrast other aspects of 

recycling.31

   

ii.  Distributional Impacts 

 

 Effects across Income Groups 

 

 Figures 5-1a and 5-1b display the impacts of a 25-cent gasoline tax increase on 

household income groups.32  The distribution of impacts depends crucially on the nature of 

recycling.  Under flat recycling, lower income groups experience a welfare improvement 

from the policy change, while higher income groups suffer a welfare loss.  Here the lower 

income groups receive a share of the tax revenues that is considerably larger than their share 
                                                 
30 See, for example, Goulder et al. (1999) and Parry and Oates (2000). 
 
31 The absence of prior taxes can also affect policy costs.  The direction of the bias from this omission depends 
on the extent to which the commodity receiving the tax increase (gasoline) is a complement or substitute for 
taxed factors of production such as labor and capital.  Previous studies indicate, in particular, that if gasoline is 
an average substitute for leisure, the presence of prior taxes raises the costs of a gasoline tax (or of an increase 
in this tax).  See, for example, Goulder and Williams (2003).  On the other hand, if gasoline is a sufficiently 
weak substitute (or relatively strong complement) for these factors, then the pre-existing taxes imply lower costs 
from a gasoline tax.  West and Williams’ (2004) empirical estimates indicate that gasoline is in fact a significant 
leisure-complement, which suggests that our model may bias upward the cost of a gasoline tax increase.  Their  
study calculates the cost of an incremental increase in the gasoline tax to be about 26 cents, somewhat higher 
than the cost in our simulations. 
 
32 The pattern of impacts across households is similar for the 10-cent and 75-cent gasoline tax increases. 
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of gasoline tax payments.  While policy discussions often refer to the potential regressivity of 

a gasoline tax, these simulations indicate that flat recycling more than fully offsets this 

potential regressivity.   

 Under income-based recycling the pattern of impacts is U-shaped.  In this case the 

middle-income households experience the largest welfare loss.  As indicated in Table 5-5, for 

these households the ratio of miles driven (or gasoline taxes paid) to income is highest; hence 

recycling based on income benefits these households less than other households.  Only the 

very rich experience welfare gains under income-based recycling; these households have the 

lowest ratio of miles traveled (or gasoline tax paid) to income. 

 VMT-based recycling implies a fairly flat pattern of impacts across the income 

distribution, although the welfare losses are greater for higher-income households.  In 

comparison with lower-income households, rich households drive more luxury cars, which 

are relatively less fuel-efficient.  As a result, the ratio of gasoline taxes paid to VMT is 

especially large for richer households, and these households benefit least from VMT-based 

recycling. 

 Table 5-6 decomposes the welfare impacts into the various contributing factors:  the 

change in gasoline price, the transfer (rebate) of gasoline tax revenue, the net capital gain or 

loss associated with policy-induced changes in car prices, and changes in profit to new-car 

producers.  We have assumed that households own shares of new-car profits in proportion to 

their share of benchmark aggregate income. The table makes clear that changes in the 

gasoline price and the transfer are by far the most important sources of the household welfare 

impact.  It also confirms that, depending on the type of recycling involved, the transfer may 

or may not offset the gasoline price impact to a particular household. 

 

 Effects along Other Demographic Dimensions 

 

 Figures 5-2a and 5-2b show VMT and policy impacts by race and income.    The 

figures reveal two main results.  First, income seems to be a more important determinant of 

welfare impact than race:  there is greater variation in welfare impacts across income groups 

than across racial categories.  This reflects the fact that much of the welfare impact is 

determined by VMT, and the differences in VMT across income groups are much larger than 
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the VMT differences across racial groups, after controlling for income (Figure 5-2a).  Second, 

low-income African-American households enjoy the largest gains from flat recycling, while 

high-income African-Americans experience the smallest losses.  This is in keeping with the 

relatively small differences in VMT between low-income and higher-income African-

American households.33

 Figures 5-3a and 5-3b display differences in welfare impacts across states.34   The top 

map displays average VMT per household from the data.  The bottom map exhibits the 

differences in average household welfare impact.  The top and bottom maps are nearly 

identical, indicating that benchmark VMT is a strong predictor of the welfare impact.  

Benchmark VMT seems to be strongly correlated with population density.  Several relatively 

densely populated states – New York, Pennsylvania, New Jersey, and Florida – experience 

the smallest average welfare impact, while many of the relatively sparsely populated states – 

Montana, Idaho, Utah, Oklahoma, Texas, Alabama, Georgia, and South Carolina – suffer the 

largest adverse impacts.  However, population density does not perfectly correlate with 

benchmark VMT or the magnitude of the impact:  some sparsely populated states – 

Wyoming and Nevada – nevertheless have low benchmark VMT and relatively small welfare 

impacts. 

 Table 5-7 shows how impacts differ depending on the employment status of the 

household.  Retirees fare better than younger individuals, as they tend to drive less.  

Households with no children also do better, for the same reason. 

 

 

D.  Sensitivity Analysis:  Faster Technological Change and More Scrapping 

 

                                                 
33 Although not displayed, the same pattern emerges under other forms of recycling:  differences in income 
account for more of the variation of welfare impacts than racial differences do, and the variation in impacts 
between high-income and low-income African-American households is relatively small compared to the 
variation for other households. 
 
34 To generate the results in these figures, we first regressed the household welfare impacts (EVs) from the 
simulation on household characteristics and on the predicted baseline VMT and predicted baseline VMT 
squared.  Next we used the coefficients from the regression, the same set of household characteristics, and 
household baseline VMT from the data (as opposed to predicted VMT) to get a new fitted value of EV for each 
household.  We then aggregated this information by state. 
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 The impacts of gasoline tax increases could well be affected by the rate of technology 

change in automobiles over the next decade.  One aspect of faster technological improvement 

would be speedier growth in the fuel economy of given car models in successive years.35  To 

explore this possibility, we perform an additional simulation allowing for faster 

improvements in fuel economy.  Here we adopt the “Path 3” assumptions from the National 

Research Council (2002) study.  In contrast with the central case, in which fuel economy 

increases by 11 percent for compacts to 20 percent for large SUVs, under this alternative 

scenario the improvements are more than twice as large (see Table 5-8 for details).  The NRC 

study attributes the faster growth of fuel economy to supply-side cost reductions (which in 

turn can be attributed in part to government policies such as subsidies to R&D).  Our 

simulations also express such a scenario.  However, it should be noted that changes in the 

baseline time-profile of fuel-economy can also reflect changes in household preferences.  

Our model cannot capture such demand-side changes, since we assume a stable utility 

function in our econometric estimation.   

 Table 5-8 shows the different implications of the two technology paths.  In the 

baseline, by year 10 average household gasoline consumption is 751.6 gallons in the fast 

technology improvement case.  This is about 3 percent lower than in the central case baseline.  

Fuel-economy (miles per gallon) is about 22 percent higher in the fast-improvement case.  

Average VMT is also higher (by 18 percent), reflecting the lower per-mile cost of driving 

associated with higher fuel economy. 

 In the case with faster baseline fuel-economy improvements, the gasoline tax increase 

induces a smaller long-run percentage reduction in consumption than it does in the central 

case.  This reflects the fact that gasoline occupies a smaller share of the household budget in 

this alternative scenario, implying a smaller income effect from the tax increase.  The 

average long-run welfare impact (EV) is 18 percent smaller under the fast technology growth 

scenario, which is also consistent with gasoline’s smaller budget share.  Thus, the baseline 

time-profile of fuel economy significantly influences the welfare consequences of a gasoline 

                                                 
35 Growth in fleetwide fuel economy has been promoted by the increased production and sale of hybrid 
vehicles.  In our model, hybrid vehicles are merged with conventional cars within given manufacturer-class 
combinations (Toyota compacts).  We are considering splitting out hybrids in future work.  To estimate 
demands for hybrids, we may need to supplement our revealed-preference data with stated-preference 
information, since hybrids were introduced in the automobile fleet in 2001, the year corresponding to our 
benchmark data.  Today they represent about four percent of the compact car fleet. 

 29



tax.  For any given baseline scenario, introducing the 25 cent gasoline tax has a significant 

impact on welfare.  But differences in assumptions about the baseline have larger 

implications for welfare than whether the gasoline tax increase is introduced. 

 We also perform a simulation in which we double increase the scrap elasticity  ηj  to   

-6.0 from its central value of -3.0.  With this change, the gasoline tax causes a somewhat 

larger reduction in gasoline use in the short run, reflecting a higher scrapping rate:  with the 

higher scrap elasticity, the policy change causes 22 percent more cars to be scrapped 

compared with the policy under the central case.  While the higher scrap elasticity implies a 

larger policy impact on gasoline consumption in the short run, it has little influence on the 

policy impact in later years. 

  

 

6.  Conclusions 

  

 This paper has examined the impacts of gasoline tax increases with a model that aims 

to capture simultaneously several elements of the markets that importantly influence the 

supply and demand for gasoline.  We consider together the markets for new, used, and 

scrapped vehicles, as well as the imperfectly competitive nature of the automobile industry.  

Linking the three markets enables us to account for the penetration of the car fleet by new 

cars and thereby assess how the impacts of policy interventions evolve through time.  We 

also address the considerable range of car choices in a fairly high-dimensional discrete 

choice model.  Parameters for the household demand side of the model are estimated 

econometrically using a one-step procedure that integrates individual choices for car 

ownership and miles traveled, thereby yielding consistent welfare measures.  Finally, we 

allow for the considerable heterogeneity among car owners, which enables us to explore the 

distributional impacts of policy changes along many important dimensions. 

 We find that each cent-per-gallon increase in the price of gasoline reduces the 

equilibrium gasoline consumption by about .2 percent.  The reduction in demand mainly 

reflects reduced miles traveled by car owners; shifts in demand from low to high miles-per-

gallon vehicles appear much less important.  The gasoline tax’s marginal excess burden 

(excluding external benefits) per dollar of revenue raised ranges from about $.15 for a 10-
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cent tax-increase to $.25 for a 75-cent increase.  Taking account of revenue-recycling (and 

disregarding external benefits), the impact of a 25-cent gasoline tax increase on the average 

household is about $30 per year (2001 dollars). 

 The distributional impacts of the gasoline tax differ dramatically under the three 

revenue-recycling approaches we considered.  Under flat recycling, the average household in 

each of the bottom four income deciles experiences a welfare gain from a gasoline tax 

increase.  The gain to the average household in the lowest income decile would be equivalent 

to about $125.  This suggests that a single-rebate-check approach to recycling would more 

than eliminate (for the average household within a given income group) the potential 

regressivity of a gasoline tax increase.  On the other hand, if revenues are recycled in 

proportion to income, only very poor households (those in the lowest decile) and very rich 

households (those in the highest) stand to gain.  The different impacts of the various 

recycling methods largely reflect differences across the income distribution in car use (VMT).  

However, household income does not perfectly correlate with VMT and other important 

determinants of the welfare impacts:  controlling for income, we find significant differences 

in impacts across racial categories and regions of residence. 

 The framework presented here has considerable potential to address other 

automobile-related policies, including tightening of CAFE standards and subsidies to 

retirements of low-mileage (or high-polluting) automobiles.  We plan to investigate these 

policies in future work, examining impacts not only on gasoline consumption but on 

automobile-generated pollution as well. 

 Some limitations in our model deserve mention.  It treats the time-path of fuel-

economy for individual car types as exogenous.  In addition, it deals only implicitly (through 

exogenous improvements in fuel-economy) with the advent of cars involving new 

technologies, such as hybrids.  Finally, our estimation of automobile demands is based on 

cross-section data; developing a panel would offer much additional useful information.  We 

will be exploring ways to improve the model along each of these dimensions.  
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Appendix for 
“Distributional and Efficiency Impacts of Increased U.S. Gasoline Taxes” 

 
 
 
A   Data 

 

 Our automobile data set has two main components: (1) a random sample of U.S. 

household’s complete automobile choices from the 2001 National Household Travel Survey 

(NHTS); and (2) new and used automobile price and non-price characteristics from Wards 

Automotive Yearbook, The National Automobile Dealer’s Association (NADA) Used Car Guide, 

and the U.S. Environmental Protection Agency and Department of Energy’s (EPA/DOE) 

fueleconomy.org web site.  We refined and augmented these data with additional information 

from a number of sources summarized in Table 1. 

 The next section discusses the specific data we use from each source in Table 1.  Section 

2 follows with a summary of how we merged the data into our final data set.  We conclude in 

section 3 with a summary statistics from the final data set. 

 

1  Data Sources 

 

1.1  2001 National Household Travel Survey (NHTS) 

 

 Our household automobile choice data comes from the 2001 National Household Travel 

Survey (NHTS), the most recent and comprehensive survey of U.S. automobile demand.  

Sponsored by three agencies within the U.S. Department of Transportation (DOT) and conducted 

between March 2001 and May 2002, the survey collected automobile demand and socio-

demographic data from a random sample of U.S. households.  A random digit dialing protocol 

was initially used to screen and elicit household participants, and follow-up household and 

personal phone surveys as well as written diaries collected all relevant information.  The survey 

response rates ranged from 41.2 percent at the household level to 32.2 percent at the personal 

(household members at least 18 years old) level.  Although somewhat low, these response rates 

are not surprising given the survey’s length and complexity, and the NHTS includes sampling 
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weights that adjust for nonresponse bias.  In total, responses from 26,038 households are 

included in the NHTS.   

With help from DOT staff, we obtained the confidential version of the NHTS data files 

that contained the following information relevant to our analysis: 

 

1) Household income  

2) All automobile holdings by make, model, and year1 

3) Vehicle Miles Traveled (VMT) for each automobile over the past 12 months 

4) Household and individual level socio-demographic data (e.g., household size and 

composition, sex, education, employment status, etc.) 

5) Geographic data (state, Metropolitan Statistical Area (MSA), and zip code) 

 

Although the quality of the NHTS data was generally high, we found it to be deficient in a few 

important dimensions.  About 14 percent of households (3,723 in total) did not supply complete 

income data.  Among those who did, some older households reported incomes that were 

implausibly low in our judgment.  To address these data deficiencies, we first imputed 1999 

Census zip code level median household incomes adjusted to 2001 dollars using the U.S. CPI.  

We then adjusted the incomes of all households with one or more senior citizens (adults 65 and 

above) to be at least the 2001 average Social Security payment for senior citizens ($10,224 per 

senior citizen).  In total, these latter income adjustments affected 1,006 households in our 

sample. 

 Other limitations with the data forced us to drop observations from our analysis.  The 

NHTS data files do not always contain sufficient information to identify all cars or the 

characteristics of cars households drive.  Our treatment of these cars and households depended 

on whether the unidentified cars’ VMTs were more than 1000 miles.  If the unidentified car’s 

VMT was above 1000 miles, the household was dropped from our analysis; otherwise, the 

household was retained and the unidentified car ignored.  2,542 households were dropped from 

our analysis as a result. 

                                                 
1 The survey also collected detailed information on motorcycle and motor home holdings.  Because these vehicles 
generally serve different household purposes than automobiles, we choose to ignore them in our analysis. 
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 A related difficulty arose with households who held autos produced on or before 1983.  

As we discuss below, our automobile price and characteristics data did not cover these older 

autos.  Similar to unidentified autos, our treatment of these older cars and households depended 

on whether the unidentified cars’ VMTs were more than 1000 miles.  If the older car’s VMT was 

above 1000 miles, the household was dropped from our analysis; otherwise, the household was 

retained and the older car ignored.  2,332 households were consequently dropped from our 

analysis. 

 Finally, VMT data was sometimes incomplete or implausible.  The NHTS collected 

annual VMT information through a veriety of channels: 1) direct questioning (i.e., “what was the 

total VMT for this automobile in the past 12 months?”), 2) extrapolations based on changes in 

reported odometer readings over a two month period, and 3) extrapolations based on detailed 

one-day travel diaries.  Based on household responses, the NHTS reports two VMT estimates for 

each automobile: annmile and bestmile.  The former relies exclusively on the direct questioning 

approach to eliciting VMT and the later uses regression techniques and arbitrary judgments to 

combine all three.  Both variables have missing values, but bestmile, because it is based on more 

information, has fewer.  Values for both variables range from 1 to 200,000, but our judgment 

was that estimates below 100 miles or above 60,000 miles were implausible, and therefore we 

recoded them as missing.  In our analysis we use annmile as our VMT measure whenever 

available and bestmile otherwise.  If both are missing, we dropped the corresponding household 

from our analysis. This protocol resulted in us losing an additional 719 households.  We also 

recorded as missing all VMTs for a given household if its average VMT per adult was greater 

than 60,000 miles.  This last step resulted in 16 additional households being dropped.   

 As a result of these cleaning procedures, 20,429 of the original 26,038 households 

remained in our estimation sample.  Our estimation results are therefore based on 78.8 percent of 

the NHTS sample, a relatively large percentage in our view.  To make our usable subsample from 

the NHTS broadly representative of the general population, we adjusted the sampling weights 

based on geographic and socio-demographic criteria accordingly. 

 

1.2  NBER Tax Calculator 
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Because a significant portion of household income is subject to federal, state, and local 

taxation, we used the NBER’s publicly available software package TAXSIM, version 5.1 to 

calculate each household’s after-tax income.  TAXSIM requires several pieces of information as 

input (e.g., tax year, state of residence, marital status, number of children, wages of the primary 

tax filer and his/her spouse, pensions, unemployment compensation), and not all of this 

information was available from the NHTS.  We therefore made the following set of assumptions 

when calculation after tax income: 

 

1) The tax year was taken as the year of the household interview (either 2001 or 2002). 

2) Marital status was derived from the marital status of the main NHTS survey 

respondent.  Our sense was the main NHTS survey respondent was the head of 

household in most cases, but we recognize that the respondent might be any adult 18 

years or older in the household. 

3) In households with more than one working adult, the income of each adult is 

frequently missing; only total household income is reported. In these cases, we 

assume that the tax filer and spouse’s income are 60 and 40 percent of total household 

income, respectively. 

4) If both tax filer and his/her spouse are 65 and above, their total income is treated as 

pensions. 

5) If all adults in the household are unemployed but less than 65, their total income is 

treated as unemployment compensation.  
 

1.3 Wards Automotive Yearbook 

 

The 1983-2002 Wards Automobile Yearbook provided most of the car and truck 

characteristics used in our analysis.  Characteristics obtained from Wards include horsepower, 

weight, length, height, width, wheelbase, and city and highway miles per gallon (MPG) by make, 

model, and year for all cars and trucks sold during this time period. The data was scanned into 

electronic format and carefully checked for errors and inconsistencies.  Some missing 

characteristics were imputed through regression analysis.  
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1.4 NADA Used Car Guide 

 

The National Automobile Dealer’s Association (NADA) publishes monthly the NADA Used Car 

Guide, a detailed summary of new and used car and truck prices.  We obtained from NADA the 

April 2001 and 2002 editions in electronic format.  Each edition contained the manufacturer’s 

suggested retail price and current resale price (a weighted average of recent transaction prices) 

for all new and used cars and trucks dating back to 1983.  After deflating 2002 resale car and 

truck prices to 2001 dollars with the CPI, we differenced the 2001 and 2002 resale prices 

( 2001 2002(  and , respectively)j jP P ) for car j to construct estimates of real depreciation Dj for a 

particular make, model, and year, i.e., 

 
2001 2002= /(1 )j j jD P P CPI− + . 

 

Although we generally found estimates consistent with a 20 percent real depreciation rate and 

that varied in intuitive ways, careful inspection revealed that some missing and implausible 

estimates arose.  In these cases, regression analysis was used to generate imputations. 

 

1.5 EPA/DOE’s Fueleconomy.org Web Site 

 

The U.S. Environmental Protection Agency (EPA) and Department of Energy (DOE) 

jointly sponsor the web site fueleconomy.org which contains city and highway miles per gallon 

(MPG) data by make, model, and year for automobiles sold in the U.S. between 1985 to 2002. 

This data was helpful in checking for inconsistencies with the Wards’ MPG data.  The site also 

contains information on EPA/DOE car classification which was helpful for aggregating similar 

autos in our analysis.  

 

1.6 Maintenance and Repair Costs 

 

After numerous discussions with academic and government transportation researchers, 

we could not identify a comprehensive and up-to-date data set of average maintenance and repair 

(M&R) costs for new and used automobiles.  The best data on M&R costs we could find came 

http://fueleconomy.org/
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from Edmunds.com and AAA.  For recent makes and models, the Edmunds.com web site reports 

ownership cost estimates (called the “True Cost to Own”) for the initial five years of a car’s use 

that contain separate M&R components.  The maintenance component includes both scheduled 

(i.e., factory recommended items) and unscheduled (tires, brakes, battery, etc.) maintenance. 

Repair represents average repair costs not covered by the manufacturer’s warranty. Both the 

repair and maintenance estimates assume 15,000 miles driven per year.  Similarly, AAA annually 

reports per mile M&R costs (defined similar to Edmunds) for four representative new 

automobiles. 

Due to the limited scope of the Edmunds.com and AAA data, we were forced to make 

strong and somewhat arbitrary judgments about how M&R costs in general relate to our limited 

set of estimates.  Both the Edmunds’ and AAA data consistently suggested that per mile M&R 

costs were roughly proportional to per mile gasoline costs.  In general, new autos had slightly 

lower M&R costs relative to their gas costs, while older pre-1995 autos had slightly higher costs.  

We therefore decided to set the per mile M&R costs to 90 percent of per mile gas costs for 2001-

2002 autos, 95 percent for 1999-2000 autos, 100 percent for 1995-1998 autos, 105 percent for 

1990-1994 autos, and 110 percent for pre-1990 autos. 

 

1.7 ACCRA Regional Price Data 

 

Our gas price and regional cost of living index (COLI) data came for the American 

Chamber of Commerce’s 2000-2002 ACCRA data base.  Every quarter, the American Chamber 

of Commerce publishes per-gallon gas prices and summary COLI indexes for over 300 

Metropolitan Statistical Areas (MSAs) and rural communities.  This geographic resolution 

permitted us to link fairly precise measures of gasoline prices and regional COLIs to each 

household in the NHTS.  To account for the relatively small number of missing prices, regression 

techniques were again used. 

 

1.8  NAIC & State Farm Insurance Data 

 

We develop insurance cost estimates that vary by state, vehicle class and year based on 

published data from the National Association of Insurance Commissioners (NAIC) and 
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unpublished data from the State Farm Insurance Company.  NAIC publishes periodically state 

level average insurance expenditures and premiums for personal automobile insurance, and we 

use their 2001 published estimates.  State Farm supplied us with unpublished adjustment factors 

that allowed us to scale these estimates upwards or downwards to account for differences in 

automotive class and age.   

 

1.9   FHWA’s Auto Registration Fees Data 

 

The Federal Highway Administration (FHWA) periodically collects and publishes state 

level automotive registration fee data. We use their 2001 data that we accessed on June 1, 2004 

from the web at http://www.fhwa.dot.gov/ohim/hwytaxes/2001/pt11.htm.  Although useful in 

terms of identifying differences in registration fees across states, the data is limiting in the sense 

that it does not contain information on new and used car taxes or the costs of environmental 

emissions testing. 

 

2  Merging the Alternative Data Sources into the Final Data Set 

 

2.1 Merging the Car Characteristics & Constructing Aggregate Automobiles 

 

As discussed above, our new and used car prices and characteristics come from three 

primary sources – Wards, NADA, and EPA/DOE.  Merging these data sources together proved 

challenging because no common vehicle identification code was present in each data set and the 

levels of coverage and aggregation for each make, model, and year varied considerably across 

the data sets.2  Moreover, the description of automobiles in the NHTS is highly aggregated – we 

only know the make, model, and year of a given automobile,3 and nothing about its engine size 

                                                 
2 An example about the nature of the problem we confronted may be instructive.  Consider a 1995 Honda Civic.  In 
one data set, this make, model, and year triplet might be reported as two separate vehicles – a 1995 Honda Civic 
Coupe and a 1995 Honda Civic Sedan.  In another data set it might be reported as three vehicles – the 1995 Honda 
Civic CRX, the 1995 Honda Civic DX, and the 1995 Honda Civic S.  In the third data set it may be reported as four 
vehicles - the 1995 Honda Civic CRX 2 Door, the 1995 Honda Civic CRX 4 Door, the 1995 Honda Civic DX 
manual, and the 1995 Honda Civic DX automatic.  Notice that none of the car descriptions across the three data sets 
match perfectly.  They not only differ in terms of their degrees of aggregation but also in terms of their coverage. 
3 In some cases the NHTS does not even report the specific model a household owns but rather a group of models 
that contains the specific model owned.  In general the models fell within a common class (e.g., the Volkswagon 
Golf and Cabriolet).  This data limitation required further aggregation across automobile models. 

http://www.fhwa.dot.gov/ohim/hwytaxes/2001/pt11.htm
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(e.g., 4 or 6 cylinders), transmission (automatic or manual), or body shape (coupe, sedan, 

hatchback, or wagon).  To address these data limitations, we separately collapsed the price and 

non-price characteristics for all vehicles with a common make, model, and year into a single 

vector of characteristics using an unweighted geometric mean formula before merging the 

alternative data sets.  Once this initial aggregation was performed, merging the three data sets by 

common make, model, and year was feasible, although regression analysis was necessary to fill 

in a relatively small number of missing values.  One limitation with the merge was that although 

Wards and NADA had coverage for the same years (1983-2002), the EPA/DOE’s coverage was 

only from 1985 to 2002.  Since only the MPG and class variables from the EPA/DOE data set 

were used in our final analysis and the Wards data also contained MPG estimates, we relied 

exclusively on Wards’ MPG data and assumed the car classes for particular makes and models in 

1985 were the same in 1983 and 1984.  

 After the merge was completed, roughly 4,500 distinct make, model, and year 

combinations remained in our data set.  Including such a relatively large number of choice 

alternatives in our econometric model was not feasible and thus additional aggregation was 

required.  We therefore stratified cars into seven make categories (Ford, Chrysler Daimler, GM, 

Honda, Toyota, other East Asian, and European), ten class categories (non-luxury compact, non-

luxury midsize, non-luxury fullsize, luxury compact, luxury midsize/fullsize, small truck, large 

truck, small SUV, large SUV/van, and minivan),4 and five age categories (’01-02, ’99-’00, ’95-

‘98, ’90-’94, and ’83-’89).  We used a weighted geometric mean formula to aggregate price and 

non-price characteristics within each make, class, and age category, where the weights were 

proportional to the holdings frequencies in the NHTS.5  This approach to aggregation resulted in 

a total of 284 composite cars being generated.6   

 

                                                 
4 Compacts with manufacturer’s suggested retail price (MSRP) greater than $31,000 (in $2001 $s) were treated as 
luxury automobiles.  Similarly, midsize and fullsize autos with MSRPs greater than $35,000 were treated as luxury 
autos.  Large trucks and SUVs were assumed to have curbside weights greater than 4,000 and 4,250 pounds, 
respectively. 
5 Using the simple frequency weights from the NHTS implied that most make, model, and year combinations did not 
enter into the aggregate autos.  To avoid this we “smooth” the weights as follows.  One-third of the weight for a 
particular make/model/year combination remained with the specific make/model/year, another third was allocated 
evenly across years where similar makes and models were produced, and the final third was distributed evenly 
across similar makes and classes within the particular year the car was produced.  The sum of these “smoothed” 
weights is the weight used to construct aggregate cars.   
6 Note that 66 of the possible 350 make, class, and age strata had no cars or trucks in them and were not included in 
our analysis. 
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Table 1 

Data Sources 

Source Description Main variables 

NHTS Federal Highway Administration’s 
(FHWA) 2001 National Household 
Travel Survey, confidential files 

Demographic & geographic household 
characteristics, automobile characteristics 
(e.g., make, model, year, VMT) 

NBER  TAXSIM, version 5.1 Federal tax, state tax, & FICA for every 
household in NHTS 
 

Ward’s Ward’s 2000-2002 Automotive Yearbook Car characteristics (e.g., horsepower, 
length, weight, height, width, wheelbase) 
for 1979-2002 make/models 
 

EPA/DOE Department of Energy & Environmental 
Protection Agency’s 
www.fueleconomy.org web site 

EPA city & highway MPGs, car class, 
engine size (liters, cylinders) for 1985-2002 
make/models (accessed on June 1, 2004) 
 

NADA 2001 & 2002 National Automobile 
Dealers’ Association Used Car Guide  

Used car prices and Manufacture’s 
suggested retail prices (MSRP) for all 
1982-2002 make/models in April & 
December of 2001-2002 
 

Edmunds.com 
and AAA 

Edmunds “True Cost to Own” data 
accessed at  http://www.edmunds.com, 
and AAA’s “Your Driving Costs” annual 
publication, 1990-present 

Maintenance & repair data  (accessed at 
Edmunds.com on June 15, 2004) 

ACCRA American Chamber of  Commerce 
Researchers Association’s Regional Cost 
of Living Index  

2001-2002 composite cost of living & gas 
price indexes by metropolitan statistical 
area (MSA) 
 

NAIC 
 

National Association of Insurance 
Commissioners’ 2001 State Average 
Expenditures & Premiums for Personal 
Automobile Insurance 

2001 average state level insurance 
expenditures 

State Farm Personal communication with State Farm 
Insurance’s national public relations 
office 
 

Adjustment factors for vehicle class & year 
from State Farm 

FHWA Federal Highway Administration, Office 
of Highway Policy Information’s web 
site, 
http://www.fhwa.dot.gov/policy/ohpi/  
 

2001 State level auto registration fees 
(accessed on June 1, 2004) 

 
 

 
 

 

http://www.fueleconomy.org/
http://www.edmunds.com/
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B  Demand Estimation 

 

1 Estimation Algorithm 

 

 Following Allenby and Lenk (1994), we specify diffuse priors for ( , δδ Σ ) and use a 

Gibbs sampler with an adaptive Metropolis-Hastings component to simulate from ( , | )f δδ Σ x .  

By decomposing the parameter space into disjoint sets and iteratively simulating each set 

conditionally on the others, the Gibbs sampler generates simulations from the unconditional 

posterior distribution after a sufficiently long burn-in.   

We assume the following diffuse priors for δ  and δΣ : 

 

(1a) 
~ ( , )
~ ( , ),

FP
k

k

N I
IW k Iδ

δ δ τ
Σ

 

 

where N(·) and IW(·) denote the multivariate normal and inverse Wishart distributions, 

respectively, FPδ  are the fixed parameter maximum likelihood estimates, τ  is a scalar chosen 

such that 1/τ  approaches zero, k is the dimension of δ , and Ik is a k-dimensional identity matrix.  

These priors, in combination with our assumed data generating process, imply the following 

conditional posterior distributions for δ  and δΣ  as well as the individual specific iδ : 
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where ( | )i i iL δx  is the conditional likelihood function from equation (6) for individual i, ( )n ⋅  is 

the normal density function, and  
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 The Gibbs sampling algorithm proceeds by iteratively drawing from the conditional 

distributions in (2a), with each draw being made conditional on the remaining parameters’ most 

recent draws.  As Train (2003) describes, simulating from the multivariate normal and inverse 

Wishert distributions is relatively straightforward.  However, simulating from iδ ’s posterior 

distribution is more complex and requires an adaptive Metropolis-Hastings algorithm (Chib and 

Greenberg, 1995).  Thus iteration s of the Gibbs sampler involves the following steps: 

 

1) Simulate sδ  from 1 1( , / )s sN B Nδ
− −Σ .  To initialize the algorithm, set 0

kkIδΣ =  and 

0 0 ,  FP
i B iδ δ= = ∀ . 

2) Simulate s
δΣ  from ,( ) /( )s

kIW k N kI NS k N⎡ ⎤+ + +⎣ ⎦  where 

1 1 1( ) ( )s s s s s
i i

i
S T δ δ δ δ− − −= − −∑ T .  

3) Simulate s
iδ  for each observation using one iteration from the following Metropolis-

Hastings algorithm: 

a. For each observation, simulate a candidate vector s
iδ  from 1 1( , )s s s

iN r δδ − − Σ , 

where rs-1 is a constant.  To initialize the sequence, set r0=0.1. 

b. For each observation, construct the following statistic: 

1 1

( | ) ( | , ) .
( | ) ( | , )

s s s s
s i i i
i s s s s

i i i

l n
l n

δ

δ

δ δ δχ
δ δ δ− −

Σ
=

Σ
x

x
 

If s s
i iUχ ≥  where s

iU  is a uniform random draw, accept the candidate random 

parameters, i.e., s s
i iδ δ= .   Otherwise, set 1s s

i iδ δ −= . 

c. Gelman et al. (1995) argue that the Metropolis-Hastings algorithm for the 

normal distribution is most efficient if the acceptance rate of candidate 

parameters averages between 0.23 and 0.44.  Therefore, we set rs=(1.01)rs-1 if 

the sample’s proportion of accepted candidate parameter values is less than 

0.3.  Otherwise, set rs=(0.99)rs-1. 

4) Iterate.  
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After a sufficiently long burn-in, this algorithm generates random draws from the posterior 

distributions of iδ , δ , and δΣ .  In practice, the burn-in length necessary to achieve convergence 

(i.e., random draws from the posterior distributions) is difficult to ascertain.  However, our 

experience has been that the Gibbs sampler algorithm is relatively fast even in our large choice 

set application, and thus the analyst can cheaply add burn-in iterations if convergence is in doubt.  

Finally, because the Gibbs sampler induces serial correlation in iδ , δ , and δΣ , we only use each 

10th simulation after the burn-in to construct distributional summary statistics and welfare 

measures. 

Due to the large number of households in our data set (N = 20,429) and our desire to 

account for differences in automobile demand across different household types, we stratified the 

sample into 12 different groups based on demographic characteristics and estimated separate 

models within each strata.  The stratification criteria and resulting strata sizes are summarized in 

Table 1.  

 

2 Empirical Results 

 

All posterior mean and corresponding variance parameter estimates for the 12 different 

strata are summarized in Tables 2 through 5.  These estimates were generated with a total of 

40,000 iterations of our Gibbs sampler estimation algorithm where we treated the first 30,000 

iterations as burn-in and used every 10th iteration thereafter to construct the reported estimates. 
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Table 1a 

Strata Definitions 
   

Strata Initial Size Description 
   
1 1167 1 male adult, no children, not retired 
2 1609 1 female adult, no children, not retired 
3 2096 1 adult, no children, retired 
4 1450 2+ adults w/ average age ≤ 35, no children, not retired 
5 1722 2+ adults w/ average age > 35 & ≤ 50, no children, not retired 
6 1846 2+ adults w/ average age > 50, no children, not retired 
7 1897 2+ adults w/ average age ≤ 67, no children, retired 
8 1730 2+ adults w/ average age > 67, no children, retired 
9 1777 1+ adults w/ youngest child < 3 years old 
10 1562 1+ adults w/ youngest child 3-6 years old 
11 1765 1+ adults w/ youngest child 7-11 years old 
12 1808 1+ adults w/ youngest child 12-17 years old 

Total 20429  
   
Adults are at least 18 years old.  Unweighted geometric mean formula used to calculate average adult age. 
Retirement status is self-reported.  Cleaned size results from dropping households that have more cars than adults + 
1 or that can not afford cars they are observed to purchase. 
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Table 2a 

Posterior Mean Parameter Estimates – Strata 1-6 
             

 Strata #1 #2 #3 #4 #5 #6 
 Mean St.Er. Mean St.Er. Mean St.Er. Mean St.Er. Mean St.Er. Mean St.Er. 
α  parameter     
  Age category #1 – 2001-02 1.95 0.11 1.99 0.05 1.98 0.08 2.34 0.05 2.25 0.06 2.35 0.05 
  Age category #2 – 1999-00 2.18 0.08 2.14 0.06 2.11 0.07 2.43 0.05 2.30 0.06 2.45 0.05 
  Age category #3 – 1995-98 2.39 0.07 2.29 0.08 2.28 0.08 2.51 0.04 2.30 0.04 2.51 0.04 
  Age category #4 – 1990-94 2.16 0.06 2.04 0.04 1.97 0.06 2.20 0.05 2.13 0.05 2.16 0.04 
  Age category #5 – 1983-89 1.66 0.04 1.37 0.10 1.46 0.05 1.41 0.07 1.54 0.09 1.52 0.07 
  Horsepower (HP) / weight -0.08 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.02 0.00 0.00 0.00 
  (HP / weight)*(avg adult age) -0.36 0.65 -7.58 0.52 -6.74 0.37 -5.56 0.77 -6.60 0.56 -4.62 0.46 
  # of females - - - - -0.46 0.05 -0.09 0.11 -0.02 0.06 -0.31 0.09 
  # of workers - - - - - - 0.08 0.07 0.21 0.06 0.39 0.04 
β  parameter             
  Compact 1.56 0.04 1.43 0.05 1.54 0.03 1.57 0.07 1.77 0.03 1.81 0.04 
  Luxury compact 2.74 0.16 2.43 0.09 3.37 0.10 2.32 0.13 2.93 0.07 2.07 0.04 
  Midsize 1.67 0.06 1.58 0.03 1.44 0.07 1.77 0.05 1.77 0.04 1.64 0.04 
  Fullsize 2.25 0.15 2.01 0.05 1.36 0.04 2.25 0.16 1.89 0.05 1.79 0.06 
  Luxury midsize/fullsize 2.79 0.11 2.71 0.13 1.53 0.05 2.81 0.17 2.12 0.06 1.74 0.06 
  Small SUV 2.18 0.06 2.59 0.07 2.37 0.06 1.94 0.10 1.86 0.05 1.89 0.05 
  Large SUV/van 1.99 0.07 2.19 0.07 2.13 0.09 1.89 0.06 1.78 0.08 1.56 0.04 
  Small truck 1.91 0.06 3.01 0.06 2.85 0.07 2.14 0.06 2.00 0.06 1.92 0.07 
  Large truck 1.35 0.04 2.98 0.10 1.75 0.07 1.72 0.08 1.52 0.03 1.51 0.04 
  Minivan 2.75 0.09 2.95 0.08 3.11 0.10 2.92 0.11 2.00 0.04 2.04 0.07 
λ  parameter             
  Constant -4.33 0.17 -3.54 0.04 -3.26 0.06 -3.23 0.04 -3.42 0.05 -3.58 0.04 
τ  parameter             
  Luxury compact -6.81 0.20 -4.80 0.11 -4.86 0.09 -7.32 0.17 -7.19 0.17 -5.40 0.14 
  Midsize -3.84 0.18 -1.22 0.14 -0.72 0.08 -2.90 0.14 -2.65 0.10 -2.56 0.14 
  Fullsize -2.54 0.15 -2.83 0.24 -1.29 0.11 -4.86 0.16 -4.07 0.10 -2.54 0.18 
  Luxury midsize/fullsize -4.54 0.22 -3.79 0.19 -2.37 0.12 -5.90 0.17 -5.45 0.11 -3.44 0.19 
  Small SUV -6.49 0.14 -4.91 0.19 -3.56 0.10 -5.09 0.23 -5.36 0.11 -5.95 0.08 
  Large SUV/van -2.62 0.19 -4.81 0.17 -4.56 0.21 -3.93 0.24 -4.29 0.10 -3.49 0.11 
  Small truck -4.59 0.16 -5.41 0.09 -4.64 0.08 -4.58 0.19 -4.74 0.13 -4.74 0.22 
  Large truck -0.52 0.12 -2.90 0.13 -2.38 0.17 -2.01 0.10 -1.11 0.11 -0.41 0.11 
  Minivan -6.89 0.16 -5.82 0.19 -6.29 0.18 -7.34 0.10 -7.02 0.12 -6.15 0.11 
  Ford -4.92 0.13 -4.09 0.13 -3.89 0.10 -5.27 0.23 -4.93 0.27 -4.36 0.16 
  Chrysler -6.70 0.23 -5.76 0.16 -6.02 0.29 -6.48 0.14 -6.22 0.23 -5.81 0.12 
  GM -4.50 0.25 -2.62 0.08 -2.67 0.12 -4.52 0.18 -3.65 0.18 -3.17 0.14 
  Honda -4.37 0.08 -3.99 0.12 -6.24 0.07 -4.76 0.20 -6.31 0.23 -6.25 0.09 
  Toyota -6.04 0.17 -4.24 0.14 -5.20 0.10 -7.38 0.15 -7.39 0.11 -5.82 0.21 
  Other East Asian -6.19 0.25 -5.21 0.10 -6.09 0.13 -5.72 0.24 -6.53 0.12 -7.24 0.12 
  European -7.52 0.16 -7.03 0.17 -7.87 0.17 -7.91 0.24 -9.47 0.14 -8.48 0.23 
  Age category #1 – 2001-02** -3.99 0.10 -1.31 0.06 -3.67 0.09 -2.99 0.13 -2.45 0.15 -3.02 0.11 
  Age category #2 – 1999-00** -2.16 0.10 -0.99 0.07 -3.57 0.09 -1.88 0.10 -1.16 0.13 -2.56 0.11 
  Age category #3 – 1995-98** -4.18 0.11 -3.48 0.08 -3.50 0.16 -4.83 0.14 -5.04 0.12 -4.24 0.10 
  Age category #4 – 1990-94** -5.08 0.12 -4.61 0.18 -4.16 0.12 -3.87 0.11 -3.91 0.16 -5.03 0.11 
  Weight / 100** -0.14 0.00 -0.16 0.01 -0.19 0.00 -0.15 0.00 -0.13 0.00 -0.15 0.00 
  Wheelbase / 100** -5.14 0.16 -6.43 0.12 -5.23 0.26 -5.49 0.19 -5.76 0.16 -5.42 0.12 
  HP / weight** -0.21 0.01 -0.16 0.01 -0.16 0.01 -0.19 0.01 -0.18 0.01 -0.20 0.01 
φ  parameter             
  MSA < 250k 0.06 0.18 0.24 0.17 0.13 0.09 0.33 0.14 1.30 0.10 -0.19 0.09 
  MSA < 500k & ≥ 250k 1.98 0.20 2.45 0.17 2.29 0.09 2.42 0.10 1.81 0.09 1.86 0.12 
  MSA < 1m & ≥ 500k 0.70 0.12 1.41 0.09 0.46 0.08 1.67 0.11 2.46 0.12 1.26 0.14 
  MSA < 3m & ≥ 1m 2.36 0.15 1.40 0.13 0.90 0.13 2.04 0.23 2.63 0.18 2.38 0.10 
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  MSA ≥ 3m 4.14 0.14 2.94 0.18 2.54 0.08 3.29 0.13 3.79 0.16 4.64 0.13 
  White respondent 2.85 0.13 1.64 0.08 1.88 0.11 0.82 0.11 0.58 0.08 4.25 0.18 
  HS diplomas per adult 6.35 0.17 3.09 0.14 0.74 0.08 5.08 0.21 6.21 0.16 5.92 0.11 
  4-yr college deg. per adult -0.62 0.13 -0.40 0.11 -1.30 0.06 -0.36 0.17 -0.42 0.12 -0.04 0.07 
  Average adult age 2.35 0.24 4.51 0.08 4.39 0.18 -0.38 0.24 1.66 0.23 1.77 0.15 
Other parameters             
  *μ  1.15 0.02 0.77 0.02 0.64 0.02 0.98 0.02 1.18 0.02 1.34 0.02 
  *σ  -0.04 0.08 -0.27 0.09 -0.77 0.06 1.07 0.05 0.70 0.05 0.44 0.06 
             

All estimates generated with 40,000 iterations of the Gibbs sampling algorithm.  The first 30,000 iterations were discarded as burn-in, and 
every 10th iteration thereafter was used to construct the reported estimates. 
** For the tau parameter, weight wheelbase, and hp / weight are restricted to be positive.  Also, the age dummies are restricted to be positive 
and monotonically increasing in the newness of the car.  That is, the age coefficient for a car produced between 1990 and 1994 is exp(βage category 

#4), whereas the age coefficient for a car produced in 2000 or 2001 is exp(βage category #4 + βage category #3 + βage category #2 + βage category #1). 



 A-17

 
Table 3a 

Posterior Mean Parameter Estimates – Strata 7-12 
             

 Strata #7 #8 #9 #10 #11 #12 
 Mean St.Er. Mean St.Er. Mean St.Er. Mean St.Er. Mean St.Er. Mean St.Er. 
α  parameter             
  Age category #1 – 2001-02 2.17 0.06 2.32 0.07 1.81 0.07 1.68 0.06 1.44 0.07 1.35 0.18 
  Age category #2 – 1999-00 2.17 0.06 2.36 0.05 1.90 0.07 1.83 0.12 1.56 0.07 1.40 0.18 
  Age category #3 – 1995-98 2.24 0.06 2.45 0.05 2.00 0.05 2.00 0.11 1.72 0.05 1.49 0.16 
  Age category #4 – 1990-94 1.89 0.06 2.11 0.04 1.69 0.05 1.72 0.10 1.48 0.05 1.27 0.16 
  Age category #5 – 1983-89 1.23 0.07 1.45 0.05 0.94 0.09 1.15 0.11 0.93 0.05 0.79 0.15 
  Horsepower (HP) / weight 0.02 0.01 0.01 0.01 -0.01 0.00 0.01 0.00 0.02 0.00 0.02 0.01 
  (HP / weight)*(avg adult age) -3.67 0.69 -4.93 0.98 -0.89 0.55 -8.58 0.53 -4.43 0.60 -2.32 0.47 
  # of females -0.09 0.07 -0.29 0.08 0.34 0.08 0.26 0.19 0.19 0.10 -0.01 0.05 
  # of workers - - - - 0.68 0.05 0.44 0.08 0.64 0.09 0.56 0.11 
  # of kids ≤ 17 - - - - 0.46 0.06 -0.06 0.07 0.60 0.09 0.48 0.12 
  # of kids ≤ 11 - - - - 0.09 0.07 0.56 0.09 -0.24 0.08 - - 
  # of kids ≤ 6 - - - - -0.26 0.07 -0.42 0.16 - - - - 
  # of kids ≤ 2 - - - - -0.31 0.08 - - - - - - 
β  parameter             
  Compact 2.01 0.04 1.92 0.06 1.82 0.03 1.86 0.03 1.99 0.03 1.89 0.04 
  Luxury compact 2.47 0.07 2.48 0.09 2.88 0.07 2.82 0.08 3.19 0.09 2.99 0.07 
  Midsize 1.89 0.06 1.45 0.05 1.91 0.04 1.98 0.05 2.05 0.05 1.98 0.05 
  Fullsize 1.85 0.04 1.36 0.04 2.06 0.11 2.17 0.05 2.25 0.08 2.05 0.06 
  Luxury midsize/fullsize 2.00 0.06 1.33 0.03 2.71 0.07 2.74 0.14 2.77 0.11 2.56 0.06 
  Small SUV 2.07 0.08 2.50 0.09 1.93 0.04 2.17 0.06 2.33 0.05 2.02 0.04 
  Large SUV/van 1.73 0.04 1.98 0.06 1.70 0.04 1.70 0.06 1.68 0.05 1.60 0.04 
  Small truck 2.18 0.03 2.50 0.09 2.41 0.05 2.30 0.05 2.30 0.05 2.34 0.06 
  Large truck 1.64 0.03 1.71 0.07 1.70 0.05 1.65 0.05 1.65 0.05 1.66 0.06 
  Minivan 2.03 0.05 1.84 0.08 1.79 0.05 1.85 0.04 1.87 0.03 1.85 0.08 
λ  parameter             
  Constant -3.31 0.05 -3.66 0.13 -3.13 0.06 -3.02 0.06 -3.26 0.04 -3.24 0.04 
τ  parameter             
  Luxury compact -3.98 0.20 -7.31 0.11 -5.23 0.20 -5.94 0.18 -4.24 0.29 -3.65 0.16 
  Midsize -0.93 0.15 -1.51 0.14 -1.61 0.13 -1.87 0.11 -2.01 0.14 -1.97 0.14 
  Fullsize -0.84 0.11 0.07 0.16 -2.73 0.12 -2.41 0.09 -2.65 0.17 -2.39 0.12 
  Luxury midsize/fullsize -1.67 0.12 -3.05 0.28 -4.08 0.29 -3.53 0.18 -4.13 0.32 -3.28 0.10 
  Small SUV -4.78 0.07 -7.18 0.29 -4.65 0.25 -3.06 0.14 -3.22 0.17 -3.02 0.10 
  Large SUV/van -2.85 0.12 -4.06 0.08 -1.70 0.16 -1.83 0.19 -1.81 0.16 -2.16 0.11 
  Small truck -2.82 0.11 -4.71 0.14 -3.21 0.30 -2.72 0.08 -3.37 0.25 -2.93 0.15 
  Large truck -0.26 0.07 -1.93 0.11 -1.45 0.14 -1.02 0.10 -1.40 0.08 -0.83 0.12 
  Minivan -3.26 0.11 -5.38 0.10 -2.01 0.21 -1.61 0.09 -1.66 0.10 -2.91 0.11 
  Ford -1.96 0.19 -3.95 0.12 -2.93 0.18 -3.36 0.10 -2.77 0.16 -1.28 0.13 
  Chrysler -4.03 0.12 -6.33 0.20 -3.67 0.16 -4.03 0.08 -3.46 0.11 -2.37 0.12 
  GM -0.72 0.12 -1.82 0.11 -2.46 0.15 -2.88 0.10 -2.55 0.11 -0.94 0.17 
  Honda -3.71 0.15 -6.90 0.16 -3.80 0.15 -4.90 0.12 -4.57 0.21 -2.93 0.18 
  Toyota -3.94 0.11 -7.49 0.25 -4.94 0.13 -5.44 0.12 -4.99 0.10 -3.03 0.15 
  Other East Asian -4.85 0.15 -7.68 0.21 -4.10 0.13 -4.97 0.18 -4.69 0.14 -3.04 0.17 
  European -5.39 0.16 -8.21 0.07 -6.51 0.20 -6.75 0.15 -6.40 0.43 -5.79 0.18 
  Age category #1 – 2001-02** -2.02 0.10 -2.90 0.16 -1.63 0.07 -2.51 0.14 -1.97 0.07 -1.94 0.19 
  Age category #2 – 1999-00** -1.69 0.15 -2.31 0.13 -2.56 0.14 -1.39 0.10 -2.03 0.13 -1.46 0.15 
  Age category #3 – 1995-98** -2.40 0.15 -3.23 0.08 -2.50 0.10 -3.04 0.09 -2.16 0.14 -2.71 0.09 
  Age category #4 – 1990-94** -1.61 0.08 -3.47 0.10 -2.89 0.06 -3.14 0.10 -1.92 0.12 -3.56 0.11 
  Weight / 100** -0.08 0.00 -0.12 0.00 -0.08 0.00 -0.08 0.00 -0.08 0.00 -0.09 0.00 
  Wheelbase / 100** -3.01 0.06 -4.50 0.13 -3.68 0.15 -3.64 0.10 -3.45 0.08 -3.47 0.14 
  HP / weight** -0.16 0.00 -0.28 0.01 -0.20 0.01 -0.15 0.01 -0.18 0.01 -0.17 0.01 
φ  parameter             
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  MSA < 250k -0.45 0.11 -0.51 0.09 0.94 0.12 1.36 0.15 1.12 0.11 1.09 0.23 
  MSA < 500k & ≥ 250k 1.29 0.10 2.45 0.08 1.25 0.07 1.26 0.28 1.11 0.29 0.51 0.24 
  MSA < 1m & ≥ 500k 0.44 0.10 0.48 0.17 1.20 0.13 1.74 0.13 1.69 0.09 1.77 0.23 
  MSA < 3m & ≥ 1m 1.72 0.06 0.98 0.10 1.62 0.08 2.37 0.13 2.12 0.13 1.77 0.09 
  MSA ≥ 3m 2.28 0.07 1.61 0.06 2.72 0.08 2.81 0.11 3.03 0.08 2.48 0.13 
  White respondent 3.08 0.14 3.52 0.07 1.58 0.13 1.81 0.07 1.41 0.08 1.53 0.15 
  HS diplomas per adult 3.15 0.12 2.95 0.22 3.67 0.18 2.04 0.09 2.60 0.15 4.09 0.15 
  4-yr college deg. per adult -1.59 0.17 -0.80 0.09 -0.86 0.16 -0.86 0.16 0.04 0.08 -1.10 0.10 
  Average adult age 5.80 0.31 5.73 0.43 4.98 0.37 3.97 0.26 3.44 0.19 3.60 0.16 
Other parameters             
  *μ  0.85 0.02 1.05 0.02 0.82 0.03 0.74 0.02 0.81 0.04 0.80 0.03 
  *σ  0.41 0.05 -0.25 0.07 0.81 0.07 0.84 0.04 0.77 0.05 1.06 0.06 
             

All estimates generated with 40,000 iterations of the Gibbs sampling algorithm.  The first 30,000 iterations were discarded as burn-in, and 
every 10th iteration thereafter was used to construct the reported estimates. 
** For the tau parameter, weight wheelbase, and hp / weight are restricted to be positive.  Also, the age dummies are restricted to be positive 
and monotonically increasing in the newness of the car.  That is, the age coefficient for a car produced between 1990 and 1994 is exp(βage category 

#4), whereas the age coefficient for a car produced in 2000 or 2001 is exp(βage category #4 + βage category #3 + βage category #2 + βage category #1). 
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Table 4a 

Posterior Variance Parameter Estimates – Strata 1-6 
             

 Strata #1 #2 #3 #4 #5 #6 
 Mean St.Er. Mean St.Er. Mean St.Er. Mean St.Er. Mean St.Er. Mean St.Er. 
α  parameter             
  Age category #1 – 2001-02 1.44 0.13 0.94 0.08 1.05 0.11 0.79 0.08 0.90 0.11 0.86 0.06 
  Age category #2 – 1999-00 1.22 0.11 0.87 0.13 0.95 0.10 0.71 0.09 0.71 0.10 0.76 0.05 
  Age category #3 – 1995-98 0.96 0.08 0.80 0.10 0.87 0.07 0.62 0.06 0.75 0.09 0.73 0.05 
  Age category #4 – 1990-94 0.94 0.07 0.75 0.09 0.88 0.06 0.64 0.07 0.71 0.08 0.71 0.05 
  Age category #5 – 1983-89 0.98 0.09 0.99 0.08 1.07 0.11 0.94 0.11 0.79 0.09 1.00 0.11 
  Horsepower (HP) / weight 0.07 0.01 0.04 0.00 0.06 0.01 0.09 0.01 0.06 0.01 0.05 0.01 
  (HP / weight)*(avg adult age) 11.64 1.42 8.66 1.57 6.96 0.55 16.12 1.52 12.83 1.08 10.92 0.95 
  # of females - - - - 0.43 0.03 0.83 0.10 1.02 0.10 1.10 0.11 
  # of workers - - - - - - 0.78 0.12 0.57 0.07 0.56 0.05 
β  parameter             
  Compact 0.74 0.08 0.53 0.04 0.75 0.07 0.60 0.05 0.55 0.03 0.67 0.04 
  Luxury compact 2.37 0.20 1.50 0.14 1.97 0.21 1.43 0.14 1.56 0.10 0.97 0.08 
  Midsize 0.75 0.07 0.64 0.06 0.62 0.05 0.69 0.06 0.61 0.06 0.64 0.04 
  Fullsize 1.13 0.12 0.92 0.10 0.62 0.04 0.89 0.13 0.60 0.06 0.71 0.06 
  Luxury midsize/fullsize 1.66 0.19 1.22 0.12 1.04 0.06 1.38 0.22 0.91 0.09 0.83 0.06 
  Small SUV 1.38 0.13 1.42 0.17 1.38 0.11 0.75 0.12 0.72 0.05 0.94 0.05 
  Large SUV/van 0.97 0.07 1.22 0.12 1.33 0.11 0.65 0.06 0.60 0.10 0.61 0.05 
  Small truck 0.92 0.10 1.45 0.12 1.48 0.16 0.71 0.06 0.66 0.08 0.66 0.05 
  Large truck 0.85 0.10 1.55 0.12 0.84 0.12 0.65 0.07 0.49 0.05 0.56 0.04 
  Minivan 1.75 0.14 1.49 0.13 2.40 0.22 1.18 0.11 0.75 0.06 0.90 0.07 
λ  parameter             
  Constant 1.27 0.19 0.77 0.09 1.06 0.09 0.70 0.09 0.59 0.05 0.52 0.05 
τ  parameter             
  Luxury compact 7.80 0.94 3.22 0.50 2.76 0.26 3.92 0.65 13.58 1.16 4.10 0.51 
  Midsize 12.37 1.48 3.85 0.41 4.69 0.57 4.62 0.48 6.21 0.50 8.87 0.97 
  Fullsize 4.17 0.60 6.18 0.86 5.18 0.39 3.88 0.53 5.85 0.47 6.96 0.74 
  Luxury midsize/fullsize 2.11 0.32 4.36 0.74 3.20 0.23 2.02 0.31 3.78 0.30 5.36 1.03 
  Small SUV 5.67 0.54 7.85 1.02 1.48 0.15 11.00 0.98 6.00 0.59 3.25 0.41 
  Large SUV/van 3.92 0.77 4.62 0.49 3.41 0.24 3.90 0.41 7.20 0.60 5.78 0.48 
  Small truck 9.77 1.69 4.65 0.38 3.64 0.51 5.40 1.11 6.15 1.22 7.56 0.79 
  Large truck 4.93 0.47 2.73 0.29 1.88 0.21 2.54 0.34 2.81 0.30 3.10 0.21 
  Minivan 3.47 0.34 3.53 0.30 3.13 0.39 3.82 0.54 5.06 0.54 3.16 0.44 
  Ford 5.36 0.60 6.48 0.58 4.84 0.51 7.39 0.62 15.27 1.91 17.69 1.76 
  Chrysler 9.50 1.01 7.22 0.77 5.83 0.99 4.55 0.63 9.73 0.78 8.02 0.83 
  GM 27.23 2.83 4.57 0.54 5.82 0.58 10.15 1.34 10.72 1.20 14.73 1.75 
  Honda 2.13 0.38 2.10 0.23 2.50 0.35 3.26 0.41 5.33 0.98 5.78 0.49 
  Toyota 9.23 1.33 3.96 0.36 2.96 0.38 8.78 0.89 5.51 0.54 6.04 0.77 
  Other East Asian 10.74 0.97 6.07 0.53 2.53 0.17 5.01 1.16 8.19 1.11 11.17 1.23 
  European 4.16 0.55 3.18 0.41 3.34 0.59 7.91 0.64 8.21 1.12 7.56 0.67 
  Age category #1 – 2001-02** 1.99 0.21 1.23 0.10 2.08 0.25 2.84 0.36 2.30 0.19 2.60 0.24 
  Age category #2 – 1999-00** 1.85 0.30 1.18 0.11 2.62 0.30 2.73 0.39 1.82 0.18 3.42 0.26 
  Age category #3 – 1995-98** 2.61 0.23 2.18 0.27 2.88 0.30 2.95 0.33 3.03 0.55 2.06 0.23 
  Age category #4 – 1990-94** 4.27 0.41 2.02 0.19 2.61 0.24 3.01 0.31 3.00 0.27 4.07 0.60 
  Weight / 100** 0.14 0.01 0.08 0.01 0.09 0.02 0.11 0.01 0.07 0.01 0.12 0.02 
  Wheelbase / 100** 3.83 0.52 2.54 0.50 2.29 0.39 3.67 0.49 2.44 0.28 2.92 0.24 
  HP / weight** 0.13 0.02 0.11 0.02 0.10 0.01 0.10 0.02 0.13 0.02 0.15 0.01 
φ  parameter             
  MSA < 250k 2.01 0.27 4.37 0.43 2.22 0.20 2.95 0.33 3.90 0.33 2.29 0.23 
  MSA < 500k & ≥ 250k 4.03 0.39 2.33 0.56 3.48 0.48 3.69 0.36 2.00 0.31 2.42 0.23 
  MSA < 1m & ≥ 500k 3.82 0.35 2.58 0.32 2.16 0.42 2.24 0.49 3.79 0.52 5.18 0.60 
  MSA < 3m & ≥ 1m 3.52 0.64 1.84 0.24 1.89 0.27 4.76 0.49 2.50 0.47 2.30 0.26 
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  MSA ≥ 3m 4.13 0.38 3.66 0.47 2.20 0.22 2.06 0.19 3.55 0.42 3.82 0.67 
  White respondent 4.73 0.90 2.26 0.41 3.52 0.45 1.80 0.38 2.39 0.21 2.93 0.39 
  HS diplomas per adult 4.65 1.09 2.72 0.21 2.09 0.18 3.58 0.69 4.19 0.46 3.38 0.34 
  4-yr college deg. per adult 2.61 0.43 2.19 0.33 1.89 0.17 2.00 0.31 3.55 0.36 3.41 0.43 
  Average adult age 10.55 1.07 2.76 0.36 4.75 0.82 6.52 1.66 3.52 0.36 4.30 0.48 
Other parameters             
  *μ  0.23 0.02 0.19 0.01 0.17 0.01 0.19 0.01 0.17 0.01 0.16 0.01 
  *σ  1.59 0.14 1.27 0.10 1.10 0.08 0.78 0.05 1.00 0.06 1.12 0.06 
             

All estimates generated with 40,000 iterations of the Gibbs sampling algorithm.  The first 30,000 iterations were discarded as burn-in, and 
every 10th iteration thereafter was used to construct the reported estimates. 
** For the tau parameter, weight wheelbase, and hp / weight are restricted to be positive.  Also, the age dummies are restricted to be positive 
and monotonically increasing in the newness of the car.  That is, the age coefficient for a car produced between 1990 and 1994 is exp(βage category 

#4), whereas the age coefficient for a car produced in 2000 or 2001 is exp(βage category #4 + βage category #3 + βage category #2 + βage category #1). 
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Table 5a 

Posterior Variance Parameter Estimates – Strata 7-12 
             

 Strata #7 #8 #9 #10 #11 #12 
 Mean St.Er. Mean St.Er. Mean St.Er. Mean St.Er. Mean St.Er. Mean St.Er. 
α  parameter             
  Age category #1 – 2001-02 0.86 0.07 1.06 0.13 0.85 0.09 0.93 0.13 0.82 0.09 0.86 0.12 
  Age category #2 – 1999-00 0.79 0.08 0.79 0.07 0.64 0.06 0.74 0.07 0.78 0.06 0.73 0.09 
  Age category #3 – 1995-98 0.63 0.06 0.71 0.07 0.60 0.05 0.60 0.04 0.66 0.05 0.61 0.05 
  Age category #4 – 1990-94 0.71 0.06 0.74 0.07 0.69 0.07 0.57 0.04 0.73 0.06 0.67 0.06 
  Age category #5 – 1983-89 0.79 0.07 0.89 0.07 0.87 0.09 0.81 0.08 0.85 0.07 0.80 0.11 
  Horsepower (HP) / weight 0.05 0.01 0.08 0.01 0.05 0.01 0.07 0.01 0.08 0.01 0.05 0.01 
  (HP / weight)*(avg adult age) 7.48 0.66 12.08 1.12 19.35 3.29 15.26 1.49 8.58 0.96 9.10 1.05 
  # of females 0.87 0.06 1.73 0.19 1.81 0.23 1.45 0.14 1.24 0.14 1.08 0.17 
  # of workers - - - - 0.81 0.07 1.07 0.12 1.01 0.12 0.78 0.09 
  # of kids ≤ 17 - - - - 1.40 0.21 0.93 0.08 1.26 0.12 1.56 0.21 
  # of kids ≤ 11 - - - - 1.66 0.19 1.25 0.20 1.31 0.14 - - 
  # of kids ≤ 6 - - - - 1.63 0.16 1.39 0.25 - - - - 
  # of kids ≤ 2 - - - - 1.86 0.24 - - - - - - 
β  parameter             
  Compact 0.60 0.04 0.64 0.08 0.48 0.04 0.54 0.05 0.46 0.03 0.49 0.04 
  Luxury compact 0.94 0.07 1.39 0.20 1.18 0.15 1.48 0.11 1.51 0.19 1.52 0.12 
  Midsize 0.62 0.04 0.67 0.05 0.54 0.05 0.60 0.05 0.61 0.04 0.49 0.05 
  Fullsize 0.50 0.06 0.56 0.03 0.70 0.10 0.72 0.07 0.73 0.05 0.55 0.05 
  Luxury midsize/fullsize 0.68 0.07 0.71 0.04 1.21 0.09 1.26 0.11 1.21 0.25 0.94 0.08 
  Small SUV 0.84 0.09 1.38 0.13 0.70 0.05 0.79 0.09 0.81 0.06 0.70 0.06 
  Large SUV/van 0.52 0.04 0.89 0.06 0.52 0.04 0.53 0.05 0.44 0.04 0.50 0.04 
  Small truck 0.70 0.05 1.03 0.11 0.81 0.05 0.72 0.07 0.74 0.07 0.72 0.08 
  Large truck 0.50 0.03 0.62 0.05 0.56 0.04 0.53 0.05 0.47 0.05 0.42 0.03 
  Minivan 0.65 0.05 1.12 0.09 0.53 0.03 0.57 0.06 0.52 0.06 0.55 0.05 
λ  parameter             
  Constant 0.63 0.04 0.88 0.12 0.50 0.04 0.51 0.04 0.52 0.04 0.54 0.04 
τ  parameter             
  Luxury compact 5.41 0.69 3.68 0.74 3.63 0.39 5.83 1.04 3.00 0.51 2.37 0.41 
  Midsize 3.09 0.35 9.21 1.52 2.92 0.30 2.48 0.27 2.57 0.42 3.38 0.84 
  Fullsize 3.90 0.49 3.53 0.29 2.34 0.32 4.20 0.42 3.65 0.34 3.26 0.30 
  Luxury midsize/fullsize 1.76 0.21 5.27 0.92 1.91 0.25 3.49 0.88 4.26 0.87 4.19 0.62 
  Small SUV 3.13 0.29 4.46 0.68 7.85 1.05 3.30 0.23 2.55 0.43 3.70 0.48 
  Large SUV/van 5.48 0.54 3.40 0.37 3.74 0.41 4.04 0.57 4.20 0.64 3.82 0.79 
  Small truck 5.10 0.60 7.55 0.67 3.15 0.44 1.89 0.17 2.79 0.35 3.38 0.36 
  Large truck 1.78 0.27 3.61 0.34 2.34 0.19 2.35 0.44 2.58 0.22 2.53 0.32 
  Minivan 3.51 0.50 5.87 1.05 2.98 0.32 2.75 0.57 3.36 0.39 3.72 0.39 
  Ford 8.88 1.08 9.72 0.85 7.04 0.85 3.36 0.43 6.88 0.59 10.04 1.39 
  Chrysler 7.01 0.50 6.97 1.20 2.97 0.53 3.65 0.36 5.47 0.97 5.77 0.67 
  GM 8.72 0.93 6.90 0.55 4.67 0.36 2.38 0.22 6.21 0.68 8.90 0.97 
  Honda 4.27 0.32 2.50 0.27 4.44 0.53 4.60 0.50 2.77 0.25 2.34 0.49 
  Toyota 5.15 0.50 10.60 1.92 4.56 0.66 5.22 0.47 2.95 0.32 2.54 0.23 
  Other East Asian 4.67 0.46 2.10 0.21 2.58 0.45 6.96 0.85 3.04 0.34 3.10 0.37 
  European 2.96 0.52 2.20 0.54 3.83 0.40 4.76 0.68 3.81 0.66 9.88 1.45 
  Age category #1 – 2001-02** 1.66 0.12 2.49 0.29 1.45 0.19 1.95 0.19 1.51 0.11 2.26 0.29 
  Age category #2 – 1999-00** 1.76 0.24 1.71 0.19 3.14 0.28 1.37 0.13 1.81 0.16 1.78 0.24 
  Age category #3 – 1995-98** 1.71 0.22 2.66 0.39 1.71 0.17 2.02 0.20 1.48 0.14 1.31 0.23 
  Age category #4 – 1990-94** 1.40 0.20 3.24 0.28 1.84 0.17 1.78 0.22 1.51 0.12 2.46 0.38 
  Weight / 100** 0.05 0.01 0.07 0.01 0.04 0.00 0.05 0.00 0.04 0.00 0.06 0.01 
  Wheelbase / 100** 1.74 0.13 2.45 0.26 2.00 0.28 2.40 0.32 1.60 0.23 1.79 0.26 
  HP / weight** 0.10 0.01 0.11 0.01 0.10 0.01 0.09 0.01 0.09 0.01 0.09 0.02 
φ  parameter             
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  MSA < 250k 2.86 0.48 2.98 0.20 2.43 0.21 2.67 0.18 2.13 0.31 3.11 0.29 
  MSA < 500k & ≥ 250k 1.67 0.19 1.85 0.19 2.28 0.27 2.70 0.67 2.56 0.30 4.34 1.15 
  MSA < 1m & ≥ 500k 2.30 0.48 2.66 0.27 2.76 0.28 2.33 0.22 1.63 0.17 2.15 0.26 
  MSA < 3m & ≥ 1m 1.91 0.18 1.92 0.17 1.72 0.26 1.52 0.31 1.81 0.21 2.18 0.24 
  MSA ≥ 3m 2.19 0.25 2.18 0.28 1.85 0.18 1.94 0.17 1.81 0.21 1.84 0.21 
  White respondent 6.90 0.89 1.91 0.21 2.47 0.34 1.78 0.21 3.86 0.38 2.99 0.47 
  HS diplomas per adult 3.08 0.32 3.69 0.42 5.97 0.63 2.55 0.28 2.61 0.24 4.88 0.55 
  4-yr college deg. per adult 2.01 0.17 1.91 0.42 1.62 0.11 1.78 0.22 1.61 0.23 2.76 0.28 
  Average adult age 8.46 0.97 4.36 0.44 3.67 0.61 3.23 0.70 2.41 0.24 3.62 0.39 
Other parameters             
  *μ  0.15 0.01 0.14 0.01 0.18 0.01 0.18 0.01 0.18 0.01 0.21 0.02 
  *σ  0.92 0.09 1.16 0.07 0.96 0.06 0.91 0.05 0.91 0.08 0.79 0.05 
             

All estimates generated with 40,000 iterations of the Gibbs sampling algorithm.  The first 30,000 iterations were discarded as burn-in, and 
every 10th iteration thereafter was used to construct the reported estimates. 
** For the tau parameter, weight wheelbase, and hp / weight are restricted to be positive.  Also, the age dummies are restricted to be positive 
and monotonically increasing in the newness of the car.  That is, the age coefficient for a car produced between 1990 and 1994 is exp(βage category 

#4), whereas the age coefficient for a car produced in 2000 or 2001 is exp(βage category #4 + βage category #3 + βage category #2 + βage category #1). 
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C  Calibration of the Simulation Model 
 
 
The individual household utility functions (and the associated system of automobile and VMT 

demands) are characterized entirely using the parameter estimates described in section 4 of the 

main text.  The simulation model, however, also generates a supply function for both new and 

used cars that needs to be calibrated separately.  The following two subsections describe the 

calibration method for the new and used car supply functions, respectively. 

 
 
1   Calibration of new car supply 
 

The producer problem described in section 2-c of the paper requires as input the marginal 

costs faced by each producer for each class of vehicle.  We calibrate these costs using the dealer 

markups available on www.edmunds.com7 and the estimated ratio of dealer and manufacturer 

markups from Bresnahan (1986).  This provides the following estimated total markup by class 

and manufacturer: 

 
Table A-1: Markups by Manufacturer and Class 

Class: Ford Chrysler GM Honda Toyota Other 
Asian 

European 

Compact 15 14 22 28 22 23 23 
Lux compact  18 22 27 41 25 27 
Midsize 19 21 24 34 33 16 26 
Fullsize 16 20 26  38   
Lux mid/full 19 20 24 38 46  20 
Small SUV 19 16 24 24 25 18  
Large SUV 37 27 41 33 43 23 29 
Small truck 19 27 28  29 21  
Large truck 36 39 41  30   
Minivan 22 23 41 34 32 21 22 

 
 
 
 
2   Calibration of used car supply (the scrap market) 
 

The total quantity of used cars supplied of a given make, age, and class depends on how 

many are scrapped.  The function controlling scrap is given in section 2-d-ii of the paper and 

                                                 
7 www.edmunds.com provides the invoice prices and suggested retail prices for automobiles by make and model.  
We use data for 2001 (corresponding to our household  sample period). 
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requires both a calibration constant determining scrap level in the baseline case and an elasticity 

controlling how rapidly the quantity of scrapped vehicles changes.  The maximum possible 

supply of a particular used vehicle is determined by how many were available in the market in 

the previous time period. 

 
We use the parameter bj to calibrate the probability a vehicle is scrapped in the 

benchmark.  The calibration is based on the roughly linear trend of vehicle choice that can be 

observed in the data.  The figure below shows the number of used cars of each vintage in our 

NHTS dataset: 
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We take the quantity of vehicles scrapped of each vintage in each year to be constant (as 

suggested by the figure), implying that the scrap rate for a vehicle of a given age is simply: 

 

θage =
1

20 − age
  (for age between 1 and 19)  

 
Note that the scrap rate for cars beginning their 19th year is 100%, meaning none enter the used 

car market in our simulations. 
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 After establishing the benchmark progression of scrap rates, we also calibrate the 

response of the scrap market to changes in vehicle values: The parameter controlling this 

response is the elasticity η j .  We take the aggregate results from Alberini et al. (1998) who find 

that a $1000 bounty (equivalent to 67% of the average vehicle value) causes a 193% increase in 

the number of vehicles scrapped.  This implies an elasticity of 2.9.  We adopt the round figure of 

3 for our central case and double the value to 6 in our sensitivity analysis. 
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Table 2-1: Included Car Types

Classes Age categories Manufacturers

Compact New cars Ford
Luxury compact 1-2 years old Chrysler
Midsize 3-6 years old General Motors
Fullsize 7-11 years old Honda
Luxury mid/fullsize 12-18 years old Toyota
Small SUV Other Asian
Large SUV European
Small truck
Large truck  
Minivan



Table 3-1 
Sample Demographic Statistics from the 2001 NHTS – 20,429 Observations 

  

Variable mean (std. dev.) 
  

Household size 2.490 (1.34) 
# of adults ≥ 18 years old 1.861 (0.69) 
# of adults ≥ 65 years old 0.380 (0.67) 
# of children ≤ 2 years old 0.096 (0.32) 
# of children 3-6 years old 0.136 (0.41) 
# of children 7-11 years old 0.185 (0.49) 
# of children 12-17 years old 0.211 (0.54) 
# of workers 1.272 (0.95) 
# of females 1.033 (0.52) 
Average age among adults (≥ 18) 49.56 (16.8) 
Household income (2001 $s) 56,621 (43,276) 
  

Household breakdown: percentage 
  

1 male adult, no children, not retired 5.71 
1 female adult, no children, not retired 7.88 
1 adult, no children, retired 10.3 
2+ adults w/ average age ≤ 35, no children, not retired 7.10 
2+ adults w/ average age > 35 & ≤ 50, no children, not retired 8.43 
2+ adults w/ average age > 50, no children, not retired 9.04 
2+ adults w/ average age ≤ 67, no children, retired 9.29 
2+ adults w/ average age > 67, no children, retired 8.47 
1+ adults w/ youngest child < 3 years old 8.69 
1+ adults w/ youngest child 3-6 years old 7.65 
1+ adults w/ youngest child 7-11 years old 8.64 
1+ adults w/ youngest child 12-17 years old 8.85 
White household respondent b 85.6 
Black household respondent 7.62 
Hispanic household respondent 6.25 
Asian household respondent 2.17 
Adults with high school diplomas 89.4 
Adults with 4-year college degrees 30.5 
Resident of MSA < 250k 7.62 
Resident of MSA 250-500k 8.22 
Resident of MSA 500k-1m 8.30 
Resident of MSA 1-3m 22.2 
Resident of MSA > 3m 32.5 
Non-resident of MSA 21.1 
Household income ≤$25,000 22.8 
Household income ≤$50,000 & >$25,000 33.3 
Household income ≤$75,000 & >$50,000 19.8 
Household income >$75,000 24.1 
  
a Based on 8 level index where 1=less than high school graduate, 2= high school graduate including GED, 
3= vocational/technical training, 4=some college, but no degree, 5=Associate’s degree, 6= Bachelor’s 
degree, 7= some graduate or professional school, but no degree, 8= Graduate or professional school degree. 
b The white, black, Hispanic, and Asian percentages sum to more than 100 percent because some 
respondents have multi-cultural backgrounds. 



Table 3-2 
Automobile Characteristics a 

            

Characteristic Compact 
Luxury 

Compact Midsize Fullsize 
Luxury 

Mid/Full Small SUV 
Large SUV 

/ Van 
Small 
truck 

Large 
truck Minivan Total 

 

           

 Miles per Gallonb             
 
 
 

                  All Car Ages: 
 29.73 (1.55) 24.18 (1.29) 27.16 (1.72) 25.57 (2.15) 23.65 (0.85) 23.75 (2.28) 20.04 (2.96) 23.60 (2.35) 19.82 (2.10) 23.45 (1.68) 24.39 (3.46) 

 
Model Years:            

2001-2002 30.29 (1.67) 24.47 (1.47) 26.90 (2.05) 25.61 (2.29) 23.70 (0.45) 24.17 (1.92) 19.08 (1.79) 22.62 (2.43) 19.65 (2.91) 23.25 (1.48) 24.15 (3.66) 
1999-2000 30.32 (2.47) 24.45 (1.26) 27.29 (1.41) 25.79 (2.12) 23.86 (0.50) 23.80 (2.60) 18.21 (1.20) 23.29 (2.89) 20.34 (2.12) 22.99 (1.80) 24.18 (3.80) 
1995-1998 30.02 (1.23) 24.24 (1.37) 27.50 (1.47) 25.51 (1.80) 24.29 (0.74) 23.44 (2.63) 19.60 (2.74) 23.30 (2.59) 18.67 (0.85) 23.65 (1.97) 24.44 (3.55) 
1990-1994 29.21 (0.90) 23.81 (1.42) 26.74 (1.55) 25.37 (2.42) 22.91 (1.15) 22.67 (2.72) 20.90 (3.84) 23.10 (1.67) 18.56 (1.28) 23.57 (1.36) 24.08 (3.35) 
1983-1989 28.82 (0.46) 23.94 (1.25) 27.38 (2.35) 25.56 (3.31) 23.23 (0.90) 24.84 (1.36) 22.88 (3.11) 25.70 (1.44) 21.76 (1.69) 23.97 (2.16) 25.14 (2.78) 

 
           

 
Horsepower/100 
 
       All Car Ages: 1.286 (0.24) 2.275 (0.58) 

 

1.530 (0.25) 1.726 (0.40) 2.177 (0.35) 1.531 (0.23) 1.909 (0.49) 1.386 (0.25) 2.011 (0.41) 1.575 (0.30) 1.719 (48.3) 
           

 
Model Years: 

 
  

 
         

          

2001-2002 1.526 (0.14) 2.621 (0.69) 1.787 (0.13) 2.123 (0.11) 2.463 (0.27) 1.763 (0.11) 2.391 (0.13) 1.650 (0.09) 2.377 (0.28) 1.833 (0.27) 2.036 (0.46) 
1999-2000 1.454 (0.14) 2.488 (0.60) 1.682 (0.08) 1.917 (0.24) 2.376 (0.20) 1.648 (0.15) 2.271 (0.14) 1.556 (0.14) 2.323 (0.22) 1.765 (0.23) 1.932 (0.43) 
1995-1998 1.342 (0.13) 2.414 (0.61) 1.597 (0.09) 1.835 (0.26) 2.237 (0.20) 1.554 (0.17) 2.024 (0.12) 1.430 (0.15) 1.992 (0.10) 1.513 (0.22) 1.773 (0.42) 
1990-1994 1.152 (0.06) 2.075 (0.35) 1.418 (0.10) 1.469 (0.39) 1.952 (0.12) 1.467 (0.12) 1.476 (0.35) 1.257 (0.18) 1.698 (0.12) 1.378 (0.15) 1.516 (0.35) 
1983-1989 0.955 (0.06) 1.777 (0.26) 1.166 (0.16) 1.212 (0.24) 1.637 (0.26) 1.164 (0.10) 1.244 (0.21) 1.038 (0.07) 1.435 (0.11) 1.272 (0.22) 1.270 (0.30) 

            
 

a Standard deviations reported in parentheses. 

 
b Weighted harmonic mean of EPA test miles per gallon estimates. 

 
 
 
 



VMT elasticity 
wrt operating 

cost1

VMT elasticity 

wrt income1

Car ownership 
elasticity wrt 
rental price

All -0.69 0.62 -0.82

By Household
 Retired -0.64 0.53 -0.93
 Not retired, no children -0.64 0.54 -0.72
 Not retired, with children -0.76 0.77 -0.85

By Auto
 By Class

All Cars
Compact -0.62 0.58 -0.65
Luxury compact -1.10 0.77 -1.25
Midsize -0.61 0.56 -0.67
Fullsize -0.70 0.57 -0.73
Luxury midsize/fullsize -0.82 0.68 -1.25
Small SUV -0.66 0.67 -0.73
Large SUV/van -0.72 0.77 -0.98
Small truck -0.84 0.60 -0.62
Large truck -0.72 0.63 -0.85
Minivan -0.71 0.67 -0.77

New Cars
Compact -0.52 0.76 -1.44
Luxury compact -0.65 1.18 -3.14
Midsize -0.52 0.81 -1.58
Fullsize -0.54 0.81 -1.77
Luxury midsize/fullsize -0.46 1.30 -3.04
Small SUV -0.52 0.82 -1.58
Large SUV/van -0.56 1.10 -2.30
Small truck -0.67 0.83 -1.32
Large truck -0.59 0.83 -1.69
Minivan -0.58 0.95 -1.67

 By Age
New cars -0.55 0.88 -1.97
1-2 year old cars -0.61 0.73 -1.01
3-6 year old cars -0.66 0.62 -0.73
7-11 year old cars -0.75 0.54 -0.28
12-18 year old cars -0.83 0.50 -0.13

1 
All VMT elasticities are conditional on car ownership

Table 4-1: Posterior Mean Elasticity Estimates



Table 5-1: Baseline Fleet Composition

Year 1 Year 10

New Used
All cars in 
operation New Used

All cars in 
operation

Class

Compact 4.98 44.68 49.66 5.27 49.52 54.79
Lux compact 0.22 4.44 4.66 0.26 2.79 3.05
Midsize 2.63 27.58 30.21 2.82 27.30 30.12
Fullsize 1.32 16.32 17.64 1.49 14.64 16.13
Lux mid/full 0.32 8.30 8.62 0.39 4.67 5.06
Small SUV 1.32 10.65 11.97 1.41 12.99 14.40
Large SUV 1.10 15.93 17.02 1.30 12.92 14.23
Small truck 1.27 10.26 11.54 1.35 12.25 13.60
Large truck 2.17 19.83 22.00 2.42 22.16 24.58
Minivan 1.32 12.74 14.06 1.45 13.62 15.07

Total 16.65 170.73 187.39 18.15 172.87 191.03

Units are millions of privately owned cars in operation.



Table 5-2: Change in Gasoline Use with 25 Cent Tax Increase

Recycling Method Flat Income-based VMT-based
Year 1 Year 10 Year 1 Year 10 Year 1 Year 10

Baseline gasoline use per household (gallons) 775.18 828.89 775.18 828.89 775.18 828.89

% change in gasoline use -5.08% -4.97% -5.06% -5.05% -4.51% -4.38%
% change in VMT -5.01% -4.83% -4.98% -4.92% -4.43% -4.21%

% change in VMT per car -4.62% -4.36% -4.56% -4.38% -4.01% -3.70%
% change in cars -0.41% -0.48% -0.44% -0.57% -0.44% -0.54%

% change in overall MPG 0.08% 0.15% 0.08% 0.13% 0.09% 0.17%



Table 5-3: Fleet Size and Composition

Year 1 Year 10 Year 1 Year 10 Year 1 Year 10 Year 1 Year 10
Cars in operation:

All 188.3 191.0 -0.41% -0.48% -0.44% -0.57% -0.44% -0.54%
New 16.7 18.2 -1.00% 0.00% -1.12% -0.37% -0.93% -0.04%
Used 171.6 172.8 -0.35% -0.53% -0.37% -0.59% -0.39% -0.59%
Low MPG 75.9 78.9 -0.47% -0.77% -0.50% -0.80% -0.50% -0.75%
High MPG 112.4 112.1 -0.37% -0.28% -0.40% -0.40% -0.39% -0.38%

1Millions of cars.
2Percent change relative to the baseline.

25-cent gasoline tax increase2Baseline1

VMT-based recycling
Income-based 

recycling
Flat recycling



Table 5-4: Revenue and Costs from Increased Gasolne Taxes
                   (Results for Year 1)

Revenue recycling Flat Income-based VMT-based

Tax increase (cents) 10 25 75 10 25 75 10 25 75

Net tax revenue ($billion) 7.43 17.96 48.46 7.43 17.98 48.44 7.52 18.29 49.91

Efficiency cost*

Total ($billion) 1.23 3.26 11.43 1.26 3.32 11.80 1.12 2.93 10.55
Per dollar of additional 
revenue 0.165 0.182 0.236 0.170 0.185 0.244 0.149 0.160 0.211
Per avoided gallon of 
gasoline consumed ($) 0.71 0.77 0.96 0.74 0.79 0.99 0.73 0.78 0.99

*Negative of the weighted sum of equivalent variations of each household.



Table 5-5: Consumption, Mileage, and Car-Ownership Patterns of Household Income Groups*

Gasoline 
Consumption Miles Traveled

Avg. Fuel-
Economy of 

Owned 
Vehicles**

Share of 
Economy's 

Light Trucks 
and SUVs

Income 
Decile

Avg. Level 
(gallons)

Share of 
Total

Avg. Level 
(000's)

Share of 
Total

1 157.3 0.02 4.03 0.02 25.61 0.02
2 315.7 0.04 7.97 0.04 25.25 0.04
3 473.6 0.06 11.69 0.06 24.68 0.05
4 588.3 0.08 14.33 0.08 24.35 0.08
5 724.0 0.09 17.65 0.09 24.38 0.09
6 823.7 0.11 19.76 0.11 23.98 0.11
7 922.0 0.12 22.35 0.12 24.25 0.13
8 1060.8 0.14 25.46 0.14 24.00 0.15
9 1227.1 0.16 29.55 0.16 24.08 0.17
10 1459.8 0.19 35.28 0.19 24.17 0.17

* Predicted values from simulation model
** VMT-weighted



Table 5-6: Decomposition of Welfare Impacts of 25 Cent Gasoline Tax Increase
                  (Results for Year 1)

Gasoline 
price

Transfer Car prices
Producer 

profits
EV

EV as a percent 
of income

Flat Recycling

Income
<25 -84.36 157.59 2.65 -3.19 74.90 0.45%
25-50 -196.37 160.23 -0.36 -7.34 -52.09 -0.14%
50-75 -284.10 158.89 -3.16 -12.13 -154.97 -0.25%
>75 -334.46 160.30 -4.76 -19.51 -214.82 -0.22%
All -176.02 159.05 0.07 -7.37 -29.97 -0.08%

Income-based Recycling

Income
<25 -83.90 68.33 2.95 -3.51 -13.86 -0.08%
25-50 -196.41 157.21 -0.33 -8.08 -55.75 -0.15%
50-75 -284.66 259.82 -3.44 -13.36 -56.02 -0.09%
>75 -336.04 417.89 -5.31 -21.49 38.71 0.04%
All -176.07 157.84 0.12 -8.12 -31.85 -0.08%

VMT-based Recycling

Income
<25 -84.26 79.41 2.91 -2.89 -2.03 -0.01%
25-50 -197.38 181.57 -0.31 -6.64 -30.87 -0.08%
50-75 -285.90 261.03 -3.35 -10.98 -53.56 -0.08%
>75 -340.01 307.50 -5.19 -17.66 -71.16 -0.07%
All -177.08 162.94 0.13 -6.67 -26.04 -0.07%

Welfare effects are expressed in price-adjusted dollars.



Table 5-7: Welfare Impact of 25 Cent Gasoline Tax Increase on Selected Household Groups

Recycling Flat
Income-

based VMT-based Flat
Income-

based VMT-based

All -29.97 -31.85 -26.04 -30.76 -32.32 -26.16
Retired 46.45 8.25 -15.37 54.01 12.82 -12.98
Not retired, no children -26.48 -33.36 -21.93 -21.74 -28.48 -15.82
Not retired, with children -88.20 -58.76 -38.10 -100.94 -68.64 -46.77

Welfare effects are expressed in price-adjusted dollars.

Year 1 Year 10



Table 5-8: Impacts of Gasoline Taxes under Alternative Parameter Assumptions

Year 1 Year 10

Baseline
25 cent tax 

increase1 Baseline
25 cent tax 

increase1

Central Case
Gasoline consumption (gallons/household) 775.18 -5.08% 828.89 -4.97%
Aggregate VMT (000's miles/household) 18.80 -5.01% 21.23 -4.83%
Avg. MPG (miles weighted) 24.26 0.080% 25.62 0.152%
Avg. EV (price-adjusted dollars) - -30.39 - -31.03

Faster Fuel-Economy Improvements2

Gasoline consumption 773.66 -5.07% 751.56 -4.48%
Aggregate VMT 18.83 -4.99% 22.25 -4.23%
Avg. MPG 24.34 0.078% 29.60 0.258%
Avg. EV - -29.93 - -25.44

High Scrap Elasticity
Gasoline consumption 775.18 -5.15% 828.89 -4.99%
Aggregate VMT 18.80 -5.07% 21.23 -4.84%
Avg. MPG 24.26 0.085% 25.62 0.152%
Avg. EV - -29.95 - -30.70

1Percent change relative to the baseline under the same parameter assumptions.

2Percent increases in fuel economy over 10 years are:
 Compact 41, Lux compact 41, Midsize 52, Fullsize 58, Lux mid/full 55, 
 Small SUV 54, Large SUV 65, Small truck 58, Large truck 59, Minivan 59



1Welfare impacts are in average price-adjusted dollars per household.

Welfare Impacts1 across Household Income Groups
Under Alternative Revenue-Recycling Methods

Figure 5-1a:  Year 1, 25 Cent Tax
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Figure 5-1b:  Year 10, 25 Cent Tax
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Figure 5-2a:  Base VMT by Race and Income
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Figure 5-2b:  Household EV by Race and Income - 
25 Cent Gas Tax Increase with Flat Recycling
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Negativ e EV

54 to 113  (11)

42 to 54  (10)

35 to 42   (8)

25 to 35  (11)

-111 to 25  (11)

VMT
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Figure 5-3a: Average Household VMT by State

Figure 5-3b: Average Household EV --25 Cents
                       Gasoline Tax With Flat Recycling--
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