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Abstract

In this paper, we propose bootstrap methods for statistics evaluated on high frequency data such
as realized volatility. The bootstrap is as an alternative inference tool to the first-order asymptotic
theory recently derived in the literature. We consider the i.i.d. bootstrap and the wild boot-
strap (WB) and prove their first-order asymptotic validity. We then use Edgeworth expansions
and Monte Carlo simulations to compare the accuracy of the bootstrap with the existing fist-order
feasible asymptotic theory. Our Edgeworth expansions show that the i.i.d. bootstrap provides a
second-order asymptotic refinement when volatility is constant. Under stochastic volatility, the
i.i.d. bootstrap is not able to match the cumulants through third order and therefore the i.i.d.
bootstrap error has the same rate of convergence as the error implied by the standard normal ap-
proximation. Nevertheless, we show through simulations and using Edgeworth expansions that the
i.i.d. bootstrap is still able to provide a smaller error than that of the standard normal approxi-
mation. For the possibly time-varying volatility case, the WB provides a second-order asymptotic
refinement, provided we choose the external random variable used to construct the wild bootstrap
pseudo data appropriately. Monte Carlo simulations suggest that both the i.i.d. bootstrap and
the appropriately chosen wild bootstrap improve upon the first-order asymptotic theory in finite
samples.
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1 Introduction

The increasing availability of high frequency financial data has contributed to the popularity of realized

volatility as a measure of volatility in empirical finance. Realized volatility is simple to compute (it

is equal to the sum of squared high frequency returns) and it is a consistent estimator of integrated

volatility under general nonparametric conditions (see e.g. Andersen, Bollerslev and Diebold (2002)

for a survey of the properties of realized volatility).

Recently, a series of papers including Jacod (1994), Jacod and Protter (1998) and Barndorff-

Nielsen and Shephard (henceforth BN-S) have developed an asymptotic theory for realized volatility-

like measures. In particular, for a rather general stochastic volatility model, these authors establish

a central limit theorem for realized volatility over a fixed interval of time, for instance a day, as the

number of intraday returns increases to infinity. Similarly, BN-S (2003, 2004b) show that a CLT applies

to empirical measures based on powers of intraday returns (realized power variation) and products

of powers of absolute returns (e.g. bipower variation). More recently, BN-S (2004e) provide a joint

asymptotic distribution theory for the realized volatility and the realized bipower variation, and show

how to use this distribution to test for the presence of jumps in asset prices.

In this paper, we propose bootstrap methods for statistics evaluated on high frequency data such

as realized volatility. Our main motivation for using the bootstrap is to improve upon the existing

asymptotic mixed normal approximations. The bootstrap can be particularly valuable in the context of

high frequency data based measures. Current practice is to use a moderate number of intraday returns,

e.g. 30-minute returns, in computing realized volatility to avoid microstructure biases.1 Sampling at

long horizons may limit the value of the asymptotic approximations derived under the assumption

of an infinite number of intraday returns. The Monte Carlo simulations in BN-S (2004a) show that

the raw feasible asymptotic theory for realized volatility can be a poor guide to the finite sample

distribution of the standardized realized volatility. BN-S (2004a) propose a logarithmic version of

the raw statistic and show it has improved finite sample properties. In a different context, BN-S

(2004d) use the Fisher-z transformation for realized correlation. However, analytical transformations

may not be available for other applications, for instance for the realized regression parameters such as

the realized beta. Similarly, Huang and Tauchen (2005) show that jump tests based on the (scaled)

difference between realized volatility and bipower variation can have potential size problems for certain

data generating processes when testing for jumps over a long time span.

We focus on realized volatility and ask whether we can improve upon the existing first-order

asymptotic theory by relying on the bootstrap for inference on integrated volatility in the absence

1Recently, a number of papers has studied the impact of microstructure noise on realized volatility, including Aı̈t-
Sahalia, Mykland and Zhang (2004), Bandi and Russell (2004), Hansen and Lunde (2004a,b), Zhang, Mykland and
Aı̈t-Sahalia (2004), Barndorff-Nielsen, Hansen, Lunde and Shephard (2004), and Zhang (2004). In particular, these
papers propose alternative estimators of integrated volatility that are robust to microstructure noise and that do not
coincide with realized volatility. Bootstrapping such measures is an interesting extension of our results, which we will
consider elsewhere.
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of microstructure noise. Since the effects of microstructure noise are more pronounced at very high

frequencies, we expect the bootstrap to be a useful tool of inference based on realized volatility

when sampling at moderate frequencies such as 30 minutes horizon, as is often done in practice. For

instance, in their seminal paper, Andersen, Bollerslev, Diebold and Labys (2003) consider an empirical

application based on 30 minutes intraday returns for three major spot exchange rates.

We propose and analyze two bootstrap methods for realized volatility: an i.i.d. bootstrap and a

wild bootstrap. The i.i.d. bootstrap (cf. Efron, 1979) generates bootstrap pseudo intraday returns by

resampling with replacement the original set of intraday returns. The wild bootstrap observations are

generated by multiplying each original intraday return by an i.i.d. draw from a distribution that is

completely independent of the original data. The wild bootstrap was introduced by Wu (1986), and

further studied by Liu (1988) and Mammen (1993), in the context of cross-section linear regression

models subject to unconditional heteroskedasticity in the error term. Both methods are well known in

the bootstrap literature.2 We are the first to the best of our knowledge to propose their application to

realized volatility and to study their theoretical properties under a general stochastic volatility model.

Zhang, Mykland and Aı̈t-Sahalia (2004) and Zhang (2004) consider an application of the subsampling

method to realized volatility under stochastic volatility. In particular, they use subsampling plus

averaging to bias correct the realized volatility measure when microstructure noise is present. Our

main goal here is to use the bootstrap to estimate the entire distribution (as opposed to just the bias)

of realized volatility.

In a benchmark model in which the volatility is constant and therefore intraday returns are i.i.d.,

the i.i.d. bootstrap would be the natural method of choice. In practice, volatility is highly persistent,

especially over a daily horizon, implying that it is at least locally nearly constant. Hence we would

expect the i.i.d. bootstrap to provide a good approximation even under stochastic volatility. Indeed,

we show here that this approach remains valid under time-varying volatility if we center and scale the

realized volatility measure appropriately.3

The wild bootstrap (WB) is an alternative approach that explicitly takes into account the condi-

tional heteroskedasticity underlying stochastic volatility models. We show that this method is first-

order asymptotically valid under conditions similar to BN-S, when the bootstrap statistic is appropri-

ately centered and standardized.

A popular bootstrap for serially dependent data is the block bootstrap. In our context, intraday

returns are (conditionally on the volatility path) independent, and this implies that blocking is not

necessary for asymptotic refinements of the bootstrap. The issue here is heteroskedasticity and not

serial correlation.

2Gonçalves and Kilian (2004) apply both methods in the context of autoregressions subject to conditional het-
eroskedasticity of unknown form.

3Recently, Gonçalves and Vogelsang (2004) show the validity of the i.i.d. bootstrap for t-tests based on heteroskedastic
and autocorrelation consistent (HAC) variance estimators when data are serially dependent. There the i.i.d. bootstrap
is applied in a naive fashion, without any centering or scaling correction.
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We use Monte Carlo simulations and formal Edgeworth expansions to compare the accuracy of the

bootstrap and the normal approximations at estimating confidence intervals for integrated volatility.

Both one-sided and two-sided intervals are considered. One-term Edgeworth expansions show that

the i.i.d. bootstrap provides a second-order asymptotic refinement when volatility is constant. This

is as expected given that returns are i.i.d. under this simple model. Our simulations also suggest that

the i.i.d. bootstrap outperforms the asymptotic normal approximation under more general stochastic

volatility models. Based on our one-term Edgeworth expansions, we prove that although the rate of

convergence of the i.i.d. bootstrap error is the same as that of the error of the normal approximation

when volatility is stochastic, the absolute magnitude of the coefficients describing the i.i.d. bootstrap

error is smaller than that of the coefficients entering the first term of the Edgeworth expansion for

the original statistic (cf. Shao and Tu (1995, Section 3.3) and Davison and Flachaire (2001) for a

similar argument). This can explain the good finite sample behavior of the i.i.d. bootstrap one-

sided intervals in our simulations. One-term Edgeworth expansions for the WB statistic show that

it provides a second-order asymptotic refinement when volatility is heterogeneous if we choose the

external random variable used to construct the wild bootstrap observations appropriately. We propose

an appropriate choice for this external random variable. Our Monte Carlo simulations show that the

WB implemented with this choice outperforms the first-order asymptotic normal approximation. The

comparison between this WB and the i.i.d. bootstrap favors the i.i.d. bootstrap, which is the preferred

method in the context of our study.

Motivated by the good finite sample performance of the bootstrap for two-sided intervals, we also

investigate the ability of the bootstrap to provide a third-order asymptotic refinement over the normal

approximation. Our results show that although the i.i.d. and the WB bootstrap can provide second-

order asymptotic refinements, third-order refinements are not possible. These theoretical predictions

are not confirmed by our simulations, which show that both the i.i.d. and the WB outperform the

normal approximation when estimating two-sided symmetric intervals for integrated volatility.

The remainder of this paper is organized as follows. In Section 2, we introduce the setup, review

the existing first order asymptotic theory and state regularity conditions. We also introduce the Monte

Carlo design underlying all simulations in the paper and discuss the coverage probability results for

the first-order asymptotic approach for nominal 95% one-sided and two-sided symmetric intervals.

In Section 3, we introduce the bootstrap methods and establish their first-order asymptotic validity

under the regularity conditions stated in Section 2. In Section 4 we discuss the second-order accuracy

of the bootstrap whereas Section 3 considers third-order accuracy results. These sections also contain

a discussion of the Monte Carlo results for bootstrap one-sided and two-sided intervals. Section 6

concludes. In Appendix A we derive the asymptotic expansions for the cumulants of the original and

bootstrap statistics. We also provide several auxiliary results. In Appendix B we collect all the proofs

of the results appearing in Sections 3 through 5.
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2 The first-order asymptotic approach

2.1 Setup

We consider the following continuous-time model for the log price process {logSt : t ≥ 0}:

d logSt = µtdt+ vtdWt, (1)

where Wt denotes a standard Brownian motion, µt denotes a drift term, and vt a volatility term. For

simplicity, we will assume that µt = 0 for all t. The drift term is of order dt, which is smaller than

the order (dt)1/2 of the volatility term in (1) (see e.g. Andersen, Bollerslev and Diebold (2002) for a

discussion of this result). Hence the drift term is negligible at high frequencies. Our model is thus

given as

d logSt = vtdWt, (2)

where vt > 0 is in general a time-varying stochastic process. For the theoretical results, we assume

the independence between the stochastic volatility process vt and the Brownian motion Wt, i.e. we

assume no leverage effects. Nevertheless our Monte Carlo study includes models with leverage and

drift. A benchmark model useful for comparisons is the time-invariant diffusion model where vt = v

for all t > 0. Given (2), the daily return for any day t is defined as

rt ≡ logSt − logSt−1 =

∫ t

t−1
vudWu, t = 1, 2, . . . .

Since t is fixed in our analysis, we let t = 1 throughout without loss of generality. We can define

intraday returns (for any given day) at horizon h as follows:

ri ≡ logSih − logS(i−1)h =

∫ ih

(i−1)h
vudWu, for i = 1, . . . , 1/h,

with 1/h an integer. To simplify notation, we omit the dependence of intraday returns on the horizon

h. When v is constant, intraday returns are i.i.d. N
(
0, v2h

)
, i.e. we have that

ri =

∫ ih

(i−1)h
vudWu = v

(
Wih −W(i−1)h

)
≡ vui ∼ i.i.d. N

(
0, v2h

)
,

where ui ≡ Wih −W(i−1)h ∼ i.i.d. N (0, h) for i = 1, . . . , 1/h. When volatility is time-varying and

stochastic, intraday returns are (conditionally on the path of the volatility process v) independent but

heteroskedastic, i.e. we can write ri = σiui, where σ2
i ≡

∫ ih
(i−1)h v

2
udu, and ui ∼ i.i.d. N (0, 1) . In this

case, and conditionally on the path of volatility, ri ∼ N
(
0, σ2

i

)
for i = 1, . . . , 1/h.

The parameter of interest is the integrated volatility over a day,

IV =

∫ 1

0
v2
udu,

which we assume to be finite. A simple estimator of the integrated volatility is the sum of squared
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intraday returns, known as realized volatility:

RV =

1/h
∑

i=1

r2i .

This estimator is under certain assumptions (including absence of microstructure noise) a consistent

estimator of IV when the number of intraday observations increases to infinity (i.e. if h → 0). This

result is theoretically justified by the theory of quadratic variation.

We introduce some notation. For any q > 0, define the realized q-th order power variation (cf.

BN-S (2004b)) as

Rq = h−q/2+1

1/h
∑

i=1

|ri|q .

Note that for q = 2, R2 = RV. Similarly, for any q > 0, define the integrated power volatility

σq ≡
∫ 1

0
vq
udu.

Recently, Barndorff-Nielsen and Shephard (2004b, Theorem 1) show that Rq
P→ µqσ

q, where µq =

E |Z|q, Z ∼ N (0, 1), for a broad class of stochastic volatility models.

2.2 The existing theory

Our goal is to perform inference on the integrated volatility, e.g., we would like to form a confidence

interval for the IV. One approach is to rely on first-order asymptotic theory. This has been the

standard approach in the realized volatility literature. We describe this approach here.

For the theory in this paper, we follow BN-S (2004b,e) and assume the following additional regu-

larity condition on the stochastic volatility process.

Assumption (V) The volatility process v is (pathwise) càdlàg, bounded away from zero, and

satisfies the following regularity condition:

lim
h→0

h1/2

1/h
∑

i=1

∣
∣
∣vr

ηi
− vr

ξi

∣
∣
∣ = 0,

for some r > 0 (equivalently for every r > 0) and for any ηi and ξi such that 0 ≤ ξ1 ≤ η1 ≤ h ≤ ξ2 ≤
η2 ≤ 2h ≤ · · · ≤ ξ1/h ≤ η1/h ≤ 1.

As Barndorff-Nielsen, Jacod and Shephard (2004) note in their Remark 1, the càdlàg assumption

implies that all powers of v are locally integrable with respect to Lebesgue measure, so that in particular
∫ 1
0 v

q
udu < ∞ for any q > 0. Under Assumption (V), v can exhibit jumps, intra-day seasonality and

long-memory. Processes for {logSt} satisfying (2) and Assumption (V) are a special case of the

continuous stochastic volatility semimartingales.

Assumption (V) is stronger than required for the consistency of Rq for µqσ
q. It implies in particular
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that Rq = µqσ
q + oP

(√
h
)

. It is also stronger than required to prove the central limit theorem for

realized volatility (see e.g. Jacod (1994), Jacod and Protter (1998)). The reason why we adopt it

here is that under Assumption (V), BN-S (2004b, Theorem 3) show that σq
h − σq = oP

(√
h
)

, where

σq
h ≡ h1−q/2

∑1/h
i=1

(
σ2

i

)q/2
and σ2

i ≡
∫ ih
(i−1)h v

2
udu < ∞, a result on which we rely subsequently to

establish our bootstrap results. This is why we adopt Assumption (V) here.

The existing approach for constructing confidence intervals for IV relies on a CLT result for realized

volatility derived by Jacod (1994), Jacod and Protter (1998) and Barndorff-Nielsen and Shephard in

a series of papers. In particular, under appropriate conditions, as h→ 0,

√
h−1 (RV − IV )√

V
→d N (0, 1) , (3)

where

V = 2

∫ 1

0
v4
udu.

The result given in (3) is not immediately useful in practice because the asymptotic variance V depends

on the unobserved quantity
∫ 1
0 v

4
udu. Barndorff-Nielsen and Shephard (see e.g. 2002, 2003, 2004b)

show that

Th ≡
√
h−1 (RV − IV )

√

V̂
→d N (0, 1) , (4)

where

V̂ =
2

3
h−1

1/h
∑

i=1

r4i ≡ 2

3
R4

is a consistent estimator of V . By replacing V with V̂ , Th becomes a feasible statistic. We follow

Barndorff-Nielsen and Shephard and refer to this approach as the feasible (first-order) asymptotic

theory approach.

2.3 Simulations results for the feasible first-order asymptotic approach

Next we assess by simulation the accuracy of the feasible asymptotic theory of BN-S when computing

95% confidence intervals for IV . Our results confirm the previous simulation evidence by BN-S (2002,

2004a). In particular, we find that this approach leads to important coverage probability distortions

when returns are not sampled too frequently. This motivates the bootstrap as an alternative method

of inference in this context.

Our Monte Carlo design is inspired by Andersen, Bollerslev and Meddahi (2004). In particular,

we consider the following stochastic volatility model

d logSt = µdt+ vt

[

ρ1dW1t + ρ2dW2t +
√

1 − ρ2
1 − ρ2

2dW3t

]

,

where W1t, W2t and W3t are three independent standard Brownian motions. Our baseline models fix

µ = ρ1 = ρ2 = 0, implying that d logSt = vtdW3t and no drift nor leverage effects exist.
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We consider three different models for vt. The first model is the log-normal diffusion reported in

Andersen, Benzoni and Lund (2002) where vt is such that

d log v2
t = −0.0136

[
0.8382 + log v2

t

]
dt+ 0.1148dW1t.

Our second model is the GARCH(1,1) diffusion studied by Andersen and Bollerslev (1998):

dv2
t = 0.035

(
0.636 − v2

t

)
dt+ 0.144v2

t dW1t.

Finally, we consider the two-factor diffusion model analyzed by Chernov et al. (2003) (and recently

studied in the context of the nonparametric jump statistic test by Huang and Tauchen (2005)):

vt = s-exp
(
−1.2 + 0.04v2

1t + 1.5v2
2t

)

dv2
1t = −0.00137v2

1tdt+ dW1t

dv2
2t = −1.386v2

2tdt+
(
1 + 0.25v2

2t

)
dW2t.

According to this model, the stochastic volatility factor v2
2t has a feedback term in the diffusion effect.4

This diffusion model has continuous sample paths but can imply sample paths for the price process

that look like jumps. Chernov et. al. (2003) find that it fits well the S&P500 returns.

Our baseline models assume no drift and no leverage effects and satisfy our regularity conditions.

Tables 1 through 3 report results for these models. Although our theory does not apply to stochastic

volatility models with drift and/or leverage effects, we include in the Monte Carlo simulation three

models for which µ 6= 0 and for which leverage effect exists. The results are reported in Tables 4 and 5.

Following Andersen, Bollerslev and Meddahi (2004), for the one-factor log-normal and GARCH(1,1)

diffusions we consider

d logSt = 0.0314dt+ vt

[

−0.576dW1t +
√

1 − 0.5762dW3t

]

,

whereas for the two-factor diffusion model we follow Huang and Tauchen (2005) and assume that

d logSt = 0.030dt+ vt

[

−0.30dW1t − 0.30dW2t +
√

1 − 0.302 − 0.302dW3t

]

.

We study the finite sample performance of one-sided and two-sided 95% level intervals. While

one-sided confidence intervals of IV are not common in the econometrics literature, Mykland (2003)

shows that these intervals are important for hedging in the context of option pricing.

The lower one-sided 100 (1 − α)% level confidence interval for IV based on the feasible asymptotic

theory of BN-S is given by:

IC
(1)
Feas,1−α =

(

0, RV − zα

√

hV̂
)

,

where zα is the α-level critical value of the standard normal distribution. When α = 0.05, z0.05 =

4The function s-exp is the usual exponential function with a linear growth function splined in at high values of its
argument: s-exp(x) = exp (x) if x ≤ x0 and s-exp(x) = exp(x0)√

x0

�
x0 − x2

0 + x2 if x > x0, with x0 = log (1.5).
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−1.645.

The two-sided 100 (1 − α) % level interval for IV is given by:

IC
(2)
Feas,1−α =

(

RV − z1−α/2

√

hV̂ ,RV + z1−α/2

√

hV̂
)

,

where z1−α/2 is the 97.5% critical value of the standard normal distribution when α = 0.05, i.e.

z0.975 = 1.96. This interval is symmetric about RV because the normal distribution is symmetric.

As a way of improving upon their feasible asymptotic theory approach, BN-S (2002) suggest to

use a logarithmic version of this result. For comparison purposes, we also report results for confidence

intervals based on this logarithmic transformation of Th. These are referred to as “log” (as opposed

to “raw” for the intervals described above) and are of the following form:

IC
(1)
log−feas,1−α =



−∞, log (RV ) − zα

√

hV̂

RV 2





IC
(2)
log−feas,1−α =

(

log(RV ) − z1−α/2

√

hV̂

(RV )2
, log(RV ) + z1−α/2

√

hV̂

(RV )2

)

,

where zα and z1−α/2 are defined as before.

We compute the actual coverage probabilities of all these confidence intervals for each of the

stochastic volatility models described above. We report results across 10,000 replications for six

different sample sizes: 1/h = 1152, 576, 288, 96, 48 and 12, corresponding to “1.25-minute”, “2.5-

minute”, “5-minute”, “15-minute”, “half-hour”, “2-hour” returns. Tables 1 and 2 contain results for

the baseline models, for one-sided and two-sided symmetric intervals, respectively. (These tables also

include results for the bootstrap methods but those results will be discussed later in Sections 4 and

5.) Tables 4 and 5 contain results for one-sided and two-sided symmetric intervals for the models with

drift and leverage, respectively.

For all DGP’s, both one-sided and two-sided intervals tend to undercover. The degree of under-

coverage is especially large for larger values of h, when sampling is not too frequent, and it is larger

for one-sided than for two-sided intervals. For instance, if returns are sampled at every half-hour

(h = 1/48), a 95% symmetric interval contains the true IV about 92% of the 10,000 replications

for the log-normal and the GARCH diffusions. The corresponding one-sided 95% interval contains it

about 90% of the time. For the two-factor diffusion, these rate decreases to 88% and 85%, respectively.

This model implies overall lower coverage rates (hence larger coverage distortions) than the two other

models, for all sample sizes and all confidence intervals. The simulations show that the results are

robust to leverage and drift effects, as predicted by the theory of Jacod and Protter (1998) and BN-S

(2004c). Finally, and confirming previous results by BN-S (2002, 2004a), although the logarithmic

transformation helps reducing the coverage distortions, some distortions remain at the smaller sample

sizes. For instance, for the two-factor diffusion model, the coverage rate of the two-sided 95% interval

is 91% when sampling at half-hour horizon; for the one-sided interval, this rate is only equal to 88%.

8



3 The bootstrap

In this section we introduce the bootstrap methods and prove their first-order asymptotic validity

under conditions similar to those used by Barndorff-Nielsen and Shephard.

3.1 The i.i.d. bootstrap

Consider the benchmark model in which volatility is constant, i.e. vt = σ > 0 for all t. In this case

intraday returns at horizon h are i.i.d. N
(
0, σ2h

)
, which suggests the use of an i.i.d. bootstrap.

Although the i.i.d. bootstrap is motivated by this constant volatility model, we show here that it is

asymptotically valid for general stochastic volatility models satisfying Assumption (V). This implies

in particular that the i.i.d. bootstrap remains first-order asymptotically valid even when the volatility

is not constant. Our Monte Carlo simulations in Sections 4 and 5 suggest that the i.i.d. bootstrap is

not only valid but it outperforms the standard normal approximation. These sections also discuss the

accuracy of the i.i.d. bootstrap approximation.

We denote the bootstrap intraday h−period returns as r∗i . For the i.i.d. nonparametric bootstrap,

we have that r∗i = rIi , where Ii ∼ i.i.d. uniform on
{
1, . . . , 1

h

}
. This amounts to resampling with

replacement the sample of 1
h intraday h−period returns. As usual in the bootstrap literature, we reserve

the asterisk to denote bootstrap quantities. We let P ∗ denote the probability measure induced by the

bootstrap, conditional on the original sample. Similarly, we let E∗ (and V ar∗) denote expectation

(and variance) with respect to the bootstrap data, conditional on the original sample.5

The bootstrap realized volatility is the usual realized volatility, but evaluated on the bootstrap

intraday returns:

RV ∗ =

1/h
∑

i=1

r∗2i .

It is easy to show that E∗ (RV ∗) = RV and V ∗ ≡ V ar∗
(√

h−1RV ∗
)

= R4 − RV 2 (cf. Appendix A,

Lemma A.5). We propose the following consistent estimator of the i.i.d. bootstrap variance V ∗:

V̂ ∗ = h−1

1/h
∑

i=1

r∗4i −





1/h
∑

i=1

r∗2i





2

≡ R∗
4 −RV ∗2, (5)

where for any q > 0 we define R∗
q as R∗

q = h−q/2+1
∑1/h

i=1 |r∗i |
q . The i.i.d. bootstrap analogue of Th is

given by

T ∗
h ≡

√
h−1 (RV ∗ −RV )

√

V̂ ∗
. (6)

Note that although we center the bootstrap realized volatility around the sample realized volatility

5Note that once we condition on the original intraday returns, adding the volatility path to the information set does
not change the bootstrap probability measure. Thus, P ∗ can also be interpreted as being the probability measure induced
by the bootstrap, conditional on the original sample and on the volatility path.

9



(since E∗ (RV ∗) = RV ), the standard error that we propose to studentize the bootstrap statistic is

not of the same form as that used to studentize Th. In particular, it is not given by 2
3h

−1
∑1/h

i=1 r
∗4
i ,

which would be the bootstrap analogue of V̂ . The naive estimator 2
3h

−1
∑1/h

i=1 r
∗4
i is not consistent

for V ∗ because it relies on a Gaussianity assumption that does not hold for the i.i.d. nonparametric

bootstrap. In contrast, V̂ ∗ given in (5) is a consistent estimator of V ∗.

Theorem 3.1 Consider DGP (2) and assume Assumption (V) holds. Let {r∗i : i = 1, . . . , 1/h} denote

an i.i.d. bootstrap sample of intraday returns. Then, as h→ 0,

sup
x∈R

|P ∗ (T ∗
h ≤ x) − Φ(x)| P→ 0, (7)

where Φ(x) = P (Z ≤ x), with Z ∼ N (0, 1).

Theorem 3.1 establishes the first-order asymptotic validity of the i.i.d. bootstrap for general

stochastic volatility models satisfying Assumption (V). In particular, (4) and (7) imply that as h→ 0

P ∗ (T ∗
h ≤ x) − P (Th ≤ x) = oP (1) ,

uniformly in x ∈ R. This result provides a theoretical justification for using the bootstrap distribution

of T ∗
h to estimate the quantiles of the distribution of Th in the general context studied by BN-S.

Sections 4 and 5 discuss the accuracy of this bootstrap approximation.

3.2 The wild bootstrap

As we argued previously, under stochastic volatility intraday returns are independent but heteroskedas-

tic, conditional on the volatility path. This motivates our application of the WB in this context.

Consider a sequence of i.i.d. external random variables ηi with moments given by µ∗q = E∗ |ηi|q, where

E∗ (·) denotes the expectation with respect to the distribution of ηi. The WB intraday returns are

generated as r∗i = riηi, i = 1, . . . , 1/h.

For applications we need to choose the distribution of ηi. As we will show here, this choice is

not important for the first-order asymptotic validity of the WB as long as we carefully center and

studentize the bootstrap realized volatility statistic. The choice of ηi implies a specific centering and

studentization. Nevertheless, in order to prove an asymptotic refinement for the WB we need to choose

the distribution of ηi appropriately. Section 4 proposes an appropriate choice for ηi.

Let RV ∗ denote the realized volatility evaluated on the WB pseudo data. Using the properties

of the WB, we can show that E∗ (RV ∗) = µ∗2RV and V ∗ ≡ V ar∗
(√

h−1RV ∗
)

=
(
µ∗4 − µ∗22

)
R4 (cf.

Appendix A, Lemma A.2 and Remark 1). We propose the following consistent estimator of V ∗ :

V̂ ∗ =

(
µ∗4 − µ∗22

µ∗4

)


h−1

1/h
∑

i=1

r∗4i



 ≡
(
µ∗4 − µ∗22

µ∗4

)

R∗
4, (8)
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and define the WB studentized statistic T ∗
h as

T ∗
h =

√
h−1 (RV ∗ − µ∗2RV )

√

V̂ ∗
. (9)

Note that T ∗
h is invariant to multiplication of η by a constant.

Suppose that we choose ηi such that µ∗2 = 1 and µ∗4 = 3, e.g. we let ηi ∼ N (0, 1). Then

T ∗
h =

√
h−1 (RV ∗ −RV )

√

V̂ ∗
, with V̂ ∗ =

2

3
R∗

4,

so that for this choice of ηi, the statistic T ∗
h is of the same exact form as the original statistic Th, with

the bootstrap data replacing the original data. However, for other choices of ηi this is not necessarily

the case. The bootstrap standard error and the centering of the bootstrap realized volatility depend

on the particular choice of distribution for ηi through the moments µ∗2 and µ∗4.

As long as we carefully center and studentize the RV ∗ according to (8) and (9), the choice of ηi is

not important for the first-order asymptotic validity of the WB, as the following theorem shows.

Theorem 3.2 Consider DGP (2) and assume Assumption (V) holds. Let {r∗i : i = 1, . . . , 1/h} denote

a WB sample of intraday returns obtained with external random variables ηi ∼ i.i.d. such that µ∗q =

E∗ |ηi|q <∞ for q = 2 (2 + ε) for some small ε > 0. Then, as h→ 0,

sup
x∈R

|P ∗ (T ∗
h ≤ x) − Φ(x)| P→ 0, (10)

where Φ(x) = P (Z ≤ x), with Z ∼ N (0, 1), and T ∗
h is the statistic defined in equations (8) and (9).

We note that although Theorems 3.1 and 3.2 explicitly rule out drift and leverage effects, the first-

order asymptotic validity of our bootstrap methods can be easily extended to include these features.

Indeed, as the proofs of these results reveal, we rely only on the convergence of Rq to µqσ
q, which

holds under both drift and leverage effects (cf. Jacod and Protter (1998) and BN-S (2004c)). Similarly,

following Mykland and Zhang (2003), we can extend our first-order results to non-equal spaced data.

Here we abstract from these effects because their presence substantially complicates the higher-order

accuracy of the bootstrap, which we will investigate next.

4 Second-order accuracy of the bootstrap

In this section we discuss second-order properties of the bootstrap. In particular, we investigate the

ability of the bootstrap to provide an asymptotic refinement6 through order O(
√
h) over the standard

normal approximation when estimating the distribution function P (Th ≤ x).

6We follow Horowitz (2001) and say that the bootstrap provides an “asymptotic refinement through order O (hr)”,
for r > 0, when the bootstrap distribution of the statistic of interest is correct up to and including terms of order O (hr),
with an estimation error of order o (hr). For r = 1/2, this amounts to matching the first term of an Edgeworth expansion
(after the leading term given by the standard normal cdf), in which case the bootstrap is said to be second-order accurate.
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Consider the following formal7 one-term Edgeworth expansion for the distribution of Th :

P (Th ≤ x) = Φ (x) +
√
h q1 (x)φ (x) +O (h) , (11)

uniformly over x ∈ R, where Φ (x) is the standard normal cdf and φ (x) is the standard normal pdf.

The function q1 is a even function of x whose coefficients depend on the first three cumulants of Th.

In particular (see e.g. Hall, 1992, p. 48)

q1 (x) = −
(

κ1 +
1

6
κ3

(
x2 − 1

)
)

, (12)

where κ1 and κ3 are the leading terms of the first and third order cumulants of Th.

Now consider the bootstrap. Let T ∗
h denote a bootstrap version of Th (either the i.i.d. or the WB).

We can write a one-term Edgeworth expansion for the conditional distribution of T ∗
h as follows:

P ∗ (T ∗
h ≤ x) = Φ (x) +

√
h q∗1 (x)φ (x) +OP (h) , (13)

where q∗1 is an even polynomial in x, whose coefficients are now a function of the bootstrap cumulants

of T ∗
h (up to order three). In particular,

q∗1 (x) = −
(

κ∗1,h +
1

6
κ∗3,h

(
x2 − 1

)
)

, (14)

where κ∗1,h and κ∗3,h are the leading terms of the first and third cumulants of T ∗
h .

Given the cumulants expansions presented in Appendix A (cf. Theorems A.1 − A.1) and the

definitions (12) and (14), we can readily obtain expressions for q1, and for q∗1 for the i.i.d. bootstrap

and the WB. The following proposition states these results.

Proposition 4.1 Consider DGP (2). Suppose v is independent of W and in addition assume As-

sumption (V) holds. Then, conditional on v, as h→ 0, it follows that

a) q1 (x) = −
(

−A1

2
+

1

6
(B1 − 3A1)

(
x2 − 1

)
)

σ6

(

σ4
)3/2

=
4
(
2x2 + 1

)

6
√

2

σ6

(

σ4
)3/2

, with A1 = B1 = 4√
2
.

b) For the i.i.d. bootstrap,

q∗1 (x) = −
(

−Ã1

2
+

1

6

(

−2Ã1

) (
x2 − 1

)

)

=
1

6

(
2x2 + 1

) R6 − 3R4RV + 2RV 3

(R4 −RV 2)3/2
,

where Ã1 =
R6 − 3R4RV + 2RV 3

(R4 −RV 2)3/2
.

7We will not provide a proof of the validity of the Edgeworth expansions we develop, which are in this sense only
formal expansions. Proving the validity of our Edgeworth expansions would be a valuable contribution in itself, which we
defer for future research. Here our focus is on using formal expansions to theoretically explain the superior finite sample
properties of the bootstrap. Our approach follows Mammen (1993) and Davidson and Flachaire (2001), who also rely
on formal Edgeworth expansions for studying the accuracy of the bootstrap in the context of linear regression models.
Finally, all of our results are valid conditionally on the path of the stochastic process σ.
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c) For the WB,

q∗1 (x) = −
(

−A
∗
1

2
+

1

6
(B∗

1 − 3A∗
1)
(
x2 − 1

)
)

R6

R
3/2
4

,

where the constants A∗
1 and B∗

1 are defined as

A∗
1 =

µ∗6 − µ∗2µ
∗
4

µ∗4
(
µ∗4 − µ∗22

)1/2
, and B∗

1 =
µ∗6 − 3µ∗2µ

∗
4 + 2µ∗32

(
µ∗4 − µ∗22

)3/2
.

Given (11), the standard normal approximation Φ (x) makes an error equal to

P (Th ≤ x) − Φ(x) =
√
h q1 (x)φ (x) +O (h) , (15)

uniformly in x ∈ R, when estimating P (Th ≤ x) . The leading term is a function of q1 (x) whose

form is given in Proposition 4.1. a). When v is constant, q1 (x) simplifies to q1 (x) = 1
6

4√
2

(
2x2 + 1

)
.

When v is stochastic, q1 (x) is a function of the path of v through σ6 and σ4. In this case, (11)

describes an asymptotic expansion of the distribution of Th conditional on the volatility path. The

leading term of the Edgeworth expansion is the standard normal approximation Φ (x). This is as

expected, given that BN-S (2002) show that the first-order asymptotic distribution of Th is the standard

normal distribution. Here we provide a rate of convergence for the error committed by the first-

order asymptotic approximation. In particular, (15) implies that the error of the standard normal

approximation is of order O
(√

h
)

.

Given (13), the bootstrap error implicit in the bootstrap approximation of P (Th ≤ x) (conditional

on σ) is given by

P ∗ (T ∗
h ≤ x) − P (Th ≤ x) =

√
h (q∗1 (x) − q1 (x))φ (x) +OP (h)

=
√
h

(

plim
h→0

q∗1 (x) − q1 (x)

)

φ (x) + oP

(√
h
)

(16)

uniformly in x ∈ R. Thus, the bootstrap error in estimating the distribution function of Th has a

leading term of order O
(√

h
)

equal to
√
h (plimh→0 q

∗
1 (x) − q1 (x))φ (x). The ability of the bootstrap

to improve upon the normal approximation depends on the magnitude of plimh→0 q
∗
1 (x) − q1 (x), to

order O
(√

h
)

. In particular, if the bootstrap is such that plimh→0 q
∗
1 (x) − q1 (x) = 0, then the

bootstrap error is oP

(√
h
)

, smaller than the O
(√

h
)

normal error. That is, the bootstrap provides a

second-order refinement. As we will see next, the bootstrap ability to match q1 (x) with q∗1 (x) depends

on its ability to match the first three cumulants of Th to order O
(√

h
)

.

4.1 The i.i.d. bootstrap error

The following result characterizes formally the i.i.d. bootstrap error.

Proposition 4.2 Under the conditions of Proposition 4.1, conditionally on v, as h→ 0,
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a)

plim
h→0

q∗1 (x) − q1 (x) =
1

6

(
2x2 + 1

)








15σ6 − 9σ4 σ2 + 2
(

σ2
)3

(

3σ4 −
(

σ2
)2
)3/2

− 4√
2

σ6

(

σ4
)3/2







, (17)

b) When vt = v for all t, then

plim
h→0

q∗1 (x) − q1 (x) = 0. (18)

c) In the general case, we have that uniformly in x ∈ R,

∣
∣
∣
∣
plim
h→0

q∗1 (x) − q1 (x)

∣
∣
∣
∣
≤ |q1 (x)| . (19)

An immediate consequence of (18) is that under constant volatility the error of the bootstrap

approximation is of order oP

(√
h
)

. This is of a smaller order of magnitude than the error of the

standard normal approximation, which is of order O
(√

h
)

. Thus, the i.i.d. bootstrap provides an

asymptotic refinement through order O
(√

h
)

over the feasible asymptotic theory of BN-S under

constant volatility.

When volatility is heterogeneous, plimh→0 q
∗
1 (x)− q1 (x) 6= 0. Thus, the rate of convergence of the

bootstrap error is in this case of order OP

(√
h
)

, the same as that of the feasible asymptotic theory of

BN-S. The i.i.d. bootstrap is not able to match the cumulants of the original statistic when volatility is

time-varying and this explains why it does not provide an asymptotic refinement for the distribution of

Th (although it is asymptotically valid, as we showed in Section 3). This result is nevertheless at odds

with our simulation evidence (to be discussed later) which shows that the i.i.d. bootstrap outperforms

the normal approximation even when volatility is stochastic.

We propose the following explanation. To order O
(√

h
)

, the bootstrap error is determined by the

difference
√
h [plimh→0 q

∗
1 (x) − q1 (x)]φ (x) . Similarly, the error of the first-order asymptotic normal

approximation is determined by
√
hq1 (x)φ (x) . (19) implies that the absolute magnitude of the i.i.d.

bootstrap contribution of order
√
h to the error in approximating the true sampling distribution of

Th is smaller than that of the standard normal approximation. Equivalently, the relative asymptotic

error of the bootstrap, relative to the normal approximation can be approximated to order O
(√

h
)

by the ratio

r1 (x) =

∣
∣
∣
∣

plimh→0 q
∗
1 (x) − q1 (x)

q1 (x)

∣
∣
∣
∣
, (20)

for any x ∈ R. Part c) of Proposition 4.2 implies that r1 (x) ≤ 1 uniformly in x and thus suggests that

the bootstrap error is smaller (or never larger) than the error made by the normal approximation, to

order O
(√

h
)

. The asymptotic relative error is one of several accuracy measures that one can use to

compare the bootstrap with an alternative estimator such as the normal approximation when both

estimators have the same rate of convergence. Shao and Tu (1995, Section 3.3) give a review of these
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alternative criteria. Davidson and Flachaire (2001) rely on a similar criterion to explain the superior

performance of a certain wild bootstrap in the context of a cross-section linear regression model with

unconditional heteroskedastic errors.

An important implication of Proposition 4.2 concerns the accuracy of the bootstrap critical values.

Let qα denote the true α-level critical value of Th, i.e. P (Th ≤ qα) = α. Similarly, let zα be the

α-level critical value of the normal distribution (i.e. Φ (zα) = α), and let q∗α denote the corresponding

α-level bootstrap quantile. Following Hall (1992, p. 92), and relying on the Cornish-Fisher expansions

corresponding to the Edgeworth expansions (11) and (13), we have that for any x ∈ R,

q∗α − qα = −
√
h (q∗1 (zα) − q1 (zα)) +OP (h) , (21)

In contrast, the error made by the normal approximation is equal to

zα − qα =
√
h q1 (zα) +O (h) . (22)

Given (21) and (22), it follows that the relative error for i.i.d. bootstrap critical values, relative to the

standard normal critical values, can be approximated to order O
(√

h
)

by

∣
∣
∣
∣

plimh→0 q
∗
1 (zα) − q1 (zα)

q1 (zα)

∣
∣
∣
∣
= r1 (zα) .

Thus, by Proposition 4.2 under time-varying volatility, r1 (zα) ≤ 1, implying that the accuracy of

the i.i.d. bootstrap critical value at level α cannot be worse than that of the standard normal ap-

proximation. Under constant volatility, r1 (zα) = 0 and the bootstrap critical value is second-order

accurate.

The magnitude of r1 (x) is thus a useful measure of the accuracy of the bootstrap relatively to

the accuracy of the normal approximation when both estimators have the same rate of convergence.

Under stochastic volatility, this ratio is a function of the volatility path and can be quantified for a

given stochastic model by simulation. Figure 1 and Table 6 contain results for the baseline models

considered in Section 2. The results suggest that this ratio is very small and close to zero for two

of the three models considered (namely for the log-normal and GARCH(1,1) diffusions), and slightly

higher for a two-factor diffusion model. This finding suggests that the bootstrap critical values are

more accurate than the normal-based critical values even under stochastic volatility. This is consistent

with the good performance of the i.i.d. bootstrap for these models for one-sided confidence intervals,

as evidenced by the Monte Carlo results in Section 4.3.

4.2 The wild bootstrap error

The following result characterizes the WB error in estimating P (Th ≤ x), to order O
(√

h
)

.
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Proposition 4.3 Under the assumptions of Proposition 4.1, conditionally on v,

plim
h→0

q∗1 (x) − q1 (x) = −
[(

plim
h→0

κ∗1,h − κ1

)

+
1

6

(

plim
h→0

κ∗3,h − κ3

)
(
x2 − 1

)
]

,

where

plim
h→0

κ∗1,h − κ1 = −1

2

σ6

(

σ4
)3/2

(
5√
3
A∗

1 −A1

)

plim
h→0

κ∗3,h − κ3 =
σ6

(

σ4
)3/2

[(
5√
3
B∗

1 −B1

)

− 3

(
5√
3
A∗

1 −A1

)]

with A1 = B1 = 4√
2
, and where A∗

1 and B∗
1 are as defined in Proposition 4.1.

This result shows that the choice of ηi (which dictates the value of the constants A∗
1 and B∗

1

through µ∗q for q = 2, 4, 6) influences the magnitude of the WB error. For instance, if we choose8

ηi ∼ N (0, 1), then A∗
1 = A1 = B1 = B∗

1 . This implies that plimh→0 κ
∗
1,h − κ1 =

(
5√
3
− 1
)

κ1 6= 0 and

plimh→0 κ
∗
3,h − κ3 =

(
5√
3
− 1
)

κ3 6= 0. Thus, if ηi ∼ N (0, 1), it follows that

plim
h→0

q∗1 (x) − q1 (x) =

(
5√
3
− 1

)

q1 (x) ≈ 1.89q1 (x) ,

showing that this choice of ηi does not deliver an asymptotic refinement over the normal approximation.

It also shows that in absolute terms the contribution of the term O
(√

h
)

to the bootstrap error is

almost twice as large as the contribution of q1 (x) that is associated with the error made by the normal

approximation. We conclude that ηi ∼ N (0, 1) is not a good choice for the WB. This is confirmed by

our Monte Carlo simulations in the next section.

Our next result provides conditions on the external random variable ηi that ensure plimh→0 q
∗
1 (x)−

q1 (x) = 0, implying that the WB yields an asymptotic refinement through order O
(√

h
)

over the

normal approximation.

Proposition 4.4 Suppose ηi is i.i.d. with moments µ∗q = E∗ |ηi|q for q = 2, 4 and 6 such that

µ∗6 − µ∗2µ
∗
4

µ∗4
(
µ∗4 − µ∗22

)1/2
=

√
3

5

4√
2

µ∗6 − 3µ∗2µ
∗
4 + 2µ∗32

(
µ∗4 − µ∗22

)3/2
=

√
3

5

4√
2
.

Then under the assumptions of Proposition 4.1, conditionally on σ, as h→ 0,

P ∗ (T ∗
h ≤ x) − P (Th ≤ x) = oP

(√
h
)

,

8Given that returns are (conditionally on σ) normally distributed, choosing ηi ∼ N (0, 1) could be a natural choice.
Moreover, this is a first-order asymptotically valid choice that implies a WB statistic T ∗

h whose form is exactly that of
Th but with the bootstrap data replacing the original data, as we argued above.
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uniformly in x ∈ R, where T ∗
h is the statistic defined in equations (8) and (9).

The first equation in Theorem 4.4 is a rewriting of A∗
1 =

√
3

5 A1 as a function of µ∗2, µ
∗
4 and µ∗6,

whereas the second equation is equal to B∗
1 =

√
3

5 B1. According to this result, any choice of ηi with

moments µ∗2, µ
∗
4 and µ∗6 satisfying these two conditions delivers an asymptotic refinement of the WB.

There is an infinite number of solutions. In particular, we can show that for any γ 6= 0, the solution

is of the form µ∗2 = γ2, µ∗4 = 31
25γ

4 and µ∗6 = 31
25

37
25γ

6. Since the value of T ∗
h is invariant to the choice

of γ, we can choose γ = 1 without loss of generality, implying µ∗2 = 1 (which ensures the WB realized

volatility is an unbiased estimator of realized volatility), µ∗4 = 31
25 = 1.24, and µ∗6 = 31

25
37
25 = 1.8352.

Next, we propose a two point distribution for ηi that matches these three moments and thus implies

a second-order asymptotic refinement for the WB.

Corollary 4.1 Let ηi be i.i.d. such that

ηi =

{
1
5

√

31 +
√

186 ≈ 1.33 with prob p = 1
2 − 3√

186
≈ 0.28

−1
5

√

31 −
√

186 ≈ −0.83 with prob 1 − p.

Let

T ∗
h =

√
h−1 (RV ∗ −RV )

√

V̂ ∗
, with V̂ ∗ =

6

31



h−1

1/h
∑

i=1

r∗4i



 .

Under the assumptions of Proposition 4.1, conditionally on σ, as h→ 0,

P ∗ (T ∗
h ≤ x) − P (Th ≤ x) = oP

(√
h
)

,

uniformly in x ∈ R.

4.3 Simulations for one-sided confidence intervals

The theoretical results in the two previous subsections suggest that both the i.i.d. bootstrap and the

WB with an appropriate choice of ηi are more accurate than the normal approximation for estimating

the distribution function of Th. Estimators of P (Th ≤ x) are useful to compute critical values for

one-sided confidence intervals for IV . In this section we evaluate the finite sample accuracy of the

i.i.d. bootstrap and the WB in terms of the coverage probabilities of one-sided confidence intervals.

A lower one-sided 95% bootstrap confidence interval for IV is given by

IC
∗(1)
0.95 =

(

0, RV − q∗0.05

√

hV̂
)

,

where q∗α is the α-quantile of the bootstrap distribution of T ∗
h . We consider three different bootstrap

methods for computing q∗0.05: the i.i.d. bootstrap and two WB methods, one based on ηi ∼ N (0, 1)

and another based on the two-point distribution for which asymptotic refinements are to be expected.

Notice that the bootstrap statistics T ∗
h on which q∗0.05 are based differ according to the bootstrap
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method in question. In particular, except in the WB based on the normal distribution, T ∗
h is not of

the same form as Th.

We also report results for confidence intervals based on a logarithmic version of the statistic Th,

following BN-S. These are referred to as “log” and are of the following form:

IC
∗(1)
log,0.95 =

(

−∞, log (RV ) − q∗0.05

√

hV̂

(RV )2

)

,

q∗0.05 denotes the 5% percentile of the bootstrap distribution of the logarithmic version of each T ∗
h . For

the i.i.d. bootstrap, this is equal to

√
h−1 (logRV ∗ − logRV )

√

V̂ ∗

(RV ∗)2

,

with V̂ ∗ = R∗
4 −RV ∗2. For the WB, it is equal to

√
h−1 (logRV ∗ − logµ∗2RV )

√

V̂ ∗

(RV ∗)2

,

where V̂ ∗ =
(

µ∗
4−µ∗2

2
µ∗

4

)

R∗
4. We note that the theory in this paper only provides the first-order asymp-

totic validity of the bootstrap “log” intervals (based on an application of the delta method, given

Theorems 3.1 and 3.2). Our Edgeworth expansions do not apply to the log versions of T ∗
h . Thus, we

cannot use these expansions to make any predictions on the second-order correctness of the bootstrap

“log” intervals. We include these only for comparison purposes with the feasible asymptotic theory of

BN-S based on the logarithmic version of the statistic Th.

Table 1 contains results for the baseline models. Table 4 refers to the models with drift and

leverage. The bootstrap methods rely on 999 bootstrap replications for each of the 10,000 Monte

Carlo replications. A comparison of the two tables shows that the results are very similar with and

without leverage and drift. In all cases, the bootstrap intervals tend to undercover, with the exception

of the WB intervals based on ηi ∼ N (0, 1). However, the degree of undercoverage is larger for the

feasible asymptotic-theory based intervals than for the bootstrap methods; it is larger the smaller the

sample size (i.e. the larger is h), and it is larger for the “raw” version of the intervals than for the

“log” version. As already noted for the feasible asymptotic approach, the bootstrap does generally

worst for the two-factor diffusion model of Chernov et. al. (2003). Nevertheless, the i.i.d. bootstrap

does remarkably well across all models, despite the fact that the volatility is stochastic and hence

time-varying. It essentially eliminates the coverage distortions associated with the BN-S intervals for

small values of 1/h for the log-normal and the GARCH(1,1) diffusions. The coverage probability of

the i.i.d. bootstrap intervals deteriorates for the two-factor model, but it remains very competitive

relatively to the other methods. The WB intervals based on the normal distribution tend to overcover
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across all models, with the degree of overcoverage being smaller for larger values of the sample size.

The WB based on the two-point distribution tends to undercover, but significantly less than the

feasible asymptotic theory-based intervals of BN-S. Except for the smaller sample sizes (h = 1/12 and

h = 1/48) the WB based on the two-point distribution is competitive with the i.i.d. bootstrap.

5 Third-order accuracy of the bootstrap

Here we discuss the ability of the bootstrap to provide third-order asymptotic refinements. In partic-

ular, we develop Edgeworth expansions through order O (h) and use these to evaluate the accuracy of

the bootstrap for estimating the two-sided symmetric distribution function P (|Th| ≤ x). This quantity

is of interest for two-sided symmetric confidence intervals.

Following our analysis in Section 4, we consider now a two-term Edgeworth expansion for the

distribution of Th :

P (Th ≤ x) = Φ (x) +
√
h q1 (x)φ (x) + h q2 (x) + o (h) , (23)

for any x ∈ R. The function q1 is defined in (12). The function q2 is defined as (cf. Hall, 1992, p. 48):

q2 (x) = −
{

1

2

(
κ2 + κ2

1

)
He1 (x) +

1

24
(κ4 + 4κ1κ3)He3 (x) +

1

72
κ2

3He5 (x)

}

, (24)

where for each j, Hej are Hermite polynomials (i.e. He1 (x) = x, He3 (x) = x
(
x2 − 3

)
, and He5 (x) =

x
(
x4 − 10x2 + 15

)
), and κj are the leading terms of the cumulants of Th of order j. See Appendix A

for the cumulants expansions of Th and their corresponding leading terms for j = 1, . . . , 4.

Similarly, for any x ∈ R,

P ∗ (T ∗
h ≤ x) = Φ (x) +

√
h q∗1 (x)φ (x) + h q∗2 (x) + oP (h) , (25)

where q∗1 and q∗2 are even and odd polynomials in x, respectively, whose coefficients are now a function

of the bootstrap cumulants of T ∗
h (up to order four). In particular,

q∗2 (x) = −
{

1

2

(
κ∗2,h + κ∗21,h

)
He1 (x) +

1

24

(
κ∗4,h + 4κ∗1,hκ

∗
3,h

)
He3 (x) +

1

72
κ∗23,hHe5 (x)

}

, (26)

where κ∗j,h are the bootstrap cumulants.

Given the cumulants expansions presented in Appendix A and the definitions (24) and (26), we

can readily derive expressions for q2 and q∗2, similarly to Proposition 4.1 for q1 and q∗1. To conserve

space, we do not state these results formally here.

It follows from (23) and the symmetry properties of Φ, q1, and q2, that for any x > 0,

P (|Th| ≤ x) = 2Φ (x) − 1 + 2h q2 (x)φ (x) + o (h) .
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Thus the error in estimating P (|Th| ≤ x) made by the normal approximation is of order O (h):

P (|Th| ≤ x) − (2Φ (x) − 1) = 2h q2 (x)φ (x) + o (h) . (27)

Given (25) and the symmetry properties of q∗1 and q∗2, the bootstrap estimator of P (|Th| ≤ x) is

given by

P ∗ (|T ∗
h | ≤ x) = 2Φ (x) − 1 + 2h q∗2 (x)φ (x) + oP (h) ,

for any x > 0. Thus the bootstrap error in estimating a two-sided distribution is equal to

P ∗ (|T ∗
h | ≤ x) − P (|Th| ≤ x) = 2h [q∗2 (x) − q2 (x)]φ (x) + oP (h)

= 2h

[

plim
h→0

q∗2 (x) − q2 (x)

]

φ (x) + oP (h) . (28)

Because plimh→0 q
∗
2 (x) − q2 (x) depends on the first four cumulants of Th and T ∗

h , the ability of the

bootstrap to provide a third-order asymptotic refinement depends on its ability to consistently estimate

the first four cumulants of Th through order O (h). Corollary A.1 in Appendix A gives plimh→0 κ
∗
j,h−κj

for j = 1, ..., 4 for the i.i.d. bootstrap. Proposition 4.3 gives plimh→0 κ
∗
j,h − κj for j = 1, 3 for the WB

whereas Corollary A.2 in Appendix A gives the corresponding results for j = 2, 4.

As discussed in Section 4.1, the i.i.d. bootstrap provides a second-order asymptotic refinement

under constant volatility because it consistently estimates the first three cumulants of Th through

order O
(√

h
)

. By Corollary A.1, we can show that the i.i.d. bootstrap is unable to consistently

estimate the second and fourth order cumulants through order O (h). This is true even under constant

volatility. Hence, even though the i.i.d. bootstrap provides a second-order refinement when volatility

is constant, it does not provide a third-order refinement. We find this a surprising result. If volatility

is constant, returns are i.i.d. and we would expect the i.i.d. bootstrap to be higher-order correct.

Proposition 4.2 shows that this statement is true to second-order. It is nevertheless not true to third-

order. We conjecture that one way of inducing the third-order accuracy of the i.i.d. bootstrap under

constant volatility is to transform the original statistic Th so as to more closely match the behavior

of T ∗
h (see Andrews (2004) for a similar approach). We will explore this possibility in future research.

Our focus here is on bootstrapping the statistic Th, which is the statistic originally proposed in the

realized volatility literature by BN-S (2002).

The higher-order properties of the first four WB cumulants depend on the moments µ∗q of the

distribution of ηi, for q = 2, 4, 6 and 8. As we explain next, there is no choice of ηi that matches all four

cumulants simultaneously. As discussed in Section 4.2, to match the first and third order cumulants

we need to choose ηi with moments µ∗2 = γ2, µ∗4 = 31
25γ

4, and µ∗6 = 31
25

37
25γ

6. Since the WB statistic is

invariant to the choice of γ, we set γ = 1. We are left with two equations (plimh→0 κ
∗
j,h−κj for j = 2, 4)

and one free parameter µ∗8. Thus, there is no choice of ηi for which the WB can consistently estimate

all four cumulants to order O (h) , and consequently the WB cannot provide a third-order asymptotic

refinement. Nevertheless any choice of ηi satisfying Proposition 4.4 delivers second-order refinements.
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One example is the two-point distribution proposed in Proposition 4.1, for which µ∗8 = 3.0137. This

choice of ηi only matches the first and third-order cumulants. We can show that in order to match

κj for j = 1, 2, 3, we need µ∗2 = 1, µ∗4 = 31
25 , µ∗6 = 31

25
37
25 and µ∗8 =

(
31
25

)2 ( 1
25

) (
1739
35

)
= 3.056.9 Any WB

with ηi satisfying these moment restrictions implies second-order refinements. Because it also matches

the second cumulant through order O (h), any such choice could potentially perform better than our

two-point choice of ηi in Proposition 4.1.

Next we evaluate the errors made by the i.i.d. bootstrap and the WB relatively to the error made

by the normal approximation for estimating P (|Th| ≤ x) . Given that the two estimators converge at

the same rate, we rely on the asymptotic relative error of the bootstrap as the criterion of comparison.

This error is to order O (h) equal to the ratio

r2 (x) =

∣
∣
∣
∣

plimh→0 q
∗
2 (x) − q2 (x)

q2 (x)

∣
∣
∣
∣
, (29)

where x > 0. If r2 (x) is inferior to one, the bootstrap is better than the normal approximation in

the sense that the absolute error implied by the bootstrap estimator is smaller than the error of the

normal approximation, to order O (h). Thus, the ratio r2 (x) is a measure of the relative accuracy of

the bootstrap when estimating two-sided symmetric distribution functions. In particular, r2
(
z1−α/2

)
,

for z1−α/2 the (1 − α/2) critical value of Φ, has implications for the accuracy of the bootstrap critical

values in nominal 100 (1 − α)% two-sided symmetric intervals.

In the general stochastic volatility case, r2 (x) is a function of x and of σ. When v is constant, it

becomes only a function of x. Figure 2 plots r2 (x) against x when v is constant. Four methods are

considered: the i.i.d. bootstrap, the WB based on ηi ∼ N (0, 1), the WB based on ηi chosen according

to Proposition 4.1, and a third WB whose moments µ∗q match the second cumulant, in addition to the

first and third cumulants. Figure 2 shows that for the i.i.d. bootstrap supx r2 (x) < 1. Thus, although

the i.i.d. bootstrap does not provide a third-order refinement even when volatility is constant, under

the asymptotic relative error criterion it is better than the normal approximation. In particular, the

value of r2 at x = z0.975 = 1.96 is equal to 0.36, suggesting that the i.i.d. bootstrap critical value

is more accurate than the normal-based critical value. Instead, Figure 2 shows that r2 (x) can be

larger or smaller than one for the WB methods depending on x. An exception is the WB based on

N (0, 1), for which r2 (x) is always very large, well above one, for any value of x. For the other two

WB methods, r2 (x) is smaller than one for all values of x sufficiently large. In particular, r2 (x) is

very small for x = z1−α/2 = 1.96 with α = 0.05, which suggests that in the constant volatility case, the

WB methods that match cumulants up to the third order yield two-sided 95% critical values that are

more accurate than the corresponding standard normal critical value equal to 1.96. We could evaluate

r2 (x) by simulation when v is stochastic, as we did for r1 (x). The analysis is more complicated here

because r2 (x) depends on x. Some preliminary results suggest that r2 (x) can be smaller or larger

9To match κj for j = 1, 2, 4, we would need µ∗
8 = 1.225. This value is not compatible with the other values of µ∗

2,µ
∗
4

and µ∗
6, because of Jensen’s inequality. So, there is no distribution which can match κj for j = 1, 2, 4 simultaneously.
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than one depending on the value of x. We will not pursue this analysis any further here.10

To conclude this section, we compare the bootstrap with the feasible asymptotic theory of BN-S

when computing 95% two-sided confidence intervals for IV . We consider symmetric and equal-tailed

intervals. The 95% level symmetric bootstrap confidence intervals for IV are of the form,

RV ± p∗0.95

√

hV̂ ,

where p∗0.95 is the 95% percentile of the bootstrap distribution of |T ∗
h |, i.e. instead of using the standard

normal distribution to compute the critical value 1.96 we use the bootstrap. The 95% level equal-tailed

bootstrap intervals are of the form

(

RV −
√

hV̂ q∗0.975, RV −
√

hV̂ q∗0.025

)

,

where q∗α is the α-th percentile of the bootstrap distribution of T ∗
h . We compute bootstrap critical

values with the i.i.d. bootstrap and the two WB methods as in Section 4.3. Log versions of these

bootstrap intervals are also considered.

Tables 2 and 5 contain results for the symmetric intervals, for the baseline models and for the

models with drift and leverage, respectively. The results for symmetric intervals are in many ways

similar to those mentioned for the one-sided intervals. Overall, the i.i.d. and the WB based on

the two-point distribution outperform the normal approximation. This holds despite the fact that

these bootstrap methods do not theoretical provide an asymptotic refinement for two-sided symmetric

confidence intervals. The i.i.d. bootstrap is the preferred method in this case, followed by the WB

based on the proposed two-point distribution.

The Monte Carlo results in Tables 2 and 5 show that the log versions of the original and bootstrap

statistics outperform their raw versions. This suggests that asymmetry is more important for the

raw statistics than for their log versions in finite samples. Therefore we also compute equal-tailed

bootstrap intervals.11 Table 3 contains the results. A comparison of Table 2 and 3 shows that equal-

tailed intervals tend to outperform symmetric intervals. The main conclusion from Table 3 is that the

coverage rates of these intervals are very similar for both the raw and the log versions and therefore

there is no additional gain from using the log transformation. This suggests that the bootstrap is an

important inference tool in other contexts where the log transformation may be not applicable. For

instance, BN-S (2004d) use the Fisher-z transformation in the context of realized correlation. Such

transformation is not available for the realized regression parameters, e.g. realized beta.

10Although Edgeworth expansions are the main theoretical tool for proving bootstrap asymptotic refinements, it has
already been pointed out in the bootstrap literature (see e.g. Härdle, Horowitz and Kreiss (2003)) that Edgeworth
expansions can be imperfect guides to the relative accuracy of the bootstrap methods. The same comment appears to
apply here to the asymptotic relative bootstrap error criterion for two-sided distribution functions.

11Note however that the standard arguments for asymptotic refinements based on comparing convergence rates suggest
that symmetric intervals are more accurate than equal-tailed intervals when one matches q1 and q2.
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6 Conclusions

In this paper we propose two bootstrap methods for realized-volatility based statistics. One is the

i.i.d. bootstrap and the other is the wild bootstrap. We show that these methods are first-order

asymptotically valid under quite general conditions, similar to those used recently by BN-S in a series

of papers. In particular, they are valid under stochastic volatility. Next, we study the higher-order

accuracy of these bootstrap methods in comparison to the standard normal approximation using

Edgeworth expansions and Monte Carlo simulations.

The simulation evidence in this paper suggests that percentile-t bootstrap confidence intervals for

IV (specifically, the i.i.d. bootstrap and a particular WB method which we propose in the paper) are

more accurate in finite samples than the intervals based on the feasible first-order asymptotic theory.

This superior performance of the bootstrap holds for both one-sided and two-sided (symmetric and

equal-tailed) intervals.

The standard arguments based on Edgeworth expansions show that the i.i.d. bootstrap offers a

second-order asymptotic refinement when volatility is constant but not otherwise. When volatility is

heterogeneous, we compare the i.i.d. bootstrap and the normal approximations using the asymptotic

relative bootstrap error. This criterion has been proposed in the statistics literature to compare the

bootstrap with the normal approximation when both estimators have the same convergence rate. It

shows that the i.i.d. bootstrap outperforms the normal approximation when estimating the distribution

function of the RV statistic when volatility is time-varying. Second-order asymptotic refinements for

the WB can be obtained in the general setup allowing for stochastic volatility provided we choose the

external random variable appropriately. We provide an optimal choice of this random variable. The

Monte Carlo results for one-sided intervals are consistent with these theoretical predictions.

Although both the i.i.d. and the WB can achieve second-order asymptotic refinements, we show

that none of these methods can deliver refinements through third-order. However, the finite sam-

ple performance of two-sided bootstrap intervals is superior to that of the corresponding first-order

asymptotic theory intervals, especially when one considers equal-tailed bootstrap intervals.

Our focus here is on the bootstrap for realized volatility. Establishing the (first- and higher-order)

validity of the bootstrap for this simple statistic is an important step towards establishing its (first-

and higher-order) validity for more complicated statistics based on high-frequency data. For instance,

an interesting application of the bootstrap is to realized beta, where the Monte Carlo results of BN-S

(2004d) show that there are important distortions in finite samples. Another interesting application

are the nonparametric jump tests studied by BN-S (2003c), Huang and Tauchen (2005) and Andersen,

Bollerslev and Diebold (2004). Similarly, we can apply the bootstrap for inference on integrated

volatility in the presence of microstructure noise, relying on more robust measures of volatility. These

extensions are the subject of ongoing research.
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Table 1. Coverage rates of nominal 95% one-sided intervals for IV

Baseline volatility models: no leverage and no drift

Bootstrap Wild Bootstrap

CLT i.i.d. ηi ∼ N (0, 1) ηi ∼ 2 point

h raw log raw log raw log raw log

Log-normal diffusion

1/12 82.68 88.86 93.23 93.57 98.49 98.07 87.50 90.34
1/48 89.70 92.80 94.66 94.73 98.31 97.73 93.91 95.20
1/96 91.28 93.20 94.47 94.56 98.12 97.78 94.28 95.26
1/288 93.08 94.29 95.03 95.05 97.39 97.04 95.08 95.55
1/576 93.30 94.03 94.81 94.82 96.83 96.40 94.60 94.97
1/1152 94.00 94.59 95.07 95.06 96.56 96.26 95.00 95.22

GARCH(1,1) diffusion

1/12 82.69 88.83 93.27 93.48 98.51 98.07 87.50 90.27
1/48 89.74 92.74 94.63 94.74 98.32 97.73 93.87 95.20
1/96 91.27 93.19 94.52 94.59 98.15 97.77 94.31 95.25
1/288 93.03 94.33 95.10 95.12 97.40 97.03 95.04 95.55
1/576 93.31 94.09 94.78 94.79 96.82 96.43 94.64 94.98
1/1152 94.01 94.56 95.02 95.00 96.51 96.22 95.04 95.21

Two-factor diffusion

1/12 75.69 82.41 89.70 90.35 96.52 96.12 78.94 82.76
1/48 84.52 88.48 92.66 92.64 96.92 96.49 89.71 91.70
1/96 87.48 90.39 93.79 93.71 97.26 96.85 92.03 93.50
1/288 90.27 92.12 94.28 94.25 97.32 96.94 93.49 94.35
1/576 92.26 93.55 94.92 94.88 97.32 96.97 94.55 95.06
1/1152 93.20 94.04 95.02 94.99 96.93 96.60 94.95 95.30

Note: 10,000 replications, with 999 bootstrap replications each.
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Table 2. Coverage rates of nominal 95% symmetric intervals for IV

Baseline volatility models: no leverage and no drift

Bootstrap Wild Bootstrap

CLT i.i.d. ηi ∼ N (0, 1) ηi ∼ 2 point

h raw log raw log raw log raw log

Log-normal diffusion

1/12 86.07 90.40 93.72 95.86 98.49 97.95 87.49 88.37
1/48 92.32 93.62 94.86 95.47 98.31 97.44 93.84 94.69
1/96 93.25 94.23 94.95 95.28 98.09 97.22 94.50 94.92
1/288 94.55 94.71 95.27 95.09 97.04 96.40 95.16 95.12
1/576 94.56 94.74 94.98 95.13 96.21 95.81 94.69 94.91
1/1152 94.83 94.88 94.98 95.06 95.63 95.41 94.85 94.84

GARCH(1,1) diffusion

1/12 86.08 90.40 93.75 95.86 98.51 97.96 87.49 88.30
1/48 92.32 93.64 94.87 95.46 98.32 97.42 93.83 94.66
1/96 93.21 94.22 95.00 95.27 98.12 97.22 94.44 94.93
1/288 94.57 94.70 95.18 95.11 97.05 96.38 95.17 95.13
1/576 94.52 94.79 94.99 95.15 96.24 95.81 94.72 94.87
1/1152 94.81 94.85 94.97 94.99 95.69 95.43 94.88 94.86

Two-factor diffusion

1/12 78.94 85.90 90.13 93.32 96.52 96.14 78.92 80.25
1/48 87.95 90.85 92.83 93.97 96.92 96.50 89.79 90.95
1/96 90.58 92.51 94.00 94.78 97.26 96.74 92.16 93.19
1/288 92.83 93.59 94.59 94.88 97.25 96.78 93.98 94.27
1/576 94.52 94.70 95.48 95.59 97.29 96.89 95.15 95.14
1/1152 94.64 94.77 95.20 95.11 96.52 96.08 94.89 94.92
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Table 3. Coverage rates of nominal 95% equal-tailed intervals for IV

Baseline volatility models: no leverage and no drift

Bootstrap Wild Bootstrap

CLT i.i.d. ηi ∼ N (0, 1) ηi ∼ 2 point

h raw log raw log raw log raw log

Log-normal diffusion

1/12 86.07 90.40 95.94 95.89 94.33 96.34 86.65 87.92
1/48 92.32 93.62 95.57 95.37 94.17 95.78 94.08 94.23
1/96 93.25 94.23 95.36 95.33 94.48 95.59 94.64 94.77
1/288 94.55 94.71 95.13 95.07 94.72 95.25 94.86 94.83
1/576 94.56 94.74 95.09 95.08 94.86 95.18 94.77 94.86
1/1152 94.83 94.88 95.14 95.17 94.62 94.96 94.92 94.99

GARCH(1,1) diffusion

1/12 86.08 90.40 95.91 95.88 94.32 96.36 86.56 87.85
1/48 92.32 93.64 95.54 95.43 94.14 95.79 94.07 94.24
1/96 93.21 94.22 95.37 95.33 94.46 95.64 94.60 94.74
1/288 94.57 94.70 95.11 95.12 94.70 95.24 94.85 94.80
1/576 94.52 94.79 95.11 95.07 94.86 95.20 94.71 94.84
1/1152 94.81 94.85 95.13 95.13 94.63 94.98 94.96 94.96

Two-factor diffusion

1/12 78.94 85.90 93.79 93.89 94.31 95.86 78.69 80.32
1/48 87.95 90.85 94.38 94.32 93.51 95.64 90.57 91.20
1/96 90.58 92.51 94.73 94.75 93.77 95.43 92.67 92.94
1/288 92.83 93.59 94.77 94.85 93.97 95.25 93.96 94.14
1/576 94.52 94.70 95.22 95.30 94.49 95.37 94.72 94.71
1/1152 94.64 94.77 94.82 94.90 94.27 95.04 94.80 94.88
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Table 4. Coverage rates of nominal 95% one-sided intervals for IV

Volatility models with leverage and constant Drift

Bootstrap Wild Bootstrap

CLT i.i.d. ηi ∼ N (0, 1) ηi ∼ 2 point

h raw log raw log raw log raw log

Log-normal diffusion

1/12 82.47 88.44 92.98 93.35 98.37 98.03 87.25 90.05
1/48 89.82 92.76 94.67 94.84 98.63 98.03 94.05 95.20
1/96 91.23 93.48 94.73 94.76 98.28 97.86 94.44 95.32
1/288 92.80 94.26 95.05 95.05 97.37 96.88 94.98 95.47
1/576 93.63 94.53 94.99 95.02 97.01 96.55 94.97 95.28
1/1152 94.22 94.76 95.17 95.15 96.68 96.28 95.19 95.38

GARCH(1,1) diffusion

1/12 82.40 88.40 93.00 93.32 98.36 98.04 87.21 89.99
1/48 89.81 92.72 94.70 94.79 98.57 98.01 94.01 95.17
1/96 91.28 93.43 94.69 94.73 98.27 97.87 94.48 95.30
1/288 92.84 94.25 94.98 95.00 97.37 96.87 94.95 95.46
1/576 93.69 94.53 94.98 94.97 96.99 96.58 95.01 95.26
1/1152 94.28 94.77 95.16 95.16 96.70 96.27 95.13 95.39
Two-factor diffusion

1/12 75.79 83.09 90.44 90.67 96.75 96.34 79.57 82.97
1/48 84.16 88.51 92.69 92.76 97.05 96.60 89.68 91.73
1/96 87.04 90.07 93.20 93.24 97.04 96.62 91.71 93.10
1/288 90.75 92.39 94.56 94.57 97.34 97.04 93.76 94.69
1/576 92.20 93.50 94.91 94.88 97.36 97.09 94.63 95.12
1/1152 93.01 93.98 95.13 95.08 96.79 96.54 94.82 95.17
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Table 5. Coverage rates of nominal 95% symmetric intervals for IV

Volatility models with leverage and constant Drift

Bootstrap Wild Bootstrap

CLT i.i.d. ηi ∼ N (0, 1) ηi ∼ 2 point

h raw log raw log raw log raw log

Log-normal diffusion

1/12 85.86 90.80 93.92 95.90 98.38 97.92 87.60 88.90
1/48 92.60 93.76 95.24 95.68 98.70 97.86 94.20 94.74
1/96 93.66 94.34 95.10 95.44 98.22 97.42 94.56 95.22
1/288 94.58 94.68 95.34 95.18 96.90 96.32 95.18 94.98
1/576 94.40 94.62 94.68 94.68 96.06 95.58 94.64 94.84
1/1152 94.98 94.78 95.04 94.92 95.82 95.42 95.10 94.82

GARCH(1,1) diffusion

1/12 85.72 90.48 93.69 95.70 98.36 97.93 87.22 88.29
1/48 92.35 93.65 94.97 95.55 98.57 97.70 93.92 94.66
1/96 93.44 94.23 94.99 95.41 98.25 97.29 94.50 95.11
1/288 94.41 94.56 95.15 95.09 96.84 96.19 94.94 94.80
1/576 94.62 94.95 94.94 95.10 96.29 95.88 94.91 95.15
1/1152 95.04 95.10 95.13 95.16 96.05 95.59 95.13 95.15

Two-factor diffusion

1/12 79.52 86.09 90.87 93.50 96.75 96.34 79.55 80.40
1/48 87.81 90.76 92.89 94.08 97.05 96.57 89.69 90.82
1/96 90.31 92.04 93.57 94.43 97.04 96.51 91.99 92.79
1/288 93.14 93.76 94.81 94.99 97.30 96.68 94.08 94.36
1/576 94.25 94.46 95.15 95.24 97.20 96.67 94.86 95.00
1/1152 94.27 94.47 94.81 94.88 96.33 95.84 94.56 94.74

Table 6. Descriptive statistics for the ratio r1 (x) for the i.i.d. bootstrap

Baseline volatility models: no leverage and no drift

Log-normal GARCH(1,1) Two-factor

Mean 0.00160 0.00247 0.08885
Minimum 1.4e− 004 1.8e− 004 0.01389
25th percentile 0.00069 0.00109 0.07006
Median 0.00116 0.00180 0.08883
75th percentile 0.00204 0.00314 0.10680
Maximum 0.01692 0.02436 0.21943

Note: 10,000 replications.
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Figure 1: Kernel density estimate of r1 (x) for the i.i.d. bootstrap in the baseline models
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Appendix A − Cumulants expansions and Lemmas

This Appendix is organized as follows. First, we provide cumulants expansions for the cumulants of

Th and their bootstrap analogues (cf. Theorems A.1−A.3 and Corollaries A.1 and A.2). These results

are used to obtain the formal Edgeworth expansions through order O (h) presented in the main text.

Then, we state Lemmas A.1−A.7 useful for the proofs of these and other results in the paper. Next,

we prove Theorems A.1−A.3. Finally, we prove Lemmas A.1−A.7.

We introduce some notation. Let σ2
i ≡

∫ ih
(i−1)h v

2
udu < ∞, and for any q > 0 define σq

h ≡
h1−q/2

∑1/h
i=1

(
σ2

i

)q/2 ≡ h1−q/2
∑1/h

i=1 σ
q
i , where σq

i ≡
(
σ2

i

)q/2
. Note that for q = 2 IV = σ2

h =
∫ 1
0 v

2
udu ≡

σ2, but in general σq
h 6= σq ≡

∫ 1
0 v

q
udu, as defined in the main text. Let µq = E |Z|q, where Z ∼ N (0, 1)

and q > 0 and note that µ2 = 1, µ4 = 3, µ6 = 15 and µ8 = 105. Since µ2 = 1, we can write IV = µ2IV ,

which will be convenient for proving the results for the WB. Define

Sh ≡
√
h−1 (RV − µ2IV )√

V
and Uh ≡

√
h−1

(

V̂ − V
)

V
.

We can write

Th = Sh

(

V̂

V

)−1/2

= Sh

(

1 +
√
hUh

)−1/2
.

Note also that

RV − µ2IV =

1/h
∑

i=1

(
r2i − µ2σ

2
i

)
and V̂ − V =

µ4 − µ2
2

µ4

h−1

1/h
∑

i=1

(
r4i − µ4σ

4
i

)
,

where for any q > 0, |ri|q −µqσ
q
i are (conditionally on v) independent with zero mean since ri = σiui,

where ui ∼ i.i.d. N (0, 1) .

For any of the two bootstrap schemes, define the bootstrap statistics

S∗
h ≡

√
h−1 (RV ∗ −RV )√

V ∗
, U∗

h ≡

√
h−1

(

V̂ ∗ − V ∗
)

V ∗

where V ∗ = V ar∗
(
h−1/2RV ∗). By construction, E∗ (S∗

h) = 0 and V ar∗ (S∗
h) = 1. V̂ ∗ is a consistent

estimator of V ∗. Then the studentized statistic T ∗
h can be written as

T ∗
h = S∗

h

(

V̂ ∗

V ∗

)−1/2

= S∗
h

(

1 +
√
hU∗

h

)−1/2
.

In particular, for the i.i.d. bootstrap, V ∗ = R4 − RV 2 and V̂ ∗ = R∗
4 − RV ∗2. For the WB, V ∗ =

(
µ∗4 − µ∗22

)
R4 and V̂ ∗ =

(
µ∗

4−µ∗2
2

µ∗
4

)

R∗
4. Recall that R∗

q = h1−q/2
∑1/h

i=1 |r∗i |
q .

Cumulants expansions

Theorem A.1 (Cumulants of Th) Consider DGP (2). Suppose v is independent of W and in ad-

dition assume Assumption (V) holds. Then for any q > 0, σq
h − σq = oP

(√
h
)

, and conditionally on
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v, as h→ 0,

κ1 (Th) =
√
h




−A1

2

σ6

(

σ4
)3/2






︸ ︷︷ ︸

≡κ1

+ o (h) ,

κ2 (Th) = 1 + h




(C1 −A2)

σ8

(

σ4
)2 +

7

4
A2

1

(

σ6
)2

(

σ4
)3






︸ ︷︷ ︸

≡κ2

+ o (h) ,

κ3 (Th) =
√
h




(B1 − 3A1)

σ6

(

σ4
)3/2






︸ ︷︷ ︸

≡κ3

+ o (h) ,

κ4 (Th) = h




(B2 + 3C1 − 6A2)

σ8

(

σ4
)2 +

(
18A2

1 − 6A1B1

)

(

σ6
)2

(

σ4
)3






︸ ︷︷ ︸

≡κ4

+ o (h) ,

where, letting µq = E |Z|q, Z ∼ N (0, 1) , and noticing in particular that µ2 = 1, µ4 = 3, µ6 = 15 and

µ8 = 105,

A1 =
µ6 − µ2µ4

µ4

(
µ4 − µ2

2

)1/2
=

4√
2
, A2 =

µ8 − µ2
4 − 2µ2µ6 + 2µ2

2µ4

µ4

(
µ4 − µ2

2

) = 12,

B1 =
µ6 − 3µ2µ4 + 2µ3

2
(
µ4 − µ2

2

)3/2
=

4√
2
, B2 =

µ8 − 4µ2µ6 + 12µ2
2µ4 − 6µ4

2 − 3µ2
4

(
µ4 − µ2

2

)2 = 12,

C1 =
µ8 − µ2

4

µ2
4

=
32

3
.

Theorem A.2 (Cumulants of the i.i.d. bootstrap) Let r∗i ∼ i.i.d. from {ri : i = 1, . . . , h}. Un-

der the same conditions as Theorem A.1, as h→ 0,

κ∗1 (T ∗
h ) =

√
h

(

−Ã1

2

)

︸ ︷︷ ︸

≡κ∗
1,h

+ oP (h) ,

κ∗2 (T ∗
h ) = 1 + h

[

C̃ − Ã2 −
1

4
Ã2

1

]

︸ ︷︷ ︸

≡κ∗
2,h

+ oP (h) ,

κ∗3 (T ∗
h ) =

√
h
(

−2Ã1

)

︸ ︷︷ ︸

≡κ∗
3,h

+ oP (h) ,

κ∗4 (T ∗
h ) = h

[(

B̃2 − 2D̃ + 3Ẽ
)

− 6
(

C̃ − Ã2

)

− 4Ã2
1

]

︸ ︷︷ ︸

≡κ∗
4,h

+ oP (h) ,
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where

Ã1 =
R6 − 3R4RV + 2RV 3

(R4 −RV 2)3/2
, Ã2 =

R8 − 4R2
4 − 4R6RV + 14R4RV

2 − 7RV 4

(R4 −RV 2)2
,

B̃2 =
R8 − 4R6RV + 12R4RV

2 − 6RV 4 − 3R2
4

(R4 −RV 2)2
,

C̃ =
R8 −R2

4

(R4 −RV 2)2
+

2 (R6 −R4RV )2

(R4 −RV 2)3
− 12 (R6 −R4RV ) (RV )

(R4 −RV 2)2
+

12RV 2

R4 −RV 2
,

D̃ =
4
(
R6 − 3R4RV + 2RV 3

)
(R6 −R4RV )

(R4 −RV 2)3
+

6
(
R8 −R2

4 − 2R6RV + 2R4RV
2
)

(R4 −RV 2)2

−15 − 20RV
(
R6 − 3R4RV + 2RV 3

)

(R4 −RV 2)2
,

Ẽ =
3
(
R8 −R2

4

)

(R4 −RV 2)2
+

12 (R6 −R4RV )2

(R4 −RV 2)3
− 60 (R6 −R4RV ) (RV )

(R4 −RV 2)2
+

60 (RV )2

R4 −RV 2
.

The following corollary follows from Theorems A.1 and A.2, noting in particular that plimh→0Rq =

µqσ
q for each q > 0 under our assumptions (cf. BN-S, 2004b, Theorem 1).

Corollary A.1 (Probability limits of i.i.d. bootstrap cumulants) Under the assumptions of The-

orem A.2, conditionally on v,

plim
h→0

κ∗1,h − κ1 = −1

2








15σ6 − 9σ2σ4 + 2
(

σ2
)3

(

3σ4 −
(

σ2
)2
)3/2

− 4√
2

σ6

(

σ4
)3/2








plim
h→0

κ∗2,h − κ2 = plim
h→0

(

C̃h − Ã2,h −
Ã2

1,h

4

)

+
4

3

σ8

(

σ4
)2 − 14

(

σ6
)2

(

σ4
)3

plim
h→0

κ∗3,h − κ3 = −2








15σ6 − 9σ2σ4 + 2
(

σ2
)3

(

3σ4 −
(

σ2
)2
)3/2

− 4√
2

σ6

(

σ4
)3/2








plim
h→0

κ∗4,h − κ4 = plim
h→0

((

B̃2,h − 2D̃h + 3Ẽh

)

− 6
(

C̃h − Ã2,h

)

− 4Ã2
1,h

)

+ 28
σ8

(

σ4
)2 − 96

(

σ6
)2

(

σ4
)3 ,

where plimh→0

(

C̃h − Ã2,h − Ã2
1,h

4

)

and plimh→0

((

B̃2,h − 2D̃h + 3Ẽh

)

− 6
(

C̃h − Ã2,h

)

− 4Ã2
1,h

)

can

be obtained from Theorem A.2 by noting that plimh→0Rq = µqσ
q for each q > 0.

Theorem A.3 (Cumulants of the WB) Let r∗i = riηi, where ηi ∼ i.i.d. from a distribution inde-

pendent of {ri} such that µ∗q = E∗ |ηi|q for any q > 0. Then, under the same conditions as Theorem
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A.1, as h→ 0,

κ∗1 (T ∗
h ) =

√
h

(

−A
∗
1

2

R6

(R4)
3/2

)

︸ ︷︷ ︸

≡κ∗
1,h

+ oP (h) ,

κ∗2 (T ∗
h ) = 1 + h

(

(C∗
1 −A∗

2)
R8

(R4)
2 +

7

4
A∗2

1

(R6)
2

(R4)
3

)

︸ ︷︷ ︸

≡κ∗
2,h

+ oP (h) ,

κ∗3 (T ∗
h ) =

√
h

(

(B∗
1 − 3A∗

1)
R6

(R4)
3/2

)

︸ ︷︷ ︸

≡κ∗
3,h

+ oP (h) ,

κ∗4 (T ∗
h ) = h

(

(B∗
2 + 3C∗

1 − 6A∗
2)

R8

(R4)
2 +

(
18A∗2

1 − 6A∗
1B

∗
1

) (R6)
2

(R4)
3

)

︸ ︷︷ ︸

≡κ∗
4,h

+ oP (h) ,

where

A∗
1 =

µ∗6 − µ∗2µ
∗
4

µ∗4
(
µ∗4 − µ∗22

)1/2
, A∗

2 =
µ∗8 − µ∗24 − 2µ∗2µ

∗
6 + 2µ∗22 µ

∗
4

µ∗4
(
µ∗4 − µ∗22

) ,

B∗
1 =

µ∗6 − 3µ∗2µ
∗
4 + 2µ∗32

(
µ∗4 − µ∗22

)3/2
, B∗

2 =
µ∗8 − 4µ∗2µ

∗
6 + 12µ∗22 µ

∗
4 − 6µ∗42 − 3µ∗24

(
µ∗4 − µ∗22

)2 ,

C∗
1 =

µ∗8 − µ∗24
µ∗24

.

Corollary A.2 complements Proposition 4.3 (in Section 4.2) by providing results for the second and

fourth order cumulants of the WB. Both results follow from Theorems A.1 and A.3 by noting that

plimh→0Rq = µqσ
q for each q > 0 under our assumptions (cf. BN-S, 2004b, Theorem 1).

Corollary A.2 (Probability limits of WB cumulants) Under the assumptions of Theorem A.3,

conditionally on v,

plim
h→0

κ∗2,h − κ2 =
σ8

(

σ4
)2

[
35

3
(C∗

1 −A∗
2) − (C1 −A2)

]

+
7

4

(

σ6
)2

(

σ4
)3

(
25

3
A∗2

1 −A2
1

)

plim
h→0

κ∗4,h − κ4 =
σ8

(

σ4
)2

[
35

3
(B∗

2 + 3C∗
1 − 6A∗

2) − (B2 + 3C1 − 6A2)

]

+

(

σ6
)2

(

σ4
)3

[
25

3

(
18A∗2

1 − 6A∗
1B

∗
1

)
−
(
18A2

1 − 6A1B1

)
]

with A1 = B1 = 4√
2
, A2 = B2 = 12, and C1 = 32

3 , and where A∗
1, A

∗
2, B

∗
1 , B

∗
2 and C∗

1 are defined in

Theorem A.3.
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Auxiliary Lemmas

We rely on the following Lemmas for the proofs of Theorems A.1, A.2 and A.3. Throughout this

Appendix we will use the following notation:
∑

i6=j 6=···6=k denotes a sum where all indices differ, e.g.
∑

i6=j 6=k ≡∑i6=j,i6=k,j 6=k .

Lemma A.1 Let q, p and s be positive even integers. It follows that

a1)

1/h
∑

i6=j

σq
iσ

p
j = h−2+ q+p

2

(

σq
h σ

p
h − h σq+p

h

)

.

a2)

1/h
∑

i6=j 6=l

σq
iσ

p
jσ

s
l = h−3+ q+p+s

2

(

σq
h

)(

σp
h

) (
σs

h

)
σ4

h − h−2+ q+p+s
2

(

σq+p
h σs

h + σq+s
h σp

h + σq
h σ

p+s
h

)

+2h−1+ q+p+s
2 σq+p+s

h .

Lemma A.2 Under the same conditions as Theorem A.1, as h→ 0,

a1) E |ri|q = µqσ
q
i .

a2) V ≡ V ar
(

h−1/2RV
)

=
(
µ4 − µ2

2

)
σ4

h.

a3) E
[

(RV − µ2IV )3
]

= h2
(
µ6 − 3µ2µ4 + 2µ3

2

)
σ6

h.

a4) E
[

(RV − µ2IV )4
]

= 3h2
(
µ4 − µ2

2

)2
(

σ4
h

)2
+ h3

(
µ8 − 4µ2µ6 + 12µ2

2µ4 − 6µ4
2 − 3µ2

4

)
σ8

h.

a5) E
[

(RV − µ2IV )
(

V̂ − V
)]

= h

(
µ4 − µ2

2

)
(µ6 − µ2µ4)

µ4

σ6
h.

a6) E
[

(RV − µ2IV )2
(

V̂ − V
)]

= h2µ4 − µ2
2

µ4

(
µ8 − µ2

4 − 2µ2µ6 + 2µ2
2µ4

)
σ8

h.

a7) E
[

(RV − µ2IV )3
(

V̂ − V
)]

= 3h2

(
µ4 − µ2

2

)2
(µ6 − µ2µ4)

µ4

σ4
h σ

6
h +O

(
h3
)
.

a8) E
[

(RV − µ2IV )4
(

V̂ − V
)]

= h3µ4 − µ2
2

µ4




4
(
µ6 − 3µ2µ4 + 2µ3

2

)
(µ6 − µ2µ4)

(

σ6
h

)2

+6
(
µ8 − µ2

4 − 2µ2µ6 + 2µ2
2µ4

) (
µ4 − µ2

2

)
σ4

h σ
8
h



+

O
(
h4
)
.

a9) E

[

(RV − µ2IV )
(

V̂ − V
)2
]

=

(
µ4 − µ2

2

)2

µ2
4

(
µ10 − 2µ4µ6 − µ2µ8 + 2µ2µ

2
4

)
h2σ10

h = O
(
h2
)
.

a10) E

[

(RV − µ2IV )2
(

V̂ − V
)2
]

= h2

(
µ4 − µ2

2

)2

µ2
4

(
(
µ4 − µ2

2

) (
µ8 − µ2

4

)
σ4

h σ
8
h + 2 (µ6 − µ2µ4)

2
(

σ6
h

)2
)

+

O
(
h3
)
.

a11) E

[

(RV − µ2IV )3
(

V̂ − V
)2
]

= O
(
h3
)

+O
(
h4
)
.
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a12) E

[

(RV − µ2IV )4
(

V̂ − V
)2
]

= h3

(
µ4 − µ2

2

)2

µ2
4




3
(
µ4 − µ2

2

)2 (
µ8 − µ2

4

) (

σ4
h

)2
σ8

h

+12
(
µ4 − µ2

2

)
(µ6 − µ2µ4)

2
(

σ6
h

)2
σ4

h



+O
(
h4
)
.

Lemma A.3 Under the same conditions as Theorem A.1, as h→ 0,

a1) E (Sh) = 0.

a2) E
(
S2

h

)
= 1.

a3) E
(
S3

h

)
=

√
h




B1

σ6
h

(

σ4
h

)3/2




 .

a4) E
(
S4

h

)
= 3 + h




B2

σ8
h

(

σ4
h

)2




 .

a5) E (ShUh) = A1
σ6

h
(

σ4
h

)3/2
.

a6) E
(
S2

hUh

)
=

√
h




A2

σ8
h

(

σ4
h

)2




 .

a7) E
(
S3

hUh

)
= A3

σ6
h

(

σ4
h

)3/2
+O (h) .

a8) E
(
S4

hUh

)
=

√
h




D1

σ8
h

(

σ4
h

)2 +D2

(

σ6
h

)2

(

σ4
h

)3




+O

(

h3/2
)

.

a9) E
(
ShU

2
h

)
= O

(
h1/2

)
.

a10) E
(
S2

hU
2
h

)
=




C1

σ8
h

(

σ4
h

)2 + C2

(

σ6
h

)2

(

σ4
h

)3




+O (h) .

a11) E
(
S3

hU
2
h

)
= O

(
h1/2

)
.

a12) E
(
S4

hU
2
h

)
=




E1

σ8
h

(

σ4
h

)2 + E2

(

σ6
h

)2

(

σ4
h

)3




+O (h) .

The constants A1, A2, B1, B2, and C1 are defined as in Theorem A.1, and A3 = 3A1, C2 = 2A2
1,

D1 = 6A2, D2 = 4A1B1, E1 = 3C1, and E2 = 12A2
1.
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Remark 1 The WB analogues of Lemmas A.2 and A.3 can be obtained from these same Lemmas by

making two changes. First, replace the moments µq of the N (0, 1) distribution defining the constants

A1 through E2 with the WB moments µ∗q = E∗ |ηi|q. This yields the WB constants A∗
1 through E∗.

Second, replace the power integrated volatilities σq with the power realized volatilities Rq for any q > 0.

Thus, for instance, the WB analogue of Lemma A.3.a3) is E∗ (S∗3
h

)
=

√
h
(

B∗
1

R6

(R4)3/2

)

, where B∗
1 =

µ∗
6−3µ∗

2µ∗
4+2µ∗3

2

(µ∗
4−µ∗2

2 )
3/2 .

Lemmas A.7 below is the i.i.d. bootstrap analog of Lemma A.3. The next results are auxiliary in

proving Lemma A.7.

Lemma A.4 Let r∗i ∼ i.i.d. from {ri : i = 1, . . . , h}. Under the same conditions as Theorem A.1, for

any q > 0 and for any i = 1, . . . , 1/h,

a1) E∗ (|r∗i |q) = hq/2Rq and E∗ (R∗
q

)
= Rq = OP (1) .

a2) E∗
[(
r∗2i − hRV

)2
]

= h2
(
R4 −RV 2

)
.

a3) E∗
[(
r∗2i − hRV

)3
]

= h3
(
R6 − 3R4RV + 2RV 3

)
.

a4) E∗
[(
r∗2i − hRV

)4
]

= h4
(
R8 − 4R6RV + 6R4RV

2 − 3RV 4
)
.

a5) E∗
[(
r∗2i − hRV

)5
]

= h5
(
R10 − 5R8RV + 10R6RV

2 − 10R4RV
3 + 4RV 5

)
.

a6) E∗
[(
r∗2i − hRV

)6
]

= h6
(
R12 − 6R10RV + 15R8RV

2 − 20R6RV
3 + 15R4RV

4 − 5RV 6
)
.

a7) E∗ [(r∗2i − hRV
)q]

= OP (hq), for any q ≥ 7.

a8) E∗
[(
r∗4i − h2R4

)2
]

= h4
(
R8 −R2

4

)
.

a9) E∗ [(r∗2i − hRV
) (
r∗4i − h2R4

)]
= h3 (R6 −R4RV ) .

a10) E∗
[(
r∗2i − hRV

)2 (
r∗4i − h2R4

)]

= h4
(
R8 −R2

4 − 2R6RV + 2R4RV
2
)
.

a11) E∗
[(
r∗2i − hRV

)3 (
r∗4i − h2R4

)]

= h5
(
R10 −R4R6 − 3R8RV + 3R2

4RV + 3R6RV
2 − 3R4RV

3
)
.

a12) E∗
[(
r∗2i − hRV

)4 (
r∗4i − h2R4

)]

= h6

(
R12 −R4R8 − 4R10RV + 4R4R6RV + 6R8RV

2

−6R2
4RV

2 − 4R6RV
3 + 4R4RV

4

)

.

a13) E∗
((
r∗2i − hRV

) (
r∗4i − h2R4

)2
)

= h5
(
R10 − 2R4R6 −R8RV + 2R2

4RV
)
.

a14) For any q, p > 0, E∗ [(r∗2i − hRV
)q (

r∗4i − h2R4

)p]
= OP

(
hq+2p

)
.

Lemma A.5 Let r∗i ∼ i.i.d. from {ri : i = 1, . . . , h}. Under the same conditions as Theorem A.1, for

any q > 0,

a1) V ∗ ≡ V ar∗
(
h−1/2RV ∗) = R4 −RV 2.

a2) V̂ ∗ − V ∗ = R∗
4 −R4 −

[

(RV ∗ −RV )2 + 2RV (RV ∗ −RV )
]

.
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a3) E∗
[

(RV ∗ −RV )3
]

= h2
(
R6 − 3R4RV + 2RV 3

)
.

a4) E∗
[

(RV ∗ −RV )4
]

= h2
[

3
(
R4 −RV 2

)2
]

+ h3
(
R8 − 4R6RV + 12R4RV

2 − 6RV 4 − 3R2
4

)
.

a5) E∗
[

(RV ∗ −RV )5
]

= h3
[
10
(
R6 − 3R4RV + 2RV 3

) (
R4 −RV 2

)]
+OP

(
h4
)
.

a6) E∗
[

(RV ∗ −RV )6
]

= h3
[

15
(
R4 −RV 2

)3
]

+OP

(
h4
)
.

a7) E∗ [(RV ∗ −RV )q] = OP

(
h4
)

for q = 7, 8.

a8) E∗ [(RV ∗ −RV ) (R∗
4 −R4)] = h (R6 −R4RV ) .

a9) E∗
[

(RV ∗ −RV )2 (R∗
4 −R4)

]

= h2
(
R8 −R2

4 − 2R6RV + 2R4RV
2
)
.

a10) E∗
[

(RV ∗ −RV )3 (R∗
4 −R4)

]

= 3h2 (R6 −R4RV )
(
R4 −RV 2

)
+OP

(
h3
)
.

a11) E∗
[

(RV ∗ −RV )4 (R∗
4 −R4)

]

= h3

[
4
(
R6 − 3R4RV + 2RV 3

)
(R6 −R4RV )

+6
(
R4 −RV 2

) (
R8 −R2

4 − 2R6RV + 2R4RV
2
)

]

+OP

(
h4
)
.

a12) E∗
[

(RV ∗ −RV )5 (R∗
4 −R4)

]

= h3
[

15
(
R4 −RV 2

)2
(R6 −R4RV )

]

+OP

(
h4
)
.

a13) E∗
[

(RV ∗ −RV )6 (R∗
4 −R4)

]

= OP

(
h4
)
.

a14) E∗
[

(RV ∗ −RV ) (R∗
4 −R4)

2
]

= h2
(
R10 − 2R4R6 −R8RV + 2R2

4RV
)
.

a15) E∗
[

(RV ∗ −RV )2 (R∗
4 −R4)

2
]

= h2
[(
R4 −RV 2

) (
R8 −R2

4

)
+ 2 (R6 −R4RV )2

]

+OP

(
h3
)
.

a16) E∗
[

(RV ∗ −RV )3 (R∗
4 −R4)

2
]

= OP

(
h3
)
.

a17) E∗
[

(RV ∗ −RV )4 (R∗
4 −R4)

2
]

= h3

[

3
(
R4 −RV 2

)2 (
R8 −R2

4

)

+12 (R6 −R4RV )2
(
R4 −RV 2

)

]

+OP

(
h4
)
.

Lemma A.6 Let r∗i ∼ i.i.d. from {ri : i = 1, . . . , h}. Under the same conditions as Theorem A.1,

a1) E∗
[

(RV ∗ −RV )
(

V̂ ∗ − V ∗
)]

= h
(
R6 − 3R4RV + 2RV 3

)
+OP

(
h2
)
.

a2) E∗
[

(RV ∗ −RV )2
(

V̂ ∗ − V ∗
)]

= h2

[ (
R8 −R2

4 − 2R6RV + 2R4RV
2
)
− 3

(
R4 −RV 2

)2

−2RV
(
R6 − 3R4RV + 2RV 3

)

]

+OP

(
h3
)
.

a3) E∗
[

(RV ∗ −RV )3
(

V̂ ∗ − V ∗
)]

= h2
[
3
(
R4 −RV 2

) (
R6 − 3R4RV + 2RV 3

)]
+OP

(
h3
)
.

a4)

E∗
[

(RV ∗ −RV )4
(

V̂ ∗ − V ∗
)]

= h3

[
4
(
R6 − 3R4RV + 2RV 3

)
(R6 −R4RV )

+6
(
R4 −RV 2

) (
R8 −R2

4 − 2R6RV + 2R4RV
2
)

]

−h3
[

15
(
R4 −RV 2

)3
]

−h3
[
20RV

(
R6 − 3R4RV + 2RV 3

) (
R4 −RV 2

)]
+OP

(
h4
)
.
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a5) E∗
[

(RV ∗ −RV )
(

V̂ ∗ − V ∗
)2
]

= OP

(
h2
)
.

a6) E∗
[

(RV ∗ −RV )2
(

V̂ ∗ − V ∗
)2
]

= h2






(
R4 −RV 2

) (
R8 −R2

4

)
+ 2 (R6 −R4RV )2

−12 (R6 −R4RV )
(
R4 −RV 2

)
(RV )

+4 (RV )2
[

3
(
R4 −RV 2

)2
]




+OP

(
h3
)
.

a7) E∗
[

(RV ∗ −RV )3
(

V̂ ∗ − V ∗
)2
]

= OP

(
h3
)
.

a8)

E∗
[

(RV ∗ −RV )4
(

V̂ ∗ − V ∗
)2
]

= h3
[

3
(
R4 −RV 2

)2 (
R8 −R2

4

)
+ 12 (R6 −R4RV )2

(
R4 −RV 2

)]

−h3
[

60
(
R4 −RV 2

)2
(R6 −R4RV ) (RV )

]

+h3
[

60
(
R4 −RV 2

)3
(RV )2

]

+OP

(
h4
)
.

Lemma A.7 Let r∗i ∼ i.i.d. from {ri : i = 1, . . . , h}. Under the same conditions as Theorem A.1,

a1) E∗ (S∗
h) = 0.

a2) E∗ (S∗2
h

)
= 1.

a3) E∗ (S∗3
h

)
=

√
hB̃1.

a4) E∗ (S∗4
h

)
= 3 + hB̃2.

a5) E∗ (S∗
hU

∗
h) = Ã1 +OP (h) .

a6) E∗ (S∗2
h U∗

h

)
=

√
hÃ2 +OP

(

h3/2
)

.

a7) E∗ (S∗3
h U∗

h

)
= Ã3 +OP (h) .

a8) E∗ (S∗4
h U∗

h

)
=

√
hD̃ +OP

(

h3/2
)

.

a9) E∗ (S∗
hU

∗2
h

)
= OP

(
h1/2

)
.

a10) E∗ (S∗2
h U∗2

h

)
= C̃ +OP (h) .

a11) E∗ (S∗3
h U∗2

h

)
= OP

(
h1/2

)
.

a12) E∗ (S∗4
h U∗2

h

)
= Ẽ +OP (h) .

The bootstrap constants Ã1, Ã2, B̃2, C̃, D̃ and Ẽ are as defined in Theorem A.2. Ã3 and B̃1 are

such that Ã3 = 3Ã1 and B̃1 = Ã1.
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Proofs of Theorems A.1−A.3

Proof of Theorem A.1. The first four cumulants of Th are given by (e.g., Hall, 1992, p. 42):

κ1 (Th) = E (Th) , κ2 (Th) = E
(
T 2

h

)
− [E (Th)]2 ,

κ3 (Th) = E
(
T 3

h

)
− 3E

(
T 2

h

)
E (Th) + 2 [E (Th)]3 , and

κ4 (Th) = E
(
T 4

h

)
− 4E

(
T 3

h

)
E (Th) − 3

[
E
(
T 2

h

)]2
+ 12E

(
T 2

h

)
[E (Th)]2 − 6 [E (Th)]4 .

Our goal is to identify the terms of order up to O (h) in the asymptotic expansions of these four

cumulants. We will first provide asymptotic expansions through order O (h) for the first four moments

of Th. Note that for a given fixed value of k, a second-order Taylor expansion of f (x) = (1 + x)−k/2

around 0 yields f (x) = 1− k
2x+ k

4

(
k
2 + 1

)
x2 +O

(
x3
)
. Thus, provided Uh = OP (1), we have that for

any fixed integer k,

T k
h = Sk

h

(

1 +
√
hUh

)−k/2
= Sk

h − k

2

√
hSk

hUh +
k

4

(
k

2
+ 1

)

hSk
hU

2
h +O

(

h3/2
)

≡ T̃ k
h +O

(

h3/2
)

.

For k = 1, . . . , 4, the moments of T̃ k
h are given by

E
(

T̃h

)

= 0 −
√
h

1

2
E (ShUh) +

3

8
hE
(
ShU

2
h

)
(30)

E
(

T̃ 2
h

)

= 1 −
√
hE
(
S2

hUh

)
+ hE

(
S2

hU
2
h

)
(31)

E
(

T̃ 3
h

)

= E
(
S3

h

)
−
√
h

3

2
E
(
S3

hUh

)
+

15

8
hE
(
S3

hU
2
h

)
(32)

E
(

T̃ 4
h

)

= E
(
S4

h

)
− 2

√
hE
(
S4

hUh

)
+ 3hE

(
S4

hU
2
h

)
, (33)

where we have used the fact that E (Sh) = 0 and E
(
S2

h

)
= 1 by construction. By Lemma A.3, we

have that

E
(

T̃h

)

=
√
h




−1

2
A1

σ6
h

(

σ4
h

)3/2




+

3

8
h
(

O
(

h1/2
))

=
√
h




−1

2
A1

σ6
h

(

σ4
h

)3/2




+O

(

h3/2
)

,

E
(

T̃ 2
h

)

= 1 −
√
h






√
h




A2

σ8
h

(

σ4
h

)2









+ h




C1

σ8
h

(

σ4
h

)2 + C2

(

σ6
h

)2

(

σ4
h

)3 +O (h)






= 1 + h




(C1 −A2)

σ8
h

(

σ4
h

)2 + C2

(

σ6
h

)2

(

σ4
h

)3




+O

(
h2
)
,

E
(

T̃ 3
h

)

=
√
h




B1

σ6
h

(

σ4
h

)3/2




−

√
h

3

2




A3

σ6
h

(

σ4
h

)3/2
+O (h)




+

15

8
h
(

O
(

h1/2
))

=
√
h






(

B1 −
3

2
A3

)
σ6

h
(

σ4
h

)3/2




+O

(

h3/2
)

,
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E
(

T̃ 4
h

)

= 3 + h




B2

σ8
h

(

σ4
h

)2




− 2

√
h






√
h




D1

σ8
h

(

σ4
h

)2 +D2

(

σ6
h

)2

(

σ4
h

)3




+O

(

h3/2
)






+3h




E1

σ8
h

(

σ4
h

)2 + E2

(

σ6
h

)2

(

σ4
h

)3 +O (h)






= 3 + h




(B2 − 2D1 + 3E1)

σ8
h

(

σ4
h

)2 + (3E2 − 2D2)

(

σ6
h

)2

(

σ4
h

)3




+O

(
h2
)
.

Thus κ1

(

T̃h

)

=
√
h

(

−A1
2

σ6
h�

σ4
h�3/2

)

+O
(
h3/2

)
. Since under Assumption (V), BN-S (2004b) show that

σq
h − σq = o

(
h1/2

)
, we can write κ1 (Th) =

√
h

(

−A1
2

σ6

(σ4)
3/2

)

+ o (h) ≡
√
hκ1 + o (h), proving the first

result. Next,

κ2

(

T̃h

)

= E
(

T̃ 2
h

)

−
[

E
(

T̃h

)]2
= 1 + h




(C1 −A2)

σ8
h

(

σ4
h

)2 + C2

(

σ6
h

)2

(

σ4
h

)3




− h




−1

2
A1

σ6
h

(

σ4
h

)3/2






2

+O
(
h2
)

= 1 + h




(C1 −A2)

σ8
h

(

σ4
h

)2 +

(

C2 −
1

4
A2

1

)
(

σ6
h

)2

(

σ4
h

)3






︸ ︷︷ ︸

≡κ2,h

+O
(
h2
)
,

and κ2 (Th) = 1+hκ2,h +O
(
h3/2

)
. Notice that since C2 = 2A2

1, we can write κ2,h = (C1 −A2)
σ8

h�
σ4

h�2 +

7
8C2

�
σ6

h�2

�
σ4

h�3 . Since σq
h − σq = o

(
h1/2

)
under Assumption (V), κ2,h = κ2 + o

(√
h
)

, proving the second

result. Next,

κ3

(

T̃h

)

= E
(

T̃ 3
h

)

− 3E
(

T̃ 2
h

)

E
(

T̃h

)

+ 2
[

E
(

T̃h

)]3
=

√
h






(

B1 −
3

2
A3

)
σ6

h
(

σ4
h

)3/2






−3




1 + h




(C1 −A2)

σ8
h

(

σ4
h

)2 + C2

(

σ6
h

)2

(

σ4
h

)3
















√
h




−1

2
A1

σ6
h

(

σ4
h

)3/2











+2






√
h




−1

2
A1

σ6
h

(

σ4
h

)3/2











3

=
√
h






(

B1 −
3

2
A3 +

3

2
A1

)
σ6

h
(

σ4
h

)3/2






︸ ︷︷ ︸

=κ3,h

+O
(

h3/2
)

.

Since A3 = 3A1, we can write κ3,h = (B1 −A3)
σ6

h�
σ4

h�3/2 , and under Assumption (V), κ3,h = κ3 +

41



o
(√

h
)

, proving the third result. Finally, for κ4 (Th), we have that

κ4

(

T̃h

)

= 3 + h




(B2 − 2D1 + 3E1)

σ8
h

(

σ4
h

)2 + (3E2 − 2D2)

(

σ6
h

)2

(

σ4
h

)3




+O

(
h2
)

−4






√
h






(

B1 −
3

2
A3

)
σ6

h
(

σ4
h

)3/2






√
h




−1

2
A1

σ6
h

(

σ4
h

)3/2











−3




1 + h




(C1 −A2)

σ8
h

(

σ4
h

)2 + C2

(

σ6
h

)2

(

σ4
h

)3











2

+12




1 + h




(C1 −A2)

σ8
h

(

σ4
h

)2 + C2

(

σ6
h

)2

(

σ4
h

)3









h




−1

2
A1

σ6
h

(

σ4
h

)3/2






2

−6






√
h




−1

2
A1

σ6
h

(

σ4
h

)3/2











4

+O
(

h3/2
)

= 3 + h




(B2 − 2D1 + 3E1)

σ8
h

(

σ4
h

)2 + (3E2 − 2D2)

(

σ6
h

)2

(

σ4
h

)3




+ h




2A1

(

B1 −
3

2
A3

)
(

σ6
h

)2

(

σ4
h

)3






−3




1 + 2h




(C1 −A2)

σ8
h

(

σ4
h

)2 + C2

(

σ6
h

)2

(

σ4
h

)3









+ 12h




−1

2
A1

σ6
h

(

σ4
h

)3/2






2

+O
(
h2
)

= h ((B2 − 2D1 + 3E1) − 6 (C1 −A2))
σ8

h
(

σ4
h

)2

+h

(

(3E2 − 2D2) + 2A1

(

B1 −
3

2
A3

)

− 6C2 + 3A2
1

)
(

σ6
h

)2

(

σ4
h

)3 +O
(
h2
)
.

Thus,

κ4,h = ((B2 − 2D1 + 3E1) − 6 (C1 −A2))
σ8

h
(

σ4
h

)2 +

(

(3E2 − 2D2) + 2A1

(

B1 −
3

2
A3

)

− 6C2 + 3A2
1

)
(

σ6
h

)2

(

σ4
h

)3 .

The result follows by noting that D1 = 6A2 and E1 = 3C1, and by using Assumption (V) to write

κ4,h = κ4 + o
(√

h
)

.

Proof of Theorem A.2. We follow the proof of Theorem A.1 and use Lemma A.7 instead of Lemma

A.3. The cumulants expansions follow by noting that Ã3 = 3Ã1 and B̃1 = Ã1. More specifically, for

k = 1, . . . , 4, define T̃ ∗k
h similarly to T̃ k

h and note that T ∗k
h = T̃ ∗k

h + OP

(
h3/2

)
. Then use Lemma A.7

to obtain E∗
(

T̃ ∗k
h

)

by the bootstrap analogues of (30)−(33). This yields κ∗1

(

T̃h

)

=
√
h
(

−1
2Ã1

)

+
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OP

(
h3/2

)
. Similarly,

κ∗2

(

T̃ ∗
h

)

= E∗
(

T̃ ∗2
h

)

−
[

E∗
(

T̃ ∗
h

)]2
= 1 + h

(

C̃ − Ã2

)

+OP

(
h2
)
− h

(

−1

2
Ã1

)2

+OP

(
h2
)

= 1 + h

[

C̃ − Ã2 −
1

4
Ã2

1

]

︸ ︷︷ ︸

≡κ∗
2,h

+OP

(
h2
)
,

and κ∗2 (T ∗
h ) = 1 + hκ∗2,h +OP

(
h3/2

)
.Next,

κ∗3

(

T̃ ∗
h

)

= E∗
(

T̃ ∗3
h

)

− 3E∗
(

T̃ ∗2
h

)

E∗
(

T̃ ∗
h

)

+ 2
[

E∗
(

T̃ ∗
h

)]3

=
√
h

(

B̃1 −
3

2
Ã3

)

− 3
[

1 + h
(

C̃ − Ã2

)](√
h

(

−1

2
Ã1

))

+ 2

(√
h

(

−1

2
Ã1

))3

=
√
h

(

B̃1 −
3

2
Ã3 +

3

2
Ã1

)

︸ ︷︷ ︸

=κ∗
3,h

+OP

(

h3/2
)

.

Since Ã3 = 3Ã1 and B̃1 = Ã1, we can write κ∗3,h = −2Ã1. Finally, for κ∗4 (T ∗
h ), we have that

κ∗4

(

T̃ ∗
h

)

= E∗
(

T̃ ∗4
h

)

− 4E∗
(

T̃ ∗3
h

)

E∗
(

T̃ ∗
h

)

− 3
[

E∗
(

T̃ ∗2
h

)]2
+ 12E∗

(

T̃ ∗2
h

) [

E∗
(

T̃ ∗
h

)]2
− 6

[

E∗
(

T̃ ∗
h

)]4

= 3 + h

[(

B̃2 − 2D̃ + 3Ẽ
)

+ 2Ã1

(

B̃1 −
3

2
Ã3

)]

− 3
[

1 + 2h
(

C̃ − Ã2

)]

+ 12h

(
1

4
Ã2

1

)

+OP

(
h2
)

= h

[(

B̃2 − 2D̃ + 3Ẽ
)

+ 2Ã1

(

B̃1 −
3

2
Ã3

)

− 6
(

C̃ − Ã2

)

+ 3Ã2
1

]

︸ ︷︷ ︸

≡κ∗
4,h

+OP

(
h2
)
.

Since B̃1 = Ã1 and Ã3 = 3Ã1, 2Ã1

(

B̃1 − 3
2Ã3

)

= −7Ã2
1 and it follows that κ∗4,h =

(

B̃2 − 2D̃ + 3Ẽ
)

−

6
(

C̃ − Ã2

)

− 4Ã2
1, which concludes the proof.

Proof of Theorem A.3. See the proof of Theorem A.1 and Remark 1.

Proof of Lemmas A.1−A.7

Proof of Lemma A.1. For a1), note that

1/h
∑

i6=j

σq
iσ

p
j =





1/h
∑

i=1

σq
i









1/h
∑

j=1

σp
j



−





1/h
∑

i=1

σq+p
i





= h−1+ q
2



h1− q
2

1/h
∑

i=1

σq
i



h−1+ p
2



h1− p
2

1/h
∑

j=1

σp
j



− h−1+ q+p
2



h1− q+p
2

1/h
∑

i=1

σq+p
i





= h−2+ q+p
2

(

σq
h σ

p
h − h σq+p

h

)

.
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For a2), note that

∑

i6=j 6=k

σq
iσ

p
jσ

s
k =





1/h
∑

i=1

σq
i









1/h
∑

j=1

σp
j









1/h
∑

k=1

σs
k



−
1/h
∑

i=1

σq+p+s
i −

∑

i6=j

σq+p
i σs

j −
∑

i6=j

σq+s
i σp

j −
∑

i6=j

σq
iσ

p+s
j ,

and then proceed as for a1).

Proof of Lemma A.2. a1) follows from ri = σiui, where ui ∼ i.i.d. N (0, 1). For a2), note that

RV =
∑1/h

i=1 r
2
i , where r2i is (conditional on v) independent with V ar

(
r2i
)

= E
(
r4i
)
−
(
E
(
r2i
))2

=

µ4σ
4
i −

(
µ2σ

2
i

)2
=
(
µ4 − µ2

2

)
σ4

i , with σ4
i ≡

(
σ2

i

)2
. Proof of a3): Write

I1 ≡ E
[

(RV − µ2IV )3
]

= E





1/h
∑

i=1

1/h
∑

j=1

1/h
∑

k=1

(
r2i − µ2σ

2
i

) (
r2j − µ2σ

2
j

) (
r2k − µ2σ

2
k

)



 .

The only non zero contribution to I1 is when i = j = k, in which case we get E
[(
r2i − µ2σ

2
i

)3
]

=
(
µ6 − 3µ2µ4 + 2µ3

2

)
σ6

i and I1 = h2
(
µ6 − 3µ2µ4 + 2µ3

2

)
σ6

h, proving a3). Proof of a4): Using the inde-

pendence and zero mean property of
{
r2i − µ2σ

2
i

}
, we have that

E
[

(RV − µ2IV )4
]

=

1/h
∑

i=1

E
[(
r2i − µ2σ

2
i

)4
]

+ 3

1/h
∑

i6=j

E
[(
r2i − µ2σ

2
i

)2
]

E
[(
r2j − µ2σ

2
j

)2
]

= I1h
3σ8

h + 3
(
µ4 − µ2

2

)2
[

h2

((

σ4
h

)2
− h

(

σ8
h

))]

= 3h2
(
µ4 − µ2

2

)2
(

σ4
h

)2
+ h3I1

(

σ8
h

)

,

given Lemma A.1, and where I1 = E
[(
u2

i − µ2

)4
]

= µ8 − 3µ4
2 + 6µ2

2µ4 − 4µ2µ6. Proof of a5):

E
[

(RV − µ2IV )
(

V̂ − V
)]

=
µ4 − µ2

2

µ4

h−1

1/h
∑

i=1

E
(
r6i − r2i µ4σ

4
i − µ2σ

2
i r

4
i + µ2µ4σ

6
i

)

=
µ4 − µ2

2

µ4

h−1h2 (µ6 − µ2µ4)σ
6
h = h

(
µ4 − µ2

2

)
(µ6 − µ2µ4)

µ4

σ6
h.

Proof of a6):

E
(

(RV − µ2IV )2
(

V̂ − V
))

=
µ4 − µ2

2

µ4

h−1

1/h
∑

i=1

E
[(
r2i − µ2σ

2
i

)2 (
r4i − µ4σ

4
i

)]

= h2

(
µ4 − µ2

2

) (
µ8 − µ2

4 − 2µ2µ6 + 2µ2
2µ4

)

µ4

σ8
h.

Proof of a7): Write E
(

(RV − µ2IV )3
(

V̂ − V
))

=
µ4−µ2

2
µ4

h−1I2, where by the independence and mean
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zero property of |ri|q − µ2σ
q
i ,

I2 =

1/h
∑

i=1

E
[(
r2i − µ2σ

2
i

)3 (
r4i − µ4σ

4
i

)]

+ 3

1/h
∑

i6=j

E
[(
r2i − µ2σ

2
i

)2 (
r2j − µ2σ

2
j

) (
r4j − µ4σ

4
j

)]

= M1

1/h
∑

i=1

σ10
i + 3E

[(
u2

i − µ2

)2
]

E
[(
u2

j − µ2

) (
u4

j − µ4

)]
1/h
∑

i6=j

σ4
iσ

6
j

= 3h3
(
µ4 − µ2

2

)
(µ6 − µ2µ4)σ

4
h σ

6
h +O

(
h4
)
,

given A.1, the fact that σ10
h = O (1) under our assumptions, and where M1 = E

[(
u2

i − µ2

)3 (
u4

i − µ4

)]

is a constant, and E
[(
u2

i − µ2

)2
]

= µ4 − µ2
2 and E

[(

u2
j − µ2

) (
u4

i − µ4

)]

= µ6 − µ2µ4.

Proof of a8): Write E
(

(RV − µ2IV )4
(

V̂ − V
))

=
µ4−µ2

2
µ4

h−1I3, where by the independence and

mean zero property of |ri|q − µ2σ
q
i , and Lemma A.1,

I3 =

1/h
∑

i=1

E
[(
r2i − µ2σ

2
i

)4 (
r4i − µ4σ

4
i

)]

+ 4

1/h
∑

i6=j

E
[(
r2i − µ2σ

2
i

)3
]

E
[(
r2j − µ2σ

2
j

) (
r4j − µ4σ

4
j

)]

+6

1/h
∑

i6=j

E
[(
r2i − µ2σ

2
i

)2
]

E
[(
r2j − µ2σ

2
j

)2 (
r4j − µ4σ

4
j

)]

= M1h
5σ12

h + 4M2

(

h4
(

σ6
h

)2
− h5σ12

h

)

+ 6M3

(

h4σ4
h σ

8
h − h5σ12

h

)

= h4

[

4M2

(

σ6
h

)2
+ 6M3h

4σ4
h σ

8
h

]

+O
(
h5
)
,

where M1 ≡ E
[(
u2

i − µ2

)4 (
u4

i − µ4

)]

, M2 ≡ E
[(
u2

i − µ2

)3
]

E
[(

u2
j − µ2

)(

u4
j − µ4

)]

=
(
µ6 − 3µ2µ4 + 2µ3

2

)
(µ6 − µ2µ4) and M3 ≡ E

[(
u2

i − µ2

)2
]

E
[(
u2

i − µ2

)2 (
u4

i − µ4

)]

=
(
µ8 − µ2

4 − 2µ2µ6 + 2µ2
2µ4

) (
µ4 − µ2

2

)
, and given the fact that σq

h = O (1) under our assumptions.

Proof of a9): Write E

(

(RV − µ2IV )
(

V̂ − V
)2
)

=
(µ4−µ2

2)
2

µ2
4

h−2
∑1/h

i=1E
[(
r2i − µ2σ

2
i

) (
r4i − µ4σ

4
i

)2
]

=

O
(
h2
)
.

Proof of a10): Write E

(

(RV − µ2IV )2
(

V̂ − V
)2
)

=
(µ4−µ2

2)
2

µ2
4

h−2I4, where by the independence

and mean zero property of |ri|q − µ2σ
q
i ,

I4 =

1/h
∑

i=1

E
[(
r2i − µ2σ

2
i

)2 (
r4i − µ4σ

4
i
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]

+

1/h
∑

i6=j

E
[(
r2i − µ2σ

2
i
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]

E
[(
r4j − µ4σ

4
j
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]

+2

1/h
∑
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E
[(
r2i − µ2σ

2
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) (
r4i − µ4σ

4
i

)]
E
[(
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2
j

) (
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4
j
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= D1h
5σ12

h +D2

(

h4σ4
h σ

8
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(
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(

σ6
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(
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h σ

8
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(

σ6
h
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)

+O
(
h5
)
,
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given Lemma A.1, and whereD1 = E
[(
u2

i − µ2

)2 (
u4

i − µ4

)2
]

,D2 = E
[(
u2

i − µ2

)2
]

E

[(

u4
j − µ4

)2
]

=

(
µ4 − µ2

2

) (
µ8 − µ2

4

)
and D3 =

[
E
((
u2

i − µ2

) (
u4

i − µ4

))]2
= (µ6 − µ2µ4)

2 .

Proof of a11): Write E

(

(RV − µ2IV )3
(

V̂ − V
)2
)

=
(µ4−µ2

2)
2

µ2
4

h−2I5, with
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2
i

)3 (
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+
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[(
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2
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4
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2
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4
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2
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= K1h
6σ14

h +K2

(
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(
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h σ
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(

h5σ8
h σ

6
h − h6σ14

h

)
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(
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h σ

8
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h σ
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h σ
6
h

)

+ h6 (K1 −K2 − 3K3 − 6K4)σ14
h ,

where we have used the independence and mean zero property of |ri|q −µ2σ
q
i , Lemma A.1, and where

K1 through K4 are constants depending µq. Since σq
h = O (1), the result follows.

Proof of a12): Write E

(

(RV − µ2IV )4
(

V̂ − V
)2
)

=
(µ4−µ2

2)
2

µ2
4

h−2I6, with

I6 =
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∑
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2
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4
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]
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2
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2
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4
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2
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2
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4
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2
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4
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given the independence and mean zero property of |ri|q − µ2σ
q
i , Lemma A.1, and where

J7 =
(

E
[(
u2

i − µ2

)2
])2

E
[(
u4

i − µ4

)2
]

=
(
µ4 − µ2

2

)2 (
µ8 − µ2

4

)
and

J8 = E
[(
u2

i − µ2

)2
] (
E
[(
u2

i − µ2

) (
u4

i − µ4

)])2
=
(
µ4 − µ2

2

)
(µ6 − µ2µ4)

2 .

Proof of Lemma A.3. a1) and a2) follow by construction given Sh. The remaining results from the

definition of Sh and Lemma A1.a3) through a13). For instance for a3), given Lemma A1.a3) and the

definition of Sh,

E
(
S3

h

)
=
h−3/2

V 3/2
E
(

(RV − µ2IV )3
)

=
√
h
µ6 − 3µ2µ4 + 2µ3

2
(
µ4 − µ2

2

)3/2

σ6
h

(

σ4
h

)3/2
≡

√
hB1

σ6
h

(

σ4
h

)3/2
.

Proof of Lemma A.4. Part a1) follows from the properties of the i.i.d. bootstrap. The re-

maining results follow from a1), given the binomial expansions. Note in particular that since Rq =

OP (1), it follows that E∗ [(r∗2i − hRV
)q]

= OP (hq) . For instance, for a2), E∗
[(
r∗2i − hRV

)2
]

=

E∗
(

r∗4i − 2r∗2i hRV + (hRV )2
)

= h2
(
R4 −RV 2

)
. The other results follows similarly.

Proof of Lemma A.5. For a1), since r∗i are i.i.d. from {ri : i = 1, . . . , 1/h}, it follows that

V ∗ = h−1V ar∗





1/h
∑

i=1

r∗2i



 = h−1

1/h
∑

i=1

V ar∗
(
r∗2i

)
= h−2V ar∗

(
r∗21

)
.

But V ar∗
(
r∗21

)
= E∗ (r∗41

)
−
(
E∗ (r∗21

))2
= h2R4 − (hRV )2 . Thus, V ∗ = R4 − RV 2. Part a2)

follows because V ∗ = R4 − RV 2 and V̂ ∗ = R∗
4 − RV ∗2. For the remaining of the proof, note that

∑1/h
i6=j 1 = h−2 − h−1,

∑

i6=j 6=k 1 = h−3 + 2h−1 − 3h−2, and
∑1/h

i6=j 6=k 6=m 1 = h−4 − 6h−3 + 11h−2 − 6h−1.

In addition, note that

RV ∗ −RV =

1/h
∑

i=1

(
r∗2i − hRV

)
and R∗

4 −R4 = h−1

1/h
∑

i=1

(
r∗4i − h2R4

)
,

where for any q > 0
{
|r∗i |q − hq/2Rq

}
are (conditionally on the sample) i.i.d. with zero mean, and

Rq = OP (1). Using this independence property, we evaluate the bootstrap expectations of the sums

of products and cross products of |r∗i |q −hq/2Rq by relying on Lemma A.4 to compute the appropriate

bootstrap moments of products and cross products of |r∗i |q − hq/2Rq. We proceed as in the proof of

Lemma A.2 and use the multinomial expansions to compute the number of coefficients in each sum.

Proof of Lemma A.6. Using part a2) of Lemma A.5, for q = 1, . . . , 4, we can write

E∗
[

(RV ∗ −RV )q
(

V̂ ∗ − V ∗
)]

= E∗ [(RV ∗ −RV )q (R∗
4 −R4)] − E∗

[

(RV ∗ −RV )2+q
]

−2 (RV )E∗
[

(RV ∗ −RV )1+q
]

≡ Iq
1 − Iq

2 − Iq
3 . (34)
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Similarly, for q = 1, . . . , 4, note that

E∗
[

(RV ∗ −RV )q
(

V̂ ∗ − V ∗
)2
]

= E∗
[

(RV ∗ −RV )q (R∗
4 −R4)

2
]

− 2E∗
[

(RV ∗ −RV )2+q (R∗
4 −R4)

]

−4 (RV )E∗
[

(RV ∗ −RV )1+q (R∗
4 −R4)

]

+ E∗
[

(RV ∗ −RV )4+q
]

+4 (RV )E∗
[

(RV ∗ −RV )3+q
]

+ 4 (RV )2E∗
[

(RV ∗ −RV )2+q
]

For a1), set q = 1 in (34). We have that

I1
1 = E∗ [(RV ∗ −RV ) (R∗

4 −R4)] = h (R6 −R4RV )

I1
2 = E∗

[

(RV ∗ −RV )3
]

= h2
(
R6 − 3R4RV + 2RV 3

)

I1
3 = 2 (RV )E∗

[

(RV ∗ −RV )2
]

= 2 (RV )
[
h
(
R4 −RV 2

)]
,

by Lemma A.5. a8), a3), a1), respectively. Thus

E∗
[

(RV ∗ −RV )
(

V̂ ∗ − V ∗
)]

= h
[
(R6 −R4RV ) − 2RV

(
R4 −RV 2

)]
− h2

(
R6 − 3R4RV + 2RV 3

)

= h
(
R6 − 3R4RV + 2RV 3

)
+OP

(
h2
)
.

The remaining results follow similarly.

Proof of Lemma A.7. Parts a1) and a2) follow by construction given S∗
h. The remaining parts

follow as in the proof of Lemma A.3, given the definition of V ∗ in Lemma A.5. a1) and given Lemmas

A.5 and A.6. For instance, for a3), given V ∗ and Lemma A.5.a3), the definition of S∗
h implies that

E∗ (S∗3
h

)
=
h−3/2

V ∗3/2
E∗
(

(RV ∗ −RV )3
)

=
√
h

(

R6 − 3R4RV + 2RV 3

(R4 −RV 2)3/2

)

≡
√
hB̃1

The other results follow similarly.

Appendix B - Proofs of results in Sections 3 and 4

Proof of Theorem 3.1. The proof contains two steps. Step 1: We show that the desired result

is true for S∗
h. Step 2: We show that V̂ ∗ →P ∗

V ∗ in prob-P. Proof of Step 1. We can write S∗
h =

∑1/h
i=1 z

∗
i , where z∗i ≡ r∗2i −E∗(r∗2i )√

hV ∗ are (conditionally on the original sample) i.i.d. with E∗ (z∗i ) = 0 and

V ar∗ (z∗i ) = h2V ∗

hV ∗ = h such that V ar∗
(
∑1/h

i=1 z
∗
i

)

= h−1h = 1. Thus, by Katz’s (1963) Berry-Esseen

bound, for some small ε > 0 and some constant K,

sup
x∈R

∣
∣
∣
∣
∣
∣
∣
∣

P ∗







∑1/h
i=1 z

∗
i

√

V ar∗
(
∑1/h

i=1 z
∗
i

) ≤ x







− Φ(x)

∣
∣
∣
∣
∣
∣
∣
∣

≤ K

1/h
∑

i=1

E∗ |z∗i |2+ε . (35)
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We show that the RHS of (35) converges to zero in probability. We have that

1/h
∑

i=1

E∗ |z∗i |2+ε = h−1E∗ |z∗1 |2+ε = h−1h−
2+ε
2 |V ∗|−

2+ε
2 E∗

(∣
∣
∣r∗2i − E∗ |r∗i |2

∣
∣
∣

2+ε
)

≤ 2 |V ∗|−
2+ε
2 h−1h−

2+ε
2 E∗ |r∗i |2(2+ε) = 2 |V ∗|−

2+ε
2 h−1h−

2+ε
2 h2+εR2(2+ε)

= 2 |V ∗|−
2+ε
2 h

ε
2R2(2+ε) = OP

(

h
ε
2

)

,

given that V ∗ P→ V ∗
0 > 0 and R2(2+ε)

P→ µ2+εσ
2(2+ε) = O (1) (along any path of v, given Assumption

(V)). As h→ 0, OP

(

h
ε
2

)

= oP (1). Proof of Step 2. We use Lemma A.5 to show that Bias∗(V̂ ∗)
P→ 0

and V ar∗
(

V̂ ∗
)

P→ 0.

Proof of Theorem 3.2. We proceed as in the proof of Theorem 3.1. Proof of Step 1. We can write

S∗
h =

∑1/h
i=1 x

∗
i , where x∗i =

r2
i (η2

i−µ∗
2)√

hV ∗ . Notice that x∗i is an array of independent random variables

with E∗ (x∗i ) = 0 and V ar∗ (x∗i ) =
r2
i

hV ∗V ar∗
(
η2

i

)
=

(µ∗
4−µ∗2

2 )r2
i

hV ∗ (so x∗i is heteroskedastic). Thus,

V ar∗
(
∑1/h

i=1 x
∗
i

)

=
∑1/h

i=1 V ar
∗ (x∗i ) =

(
µ∗4 − µ∗22

) �1/h
i=1 r4

i
hV ∗ =

(
µ∗4 − µ∗22

)
R4
V ∗ = 1, given the definition

of V ∗. It suffices to verify Lyapunov’s condition (35) using the properties of the wild bootstrap. In

particular, we can show that

1/h
∑

i=1

|x∗i |2+ε = |V ∗|−
2+ε
2 h

ε
2R2(2+ε)E

∗ ∣∣η2
i − µ∗2

∣
∣
2+ε ≤ K |V ∗|−

2+ε
2 h

ε
2R2(2+ε)

(

µ∗2(2+ε) + µ∗2+ε
2

)

= OP

(

h
ε
2

)

,

arguing as in the proof of Theorem 3.1. Proof of Step 2. We have that E∗
(

V̂ ∗
)

=
µ∗

4−µ∗2
2

µ∗
4

E∗ (R∗
4) = V ∗,

given the definition of V ∗. Thus, it suffices to show that V ar∗
(

V̂ ∗
)

= oP (1). We can show that

V ar∗
(

V̂ ∗
)

= h
(

µ∗
4−µ∗2

2
µ∗

4

)2 (
µ∗8 − µ∗24

)
R8 = OP (h) = oP (1) , which since h→ 0.

Proof of Proposition 4.1. The results follow from the definition of q1 (x) and q∗1 (x) in (12) and

(14), respectively, given the cumulants expansions in Theorems A.1, A.2 and A.3.

Proof of Proposition 4.2. a) follows from Corollary A.1. b) follows trivially when v is constant be-

cause (σq)
p

= vqp for any q, p > 0. We prove c) next. Define C = 4σ6
√

2(σ4)3/2
and C∗ = 15σ6−9σ4 σ2+2(σ2)3

(3σ4−(σ2)2)3/2
,

and note that C > 0. Proving c) is equivalent to proving |C − C∗| ≤ |C|, which in turn is equivalent

to proving 0 ≤ C∗ ≤ 2C. Next we show that C∗ ≥ 0. The Jensen’s inequality implies that σ4 ≥ (σ2)2,

and since σ4 > 0, it follows that the denominator of C∗ is positive. For the numerator of C∗, note we

can write

15σ6 − 9σ4 σ2 + 2(σ2)3 ≥ 15σ6 − 9(σ4)3/2 + 2(σ2)3 ≥ 9((σ4)3/2 − (σ4)3/2) + 6σ6 + 2(σ2)3,

using −(σ2)2 ≥ −σ4. Since the function ψ(x) = x3/2 for x > 0 is convex, we have that (σ4)3/2 −
(σ4)3/2 ≥ 0, which implies 15σ6 − 9σ4 σ2 + 2(σ2)3 ≥ 6σ6 + 2(σ2)3 > 0, proving that the numerator of

C∗ is also positive. Next we prove C∗

C ≤ 2. We can write

C∗

C
=

15σ6 − 9σ4 σ2 + 2(σ2)3

8σ6

2
√

2(σ4)3/2

(3σ4 − (σ2)2)3/2
≡ C1 × C2.
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We show that C1 ≤ 2 and C2 ≤ 1. First, note that

15σ6 − 9σ4 σ2 + 2(σ2)3

8σ6
≤ 2 ⇐⇒ 15σ6−9σ4 σ2+2(σ2)3 ≤ 16σ6 ⇐⇒ 0 ≤ σ6+7σ4 σ2+2σ2

(

σ4 − (σ2)2
)

,

which proves the result since
(

σ4 − (σ2)2
)

≥ 0 and 0 ≤ σ6 + 7σ4 σ2. Finally, we have that

2
√

2(σ4)3/2

(3σ4 − (σ2)2)3/2
≤ 1 ⇐⇒ 8(σ4)3 ≤

(

3σ4 − (σ2)2
)3

⇐⇒ 8(σ4)3 ≤
(

2σ4 +
(

σ4 − (σ2)2
))3

,

which holds true since
(

σ4 − (σ2)2
)

≥ 0.

Proof of Proposition 4.3. This follows from Theorem A.1 and A.3, given that Rq → µqσ
q in

probability (conditional on v), for any q > 0, by BN-S (2004b, Theorem 1).

Proof of Proposition 4.4. The conditions on the bootstrap moments µ∗2, µ
∗
4 and µ∗6 are a restatement

of the equations 5√
3
A∗

1 = A1 and 5√
3
B∗

1 = B1. Thus, plimh→0 q
∗
1 (x) = q1 (x), implying the result.

Proof of Corollary 4.1. We seek ηi such that its moments are equal to µ∗2 = 1, µ∗4 = 31
25 , and

µ∗6 = 31
25

37
25 . Let

ηi =

{
a1 with prob p
a2 with prob 1 − p

.

We determine a1, a2 and p such that Eη2
i = 1, Eη4

i = 31
25 and Eη6

i = 31
25

37
25 . In particular, we can

show that a1 = 1
5

√

31 +
√

186, a2 = −1
5

√

31 −
√

186, and p = 1
2 − 3√

186
solve the following system of

equations

a2
1p+ a2

2 (1 − p) = 1

a4
1p+ a4

2 (1 − p) =
31

25

a6
1p+ a6

2 (1 − p) =
31

25

37

25
.
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