The Investment Performance of Housing and “Hedonic” Spatial Equilibrium

By

Tracey Seslen
Marshall School of Business
University of Southern California

William C. Wheaton
Department of Economics
MIT

Henry O. Pollakowski
Center for Real Estate
MIT

DRAFT: July, 2005

The authors are indebted to CSW/FISERV, the Warren Group, and Dataquick, Inc. for the provision of data. The Authors remain fully responsible for all conclusions and analysis drawn from this research.
ABSTRACT

This research unites the two major strands of work that exist to date in the literature on Housing Markets. The first is the notion of spatial equilibrium wherein consumers inhabiting different units are thought to be at a constant utility level. As a consequence prices “compensate” for differential “hedonic” housing attributes. The second is the application of life-cycle analysis to the determination of the “full” cost of owning housing as a financial asset. Linking the two we hypothesize that it is the “risk-adjusted annual cost of ownership” which should compensate owners for the differential consumption flows that come from various houses. To test whether this is the case we develop a unique data set for 4 US metropolitan areas that ascertains the appreciation and risk from owning housing at the ZIP code level. We then combine this with transaction based data on price levels – at the same level of geographic detail. We find that in ZIP codes with higher historic appreciation, price levels are indeed higher, but we suspect that this may represent misspecification through an identity. When we test over a shorter period for whether prices anticipate future appreciation – we get very mixed results. In more than half of the specifications ex ante appreciation has the wrong sign. The results for risk are similarly disappointing. These results reinforce the doubts raised by others over whether the housing market is “efficiently” priced. They also raise the possibility that three decades of “hedonic” research could possibly be biased by omitting the investment characteristics of housing assets from the estimated equations.
I: INTRODUCTION

This paper connects two central ideas in the long literature on Housing markets. The first idea, Ricardian Rent, is hundreds of years old. Ricardo [1817] hypothesized that in equilibrium, land would absorb the advantages of location and its price would hence exactly compensate for any and all attributes that either consumers or producers would “value”. Following a significant expansion by Alonso [1967] and then Rosen [1974], there have appeared hundreds of papers using the idea of spatial equilibrium to implicitly value travel time, public goods and environmental externalities (e.g. Smith [1995], Bartik [1987]), not to mention a host of housing attributes (e.g. Case et. al [1989], Palmquist [1984], Brown and Rosen [1982]). Recently there has arisen some criticism over the empirical specification of “hedonic” models (e.g. Epple [1987], Ekeland et. al [2004]), but the central theoretical premise of prices acting to “compensate” remains quite central to much applied research.

The second strand in the housing literature is inter-temporal and deals with the consumption of housing services over time and the investment returns contained therein. Starting with Kearl [1979], Schwab [1982], Dougherty and Van Order [1982] economists realized that the un-taxed nominal capital gains earned by owning housing could bestow a major advantage to home ownership (Hamilton and Schwab [1985]). Poterba [1984] put this idea into a rational expectations equilibrium framework and demonstrated that unanticipated shocks to housing demand would generate anticipated patterns of future price appreciation that would generate further increases in housing demand. After this it was well recognized that the “user cost” of owning housing incorporated expected future capital gains as well as implicit rent – even with trading frictions (Grossman and Laroque [1990]).

A union of these two literatures began with a paper by Capozza and Helsley [1990] in which the authors showed that in a Ricardian equilibrium for a growing city, prices would have to not only compensate for location attributes but also for the anticipated changing valuation of those attributes over time due to growth. Dipasquale and Wheaton [1996] expounded upon this and showed how with anticipated growth, certain locations within a city would have both high price levels and high growth in
Ricardian rent, while other areas would exhibit the reverse. In equilibrium, a “user cost” measure of Rent-minus-appreciation would be exactly the same across locations.

The present paper takes this union one further step arguing that it should be Rent-minus-appreciation-plus risk that is equilibrated across locations. Empirically, the implication is that all hedonic equations should include the two investment dimensions of housing – expected appreciation and risk – in addition to observable physical and location characteristics. To the extent that such investment behavior is correlated with measured attributes, the omission biases results.

To test these ideas empirically for the first time we undertake a several-part study. We begin by obtaining repeat sale price indices at the ZIP-code level for 4 MSAs. These indices span roughly 25 years (from 1979 to 2004) and reveal several conclusions. First, virtually all ZIP codes do in fact closely follow the cyclic movements of the broader MSA. Secondly, these cyclic movements are quite predictable as other authors have argued (e.g. Case et. al [1989]). Thirdly, there are significant differences across ZIP codes (within an MSA) in longer term appreciation and risk and there are consistent patterns in which areas have higher appreciation and lower risk. Finally, there is the expected positive simple correlation between risk and historic return across ZIP levels – although it is generally weak.

We next produce hedonic price equations for a single year within but near the end of those spanned by the indices (1998). We do this with thousands of transactions in each MSA and each transaction is linked to a ZIP code. Incorporating measured risk and appreciation measures into the hedonic equations we find the following:

1) Historic appreciation is reflected in 1998 prices in roughly the magnitude that would be suggested by theory. This occurs in all 4 of our MSAs.

2). However, several measures of ex ante appreciation (from 1998-2004) are not well reflected in 1998 prices – particularly when the appreciation of the last 6 years is any different from historical.

3) Risk (which can only be measured historically) is correctly reflected in price in only 1 of 4 MSAs.

4). Not surprisingly, risk and return are correlated particularly strongly with some location variables and hence their omission could change the estimated impacts of those
variables. In our 4 cities however, this turns out not to be a problem. The impact of location variables on house prices seems to come not from consumer’s valuing the flow of services they produce, but rather from the fact that certain locations have higher expected long term appreciation.

Our paper proceeds in accordance with the discussion above. In Section II we review some theoretical literature and develop a simple model to illustrate how the historic investment behavior of housing markets can be expected to impact current or future consumption decisions. Section III then describes the repeat sale price indices obtained, their behavior over time, and offers several different measures of risk and appreciation. We present these metrics in several different ways and show that they are highly autocorrelated over time. We also show that risk and appreciation are positively related historically across ZIP codes and that there are strong location patterns to the investment performance of housing.

In Section IV, we describe the data used to construct our hedonic equations in each MSA. We use a number of specifications with and without investment variables, but all appreciation measures are historically based over the full time period. We compare results across MSAs and find that the point estimates for historic appreciation are reasonable according to several theoretical perspectives.

In Section V we argue that the encouraging results of the previous section could be due to an identity, and remove this possible specification error by determining if anticipated future appreciation is reflected in prices. Our results in this case are quite poor and raise the prospect that ex ante investment performance is not well priced. We draw some conclusions which reinforce the literature on housing market inefficiency and suggest further research.

II: HOW SHOULD RISK AND APPRECIATION BE PRICED IN HOUSING?

In this section we develop a simple model of housing consumption to illustrate how the expected (and possibly historic) appreciation and risk characteristics of housing markets determine the consumption decision. In short run equilibrium, with supply largely fixed, the impact on desired consumption will be directly translated into housing
prices. In long run equilibrium, some of these impacts will be tempered by supply response, but with less than perfect supply elasticity, they will still hold qualitatively.

We begin with a 2 period model with two forms of consumption -- housing (a durable, \(h \)) and a numeraire (non-durable, \(c \)). In the first period, the individual has total wealth \(W_0 \), and must decide how much to allocate of this in the next period between riskless asset \(b \) and housing wealth \(ph \). In the second period the return on \(b \) is \(R \) which is known with certainty. The appreciation on housing is \(H \) is known with uncertainty and comes from the probability distribution of the change in \(p \) over the second period.\(^1\) Efficient capital markets allow the individual to finance its numeraire consumption in the second period with the total return on wealth: \(ph + Rb \).

In this framework, the individual has preferences represented by the CARA utility function with no intermediate consumption. Returns on housing, \(H \), are normally distributed with mean \(\mu_H \) and variance \(\sigma_H^2 \). The individual maximizes:

\[
U(c, h) = -e^{-ac-ah}
\]

subject to

\[
W_0 = ph + b
\]

and

\[
c = phH + Rb
\]

Solving the maximization

\[
\max E[-e^{-ac-ah}] = \max E[-e^{-a(phH+Rb)-ah}],
\]

we get optimal housing expenditure

\[
ph^* = \frac{\mu_H - R + \alpha}{a \sigma_H^2}
\]

Thus optimal housing expenditure will increase when the appreciation on housing is expected to be greater, will decrease as other investments have higher returns and will decrease with the greater the risk associated with homeownership. It is purely a function of the moments of housing returns, and wealth effects do not come into play.
In a short run equilibrium in the housing market, \(h^* \) is fixed and so price must move positively with expected future return and negatively with both the opportunity cost of investing as well as expected future housing risk. In fact the expression above could be used to derive point estimates of what the relationship should look like. As the time horizon lengthens, the housing stock can adjust and so the expression above becomes less binding. The qualitative relationship between price appreciation and risk, however, still holds.

In the literature on housing consumption (e.g. Poterba [1984]), deterministic models of life-cycle housing consumption often derive a “user cost” expression (\(UC \)) to represent the net annual cost of tying up one dollar of capital in a house. In these models \(UC \) generally considers the after-tax opportunity cost of equity, debt, as well as expected capital gains. Without taxes and ignoring risk, these models usually derive the expression in a linear form such as: \(UC = R - \mu_H \). Optimal housing expenditure, \(ph^* \) is then inversely related with \(UC \), or optimal consumption \(h^* \) is inverse to both \(p \) as well as \(UC \).

With the CARA model, if we equate \(ph^* \) with \(1/UC \), then from (2) we derive expression (3) for \(UC \). In (3), both \(R \) and \(\mu_H \) have the same impact on the user cost and housing consumption as they would in the deterministic models – although now incorporating risk as well.

\[
UC = \frac{a\sigma_{\mu H}^2}{\mu_H - R + \frac{\alpha}{a}}
\]

(3)

When the housing market is differentiated by a series of fixed location or housing attributes \(X \), there is a more general notion of Hedonic equilibrium. Across the market provided permutations of \(X \) there will exist a Hedonic price function \(p(X) \) which will provide identical utility to consumers – incorporating the user cost \(UC \). We use the more general utility function \(U(c, X) \), and rather than having housing appreciation increase future consumption as in (1), we have \(UC \) reducing it: \(c = y - p(X)UC \).

\[
U(y - p(X)UC, X) = U
\]

(4)
With fixed utility, expression (4) can be totally differentiated with respect to X, then set to zero, and finally a linear approximation to the Hedonic price function can be written as:

\[p(X) = (1/UC) \sum \left(\frac{\partial U}{\partial X} \div \frac{\partial U}{\partial c} \right) X \] (5)

In all of this discussion, the housing appreciation in the user cost equation is expected future appreciation (the second period in our CARA model). In our (and others’) empirical research, it has become clear that the moments of the probability distribution of housing returns \(\mu_H \) and \(\sigma_H^2 \) may be time dependent on past movements in \(H \). The positive observed autocorrelation between returns in adjacent periods certainly suggests that the process is at least AR(1).

\[H_t = \lambda + \gamma H_{t-1} + \varepsilon_t \] (6)

In this case, the variance of \(H_t \) remains unchanged, since it is a function of (non-stochastic) past returns and a stochastic error component. This will be \(\sigma^2_H \). The unconditional and conditional expected values of \(H_t \) however are quite different.

\[E[H_t] = \lambda / (1 - \gamma) = \mu_H \] (7)
\[E[H_t \mid H_{t-1}] = \lambda + \gamma H_{t-1} = \mu'_H \]

If consumers are fully informed, then they realize the positive autocorrelation in the market and current period consumption will be quite closely connected to historic returns as long as \(1 > \gamma > 0 \). Thus when prices are on the upswing desired consumption will be as well, pushing prices further upward. This is not “irrational” and many authors (e.g. Wheaton [1999]) show that positively autocorrelated prices are an intrinsic feature of housing or real estate markets where the supply of durable capital can take considerable time to bring on line. The result is that with empirical work, user cost
measures may be generated using recent or historic movements of the housing returns data without necessarily violating any kind of economic rationality.

III: THE INVESTMENT PERFORMANCE OF ZIP-LEVEL HOUSING MARKETS.

Empirical evidence on the risk, appreciation and predictability of housing prices at the metropolitan level has been well-documented, starting with Case and Shiller [1989]. Using transactions and other administrative data from four major metropolitan areas, their study showed strong positive autocorrelation in returns over short intervals; an increase in housing prices in the current period predicted an increase $\frac{1}{4}$ to $\frac{1}{2}$ as large in the following period. Similar results from a larger sample of metropolitan areas were estimated in Capozza, Hendershott, and Mack [2004] and Seslen [2004]. No study, as of yet, has extended this type of analysis to the sub-metropolitan level.

In this section, we use weighted repeat-sales housing price indices provided to us by Case Shiller Weiss/FISERV at the ZIP code level to examine a series of questions. These include whether ZIP level housing prices behave closely with their MSA aggregate index or whether there are wide differences. We next present a set of time series metrics to characterize each ZIP series. These include simple risk and appreciation measures as well as the parameters of a univariate model (estimated separately for each ZIP). The data cover four MSAs: Boston, Chicago, Phoenix, and San Diego. In choosing these areas, we have attempted to create a sample representing a diverse set of demographic, geographic, and housing market-related conditions.

The Boston metropolitan area covers 249 ZIP codes from 1982 through 2002, Chicago comprises 152 ZIP codes from 1987 through 2002; Phoenix includes 164 ZIP codes spanning 1988 to 2002, and San Diego covers 86 ZIP codes starting in 1975. In the final version of our empirical model, the data were kept or dropped based on three conditions: the length of the time series itself, the proximity of the zip code to the center of the MSA, and the availability of other data needed to carry out the later stages of our analysis. For Boston, we confined our sample to those ZIP codes within the I-495 beltway; outside that area, it could be argued that Boston is not the primary center of economic “pull” on housing prices, and we did not want that possibility to cloud our
results. For the other three MSAs, attenuation of the sample size was primarily due to the lack of corresponding transactions data.

The final sample resulted in 109 observations for Boston, 51 for Chicago, 80 for Phoenix, and 42 for San Diego. For purposes of discussion, price levels are deflated using the (urban) consumer price index. The risk and appreciation measures used in estimation are all calculated in current dollars.

As can been seen in Figure 1, housing prices across the four MSAs were behaving quite differently from one another over the last two decades. While Boston and San Diego were experiencing significant boom-bust cycles, Chicago and Phoenix were progressing through substantially less volatile paths.

Figure 1

![MSA Real Price Series](image)

In Figures 2 through 5, we have graphed the price series for every ZIP in each of the four MSAs again in constant dollars. Within Boston and San Diego, the ZIP-level series follow one another quite closely, while in Chicago and Phoenix, they exhibit greater divergence from one another, particularly towards the end of the sample period. From first glances, it would appear that “a rising tide raises all boats.”
Figure 2:

Price Index Evolution, 109 Boston Zip Codes
(Data reported semi-annually)

Figure 3:

Price Index Evolution, 51 Chicago Zip Codes
(Data reported semi-annually)
Figure 4:

Price Index Evolution, 80 Phoenix Zip Codes
(Data reported semi-annually)

Figure 5:

Price Index Evolution, 42 San Diego Zip Codes
(Data reported semi-annually)
It is possible to more formally characterize the distribution of ZIP series for each MSA. In Appendix 1, we provide the ZIP level quantile distribution of (current dollar) risk and appreciation for each market. Table 1 below summarizes those results and shows that for most markets, 90% of the ZIP codes have raw risk and appreciation that spans two or three percentage points or alternatively lies with 1.5% either side of the MSA mean.

<table>
<thead>
<tr>
<th>MSA</th>
<th>MSA Apprec.</th>
<th>90% Apprec.</th>
<th>90% Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boston</td>
<td>8.6</td>
<td>7.5 – 9.9</td>
<td>8.1 – 10.8</td>
</tr>
<tr>
<td>Chicago</td>
<td>7.3</td>
<td>5.5 – 9.5</td>
<td>2.9 – 5.2</td>
</tr>
<tr>
<td>Phoenix</td>
<td>5.5</td>
<td>4.5 – 7.4</td>
<td>3.3 – 5.1</td>
</tr>
<tr>
<td>S. Diego</td>
<td>8.4</td>
<td>6.7 – 9.2</td>
<td>8.2 – 10.3</td>
</tr>
</tbody>
</table>

In one sense the range breadth in the distribution of return and risk across ZIPS is a measure of the degree to which each MSA is “spatially integrated”. If all ZIP codes are close substitutes and demand very elastic across areas then presumably ZIP codes would behave quite closely. Conversely, if there is lower spatial demand elasticity and ZIP codes are quite differentiated then the variation in behavior would be greater. By this standard, Boston and San Diego are the more “integrated” while Chicago and Phoenix are less “integrated”. In all these markets there is a significant positive correlation between risk and appreciation – although this will be discussed in more detail later.

As an alternative to using simple descriptive statistics to examine the behavior of ZIP level price series we also estimate a basic autoregressive model for each series – and then examine the spread in the parameter distribution of this model across the ZIPS. The rationale for this is based on the idea that if some component of price variation is expected, individuals do not need to receive compensation for it (in the form of a “risk premium”) because the variation does not make them worse off. In a predictable market where participants observe the autoregressive and mean reverting behavior, appreciation should be the underlying trend in the series and true “risk” is the component of price variation that is unexpected. If there were little expected variation in housing prices (which seems unlikely
here given Figures 2-5), then the use of either measure would lead to similar results and conclusions.

The model we use is adapted from Capozza, Hendershott, and Mack [2004]², and has three parameters of interest: one representing the autocorrelation of housing prices over time, one representing the degree of mean reversion in housing prices, and the last being the structural (or equilibrium) trend around which housing prices oscillate. The root MSE of the model will be of interest as a measure of the degree of unexplainable variation in housing prices and of course the trend will represent underlying return.

In the CHM model, the change in housing prices from today to tomorrow is a function of the change in housing prices from yesterday to today, and the deviation of housing prices from an equilibrium price level, \(P^* \), which can change over time, and is estimated in a first-stage regression of price on various MSA-level economic and demographic characteristics. Due to the lack of time series economic data at the ZIP code level, and in name of simplicity, we eliminate the first stage, and assume that each ZIP’s prices deviate around a constant trend. This gives the following specification:

\[
\ln P_{t+2} - \ln P_t = \beta_1 (\ln P_{t+1} - \ln P_{t-1}) + \beta_2 (\ln P^* - \ln P_t) + \varepsilon \quad (8)
\]

where: \(P^* = e^{a+b\text{Trend}} \)

In our model, housing price changes are measured over an interval of one year; however, the housing price index itself is measured every six months. So we end up with an overlapping of intervals. With this, the above equation translates to:

\[
\ln P_{t+2} - \ln P_t = \gamma_0 + \gamma_1 (\ln P_{t+1} - \ln P_{t-1}) + \gamma_2 \ln P_t + \gamma_3 \text{Trend} + \varepsilon, \quad (9)
\]

where: \(\gamma_0 = \beta_2 a \), \(\gamma_2 = -\beta_2 \), and \(\gamma_3 = \beta_3 b \).

The parameter \(\gamma_1 \) (or equivalently, \(-\beta_1\)) measures autocorrelation in the housing series and \(\gamma_2 \), mean reversion. Estimation of the latter will allow the backing out of \(a \) and \(b \), where \(b \) is the underlying ZIP trend.

In our time series model, the parameter space allows for four possible outcomes with regard to housing market cyclic behavior. With mean reversion (\(\beta_2 < 0 \)) and
autocorrelation (β_2) greater than one, prices diverge in an oscillating fashion. With mean reversion, and autocorrelation less than one, prices converge with oscillations. With no mean reversion ($\beta_2 \geq 0$) and autocorrelation greater than one, prices diverge with no oscillations. Finally, with no mean reversion and autocorrelation less than one (or with mean reversion and very small values of β_1), prices converge with no oscillations.3

Given the large number of ZIP codes for which we estimate our model, we again present our results in Appendix 2 with a series of graphs that represent the quantile distributions of our measures of interest. Statistical significance is not reported graphically, but will be discussed in the text where noteworthy. Each graph includes the uniform distribution line as a point of reference. For convenience the distribution of parameters across the ZIPs for each market are summarized in Table 2 below, where we give the range of values within which 90% of the ZIPs fall.

<table>
<thead>
<tr>
<th>Table 2: distribution of ZIP Model parameters:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSA</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Boston</td>
</tr>
<tr>
<td>Chicago</td>
</tr>
<tr>
<td>Phoenix</td>
</tr>
<tr>
<td>S. Diego</td>
</tr>
</tbody>
</table>

For the Boston MSA, nearly 90% of the 110 ZIP codes have autocorrelation betas that are quite high - above 0.8. The values of the mean reversion beta are also quite uniform, and indicate convergent, oscillating housing price series for the entire MSA. All coefficients for autocorrelation and mean reversion are significant at the 5% level or better. The structural trend parameter is fairly uniform over the range of values, and is positive for all ZIPs. The fact that the trend is so small in comparison to the average Boston return is explained by the high autocorrelation coefficient. The Boston market gets its appreciation from great “momentum” following largely random shocks – resulting in a high root mean squared error. The fit of the time series model to the Boston data is still good, with a
minimum R-squared of 0.63. Over 90% of the observations fall between 0.8 and the maximum of 0.96.4

For the Chicago MSA, returns exhibit far less autocorrelation, but still are fully within the convergent range. The parameters also are more broadly distributed across a wider range of values than Boston. Mean reversion is also more broadly distributed than Boston, and fewer than half of the observations are significant at the 10% level. Consistent with the graph in Figure 1, in which we observe no repeated boom-bust cycles, these results point to a pattern of convergence with little oscillations. This is also seen in the much larger trend coefficient for Chicago than Boston – despite a much lower overall average return. In Chicago appreciation comes from steady smooth growth rather than the lingering impact of shocks. This yields a lower root mean squared error. As might be expected from previously reported results, the fit of the model to the Chicago data is significantly worse than Boston. The distribution of the R-squared is fairly uniform across the range of values, 0.30 to 0.88.

The Phoenix MSA exhibits many of the traits of Chicago. The autocorrelations are similarly low, but still well in the convergent range and the trend distribution tends to be quite high. Thus Phoenix is a market in which ZIP level prices tend to smoothly grow. This pattern yields lower average root mean squared error. With regard to mean reversion, we observe a distribution that is somewhat similar to that of Chicago, but within a more compact range. The fit of the Phoenix sample is stronger than Chicago and just slightly worse than the Boston sample.

San Diego is a market that is similar in many respects to Boston. Autocorrelation is very high and quite uniform, while the trends are again quite small considering the strong appreciation that most areas in this market have experienced. Thus like Boston, San Diego has seen much of its growth come from the “long-lived” impacts of a few random shocks rather than a steady trend and this gives a high root mean squared error. Mean reversion in the San Diego MSA is very similar to Boston in terms of magnitude, dispersion, and statistical significance. The distribution of fit is similarly shaped, and almost identical to that of Boston.

Given that housing price behavior is ultimately determined by the \textit{combination} of autocorrelation and mean reversion, we must look at the relationship between the two to complete our analysis – which we do with the figures in Appendix 3. Once again, we
observe strong similarities within the Boston-San Diego and Chicago-Phoenix pairs. Across all four MSAs, there is a tendency toward lower levels of mean reversion (β_2 or $-\gamma_1$ closer to zero) in ZIP codes with higher levels of autocorrelation. In Boston and San Diego, the observations are very tightly bunched, and the relationship is fairly subtle. For Chicago and Phoenix, the observations are highly dispersed and the relationship is extremely pronounced. In these two markets, we see quite a few ZIP codes that would fall into the parameter region where there is convergence with no oscillations, while we see no such observations in the other two MSAs.

In Section II we argued that a full equilibrium requires that the overall risk adjusted cost of owning a home compensate for the utility flow of services. Thus we would expect to find that “rent” (price level times opportunity cost of capital) minus expected appreciation plus the value of risk must compensate for service flow. In this equilibrium, this is equivalent to having risk equal the service flow minus rent plus expected appreciation. Thus holding service flow and prices fixed (if that is possible), we expect to find a positive (partial) relationship between risk and appreciation. and in Appendix 4 we examine if there are in fact such a positive relationships across the ZIP codes of our 4 MSAs. We do this with a series of scatterplots and accompanying regressions.

The first panel in Appendix 4 shows the relationship between “raw” appreciation and risk – the average, one-year log difference in the price index and the standard deviation of that difference over the entire time-series interval. In the bottom panel, we substitute estimated appreciation and risk (the equilibrium slope coefficient and root MSE of the time series model, respectively) for the raw measure.

The strongest positive relationship between risk and appreciation can be found with the raw measures in Phoenix, where we observe a correlation of around 0.85. Phoenix is followed by Boston at 0.58 and Phoenix at 0.52. The worst of the four is San Diego, in which the data exhibit a wide range of returns within a much narrower band of risk. Looking at our alternative measures of risk and return, we generally observe a lower degree of correlation than with the raw measure. Only Boston shows an improvement using the estimated values. Thus with respect to these historic performance, it does seem that ZIPs behave somewhat as an inter-temporal spatial equilibrium would demand.
Not only is there predictability over time in ZIP level investment performance, there is also considerable cross-sectional predictability. In each market we can run regressions between the ZIP level location variables that we will include shortly, and risk or return. To illustrate the spatial patterns of investment performance Table 3 presents cross section regressions of five main ZIP characteristics on investment performance. We do this for appreciation before and after 1998 (–,+). This is the date at which we will be examining Hedonic prices.

Table 3: Cross Section predicted House Price Appreciation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Boston 98 / +98</th>
<th>Chicago 98 / +98</th>
<th>Phoenix 98 / +98</th>
<th>San Diego 98 / +98</th>
</tr>
</thead>
<tbody>
<tr>
<td>R²</td>
<td>0.81 / 0.81</td>
<td>0.88 / 0.72</td>
<td>0.66 / 0.64</td>
<td>0.88 / 0.85</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>0.01 / 0.03</td>
<td>-0.005* / -.01*</td>
<td>-0.03 / -0.016*</td>
<td>-0.006 / 0.13</td>
</tr>
<tr>
<td>Distance</td>
<td>-0.11 / -0.05</td>
<td>-0.19 / -0.27</td>
<td>-0.31 / -0.32</td>
<td>0.02 / -0.09</td>
</tr>
<tr>
<td>Distance²</td>
<td>0.12 / .04</td>
<td>0.19 / 0.37</td>
<td>0.69 / 0.70</td>
<td>-0.08 / 0.14</td>
</tr>
<tr>
<td>Ocean dist.</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>-2.1 / 0.01*</td>
</tr>
<tr>
<td>Median inc.</td>
<td>0.0001* / .03</td>
<td>-0.009* / -0.01*</td>
<td>0.001* / .0003*</td>
<td>0.0002* / -4.2</td>
</tr>
</tbody>
</table>

1. All coefficients significant at 5% except those with an *.

The first observation from Table 3 is that ZIP appreciation is quite predictable. In all markets but San Diego, for example, ZIPS at farther distances from the urban center have less appreciation. In all markets except Boston, the higher the percentage of non-white residents, the lower the appreciation. Areas with higher median income may or may not appreciate faster.

The second observation is that in Chicago and Phoenix, these patterns are quite stable both before and after 1998. In fact the R² between appreciation pre and post 1998 in these two cities is .76 and .88 respectively. In Boston and San Diego however, the regressions change quite significantly between periods. In these latter two cities the R² between appreciation pre and post 1998 is only .46 and .15 respectively.
IV: INCORPORATING HISTORIC INVESTMENT PERFORMANCE INTO HEDONIC EQUATIONS.

The data employed to estimate the hedonic regressions came from a variety of sources. The transactions data and housing unit characteristics were obtained from two real estate information clearing houses: The Warren Group and Dataquick, Inc. The former provided data for the Boston area, while the latter provided data for the other three MSAs. Data were initially limited to owner-occupied, single-family detached units. Further filtering led to the discarding of units with essential data missing, or values believed to be data reporting or recording errors. Homes with sale prices below $20,000 (Boston) and $10,000 (Chicago, Phoenix, and San Diego) were also discarded as possible indications of non-arms-length sales, possible data reporting/recording errors, or otherwise being non-representative of “normal” housing prices in our MSAs. All data were from 1998. For the Boston MSA, housing characteristics included the number of bedrooms, the number of bathrooms, interior square footage, lot size, and the year in which the house was built. Observations were further discarded if the number of bedrooms or bathrooms was less than one. The lot size was bounded between 0.02 and 10 acres. After filtering, we were left with 19,848 observations. For the Chicago MSA, housing characteristics were limited to number of bathrooms, interior square footage, and lot size. Observations were discarded if the number of bathrooms was less than one and no upper limit was placed on lot size. The final dataset contained 12,799 observations. Transaction data for the Phoenix MSA included the number of bathrooms, the number of total rooms, interior square footage, lot size, year built, and whether the house had a garage or pool. In this dataset, houses with “three-quarter” baths (containing a toilet and shower) were grouped together with those containing the next highest whole number of bathrooms. As with the Chicago MSA, no upper bound was placed on the lot size. The transactions data for San Diego contained the number of bedrooms, number of bathrooms, interior square footage, and whether the house had a garage or pool. Lot size was missing from over 40% of the observations, and therefore was ultimately omitted from the regression analysis. The final dataset contained 34,511 observations. In addition to those filters listed for Boston, square footage was bounded from below at a value of 300. The final dataset contained 13,970 observations.
Among the location attributes used in our hedonic specification, population density, median income, rate of homeownership and percentage nonwhite were obtained from the 2000 Decennial Census gazetteer and summary files. With the exception of median income, the location attributes were calculated using various other data from the census files, i.e. total population, total land area, total housing units, number of owner-occupied units, and total nonwhite population. The distance from the city center and the distance to the ocean (San Diego only) were generated using Mapquest internet mapping software.

For the Boston area only, we also included a set of variables measuring educational quality and crime, two location factors which one would expect to be strongly capitalized into housing values. Educational quality is measured by 1998 Massachusetts Comprehensive Assessment System (MCAS) combined scores. The MCAS is a standardized test that is administered in a variety of grades as a means of measuring public school performance. All students in the participating grades must take the exam, regardless of disability status or level of English proficiency. Scores are reported for “all students” and “regular students” (non-disabled and English proficient). In our analysis, we include the district-level scores for regular students in Grade 10 only. MCAS data were obtained from the Massachusetts Department of Education website.

Data on crime were broken down into two categories, property crime and violent crime. Data for the city of Boston for 1998, broken down by neighborhood, was obtained from the Boston Police Office of Media Relations. Data on all other towns came from the Massachusetts Crime Reporting Unit website. Crime rates are presented as a per capita measure. Crimes incurred on college campuses are recorded separately from the towns in which they are located, and are not included in our measure. Data on crime and educational quality were not included in the analysis of the other three MSAs.

The final variables included in the hedonic model measure risk and appreciation. In our analysis, we use two different sets of measures, each based off of the CSW/FISERV dataset described earlier. In the first instance, we use raw measures of risk and average historic appreciation – the log difference in the housing price index over a one-year interval, averaged (by ZIP code) over the entire duration of the time series, and the standard deviation of that average. In the second instance, return is measured as the slope coefficient on the structural trend from our time series model, while “risk” is the root mean squared error of
the model. To carry out our initial analysis, we run six different hedonic specifications for each of the four MSAs: 1) prices against housing characteristics alone, 2) prices against housing characteristics with the addition of price appreciation and risk, 3) prices against housing and trend and root mean squared error, 4) prices against housing characteristics and location variables, 5) prices against housing characteristics, location variables with price appreciation and risk, and 6), prices against housing characteristics, location variables and trend and root mean squared error. In all of our specifications, we regress the log of prices against a linear list of right hand side variables (Cropper [1988], Case et. al [1991])

The results of these hedonic equations are presented in full in Appendix 5. For each city there is a table of summary statistics, followed by a table of the combined regression results. Our primary concern is with the additional role that the various risk and return measures add to the equations so to that effect we present Tables 4a, and 4b. We then discuss the results for each city in turn.

<table>
<thead>
<tr>
<th>MSA</th>
<th>Average, only Housing</th>
<th>Average plus Location</th>
<th>Trend, only Housing</th>
<th>Trend, plus Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boston</td>
<td>25.4</td>
<td>10.6</td>
<td>35.2</td>
<td>14.4</td>
</tr>
<tr>
<td>Chicago</td>
<td>12.8</td>
<td>11.6</td>
<td>9.4</td>
<td>6.5</td>
</tr>
<tr>
<td>Phoenix</td>
<td>13.3</td>
<td>5.1</td>
<td>.1*</td>
<td>-.8*</td>
</tr>
<tr>
<td>S. Diego</td>
<td>17.6</td>
<td>-2.6</td>
<td>15.7</td>
<td>1.8</td>
</tr>
</tbody>
</table>

1. All coefficients significant at 5% except those with *.

<table>
<thead>
<tr>
<th>MSA</th>
<th>Risk, only Housing</th>
<th>Risk, plus Location</th>
<th>RMSE, only Housing</th>
<th>RMSE, plus Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boston</td>
<td>-27.1</td>
<td>-11.2</td>
<td>-15.9</td>
<td>-3.8</td>
</tr>
<tr>
<td>Chicago</td>
<td>-21.2</td>
<td>-10.1</td>
<td>-4.4</td>
<td>-5.2</td>
</tr>
<tr>
<td>Phoenix</td>
<td>0.6</td>
<td>2.5</td>
<td>-2.7</td>
<td>3.1</td>
</tr>
<tr>
<td>S. Diego</td>
<td>-3.8</td>
<td>11.0</td>
<td>6.2</td>
<td>9.0</td>
</tr>
</tbody>
</table>

1. All coefficients significant at 5% except those with *.
Boston. The basic equation with only housing characteristics has an R^2 of 0.53. Almost all coefficients except the indicators for 3 and 4 bedrooms are significant. This result is often found when total interior square feet is controlled for; homes with many small rooms are not as valued. When the investment variables are added, the R^2 jumps quite dramatically to 0.64 in the case where raw risk and appreciation are used or 0.62 when trend and root mean squared error are the metrics. Both variables are very significant, and have the correct sign.

When the location variables are added into the hedonic equation, the R^2 rises to 0.69. It is important to note that the equation with location variables and no investment performance metrics has about the same R^2 as the equation with just the investment metrics. As established earlier, there is a high degree of collinearity between the investment metrics and the location variables.

Chicago. The basic equation for Chicago, containing only housing characteristics has a somewhat lower R^2 than Boston at 0.44. Unlike Boston, adding in our investment metrics increases the explanatory power of the equation only modestly, to an R^2 of around 0.47. The appreciation variable has the hypothesized positive sign, and is smaller in magnitude to Boston when measured either as return or trend.

When the location attributes are added to the equation the R^2 increases from 0.47 to 0.61. The appreciation and trend metrics now are much closer in point estimate to the Boston results, and the risk metrics remain significantly negative in sign.

Phoenix. Phoenix, with a richer array of structural variables, has a “base” R^2 of 0.70. When we add in raw risk and average appreciation the R^2 increases only to 0.72, and barely at all with trend and root mean squared error. Raw appreciation is quite significant, trend appreciation less so. The raw risk metric has the wrong sign.

Once location variables are added to the equation the R^2 increases only modestly, from 0.70 to 0.76 (Appendix Table 5.4b column 4). When in turn the investment metrics are added, R^2 increases less than one percentage point. With the location variables included both risk measures perform poorly.

San Diego. The San Diego results are similar to those in Boston. San Diego has a “base” R^2 of 0.54. When the investment metrics are added the R^2 increases to 0.57.
average appreciation and risk have the correct signs only when entered in raw form and only without the location variables.

With the addition of the location variables, the R^2 increases 8 to 10 percentage points. The raw appreciation variable no longer has a positive coefficient, and both appreciation coefficients are significantly smaller in magnitude. The risk coefficients both have positive signs and have increased in value.

In summary, the hedonic equations produce quite reasonable results without the investment variables – results that seem typical with other studies. The inclusion of historic appreciation, measured either raw or with the trend variable is almost always highly significant and with a large positive coefficient. The risk metric, however, has more mixed results. Only in Boston and Chicago does this variable consistently have the expected significant and negative impact (measured either raw or as root mean squared error). In many of the other markets, its impact is positive on price and in many cases this effect is significant. At this time we have no explanation for the absence of risk-pricing in the markets outside of Boston and Chicago.

The magnitude of the coefficients also should be judged against the theory of Section II. The point estimates in Table 3a suggest in exchange for a 1% increase in annual appreciation (for 25 years – or effectively forever) owners are willing to pay between 10% and 20% more for a unit (with the same flow of utility-based services). If there are no liquidity constraints we can think of this 1% yearly increase in appreciation as an income flow which must be discounted. In perpetuity we should be willing to pay $1/discount rate for that. By this reasoning a coefficient of 10 to 20 is just in the correct ballpark.

We can also examine equation (4) in more detail. There if we take the percentage derivative of p with respect to a unit change in μ_μ we get $1/(\mu\mu - R + \frac{\alpha}{a})$. In real terms housing appreciates a bit more than the real interest rate R, but this expression actually is dominated by the CARA coefficient ratio $\frac{\alpha}{a}$. This ratio is the same as the ratio of housing to “other” expenditure and might have a value on average of say 0.2. By this formulation we would get a coefficient in a log price regression that is smaller – around 5.0.

When we turn to the risk coefficients, things obviously become much more complicated. When we examine equation (4) we would get a percentage derivative of price
with respect to the “value” of risk (the product: \(a\sigma^2\)) that is minus 1 over that value. From an investment perspective, in liquid financial markets, the “value” of the risk in housing should be the difference between the total return to housing and the risk free return (R). With 3% real appreciation and say a 6% rent payment and 2% real R, we would say that the product should be between 5% and 10%. One over that would give a regression coefficient of between -10 and -20. Interestingly that is almost exactly the case in Boston and Chicago, but not in the other cities, where the coefficient most often has the wrong sign. Further investigation of the data may be needed to resolve this issue.

A second objective of the paper is to ascertain if the inclusion of the investment performance metrics changes any other coefficients that are included in such equations – in particular for variables that represent location attributes. Here the most pronounced results occur in Boston where it was possible to collect some data on public services that overlapped nicely with ZIP codes. The inclusion of the investment metrics had a very inconsistent impact on the importance of crime and no impact on the valuation of school quality. For the other MSA and attributes we turn to Table 5.

Table 5: Impact of Historic Investment Metrics on Hedonic Location Coefficients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Boston</th>
<th>Chicago</th>
<th>Phoenix</th>
<th>San Diego</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonwhite</td>
<td>-0.40 / -0.19</td>
<td>-0.52 / -0.40</td>
<td>-0.79 / -0.69</td>
<td>-0.66 / -0.71</td>
</tr>
<tr>
<td>Distance</td>
<td>-1.6 / -0.86</td>
<td>0.24* / 1.1</td>
<td>-2.2 / -.53</td>
<td>-1.14 / -0.96</td>
</tr>
<tr>
<td>School qual.</td>
<td>0.0026 / .0024</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Med. inc.</td>
<td>0.80 / 0.65</td>
<td>1.2 / 1.1</td>
<td>0.42 / 0.39</td>
<td>0.63 / 0.61</td>
</tr>
</tbody>
</table>

1. All coefficients significant at 5% except those with an *.

In Boston, the inclusion of the investment metrics modestly reduces the negative impact of a ZIP’s racial makeup, but in the other cities the coefficients hold up. Likewise, in all four MSAs, the impact of ZIP median income is largely left in tact with the inclusion of the investment metrics. The most significant impact of the investment variables is on distance to the city center. Thus it would appear that the utility flow valuations of
neighborhood income, race and school quality hold up reasonably well when the investment performance of these areas is included – despite the observed correlations between these variables and investment performance (Table 3).

V: EX ANTE INVESTMENT PERFORMANCE AND HOUSE PRICES

There is a significant problem with using historic appreciation in a housing price equation in which price is measured near the end of the period over which appreciation is calculated. By construction, ZIP areas that differ in prices randomly at the beginning of the period will clearly have a positive correlation with intervening appreciation. In fact the only justification for using historic appreciation is that it is a good predictor of future appreciation which is after all what informed consumers/investors care about. While Case and Shiller show this historic link exists at various shorter term frequencies in the housing market it is not clear that it holds over decades.

A common test in Finance is to judge if asset prices contain any information about the future (Campbell and Shiller, 1998). In the context of this paper, then, we might ask if price levels – controlling for attributes – are good predictors of actual or forward forecasts of price appreciation. Since attributes effectively determine housing “rent”, this is equivalent to asking if price/rent ratios have any predictive power. With our data sample, then we can test if prices in 1998 forecast higher appreciation for the next 6 years. To do this we use two measures of subsequent price appreciation. The first is the actual average yearly appreciation from 1998 through 2004, and the second is the average yearly appreciation from 1998 through 2004 forecasted using the coefficients generated from our time-series model (described in Section III, but estimated only with data through 1998). The results of including these measures of appreciation are shown in Tables 6a and 6b below. In both of these tables we also include the results for risk – measuring risk the only way we can – that is historically. (Full hedonic results can be found in Appendix 5, Tables 5.Xc)

<table>
<thead>
<tr>
<th></th>
<th>Actual, only</th>
<th>Actual, plus</th>
<th>Risk, only</th>
<th>Risk, plus</th>
</tr>
</thead>
</table>

Table 6a: Actual Future Appreciation (1998-2004) and Historic Risk Coefficients

25
The results in these tables are quite disappointing. A quick look back at Figures 2 through 5 shows that the period from 1998-2004 saw both a great deal of housing price appreciation, and if anything a widening gap between the appreciation of individual ZIP areas. Despite this the predictive power of prices on appreciation is very poor. In the first two columns of Tables 6a, fully 5 of 8 of the appreciation coefficients are either insignificant or of the incorrect sign! It is very questionable if actual future appreciation was anticipated by price (to rent) levels in 1998. This is very much worse than the results we obtained using actual historic appreciation in Table 4a, where all coefficients were appropriately signed.

It might be argued that future appreciation can not always be anticipated by past data - particularly given the results of Table 3 in Boston and San Diego. That said, prices (if forward looking) should still pick up the predictable part of actual future appreciation – in Table 6b. This story seems to hold for Boston where the forecasted impacts have the correct signs, as opposed to the actual, but not in San Diego where they are still negative. Likewise, in Chicago where appreciation had quite similar patterns after 1998 to before, the forecasted appreciation signs all are wrong. With virtually as poor results using forecast as opposed to
actual future appreciation, we are forced to conclude that the market is just not efficient in pricing forward growth.

With significant correlations between historic risk and appreciation, replacing historic with future appreciation should also change the risk estimates – which it does. The risk results are now equally poor, with 10 out of 16 coefficients in Tables 6a-6b having the incorrect signs as opposed to only 6 out of 16 in Tables 4a and 4b combined.

We are forced to conclude from these results that our concern over misspecification using historic data could well be justified. Historic appreciation has significant positive impacts in 13 of 16 cases in Table 4a. Between Tables 6a-6a, however, future appreciation was anticipated correctly by 1998 prices in only 6 of 16 possibly cases.

In terms of further research, there are clear priorities. We need to expand the number of location variables to possibly include environmental measures, and to obtain the crime and school data for the remaining MSAs. Quite possibly the absence of these important variables is altering our results. For the moment, however, we conclude that while the housing market is quite predictable, across locations, this predictability is not efficiently priced into current price levels.
Bibliography

We ignore the possibility that there might be uncertainty in the received consumption flow of housing, h, and focus on just the financial uncertainty embedded in H.

Heretofore referred to as the CHM model

See CHM [2004] Figure 1.

In the interest of space, the graphs of the R-squared distributions have been omitted. They are available upon request.

Distance was measured based on the most efficient driving route between the center of the ZIP code and the center of the city proper.

This is the sum of scores from English/Language Arts, Mathematics, and Science and Technology

http://www.doe.mass.edu/mcas/results.html

The neighborhood data conform very closely, if not perfectly, to ZIP code boundaries. Assigning neighborhood-specific crime values to the various ZIP codes within the Boston city limits proved very important, due to the overall city size and strong variation in crime rates across locations

http://www.ucrstats.com/

Boston was a very convenient “test case” for the explanatory power and “proxy value” of education and crime statistics, since 1) every town has its own school district and police force, and 2) the ZIP codes contained within those towns never cross town borders. In the other three MSAs, ZIP codes often contain more than one school district or police jurisdiction, making it very difficult to pinpoint the district/jurisdiction governing the particular housing unit in the sample.