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Abstract

The parameters of the Taylor rule relating interest rates to inflation and other variables
are not identified in new-Keynesian models. Thus, Taylor rule regressions cannot be used to
argue that the Fed conquered inflation by moving from a ‘passive’ to an ‘active’ policy in the
early 1980s. Since there is nothing in economics to rule out explosive hyperinflations, price
level determinacy requires ingredients beyond the Taylor principle, such as a non-Ricaridan
fiscal regime.

1 Introduction

How is the price level determined, in modern fiat-money economies in which the central bank
follows an interest rate target? The “new-Keynesian” or “Taylor Rule” approach to monetary
economics provides the current “standard answer” to this question. There are two core proposi-
tions to this view: 1) The price level (or inflation) is determinate because the Fed systematically
raises nominal interest rates more than one-for-one with inflation. This ‘active’ interest rate-
target eliminates the indeterminacy of the price level that holds under standard fixed interest
rate targets. 2) U. S. inflation was stabilized in the early 1980s by a change from a ‘passive’
policy in which interest rates did not respond sufficiently to inflation to an ‘active’ monetary
policy in which they did do so. Most famously, Clarida, Gali and Gertler (2000) fit Taylor rules
to the U.S. Federal reserve, running regressions of interest rates on inflation. They find coeffi-
cients below one up to 1980, and above one since. Any good theory needs a stylized reading of
history. Monetarism has Friedman and Schwartz’ Monetary theory. This is it for Taylor rules.

I argue against both propositions. To see the key point, we need to understand how new-
Keynesian models work. They do not say that higher inflation causes the Fed to raise real
interest rates, which in turn lowers “demand” and hence stabilizes future inflation. That’s
“old-Keynesian” logic. That logic produces stable dynamics, in which we solve backward for
endogenous variables as a function of past shocks. Instead, new-Keynesian models say that
higher inflation would lead the Fed to raise future inflation explosively. For only one value of
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inflation today will we fail to see such an explosion. Ruling out explosive paths, new-Keynesian
modelers conclude that inflation today is determined as that value.

Here, then, is the empirical problem: In this logic, explosive inflation represents an off-
equilibrium threat. In equilibrium the threat of explosive inflation is never seen or measured.
The dynamics of inflation (and real variables) in equilibrium can tell us nothing about the nature
of off-equilibrium threats. The crucial coefficients, i.e. the parameters of the “Taylor rule” and
the “forward looking roots” are not identified. The change in regression coefficients pre- and
post- 1980 tells us nothing about determinacy. If you run a Taylor-rule regression in artificial
data generated by a new-Keynesian model in which the structural coefficient of interest rates
on inflation is greater than one, what you measure can be both greater or less than one, and it
has no information about the true Taylor-rule coefficient.

Back to theory, nothing in economics rules out explosive nominal paths in the first place.
(Transversality conditions rule out real explosions, but not nominal ones.) Therefore, nothing in
economics allows us to insist on the unique “locally bounded” equilibrium. The Taylor principle,
in the context of a new-Keynesian model, does not determine the price level.

So what does determine the price level? A completely free commodity (gold) standard or
exchange rate peg can determine the price level, at least relative to the chosen standard. But
while logically transparent, this possibility cannot apply to modern fiat-money economies.

The quantity theory MV=PY can determine the price level. This mechanism requires two
crucial ingredients. First, there must be a “special” medium of exchange, rendered unique in
that capacity by law or by custom. Second, that medium must be held in artificially low supply.
If people can make transactions with bonds, foreign currency, freely created “inside money”
(banknotes, iou’s) or if the central bank leaves the money supply passive, MV=PY no longer
determines the price level. The first requirement is tenuous in modern economies. The second
requirement is blatantly violated. Central banks target interest rates. Even if the quantity
theory could determine the price level in a modern economy— if “money demand” were “stable”
enough — interest rate targeting means that it does not do so.

There is one economic theory remaining: the fiscal theory of the price level. New-Keynesian
models adopt “Ricardian” regimes, in which the government stands ready to raise taxes or
lower spending to accommodate any inflation-induced changes in the value of government debt.
By doing so, they throw away an equilibrium condition with the potential to determine the
price level. The price level can be determined by changing this assumption, and adopting (or
recognizing) a fiscal regime that is at least partially non-Ricardian. Since none of commodity
standards, the quantity theory, or new-Keynesian / Taylor rule models can determine the price
level in a fiat money economy with interest rate targets, I conclude that the “non-Ricardian”
fiscal regime is the only economic model that can do so.

“Economic” is an important qualifier. Most of the case for Taylor rules in popular writing,
and sometimes in academic contexts (Taylor 1999 for example) switches roots and emphasizes a
stabilizing, rather than destabilizing, story: higher interest rates reduce demand which reduces
future inflation. This is a pleasant and intuitively pleasing story to many, but it throws out the
edifice of theoretical coherence — explicit underpinnings of optimizing agents, clearing markets
etc. — built up by the new-Keynesian effort. If this is, in fact, how inflation is stabilized in
modern economies, economists really have no idea why this is so.

The theoretical point is not as dramatic as it appears. Though I argue against two corner-
stones of the new-Keynesian world-view, removing them does not necessarily bring down the
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edifice. I do not argue that we must start and finish all price level analysis with nominal debt
and prospective deficits. The determinacy issue is one of pruning multiple equilibria. If we re-
place the rule “insist on explosive dynamics and keep only the unique equilibrium that does not
explode” with “keep only equilibria consistent with the government valuation equation,” (and
if that can be done) much of the nature and dynamics of the equilibria can remain unaffected.
In particular, if we can specify a set of fiscal constraints that rules out explosive inflation paths,
then the equilibrium dynamics of the new-Keynesian model can remain completely unchanged.

However, it is crucial to spell out the ultimately fiscal considerations that rule out such
equilibria in order to say that the price level is determined, and if so at what level. In thinking
about the ultimate determinants of price stability, those fiscal considerations are at a minimum
a crucial part of the story.

Readers may greet my description of new-Keynesian models with some scepticism. How
could we possibly think that the price level could be determined in a frictionless model, even a
cashless model? How can we possibly think that the price level is determined by a commitment
by the Fed to explosively inflate or deflate in response to the tiniest off-equilibrium realization?
Yet that is how the models work, and if one is sceptical, then that scepticism should motivate
a search for different models.

2 A simple model

2.1 Identification

We can see the points in a very simple model consisting only of a Fisher equation and a Taylor
rule describing Fed policy:

it = r +Etπt+1 (1)

it = r + φπt + xt (2)

where it = nominal interest rate, πt = inflation, r constant real rate, and xt = random component
to monetary policy. The coefficient φ measures how sensitive the central bank is to inflation.
The “random component” xt is not necessarily a “shock”, so I allow it to be serially correlated,

xt = ρxt−1 + εt. (3)

The random component can represent a response to GNP or other variables, but those variables
(in this simple example) do not enter the “IS” or Fisher equation.

We can solve this model by substituting out the nominal interest rate, leaving only inflation,

Etπt+1 = φπt + xt. (4)

The basic points do not require the Phillips - IS curve features of new-Keynesian models,
and thus any frictions. This claim needs to be shown, and do this by expanding the analysis
to include fully-specified new-Keynesian models below. It is routine in the new-Keynesian
literature to study determinacy in such a stripped down and frictionless model (King 2000 p.
76, Woodford 2001 for example).

Solutions and determinacy with φ > 1

Following standard procedure in the new-Keynesian tradition, when φ > 1 we solve this dif-
ference equation forward, and we restrict attention to the unique locally bounded (nonexplosive)
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solution, giving us

πt = −
∞X
j=0

1

φj+1
Et (xt+j) = −

∞X
j=0

ρj

φj+1
xt = −

xt
φ− ρ

. (5)

Since πt is proportional to xt, the dynamics of equilibrium inflation are simply those of the shock
xt,

πt = ρπt−1 + wt (6)

(wt = −εt/(φ − ρ)). Since this is the unique locally bounded solution, the new-Keynesian
literature concludes that the inflation rate is determinate in this model.

Identification with φ > 1

If we accept this solution, however, the contrast between equation (4) and equation (6)
makes the central identification point: the dynamics of equilibrium inflation identify the serial
correlation ρ of the monetary policy disturbance xt not the Taylor-rule coefficient φ.

Perhaps if we ran explicit Taylor-rule regressions we would get a different answer? Using (1)
and the solution (6), we know that in equilibrium interest rates follow

it = r +Etπt+1 = r + ρπt (7)

There is no error term, so an OLS regression will recover ρ exactly. Thus, a Taylor rule regression
of it on πt will estimate the shock serial correlation parameter ρ rather than the Taylor rule
parameter φ.

What happened to the Fed policy rule, Equation (2)? The solution (5) shows that the right
hand variable π and the error term x are correlated — perfectly correlated in fact.

Since the issue is correlation of right hand variables and errors, perhaps we can be clever
(as, for example, Clarida, Gali and Gertler 2000 are) and run the Taylor rule regression by
instrumental variables? Alas, the only instruments at hand are lags of πt and it, themselves
endogenous and thus invalid instruments. For example, if we use all available variables lagged
once as instruments, we have

E(πt|πt−1, it−1, πt−2, it−2....) = ρπt−1

E(it|πt−1, it−1, πt−2, it−2....) = r + ρ2πt−1

Thus the instrumental variables regression gives exactly the same estimate

E(it|Ωt−1) = r + ρE(πt|Ωt−1)

Is there nothing clever we can do? No. The equilibrium dynamics of the observable variables
are given by (6) and (7),

πt = ρπt−1 + wt

it = r + ρπt

The equilibrium dynamics do not involve φ. They are the same for every value of φ > 1. φ is not
identified from data on {it, πt} in the equilibrium of this model. More formally, the likelihood
function for {πt, it} does not involve φ. The only point of φ is to threaten hyperinflation in order
to rule out equilibria. It does not matter at all how fast that hyperinflation comes.
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2.2 Lubik and Schorfheide; testing regions

Lubik and Schorfheide (2004) claim to test for determinacy vs. indeterminacy. Obviously, we
need to understand this claim. The short answer is that the appearance of identification in
Lubik and Schorfheide’s analysis comes only from arbitrary restrictions on the dynamics of the
shocks1.

Lubik and Schorfheide explain their ideas in the same single-equation setup as I use above,
simplifying even further by assuming a white noise monetary policy disturbance

xt = εt

(i.e., ρ = 0). The equilibrium is characterized again by (4) which becomes

Etπt+1 = φπt + εt.

The solutions are, generically,
πt+1 = φπt + εt + δt+1

where δt+1 represents the inflation forecast error. If φ > 1, the unique locally bounded solution
is

πt = −
εt
φ
.

If φ < 1, then any δt+1 with Etδt+1 = 0 is possible — there are multiple equilibria.

Lubik and Schorfheide show that φ is not identified when φ > 1. For example, the likelihoods
in their Figure 1 are flat functions of φ for the region φ > 1. However, they still claim to be able
to test for determinacy. The essence of their test is a claim that the model with indeterminacy
φ < 1 can produce time-series patterns that the model with determinacy cannot produce.

They explain the result with this simple example. Since δt+1 is arbitrary, it does no harm
to restrict δt+1 = Mεt+1 with M an arbitrary parameter. In this example, then, the (local or
bounded) solutions are

φ > 1: πt = −
εt
φ

φ < 1: πt = φπt−1 + εt−1 +Mεt (8)

Thus, if φ > 1, the model can only produce white noise inflation πt. If φ < 1, the model produces
an ARMA (1,1) in which φ is identified as the AR root. Thus, if you saw an ARMA(1,1), you
would know you’re in the region of indeterminacy. They go on to construct a likelihood ratio
test for determinacy vs. indeterminacy.

Alas, even this kind of identification is achieved only by restricting the nature of the shock
process xt. If the shock process xt is not white noise, than the φ > 1 solution can display complex
dynamics in general, and an ARMA(1,1) in particular. Since the shock process is unobserved,
we cannot in fact tell even the region φ > 1 from the region φ < 1. I can sum up this point in a
proposition:

Proposition: For any time series process of {it, πt}, and for any φ̃, one can construct an
xt process that generates given process for the observables {it, πt} . If φ̃ > 1, the observables are
generated as the unique bounded forward-looking solution. In either case, given πt = a(L)εt we
construct xt = b(L)εt with bj = aj+1 − φ̃aj .

1Beyer and Farmer (2006), reviewed below, make this point with a series of examples.
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In particular, any observed time series process for {it, πt} that is consistent with a φ < 1
model is also consistent with a different φ̃ > 1 model. Thus, absent restrictions on the unobserved
forcing process {xt} , there is no way to tell the regime with determinacy from the regime with
indeterminacy. (Equivalently, the joint set of parameters including φ and the parameters of
the xt process are unidentified; one can only identify some of these parameters, e.g. φ < 1 vs.
φ > 1, by fixing others, e.g., the parameters of xt.)

Proof. Start with any process for inflation πt = a(L)εt. Choose an arbitrary
φ̃ > 1.Then, we construct a disturbance process xt = b(L)εt so that the forward-
looking equilibrium with arbitrary φ̃ > 1 generates the the desired time-series process
for inflation, i.e. we construct b(L) so that Equation (5) holds,

a(L)εt = −Et

∞X
j=0

1

φ̃j+1
xt+j = −Et

∞X
j=0

1

φ̃j+1
b(L)εt+j .

Finding b(L) is a simple bit of time-series algebra. We can write the answer explicitly
as

bj = aj+1 − φ̃aj . (9)

It’s easy enough to check that this answer is correct:

−Et

∞X
j=0

1

φ̃j+1
b(L)εt+j = −Et

∞X
j=0

1

φ̃j+1

∞X
k=0

³
ak+1 − φ̃ak

´
εt+j−k

= − 1
φ̃

h³
a1 − φ̃a0

´
εt +

³
a2 − φ̃a1

´
εt−1 +

³
a3 − φ̃a2

´
εt−2 + ...

i
− 1
φ̃2

h³
a2 − φ̃a1

´
εt +

³
a3 − φ̃a2

´
εt−1 +

³
a4 − φ̃a5

´
εt−2 + ...

i
− 1
φ̃3

h³
a3 − φ̃a2

´
εt +

³
a4 − φ̃a3

´
εt−1 +

³
a5 − φ̃a4

´
εt−2 + ...

i
+ ...

= a0εt + a1εt−1 + a2εt−2 + ...

Deriving the answer takes a little more work, and is therefore presented in the Ap-
pendix (see Equations (49)-(50)).
If we choose a φ̃ < 1, then the construction is even easier. The solutions to (4)

are
πt+1 = φ̃πt + xt + δt+1

where δt is an arbitrary unforecastable shock. To construct an xt we need therefore

(1− φ̃L)πt+1 = xt + δt+1.

Obviously, forecast errors must be equated, so we must have δt+1 = a0εt+1. Then,

(1− φ̃L)a(L)εt+1 = b(L)εt + a0εt+1

(1− φ̃L)a(L) = a0 + Lb(L)

(1− φ̃L)a(L)− a0 = Lb(L)
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or, explicitly, ³
a1 − φ̃a0

´
L+

³
a2 − φ̃a1

´
L2 + .. = b0L+ b1L

2 + ...

or, once again
bj = aj+1 − φ̃aj .

it is just given by it = r + Et (πt+1), and so adds nothing once we match π
dynamics.

Example: Suppose we generate data from the Lubik-Schorfheide example with φ < 1, i.e.
xt = εt is i.i.d., and therefore πt follows the ARMA(1,1) process (8). We can generate exactly
the same solution from a model with arbitrary φ̃ > 1 if we let the policy disturbance xt be an
ARMA(1,1) rather than restrict it to be white noise. From (8), we have

πt = φπt−1 +Mεt + εt−1

= Mεt + (1 + φM) εt−1 + φ (1 + φM) εt−2 + φ2 (1 + φM) εt−3 + ...

Equation (9) then says we choose

xt =
³
(1 + φM)− φ̃M

´
εt +

h
φ (1 + φM)− φ̃ (1 + φM)

i
εt−1 +

h
φ2 (1 + φM)− φ̃φ (1 + φM)

i
εt−2 + ...

xt =
³
1 +

³
φ− φ̃

´
M
´
εt + φ

³
φ− φ̃

´ ³
φ−1 +M

´
εt−1 + φ2

³
φ− φ̃

´³
φ−1 +M

´
εt−2 + ..

xt − φxt−1 =
h
1 +

³
φ− φ̃

´
M
i
εt +

h
φ
³
φ− φ̃

´³
φ−1 +M

´
− φ

³
1 +

³
φ− φ̃

´
M
´i

εt−1

xt − φxt−1 =
h
1 +

³
φ− φ̃

´
M
i
εt − φ̃εt−1

2.3 Determinacy and identification in the other equilibria

Lubik and Schorfheide’s analysis raises a related question: Granted that we cannot identify the
Taylor parameter φπ in the unique “determinate” equilibrium with φπ > 1, can we identify φπ
if the economy is in one of the (many) “inderterminate” equilibria with φπ < 1, or in one of
the “explosive” equilibria with φπ > 1? Are at least the estimates with φπ < 1 from the 1970s
meaningful? Would estimates from a hyperinflating regime be meaningful?

Again, the answer appears initially to be “yes”, but that “yes” hinges on lag-length restric-
tions of the forcing process xt. Without such restrictions, we cannot identify φ in any equilibria,
not just the forward-looking φ > 1 bounded equilibrium.

The appearance of identification.

Return to the example (1)-(2)-(3) with an AR(1) monetary policy disturbance. The dif-
ference equation (4) is still all we have to characterize solutions. Thus, we solve the model by
writing

πt+1 = φπt + xt + δt+1. (10)

where δt+1 is an arbitrary random variable with Et (δt+1) = 0.

If φ < 1, following the standard procedure, we solve this equation backward,

πt =
∞X
j=0

φjδt−j +
∞X
j=0

φjxt−j−1.
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Now there are multiple locally bounded (nonexplosive) solutions. We can use any additional
shock series {δt} we like. These are called “sunspots” or “multiple equilibria” in the new-
Keynesian tradition. With φ < 1, new-Keynesian authors conclude, inflation is not determinate.

In the φ > 1 case, the requirement that Etπt+j not explode gives a unique choice of δt at
each time period; a unique locally-bounded equilibrium. The corresponding forecast error δt is
typically not zero. In our example, the unique non-explosive solution (5) requires the unique
equilibrium indexed by2 the choice of forecast error

δt =
xt − ρxt−1

ρ− φ
=

wt

ρ− φ
(11)

Other forecast errors are possible, but lead to explosive solutions.

In our example with an AR(1) x process, φ is identified in almost all of the φ < 1 equilibria,
and in all the explosive equilibria with φ > 1. The “unique forward looking” equilibrium — the
choice (11) is also the unique equilibrium in which φ is not identified.

This point is easiest to see if we remove the shock to the interest rate rule, setting σε = 0.
Then, with φ > 1 the unique bounded forward-looking equilibrium is

πt = 0

Obviously, you can’t measure any dynamics out of that. Almost all of the backward-looking
equilibria (and explosive forward looking equilibria) are

πt = φtπ0

Obviously, φ is identified and easily measurable in these equilibria. The one exception is if
π0 = 0 — the same special case.

The point is almost as easy to see in the special case of an i.i.d disturbance, with ρ = 0.
Writing the Fisher equation (1) in terms of the inflation forecast error δt, we have

πt = it−1 − r + δt

Now we can solve for the interest rate dynamics

it = φit−1 − φr + φδt + εt (12)

Since the errors εt and δt are both orthogonal to it−1, φ is identified by a regression of it on
it−1. But there is a special case — if δt = −εt/φ and i0 = 0 then it = 0, and φ is not identified.
This is exactly the special choice of δt in (11) that we choose in the forward-looking solution!
δt = −εt/φ is also a possible equilibrium of the backward-looking solution, so the statement that
“φ is identified in the backward-looking solutions” must exclude this equilibrium as well.

Identification disappears without restrictions on the x process

Alas this happy state of affairs disappears if we do not restrict the x process, e.g. to white
noise or an AR(1). If we allow an arbitrary disturbance process, then we can no longer identify φ,
even if φ < 1. This conclusion is already proved in the above proposition. Given any equilibrium
πt = a(L)εt, and given any φ̃ > 1, the proposition shows us how to construct a xt = b(L)εt that
generates the desired πt = a(L)εt.

2Algebra: Plug

πt = −
vt

φ− ρ
into

πt = φπt−1 + vt−1 + δt.

and sove for δt.
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3 Local equilibria?

Perhaps it is wiser to reconsider the proposition that an ‘active’ monetary policy, i.e. raising an
interest rate target more than one-for-one with inflation, and a Fisher equation relating nominal
interest and inflation are alone sufficient to determine the price level.

Nothing in economics rules out the explosive solutions3. Thus, we cannot say that the Taylor
rule in this class of models determines the price level. We need some other criterion to rule out
multiple solutions if the price level or inflation are to be determined. Price level determinacy
must come from somewhere else.

To make this sort of claim, one really must write down the model in a more explicit fashion.
To keep the discussion compact, I just simplify the standard source, Woodford 2000, and refer
the reader to that source for technical details and elaboration.

Consumers maximize a standard utility function

maxEt

∞X
j=0

βju(ct+j)

Consumers receive a constant nonstorable endowment Yt = Y. They trade in complete financial
markets described by real contingent claims prices mt,t+1 and hence nominal contingent claims
prices Qt,t+1 =

Pt
Pt+1

mt+1. The interest rate is determined from contingent claim prices by

1

1 + it
= Et [Qt,t+1]

I follow Woodford and many others in describing a frictionless economy. One may be a bit
disturbed by the presence of prices and no money, but this specification does make sense. At
the simplest level, we can think about a monetary model in which the government pays interest
on money, equal to the interest it pays on one-period nominal debt. At this point, money is
exactly equivalent to nominal debt, so there is no real point in carrying around two letters for
the same thing. (Woodford 2001 trades a few more symbols for a bit of comfort and presents the
model with interest-paying money in this way.) Alternatively, remember that money M in such
models represents money held overnight, usually subject to an interest cost. Thus, a “cashless
economy” can operate quite well if agents exchange some maturing government bonds for cash
in the morning, use the cash for transactions during the day, and then pay taxes in cash and
buy new government debt with cash (repurchase agreements) at the end of the day, holding no
money overnight M = 0 when interest is charged. The “price level” still refers to the tradeoff
between cash and goods. Why the price level is determinate in such an economy is the question
we are after, but if it is, there is no harm in talking about nominal prices even though no money
is held overnight. The economy can also be truly cashless, using electronic claims to maturing
government debt as medium of exchange. A “dollar” is then defined by the right to exchange a
“dollar” of maturing debt to extinguish a “dollar” of tax liability.

The government issues one-period nominal debt; the face value issued at time t − 1 and
coming due at date t is Bt−1(t). The household then faces a present-value budget constraint

3I stress “economics” for a reason. A number of authors advocate additional principles on which to rule out
nominal explosions. Most prominently in a series of papers culminating in McCallum (2003), McCallum argues
for a “minimum-state variable” criterion. See Woodford’s (2003) discussion for the other side of that debate.
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(equivalent to a flow constraint and a no-Ponzi condition)

Et

∞X
j=0

Qt,t+j (Pt+jCt+j) = Bt−1(t) +Et

∞X
j=0

Qt,t+j (Pt+jYt+j − Pt+jTt+j) (13)

where Tt denotes real net lump-sum taxes.

The consumer’s first order conditions for optimal choice are, first that marginal rates of
substitution equal the contingent claims price ratio

β
uc(Ct+1)

uc(Ct)
=

Pt+1
Pt

Qt,t+1,

and second the “transversality condition”, the limit of the condition that the consumer neither
leaves unused wealth nor unpaid debts at the end of life,

lim
T→∞

Et [Qt,TBt−1(T )] = 0.

Equilibrium Ct = Y thus requires that the contingent claims prices are given by

β
uc(Yt+1)

uc(Yt)
= β ≡ 1

1 + r
=

Pt+1
Pt

Qt,t+1 (14)

Qt,t+1 =
1

1 + r

Pt
Pt+1

. (15)

In particular, the Fisher relation results,

1

1 + it
= Et(Qt,t+1) = βEt

Pt
Pt+1

=
1

1 + r
Et

µ
1

Πt+1

¶
(16)

Loglinearizing, we obtain the usual Fisher relation

it = r +Etπt+1.

From 13, equilibrium Ct = Y also requires

Bt−1(t) =
∞X
j=0

EtQt,t+j (Pt+jTt+j) (17)

and using contingent claim prices from 14,

Bt−1(t)

Pt
=

∞X
j=0

1

(1 + r)j
Tt+j . (18)

This is an equilibrium condition that derives from the consumer’s present value budget constraint
or, equivalently, the transversality condition for the consumer’s choice to be an optimum. It is
not a “government budget constraint.” (Cochrane 2005 gives an extended discussion of this
point.) We do not know yet whether it describes what set of net taxes {Tt+j} must be satisfied
for a given Pt, or whether it describes the initial price level Pt given a set of taxes Tt+j , or
some combination of the two directions of causality. I call it the “government debt valuation
equation” to keep in mind that it is an equilibrium condition and not a constraint.
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The Fisher equation (16) and the government debt valuation equation (18) are the only
two conditions that need to be satisfied to give an equilibrium. So long as a path of variables
{it, Pt, Bt−1(t), Tt} satisfy these two equations, that path is an equilibrium of this economy.
Consumers have optimized and markets (goods, government bonds, contingent claims) have
cleared. Obviously and hardly surprisingly, the equilibrium is not yet unique, in that many
different price levels and inflation paths will work. We need some specification of monetary
policy to determine the price level.

The new-Keynesian/Taylor rule analysis adds a rule of the form

it = r + φπt

to this analysis, and maintains a “Ricardian” fiscal regime; net taxes Tt+j are assumed to adjust
so that the government debt valuation equation (18) holds. Our only equilibrium condition is
then the Fisher equation (16).

Nothing in this system rules out explosive inflation or deflation. Nothing requires “local”
equilibria. Nominal hyperinflations are perfectly valid equilibria.

The only solution is to strengthen the government valuation equation — to specify at least
some measure of a non-Ricardian regime in which that equation can help to determine the price
level or the rate of inflation.

3.1 Woodford agrees (if you read closely)

The central theoretical question is, again, why should we restrict attention to local, nonexplosive
equilibria? It is this criterion in new-Keynesian models that forces us to look for φ > 0 and
then lets us select one equilibrium, and claim that the model determines the price level. The
only way to answer this question is, as above, to consider equilibria globally, and then search for
some economic reason to rule out the explosive paths.

Woodford (2001) treats this issue in Ch 2.4, starting in p. 123. In turn, Woodford follows
Schmitt-Grohé and Uribe (2000) and Benhabib Schmitt-Grohé and Uribe (2001). We specialize
to perfect foresight. We consider a Fed policy rule

it = φ(Πt); Πt = Pt/Pt−1 (19)

φ(·) is a function; we consider the possibility of nonlinear relations (Woodford 4.1). Consumers
have subjective discount rate β and with constant endowments; with a frictionless economy or
in the cashless limit, the Fisher relation, equivalently the consumer’s first order condition is

Πt+1 = β(1 + it). (20)

As in my linear example, then, we are looking for solutions to the pair (19) and (20). In the
same way, we can substitute out the interest rate and study directly (Woodford 4.6)

Πt+1 = β [1 + φ(Πt)] .

Schmitt-Grohé and Uribe’s main point is that a Taylor rule with slope greater than one
cannot apply globally, because such a rule would violate the lower bound that nominal interest
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rates cannot be less than zero4. Therefore, the Taylor principle that interest rates react more
than one-for-one to inflation cannot apply globally.

Figure 1 illustrates the situation. The equilibrium at Π∗ satisfies the “Taylor principle”
φπ > 1. It is therefore a “unique local equilibrium” of the model. Any value of Π0 other than
Π∗ leads away from the neighborhood of Π∗ as shown. The point is to try establish that Π∗ is
the unique equilibrium of the model.

With a lower bound on nominal interest rates, the function φ(Π) must also have another
stationary point. In addition, this stationary point must violate the Taylor principle; it must
cut the 45◦ line from above and thus have φπ < 1 as shown. This is a “price-indeterminate”
equilibrium. As shown, many paths lead to the φπ < 1 point, and we have no way of telling
which one is the right one. There are “multiple local equilibria” near this point.

*Π
tΠ

1t+Π

0 ?Π

1πφ >

1πφ <

0 nominal rate

Figure 1: Global equilibria in a perfect foresight model.

There were always multiple equilibria, as any of the paths in Figure 1 is an equilibrium.
Schmitt-Grohé and Uribe’s point is that merely restricting attention to “locally bounded” or
“nonexplosive” equilibria is not enough to ensure global determinacy. The function φ(Π) must
also have a stationary point such as φπ < 1 which is a “locally bounded” but not “determinate”
equilibrium. In addition, ruling out explosions is not enough to rule out the equilibria that start
slightly below Π∗ and lead down to the lower equilibrium.

My point is larger — what rules out the explosive equilibria on the right, as well as the
nonexplosive, but still multiple, equilibria on the left? And what does Woodford have to say
about that question?

4Actually, nominal interest rates can be less than zero in an economy that only has government bonds and
consumers may not hold cash overnight. But real economies all do have cash, so there is no point in spending
time on this theoretical possiblity.
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First, (p.128) Woodford notes that

“The equilibrium ..[Π∗].. is nonetheless locally unique, which may be enough to
allow expectations to coordinate upon that equilibrium rather than on one of the
others.”

Similarly, King (2000, p. 58-59) writes

“By specifying τ > 0 [φπ > 0 in our notation] then, the monetary authority would
be saying, ‘if inflation deviates from the neutral level, then the nominal interest rate
will be increased relative to the level which it would be at under a neutral monetary
policy.’ If this statement is believed, then it may be enough to convince the private
sector that the inflation and output will actually take on its neutral level.

This strikes me as a rather weak argument for pruning equilibria.

Woodford argues that we should not think of an economy making an ε mistake and slipping
from Π∗ into a more explosive equilibrium; instead we should think of expectations of future
inflation driving inflation today, and he argues that explosive inflation is an unrealistic expec-
tation. But I think this argument really means that people don’t believe the Fed is really so
pig-headed as to keep raising interest rates 2 for 1 once inflation reaches 1000%; they don’t be-
lieve the function φ. If so, this violates the rules of the game; we are asking for equilibria given
that people really do believe the φ(Π) function with complete certainty. If the fact, correctly
anticipated, is a different φ(Π) function, then let that be analyzed. I think the expectation of
an explosion is perfectly reasonable — If the Fed were committed to raising interest rates more
than 1-1 with inflation, if we lived in a world of constant real rates, so this translates into a
commitment to raise future inflation more than 1-1 with past inflation, then my expectation is
that we’ll see hyperinflation.

Woodford’s real answer though lies in section 4.2 “Policies to prevent a deflationary trap”
(i.e. to cut off equilibria to the left of Π∗) and 4.3 “Policies to prevent an inflationary panic”
(i.e. to cut off equilibria to the right of Π∗). (If the preceding arguments were convincing, we
wouldn’t need these sections of course). And in both of these sections, Woodford fundamentally
argues for price-level determinacy by moving to a non-Ricardian regime, and having fiscal policy
prune equilibria. (Woodford notes on p. 124 that the model we have discussed so far is completed
by an explicitly Ricardian fiscal regime.)

Thus, he eliminates the left hand equilibria as follows (p. 132): “let total nominal government
liabilities Dt be specified to grow at a constant rate μ̄ > 1 while monetary policy is described by
the Taylor rule (4.1). [My (19)].” A zero nominal interest rate requires steady deflation at the
subjective discount rate, so the real value of a constant stock of nominal debt explodes. Such
a real explosion violates consumers’ transversality conditions, and so cannot be an equilibrium.
(Woodford specifies μ̄ > 1 to take care of the case that the φπ < 1 equilibrium has a small
positive nominal interest rate.) “Thus,” (p. 133) “in the case of an appropriate fiscal (my
emphasis) policy rule, a deflationary trap is not a possible rational expectations equilibrium.”

“Let total nominal Government liabilities Dt be specified..” is an additional assumption,
and different from the explicitly Ricardian assumptions of the model described so far. Growing
nominal debt with deflation and means real debt that grows explosively, while net real taxes
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remain unchanged. This is a “Non-Ricardian” threat to violate the government debt valuation
equation. We are pruning equilibria and determining the price level by adding a fiscal regime.

Woodford takes an apparently different approach in section 4.3, p. 135 “Policies to prevent
an inflationary panic,” i.e. to rule out equilibria to the right of Π∗. First, he suggests a
strengthening of the Taylor principle (p.136). He suggests that the Fed commit to a policy
in which the graph in Figure 1 becomes vertical at some finite inflation π̄. Then, there is no
rational-expectations equilibrium with exploding inflation; at least if “equilibrium” requires a
finite price level. At one level, this proposal is not as extreme as it sounds. After all, the
Taylor principle as understood in the new-Keynesian modeling tradition amounts to the Fed
making unpleasant (but somehow credible) threats about off-equilibrium behavior. The more
unpleasant the threat (if believed) the more effective. On the other hand, the real economy
would presumably substitute to other moneys before the value of money reached zero, making
hyperinflation possible.

Recognizing, I think, that this is a bit far-fetched5, Woodford comes to a different suggestion
(p. 138):

...self-fulfilling inflations may be excluded through the addition of policy pro-
visions that apply only in the case of hyperinflation. For example, Obstfeld and
Rogoff (1986) propose that the central bank commit itself to peg the value of the
monetary unit in terms of some real commodity by standing ready to exchange the
commodity for money in event that the real value of the total money supply ever
shrinks to a certain very low level. If it is assumed that this level of real balances
is one that would never be reached except in the case of a self-fulfilling inflation,
the commitment has no effect except to exclude such paths as possible equilibria.
...[This proposal could] well be added as a hyperinflation provision in a regime that
otherwise follows a Taylor rule.

This proposal is inherently fiscal as well. In order for the government to exchange the money
stock (nominal liabilities) for some real commodity, it has to have sufficient stocks of that
commodity on hand, or a commitment to raise enough tax revenue to obtain the commodity.
A purely Ricardian fiscal regime cannot defend a commodity standard. Governments facing
hyperinflations, in fact, notoriously do not have the resources to redeem their money stocks.
(Even if one does not want to call this a “fiscal” proposal, it is certainly a reversion to a
commodity standard. It remains true then, that the Taylor principle alone does not determine
the price level.)

In sum, then, I read Woodford’s analysis as an agreement on the central points. Nothing in
economics rules out non-local equilibria, since nothing in economics rules out nominal hyperinfla-
tion or deflation. Hence, Woodford agrees that we cannot jump from “unique local equilibrium”
to “unique equilibrium” without further economic analysis. And finally, the central ingredient
Woodford adds to rule out the undesired equilibrium is a non-Ricardian fiscal policy (at least
in some states), in which the price level is determined by the valuation equation for government
debt.

Since they are not fully worked out, even these proposals to trim equilibria are open to
some criticism and at least a variety of interpretations. Any equilibrium requires coordination

5Woodford also considers (p. 137) a related proposal involving extreme but finite inflation, plus limits on
money demand elasticity. This proposal won’t work in the frictionless model on which I have focused however.

14



between fiscal and monetary policy, as monetary economists since Friedman (1946) have stressed.
Woodford’s suggestions amount to a commitment that in certain states the government will
adopt an uncoordinated policy that rules out any equilibrium. I do not think this is a credible
threat, or a credible set of expectations.

For example, the proposal to rule out deflation with nominal debt amounts to the time-
honored prescription to escape deflation by printing unbacked money. Clearly, this policy cannot
coexist with the low interest rate target. In Woodford’s suggestion, both money-printing and
the low interest rate target pig-headedly continue, resulting in no equilibrium, period. In most
analysis of such “uncoordinated” policy, however, and surely in people’s expectations of what
would happen should we actually reach this state, one or the other policy (printing unbacked
money, low interest rate target) soon must give way so the policy is “coordinated” after all. For
example, one might hope that the interest rate policy rule jumps to a higher level. But this
is then just a different policy rule, a different function φ(Π); perhaps one with a jump. And,
most importantly, now the paths that lead first to deflation and then to something else are valid
equilibria and cannot be ruled out.

Similarly, we might ask exactly how does a contingent commodity standard rule out a hyper-
inflation? Why can’t we just hyperinflate, hit the bound, redeem the currency, and then continue
on our merry way with a new currency? Again, Woodford keeps the Taylor rule interest rate
policy alive along with the redemption to a new currency. This of course is impossible.

In sum, then, Woodford cuts off the undesirable equilibria by having the government fully
commit (this is a perfect foresight model) to impossible actions (uncoordinated policy), and
have the private sector completely believe this commitment, even though the states of the world
in which the uncoordinated policies are to take effect have never been observed nor even ap-
proached. It would be no different, and a lot simpler, if the government were simply to say “if
inflation gets to x or y, the government commits to blow everything up.”

This criticism is a bit unfair of course. Woodford is merely setting out verbally a rough
sketch of a path one might follow to use fiscal commitments to prune multiple equilibria. My
point only is that some more painting needs to be done to fill out that sketch in a satisfactory
way, a point I suspect Woodford would agree with.

Woodford on identification

Woodford also notices the identification problem. on p.93, he discusses Taylor’s (1999) and
Clarida, Gali and Gertler’s (2000) regression evidence that the Fed responded less than 1-1 to
inflation after 1980 and more than 1-1 afterwards.

Of course, such an interpretation depends on an assumption that the interest-rate
regressions of these authors correctly identify the character of systematic monetary
policy during the period. In fact, an estimated reaction function of this kind could
easily be misspecified.

(An example in which the measured φ coefficient is 1/2 of the true value follows.) However,
though Woodford sees the possibility of a bias in the estimated coefficients, he does not say that
the structural parameter φ is unidentified.
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4 Identification in new-Keynesian models

One may well object at the whole idea of studying identification and determinacy in such a
stripped down model, with no monetary friction and no means by which the central bank can
affect real rates. It turns out that the simple models do in fact capture the relevant issues, but
one can only show that by examining “real” new-Keynesian models in detail and seeing, at the
cost of some algebra, that the same points emerge.

4.1 The standard three-equation model

Throughout, I will base the analysis on standard New-Kenesian IS-LM models, for example as
in the excellent expositions in King (2000) and Woodford (2001). The basic model is

yt = Etyt+1 − σ [rt − r] + xdt (21)

it = rt +Etπt+1 (22)

πt = βEtπt+1 + γ [yt − ȳt] + xπt (23)

where y = output, r = real interest rate, i =nominal interest rate, π = inflation, and x are
disturbances.

While seemingly ad-hoc, the point of the entire literature is that this structure has exquisite
micro-foundations. The first equation is labeled “IS.” Now, that should probably stand for “In-
tertemporal Substitution,” as it is typically derived from first order conditions for consumption
vs. interest rate and the equation of output to consumption (in this simple model that ignores
capital). The second equation is simply the Fisher relation between interest rates and inflation.

The last equation is the “new-Keynesian Phillips curve.” What makes it “new” is the timing
of inflation on the right hand side. Phillips might have had a constant: output is higher when
inflation is higher. An “accelerationist” might put πt−1 on the right hand side: output is higher
when inflation is increasing. Friedman (1968) and Lucas (1972) might put Et−1(πt) on the right
hand side: output is higher if inflation is higher than expected. “new-Keynesian” put Et(πt+1)
on the right hand side. Optimizing firms setting prices subject to adjustment costs set prices
today based on expectations of prices tomorrow. This change in timing has dramatic effects on
the properties of the model. Many writers interpret this equation causally, larger output gaps
cause inflation to change. However, like the other equations, it is simply a first order condition
that must hold in equilibrium. The disturbances xdt and xπt are not necessarily unforecastable.
I use a roman letter (x not ε) to remind us of that fact.

There is an active debate on the right specification of (23). Some authors including Furher
and Moore (1995) and Mankiw and Reis (2002) point out that (23) specifies high output when
inflation is high relative to future inflation, i.e. when inflation is declining, and that this predic-
tion is contrary to fact. (An instance of the point that the slight change in timing has dramatic
implications). Mankiw and Reis argue for a return to mechanical or adaptive expectations, i.e.
πt−1 on the right hand side. Others such as Gali (2003) and Sbordone (2002, 2005) respond
that the right specification puts marginal cost in place of output on the right hand side of (23).
This can save the estimate of the sign of φ, but the cost is that the “gap” series and the whole
new-Keynesian setup now has nothing to do with recessions as conventionally understood. Gali’s
Figure6 2 is particularly dramatic on this point — the “gap” has essentially no correlation with

6Page 46 of http://www.econ.upf.edu/crei/people/gali/pdf files/wcpaper.pdf
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detrended GDP. For my purposes, it doesn’t really matter whether the “y” series represents out-
put or cost. However, in deference to this debate it does seem worth considering the possibility
that γ < 0, and I’ll consider this parameter in what follows.

4.2 Deviations from equilibrium

For determinacy and identification questions, we can simplify the system somewhat by studying
deviations from an equilibrium rather than the equilibrium itself. Start with an equilibrium
process for output {y∗t }. The Fed’s control of interest rates is enough in this model to attain any
such path as an equilibrium. From (23) we can find the required path for equilibrium inflation
π∗t ; from (21) we can find the required path for the equilibrium real rate r∗t , and then from (22)
we can find the required equilibrium nominal interest rate i∗t :

π∗t = Et

X
βj
h
γ(y∗t+j − ȳt+j) + xπt+j

i
r∗t = r +

1

σ

¡
Ety

∗
t+1 − y∗t

¢
+
1

σ
xdt

i∗t = r∗t +Etπ
∗
t+1

The “neutral” (King 2000) or “no-gap” equilibrium y∗t = ȳt is a particularly interesting
baseline. Using overbars to denote this case, we have

π̄t = Et

X
βjxπt+j

r̄t = r +
1

σ
(Etȳt+1 − ȳt) +

1

σ
xdt

so the equilibrium interest rate must be

ı̄t = r̄t +Etπ̄t+1 = r +
1

σ
(Etȳt+1 − ȳt + εdt) +Etπ̄t+1. (24)

I use the general case y∗t to emphasize that the lack of identification holds for any equilibrium.

Defining ỹt = yt− y∗t as the deviation of output from the ∗ equilibrium, we can subtract the
values of (21)-(23) from those of the ∗ equilibrium to describe deviations from equilibrium as

ı̃t = r̃t +Etπ̃t+1 (25)

ỹt = Etỹt+1 − σr̃t (26)

π̃t = βEtπ̃t+1 + γỹt. (27)

This is the same model, but without constants or shocks.

4.3 Identification

Now it is clearly true (by construction) that if the Fed sets it = i∗t , i.e. ı̃t = 0, then πt = π∗t and
yt = y∗t , i.e. π̃t = 0, ỹt = 0 are an equilibrium. But it is also now clearly true that setting it = i∗t
is not enough to determine that this is the only equilibrium; it is not enough to determine the
price level.
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To see this point, I find it useful to write (25)-(27) with ı̃t = 0 as
7"

Etỹt+1
Etπ̃t+1

#
=
1

β

"
β + σγ −σ
−γ 1

# "
ỹt
π̃t

#
(28)

Since the model only restricts the dynamics of expected future output and inflation, we have
multiple equilibria, i.e. any"

ỹt+1
π̃t+1

#
=
1

β

"
β + σγ −σ
−γ 1

# "
ỹt
π̃t

#
+

"
δy,t+1
δx,t+1

#

is valid, not just δyt = δxt = 0 and hence ỹt = π̃t = 0.

Perhaps however the dynamics of (28) are explosive, so at least ỹ = π̃ = 0 is the only local
or nonexplosive equilibrium. Alas, this hope is dashed as well: the eigenvalues of the transition
matrix in (28) are less than one. Since the algebra can be handled in a slightly more general
case, I defer the proof for a moment.

The fact that setting ı̃ = 0 does not determine the price level should not surprise us. This
is a pure interest rate peg; The ȳ and π̄ that appear for example on the right hand side of
equation (24) are not Taylor-type policies. They are exogenous constants at each date, not the
endogenous output and inflation series yt, πt, etc. We have just shown again the familiar result
that an interest rate peg — even one that varies exogenously over time — does not determine the
price level (or output, in this model).

To determine output and the price level, it is not enough to say what nominal interest rates
will be in equilibrium, the Fed must say something about how policy would respond out of
equilibrium. King thus considers Taylor-type rules of the form

it = i∗t + φ0 (πt − π∗t ) + φ1
¡
Etπt+1 −Etπ

∗
t+1

¢
(29)

For example, with φ1 = 0 the dynamics of deviations from the ∗ equilibrium are generalized to"
Etỹt+1
Etπ̃t+1

#
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1 + σγ
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−γ
β

1
β

# "
ỹt
π̃t

#
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7Algebra:

0 = r̃t +Etπ̃t+1

Etỹt+1 = ỹt + σr̃t
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1

β
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γ

β
ỹt.

Hence
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ỹt +

1

β
π̃t.

18



As King shows, and I verify in a moment, with suitably “active” φ0 such as φ0 > 1, both
eigenvalues of this system are greater than one, so output and inflation are again “determinate,”
in the sense that there is a unique non-explosive equilibrium, ỹ = 0, π̃ = 0.

King’s form of a Taylor rule is particularly useful for my point here. In equilibrium, we will
always see πt − π∗t = 0. Thus, a regression estimate of (29) cannot possibly estimate φ0, φ1.
There is no movement in the right hand variables in equilibrium. Taylor determinacy depends
entirely on what the Fed would do out of equilibrium, which we can never see from data in that
equilibrium.

King recognizes the problem, writing in footnote 41,

“The specification of this rule leads to a subtle shift in the interpretation of
the policy parameters τi; these involve specifying how the monetary authority will
respond to deviations of inflation from target. But if these parameters are chosen so
that there is a unique equilibrium, then no deviations of inflation will ever occur.”

King does not address the implications of this non-identification for empirical work.

4.4 Out of equilibrium response

Again, the “Old-Keynesian” intuition is that the Fed will react to inflation by raising real rates;
this action will lower output and via the Phillips curve, lower future inflation. To emphasize
that the “new-Keynesian” model works in a fundamentally different way, I graph in Figure 2
the path of output, inflation, and interest rates in response to an “off-equlibrium” one percent
innovation to inflation at period one, together with no unexpected change in output. This is the
response of the system (25)-(27) to π̃1 = 1, ỹ1 = 0, together with the policy rule ı̃t = 1.3× π̃t,
using parameters β = 0.95, σ = 1, γ = 1, φ = 1.3

At period 1, inflation π̃1 = 1, ỹ1 = 0. The Fed responds by setting interest rates ı̀1 = 1.3×
π̃1 = 1.3. I find the following paths by simulating forward the system (60). Real interest rates rise
throughout the simulation, as one might have hoped. However, output increases uniformly and
eventually explodes in the positive direction, while inflation explodes in the negative direction,
precisely the opposite of what we might have expected.

In the context of the model, however, this behavior makes sense. In the new-Keynesian
IS curve (21), a high real rate lowers current output relative to future output, not on its own.
Given no change in current output, a higher real rate must correspond to higher future output.
Reading the causality of the IS curve (21) from right to left, in order for current output not to
have changed, there must have been an increase in expected future output.

Meanwhile, inflation is exploding off in the negative direction. If output is getting large,
then from the new-Keynesian Phillips curve (23), current inflation must be large relative to
future inflation. Given current inflation, then, we must have declining future inflation. Or,
again reading causality from right to left, current inflation can only be 1% with large output if
people expect future deflation.

In both ways, then, the surprising dynamics of Figure 2 emphasize that the expected fu-
ture terms in new-Keynesian models essentially change the sign of all the familiar dynamic
relationships.
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Figure 2: Response of the three-equation new-Keynesian model to a one-percent off-equilibrium
inflation innovation, with no change in output. Parameters are β = 0.95, σ = 1, γ = 1, φ = 1.3

4.5 Taylor on Taylor rules

A natural question is, “how does Taylor think Taylor rules work?” The best instance I can find
to answer this question is Taylor (1999), and this paper highlights the deep tensions between
how many economists view price determinacy and what the models actually do. Taylor adopts
a simple model (p. 662),

yt = −β(it − πt − r) + ut (30)

πt = πt−1 + αyt−1 + et (31)

it = gππt + gyyt + g0 (32)

Given our previous discussion, we see a striking difference — all the forward-looking terms are
absent. The “IS” curve (30) is missing Etyt+1; the “Phillips” curve (31) has past rather than
current or expected future inflation in it. This is a standard, not “new” Keynesian model. Of
course Taylor is perfectly aware of this fact. He writes (p. 662)

In general α, β and r are reduced form parameters that will depend on the policy
parameters gπ, gy, and g0. For example, Eq. (30) [my number] could be the reduced
form of an optimizing ‘IS’ curve with future values of the real interest rates... Eq. (31)
... could be the reduced form of a rational expectations model with staggered wage
and price setting, in which expectations of future wages and prices have been solved
out. If the parameters do not change very much when the policy parameters change,
then treating Eqs. (30) and (31) as policy invariant... will be a good approximation.
But if the parameters do change by a large amount in response to policy, then the
changes must be taken into account in the policy evaluation. Nevertheless, when

20



viewed as a reduced form, these equations summarize more complex forward-looking
models and are useful for illustrating key points.

However, I do not think that the issue is limited to “policy invariance.” We want to analyze
dynamics for given “policy parameters” gπ, gy, and g0, so even if α, β and r change with different
g, they are constant over time. As we’ll see next, the dynamics of this system are fundamentally
different from those of the “forward looking” models such as I investigate above. (King 2000 p.
72 also details a number of fundamental differences between “new” and “old” Keynesian models
of this sort.)

Taylor states (p. 663) that “it is crucial to have the interest rate response coefficient on
the inflation rate (or a suitable inflation forecast or smoothed inflation rate) above a critical
‘stability threshold’ of one,” i.e. gπ > 1 (p. 664)

The case on the left [gπ > 1] is the stable case...The case on the right [gπ < 1 ]
is unstable... This relationship between the stability of inflation and the size of the
interest rate coefficient in the policy rule is a basic prediction of monetary models
used for policy evaluation research. In fact, because many models are dynamically
unstable when gπ is less than one... the simulations of the models usually assume
that gπ is greater than one.

This is exactly the opposite philosophy from the new-Keynesian models. In new-Keynesian
models, gπ > 1 is the condition for unstable dynamics. These models want precisely unstable
dynamics to force forward-looking solutions. In this model, gπ > 1 is the condition for stable
dynamics, in which we solve for endogenous variables (including inflation) by backward-looking
solutions.

If inflation πt goes up — suppose there is a shock et — then the interest rate in (32) rises more
than the inflation rate. A real interest rate rise in the static IS curve (30) drives output yt
down, and lower output yt (a larger “gap”) in (31) causes inflation next period πt+1 to decline.
In this way, Taylor’s model captures precisely the kind of “old-Keynesian” thinking in which a
Taylor rule seems so attractive.

A bit more formally, (and as an alternative to Taylor’s graphical analysis), use (30) to
eliminate output and (32) to eliminate the nominal rate. As in Taylor (footnote 6), this is
simpler with gy = 0, and that simplification does not change the basic point. With gy = 0,
inflation dynamics in Taylor’s model are

πt = [1 + αβ(1− gπ)]πt−1 − αβ(g0 − r)− αut−1 + et

If gπ > 1, [1 + αβ(1− gπ)] < 1 and inflation has stable, backward looking dynamics. If gπ < 1,
[1 + αβ(1− gπ)] > 1 and inflation has unstable, “forward-looking” (if one wants locally bounded
solutions) dynamics.

Why do the two models disagree so much on the desired kind of dynamics? Because the Taylor
model has no expected future terms on the right hand side. Hence, there are no expectational
errors. All the shocks driving the system are exogenous shocks to the equations. Thus, if we
solve “backward” in terms of these shocks {ut, et}, then there is no indeterminacy.

Needless to say, if we adopt Taylor’s model, then the Taylor rule parameter can be identified.
(The disturbances are not necessarily uncorrelated over time or cross-sectionally, so measurement
is not so simple as an OLS regression, but not impossible).
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Alas, our quest is for economic models that deliver price determinacy from an interest rate
rule. This model fails on the crucial qualification. If in fact inflation has nothing do to with
expected future inflation (the heart of the new-Keynesian optimizing Phillips curve), so inflation
is mechanistically caused by output gaps which are directly under the Fed’s control, and if in
fact the output gap driving inflation has nothing to do with expected future output, then, yes,
the Taylor rule does lead to price determinacy. But despite a half-century of looking for it,
economic models do not deliver the “if” part of these statements.

5 Rules with leads and lags

So far, I have used only very simple Taylor rules that relate interest rates to the current infla-
tion rate. The literature contains a wide variety of specifications, however, and in particular
specifications in which the central bank reacts to expected future inflation. It is often claimed
that the principle “raise interest rates more than one for one with inflation” is quite robust to
details of model and rule specification (See Taylor 1999 for example).

To address this question, start with our simple model (1)-(2), but allow the Fed to respond
to expected future inflation rather than current inflation,

it = r +Etπt+1 (33)

it = r + φEtπt+j j > 0 (34)

For j = 0 (contemporaneous inflation), the equilibrium condition is

Etπt+1 = φπt

as we have seen, the condition for a unique local equilibrium is kφk > 1. As King (2000)
emphasizes, however, this condition implies that φ < −1 works just as well as φ > 1 to ensure
determinacy. If the Fed threatens oscillating hyperinflation and hyperdeflation, that threat is
just as effective in ruling out solutions other than πt = xt/(ρ − φ). I think this example is
useful to remind us that the economics here are “threats of off-equilibrium explosion” rather
than “higher real interest rates will cool off later inflation.”

For j = 1, a reaction to expected future inflation,we have

Etπt+1 = φEtπt+1.

If φ = 1, anything is a solution. For any φ 6= 1 (both φ > 1 and φ < 1), we have

Etπt+1 = 0; πt = δt+1

Inflation must be white noise. No value of φ gives even local determinacy.

For j = 2, we have
Etπt+1 = φEtπt+2

Now a necessary condition for “unstable” or “forward-looking” equilibrium is reversed, kφk < 1.
Since interest rates react to inflation two periods ahead, and interest rates control expected
inflation one period ahead, the interest rate and one-period ahead inflation must move less than
two period ahead inflation if we want an explosive root. And even this specification is now not
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enough to give us a unique local equilibrium, since there is an Et on both sides of the equation.
πt+1 = δt+1, Et(δt+1) = 0 is a solution for any value of φ.

In sum, in this simple model, Taylor determinacy disappears as soon as the Fed reacts to
expected future rather than current inflation. Since the responses to expected future inflation
do not produce equilibria in this model, there is no reason to study identification.

The familiar three-equation model displays similar behavior. The regions of φπ required to
produce a forward-looking solution vary considerably whether the central bank reacts to current
or expected future inflation, and whether the central bank reacts to output. For example, King
(2000) shows that when the central bank responds to expected future inflation, there is a second
region of very large φπ >> 1 that again leads to indeterminacy. Allowing γ < 0 gives further
and quite complex regions.

6 General case

One might suspect that these results depend on the details of the three equation model. What
if one specifies a slightly different Taylor rule, or slightly different IS or Phillips curves?

The bottom line is that when you estimate dynamics from stationary variables, you must
find “stable” dynamics. You cannot measure eigenvalues greater than one. In the forward-
looking bounded solution, shocks corresponding to eigenvalues greater than one are set to zero;
consequently the system is always observationally indistinguishable from one with eigenvalues
less than one, but in which the shocks also happen to be zero. In some specifications it is
possible to correctly identify the Taylor coefficient of Fed policy — but then you will misidentify
some other parameter (σ, γ), so that the overall estimate of the system is unidentified, and other
structural parameters which can lead to “determinacy” or “indeterminacy” are unidentified.

The most general form of the model can be written

xt+1 = Axt + Cεt+1 (35)

where xt is a vector of variables, e. g. xt =
h
yt πt it xπt xdt

i0
. As in this example, not

all elements of x are directly observable. The point of the model may be to link endogenous
observables (y, π, i) to disturbances (xπ, xd), hence the solution may end up with fewer shocks
than variables in x.

In most economic models, the shocks εt are shocks to taste and technology. Hence, we want
stable dynamics and we solve the model by iterating backwards,

xt =
∞X
j=0

Ajεt−j .

However, in new-Keynesian models at least some of the shocks are forecast errors. The model
stops at Etxit+i = something else. In this case the backwards solution leads to indeterminacy
since forecast errors can be anything. Hence, new-Keynesian models want at least some of the
roots to be explosive (forward-looking) so that the forecast errors are uniquely determined and
there is a unique local solution.

Thus, we solve the model by breaking it in to the part corresponding to roots greater and
less than zero. By an eigenvalue decomposition of the matrix A, write

xt+1 = QΛQ−1xt + Cεt+1
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where Λ is a diagonal matrix of eigenvalues,

Λ =

⎡⎢⎣ λ1
λ2

. . .

⎤⎥⎦ ,
and Q is a corresponding matrix of eigenvectors. Hence, we can write the model as

zt+1 = Λzt + ξt+1

where
zt = Q−1xt; ξt+1 = Q−1Cεt+1

Since Λ is diagonal, we can solve for each z variable separately. We solve the unstable roots
forwards and the stable roots backwards. (Again, there is no economics in this, it is simply the
rules of the game in new-Keynesian models to find the unique locally bounded equilibrium.)

kλik > 1 : zit =
∞X
j=1

1

λji
Etξ

i
t+j = 0 (36)

kλik < 1 : zit =
∞X
j=0

λji ξ
i
t−j (37)

zit = λizit−1 + ξit

The forward-looking solution, then, simply corresponds to setting to zero the shocks corre-
sponding to eigenvalues greater than one.

Call the vector of the z variables in corresponding to eigenvalues less than one in (37) z∗t
and corresponding shocks ξ∗t ; call the diagonal matrix of eigenvalues less than one Λ

∗, and call
the matrix consisting of rows of Q corresponding to eigenvalues less than one Q∗. Then, we can
characterize the dynamics of the original x as

z∗t = Λ∗z∗t−1 + ξ∗t (38)

xt = Q∗t z
∗
t (39)

The roots kλk that are greater than one do not show up anywhere in the solution. Thus, we
cannot measure roots greater than one from a sample of data taken from the equilibrium of this
model. Equation (36) shows why: there is no variation in the linear combinations of variables
you need to measure kλk > 1. Equations (38) and (39) are obviously indistinguishable from
a full solution of the model in which the z variables in (36) have eigenvalues kλik < 1, but
happen to have exactly zero shocks ξi, so the z happen to be zero, just as the shocks and z
must all happen to be zero in the forward-looking solution with kλk > 1. Thus, the dynamics
are indistinguishable from those of a model with the eigenvalues greater than one changed to
eigenvalues less than one.

6.1 System non-identification: an example

An example is useful to digest the general case. This example also investigates a related issue:
There are specifications in which the Taylor rule coefficient can be identified. But the above
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general case states that in such specifications we will not be able to identify or measure other
parameters. There is no way to measure whether the system as a whole is determinate.

To see this point, suppose the Fed follows

it = φπt (40)

There is no time-varying constant (i∗t ) in this rule, no error term, and the Fed follows the same
reaction to in-equilibrium inflation as it does to off-equilibrium inflation, unlike the general case
of (29) (in that equation, i∗t can depend on inflation π∗, giving the response of interest rates
to inflation in equilibrium. That response need not equal the response φ0 of interest rates to
off-equilibrium inflation.) If the Fed follows this rule, we can identify φ by a simple regression
of i on π. Of course, this specification cannot revive the empirical literature, as the implication
of a perfect fit can be quickly rejected. Still, it is worth examining the theoretical possibility it
raises of measuring the Taylor coefficient.

But if the new-Keynesian determinacy rules are followed, other structural parameters will
be unidentified. The system as a whole must display stable dynamics in equilibrium; the
eigenvalues we measure from an equilibrium must be less than one. We can never measure the
eigenvalues that are greater than one. The only question is which structural parameters get
mis-measured along the way.

To see this point, suppose the Fed follows (40). To make this theoretical point, I examine a
simple version of the three-equation model,

it = rt +Etπt+1 (41)

yt = Etyt+1 − σrt + xdt (42)

πt = βEtπt+1 + γyt (43)

xdt = ρxdt−1 + εt (44)

For simplicity I have set r = 0, ȳ = 0, xπ = 0 and assumed an AR(1) process for the remaining
shock xd. Recursively substituting, we can express the model in the standard form

8

"
Etyt+1
Etπt+1

#
=

"
1 + σγ

β −σ
β + σφ

−γ
β

1
β

# "
ỹt
π̃t

#
8Using the Phillips curve (43) we have

βEtπt+1 = πt − γyt − xπt.

Using the Fisher relation (41) and the policy (40), we have

rt = φπt −Etπt+1

Substituting for rt and βEtπt+1 in (42) and rearranging,

βEtyt+1 = βyt + βσφπt − σπt + σγyt + σxπt − βxdt

In sum, we have

Etyt+1 =

∙
1 +

σγ

β

¸
yt + σ

∙
φ− 1

β

¸
πt +

σ

β
xπt − xdt

Etπt+1 =
1

β
πt −

γ

β
yt −

1

β
xπt.
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plus Equation (44). (it = φπt means we do not have to carry a separate i equation around.)
Adding forecast errors, we have the standard form (35)⎡⎢⎣ yt+1

πt+1
xdt+1

⎤⎥⎦ =
⎡⎢⎣ 1 +

σγ
β −σ

β + σφ −1
−γ

β
1
β 0

0 0 ρ

⎤⎥⎦
⎡⎢⎣ yt

πt
xdt

⎤⎥⎦+
⎡⎢⎣ δyt+1
δπt+1
εdt+1

⎤⎥⎦ (45)

I use δ to emphasize that the first two shocks are arbitrary forecast errors.

Eigenvalue decomposing the transition matrix, and assuming parameter values that give two
eigenvalues greater than one and one eigenvalue (ρ) less than one, we can write the solution for
the observables (y, i, π) as above in the form9

zt+1 = ρzt + wdt+1⎡⎢⎣ yt
πt
it

⎤⎥⎦ =

⎡⎢⎣ 1− ρβ
γ
φγ

⎤⎥⎦ h zt
i

With one shock and three endogenous variables, we should not be surprised to find that they
move in lockstep.

Now, we can see which structural parameters are identified. ρ is identified by the regression
of any variable on its own lag. φ is identified by the ratio φ = it/πt. The ratio yt/πt identifies the
quantity (1− ρβ)/γ, but we cannot separately identify β and γ. Worst of all, σ is completely
unidentified, as it appears nowhere in relations between observables.

Since σ is not identified in this model it can be either sign. There is a region of the parameter
space with φ > 1 and σ < 0 in which an eigenvalue is less than one, and hence the model does
not have unique bounded solutions. Thus, though we know φ > 1, alas we do not know whether
the other parameters of the system place us in the zone of “determinacy” or not.

6.2 Taylor regressions in new-Keynesian model output

What happens if you run Taylor-rule regressions in artificial data from a new-Keynesian model?We
know the answer for the simple model given above, and we have general theorems that the re-
sult will not measure φπ or other crucial parameters needed to establish roots greater than one.
Still, it would be comforting and interesting to know the answer in the standard three-equation
new-Keynesian model.

In general, the answer is a) not φπ and b) a huge mountain of algebra. While easy enough to
evaluate numerically, such answers don’t give much intuition. For some special cases, though,
we can find intelligible and interesting algebraic formulas. I present the algebra in the Appendix.

Suppose the central bank follows, and we estimate, a rule of the form

it = φππt + xit

xit = ρixit−1,

and the economy follows the standard three-equation model (21)-(23). When this is the only
disturbance to the system (no errors xdt in the IS equation, or xπt in the Phillips curve equations,

9To find this representation, I take the eigenvalue decomposition of the transition matrix in (45) and keep
the eigenvector corresponding to the eigenvalue ρ. Taking analytic eigenvalues and eigenvectors is easy with a
symbolic math program; I use Maple included in Scientific Workplace.
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no variation in the natural rate ȳt), we can evaluate the estimated coefficient in a regression of
it on πt as

φ̂π = ρi +
(1− ρi) (1− ρiβ)

σγ
(46)

First, note that φπ appears nowhere in the right hand side. Second, we start with the
autocorrelation of the monetary policy shock ρi, as in the simple case studied above. Third,
there are now extra terms, involving the parameters of the other equations of the model, in
particular the intertemporal substitution elasticity σ and the Phillips coefficient γ. Most of all,
σ and γ can take on small values, so φ̂π can be greater than one. This observation solves a puzzle
of the simple example: How can Clarida, Gali and Gertler (2000) and others find coefficients
greater than one? In the simple example, in which φ̂π estimated the autocorrelation of the policy
shock, this was not possible. One might suspect that they had measured something by finding
a coefficient greater than one. Here we see that estimated coefficients greater than one are
perfectly possible — and perfectly uninformative about the true φπ

Suppose instead that the central bank follows, and we estimate, a rule of the form

it = φπEtπt+1 + xit,

i.e. reacting to expected future inflation. In the same case of the three-equation model, the
estimated coefficient is

φ̂π = 1 +
(1− ρi) (1− ρiβ)

σγρi
. (47)

Once again, φπ is absent from the right hand side. In this case, we generically find a coefficient
greater than one, so long as parameters obey their usual signs, though this finding has nothing
to do with the actual Taylor rule.

7 Related Literature

Minford, Perugini and Srinivasan (2001, 2002) address a related but different point: does a
Taylor-rule regression of interest rates on output and inflation establish that the Fed is in fact
following a Taylor rule? The answer is no: Even if the Fed targets the money stock there will be
variation of nominal interest rates, output and inflation in equilibrium, so we will see a “Taylor
rule” type relation. As a very simple example, just consider a constant money supply equal to
money demand,

md − pt = αyt − βit

md
t = ms

in equilibrium, we see a Taylor-like relation between nominal interest rates, output and the price
level

it = −
1

β
ms +

α

β
yt +

1

β
pt

Beyer and Farmer (2006) compare an “indeterminate” AR(1) model

pt = aEt (pt+1)

27



with kak < 1 to a “determinate” AR(2),

pt = aEt (pt+1) + bpt−1 + vt

where they choose a and b so that one root is stable and the other unstable. Both models have
AR(1) representations, so there is no way to tell them apart. They conjecture based on this
result that Lubik and Schorfheide (2004) attain identification by lag length restrictions.

Beyer and Farmer (2004) compute solutions to the three equation new-Keynesian model.
They note (p 24) that the equilibrium dynamics are the same for any value of the Fed’s Taylor
Rule coefficient on inflation, as long as that coefficient is greater than one. Thus, they see that
the Taylor Rule coefficient is not identified by the equilibrium dynamics. They examine the
model

ut = Etut+1 + 0.005 (it −Etπt+1)− 0.0015 + v1t

πt = 0.97Etπt+1 − 0.5ut + 0.0256 + v2t

it = 1.1Etπt+1 + 0.028 + v3t

where vit are i.i.d. shocks. They compute the equilibrium dynamics (“reduced form”) as⎡⎢⎣ ut
πt
it

⎤⎥⎦ =
⎡⎢⎣ 0.050.02
0.05

⎤⎥⎦+
⎡⎢⎣ 1 0 0.05
−0.5 1 −0.25
0 0 1

⎤⎥⎦
⎡⎢⎣ v1t
v2t
v3t

⎤⎥⎦ . (48)

They state that “all policies of the form

it = −f32Et [πt+1] + c3 + v3t,

for which
|f32| > 1

lead to exactly the same reduced form..as long as c3 and f32 are chosen to preserve the same
steady state interest rate.” They don’t state whether this is an analytical result or simply the
result of trying a lot of values; since the computation of (48) is numerical, one suspects the
latter.

Davig and Leeper (2005) calculate an economy in which the Taylor rule stochastically shifts
between “active” φ > 1 and “passive” φ < 1 states. They show that the system can display
a unique locally-bounded solution even though one of the regimes is “passive.” Intuitively, it is
enough that at some date in the future the current course will lead to an explosion to rule out
all but one equilibrium. Even if one could identify and measure the parameters of the Taylor
rule, this model argues against the stylized history that the US moved from “passive” and hence
“indeterminate” monetary policy in the 70s to an “active” and hence “determinate” policy in
the 1980s. So long as agents understood some chance of moving to an “active” policy, inflation
was already “determinate” in the 1970s.

8 Concluding comments

The Taylor rule coefficient, or more generally the parameters needed to measure “local deter-
minacy” vs. “indeterminacy” of equilibrium, are not identified. If you simulate data from
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a new-Keynesian economy, in which the Taylor principle φ > 1 applies, you will estimate a
combination of other parameters, including the persistence of monetary shocks.

Thus evidence that φ < 1 in 1970s and φ > 1 in the 1980s, with stabilizing inflation does not
argue for new-Keynesian model of price determination. This evidence is the central founding
story of the new-Keynesian model of price determination.

On a theoretical basis, there is no reason to throw out the nominal explosions that occur
with φ > 1 as equilibria. If the Fed threatens hyperinflation, it might just get hyperinflation,
and hyperinflations can and have occurred.

The fiscal theory of the price level is the only coherent economic model that can determine
the model in a fiat-money economy following an interest rate target. It must at least be added
to interest rate rules to obtain a coherent theory of price-level determination. The only logical
alternatives are to go back to ad-hoc backward-looking ISLM models, or to discover some new
theory of price level determination.
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10 Appendix

10.1 Expected values

We often generate one series (price, consumption, inflation) as an expected discounted sum of
another (dividends, income, policy disturbances)

yt = Et

∞X
j=0

θjxt+j

xt = a(L)εt

Task 1 Find a representation for yt = b(L)εt. The answer is (Hansen and Sargent 1980)

yt =

µ
La(L)− θa(θ)

L− θ

¶
εt.

Here’s why. Start by writing out

y∗t =
∞X
j=0

θjxt+j =
1

1− θL−1
xt =

1

1− θL−1
a(L)εt.

y∗t =

a0εt +a1εt−1 +a2εt−2 +...
+(θa0εt+1) +θa1εt +θa2εt−1 +θa3εt−2 +...

+(θ2a0εt+2) +(θ2a1εt+1) +θ2a2εt +θ2a3εt−1 +θ2a4εt−2 +...
+(θ3a0εt+3) +(θ3a1εt+2) +(θ3a2εt+1) +θ3a3εt +θ3a4εt−1 +θ3a5εt−2 +...

Now, yt is formed by simply getting rid of all the terms involving future εt+j , which I put in
parentheses. Next sum the columns. For example, the εt+1 term is

θa0 + θ2a1 + θ3a2 + ... = θa(θ)

Thus, we can write

yt =

½
a(L)

1− θL−1
−
h
θa(θ)L−1 + θ2a(θ)L−2 + θ3a(θ)L−3 + ...

i¾
εt

=

½
a(L)

1− θL−1
− a(θ)

h
θL−1 + θ2L−2 + θ3L−3 + ...

i¾
εt

=

(
a(L)

1− θL−1
− a(θ)θL−1

1− θL−1

)
εt

=

½
La(L)− a(θ)θ

L− θ

¾
εt

Example. Suppose
xt = ρxt−1 + εt.

It’s easy to work out by hand that

Et

X
j=0

θjxt+j =
X

θjρjxt =
1

1− ρθ
xt =

1

1− ρθ

1

1− ρL
εt.
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Our formula gives

Et

X
j=0

θjxt+j =

( L
1−ρL −

θ
1−ρθ

L− θ

)
εt

=

⎧⎨⎩
L(1−ρθ)−θ(1−ρL)
(1−ρL)(1−ρθ)

L− θ

⎫⎬⎭ εt

=

⎧⎨⎩
L−θ

(1−ρL)(1−ρθ)
L− θ

⎫⎬⎭ εt

=
1

(1− ρL) (1− ρθ)
εt

just as it should.

Task 2, reverse engineering Suppose you have a representation for yt = b(L)εt. Construct
an xt = a(L)εt that justifies it by yt = Et

P∞
j=0 θ

jxt+j . We want

b(L) =
La(L)− θa(θ)

L− θ
.

Solving,
b(L)(L− θ) = La(L)− θa(θ).

Evaluate at L = 0 to find a(θ)

b(0)(−θ) = −a(θ)θ
b(0) = a(θ)

Then substitute

b(L)(L− θ) = La(L)− b(0)θ

a(L) =
b(L)(L− θ) + b(0)θ

L
a(L) = b(L)(1− θL−1) + b(0)θL−1

a(L) = b(L)− θL−1 (b(L)− b(0)) (49)

That’s the answer.

We can also write the answer out explicitly:

a(L) = b0 + b1L+ b2L
2 + b3L

3 + ...− θL−1
³
b1L+ b2L

2 + ...
´

= (b0 − θb1) + (b1 − θb2)L+ (b2 − θb3)L
2 + ...

i.e.
aj = bj − θbj+1 (50)

We can check,

Et

∞X
j=0

θjxt+j = Et

∞X
j=0

θja(L)εt+j

= Et

∞X
j=0

θj
∞X
k=0

(bk − θbk+1) εt+j−k
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= (b0 − θb1) εt + (b1 − θb2)εt−1 + (b2 − θb3) εt−2 + ...

+θ [(b1 − θb2)εt + (b2 − θb3) εt−1 + (b3 − θb4) εt−2 + ...]

+θ2 [(b2 − θb3)εt + (b3 − θb4) εt−1 + (b4 − θb5) εt−2 + ...]

= b0εt + b1εt−1 + b2εt−2 + ...

10.2 Estimated coefficients from the new Keynesian model.

This section derives Equations (46) and (47)

The system is

yt = Etyt+1 − σrt + xdt

it = rt +Etπt+1

πt = βEtπt+1 + γyt + xπt

it = φππt + xit

Eliminate i, r to express the model in standard form,

Etyt+1 = yt + σrt − xdt

Etπt+1 = φππt + xit − rt

βEtπt+1 = πt − γyt − xπt

Etyt+1 = yt + σ (Etπt+1 − φππt − xit)− xdt

Etyt+1 = yt +
σ

β
πt −

σ

β
γyt −

σ

β
xπt − σφππt − σxit − xdt

Etyt+1 =

µ
1− σγ

β

¶
yt + σ

µ
1

β
− φπ

¶
πt −

σ

β
xπt − σxit − xdt

Thus, we solve⎡⎢⎢⎢⎢⎢⎣
yt+1
πt+1
xdt+1
xπt+1
xit+1

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
1− σγ

β
σ
β − σφπ −1 −σ

β −σ
−γ

β
1
β 0 −1 0

0 0 ρd 0 0
0 0 0 ρπ 0
0 0 0 0 ρi

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
yt
πt
xdt
xπt
xit

⎤⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎣

δyt+1
δπt+1
εdt+1
επt+1
εit+1

⎤⎥⎥⎥⎥⎥⎦
Taking eigenvalues and eigenvectors of the transition matrix, we can express the solution as

zdt = ρdzdt−1 + εdt

zπt = ρπzπt−1 + επt

zit = ρizit−1 + εit

"
yt
πt

#
=

"
1− ρdβ σ

¡
1− (1 + ρπ)β + φπβ

2
¢
1− ρiβ

γ β2 (1− ρπ) + σγ (1− β) γ

#⎡⎢⎣ zdt
zπt
zit

⎤⎥⎦
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xdt = ((1− ρd) (1− ρdβ) + σγ (ρd − φπ)) zdt

xπt = ((1− ρπ) (1− ρπβ) + σγ (ρπ − φπ))βzπt

xit = ((1− ρi) (1− ρiβ) + σγ (ρi − φπ)) /σzit

it = φππt + xit

What do you get if you regress it on πt?

φ̂π = φπ + cov(πt, xit)/var(πt)

Since πt loads on the shock xit, the covariance is not zero.

var(πt) = γ2σ2zd +
h
β2 (1− ρπ) + σγ (1− β)

i2
σ2zπ + γ2σ2zi

cov(πt, xit) = ((1− ρi) (1− ρiβ) + σγ (ρi − φπ)) (γ/σ)σ
2
zi

cov(πt, xit)

var(πt)
=

[(1− ρi) (1− ρiβ) + σγ (ρi − φπ)] (γ/σ)σ
2
zi

γ2σ2zd + [β
2 (1− ρπ) + σγ (1− β)]2 σ2zπ + γ2σ2zi

In the special case that the π and d shocks are zero, we have

cov(πt, xit)

var(πt)
=
(1− ρi) (1− ρiβ)

σγ
+ (ρi − φπ)

The φπ cancel, so the answer is

φ̂π =
(1− ρi) (1− ρiβ)

σγ
+ ρi

To evaluate the expected-inflation rule, the system is now

yt = Etyt+1 − σrt + xdt

it = rt +Etπt+1

πt = βEtπt+1 + γyt + xπt

it = φπEtπt+1 + xit

Eliminate i, r to express the model in standard form,

Etyt+1 = yt + σrt − xdt

(1− φπ)Etπt+1 = xit − rt

βEtπt+1 = πt − γyt − xπt

Etyt+1 = yt + σ(1− φπ)Etπt+1 − σxit − xdt

Etyt+1 = yt +
σ

β
(1− φπ) (πt − γyt − xπt)− σxit − xdt

Etyt+1 =

∙
1− σγ

β
(1− φπ)

¸
yt +

σ

β
(1− φπ)πt −

σ

β
(1− φπ)xπt − σxit − xdt
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Thus, we solve⎡⎢⎢⎢⎢⎢⎣
yt+1
πt+1
xdt+1
xπt+1
xit+1

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
1− σγ

β (1− φπ)
σ
β (1− φπ) −1 −σ

β (1− φπ) −σ
−γ

β
1
β 0 −1 0

0 0 ρd 0 0
0 0 0 ρπ 0
0 0 0 0 ρi

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
yt
πt
xdt
xπt
xit

⎤⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎣

δyt+1
δπt+1
εdt+1
επt+1
εit+1

⎤⎥⎥⎥⎥⎥⎦ .

Taking eigenvectors, the solution is

zdt = ρdzdt−1 + εdt

zπt = ρπzπt−1 + επt

zit = ρizit−1 + εit

"
yt
πt

#
=

"
1− ρdβ σ (1− φπ) [1− β (1 + ρπ)] 1− ρiβ

γ β2 (1− ρπ) + σγ(1− β) (1− φπ) γ

#⎡⎢⎣ zdt
zπt
zit

⎤⎥⎦
xdt = [(1− ρd) (1− ρdβ) + σγρd (1− φπ)] zdt

xπt = β [(1− ρπ) (1− ρπβ) + σγρπ (1− φπ)] zπt

xit =
1

σ
[(1− ρi) (1− ρiβ) + σγρi (1− φπ)] zit

it = φπEtπt+1 + xit (51)

Now, we want to run a regression of it on Etπt+1. Again, I specialize to zd = zπ = 0. Then,

πt = γzπt

Etπt+1 = γρizit

With two or fewer shocks, we can recover the shocks from the observable variables, so there is
no issue that Et formed by observable instruments gives less information than Et formed on the
full information set, i.e. seeing the z. Thus, when we run regression (51), the result is

φ̂π = φπ +
cov (xit, γρizit)

var(γρizit)

= φπ +
1

σ

[(1− ρi) (1− ρiβ) + σγρi (1− φπ)] γρi
γ2ρ2i

φ̂π = 1 +
(1− ρi) (1− ρiβ)

σγρi
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