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1. Introduction 
 
A recent development in productivity analysis is the increased focus on the impact of 

firm entry and exit into an industry on aggregate levels of productivity growth.  

Haltiwanger and Bartelsman and Doms in their survey papers make the following 

observations:1

 
“There are large and persistent differences in productivity across establishments in the same industry (see 
Bartelsman and Doms (2000) for an excellent discussion). The differences themselves are large − for total 
factor productivity the ratio of the productivity level for the plant at the 75th percentile to the plant at the 
5th percentile in the same industry is 2.4 (this is the average across industries) − the equivalent ratio for 
labour productivity is 3.5.”  John Haltiwanger (2000; 9). 
 
“The ratio of average TFP for plants in the ninth decile of the productivity distribution relative to the 
average in the second decile was about 2 to 1 in 1972 and about 2.75 to 1 in 1987.”  Eric J. Bartelsman and 
Mark Doms (2000; 579). 
 
Thus the recent productivity literature has demonstrated empirically that increases in the 

productivity of the economy can be obtained by reallocating resources2 away from low 

productivity firms in an industry to the higher productivity firms.3  However, different 

investigators have chosen different methods for measuring the contributions to industry 

productivity growth of entering and exiting firms and the issue remains open as to which 

method is “best”.  We propose yet another method for accomplishing this decomposition.  

It differs from existing methods in that it treats time in a symmetric fashion so that the 

industry productivity difference in levels between two periods reverses sign when the 

periods are interchanged as do the various contribution terms.4  Our proposed 

productivity decomposition is explained in sections 2 and 3 below, assuming that each 

                                                 
1 See their papers for many additional references to the literature.  Some of the more important references 
are Baldwin and Gorecki (1991), Baily, Hulten and Campbell (1992), Griliches and Regev (1995), Baldwin 
(1995), Haltiwanger (1997), Ahn (2001), Foster, Haltiwanger and Krizan (2001), Aw, Chen and Roberts 
(2001), Fox (2002), Baldwin and Gu (2002), Balk (2003), and Bartelsman, Haltiwanger and Scarpetta 
(2004).   
2 A more precise meaning for the term “reallocating resources” is “changing input shares”.  
3 This conclusion has also emerged from the extensive literature on benchmarking and on Data 
Envelopment Analysis; e.g., see Coelli, Prasada Rao and Battese (1998). 
4 Balk (2003; 29) also emphasized the importance of a symmetric treatment of time.  A symmetric 
decomposition was proposed earlier by Griliches and Regev (1995) and a modification of it was used by 
Aw, Chen and Roberts (2001). 
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firm in the industry produces only one homogeneous output and uses only one 

homogeneous input. 

 

Another problem with the various productivity decompositions that have been suggested 

in the literature is that they often assume that there is only one output and one input that 

each production unit in the industry produces and uses.  If the list of outputs being 

produced and inputs being used by each firm is constant across firms, then there is no 

problem in using normal index number theory to construct output and input aggregates 

for each continuing firm that is present for the two periods under consideration.5  

However, this method for constructing output and input aggregates does not work for 

entering and exiting firms, since there is no natural base observation to compare the 

single period data for these firms.  This problem does not seem to have been widely 

recognized in the literature with some notable exceptions.6  Hence in the remainder of 

this paper, we focus our attention on solutions to this problem.  Our suggested solution to 

this problem is to use multilateral index number theory so that each firm’s data in each 

time period is treated as if it were the data pertaining to a “country”.  Unfortunately, there 

are many possible multilateral methods that could be used.  In section 5 below, we 

construct an artificial data set involving three continuing firms, one entering and one 

exiting firm and then in the remaining sections of the paper, we use various multilateral 

aggregation methods in order to construct firm output and input aggregates, which we 

then use in our suggested productivity growth decomposition formula.  The multilateral 

aggregation methods that we consider are: the star system (section 6); the GEKS system 

(section 7); the own share system (section 8); the “spatial” linking method due to Robert 

Hill (section 9) and a simple deflation of value aggregates method (section 10). 

 

Section 11 concludes. 

                                                 
5 An economic justification for using a superlative index to accomplish this aggregation can be supplied 
under some separability assumptions; see Diewert (1976). 
6 Aw, Chen and Roberts (2001) and Aw, Chung and Roberts (2003) recognized the importance of this 
problem and they used a modification of a multilateral method originally proposed by Caves, Christensen 
and Diewert (1982).  The modification that they used is due to Good (1985) and is explained in Good, 
Nadiri and Sickles (1997).  The original Caves, Christensen and Diewert method was designed for use in a 
single cross section and is not suitable for use in a panel data context if there is considerable inflation 
between the periods in the panel. 
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2. The Measurement of Aggregate Productivity Levels in the One Output One Input 

Case  

 

We begin by considering a very simple case where firms produce one output with one 

input so that it is very straightforward to measure the productivity of each firm by 

dividing its output by its input used.7  We assume that these firms are all in the same 

industry, producing the same output and using the same input, so that it is also very 

straightforward to measure industry productivity in each period by dividing aggregate 

industry output by aggregate industry input.  Our measurement problem is to account for 

the contributions to industry productivity growth of entering and exiting firms.   

 

In what follows, C denotes the set of continuing production units that are present in 

periods 0 and 1, X denotes the set of exiting firms which are only present in period 0, and 

N denotes the set of new firms that are present only in period 1.  

 

Let yCi
t > 0 and xCi

t > 0 respectively denote the output produced and input utilized by 

continuing unit i∈C during period t = 0, 1. Let yXi
0 > 0 and xXi

0 > 0 respectively denote 

the output produced and input used by exiting firm i∈X during period 0. Finally, let yNi
1 

> 0 and xNi
1 > 0 respectively denote the output produced and input used by the new firm 

i∈N during period 1.  

 

The productivity level ∏Ci
t of a continuing firm i∈C in each period t can be defined as 

output yCi
t divided by input xCi

t:  

 

(1) ∏Ci
t ≡ yCi

t / xCi
t ;                                                               i∈C ; t = 0,1.   

 

The productivity levels of the exiting firms in period 0 and the entering firms in period 1 

are defined in a similar fashion, as follows: 

 
                                                 
7 We will consider the case of many outputs and many inputs in sections 4-10 below. 
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(2) ∏Xi
0 ≡ yXi

0 / xXi
0 ;                                                               i∈X ;   

(3) ∏Ni
1 ≡ yNi

1 / xNi
1 ;                                                               i∈N .   

 

Since the production units are all producing the same output and are using the same input, 

a natural definition for industry productivity ∏0 in period 0 is aggregate output divided by 

aggregate input:8  

 

(4) ∏0 ≡ [∑i∈C yCi
0 + ∑i∈X yXi

0] / [∑i∈C xCi
0 + ∑i∈X xXi

0] 

          = SC
0 ∑i∈C sCi

0 ∏Ci
0 + SX

0 ∑i∈X sXi
0 ∏Xi

0

 

where the aggregate input shares of the continuing and exiting firms in period 0, SC
0 and 

SX
0, are defined as follows:  

 

(5) SC
0 ≡ ∑i∈C xCi

0 / [∑i∈C xCi
0 + ∑i∈X xXi

0] ; 

(6) SX
0 ≡ ∑i∈X xXi

0 / [∑i∈C xCi
0 + ∑i∈X xXi

0] . 

 

In addition, the period 0 micro input share, sCi
0, for a continuing firm i∈C is defined as 

follows:  

 

(7) sCi
0 ≡ xCi

0 / ∑k∈C xCk
0 ;                                           i∈C. 

 

Thus sCi
0 is the input of continuing firm i in period 0, xCi

0, divided by the total input used 

by all continuing firms in period 0, ∑k∈C xCk
0.  Similarly, the period 0 micro input share 

for exiting firm i∈X, sXi
0,  is defined the input of exiting firm i in period 0, xXi

0, divided 

by the total input used by all exiting firms in period 0, ∑k∈X xXk
0: 

 

(8) sXi
0 ≡ xXi

0 / ∑k∈X xXk
0 ;                                           i∈X. 

                                                 
8 It is possible to rework our analysis by reversing the role of inputs and outputs so that output shares 
replace input shares in the decomposition formulae.  Then at the end, we can take the reciprocal of the 
aggregate inverse productivity measure and obtain an alternative productivity decomposition.  We owe this 
suggestion to Bert Balk. 
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Of course, the period 0 aggregate productivities for continuing and exiting firms, ∏C
0, 

and ∏X
0, can be defined in a similar manner to the definition of ∏0 in (4), as follows:  

 

(9)   ∏C
0 ≡ ∑i∈C yCi

0 / ∑i∈C xCi
0  

              = ∑i∈C sCi
0 ∏Ci

0 ; 

(10) ∏X
0 ≡ ∑i∈X yXi

0 / ∑i∈X xXi
0  

              = ∑i∈X sXi
0 ∏Xi

0 . 

  

Substitution of (9) and (10) back into definition (4) for the aggregate period 0 level of 

productivity leads to the following decomposition of aggregate period 0 productivity into 

its continuing and exiting components:  

 

(11) ∏0 = SC
0 ∏C

0 + SX
0 ∏X

0

(12)      = ∏C
0 + SX

0 (∏X
0 − ∏C

0) 

 

where (12) follows from (11) using SC
0 = 1 − SX

0. 

 

Expression (12) is a useful decomposition of the period 0 aggregate productivity level ∏0 

into two components. The first component, ∏C
0, represents the productivity contribution 

of continuing production units while the second term, SX
0 (∏X

0 −∏C
0), represents the 

contribution of exiting firms relative to continuing firms to the overall period 0 

productivity level. Usually the exiting firm will have lower productivity levels than the 

continuing firms so that ∏X
0 will be less than ∏C

0 and thus under normal conditions, the 

second term on the right-hand side of (12) will make a negative contribution to the 

overall level of period 0 productivity.9  

 

                                                 
9 Olley and Pakes (1996; 1290) have an alternative covariance type decomposition of the overall level of 
productivity in a given period into firm effects but it is not suitable for our purpose, which is to highlight 
the differential effects on overall period 0 productivity of the exiting firms compared to the continuing 
firms.  
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Substituting (9) and (10) into (12) leads to the following decomposition of the period 0 

productivity level ∏0 into its individual firm contributions: 

 

(13) ∏0 = ∑i∈C sCi
0 ∏Ci

0 + SX
0 ∑i∈X sXi

0 (∏Xi
0 − ∏C

0) 

 

where we have also used the fact that ∑i∈X sXi
0 sums to unity. 

 

Obviously, the above material can be repeated with minimal modifications to provide a 

decomposition of the industry period 1 productivity level ∏1 into its constituent 

components. Thus, ∏1 is defined as follows:  

 

(14) ∏1 ≡ [∑i∈C yCi
1 + ∑i∈N yNi

1] / [∑i∈C xCi
1 + ∑i∈N xNi

1] 

            = SC
1 ∑i∈C sCi

1 ∏Ci
1 + SN

1 ∑i∈N sNi
1 ∏Ni

1

 

where the period 1 aggregate input shares of continuing and new firms, SC
1 and SN

1, and 

individual continuing and new firm shares, sCi
1 and sNi

1, are defined as follows:   

 

(15) SC
1 ≡ ∑i∈C xCi

1 / [∑i∈C xCi
0 + ∑i∈X xXi

0] ; 

(16) SN
1 ≡ ∑i∈N xNi

1 / [∑i∈C xCi
0 + ∑i∈X xXi

0] ; 

(17) sCi
1 ≡ xCi

1 / ∑k∈C xCk
1 ; i∈C ; 

(18) sNi
1 ≡ xNi

1 / ∑k∈N xNk
1 ; i∈N . 

 

The period 1 counterparts to ∏C
0 and ∏X

0 defined by (9) and (10) are the aggregate 

period one productivity levels of continuing firms ∏C
1 and entering firms ∏N

1, defined as 

follows:  

 

(19) ∏C
1 ≡ ∑i∈C yCi

1 / ∑i∈C xCi
1  

              = ∑i∈C sCi
1 ∏Ci

1 ; 

(20) ∏N
1 ≡ ∑i∈N yNi

1 / ∑i∈N xNi
1  

              = ∑i∈N sNi
1 ∏Ni

1 . 
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Substitution of (19) and (20) back into definition (14) for the aggregate period 1 level of 

productivity leads to the following decomposition of aggregate period 1 productivity into 

its continuing and new components:  

 

(21) ∏1 = SC
1 ∏C

1 + SN
1 ∏N

1

(22)      = ∏C
1 + SN

1 (∏N
1 − ∏C

1) 

 

where (22) follows from (21) using SC
1 = 1 − SN

1.  Thus the aggregate period 1 

productivity level ∏1 is equal to the aggregate period 1 productivity level of continuing 

firms, ∏C
1, plus a second term, SN

1 (∏N
1 − ∏C

1), which represents the contribution of the 

new entrants’ productivity levels, ∏N
1, relative to that of the continuing firms, ∏C

1.10

 

Substituting (19) and (20) into (22) leads to the following decomposition of the aggregate 

period 1 productivity level P1 into its individual firm contributions: 

 

(23) ∏1 = ∑i∈C sCi
1 ∏Ci

1 + SN
1 ∑i∈N sNi

1 (∏Ni
1 − ∏C

1). 

  

This completes our discussion of how the levels of productivity in periods 0 and 1 can be 

decomposed into individual contribution effects for each firm.  In the following section, 

we study the much more difficult problem of decomposing the aggregate productivity 

change, ∏1/∏0, into individual firm growth effects, taking into account that not all firms 

are present in both periods and hence, there is a problem in calculating growth effects for 

those firms present in only one period. 

 

 

 
                                                 
10 Baldwin (1995) in his study of the Canadian manufacturing sector showed that on average, the 
productivity levels of new entrants was below that of continuing firms but if the new entrant survived, then 
they reach the average productivity level of continuing firms in about a decade.  For additional empirical 
evidence on the relative productivity levels of entering and exiting firms, see Bartelsman and Doms (2000; 
581), Aw, Chen and Roberts (2001) (who also find that the productivity level of new entrants is below that 
of incumbents) and section 5 of Bartelsman, Haltiwanger and Scarpetta (2004). 
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3. The Measurement of Productivity Change Between the Two Periods  

 

It is traditional to define the productivity change of a production unit going from period 0 

to period 1 as a ratio of the productivity levels in the two periods rather than as a 

difference between the two levels. This is because the ratio measure will be independent 

of the units of measurement while the difference measure will depend on the units of 

measurement (unless some normalization is performed).  However, in the present context, 

as we are attempting to calculate the contribution of new and disappearing production 

units to overall productivity change, it is more convenient to work with the difference 

concept, at least initially.   

 

Using formula (13) for the period 0 productivity level ∏0 and formula (23) for the period 

1 productivity level ∏1, we obtain the following decomposition of the productivity 

difference:  

 

(24) ∏1 − ∏0 = ∑i∈C sCi
1∏Ci

1 − ∑i∈C sCi
0 ∏Ci

0 + SN
1 ∑i∈N sNi

1 (∏Ni
1 − ∏C

1)  

                                                                         − SX
0 ∑i∈X sXi

0 (∏Xi
0 − ∏C

0) 

(25)                = ∏C
1 − ∏C

0 + SN
1 (∏N

1 − ∏C
1) − SX

0 (∏X
0 − ∏C

0) 

 

where (25) follows from (24) using (12) and (22).  Thus the overall industry productivity 

change, ∏1 − ∏0, is equal to the productivity change of the continuing firms, ∏C
1 − ∏C

0, 

plus a term that reflects the contribution to overall productivity change of new entrants, 

SN
1 (∏N

1 − ∏C
1),11 plus a term that reflects the contribution to overall productivity 

change of exiting firms, − SX
0 (∏X

0 − ∏C
0).12  Note that the reference productivity levels 

that the productivity levels of the entering and exiting firms are compared with, ∏C
1 and 

∏C
0 respectively, are different in general, so even if the average productivity levels of 

entering and exiting firms are the same (so that ∏N
1 equals ∏X

0), the contributions to 

                                                 
11 This term is positive if and only if the average level of productivity of the new entrants in period 1, ∏N

1, 
is greater than the average productivity level of continuing firms in period 1, ∏C

1. 
12 This term is positive if and only if the average level of productivity of the firms who exit in period 0, 
∏X

0, is less than the average productivity level of continuing firms in period 0, ∏C
0. 
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overall industry productivity growth of entering and exiting firms can still be nonzero, 

provided that ∏N
1 ≠ ∏C

1 and ∏X
0 ≠ ∏C

0.13

 

The first two terms on the right-hand side of (24) give the aggregate effects of the 

changes in productivity levels of the continuing firms. It is useful to further decompose 

this aggregate change in the productivity levels of continuing firms into two sets of 

components; the first set of terms measures the productivity change of each continuing 

production unit, ∏Ci
1 − ∏Ci

0, and the second set of terms reflects the shifts in the share of 

resources used by each continuing production unit, sCi
1 − sCi

0.  As Balk (2003; 26) noted, 

there are two natural decompositions for the difference in the productivity levels of the 

continuing firms, (27) and (29) below, that are the difference counterparts to the 

decomposition of a value ratio into the product of a Laspeyres (or Paasche) price index 

times a Paasche (or Laspeyres) quantity index: 

 

(26) ∏C
1 − ∏C

0 = ∑i∈C sCi
1 ∏Ci

1 − ∑i∈C sCi
0 ∏Ci

0  

(27)                 = ∑i∈C sCi
0 (∏Ci

1 − ∏Ci
0) + ∑i∈C ∏Ci

1 (sCi
1 − sCi

0) ; 

 

(28) ∏C
1 − ∏C

0 = ∑i∈C sCi
1∏ 

Ci
1 − ∑i∈C sCi

0 ∏Ci
0  

(29)                 = ∑i∈C sCi
1 (∏Ci

1 − ∏Ci
0) + ∑i∈C ∏Ci

0 (sCi
1 − sCi

0) . 

 

We now note a severe disadvantage associated with the use of either (27)14 or (29): these 

decompositions are not invariant with respect to the treatment of time.  Thus if we 

                                                 
13 Haltiwanger (1997) (2000; 10) argues that if the productivity levels of entering and exiting firms or 
establishments are exactly the same, then the sum of the contribution terms of entering and exiting firms 
should be zero.  However, our perspective is different: we want to measure the differential effects on 
productivity growth of entering and exiting firms and so what counts in our framework are the productivity 
levels of entering firms relative to continuing firms in period 1 and the productivity levels of exiting firms 
relative to continuing firms in period 0.  Thus if continuing firms show productivity growth over the two 
periods, then if the entering and exiting firms have the same productivity levels, the effects of entry and 
exit will be to decrease productivity growth compared to the continuing firms.  Balk (2003; 28) follows the 
example of Haltiwanger (1997) in choosing a common reference level of productivity to compare the 
productivity levels of entering and exiting firms but Balk chooses the arithmetic average of the industry 
productivity levels in periods 0 and 1 (which is at least a symmetric choice) whereas Haltiwanger chooses 
the industry productivity level of period 0 (which is not a symmetric choice).  In any case, our approach 
seems to be different from other approaches suggested in the literature.   
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reverse the roles of periods 0 and 1, we would like the decomposition of the aggregate 

productivity difference for continuing firms, ∏C
0 − ∏C

1 = ∑i∈C sCi
0 ∏Ci

0 − ∑i∈C sCi
1 ∏Ci

1, 

into terms involving the individual productivity differences ∏Ci
0 − ∏Ci

1 and the 

individual share differences sCi
0 − sCi

1 that are the negatives of the original difference 

terms.15  It can be seen that the decompositions defined by (26) and (28) do not have this 

desirable symmetry or invariance property. 

 

A solution to this lack of symmetry is to simply take an arithmetic average of (26) and 

(28), leading to the following Bennet (1920) type decomposition of the productivity 

change of the continuing firms: 

 

(30) ∏C
1 − ∏C

0 = ∑i∈C (1/2)(sCi
0+ sCi

1)(∏Ci
1 − ∏Ci

0) + ∑i∈C (1/2)(∏Ci
0+ ∏Ci

1)(sCi
1 − sCi

0).      

 

The use of this decomposition for continuing firms dates back to Griliches and Regev 

(1995; 185).16  Balk (2003; 29) also endorsed the use of this symmetric decomposition.17  

We endorse the use of this decomposition since it is symmetric and can also be given a 

strong axiomatic justification.18

 

Substitution of (30) into (24) gives our final “best” decomposition of the aggregate 

productivity difference ∏1 − ∏0 into micro firm effects: 

 

                                                                                                                                                 
14 The decomposition defined by (26) is the one used by Baily, Hulten and Campbell (1992; 193) for 
continuing firms except that they used logs of the TFP levels ∏Ci

t instead of the levels themselves. 
15 In other words, we want the difference decomposition to satisfy a differences counterpart to the usual 
time reversal test that occurs in index number theory. 
16 Griliches and Regev (1995; 185) also have a symmetric treatment of the industry difference in TFP levels 
but firms that exit and enter during the two periods being compared are treated as one firm and they make a 
direct comparison of the change in productivity of all entering and exiting firms on this basis.  It can be 
seen that there are problems in interpretation if there happen to be no entering (or exiting) firms in the 
sample or more generally, if there are big differences in the shares of entering and exiting firms.  Aw, Chen 
and Roberts (2001; 73) also use this symmetric methodology, except they work with logs of TFP. 
17 “In view of its symmetry it should be the preferred one.”  Bert M. Balk (2003; 29). 
18 Diewert (2005) showed that the Bennet decomposition of a difference of the form ∑i pi

1qi
1 − ∑i pi

0qi
0 into 

a sum of terms reflecting price change and a sum of terms reflecting quantity change can be given an 
axiomatic justification that is analogous to the axiomatic justification for the use of the Fisher (1922) ideal 
index in index number theory.  The adaptation of this axiomatic theory to provide a decomposition of  ∑i 

pi
1si

1 − ∑i pi
0si

0 is straightforward. 
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(31) ∏1 − ∏0 = ∑i∈C (1/2)(sCi
0+ sCi

1)(∏Ci
1 − ∏Ci

0) + ∑i∈C (1/2)(∏Ci
0+ ∏Ci

1)(sCi
1 − sCi

0)  

                       + SN
1 ∑i∈N sNi

1 (∏Ni
1 − ∏C

1) − SX
0 ∑i∈X sXi

0 (∏Xi
0 − ∏C

0). 

   

The first set of terms on the right hand side of (31), ∑i∈C (1/2)(sCi
0+ sCi

1)(∏Ci
1 − ∏Ci

0), 

gives the contribution of the productivity growth of each continuing firm to the aggregate 

productivity difference between periods 0 and 1, ∏1 − ∏0; the second set of terms, ∑i∈C 

(1/2)(∏Ci
0+ ∏Ci

1)(sCi
1 − sCi

0), gives the contribution of the effects of the reallocation of 

resources between continuing firms going from period 0 to 1; the third set of terms, 

SN
1∑i∈N sNi

1 (∏Ni
1 − ∏C

1), gives the contribution of each new entering firm to 

productivity growth and the final set of terms, − SX
0 ∑i∈X sXi

0 (∏Xi
0 − ∏C

0), gives the 

contribution of each exiting firm to productivity growth. 

 

Note that the decomposition (31) is symmetric: if we reverse the role of periods 0 and 1, 

then the new aggregate productivity difference will equal the negative of the original 

productivity difference and each individual firm contribution term of the new right hand 

side will equal the negative of the original firm contribution effect.  None of the 

contribution decompositions suggested in the literature have this time reversal property, 

with the exception of the decomposition (51) due to Balk (2003; 28) but Balk’s 

decomposition compares the productivity levels of entering and exiting firms to the 

arithmetic average of the industry productivity levels in periods 0 and 1 instead of to the 

average productivity level of continuing firms in period 1 (in the case of entering firms) 

and to the average productivity level of continuing firms in period 0 (in the case of 

exiting firms). 

 

We now make a final adjustment to (31) in order to make it invariant to changes in the 

units of measurement of output and input: we divide both sides of (31) by the base period 

productivity level ∏0.19  With this adjustment, (31) becomes: 

 

                                                 
19 Instead of dividing by ∏0, we could divide by the logarithmic mean of ∏0 and ∏1.  The left hand side of 
the resulting counterpart to (32) reduces to ln(∏0/∏1), which is completely symmetric in the data whereas 
the left hand side of (32) is not.  We owe this suggestion to Bert Balk.  
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(32) [∏1/∏0] − 1 = [∑i∈C (1/2)(sCi
0+ sCi

1)(∏Ci
1 − ∏Ci

0) + ∑i∈C(1/2)(∏Ci
0+ ∏Ci

1)(sCi
1 − sCi

0)  

                             + SN
1 ∑i∈N sNi

1 (∏Ni
1 − ∏C

1) − SX
0 ∑i∈X sXi

0 (∏Xi
0 − ∏C

0)]/Π0. 

 

In the following sections, we will illustrate the aggregate productivity decomposition (32) 

using an artificial data set.  Note that (32) is only valid for an industry that produces a 

single output and uses a single input.  However, in practice, firms in an industry produce 

many outputs and use many inputs.  Hence, before the decomposition (32) can be 

implemented, it is necessary to aggregate the many outputs produced and inputs used by 

each firm into aggregate firm output and input.  This aggregation problem is not 

straightforward because some firms are entering and exiting the industry.  In the 

following section, we address this unconventional aggregation problem.20  

 

4. How can the Inputs and Outputs of Entering and Exiting Firms be Aggregated? 

 

The aggregate productivity decomposition defined by (32) above assumes that each firm 

produces only one output and uses only one input.  However, firms in the same industry 

typically produce many outputs and utilize many inputs.  Thus in order to apply (32), we 

have to somehow aggregate all of the outputs produced by each firm into an aggregate 

output that is comparable across firms and across time periods (and aggregate all of the 

inputs utilized by each firm into an aggregate input that is comparable across firms and 

across time periods).  It can be seen that these two aggregation problems are in fact 

multilateral aggregation problems;21 i.e., the output vector of each firm in each period 

must be compared with the corresponding output vectors of all other firms in the industry 

over the two time periods involved in the aggregate productivity comparison.22  In the 

following sections of this paper, we will illustrate how these firm output and input 

                                                 
20 As noted earlier, Aw, Chen and Roberts (2001) and Aw, Chung and Roberts (2003) addressed this 
aggregation problem using the multilateral method explained in Good, Nadiri and Sickles (1997). 
21 Bilateral index number theory compares the price and quantity vectors pertaining to two situations 
whereas multilateral index number theory attempts to construct price and quantity aggregates when there 
are more than two situations to be compared.  See Balk (1996) (2001) and Diewert (1999) for recent 
surveys of multilateral methods. 
22 Fox (2002) seems to have been the first to notice that aggregating firm outputs and inputs into aggregate 
outputs and inputs should be treated as a multilateral aggregation problem in order to avoid paradoxical 
results. 
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aggregates can be formed using several methods that have been suggested in the 

multilateral aggregation literature.   

 

In order to make the comparison of alternative multilateral methods of aggregation more 

concrete, we will utilize an artificial data set.  In the following section, we table our data 

set and calculate the aggregate productivity of the industry using normal index number 

methods. 

 

5. Industry Productivity Aggregates Using an Artificial Data Set 

 

We consider an industry over two periods, 0 and 1, that consists of five firms.  Each firm 

f produces varying amounts of the same two outputs and uses varying amounts of the 

same two inputs.  The output vector of firm f in period t is defined as yf
t ≡ [yf1

t,yf2
t] and 

the corresponding input vector is defined as xf
t ≡ [xf1

t,xf2
t] for t = 0,1 and f = 1,2,…,5.  

Firms 1,2 and 3 are continuing firms, firm 4 is present in period 0 but not in period 1 (and 

hence is the exiting firm) and firm 5 is not present in period 0 but is present in period 1 

(and hence is the entering firm).  Firm 1 is a medium sized firm, firm 2 is a tiny firm and 

firm 3 is a very large firm.  The output price vector of firm f in period t is defined as pf
t ≡ 

[pf1
t,pf2

t] and the corresponding input price vector is defined as wf
t ≡ [wf1

t,wf2
t] for t = 0,1 

and f = 1,2,…,5.  The industry price and quantity data are listed in Table 1. 

 
Table 1: Firm Price and Quantity Data for Periods 0 and 1 
 
             Firm 1              Firm 2           Firm 3             Firm 4               Firm 5 
Output prices 
             p11

t    p12
t         p21

t    p22
t       p31

t    p32
t          p41

t   p42
t           p51

t     p52
t 

t = 0      1.0    1.0          0.8    1.2        0.9    0.8          1.2    1.1           ___    ___ 
t = 1    15.0    7.0        13.0    8.0      14.0    7.0          ___   ___          16.0    8.0 
Output quantities   
             y11

t      y12
t       y21

t     y22
t       y31

t      y32
t       y41

t     y42
t          y51

t      y52
t 

t = 0     12.00   8.00     1.00   1.00     50.00  50.00     7.00   9.00         ___     ___  
t = 1     15.00   8.00     3.00   2.00     60.00  45.00     ___    ___         16.00   8.00 
Input prices 
             w11

t    w12
t       w21

t    w22
t      w31

t    w32
t        w41

t   w42
t         w51

t     w52
t 

t = 0       1.0     1.0         0.7     0.8       0.9     1.1         1.2    1.0          ___     ___ 
t = 1     10.0   23.0       13.0   16.0       8.0   26.0         ___   ___        14.0     20.0 
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Input quantities 
               x11

t    x12
t        x21

t    x22
t         x31

t    x32
t         x41

t   x42
t         x51

t     x52
t 

t = 0     10.00  10.00     1.00   1.00     45.00  35.00    13.00  12.00     ___    ___  
t = 1       8.00    6.00     2.00   2.00     35.00  30.00      ___    ___       7.00  6.00 
 
Thus the period 0 output price vector for firm 1 is p1

0 = [1,1], the period 1 output price 

vector for firm 1 is p1
1 = [15,7] and so on.  Note that there has been a great deal of 

general price level change going from period 0 to 1.23   

     

In the following sections, we will look at various methods for forming output and input 

aggregates for each firm and each period but before we do this, it is useful to compute 

total industry supplies of the two outputs, yt ≡ [y•1
t,y•2

t]  for each period t and total 

industry demands for each of the two inputs xt ≡ [x•1
t,x•2

t]  for each period t as well as the 

corresponding unit value prices, pt ≡ [p•1
t,p•2

t] and wt ≡ [w•1
t,w•2

t].24    This information is 

listed in (32) below. 

 

(33) p0 = [0.946, 0.869]; p1 = [14.468, 7.159]; w0 = [0.968, 1.057]; w1 = [9.308, 24.318]; 

        y0 = [70, 68];           y1 = [94, 63];              x0 = [69, 58];            x1 = [52, 44]. 

              

Note that industry output 1 has increased from 70 to 94 but industry output 2 decreased 

slightly from 68 to 63.  However, both industry input demands dropped markedly; input 1 

decreased from 69 to 52 and input 2 decreased from 58 to 44.  Thus overall, industry 

productivity improved markedly going from period 0 to 1. 

 

In order to benchmark the reasonableness of the various productivity decompositions 

given by (32) above for different multilateral methods to be discussed in the following 

four sections, it is useful to use the industry data in (33) in order to construct normal 

index number estimates of industry Total Factor Productivity Growth (TFPG).  Following 

                                                 
23 In some applications of the literature on the contribution of entry and exit to aggregate productivity 
growth, the comparison periods are a decade apart and so in high inflation countries, the period 0 and 1 
price levels can differ considerably.   
24 The unit value price of output n in period t is defined as p•n

t ≡ ∑f=1
5 pfn

tyfn
t/∑f=1

5 yfn
t for n = 1,2 and t = 

0,1.  The unit value price of input n in period t is defined as w•n
t ≡ ∑f=1

5 wfn
txfn

t/∑f=1
5 xfn

t for n = 1,2 and t = 
0,1.   
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Jorgenson and Griliches (1967) (1972),25 TFPG can be defined as a quantity index of 

output growth, Q(p0,p1,q0,q1), divided by a quantity index of  input growth, 

Q*(w0,w1,x0,x1): 

 

(34) TFPG ≡ Q(p0,p1,q0,q1)/Q*(w0,w1,x0,x1). 

 

In order to implement (34), one needs to choose an index number formula for Q and Q*.  

From an axiomatic perspective, the “best” choices suggested in the literature seem to be 

the Fisher (1922) ideal formula26 or the Törnqvist (1936) Theil (1967) formula.27  With 

these two choices of index number formula, the resulting TFP growth rates28 for the data 

listed in (33) are as follows: 

 

(35) TFPGF = 1.5553 ; TFPGT = 1.5573. 

 

If we subtract 1 from the above TFPG rates, we obtain industry aggregate counterparts to 

the left hand side of (32), [∏1/∏0] − 1.  Thus using the Fisher formula, industry 

productivity improved 55.53% and using the Törnqvist Theil formula, industry 

productivity improved 55.73%.  These productivity growth rates should be kept in mind 

as we look at alternative multilateral methods for constructing output and input 

aggregates for each firm in each period so that we can implement the decomposition 

formula (32).  In other words, a multilateral method that leads to an aggregate 

productivity growth rate [∏1/∏0] − 1 that is very different from the range .5553 to .5573 

is probably not very reliable.    

 

We now turn to our first multilateral method for constructing output and input aggregates 

for each firm in each period. 

 

                                                 
25 For recent surveys on how to measure TFPG, see Balk (2003) and Diewert and Nakamura (2003). 
26 See Diewert (1992).  The Fisher output quantity index is defined as QF(p0,p1,q0,q1) ≡ [p0⋅q1 p1⋅q1/p0⋅q0 

p1⋅q0]1/2 where p⋅q denotes the inner product of the vectors p and q. 
27 See Diewert (2004).  Both of these formulae can be given economic justifications as well; see Diewert 
(1976). 
28 Actually these rates are 1 plus the total factor productivity growth rates. 
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6. The Star System for Making Multilateral Comparisons 

 

Recall that in the previous section, we defined the firm f and period t output and input 

vectors as yf
t ≡ [yf1

t,yf2
t] and xf

t ≡ [xf1
t,xf2

t] for t = 0,1 and f = 1,2,…,5.  However, for t = 0 

and f = 5 and also for t = 1 and f = 4, there are no data, since these two firms are entering 

and exiting respectively.  Thus there are actually a total of 8 output and input quantity 

vectors instead of 10.  It will prove to be more convenient to relabel our data so that there 

are only 8 distinct output and input quantity vectors.  Thus define the output quantity 

vectors y1, y2, y3 and y4 as the previously defined vectors y1
0, y2

0, y3
0 and y4

0 respectively 

(these are the nonzero period 0 output quantity vectors) and define the vectors y5, y6, y7 

and y8 as the previously defined vectors y1
1, y2

1, y3
1 and y5

1 respectively (these are the 

nonzero period 1 nonzero output quantity vectors).  Similarly, define the output price 

vectors p1, p2, p3 and p4 as the previously defined vectors p1
0, p2

0, p3
0 and p4

0 respectively 

and define the vectors p5, p6, p7 and p8 as the previously defined vectors p1
1, p2

1, p3
1 and 

p5
1 respectively.  Undertake the same reordering of the data for inputs.  Now we are in a 

position to apply multilateral methods in order to construct output and input aggregates 

for each firm in each period.  In effect, we treat each of the 8 output (or input) price and 

quantity vectors as if they corresponded to the data that pertained to a country and we 

choose a multilateral method in order to construct an output (or input) aggregate for each 

of our 8 “countries”.29  

 

The first multilateral method that we will consider is the Star System.30  In order to 

implement this method, we choose our favorite bilateral index number formula, say the 

Fisher formula QF, and we choose one observation as the base (or star), say observation 

k, and then we compute the Fisher quantity aggregate of each observation relative to the 

base k, QF(pk,p1,yk,y1), QF(pk,p2,yk,y2), … , QF(pk,p8,yk,y8).  The resulting sequence of 8 

numbers can serve as comparable output aggregates for our 8 observations. 

 

                                                 
29 Note that we need to make two multilateral comparisons: one for outputs and one for inputs. 
30 This terminology is due to Kravis (1984; 10). 
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Of course, the problem with the Star System aggregates is that it is necessary to 

asymmetrically choose one observation as the “star” and usually, it is not clear which 

observation should be chosen to be the star.31  Thus in Tables 2 and 3 below, we list each 

of the 8 output and input aggregates respectively, choosing each observation as the base 

in turn.  In order to make these output and input aggregates comparable, we divide each 

set of parities by the parity for the first observation.  Thus the output and input parities 

listed in Tables 2 and 3 are the following normalized parities for outputs and inputs 

respectively, for k = 1,…,8:32

 

(36) 1, QF(pk,p2,yk,y2)/QF(pk,p1,yk,y1), …, QF(pk,p8,yk,y8)/QF(pk,p1,yk,y1); 

(37) 1, QF*(wk,w2,xk,x2)/QF*(wk,w1,xk,x1), …, QF*(wk,w8,xk,x8)/QF*(wk,w1,xk,x1). 

              
Table 2: Fisher Star Output Aggregates 
 
Outputs        y1           y2             y3             y4             y5            y6             y7            y8 
Base=1      1.000       0.102       4.971       0.794       1.170       0.250       5.203       1.225 
Base=2      1.000       0.102       5.103       0.824       1.199       0.256       5.405       1.247 
Base=3      1.000       0.099       4.971       0.790       1.216       0.256       5.365       1.270 
Base=4      1.000       0.098       4.997       0.794       1.243       0.260       5.482       1.296 
Base=5      1.000       0.100       4.785       0.748       1.170       0.247       5.070       1.232 
Base=6      1.000       0.100       4.857       0.764       1.184       0.250       5.169       1.243 
Base=7      1.000       0.098       4.821       0.754       1.201       0.252       5.203       1.261 
Base=8      1.000       0.100       4.794       0.751       1.163       0.246       5.052       1.225 
 
Table 3: Fisher Star Input Aggregates 
 
Inputs           x1           x2             x3             x4             x5            x6             x7            x8 
Base=1      1.000       0.100       3.975       1.252       0.680       0.200       3.183       0.646 
Base=2      1.000       0.100       3.958       1.251       0.677       0.200       3.175       0.644 
Base=3      1.000       0.100       3.975       1.243       0.692       0.201       3.281       0.650 
Base=4      1.000       0.100       4.005       1.252       0.690       0.200       3.229       0.650 
Base=5      1.000       0.100       3.904       1.234       0.680       0.201       3.260       0.644 
Base=6      1.000       0.100       3.949       1.250       0.675       0.200       3.170       0.643 
Base=7      1.000       0.100       3.856       1.235       0.664       0.201       3.183       0.637 
Base=8      1.000       0.100       3.946       1.244       0.682       0.201       3.228       0.646 
 
                                                 
31 In our particular example, a case could be made for choosing either observation 3 or 7; i.e., the 
observations that correspond to the very large firm.  However, there are still two choices and again, it is not 
clear which of these two should be chosen.  
32 Recall that our final decomposition of the industry productivity change defined by (32) does not depend 
on our rather arbitrary units of measurement for aggregate firm outputs and inputs. 
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Note that the input aggregates for observations 1 and 2 using any of the observations as 

the base are always the same.  This is due to the use of the Fisher formula and the fact the 

input vectors for observations 1 and 2 are proportional33; it turns out that if the quantity 

vectors for the two observations being compared are proportional, then the Fisher 

quantity index that compares these two observations will reflect this factor of 

proportionality.34  However, in general, it can be seen that the choice of the base 

“country” or observation does affect the output and input parities. 

 

Now go along each row of Table 2 and divide each output aggregate by the input 

aggregate that corresponds to that observation that is listed in the corresponding row of 

Table 3.  This determines the productivity level of each observation using each of the 8 

observations as the base in the index number comparisons in turn.  These star 

productivity levels are listed in Table 4. 

 
Table 4: Fisher Star Productivity Levels 
 
Base=1   1.000       1.021       1.251       0.634       1.721       1.250       1.635       1.897 
Base=2   1.000       1.021       1.289       0.659       1.771       1.279       1.703       1.937 
Base=3   1.000       0.990       1.251       0.636       1.756       1.271       1.635       1.953 
Base=4   1.000       0.982       1.247       0.634       1.802       1.296       1.698       1.993 
Base=5   1.000       0.992       1.226       0.606       1.721       1.226       1.555       1.914 
Base=6   1.000       0.997       1.230       0.612       1.754       1.250       1.630       1.933 
Base=7   1.000       0.980       1.250       0.611       1.809       1.253       1.635       1.981 
Base=8   1.000       1.000       1.215       0.604       1.706       1.227       1.565       1.897 
 
There can be a considerable amount of variation in the productivity levels for each 

observation, depending on which observation is chosen as the base in the star system 

comparison.  Thus if we choose the base to equal 1 (firm 1 in period 0), the productivity 

level of firm 2 in period 0 is 1.021 whereas if we choose the base to equal 7 (firm 3 in 

period 1), the productivity level of firm 2 in period 0 is 0.980, which is a 4% variation in 

                                                 
33 The input vector for firm 1 in period 0 is x1 = [10,10] and for firm 2 in period 0 is x2 = [1,1]. 
34 Similarly, if the two price vectors are proportional, then the Fisher price index between the two 
observations will reflect this factor of proportionality.  The Fisher formula seems to be the only superlative 
formula that is consistent with both Hicks’ and Leontief’s aggregation theorems; see Allen and Diewert 
(1981). 
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productivity levels due to the choice of a different base for our bilateral index number 

comparisons.35   

 

Aggregate output prices that correspond to the 8 output aggregates that are listed in Table 

2 for each choice of base observation can be obtained by dividing the value of output 

produced by each firm in each period by the corresponding output listed for that 

observation in Table 2.  Similarly, aggregate input prices that correspond to the 8 input 

aggregates that are listed in Table 3 for each choice of base observation can be obtained 

by dividing the value of inputs used by each firm in each period by the corresponding 

input listed for that observation in Table 3.  Once these aggregate output and input prices 

have been constructed, then we are in a position to apply the decomposition analysis that 

was discussed in sections 2 and 3 above. 

 

We define the various terms that occur on the right and left hand sides of the aggregate 

productivity growth decomposition (31) as follows: 

 

(38)     Γ ≡ [∏1/∏0] − 1                                        (aggregate industry productivity growth); 

(39) ΓCD ≡ ∑i∈C (1/2)(sCi
0+ sCi

1)(∏Ci
1 − ∏Ci

0)/Π0  

                                            (direct productivity growth  contribution of continuing firms); 

(40) ΓCR ≡ ∑i∈C(1/2)(∏Ci
0+ ∏Ci

1)(sCi
1 − sCi

0)/Π0  

                                                                    (reallocation contribution of continuing firms); 

(41) ΓN ≡ SN
1 ∑i∈N sNi

1 (∏Ni
1 − ∏C

1)/Π0              (contribution of entering firms to TFPG); 

(42) ΓX ≡ − SX
0 ∑i∈X sXi

0 (∏Xi
0 − ∏C

0)]/Π0           (contribution of exiting firms to TFPG). 

 

In our example, there are three continuing firms in each of the summations in (39) and 

(40) but only one term in each of the summations in (41) and (42) since we have only one 

exiting and one entering firm. 

 

                                                 
35 Ideally, we would like all the entries in each column of Table 4 to be identical so that the productivity 
levels of each firm observation would not depend on the choice of index number base. 
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The terms defined by (38)-(42) are listed in Table 5 below for each choice of base; i.e., 

we use the data listed in Tables 2-4 above (along with the corresponding prices) in order 

to construct an aggregate industry productivity growth decomposition for each of our 8 

bases.    

 
Table 5: Aggregate Productivity Growth Decompositions for Each Choice of Base  
 
                  Γ              ΓCD           ΓCR           ΓN              ΓX    
Base=1   0.5356      0.4054     -0.0061      0.0337      0.1025 
Base=2   0.5496      0.4247     -0.0062      0.0300      0.1010 
Base=3   0.5471      0.4128     -0.0063      0.0391      0.1015 
Base=4   0.6025      0.4704     -0.0071      0.0374      0.1017 
Base=5   0.5174      0.3739     -0.0066      0.0440      0.1061 
Base=6   0.5684      0.4311     -0.0070      0.0387      0.1056 
Base=7   0.5678      0.4249     -0.0075      0.0425      0.1080 
Base=8   0.5296      0.3887     -0.0065      0.0418      0.1056 
 
It can be seen that the choice of base matters.  Aggregate productivity growth using 

observation 5 (data of firm 1 in period 1) as the index number formula base leads to 

industry productivity growth of 51.74% whereas if observation 4 (data of the 

disappearing firm 4 in period 0) is used as the base, then industry productivity growth is 

much larger at 60.25%.36  Looking at the last 4 columns in Table 5, it can be seen that the 

direct productivity growth of continuing firms accounts for most of the industry 

productivity growth (somewhere between 37.39% and 47.04%), the contribution of the 

exiting firm is between 10% and 11%, the contribution of the entering firm is between 

3.0% and 4.4% and the reallocation of resources between continuing firms sums to a 

negligible contribution to overall productivity growth. 

 

It is of some interest to look at the direct productivity growth contribution and the 

reallocation contribution of each continuing firm.  Thus define the three terms on the 

right hand side of (39) as ΓCD1, ΓCD2 and ΓCD3, the direct productivity growth 

contributions of continuing firms 1, 2 and 3 respectively and define the three terms on the 

right hand side of (40) as ΓCR1, ΓCR2 and ΓCR3, the reallocation contributions of 

                                                 
36 The choice of observations 2, 3, 6 and 7 as the index number base gives rise to industry TFP growth rates 
that are closest to our target rates of around 55.53% and 55.73%; recall (35) above.  Note that the average 
of the industry productivity growth rates for the large firm observations (3 and 7) is 55.74%. 
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continuing firms 1, 2 and 3 respectively.  These terms are listed in Table 6 for each of our 

8 choices of index number base.   

 
Table 6: Direct and Reallocation Contributions to Aggregate Productivity Growth 
for Each Continuing Firm and for Each Choice of Base  
 
                  ΓCD1         ΓCD2          ΓCD3          ΓCR1          ΓCR2         ΓCR3
Base=1   0.1210      0.0073      0.2771     -0.0372      0.0309      0.0002 
Base=2   0.1262      0.0080      0.2905     -0.0381      0.0305      0.0014 
Base=3   0.1263      0.0088      0.2777     -0.0396      0.0296      0.0037 
Base=4   0.1345      0.0099      0.3261     -0.0367      0.0305     -0.0009 
Base=5   0.1234      0.0076      0.2429     -0.0456      0.0298      0.0093 
Base=6   0.1289      0.0082      0.2939     -0.0403      0.0312      0.0021 
Base=7   0.1372      0.0089      0.2788     -0.0492      0.0304      0.0112 
Base=8   0.1216      0.0074      0.2597     -0.0414      0.0305      0.0044 
 
Viewing Table 6, it can be seen that the largest contribution to industry TFP growth is the 

direct TFP growth of firm 3 (the large firm); it contributes an amount somewhere 

between 24.29% (the index base 5 estimate) and 32.61% (the index base 4 estimate).  The 

next largest contribution comes from the medium sized firm 1; it contributes an amount 

between 12.10% (the index base 1 estimate) and 13.72% (the index base 7 estimate).  The 

other contribution terms are all less than 5%. 

 

Obviously, some form of averaging of the different star decompositions is called for.  Our 

next multilateral method simply takes the geometric averages of the output and input 

aggregates listed in Tables 2 and 3 and then implements the decomposition (31) using 

these new output and input aggregates. 

 

7. The GEKS Method for Making Multilateral Comparisons 

 

The GEKS method for making multilateral comparisons dates back to Gini (1931), Eltetö 

and Köves (1964) and Szulc (1964).  As was indicated in the previous section, this 

method simply takes each of the star output and input parities and takes the geometric 

mean of them.37  These GEKS relative output and input aggregates are listed in Table 7.  

                                                 
37 The GEKS aggregates can be defined in a number of equivalent ways but this is one way; see for 
example, Diewert (1999; 31-37). 
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Once the output and input aggregates have been constructed, then the GEKS productivity 

levels can be constructed by dividing the output aggregate by the corresponding input 

aggregate.  The resulting 8 productivity levels are also listed in Table 7. 

 
Table 7: GEKS Output and Input Aggregates and Productivity Levels 
 
Outputs             y1           y2             y3             y4             y5            y6             y7            y8 
                      1.000       0.100       4.911       0.777       1.193       0.252       5.242       1.250 
Inputs                x1           x2             x3             x4             x5            x6             x7            x8 
                      1.000       0.100       3.946       1.245       0.680       0.201       3.213       0.645 
Prod Levels     y1/x1       y2/x2        y3/x3         y4/x4        y5/x5        y6/x6        y7/x7        y8/x8      
                      1.000       0.998       1.245       0.624       1.755       1.256       1.631       1.938 
 
Aggregate output prices that correspond to the 8 output aggregates that are listed in Table 

7 can be obtained by dividing the value of output produced by each firm in each period 

by the corresponding output listed for that observation in Table 7.  Similarly, aggregate 

input prices that correspond to the 8 input aggregates that are listed in Table 7 can be 

obtained by dividing the value of inputs used by each firm in each period by the 

corresponding input listed for that observation in Table 7.  Once these aggregate output 

and input prices have been constructed, then we can repeat the decomposition analysis 

that was implemented in the previous section. 

 

The productivity growth decomposition terms defined by (38)-(42) are listed in Table 8 

below.  We also list the direct and reallocation contribution terms defined by the 

individual terms in (39) and (40) for each continuing firm in Table 8.  

 
Table 8: The GEKS Aggregate Productivity Growth Decomposition  
 
   Γ              ΓCD           ΓCR           ΓN              ΓX    
0.5521      0.4162     -0.0066      0.0384      0.1040 
  ΓCD1         ΓCD2          ΓCD3          ΓCR1          ΓCR2         ΓCR3
0.1274      0.0083      0.2806     -0.0410      0.0304      0.0039 
 
From Table 8, the GEKS aggregate productivity growth Γ is 55.21%, which is reasonably 

close to our target rates of around 55.53% to 55.73%; recall (35) above.  Thus we 

conclude that the GEKS method for constructing relative output and input levels for each 

firm in each period is satisfactory, at least for our particular numerical example. 



 24

 

One problem with the (unweighted) GEKS method is that each firm observation is given 

an equal weighting when the output and input aggregates are constructed.  Since small 

firms may have different data than large firms and hence their star parities could be quite 

different from those of large firms, it may not be wise to give these small firms equal 

weighting in the construction of the output and input aggregates.  Thus in the following 

section, we look at a multilateral method for constructing output and input aggregates that 

gives large firms more weight than small firms.   

 

8. The Own Share Method for Making Multilateral Comparisons 

 

Recall our discussion in section 6 when we described how the star output aggregates 

could be constructed using observation k as the base.  We noted that the sequence of 8 

numbers, QF(pk,p1,yk,y1), QF(pk,p2,yk,y2), … , QF(pk,p8,yk,y8), could serve as comparable 

output aggregates for our 8 observations.  Hence, using observation k as the base, the 

share of total output of observation k is: 

 

(43) sk* ≡ QF(pk,pk,yk,yk)/[QF(pk,p1,yk,y1) + QF(pk,p2,yk,y2) + …  + QF(pk,p8,yk,y8)]  

              = 1/[QF(pk,p1,yk,y1) + QF(pk,p2,yk,y2) + …  + QF(pk,p8,yk,y8)] ;            k = 1,…,8,     

 

where the last equation in (43) follows from the fact that the Fisher ideal quantity index 

satisfies an identity test and hence QF(pk,pk,yk,yk) equals 1.  Thus, using the metric of 

observation k to make the index number comparisons, the share of  observation k in 

“world” output, sk*, is defined by (43) for k = 1,2, …, 8.  Thus each observation’s own 

share of “world” output is defined by (43).  Put another way, if we look at the entries in 

Table 2 above, the numbers listed in the Base=1 row determine the share of observation 1 

in total output over the two periods, s1*; the numbers listed in the Base=2 row determine 

the share of observation 2 in total output over the two periods, s2*; …; and the numbers 

listed in the Base=8 row determine the share of observation 8 in total output over the two 

periods, s8*.  Thus each row in Table 2 determines only one share of “world” output and 

so the rows that correspond to smaller shares of world output get a smaller influence in 
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the overall multilateral comparison; i.e., the own share system does weight the individual 

star parities according to their economic importance as opposed to the more democratic 

GEKS method where each star parity has the same importance. 

 

Unfortunately, the own shares sk* defined by (43) do not sum up to unity and so we 

renormalize these “shares” to sum up to unity as follows:38

 

(44) yk ≡ sk*/[∑j=1
8 sj*] ;                                                                                      k = 1,…,8.  

 

The output aggregates yk defined by (44) are the own share aggregates.39  The same 

procedure can be used in order to define own share input aggregates.   

 

These own share relative output and input output and input aggregates are listed in Table 

9.  Once the output and input aggregates have been constructed, then the own share 

productivity levels can be constructed by dividing the output aggregate by the 

corresponding input aggregate.  The resulting 8 productivity levels are also listed in Table 

9.40

 
Table 9: Own Share Output and Input Aggregates and Productivity Levels 
 
Outputs             y1           y2             y3             y4             y5            y6             y7            y8 
                      0.068       0.007       0.332       0.052       0.082       0.017       0.357       0.085 
Inputs                x1           x2             x3             x4             x5            x6             x7            x8 
                      0.091       0.009       0.357       0.113       0.062       0.018       0.293       0.058 
Prod Levels     y1/x1       y2/x2        y3/x3         y4/x4        y5/x5        y6/x6        y7/x7        y8/x8      
                      0.750       0.742       0.931       0.465       1.322       0.943       1.218       1.462 
 
Aggregate output prices that correspond to the 8 output aggregates that are listed in Table 

9 can be obtained by dividing the value of output produced by each firm in each period 

by the corresponding output listed for that observation in Table 9.  Similarly, aggregate 

                                                 
38 In our empirical example, the sk* summed up to 0.99996 so that the differences between the yk and the 
sk* were negligible.  The corresponding input shares summed up to 0.99997. 
39 The own share system was proposed by Diewert (1988; 69).  For the axiomatic properties of this method, 
see Diewert (1999; 37-39). 
40 Note that the units of measurement for the output and input aggregates are quite different in Tables 7 and 
9.  This illustrates the importance of providing a productivity growth decomposition that is independent of 
the units of measurement. 
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input prices that correspond to the 8 input aggregates that are listed in Table 9 can be 

obtained by dividing the value of inputs used by each firm in each period by the 

corresponding input listed for that observation in Table 9.  Once these aggregate output 

and input prices have been constructed, then we can repeat the decomposition analysis 

that was implemented in the previous sections. 

 

The productivity growth decomposition terms defined by (38)-(42) are listed in Table 10 

below.  We also list the direct and reallocation contribution terms defined by the 

individual terms in (39) and (40) for each continuing firm in Table 10.  

 
Table 10: The Own Share Aggregate Productivity Growth Decomposition  
 
   Γ              ΓCD           ΓCR           ΓN              ΓX   
0.5545      0.4165     -0.0067      0.0403      0.1044  
  ΓCD1         ΓCD2          ΓCD3          ΓCR1          ΓCR2         ΓCR3
0.1290      0.0086      0.2789     -0.0423      0.0302      0.0054 
 
From Table 10, the own share aggregate productivity growth Γ is 55.45%, which is very 

close to our target rate of around 55.53% to 55.73%; recall (35) above.41  Thus we 

conclude that the own share method for constructing relative output and input levels for 

each firm in each period is very satisfactory, at least for our particular numerical 

example. 

 

9. Hill’s Method for Making Multilateral Comparisons 

 

Another method for finding output and input aggregates can be based on the following 

idea: observations which are most similar in their price structures (i.e., their output prices 

are closest to being proportional across items) should be linked using a bilateral index 

number formula first.  Then the observation outside of the first two observations that has 

the most similar relative prices to the first two observations should be added to the chain 

                                                 
41 Note that the own share decomposition is very close to the GEKS decomposition listed in Table 8 above.   
Diewert (1988; 69) (1999; 38) showed that the own share aggregates and the GEKS aggregates will usually 
approximate each other fairly closely. 
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of links, etc.  This basic idea has been successfully exploited by Robert Hill at higher 

levels of aggregation,42 where complete price and expenditure data are available. 

 

In order to apply this idea, it is necessary to choose a measure of how dissimilar are the 

(relative) output prices corresponding to any two observations.  There are many measures 

of relative price dissimilarity that could be chosen43 but we choose the following one that 

measures the degree of dissimilarity between the output prices of observations j and k: 

 

(45) D(pj,pk) ≡ [ln(p1
k/PF(pk,pj,qk,qj)p1

j)]2 + [ln(p2
k/PF(pk,pj,qk,qj)p2

j)]2 ; j,k = 1,…,8 

 

where PF(pk,pj,qk,qj) is the Fisher output price index of observation j relative to k.44  Thus 

instead of comparing the price of output 1 for observation k, p1
k, with the price of output 

1 for observation j, p1
j, we multiply p1

j by the Fisher price index for observation k relative 

to j, PF(pk,pj,qk,qj), which inflates the base prices j by a general inflation factor that makes 

the prices of k comparable to the inflated j prices.  In particular, if the j prices are equal to 

λ times the k prices, so that pj = λpk, then the Fisher index that compares the j prices to 

the k prices will pick up this factor of proportionality so that PF(pk,pj,qk,qj) = λ and it can 

be seen that under these circumstances, the dissimilarity measure defined by (45) will be 

zero; i.e., we will have D(pj,pk) = 0.  It can also be verified that the dissimilarity measure 

defined by (45) satisfies the following symmetry property: 

 

(46) D(pk,pj) = D(pj,pk) ;                                                                             j,k = 1,…,8. 

 

                                                 
42 See Robert Hill (1999a) (1999b) (2001) (2005).  The basic idea of spatially linking countries that have 
the most similar price and quantity structures dates back to Fisher (1922; 271-272).  Here we apply the 
same idea to observations, treating each observation as a “country”. 
43 See Diewert (2002) for an axiomatic treatment of the topic. 
44 This dissimilarity measure is essentially equal to that used by Allen and Diewert (1981) except that they 
used the Törnqvist index PT(pk,pj,qk,qj) to adjust for general price level change in place of the Fisher index 
PF(pk,pj,qk,qj) in (45).  Diewert (2002; 20) defined a weighted counterpart to (45) which he called the 
weighted log quadratic index of relative price dissimilarity.   
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 Table 11 lists the Fisher output price indexes PF(pk,pj,qk,qj) between each pair of 

observations.45

 
Table 11: Fisher Output Price Indexes Between Each Pair of Observations 
       
Base k=1   1.000       0.980       0.855       1.152      12.007      11.000      11.100      13.064 
Base k=2   1.021       1.000       0.850       1.133      11.963      10.969      10.904      13.093 
Base k=3   1.170       1.176       1.000       1.354      13.518      12.570      12.591      14.738 
Base k=4   0.868       0.883       0.738       1.000        9.811        9.190        9.145      10.720 
Base k=5   0.083       0.084       0.074       0.102        1.000        0.927        0.949        1.081 
Base k=6   0.091       0.091       0.080       0.109        1.079        1.000        1.016        1.170 
Base k=7   0.090       0.092       0.079       0.109        1.054        0.985        1.000        1.143 
Base k=8   0.077       0.076       0.068       0.093        0.925        0.855        0.875        1.000 
 
Note that Fisher output price levels for firms present in period 1 are 9.145 to 14.738 times 

the levels of prices for firms present in period 0 (see the entries in the northeast corner of 

Table 11). 

 

Table 12 lists the dissimilarity measures D(pj,pk) defined by (45).  Note that this (j=8, 

k=8) matrix is symmetric. 

 
Table 12: Log Quadratic Output Price Dissimilarity Measures 
 
    0.00000     0.08220     0.00705     0.00380     0.34067     0.12932     0.26641     0.28161 
    0.08220     0.00000     0.13759     0.12365     0.71777     0.40242     0.61510     0.63505 
    0.00705     0.13759     0.00000     0.00047     0.23304     0.07164     0.17715     0.18557 
    0.00380     0.12365     0.00047     0.00000     0.24608     0.08182     0.19079     0.19811 
    0.34067     0.71777     0.23304     0.24608     0.00000     0.04837     0.00305     0.00324 
    0.12932     0.40242     0.07164     0.08182     0.04837     0.00000     0.02565     0.02722 
    0.26641     0.61510     0.17715     0.19079     0.00305     0.02565     0.00000     0.00000 
    0.28161     0.63505     0.18557     0.19811     0.00324     0.02722     0.00000     0.00000 
 
Note that the dissimilarity measure between observations 7 and 8 is 0; this is due to the 

fact that the output price vectors for these two observations are proportional. 

 

                                                 
45 The Fisher (1922) output price index is defined as PF(p0,p1,q0,q1) ≡ [p1⋅q0 p1⋅q1/p0⋅q0 p0⋅q1]1/2.  Row k of 
Table 11 is equal to PF(pk,p1,qk,q1), PF(pk,p2,qk,q2), … , PF(pk,p8,qk,q8).  
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Inspection of Table 12 shows that the lowest dissimilarity measures which link the data 

are: 7-8; 7-5; 7-6; 3-4; 1-4; 1-2 and 3-5. This set of links will enable us to construct 

output aggregates, y1,…,y8, which are listed in Table 15 below. 

 

The same strategy that was used to construct Hill output aggregates can be used to 

construct input aggregates.  The input counterparts to Tables 11 and 12 are Tables 13 and 

14. 

 
Table 13: Fisher Input Price Indexes Between Each Pair of Observations 
 
Base k=1   1.000       0.750       0.994       1.102      16.029      14.500      16.650      16.884 
Base k=2   1.333       1.000       1.331       1.471      21.474      19.333      22.257      22.570 
Base k=3   1.006       0.752       1.000       1.117      15.842      14.497      16.254      16.867 
Base k=4   0.907       0.680       0.895       1.000      14.338      13.131      14.896      15.214 
Base k=5   0.062       0.047       0.063       0.070        1.000        0.898        1.014        1.056 
Base k=6   0.069       0.052       0.069       0.076        1.114        1.000        1.153        1.169 
Base k=7   0.060       0.045       0.062       0.067        0.986        0.867        1.000        1.028 
Base k=8   0.059       0.044       0.059       0.066        0.947        0.855        0.972        1.000 
 
Note that Fisher input price levels for firms present in period 1 are 13.131 to 22.570 times 

the levels of prices for firms present in period 0 and so input prices grew faster than 

output prices over the two periods. 

 
Table 14: Log Quadratic Input Price Dissimilarity Measures 
 
    0.00000     0.00893     0.02014     0.01669     0.35300     0.02161     0.73589     0.06377 
    0.00893     0.00000     0.00225     0.04993     0.25127     0.00277     0.58761     0.02507 
    0.02014     0.00225     0.00000     0.07378     0.20284     0.00002     0.50447     0.01219 
    0.01669     0.04993     0.07378     0.00000     0.51780     0.07605     0.95664     0.14529 
    0.35300     0.25127     0.20284     0.51780     0.00000     0.20208     0.06805     0.11723 
    0.02161     0.00277     0.00002     0.07605     0.20208     0.00000     0.51192     0.01122 
    0.73589     0.58761     0.50447     0.95664     0.06805     0.51192     0.00000     0.36697 
    0.06377     0.02507     0.01219     0.14529     0.11723     0.01122     0.36697     0.00000 
 
Inspection of Table 14 shows that the lowest dissimilarity measures which link the data 

are: 3-6; 2-3; 1-2; 1-4; 6-8; 5-7 and 5-8. This set of links will enable us to construct Hill 

input aggregates, x1,…,x8, which are listed in Table 15.  The eight Hill productivity 

levels, y1/x1,…,y8/x8, are also listed in Table 15. 
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Table 15: Hill Output and Input Aggregates and Productivity Levels 
 
Outputs             y1           y2             y3             y4             y5            y6             y7            y8 
                      1.000       0.102       4.997       0.794       1.222       0.256       5.295       1.284 
Inputs                x1           x2             x3             x4             x5            x6             x7            x8 
                      1.000       0.100       3.958       1.252       0.681       0.200       3.263       0.644 
Prod Levels     y1/x1       y2/x2        y3/x3         y4/x4        y5/x5        y6/x6        y7/x7        y8/x8      
                      1.000       1.021       1.262       0.634       1.795       1.277       1.623       1.992 
 
Comparing the entries in Table 15 with the corresponding GEKS entries in Table 7, it can 

be seen that with the exceptions of observations 1 and 7, the Hill productivity levels tend 

to be greater than the corresponding GEKS productivity levels. 

 

Aggregate output prices that correspond to the 8 output aggregates that are listed in Table 

15 can be obtained by dividing the value of output produced by each firm in each period 

by the corresponding output listed for that observation in Table 15.  Similarly, aggregate 

input prices that correspond to the 8 input aggregates that are listed in Table 15 can be 

obtained by dividing the value of inputs used by each firm in each period by the 

corresponding input listed for that observation in Table 15.  Once these aggregate output 

and input prices have been constructed, then we can repeat the decomposition analysis 

that was implemented in the previous sections. 

 

The productivity growth decomposition terms defined by (38)-(42) are listed in Table 16 

below.  We also list the direct and reallocation contribution terms defined by the 

individual terms in (39) and (40) for each continuing firm in Table 16.  

 
Table 16: The Hill Aggregate Productivity Growth Decomposition  
 
   Γ              ΓCD           ΓCR           ΓN              ΓX    
0.5401      0.3986     -0.0063      0.0440      0.1038 
  ΓCD1         ΓCD2          ΓCD3          ΓCR1          ΓCR2         ΓCR3  
0.1318      0.0080      0.2588     -0.0428      0.0301      0.0064 
 
From Table 16, the Hill aggregate productivity growth Γ is 54.01%, which is not as close 

to our target rates of around 55.53% to 55.73% compared to the GEKS and own share 

decompositions of productivity growth.  Thus for this particular numerical example, we 
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conclude that the Hill method for constructing relative output and input levels for each 

firm in each period is satisfactory but not as good at the GEKS and own share estimates. 

 

10. An Approximate Method for Constructing Output and Input Aggregates 

 

The multilateral methods for constructing output and input aggregates that have been 

discussed in the previous 3 sections are theoretically satisfactory methods.  However, 

they suffer from two major disadvantages: 

 

• They may not be practical for very large data sets; i.e., they are somewhat 

computation intensive. 

• Detailed price and quantity information on outputs and inputs may not be 

available for each production unit; i.e., only information on output revenues and 

input costs by unit may be available. 

 

Thus in the present section, we assume that we have only information on firm revenues 

and costs by period and that we also have aggregate intertemporal price indexes for both 

outputs and inputs available.  In particular, we assume that we have the aggregate Fisher 

output and input price indexes at our disposal.  Using the aggregate period 0 and 1 

information on the industry’s two outputs and inputs listed in section 5 above,46 the 

Fisher and Törnqvist output price index numbers for period 1 are 12.283 and 12.239 

respectively47 while the Fisher and Törnqvist input price index numbers for period 1 are 

16.035 and 15.998 respectively.  We will use the Fisher industry price index values for 

outputs and inputs for period 1, PF(p0,p1,q0,q1) and PF*(w0,w1,x0,x1) respectively, to 

deflate all of the period 1 firm revenues and costs in order to make them at least 

approximately comparable to the period 0 firm revenues and costs.  Recalling the 

notation that was introduced at the beginning of section 6, for observations 1-4, we define 

firm aggregate outputs and inputs as firm revenues and costs respectively; i.e., define the 

output and input aggregates, y1,y2,y3,y4 and x1,x2,x3,x4 respectively, as follows:           

                                                 
46 See the listing of the industry data in (32) above. 
47 The corresponding index values are 1 in period 0. 
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(47) yk ≡ pk⋅yk ; k = 1,2,3,4 ;    xk ≡ wk⋅xk ; k = 1,2,3,4 .      

 

For observations 5-8 (the period 1 observations), we define firm aggregate outputs and 

inputs as Fisher index deflated firm revenues and costs respectively; i.e., define the 

output and input aggregates, y5,y6,y7,y8 and x5,x6,x7,x8 respectively, as follows:            

 

(48) yk ≡ pk⋅yk/PF(p0,p1,q0,q1) ;  k = 5,6,7,8 ;    xk ≡ wk⋅xk/PF*(w0,w1,x0,x1) ;  k = 5,6,7,8 .      

 

Obviously, the output and input aggregates defined by (47) and (48) are not going to be 

as accurate as the output and input aggregates defined in the previous 3 sections.  

However, it is still of some interest to see how close these approximate aggregates are to 

the previously defined multilateral aggregates.  The approximate output and input 

aggregates are listed in Table 17 along with the corresponding plant productivity levels. 

 
Table 17: Approximate Output and Input Aggregates and Productivity Levels 
 
Outputs        y1             y2             y3              y4             y5             y6              y7             y8 
                20.000       2.000      85.000      18.300      22.877       4.478      94.031      26.052 
Inputs           x1            x2              x3              x4              x5            x6              x7             x8 
                20.000       1.500      79.000      27.600      13.595       3.617      66.105      13.595 
Prod Levels y1/x1       y2/x2         y3/x3         y4/x4         y5/x5         y6/x6         y7/x7        y8/x8      
                  1.000       1.333        1.076        0.663        1.683       1.238        1.422       1.916 
GEKS        1.000       0.998        1.245        0.624        1.755       1.256        1.631       1.938 
 
In order to make the units of measurement for outputs and inputs listed in Table 17 

comparable to the units listed in the corresponding GEKS Table 7, it is necessary to 

divide the outputs row by 20 and the inputs row by 20.  The productivity levels row in 

Table 17 is comparable to the corresponding row in Table 7.  For easy reference, the 

GEKS productivity levels are listed as the last row in Table 17.  It can be seen that there 

are some rather substantial differences in the GEKS productivity levels compared to the 

corresponding approximate ones. 

 

As usual, aggregate output prices that correspond to the 8 output aggregates that are listed 

in Table 17 can be obtained by dividing the value of output produced by each firm in 
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each period by the corresponding output listed for that observation in Table 17.  

Similarly, aggregate input prices that correspond to the 8 input aggregates that are listed 

in Table 17 can be obtained by dividing the value of inputs used by each firm in each 

period by the corresponding input listed for that observation in Table 17.  Once these 

aggregate output and input prices have been constructed, then we can repeat the 

decomposition analysis that was implemented in the previous sections. 

 

The productivity growth decomposition terms defined by (38)-(42) are listed in Table 18 

below.  We also list the direct and reallocation contribution terms defined by the 

individual terms in (39) and (40) for each continuing firm in Table 18.  For ease of 

comparison, we list the decompositions for the GEKS, own share and Hill methods in 

Table 18 as well.  

 
Table 18: The Approximate Method Aggregate Productivity Growth Decomposition  
 
                               Γ              ΓCD           ΓCR           ΓN              ΓX    
Approx Method   0.5553      0.4033     -0.0023      0.0659      0.0885 
GEKS                  0.5521      0.4162     -0.0066      0.0384      0.1040 
Own Share           0.5545      0.4165     -0.0067      0.0403      0.1044  
Hill                       0.5401      0.3986     -0.0063      0.0440      0.1038 
                               ΓCD1         ΓCD2          ΓCD3          ΓCR1          ΓCR2         ΓCR3  
Approx Method   0.1264     -0.0028      0.2798     -0.0491      0.0374      0.0094 
GEKS                  0.1274       0.0083      0.2806     -0.0410      0.0304      0.0039 
Own Share           0.1290      0.0086      0.2789     -0.0423      0.0302      0.0054 
Hill                       0.1318      0.0080      0.2588     -0.0428      0.0301      0.0064 
 
From Table 18, the approximate method aggregate productivity growth Γ is 55.53%, 

which is exactly equal to our target Fisher rate of 55.53%.  This exact equality is not a 

statistical fluke but is a consequence of the fact that we have used the industry Fisher 

price indexes to deflate the period 1 value data.  Thus our approximate method works 

extremely well in terms of replicating the industry’s aggregate productivity growth.  

However, the other terms on the right hand side of (32) are not always well predicted by 

the approximate method.  In particular, the approximate method leads to a contribution of 

entry term ΓN equal to 6.59% whereas the other methods lead to contribution terms in the 

3.84 to 4.40% range.  Also, the approximate method leads to a contribution of exit term 

ΓX equal to 8.85% whereas the other methods lead to contribution terms in the 10.38 to 
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10.44% range.  However, considering the simplicity of the approximate method, we have 

to conclude that at least for this example, the approximate method for constructing output 

and input aggregates for the purposes of implementing the productivity growth 

decomposition (32) was satisfactory but of course, it was not as good at the GEKS and 

own share methods. 

 

11. Conclusion  

         

The paper suggested a new formula (32) for decomposing industry productivity growth 

into terms that reflect the productivity growth of individual production units that operate 

in both the base and comparison periods, the reallocation of resources among continuing 

firms from lower productivity to higher productivity units and to entry and exit 

contribution terms.  Unfortunately, this formula (and the other formulae derived in the 

literature) is derived under the assumption that each production unit produces a single 

homogeneous output and uses a single homogeneous input.  Most of the paper (sections 

4-10) is concerned with the problems involved in aggregating many outputs and many 

inputs into output and input aggregates.  In order to accomplish this aggregation, we 

suggested the use of multilateral methods and we implemented four multilateral methods 

on a test data set that is described in section 5 above.  For our test data set, we found that 

the own share method worked best but the GEKS method was very close.  The Hill 

methods and an approximate method that used value aggregates in the base period and 

deflated value aggregates in the comparison period also worked reasonably well for our 

data set.  The fact that the approximate method worked so well is very encouraging for 

empirical work in this area, since variants of it are what have been used in empirical 

applications of productivity decompositions that involve entry and exit.48   

 
 
 

                                                 
48 In our test example, we used the actual “industry” Fisher output and input price indexes as the deflators.  
In empirical work, the deflators that are available are unlikely to be the exact industry deflators and so there 
will be some extra error due to this unavailability.  Also, in real life, it is unlikely that all of the production 
units in a given industry are producing positive amounts of a common list of outputs and using positive 
amounts of a common list of inputs, as was the case in our example.  Hence, there will be additional errors 
due to the heterogeneity of establishment production. 
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