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This paper provides novel empirical evidence on the private value of patents and R&D. We
analyze an unbalanced sample of firms from five EU countries - France, Germany,
Switzerland, Sweden and the UK in the period 1985-2005. We explore the relationship
between firm’s stock market value and patents, accounting for the ‘quality’ of EPO patents.
We find that Tobin’s q is positively and significantly associated with R&D and patent stocks.
In contrast to results for the U.S., forward citations do not add information beyond that in
patents. However, the composite quality indicator based on backward citations, forward
citations and the number of technical fields covered by the patent is informative for value.

Software patents account for a rising share of total patents in the EPO. Moreover, some
scholars of innovation and intellectual property rights argue that software and business
methods patents on average are of poor quality and that these patents are applied for merely
to build portfolios rather than for protection of real inventions. We therefore tested for the
impact of software patents on the market value of the firm and did not find any significant
effect, in contrast to results for the United States. However, in Europe, such patents are
highly concentrated, with 90 per cent of the software patents in our sample held by just 15 of
the firms.
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1. Introduction

This paper provides novel empirical evidence on the private value of patents and
R&D in Europe. A large body of studies have addressed this issue, mostly focusing on US
data and drawing on a variety of methodologies. Traditionally, the impact of R&D and
patenting on firm performance has been examined by focusing on profit or production
function estimation (e.g., Norsworthy and Jang 1992; Hall and Mairesse 1995). Other studies
have relied on market value estimation which is more forward looking, but requires data on
the firm’s value from public financial markets (e.g., see Hall, 1993). These studies use
different measures of technological activity such as R&D expenditures and patent counts.
More sophisticated indicators of technological assets such as citations have also been tried by
the literature to account for the great dispersion in the value distribution of patents (Griliches,
1981; Griliches et al. 1991; Hall, 1993 and 1999; Hall et al. 2005; Lanjouw and Schankerman
2004). In the absence of more direct measures of the economic value of patents, these studies
provide a useful methodological setting to explore the technological importance and
profitability of patented inventions. Other studies which have compared measures of patent
value like citations with survey-based direct measures of patent value have found a positive
and significant association between them (Harhoff e al. 1999). More recently, Gambardella
et al. (2005) have adopted the same approach with a survey of European inventors and found
similar results. However, to our knowledge, there are only few studies focusing on European

firms which analyze the economic value of R&D or patents: Blundell et al. (1995), Toivanen



et al. (2002), Bloom and Van Reenen (2002), Hall and Oriani (2006), and Greenhalgh and
Rogers (2006).

Several of these studies rely on R&D expenditure which is usually considered a
measure of innovation input rather than innovation output or ‘success’ of innovative
activities. Moreover, especially in the case of European firms, data on R&D expenditures are
often missing because reporting these expenditures is not required by accounting and fiscal
regulations across most European countries. The UK is probably the only country where an
explicit recommendation of accounting practice was issued in 1989 to foster firms to disclose
their R&D expenditures (Toivanen et al., 2002).

Patents as a measure of innovation have their own drawbacks too but, as Griliches
(1990: 1661) has remarked, ‘in this desert of data, patent statistics loom up as a mirage of
wonderful plenitude and objectivity’. Patents have captured the attention of large numbers of
studies based on US data but, as mentioned before, there are very few systematic attempts to
examine their implications for the market value of the patent holder in the European context.

This paper fills in part this gap in the literature by analyzing an unbalanced sample of
firms from five EU countries - France, Germany, Switzerland, Sweden and the UK in the
period 1985-2005. With few exceptions, earlier studies focus on single countries. Our work
contributes to this literature by exploring the impact of R&D and patents in countries with
different institutional settings. Moreover, our analysis is centred on firms from different
sectors, including business services and utilities. This allows one to account for potential
cross-industry differences in the evaluation of intangible assets.

One motivation for this paper is to gain a deeper understanding of the ‘patent
paradox’, that is, the fact that the number of patent applications to the USPTO and the EPO

continues to grow despite the weakness of patents as an instrument for protecting innovation,



documented in various surveys of innovators from different industries (Levin et al 1987;
Cohen, Nelson and Walsh, 2000; Arundel 2001, 2003).

Another motivation is the dramatic increase in the number of patents in relatively new
subject matters, such as semiconductors, software and business methods during the 1990s.
This trend raises the question whether the ‘value’ of patented inventions has declined as a
consequence of institutional changes that have lowered the barriers to patents or whether it
simply reflects increases research and technological change in these fields. To address this
issue we conduct a fine grained examination of the economic value of software patents.

As Hall and Ziedonis (2001) have noted, the rising number of US patents to
semiconductor inventions in the 1980s has paralleled a pro-patent shift in the US legal
environment. Their analysis shows that large, incumbent semiconductor manufacturers have
reacted aggressively to this twist in the IPR regime by widening their patent portfolios.
According to Hall and Ziedonis the increase in patent/R&D ratio for these firms is explained
by the need to reduce the risk of being held up by other patent owners and to gain stronger
contractual power towards competitors. This evidence supports the hypothesis of ‘patent
portfolio races’ or ‘strategic patenting’, i.e., the race to obtain patents that are not used by the
patent holder but serve as a barriers to competitors. However, new firms have entered the
semiconductor market during the 1980s. These newcomers, and especially ‘technology
specialists’ (firms specialized in chip design), showed a higher propensity to patent compared
with firms entered before. This is probably explained by the need to attract venture capital
and protect themselves from larger competitors (Hall and Ziedonis refer to this effect as the
‘specialization hypothesis’). The evidence provided by Hall and Ziedonis (2002) then points
out the existence of multiple potential effects of the declining patent costs.

Scholars looking at software-related patents have found evidence consistent with the

hypothesis of strategic patenting. For example, Bessen and Hunt (2004) have examined



software patents granted by the USPTO during the 1990s. A few key decisions taken by the
Courts of Appeals for the Federal Circuit (CAFC) in these years led the USPTO to release
new guidelines for software patentability in 1996 which allowed patent of any software
embodied in physical media. In 1998 an important decision of the US Federal Circuit
removed most of the exceptions to the patentability of software ‘as such’, i.e., independently
of its links with a physical device. Not surprisingly, the number of software patents granted
by the USPTO has increased dramatically during the 1990s. Studies which propose different
definitions and estimation criteria agree that the number of USPTO software patents is large
and the concentration of patents is also very high (Bessen and Hunt, 2004; Graham and
Mowery, 2003; Hall and MacGarvie, 2006). Bessen and Hunt (2004) pointed out that IBM
alone accounts for 20% of software patents. Moreover, most software patents are owned by
large manufacturing firms in the electronics, telecommunications equipment, and computer
industries. This supports the ‘strategic patenting’ hypothesis. Instead, the small share of
software patents held by specialized software firms (only 6 per cent according to Bessen and
Hunt) appears to reject the ‘specialization hypothesis’. Moreover, Bessen and Hunt have
noticed that firms with a larger share of software patents in total patents have reduced their
R&D expenditures. They argue that the substitution between R&D expenditures and patents
can be explained by strategic patenting behaviour. Firms with large patent portfolios tend to
reduce their R&D (relative to patents) because they can now license the technologies covered
by other firms’ patents. On the other hand, smaller firms with limited patent portfolios have
limited opportunities to appropriate the economic benefits of their R&D activity and this
reduces their incentive to invest in R&D. Bessen and Hunt do not consider alternative
explanations such as that unrelated changes in technology or management which may result

in higher R&D productivity (see, for example, Kortum and Lerner 1998).



We have analyzed EPO patents and found an increasing number of software-related
patents during the 1990s.> This suggests that the barriers to software patents have fallen in
Europe as well, despite the fact that according to the European Patent Convention (EPC) (Art
52) computer programs ‘as such’ are excluded from the patentable subject-matter. The EPO
recognizes the patentability of computer-implemented inventions (CII), that is ‘inventions
whose implementation involves the use of a computer, computer network or other
programmable apparatus, the invention having one or more features which are realized
wholly or partly by means of a computer program” (EPO, 2005:3). In 2002 the European
Commission released a proposed Directive on the Patentability of CIIs which was rejected by
the European Parliament in 2005.

Recently the EC has proposed a new treaty, the ‘European Patent Litigation
Agreement’ (EPLA) which would establish a new European Patent Court which has
revamped the debate on the economic implications of patents among practitioners and policy
makers through Europe. It is unclear whether this proposal would represent a significant step
towards a ‘community-wide’ patent and how it will affect software patents. However, the
proposal testifies to the great concern of the EPO and the EC about patent ‘quality’ and the
effectiveness of the patent examination system.

Our paper contributes to this debate by offering novel empirical evidence about the
‘quality’ of EPO patents measured by indicators such as the number of forward citations.
Moreover, we provide a quantitative assessment of the private returns to patents in a sample
of European firms in different sectors. Obviously, finding a significant private value of
patents to patent holders does imply that there is any impact on welfare. However, finding

that patents are of limited value to their holder would cast serious doubts over their value for

? For a detailed analysis of software-related patent applications and the search methodology used to
identify this category of patents, see Thoma and Torrisi (2005)
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the society. The paper is organized as follows. Section 2 illustrate the method for estimating
the market value of R&D and patents, Section 3 illustrates the data and describes the main
variables while Section 4 reports the main results. Section 5 discusses the results and closes

the paper.

2. Estimating the economic value of intangible assets

There are two streams of the literature that attempt to evaluate the economic returns to
innovative activities. First, a series of studies have examined the impact of innovation on total
factor productivity or profit growth. Second, other scholars have focused on the private
returns to innovation by using a forward looking measure of firm performance which is the
valuation of R&D and patent stock relative to physical assets in the stock market (see Hall,
1999 for a survey). The two approaches have both merits and weaknesses.

Total factor productivity (TFP) is simply the ratio of outputs to inputs both expressed
in real terms. Taking the natural logs of all variables the TFP can be expressed as follows:

log(TFP) = log(S) — arlog(L) — flog(K) (1)
This ratio is an appropriate measure of productivity under conditions of constant returns to
scale and competition in the markets for inputs and outputs. Several studies have showed the
importance of technology, measured by R&D expenditures, for the growth of total factor
productivity (e.g., Gold, 1977, Mansfield, 1968, and Griliches, 1979).

Besides the strong assumptions behind the TFP estimations, a major problem with this
approach is represented by the fact that the lag between R&D and its impact on productivity
or profits is usually long and difficult to predict. Since this gives rise to serious measurement
problems when the data are not available in long time series, most empirical works turn their
attention to alternative methods. Moreover, using purely accounting measures of firm
performance fails to account for the effects of differences in systematic risk, temporary

disequilibrium effects, tax laws and accounting conventions.



These limitations are less important with the market value approach which combines
market value data with accounting data (Lindenberg and Ross, 1981; Montgomery and
Wernerfelt, 1988). The market value approach draws on the idea, derived from the hedonic
price models, that firms are bundles of assets (and capabilities) which are difficult to
disentangle and to price separately on the market. These assets include plants and equipment,
inventories, knowledge assets, customer networks, brand names and reputation. The market
value approach draws on the hypothesis that financial markets assign a correct value to the
bundle of firms’ assets. This approach has been used in several studies to calculate the
marginal shadow value of the knowledge assets from the estimation of market value
equations (Griliches, 1981; Griliches ef al. 1991; Hall, 1993 and 1999; Hall et al. 2005).

The marginal return to knowledge assets from an intertemporal maximization
program with many capital goods is extremely difficult to determine (see Wildasin, 1985). In
several econometric studies this difficulty has been tackled by assuming that the market value
equation takes a linear form or a Cobb-Douglas one.

The typical linear market value model, relying on the assumption that a firm’s assets
enter additively, takes the following form

VilAi Ki)= qi(Aiv, + 1iKi)” (2)
where A4 represents the physical assets and K the knowledge assets of firm i at time ¢. Under
constant returns to scale (o;=1) equation (2) in log form can be written as

logVi = logq, + logAy, + log(1+yKi /Ai) 3)
or

logVi/Ais = logq, + log(1+yKi /A;) 4)

The left hand side of equation (4) is the log of Tobin’s ¢, defined as the ratio of
market value to the replacement cost of the firm, which is typically measured with the

replacement value of firm’s physical assets. In the right hand side y; is the marginal or



shadow value of the ratio of knowledge capital to physical assets at a given point in time. It
measures the expectations of the investors over the effect of the knowledge capital relative to
physical assets on the discounted future profits of the firm. The intercept represents the
average Tobin’s q for the sample firms while qe+y; is the absolute hedonic price of the
knowledge capital.

As in Hall et al. 2005, equation (4) will be estimated by non-linear least squares. Most
earlier research, beginning with Griliches (1981), have approximated the log(1+yK;; /A:)
with %K /A;;and have estimated the market value equation by ordinary least squares.3 To
ease the comparability of coefficient estimates concerning variables measured in different
units we calculated the semi-elasticity of Tobin’s q with respect to each of the main

Iegressors

OlogQ, _ 7

aXli 1+7/1(RDit/Ait)+72(Pit/RDit)+7/3(CIT;t/Pit)

()

where X is the regressor of interest - R&D stock/physical assets, patent stock/R&D stock
(total or software patents) and citation stock/patent stock. We calculated the semi-elasticities
given by equation (5) and their standard errors using the “delta” method for each observation
in the dataset and then averaged them. The tables show the average semi-elasticity and its
average standard error.

We should notice that shadow prices are equilibrium prices resulting from the
interaction between the firm’s demand and the market supply of capital for a specific asset at

a given point in time.” While shadow prices can vary across countries and over time, the

3 We have also used OLS for comparison but the results are not reported here due to lack of space.

* This implies that no structural interpretation should be attached to estimates of the market value
equation.



values obtained by estimation of the market value equation measure the current average
marginal shadow values of an additional euro spent in R&D or an additional patent filed.’

The market value approach rests on restrictive hypotheses concerning the efficiency
of the capital markets and therefore it can be used only for private firms quoted in well-
functioning stock markets. In fact, financial markets are imperfect and there are persistent
institutional differences across countries which result in different evaluation of intangible
assets. Imperfections in the product markets in general also tend to persist over time and,
therefore, they can be ignored when the analysis focuses on variations of the market value
over time within sector. Moreover, country dummies may account for some institutional
differences across countries.

Not surprisingly, most empirical studies which follow this approach rely on data from
the US and the UK, where the stock markets are more efficient compared with other
countries. For related reasons, studies based on US data also benefit from the availability of
large sets of firm-level panel data. These studies find that R&D stocks are significantly
valued by financial markets in addition to physical assets. The empirical evidence for the US
also shows that patent counts have an additional, albeit weaker, effect on market value after
controlling for R&D. Finally, Hall ef al. 2005 find that citation-weighted patents are more
informative than mere patent counts about the market value of innovation.

A series of studies based on European datasets have used different indicators of
innovation (R&D, patents and patent citations) confirming that, by and large, innovative

assets impact significantly upon the firm market value (see Table 1 for a list of such studies).

> For a more detailed discussion of various problems concerning the estimation of the market value
equation, see Hall (2000).
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Table 1. Empirical Studies of the Market Value of Innovation in Europe

Paper R&D Innovation output F’ats—znt Sar_nple Geographical Time period
citations size coverage
Blundell et al. USPTO patents, SPRU _
(1999) NO | ™ innovation counts NO 340 UK 1972-1982
Bloom and Van 5-year
Reenen(2002) | O USPTOpatents | 272 | 404 UK 1968-1996
Toivanen et al.
(2002) YES NO NO 1519 UK 1988-1995
Hall and Oriani UsS, UK, FR, IT,
(2006) YES NO NO 2156 DE 1989-1998
Greenhalgh and
Rogers (2006) YES UK and EPO patents NO 3227 UK 1989-2002
3. Data
3.1 Sample

To construct our sample we started from 3,090 publicly traded firms whose

headquarters are located in France, Germany, Great Britain, Switzerland and Sweden over the

period 1980-2005. This selection of countries accounts for potential cross-country differences

in financial institutions and accounting regulations. Only 731 firms reported data on R&D

expenditures for at least one sample year. For these firms we collected data on patents and

found that 387 have been granted at least one patent and 122 at least one software patent by

the EPO in the period 1985-2005.

Data on corporate structure (date of incorporation, ownership structure, ultimate

parent company, subsidiaries) and balance sheet were obtained from the Bureau van Dijk’s

Amadeus database. Data on market capitalization were obtained from Thomson Financial’s

Datastream. R&D data were obtained from Amadeus and the UK Department of Industry’s

R&D Scoreboard. More precisely, we extracted from Amadeus all quoted companies

reporting positive R&D expenditures for at least one year between 1980 and 2005. From the
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R&D Scoreboard we retrieved R&D expenditures for 22 publicly-traded firms whose R&D
expenditures were not available from Amadeus.

Firms’ patent counts in all technological classes were obtained by matching the name
of the assignee from the CESPRI-Bocconi University patent database with the company name
in Amadeus. Patent citations and the number of IPC classes were extracted from the
PATSTAT database, available under license from the EPO-OECD Taskforce on Patent
Statistics (PATSTAT 2006).

For companies with more than one subsidiary, the patents of the ultimate parent
company have been consolidated on the basis of the 2005 ownership structure reported in
Amadeus. Further information on corporate structure was collected from Hoovers, Who
Owns Whom, and company websites. Holding companies have been reclassified manually
according to the main line of business or their most important subsidiaries using additional
information from Amadeus, Hoovers, and company websites. In future research we will
check for changes in corporate structure of the sample firms by using information on annual
ownership structure provided by Amadeus and Who Owns Whom before 2005.

As Table 2 shows, the sample of R&D reporting firms is clearly biased in favor of
large firms (over 500 employees), especially in France and Switzerland. This sample
selection bias is due to the availability of data on market capitalization. Medium sized firms
are better represented in the United Kingdom, Sweden and Germany than in France and
Switzerland. A large share of the firms for which employment data are not available are most
probably small. Tables A.1 and A.2 in Appendix A report the distribution of the firms in the

sample by capitalization and the main stock markets involved.
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Table 2. Country-size distribution of R&D-reporting firms

United

Size range France Germany Sweden Switzerland Kingdom All
(employees) Firms % Firms % Firms % Firms % Firms % Firms %
50-100 3 5.1 5 3.7 7 8.6 2 3.0 54 13.8 71 9.7
100-500 10 16.9 43 32.1 19 23.5 8 121 115 29.4 195  26.7

41 69.5 66 49.3 38 46.9 53 80.3 141 36.1 339 464
Not available 5 8.5 20 14.9 17 21.0 3 4.5 81 20.7 126 17.2
All sizes 59 100.0 | 134 100.0 | 81 100.0 | 66 100.0 | 391 100.0 731 100.0

Almost half the firms in this sample have a market capitalization less than 100 million
dollars and the majority of firms with very high capitalization (above 5 billion dollars) have
been established before 1970. Moreover, around 25 per cent of firms with a capitalization
between 1 and 5 billion dollars have been incorporated after 1990. This is in part the result of
restructuring, liberalization and privatization of formerly state-owned corporations in many
European continental countries during the 1990. Another reason is the entry of software and
‘internet economy’ companies such SAP, Business Objects, Infineon Technologies and O2.

R&D-reporting firms cover a large number of sectors (see Table A.3 in the
Appendix). The distribution of patents and R&D expenditures across industries is reported in
Table A.4. The most important sectors in terms of R&D expenditures are motor vehicles,
pharmaceuticals, and electronic instruments & telecommunications equipment. Along with
chemicals and soap & toiletries, these are also the most important sectors in terms of total
patents. However, a single sector, electronic instruments & telecommunications equipment,

accounts for over half the software patents.

3.2. Variables

Our dependent variable is Tobin’s ¢ for the firm, that is, the ratio of the firm’s market
value to tangible assets. Firm’s market value is defined as the sum of market capitalization

(price multiplied by the number of outstanding shares at the end of the year) and non current
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liabilities less a correction for net current liabilities plus inventories. Tangible assets are the
net costs of tangible fixed property and inventories used in the production of revenue, and are
obtained as the sum of gross fixed assets plus inventory stocks less depreciation, depletion,
and amortization (accumulated), investment grants and other deductions.’

The R&D expenditure history of each firm was used to compute R&D stock. R&D
spending includes amortization of software costs, company-sponsored research and
development, and software expenses. It is important to note that availability of data on R&D
expenditures is potential source of sample selection bias. European firms are not required or
recommended to disclose information on their R&D expenditures. Announcing R&D is then
an endogenous variable since the decision whether or not to disclose this information rests
upon the discretion of the firm. We treat this issue in Section 4 of the paper.

R&D stocks were obtained using a declining balance formula and the past history of
R&D spending. KRD; = R&D; + (1-9)KRD;.;, where O'is the depreciation rate. We chose the
usual 15 per cent depreciation rate. Our starting R&D stock was calculated for each firm at
the first available R&D observation year as KRD, = RD,/(6+g). This assumes that real R&D
has been growing at a constant annual growth prior to the sample; we used a growth rate g of
8 per cent. Patent stocks were obtained using the same methods, except that the initial
available patent counts were not discounted to obtain an initial capital stock because EPO
patents started at the beginning of our sample.’

Our controls include firms’ annual sales, which account for scale effects in the market
value equation, industry dummies, country dummies and year dummies. Firms’ R&D and

sales have been depreciated by the annual GDP deflator extracted from the AMECO-

® All values expressed in domestic currencies have been converted into euros by using annual average
exchange rates reported by EUROSTAT.

7 Of course, prior to the creation of the EPO, these firms were acquiring patents from their individual

patent offices, but it would require resources beyond our capabilities to assemble these data and the added value
would be minor, given our focus on the period after 1984.
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EUROSTAT web directory. Following Hall and Oriani (2006), we control for differences in
the corporate structure. To this purpose, we generated three dummies which take value 1
when the main shareholder holds a share higher than 35 per cent, 40 per cent and 50 per cent

respectively. This information is reported in the Amadeus dataset.

3.3. Software patents

One of the goals of the research reported here was to get a picture of the use and
valuation of European software patents in European firms. Moreover, as mentioned before,
there is a growing attention to software patents amongst business practitioners, scholars and
policy-makers. Critics claim that software patents have an average poor quality and are
applied for ‘strategic’ reasons rather than for protecting real inventions, whereas advocates
maintain that software inventions are technological inventions like any other and show be
entitled to patentability.

A series of recent papers using U.S. data have examined software patents empirically
in that country (Bessen and Hunt 2004; Graham and Mowery 2003; Hall and MacGarvie
2006), but we are not aware of similar studies that draw on EPO data. The studies mentioned
before are interesting for two reasons. First, they propose different workable definitions of
‘software patents’ that we can use to construct a sample of EPO software patents. Second,
they provide interesting results on the introduction of software patenting in the U.S. that can
be used as a reference point for our study.

Even in the U.S., it is difficult to find a simple definition of a software-related patent
that can be used for statistical purposes and in Europe things are even more difficult because
the international patent classification system does not actually recognize their existence.
Therefore, the definition of software-related patents used in this study draws on earlier
studies on USPTO data. The three main alternatives are those used by Graham and Mowery

(2003), Bessen and Hunt (2004), and Hall and MacGarvie (2006).
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Graham and Mowery identify as software patents those that fall in particular
International Patent Classification (IPC) class/subclass/groups. Broadly defined, the
class/subclasses are “Electric Digital Data Processing” (GO6F), “Recognition of Data;
Presentation of Data; Record Carriers; Handling Record Carriers” (GO6K), and “Electric
Communication Technique” (H04L).* Graham and Mowery selected these classes after
examining the patents of the six largest producers of software in the U.S. (based on 1995
revenues) between 1984 and 1995. Patents in these classes account for 57% of the patents
assigned to the hundred largest firms in the software industry.’

An alternative definition is that adopted by Bessen and Hunt who define software
patents as those that include the words “software” or “computer” & “program.” in the patent
document description. Patents that meet these criteria and also contain the words
“semiconductor”, “chip”, “circuit”, “circuitry” or “bus” in the title are excluded under the
assumption that they refer to the device used to execute the computer program rather than the
program itself.

Hall and MacGarvie (2004) suggest a third algorithm to define software patents that
identifies all the U.S. patent class-subclass combinations in which fifteen “pure” software
firms patent, yielding 2,886 unique class-subclass combinations. Patents falling in the classes
and subclasses combinations obtained from this search method are defined as software
patents. The definition preferred by Hall and MacGarvie combines this definition with that of
Graham and Mowery and then takes the intersection of the result with the Bessen-Hunt
sample.

We followed a combination of the search methods above to identify software patents

in the EPO dataset. First, we searched the title, abstract, claims and description of patents in

8 The groups included are GO6F: 3,5,7,9,11,12,13,15; GO6K: 9,15; HO4L: 9.

? Graham and Mowery (2003), p. 232. The firms are Microsoft, Adobe, Novell, Autodesk, Intuit, and
Symantec.
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the EPO dataset by relying on the same keywords used by Bessen and Hunt in their 2002
study of US software patents: ((software) OR (computer AND program)) AND NOT (chip
OR semiconductor OR bus OR circuit OR circuitry <in> TI) AND NOT (antigen OR
antigenic OR chromatography). This procedure yielded 11,969 patents (in 7,117 different IPC
classes-subclasses) (the keyword method hereafter). Second, we analyzed the IPC
(International Patent Classification) classes of the patent portfolios of the world’s 15 largest
specialized software firms (the IPC method hereafter). We expanded the set of firms used in
earlier studies to obtain a representative sample of specialized software firms including
European companies.'® Our sample firms account for over 30% of the world software market
($227bn according to European Information Technology Observatory estimates). They have
been granted 373 patents in 3,518 different technological classes-subclasses (117 if one
considers only the main IPC codes in each patent).

We have combined the keyword and IPC method to define software patents (we took
the union of the patents obtained with the two methods).' To identify software patents we

relied on the Delphion dataset (www.delphion.com), which gives access to the full-text of

patent document, including the application date, the number of countries for which patent

protection is asked for (family size), the technological classes and the address of the assignee.

' The top European software patenters over 1978-2004 are Microsoft, Oracle, Peoplesoft, Veritas,
Symantec, Adobe Systems, Novell, Autodesk, Intuit, Siebel Systems, Computare, BMC Software, Computer
Associates, Electronic arts (Japan), and SAP (Germany), whereas the top U.S. software patenters during the
1980-2000 period are Microsoft, Oracle, Peoplesoft, Veritas, Symantec, Adobe Systems, Novell, Autodesk,
Macromedia, Borland, Wall Data, Phoenix, Informix, Starfish, and RSA Security. Only half the firms are
common between the two lists, and only two firms are not U.S.-based.

' By relying on the union between the two methods we reduce the Type I-error (excluding a patent that
we should have included among software patents) but may incur in a high Type-II error (classify as software
patent a patent that is not related to software). A study based on software expert examination of earlier studies of
USPTO patents classified according to the keyword method has found a low Type-I error but a high Type-II
error using a similar methodology (Hall and MacGarvie 2006; Layne-Farrar 2005).
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3.4. Descriptive statistics

Table 3 shows some descriptive statistics for the final sample of 572 firms, an
unbalanced panel with 3,555 observations (from 1 to 20 years per firm). In this table the
statistics for all of the patent variables are based only on the non-zero values of these
variables. The variables considered are patents excluding software patents and software
patents, each as raw counts, weighted by citations received, and then weighted by a quality
index constructed from citations made, citations received, and the number of classes. For
each of these six variables, we have the annual flow, a stock computed as described earlier,

and various ratios.
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Table 3. Descriptive statistics

3555 observations, 572 firms, 1985-2005

Variable N Mean s.d. Median 1Q 3Q Min Max
Employment (1000s) 3471 19.3 49.7 1.7 0.4 11.69  0.01 4771
Annual sales* 3547 4273 12610 282 56 1968 0.02 190,000
Tobin's q 3555 2.93 3.28 1.78 117 3.19 0.11 24.91
R&D expenditures™ 3555 163.8 590.0 8.1 1.8 44.2 0.00 6,782
R&D stock* 3555 843.2 30956 379 9.2 2135 0.05 35,160
R&D stock/assets 3555 0.57 0.77 0.29 0.2 0.68 0.00 4.98
Annual patents 2044 12.9 59.4 0 0 2 0.00 761
Patent stock 2044 90.3 369.1 3.9 0.9 26.9 0.02 4,099
Pat stock/R&D stock* 2044 0.20 0.52 0.05 0.02 0.16 0.00 11.59
Annual software patents 789 1.5 7.0 0 0 0.00 77
Software patent stock 789 8.6 35.0 1 0.6 2.5 0.05 340.7
Software pat stock/R&D
stock* 789 0.03 0.17 0 0 0.01 0.00 3.10
Annual citation-weighted
patents 1503 34.6 162.7 0.00 0.00 3.2 0.00 2,360
Citation stock 1503 326.7 1106.9 9.7 2.2 135.7 0.02 10,813
Citation stock/Patent stock 1503 2.66 3.14 1.87 1.01 3.31 0.02 22.80
Annual citation-weighted
software patents 497 3.37 15.52 0.00 0.00 0.00 0.00 151.01
Software patent citation
stock 497 25.3 72.7 3.5 1.5 9.3 0.07 484 .4
Soft pat cite stock/Soft pat
stock 497 3.24 3.32 249 1.08 3.95 0.06 18.94
Annual composite ‘quality’
index for all patents** 644 2.10 10.52 0.00 0 0.80 -51.46 107.97
Composite ‘quality’ index
wtd patent stock™* 644 18.5 47.2 1.9 0.5 16.1 0 398.2
Composite ‘quality’ Index
stock/Pat stock** 644 0.42 0.64 0.18 0.08 0.53 0 3.19
Annual composite ‘quality’
index (software patents)** 218 0.22 1.88 0.00 0 0 -5.23 21.78
Composite ‘quality’ index
stock (software patents)** 218 1.65 3.09 0.73 0.27 1.48 0.01 27.16
Composite ‘quality’ Index
stock/Pat stock (software
patents)** 218 0.61 0.61 0.34 0.2 0.83 0.01 2.14

* millions of current euros
** for 1980-2000 only
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4. Results

4.1. Estimation of the basic model without citations

The basic model that includes R&D stocks, total patent stocks and software patent
stocks was estimated using nonlinear least squares (NLLS) on equation (4)."> We also
computed the elasticity of Tobin’s q with respect to the main regressors and averaged them
across all observations. The results are shown in Table 4 and the main findings can be
summarized as follows.

First, the ratio between R&D stock and physical assets is positively and significantly
related to Tobin’s g across different specifications of the market value equation. The
magnitude of the coefficient (slightly less than unity) is consistent with most of those
reported in earlier works on single or multiple countries (e.g., Hall 2000; Blundell et al. 2002;
Toivanen et al. 2002; Hall and Oriani 2005; Greenhalgh and Rogers 2006). Second, in all
specifications a firm’s patent stocks are significantly related to value, above and beyond the
R&D stock that generated them. The magnitude of the coefficient is substantially higher than
the coefficient obtained by Hall ez al. 2005 using the same methodology for U.S. firms and
U.S. patent data during the 1980s: approximately 0.3 as compared with 0.03 for the earlier
period and data. However, it is closer to the estimate obtained by Hall and MacGarvie 2006
for a sample of US information and communication technology (ICT) firms during the late
1990s, which was 0.15. Note that the estimates here are probably the first set of estimates
using patents for firms from continental European countries and they do seem to suggest that
EPO patents have somewhat higher value for the firms than U.S. patents. The semi-

elasticities computed at the variable means that are reported in Table 4 indicate that a one

12 OLS estimates of the log approximation to equation (4) produced similar results and are therefore not
shown.
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standard deviation increase in the ratio of R&D stock to physical assets yields an increase in
market value of approximately 35 per cent, whereas a one standard deviation increase in the
number of patents per million euros of R&D stock yields a 8.8 per cent increase in market
value."

The software patent stock, which is only two per cent of the total patent stock on
average, has a significant negative discount in the market value, which implies that the net
effect of having software patents is near zero (the difference of the semi elasticities is about
0.03). Note that software patents are highly concentrated in a few sectors and firms: Table
A.4 reports the distribution of software patents by sectors. The most important sector in terms
of software patents is electronic instruments & telecommunications equipment, which
accounts for 62 per cent of total software patents in our sample. Other important software
patent holders are firms in the telecommunication services sector, computers, motor vehicles
and pharmaceuticals. IBM accounts for about 10 per cent of total EPO software patents
granted to business enterprises, followed by Siemens and Canon (about 4 per cent each).
Other large electronics firms are also relatively large software owners — e.g., Philips (3.4 per
cent) and Sony (2.5 per cent). The largest software firm among the top owners of EPO
software patents is Microsoft with a one per cent share.

Patent concentration in our dataset is even higher since all non-European firms are
excluded. As a consequence, Siemens alone accounts for 60 per cent of total software patents
in the sample. Moreover, the largest 15 software patent holders account for over 90 per cent
of total software patents and the first specialized software firm on the list is SAP of Germany,
with 0.4% of the patents. The high concentration of software patents makes the interpretation

of the coefficient in the market value equation quite problematic. As a robustness check we

' The numbers reported in the bottom panel of Tables 4 and 5 are average semi-elasticities across all
firm-year observations and their average standard errors.
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estimated our equations by excluding Siemens but the results reported in Table 4 remain
unchanged. The fact that software patents have little or no impact on the firm market value is

therefore common to other firms in our sample.

Table 4. Market valuation equation estimates including R&D and patent stocks

Dependent variable= log of Tobin’s q
(3555 observations, 572 firms, 5 countries, 1985-2005)

Variable (1) (2) (3) 4)

R&D stock/assets 0.99 (0.07) * 0.81 (0.07) ™ 0.88 (0.09) *** 0.81 (0.09) ™
Pat stock/R&D stock 0.32 (0.08) *** 0.31 (0.08) **
D (no patents) -0.005 (0.030) 0.006 (0.029)

SW pat stock/R&D stock -0.25 (0.11) **
D (no SW patents) -0.05 (0.03)

Log (sales) -0.024 (0.005) *** -0.019 (0.006) *** -0.021 (0.006) ***
D (sales missing) 0.59 (0.59) 0.74 (0.65) 0.69 (0.61)
Adjusted R-squared 0.234 0.237 0.245 0.245

Standard error 0.700 0.699 0.695 0.695

Mean semi-elasticities (mean standard errors)

R&D stock/assets 0.525 (0.047) 0.429 (0.046) 0.467 (0.056) 0.433 (0.056)
Pat stock/R&D stock 0.170 (0.042) 0.167 (0.043)
SW pat stock/R&D stock -0.135 (0.057)

All equations include country dummies, year dummies, and industry dummies
Nonlinear least squares estimates with standard errors robust to heteroskedasticity

4.2. Sample selection bias

As mentioned before, the disclosure of R&D expenditures is an endogenous variable
and this gives rise to potential sample selection bias. To see whether sample selection biases
our results, we first calculated the share of total R&D in the population of manufacturing and
utility firms accounted for by our sample. Country-level R&D expenditures were taken from
the OECD STAN dataset. The ratio of total R&D in our sample to the country-level industrial

R&D was about 0.46 in France, 0.82 in Sweden, 1.56 in Switzerland, 0.66 in the UK and 0.35
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in Germany."* Apparently, the problem of sample selection is potentially relevant for German
and French firms while it is less important for other firms in our sample. Overall, the high
coverage of national R&D expenditures demonstrates that in Europe, as in the US, most of
the business R&D activity is conducted by large, publicly traded firms. Moreover, our sample
accounts for around 15.9% of overall patenting activity and 6.7% of software patenting
activity at the EPO. These shares are quite large given that our sample is centered on only
five European countries and firms from the United States and Japan are excluded.

To check for sample selection bias we estimated a sample selection model using the
Heckman two step method. For this purpose we collected accounting data on a matching
sample of 1,736 publicly-listed firms from the same five countries which have reported no
R&D data over the period 1980-2005." Table A.5 in the Appendix reports the differences
between the two samples with respect to the key variables used in our analysis. The non-
R&D doing firms are smaller, less labor-intensive, have higher leverage, and lower Tobin’s
q.

In the selection equation whether or not the firm discloses R&D spending is regressed
on the following set of variables: leverage (the ratio of current+non-current debt to tangible
fixed assets), capital intensity (the ratio of tangible fixed assets to sales), and labor intensity
(the ratio of labor cost to sales), as well as the share of the firm held by the main shareholder.
These regressors account for observable firm characteristics that can affect its decision
whether or not to reveal R&D expenditures. To account for ‘environmental’ factors we
included industry and year dummies in the equation. The inverse Mills' ratio obtained from

the first stage estimation was then entered in the market value equation. Preliminary results

' The fact that the share for Swiss firms is above unity is explained by the R&D activity of their
foreign subsidiaries in countries like the United States, Germany and France.

' The sample includes all publicly listed firms in the sample countries which whose accounting data
are available in Amadeus company directory.
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show that there is little evidence of sample selection except for Swedish firms.'® This result is

consistent with that of Hall and Oriani (2005) for firms in France, Germany, and Italy.

4.3. Differences in patent quality

Research on the economic importance of patented inventions have demonstrated that
the distribution of patent value is very skewed (e.g., Harhoff e al. 1999). The large majority
of patents have an extremely limited commercial value and only few represent an important
source of revenues to the assignee. A variety of indicators have been adopted to correct for
variation in the importance of patents, the most popular of which is the number of forward
citations.

Citations, i.e., citations of ‘prior art’ that is relevant to a patent, serve an important
legal function, since they delimit the scope of the property rights awarded to the patent. Thus,
if patent B cites patent A, it implies that patent A represents a piece of previously existing
knowledge upon which patent B builds, and over which B cannot have a claim. Citations to
other patents then can be considered as evidence of spillovers or knowledge flows between
patented inventions. However, the usefulness of citations as a proxy for knowledge spillovers
is limited by the fact that citations are not always added by the inventor (Hall ef al. 2005). In
the US, the applicant is required to disclose her knowledge of the prior art, although in fact,
references to prior art are often found by the inventor’s patent attorneys, rather than the
inventor, and the decisions regarding which patents to cite ultimately rests with the patent
examiner, who is supposed to be an expert in the area and hence to be able to find prior art
that the applicant misses or conceals.

In the case of EPO patents, inventors are not required to cite prior art and therefore

references to earlier patents are usually added by patent examiners. This suggests that patent

' The results of these estimations are available upon request.
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citations in EPO patents are even less useful as a measure of spillovers. However, compared
to the USPTO, citations contained in EPO patents tend to be more consistent and objective
because they are assigned by the same team of patent examiners.

For our purposes here, the key question is whether backward citations are a good
measure of the quality of the citing patent. Some scholars have suggested that large numbers
of citations to others reveal that a particular invention is likely to be more derivative in nature
and, therefore, of limited importance (Lanjouw and Schankerman 2004). However, a large
number of backward citations may also indicate a novel combination of existing ideas. This is
probably the reason why Harhoff ez al. (1999) have found that backward citations are
positively correlated with patent value.

Forward citations received by a patent indicate that the information in an invention
has served as a base for a future invention. Our analysis relies on counts of forward citations
over a five year period between the publication date of the cited patent and the application
date of the citing patent. Due to the short time the EPO has been in existence, a wider time
window would dramatically reduce the number of observations.

Other potential indicators of patent value are the number of claims (which delimit the
scope of the invention), family size (the number of jurisdictions or countries the patent has
been applied for) and the number of different technological classes assigned by patent
examiners to a given patent. We use the number of technological classes because they have
been shown to be an indicator of technological ‘quality’ like the number of citations (Lerner
1994). To guarantee a reasonable level of precision , we use eight-digit IPC classification
codes (IPC) reported in the patent document. The number of IPC classes can be viewed as a
measure of technological scope or generality of the patent even though, as noted by Guellec
and Pottelsberghe de la Potterie (2000), it may be also a measure of ambiguity reflecting the

difficulty of the examiner in locating the invention in the technological space.
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To adjust for variations in the technological and economic value of patents in our
estimations we use, alternatively, forward citations and a composite index of patent ‘quality’
derived from a model developed by Lanjouw and Schankerman (2004). This index is
estimated by a common factor model that explains the variance of the three indicators
discussed before. Our common factor is a linear combination of backward citations, forward
citations, and number of IPCs. The common factor explains as much as possible the total
variance of each indicator while minimizing its idiosyncratic component. The methodology is
briefly illustrated in Appendix B. The three indicators are all strongly correlated to each other
at the 1% level of significance. It is worth noting that for the calculation of this index we rely
on patents (and their citations) until 2001 because patents applied for afterwards have a
citation lag window shorter than five years.

Patent citations suffer from several potential sources of biases, the most obvious of
which is truncation. The number of citations to any patent is truncated in time because only
citations received until the end of the dataset are observed. The observed number of citations
to any given patent may also be affected by differences across patent cohorts, technological
fields and patent offices. The observed citations then have to be adjusted or normalized for
this multiplicity of effects. To this purpose we have adopted the approach developed by
Caballero and Jaffe (1993) and Hall ef al. (2005) — hereafter referred to as the HJT method-
which is based on the estimation of a semi-structural model where the citation frequency is
explained by cited-year effects, citing-year effects, technological field effects and citation lag
effects. The estimated parameters of this model can be used to correct observed citation rates.
Appendix C reports a brief description of the HJT method and the cumulative lag distribution

by technology field.!” These expected lag distribution provide the proportion of the lifetime

"7 Bacchiocchi and Montobbio (2004) have also used the HIT method and found significant differences
in citation distribution lags between USPTO and EPO patents which reflect different institutional frameworks.
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citations that are predicted to occur in the time window observed. Actual citations are divided
by predicted citations to correct for truncation.'®

Table 5 reports NLLS estimations with forward citations and the composite index of
patent quality respectively. The first three columns report the results of the base specification
with R&D and patent stocks only (corresponding to models 2, 3, and 4 of Table 4) and the
last four columns the results when various quality measures for patents are added to the
equation. Although based only on data through 2000, the baseline specifications (models 2, 3,
and 4) are very similar to those in Table 4, with a slightly higher R&D stock coefficient and
higher explanatory power.

Models 5 and 6 add average citations per patent and average citations per software
patent to the base specification in models 3 and 4. Both variables are completely
insignificant, in contrast to the results in Hall ez al. 2005 and Hall and MacGarvie 2006,
where citations entered positively. That is, EPO patents held by European firms are more
closely associated with market value than USPTO patents held by US firms, but the opposite
is true of the average rate at which they are cited. Recall that European patent citations are
fewer in number and largely added by the examiner, which may help to explain at least part
of this finding. But the fact remains that it seems as though the EPO patents are more closely
associated with value and therefore have less need of citation-weighting.

In contrast to the result for patent citations, the composite index of patent ‘quality’
discussed before is significantly associated with the market value of the firm (models 7 and
8). This suggests that, beyond and above the mere counts of patents, patent stocks

characterized by a consistent set of technical characteristics (e.g., many backward and

' Note that citations used for the estimation of the composite ‘quality’ index were not corrected for
truncation and therefore we rely on observations until 2001 which represents a fairly wide time window.
Instead, citation counts used to calculate citation stocks to patent stocks entering the market value equation
regression include observations up to 2003. The correction for truncation allows to approach the end of the
sample. However, the closer is the cited patent application year to the end of the sample the less reliable tend to
be the number of corrected citations. This is why cited patents applied for after 2003 we dropped by the sample.
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forward citations, and a wide technology scope) are valued positively by the market. In the
presence of patent stocks, the marginal effect of the composite quality index is somewhat less
than that of these stocks. As Table 5 shows, a one standard deviation increase in the average
quality per patent yields a 5 per cent increase in the value of the firm. In contrast, a one
standard deviation increase in the ratio of patent stock to R&D stock yields an 8 per cent
increase in value. The market value premium for the average software patent quality index is
negative but insignificantly, implying that their quality is evaluated roughly in the same way
as other patents. The significant effect of the composite index of ‘quality’ is in line with the
results obtained by Lanjouw and Schankerman (2004) and shows that some patents (those of
high technical ‘quality’) are an important source of economic value.

Various robustness checks of the above results have been done using regressions that
excluded extreme values of R&D stocks, patent stocks, the composite ‘quality’ index and
software citation stocks. The qualitative results are very similar. However, these estimations
do not account for bias due to unobserved firm-specific heterogeneity. We defer this to future

research using panel data estimation.
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Table 5 Market valuation equation estimates with quality-adjusted patent stocks

Dependent variable: Log Q
1779 observations, 368 firms, 5 countries, 1985-2000

Variable (2 (3) 4) (5) (6) (7) (8)
R&D stock/assets 091 (0.10) ** 1.02 (0.14) = 098 (0.15) ** 1.05 (0.14) *** 099 (0.15) *** 1.00 (0.13) *=* 0.94 (0.14) **
Pat stock/R&D stock 0.30 (0.09) ==+ 0.32 (0.10) *** 0.31 (0.09) *** 0.33 (0.10) *** 0.29 (0.09) == 0.31 (0.10) ***
D (no patents) 0.020 (0.038) 0.027 (0.038) 0.057 (0.046) 0.064 (0.044) 0.004 (0.037) 0.011 (0.036)
SW pat stock/R&D stock -0.28 (0.11) *** -0.29 (0.11) ** -0.29 (0.11) **=
D (no sw patents) -0.026 (0.006) -0.052 (0.047) -0.030  (0.040)
Cit stock/Pat stock 0.015 (0.010) 0.015 (0.010)
SW cit stock/ SW pat stock -0.009 (0.007)
Index stock/Pat stock 0.154 (0.045) ** 0.155  (0.045) ***
SW index stock/ SW pat stock -0.054  (0.034)
log (sales) -0.044 (0.006) *** -0.040 (0.006) *** -0.040 (0.006) *** -0.041 (0.007) *** -0.041 (0.006) *** -0.040 (0.006) *** -0.041 (0.006) ***
D (sales missing) 237 (1.58) 271 (1.77) 263 (1.73) 278 (1.79) 263 (1.72) 263 (1.71) 2.54 (1.67)
Adjusted r-squared 0.291 0.299 0.299 0.299 0.299 0.302 0.302
Standard error 0.691 0.688 0.688 0.687 0.687 0.686 0.686
Mean semi-elasticities (mean standard errors)
R&D stock/assets 0.453 (0.064) 0.509 (0.082) 0.488 (0.085) 0.532 (0.090) 0.500 (0.091) 0.497 (0.079) 0.471 (0.081)
Pat stock/R&D stock 0.148 (0.047) 0.161 (0.053) 0.158 (0.051) 0.168 (0.056) 0.144 (0.047) 0.156  (0.052)
SW pat stock/R&D stock -0.141 (0.056) -0.148 (0.058) -0.144  (0.055)
Cit stock/Pat stock 0.008 (0.006) 0.009 (0.006)
SW cit stock/ SW pat stock -0.004 (0.004)
Index stock/Pat stock 0.077 (0.023) 0.078  (0.023)
SW index stock/ SW pat stock -0.027  (0.017)

All equations include country dummies, year dummies, and dummies for each of the 5 ICT sectors.
The method of estimation is nonlinear least squares on equation (4) with standard errors robust to heteroskedasticity.
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5. Discussion and conclusions

This paper reports novel findings on the economic value of patents in a sample of
European firms. The main novelty of the paper consists in the use of EPO patents and
quality-adjusted patents in the market value equation. In addition, we explored the question
of whether software-related patents in Europe are valued differently from other patents. This
exercise was motivated by the growing number of software patents in the EPO, the debate
over the patentability of Computer Implemented Inventions and the supposedly poor quality
of ‘software-related’ patents due to their strategic nature.

As far as total patents are concerned, our results demonstrate that most EPO patents
held by EPO firms are valued somewhat more than USPTO patents held by US firms, but that
the same is not true of software patents. Our analysis shows that software patents have no
impact on the firm market value and that their citations are valued no more than those to
other patents. Why are these patents valued so poorly by the capital market, despite the fact
that their citation intensity and composite ‘quality’ index are above the average of total
patents? It is possible that the market anticipates that software patents in particular are mostly
used for strategic reasons rather than signalling the outcome of real inventive activity. The
concentration of these patents among hardware firms suggests this hypothesis. Sample firms
like Siemens, Alcatel or Thomson may decide to patent their software to prevent litigation
and in reaction to the large number of EPO software patents held by large, established non-
European competitors like IBM, Canon and Sony. The limited value of software patents may
also indicate that the financial market accounts for their weak enforceability due to the legal
ambiguity about software and ClIs patentability.

In this setting, the insignificant share of software firms in software patents suggests

that most software firms or newly formed firms are not using patents to protect their
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inventions. This is also one explanation for the difference between our results and those of
Hall and MacGarvie (2006) who find that citations to software patents are valued positively
by the market in the case of software firms while they are not for hardware firms.

This is a preliminary investigation of the dataset on EPO patents based only on
European firms from a limited set of countries. In future research we will try to correct for
some limitations of the dataset. First, we want to extend the analysis to other countries and
firms, including non-European firms and accounting for the priority date of the patent (i.e.,
the date of the first application. Our analysis so far is based on the date of application to the
European Patent Office. This leads to left censoring of the priority date. Second, we aim to
examine citation lags by including citations in non-EPO patents. As mentioned before, in the
current version of the paper we assumed that the citation lag distribution does not vary
between EPO and non-EPO citing patents. Third, we will control for differences between
citations to other patents and self-citations. Although we have included self-citations, we do
not expect significant changes in our results. Previous work on US data by Hall et al. (2005)
and Hall and MacGarvie (2006) have found that removing self-citations yields real but
limited changes in the impact of citation-adjusted patents on the firm’s market value.

Finally, we will control for changes in corporate structure. The results presented in
this paper rely on the corporate structure of the firms as of 2005, which was used to match the
name of patent assignees in the EPO database with that of companies in Amadeus. Therefore
in earlier years our patent variables may include more or fewer patents than are actually
owned by the firm, which introduces an unknown source of bias. We recognize that this is a
potential source of bias because expectations about future firms’ performance (our dependent
variable) may be correlated with future acquisitions of patents, implying that the patent

variable proxies for growth expectations in some cases.
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Appendix A — Additional Descriptive Statistics

Table A.1. Distribution by year of incorporation and market capitalisation

_ Year Of_ Market Capitalisation (million US$ - latest year available)
incorporation <100 100-1000 1000-5000 > 5000 All
before 1970 45 142 | 54 229 41 451 | 45 511 |185 253
1971-1980 10 3.2 18 7.6 9 9.9 5 57 |42 57
1981-1990 58 184 | 51 216 15 165 | 16 182 [140 192
1991-2000 160 506 | 95 403 23 253 | 15 17.0 |293 40.1
after 2000 43 136 18 7.6 3 3.3 7 80 |71 97
Al 316 100.0| 236 100.0 o1 100.0| 88 100.0|731 100.0

Table A.2. Distribution by stock market listing

Main Exchange Companies | Share (%)
Euronext Brussels 1 0.1
Euronext Paris 57 7.8
Frankfurt Stock Exchange 58 7.9
London Stock Exchange (SEAQ) 225 30.8
London Stock Exchange (SETS) 155 21.2
NASDAQ National Market 7 1.0
NASDAQ OTC Bulletin Board 2 0.3
New York Stock Exchange 1 0.1
OFEX 1 0.1
Stockholm Stock Exchange 81 11.1
Swiss Electronic Stock Exchange 12 1.6
Swiss Exchange 51 7.0
XETRA 80 10.9
Overall 731 100.0
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Table A.3. Distribution of companies by industry — 2.5 digit industry class

with R&D with patents with software patents
2,5 digit industry class Companies % Companies % Companies %
01 Food & tobacco 7 1.00% 3 0.64% 2 1.64%
02 Textiles, apparel & footwear 4 0.50% 3 0.64% 0 0.00%
03 Lumber & wood products 1 0.10% 1 0.21% 0 0.00%
04 Furniture 2 0.30% 1 0.21% 0 0.00%
05 Paper & paper products 7 1.00% 3 0.64% 0 0.00%
06 Printing & publishing 8 1.10% 5 1.07% 1 0.82%
07 Chemical products 24 3.30% 19 4.05% 8 6.56%
08 Petroleum refining & prods 7 1.00% 6 1.28% 3 2.46%
09 Plastics & rubber prods 15 2.10% 14 2.99% 1 0.82%
10 Stone, clay & glass 8 1.10% 6 1.28% 3 2.46%
11 Primary metal products 9 1.20% 5 1.07% 1 0.82%
12 Fabricated metal products 12 1.60% 6 1.28% 0 0.00%
13 Machinery & engines 46 6.30% 36 7.68% 14 11.48%
14 Computers & comp. equip. 23 3.10% 14 2.99% 5 4.10%
15 Electrical machinery 27 3.70% 19 4.05% 4 3.28%
16 Electronic inst. & comm. eq. 67 9.20% 48 10.23% 16 13.11%
17 Transportation equipment 6 0.80% 5 1.07% 4 3.28%
18 Motor vehicles 15 2.10% 15 3.20% 6 4.92%
19 Optical & medical instruments 33 4.50% 28 5.97% 3 2.46%
20 Pharmaceuticals 41 5.60% 35 7.46% 12 9.84%
21 Misc. manufacturing 17 2.30% 10 2.13% 1 0.82%
22 Soap & toiletries 9 1.20% 7 1.49% 3 2.46%
24 Computing software 117 16.00% 41 8.74% 10 8.20%
25 Telecommunications 15 2.10% 9 1.92% 4 3.28%
26 Wholesale trade 27 3.70% 20 4.26% 4 3.28%
27 Business services 29 4.00% 13 2.77% 0 0.00%
28 Agriculture 1 0.10% 1 0.21% 0 0.00%
29 Mining 4 0.50% 1 0.21% 1 0.82%
30 Construction 3 0.40% 2 0.43% 0 0.00%
31 Transportation services 3 0.40% 0.00% 0 0.00%
32 Utilities 16 2.20% 11 2.35% 2 1.64%
33 Trade 10 1.40% 4 0.85% 1 0.82%
34 Fire, Insurance, Real Estate 25 3.40% 11 2.35% 1 0.82%
35 Health services 6 0.80% 5 1.07% 0 0.00%
36 Engineering services 80 10.90% 59 12.58% 12 9.84%
37 Other services 7 1.00% 3 0.64% 0 0.00%
Overall 731 100.00% 469 100.00% 122 100.00%
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Table A.4. Distribution of R&D, patents and software patents by industry

2.5 digit industry classes (731 firms)

R&D in 1998 patents software patents
2,5 digit industry class mil Euro % n % n %
01 Food & tobacco 535 1.10% 1297 1.20% 8 0.50%
02 Textiles, apparel & footwear 1 0.00% 45 0.00% 0 0.00%
03 Lumber & wood products 0 0.00% 4 0.00% 0 0.00%
04 Furniture 4 0.00% 1 0.00% 0 0.00%
05 Paper & paper products 2 0.00% 21 0.00% 0 0.00%
06 Printing & publishing 340 0.70% 25 0.00% 1 0.10%
07 Chemical products 2573 5.30% 15755  14.20% 40 2.30%
08 Petroleum refining & prods 457 0.90% 1009 0.90% 15 0.90%
09 Plastics & rubber prods 15 0.00% 897 0.80% 2 0.10%
10 Stone, clay & glass 251 0.50% 794 0.70% 9 0.50%
11 Primary metal products 155 0.30% 307 0.30% 1 0.10%
12 Fabricated metal products 24 0.10% 189 0.20% 0 0.00%
13 Machinery & engines 765 1.60% 5147 4.60% 52 3.00%
14 Computers & comp. equip. 211 0.40% 881 0.80% 64 3.70%
15 Electrical machinery 1358 2.80% 3119 2.80% 58 3.30%
16 Electronic inst. & comm. eq. 7833 16.10% | 31272 28.10% | 1076 61.90%
17 Transportation equipment 796 1.60% 888 0.80% 19 1.10%
18 Motor vehicles 11661  24.00% 8601 7.70% 67 3.90%
19 Optical & medical instruments 106 0.20% 267 0.20% 4 0.20%
20 Pharmaceuticals 11214  23.00% | 17492 15.70% 57 3.30%
21 Misc. manufacturing 79 0.20% 159 0.10% 2 0.10%
22 Soap & toiletries 527 1.10% 13080 11.80% 43 2.50%
24 Computing software 959 2.00% 550 0.50% 23 1.30%
25 Telecommunications 2453 5.00% 2163 1.90% 143 8.20%
26 Wholesale trade 316 0.60% 148 0.10% 7 0.40%
27 Business services 123 0.30% 221 0.20% 0 0.00%
28 Agriculture 2 0.00% 1 0.00% 0 0.00%
29 Mining 1 0.00% 93 0.10% 0 0.00%
30 Construction 30 0.10% 18 0.00% 1 0.10%
31 Transportation services 10 0.00% 0 0.00% 0 0.00%
32 Utilities 469 1.00% 2379 2.10% 24 1.40%
33 Trade 37 0.10% 129 0.10% 1 0.10%
34 Fire, Insurance, Real Estate 560 1.20% 462 0.40% 1 0.10%
35 Health services 27 0.10% 133 0.10% 0 0.00%
36 Engineering services 4782 9.80% 3487 3.10% 19 1.10%
37 Other services 0 0.00% 176 0.20% 0 0.00%

Overall

48676  100.00%

111210 100.00%

1737 100.00%
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Table A.5. Descriptive statistics for R&D and non-R&D reporting firms

Non-R&D reporting firms

R&D reporting firms (731) Significance

(1736)
. Number of Number of Test of
Variable Mean . Mean . . .
observations observations differences
Tobin’s q 2.90 2914 2.25 11103 bl
Tangible fixed
assets (M euros) 3720 2914 838 11103 el
Debt-tangible fixed
assets ratio 1.47 2914 30.73 11103
Sales (M euros) 3912 2906 1226 7624 el
Tangible fixed
assets-sales ratio 0.54 2906 0.56 7597
Labour cost-sales
ratio 0.54 2495 0.35 7244 *
Dummy for
control>33% 0.16 2914 0.34 11103 bl

*Two-tailed two sample t-test: ***p<0.01; **p<0.05; *p<0.10
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Appendix B — Correcting for citation truncation

The HJT method to identify the random process generating citations is based on the
estimation of a semi-structural model which is made of two equations. With the first equation
the citation frequency is modelled as a multiplicative function of cited-year effects (s), citing-
year (t) effects, technology field (k) effects and citation lag effects (Hall et al., 2001). The
equation can be written as follows:

C. /P, =aoaaa.cexplf,(L)]

where Cj is the total number of citations received by patents with application date s
and in technology k from patents with application date t. Py is the number of patents in
technology k, year s. Ciy, / Pis is then the average number of citations received by patents k-s
by all patents in year t. The parameters o, &, o measure the effect of, respectively, cited-
year, citing-year and technology on the probability of citations. The function fi(L) describes
the shape of the citation-lag (L=t-s) distribution, which is allowed to vary across fields. The
multiplicative form of the citation frequency relies on the assumption of proportionality, i.e.,
the shape of the lag distribution is assumed to be independent of the number of citations
received.

The « parameters are normalized so that each parameter measures the proportional
difference in the citation propensity with respect to the base category. For instance, an
estimated coefficient 4= (k=chemicals field) = 2 implies that the expected citation rate of
patents in the chemical field is twice the citation rate of patents in the base field.

The second equation in the model is the following:

Je(L) = exp(=f, L)1 —exp(=f3,,L)
where the parameters S, and f,, measure the depreciation or obsolescence of the

knowledge protected by patents in field k and the diffusion effect, respectively.
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Following Hall et al (2001), we estimated this model by non linear least squares.
Estimated o parameters can be used to remove cited-patent, citing-patent and technology
field effects. Since we are primarily interested in truncation, we used the estimates of
parameters to calculate the expected distribution lags. Table B.1 reports the cumulative
citation lag distributions in six large technological groups over the cited period 1978-2004.
We used these proportions to correct the observed citation counts. Consider, for example, a
chemical patent in year 2002 which has received 5 citations until 2005. Table B.1 shows that
the typical chemical patent in year 2002 receives about 48.2% of citations after three years
from its application. To correct for truncation we have to ‘deflate’ the observed citations by
0.48183 obtaining 10.38 citations.

The weights reported in Table B.1 are obtained by using all citations to EPO by year
of cited patents, year of citing patents, citation lag and technological field of the cited patent.
The source of data is PATSTAT (2006), which reports citations received by EPO patents
from the main world patent offices, including the USPTO, the JPTO and the WIPO. Because
of the large computation efforts required, we rely on the application year of EPO citing
patents only, which account for about one-third of all citations received by EPO patents.
Although the weights reported above have been estimated for this subset of citations only, we
have used the same weights to correct all citations received by the patents in our sample,
assuming that the shape of the simulated cumulative lag distributions does not vary with the
citing patent’s office. In future research we will collect information on non-EPO citing

patents in order to relax this unrealistic assumption.
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Table B.1. Simulated Cumulative Lag Distributions by Technology Field

cited Comp & Drugs & Electrical &
year lag Chemical communic. Medical Electronic Mechanical Other

2004 1 0.14108 0.12799 0.14654 0.13320 0.11821 0.11362

2003 2 0.31708 0.29223 0.32724 0.30222 0.27323 0.26416
2002 3 048183 0.45036 0.49442 0.46311 0.42574 0.41379
2001 4 0.61895 0.58574 0.63198 0.59932 0.55915 0.54602
2000 5 0.72601 0.69444 0.73813 0.70745 0.66859 0.65560
1999 6 0.80626 0.77825 0.81680 0.78990 0.75479 0.74280
1998 7 0.86479 0.84111 0.87352 0.85103 0.82082 0.81027
1997 8 0.90662 0.88730 0.91358 0.89546 0.87038 0.86144
1996 9 0.93605 0.92073 0.94147 0.92726 0.90700 0.89964

1995 10 0.95652 0.94463 0.96063 0.94973 0.93374 0.92781
1994 11 0.97061 0.96156 0.97368 0.96547 0.95308 0.94838
1993 12 0.98024 0.97344 0.98249 0.97641 0.96695 0.96328
1992 13  0.98677 0.98174 0.98841 0.98395 0.97683 0.97401
1991 14 0.99118 0.98750 0.99236 0.98913 0.98383 0.98168
1990 15 0.99414 0.99148 0.99498 0.99267 0.98876 0.98715
1989 16 0.99613 0.99421 0.99672 0.99507 0.99222 0.99102
1988 17  0.99745 0.99610 0.99786 0.99671 0.99465 0.99376
1987 18 0.99833 0.99738 0.99861 0.99780 0.99633 0.99569
1986 19  0.99891 0.99824 0.99910 0.99855 0.99751 0.99705
1985 20 0.99930 0.99884 0.99943 0.99905 0.99832 0.99799
1984 21 0.99955 0.99924 0.99964 0.99939 0.99888 0.99865
1983 22 0.99972 0.99951 0.99978 0.99961 0.99927 0.99912
1982 23  0.99983 0.99970 0.99986 0.99976 0.99954 0.99944
1981 24 0.99990 0.99982 0.99992 0.99986 0.99973 0.99966
1980 25 0.99995 0.99991 0.99996 0.99993 0.99985 0.99982
1979 26 0.99998 0.99996 0.99998 0.99997 0.99994 0.99993
1978 27 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
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Appendix C — A Composite Patent Quality Indicator

The construction of the multidimensional measure of patent quality relies on factor
analysis. In factor models each series of data (quality indicator in our case) is decomposed
into a common component and an idiosyncratic component. The common component is only
driven by a few common shocks, denoted by V< N, where N is the number of indicators. In a
static factor model, the common shocks affect the indicators only contemporaneously. The
basic model is given by X = UB + E = K+ E, where X is the (T x N) matrix of observations
on N series (indicators) of length 7. The series are normalized to have mean 0 and variance 1.
U is the (T % V) matrix of V common shocks and B is the (V x N) matrix of factor loadings,
which determines the impact of common shock v on series n. The common shocks and the
factor loadings together make up the common component K. After the influence of common
shocks has been removed, only the idiosyncratic component (£) remains. To estimate the
common component we have to find a linear combination of the indicators in X that explains
as much as possible the total variance of each indicator, minimizing the idiosyncratic
component (for a technical discussion of factor models see Jolliffe (2002).

The parallel with least squares estimation is clear from this formulation, but the fact
that the common shocks are unobserved complicates the problem. The standard way to
extract the common component in the static case is to use principal component analysis. In
principal component analysis the first } eigenvalues and eigenvectors are calculated from the
variance-covariance matrix of the dataset X. The common component is then defined as K=
XVV’, with V = [p,,...,py] and where p; is the eigenvector corresponding to the ith largest (i =
1 ...Q) eigenvalue of the covariance matrix of X. This method does not ensure a unique
solution. A further problem is that ex ante it is not known how many common shocks V affect
the series in X. Following the approach suggested by Lanjouw and Schankerman (2004), we

use a multiple-indicator model with an unobserved common factor:
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Vii=Mvi+ BX + ey
where yy; indicates the value of the kth patent indicator for the ith patent; v is the common
factor with factor loadings Ay and normally distributed, while X is a set of controls. The main
underlining assumption is that the variability of each patent indicator in the sample may be
generated by the variability of a common factor across all the indicators and an idiosyncratic
component e N(0,6°) which is not related to other ‘quality’ indicators.

In our setting, the common factor is the unobserved characteristic of a patent that
influences positively three ‘quality’ indicators: backward citations, forward citations, and the
number of 8-digit IPC technology fields. The analysis is based on the total number of EPO
patents granted between 1980 and 2001 (759,788 observations).

More precisely, to estimate g we followed a two step estimation procedure. In the first
step we regressed by a three stage least squares estimator the three patent ‘quality’ indicators
against two observable patent characteristics, i.e. the year of application and the main
technology class of the patent (out of 30 macro-technological classes). Estimation of the
common quality index v is then based on information extrapolated from the covariance
matrix of three observable indicators. In the second step we estimated a factor model using
the residuals from the first step by a maximum likelihood estimator, under the assumption
that ¢ ~N(0, o°). We found evidence of the existence of a single common factor only which

we used as our multidimensional measure of patent ‘quality’ in the market value estimations.

43



