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Abstract

We consider a consumption based asset pricing model that uses habit persistence to overcome

the known statistical inadequacies of the classical consumption based asset pricing model.

We find that the habit model fits reasonably well and agrees with results reported in the

literature if conditional heterogeneity is suppressed by a sharp prior but that it does not

fit nor do results agree if conditional heterogeneity, well known to be present in financial

market data, is allowed to manifest itself. We also find that it is the preference parameters

of the model that are most affected by the presence or absence of conditional heterogeneity,

especially the risk aversion parameter. The habit model exhibits exhibits four characteristics

that are often present in models developed from scientific considerations: (1) a likelihood

is not available; (2) prior information is available; (3) a portion of the prior information is

expressed in terms of functionals of the model that cannot be converted into an analytic prior

on model parameters; (4) the model can be simulated. The underpinning of our approach

is that, in addition, (5) a parametric statistical model for the data, determined without

reference to the scientific model, is known. In general one can expect to be able to determine

a model that satisfies (5) because very richly parameterized statistical models are easily

accommodated. We develop a computationally intensive, generally applicable, Bayesian

strategy for estimation and inference for scientific models that meet this description together

with methods for assessing model adequacy. An important adjunct to the method is that a

map from the parameters of the scientific model to functionals of the scientific and statistical

models becomes available. This map is a powerful tool for understanding the properties of

the scientific model.

Keywords: Scientific models, simulation, Bayes, MCMC, estimation, inference, asset pric-

ing.
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1 Introduction

This article is motivated by an asset pricing application, namely the habit persistence asset

pricing model, that has characteristics in common with all modern general equilibrium mod-

els. And this article contributes to that empirical literature. But many models derived from

scientific considerations exhibit the same characteristics that make statistical analysis of the

habit model challenging. These characteristics are (1) a likelihood is not available; (2) prior

information is available; (3) a portion of the prior information is expressed in terms of func-

tionals of the model that cannot be converted into an analytic prior on model parameters; (4)

the model can be simulated. Additional examples of such models are the SEIR model from

epidemiology (Olsen and Schaffer, 1990) and compartment models from pharmacokinetics

(Mallet, Mentré, Steimer, and Lokiec, 1988).

We outline a general approach for the analysis of such models and then apply it to the

habit model.

In some instances other methods are available. For instance, if the only cause of difficulties

is a small number of latent variables, then a data augmentation approach will likely be

applicable and be less computationally intensive than the methods proposed here. We are

not concerned with such models. Our concern is with models such as our application where

there seems to be little else available other than what we propose here. This becomes doubly

true when data are sparse, as in our application, so that serious use of prior information

becomes essential. Our proposals are especially helpful if, as in our application, some prior

information may be expressed only in terms of functionals of the model. The methods

proposed here generate ancillary information that can help to interpret the scientific model

in terms of its statistical properties and to cast model inadequacies into sharp relief.

Our approach depends on an assumption that (5) an adequate statistical model for the

data is available. Because richly parameterized statistical models are admissible in this

connection and the statistical model only has to be fit to large simulations from the scientific

model, (5) can nearly always be satisfied. Briefly, our proposal is as follows: Given (5), we

can construct a map from the parameters of the scientific model to those of the statistical

model such that a point in the parameter space of the scientific model and its image under
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the map both correspond to the same data generating process. Typically the parameters of

the statistical model will live in a higher dimensional space than that of the scientific model.

The scientific model may therefore be viewed as a prior on the statistical model that has

support entirely on the manifold that is the image of the map. Scientific prior information

will then generate preferences on the manifold. The methodology developed here allows the

scientific prior information to be expressed either directly on the parameters of the scientific

model or on functionals of the scientific model that can be evaluated via simulation.

The discovery of the mapping from the parameters of the scientific model to those of

the statistical model, which is an intermediate step of the methods proposed here, is often

itself of scientific interest. For instance, the statistical model must, perforce, be expressed

entirely in terms of observables whereas scientific models often contain unobservables. Having

a mapping from the subset of the parameters that control the unobservable features of the

scientific model to the parameters of a statistical model consisting entirely of observables can

be extremely helpful in understanding the observable consequences of changes in a model’s

unobservable internal structure. The utility of this approach can be extended by using the

same methods to find the map from the parameters of the scientific model to functionals of

both the scientific and statistical models.

A Bayesian approach suggests itself for problems that exhibit the five characteristics just

listed because the methodology gracefully accepts prior information into the analysis and,

for dynamic models, does not require growth conditions on model output or data that are

often counter factual. Moreover, the estimates of parameter uncertainty are credible. That

is, the asymptotics on which frequentist methods rely are often grossly inaccurate for the

class of problems considered here (Duffee and Stanton, 2005) and bootstrap methods are so

computationally burdensome as to be infeasible. Nonetheless, comparison, when possible, is

of interest and in the application we contrast with results from a frequentist method (Gallant

and Tauchen, 1996) that relies on asymptotics and that is in general use for estimating asset

pricing models. As will be seen, sparse data forces a simplification on the frequentist approach

that precludes discovery of our key findings.

Although we know of nothing in print, several people, notably Anthony A. Smith, Jr.,

Yale University, and Alan E. Gelfand, Duke University, having seen this work presented, told
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us that they have had similar thoughts along the lines of the use of a statistical model to

synthesize a likelihood as we do here, but either did not attempt or did not succeed in mak-

ing them practicable. Our implementation relies on modern object oriented programming

methods, modern data structures, and a discretization at a critical point in the computa-

tions. Bringing these elements to bear on the problem seems to be both novel to this work

and essential to success. There is a related frequentist literature that is logically distinct

from the ideas here but does make use of an auxiliary model as an adjunct to estimation

and inference; see Smith (1993), Gourieroux, Monfort, and Renault (1993), and Gallant and

Tauchen (1996). We believe that our proposals for model assessment are new although there

is a related literature wherein a prior is imposed on a statistical model by numerical methods

that are akin to appending a simulation from the scientific model to the data in the style

of Theil and Goldberger (1961); see Del Negro and Schorfheide (2004) and the references

therein. In contrast to this literature, our proposals allow the imposition of priors that are

more general and that fit logically within the classical Bayesian paradigm.

2 Scientific and Statistical Models

We shall use the notational conventions of time series analysis because most models of the

sort considered here are dynamic. This is in no way essential because the results apply

equally well to other data structures with a few obvious changes to notation.

Let the transition density of the scientific model be denoted as

p(yt|xt−1, θ) θ ∈ Θ

where x = (yt−1, . . . , yt−L) if Markovian and x = (yt−1, . . . , y1) if not. Our basic assumption

is that there is no direct information about p(·|·, θ). All that we can do is simulate data from

the model for given θ. If the model produces ergodic output, then a single long simulation

for each setting of θ suffices for our purposes. If not, then many independently simulated

replicates of the data are used.

The scientific model is built using subject matter knowledge. Thus, we expect that real

prior information is available. This prior information may be expressible either in terms of

elements of θ or in terms of characteristics ψ of the process. An element of ψ might be an

3



unconditional moment of a latent variable or the unconditional moment of the solution of a

system of nonlinear conditional moment equations. In general, ψ can be regarded as a point

in the range of a vector of functionals Ψ : p(·|·, θ) 7→ ψ that is computable from a simulation.

We will capture both of these types of information.

A key motivation for implementing a Bayesian approach to the problem is the importance

of using prior information. This can be critical when data are sparse. When data are sparse,

prior information can be used to fill in model features about which the data says little but

the literature says much thereby enabling extraction of features about which the data are

informative.

To compute a posterior, we need a likelihood. Since we do not have access to p(·|·, θ),
there is no direct way to compute the likelihood. Our approach is to find a parametric family

of distributions that is capable of representing the process {yt}. Specifically, we assume that

there is a transition density f(yt|xt−1, η) and that there is a map g : θ 7→ η such that

p(yt|xt−1, θ) = f(yt|xt−1, g(θ)) θ ∈ Θ

and, importantly, that the form of f(·|·, η) is known. When we need a likelihood based on

the unknown p(·|·, θ), we substitute f(·|·, η) with the appropriate η. In most applications

the dimension of η will be larger than that of θ thus restricting η to a manifold. There is no

loss of generality in assuming this to be the case because this manifoldM can be the entire

parameter space H of f(·|·, η).
The model f(·|·, η) is a statistical description of the observed data that is entirely divorced

from scientific considerations. Thus we call it the statistical model. Usually this model will

be known from the literature. In other cases it must be determined as part of the analysis. As

richly parameterized flexible functional forms are admissible, success in finding an acceptable

statistical model can be anticipated. It is to be emphasized that we only use the statistical

model to fit large simulations from the scientific model (Section 3) or when augmented by a

strong prior dictated by the scientific model (Section 4) so that the fact that the data may

be too sparse to support it is not a consideration.

In this connection we call attention to the SNP model (Gallant and Nychka, 1987) which is

a flexible functional form that is expressly designed to be a convenient adjunct to maximum
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likelihood estimation. An example of its use in a dynamic situation is Chernov, Gallant,

Ghysels, and Tauchen (2003); cross sectional examples are Leon, Tsiatis, and Davidian

(2003) and Song, Davidian, and Tsiatis (2002).

In the formal logical structure adopted here, the analysis is carried out in η-space which

is to say that the scientific model and its prior are are viewed as placing a prior on η via

the map η = g(θ) with the support of the prior contained in the manifold M. (We are

indebted to James Berger, Duke University, for this interpretation.) Of course, one is not

thereby precluded from imposing additional prior information directly on η. Because it may

at times be useful to be able to express this prior information in terms of functionals of the

statistical model that can only be computed from a simulation, we introduce the notation

Υ : f(·|·, η) 7→ υ to denote such a vector of functionals. Some elements of ψ for the scientific

model and υ for the statistical model can be the same, e.g. the moment of an observable.

Logically, elements of ψ and υ could also be functions of the parameters θ or η. Note also

that when we impose prior information expressed in terms of η and υ we are also indirectly

imposing prior information on the parameters θ of the scientific model by changing the

relative weighting of points on the manifoldM.

Figure 1 about here

The situation just described can be summarized graphically. Consider the simplest ex-

ample: θ has dimension one, η has dimension two, the scientific model is p(y|θ) = n(y; θ, θ2),

and the statistical model is f(y|η) = n(y; η1, η2), where n(y;µ, σ
2) denotes the normal den-

sity with mean µ and variance σ2. The mapping of the parameter θ of the scientific model

to the parameters (η1, η2) of the statistical model is g : θ 7→ (θ, θ2). Figure 1 displays this

example in η-space. We will call this the tinker toy example hereafter.

In each panel of Figure 1 the solid line is the image of the map η = g(θ). This is the

manifold of η = (η1, η2) such that η2 = η21. Fifty observations were simulated from the

scientific model with θ = 2 (η1 = 2, η2 = 4). The contours of the likelihood for these fifty

observations under the statistical model are shown as dotted lines in the two panels on the

left. In the two panels on the right, the dotted contours display the likelihood from fifty

observations simulated from the statistical model with η = (2.8, 4). Thus, on the left the
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scientific model is supported by the data as evidenced by the manifold passing near the

mode of the likelihood whereas on the right it is not as evidenced by the manifold missing

the region of high likelihood.

The posterior for η under the scientific model, computed using methods described in

Section 3, is also confined to the manifold and also weights points on the manifold. Draws

from the posterior are shown in Figure 1 as dots. Since all draws must lie on the manifold,

we ”jittered” the dots by adding a bit of noise so that the dots may be seen thereby making

the portions of the manifold with high posterior probability appear to be thicker in the plot.

As with the prior, the posterior is expressed as a distribution over Θ that is transferred

to η-space via the map η = g(θ). An advantage of this representation is that it provides

posteriors on both the parameters θ of the scientific model and on the parameters η of the

statistical model.

We may not want to impose the belief that the scientific model holds exactly. We can

capture this idea by constructing a prior that expresses a preference for η that are close to

the manifold. Our prior construction uses a single parameter that we call κ to control prior

beliefs about how close η should be to the manifold (Section 4). The smaller κ is, the more

prior weight is placed on η close to the manifold.

This prior is shown in Figure 1 by the shading, with darker shading indicating more prior

weight on the corresponding η. The top two panels have a small κ so that the prior weight is

on η close to the manifold. The bottom two panels have a larger κ so that η farther from the

manifold get more weight. The solid contours in the panels of Figure 1 display the posteriors

computed using the prior indicated by the shading and the data indicated by the dotted

contours. In the left panels, where the scientific model is true, relaxing the prior (increasing

κ) changes the shape of the posterior but there is no dramatic shift in its location. In the

right two panels, relaxing the prior allows the posterior to move away from the manifold in

search of the likelihood.

Figure 2 about here

Our κ indexed prior gives us a way to assess the scientific model. If the scientific model

is correct, increasing κ should cause the posterior to spread out but not shift dramatically.
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If the scientific model is incorrect, increasing κ should allow the posterior to shift away

from the manifold. In high dimensional situations this shift can be seen by looking at

interpretable posterior marginals of η or, more generally, posterior marginals of functionals

Υ of the statistical model. Reasonable values of κ may be elicited by looking at interpretable

prior marginals of Υ for various κ.

These ideas can be simply illustrated in the tinker toy example by considering the

marginal posterior of the coefficient of variation Υ : f(·|·, η) 7→ υ = η1√
η2
. Under the tin-

ker toy scientific model the coefficient of variation is one with probability one. The four

panels of Figure 2 correspond to the four panels of Figure 1. In Figure 2 the dotted curves

are the densities of the prior marginal of υ while the solid curves are the posterior densities.

In the left two panels we see that as the prior is relaxed (κ increases) the posterior spreads

out but does not shift away from the true value which is one (the value consistent with the

scientific model). In the right two panels, the posterior shifts as κ increases.

At this point, the main conceptual ideas that we shall propose have been set forth. The

devil is in the details, to which we now proceed. The reader who would rather see our

substantive results first can skip to Section 5.

3 Bayesian Estimation of Scientific Models

We have two cases to consider: The first is when the scientific model is forced upon the

statistical model and η is on the manifoldM (c.f. Figure 1). The second is when η is merely

attracted to the manifold. We will consider the first case in this section and the second

in Section 4. In the first case, it is both equivalent and more convenient to describe the

computations in terms of the posterior for θ.

3.1 Computing the Map

Given θ, how do we find the corresponding η? How do we uncover the map g : θ 7→ η that

satisfies

p(y|x, θ) = f(y|x, η) ∀ (y, x) (1)
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when all that we can do is simulate data {ŷt, x̂t−1}Nt=1 according to the transition density

p(yt|xt−1, θ)? The basic idea is twofold: one notes that, as defined, the map minimizes the

Kullback-Liebler divergence between the models p(yt|xt−1, θ) and f(yt|xt−1, η) and that one

can use simulation to integrate with respect to the scientific model p(yt|xt−1, θ). Intuitively

this means that we can choose N , the simulation size, so large that the simulated data gives

us all the information we need about the nature of the process at the given θ and then find

the corresponding η by maximizing the likelihood of the simulated data under the statistical

model f(·|·, η). We find the η which gives us the same kind of data as θ. More formally, we

are finding the η that puts the Kullback-Liebler divergence

∫ ∫

[log p(y|x, θ)− log f(y|x, η)] p(y|x, θ) dy p(x|θ) dx

to zero by solving a minimization problem and are noting that the term

∫ ∫

log p(y|x, θ) p(y|x, θ) dy p(x|θ) dx

does not have to be computed to solve the problem. We approximate the integral that does

have to be computed in the usual way:

∫ ∫

log f(y|x, η) p(y|x, θ) dy p(x|θ) dx ≈ 1

N

N
∑

t=1

log f(ŷt|x̂t−1, η).

(Or by 1
R

∑R
r=1

1
n

∑n
t=1 log f(ŷt,r|x̂t−1,r, η) if not ergodic. We assume ergodicity hereafter; if

not, the requisite modifications are obvious.) Thus, upon dropping the division by N , the

map is computed as

g : θ 7→
η

argmax
N
∑

t=1

log f(ŷt|x̂t−1, η).

Our algorithm will incorporate a simple approach for computing this mle.

Computing the map is an equation solving problem and there are other approaches. One

might, for example, choose some test functions such as I(yi−1 < y ≤ yi, xj−1 < x ≤ xj)

i = 1, . . . , I, j = 1, . . . , J , and solve the set of nonlinear equations

1

N

N
∑

t=1

I(yi−1 < y ≤ yi, xj−1 < x ≤ xj) =
∫ xj

xj−1

∫ yi

yi−1

f(y|x, η) dy f(x|η) dx

for η. The approach that we adopt has these advantages: It provides the scaling for the

prior used for model assessment in a simple way. The code can be reused in Section 4 to
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compute the posterior for η statistical model subject to this prior. The method requires only

one integration.

Under the assumption that (1) holds, how one solves for η for given θ does not matter as

long as it is done with reasonable accuracy. If one is unsure of the validity of the assumption

in an application, it can be checked for specific values of θ by (1) fitting the statistical model

to a scientific model simulation, (2) simulating from the fitted statistical model, and (3)

checking to see if the empirical distributions of the two simulations match.

3.2 A Metropolis Algorithm for θ

We will use the Metropolis algorithm to compute the posterior distribution of θ. This

algorithm will have to accommodate various forms of prior information and a computational

scheme for obtaining the mle defining the map g.

The Metropolis algorithm is an iterative scheme generating a sequence of θ values ac-

cording to a Markov chain whose stationary distribution is the posterior. Since for every θ,

we shall need the corresponding η = g(θ), we will generate a sequence of (θ, η) pairs. (Thus

providing the posterior both in θ-space and in η-space.) As in all Bayesian analyses, we must

specify our prior and likelihood. For our Metropolis chain we must also specify a Markov

chain in θ used to propose new values.

Let L denote the likelihood of our observed data. Our basic assumption is that to compute

this likelihood we may use f evaluated at the appropriate η:

L[g(θ)] =
n
∏

t=1

f(yt|xt−1, g(θ))

where (yt, xt−1) denotes the observed data and n the sample size. Let π denote the prior

distribution. As discussed in Section 2 above, this prior can depend on the parameters θ ∈ Θ

of the scientific model p(y|x, θ), the value ψ taken on by the functionals Ψ : p(·|·, θ) 7→ ψ,

the parameters η ∈ H of the statistical model f(y|x, η), and the value υ taken on by the

functionals Υ : f(·|·, η) 7→ υ. Accordingly, this prior has argument (θ, ψ, η, υ). Let q denote

our Metropolis proposal. For a given θ, q(θ, θ∗) defines a distribution of potential new values

θ∗.

Given a current θo and the corresponding ηo = g(θo) we obtain the next pair of (θ′, η′)
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values as follows:

1. Draw θ∗ according to q(θo, θ∗).

2. Draw {ŷt, x̂t−1}Nt=1 according to the transition density p(yt|xt−1, θ
∗).

3. Compute η∗ = g(θ∗) and ψ∗ from the simulation {ŷt, x̂t−1}Nt=1 and υ∗ from η∗.

4. Let α = min
(

1, L[g(θ
∗)]π(θ∗,ψ∗,η∗,υ∗) q(θ∗, θo)

L[g(θo)]π(θo,ψo,ηo,υo) q(θo,θ∗)

)

.

5. With probability α, (θ′, η′) = (θ∗, η∗), otherwise we repeat, i.e. (θ′, η′) = (θo, ηo).

Steps 1, 4, and 5 are just the standard Metropolis algorithm. Steps 2 and 3 are essential

features of our approach.

In order to complete the specification of our algorithm we need to chose a q. We shall

also propose a particular approach to the computation of η in Step 3 that accommodates all

sources of prior information. These are the next topics.

3.3 Choice of θ Proposal

To specify our algorithm we must choose a proposal transition density q for θ. To compute

the likelihood at a proposed θ, the scientific model must be simulated. For a sophisticated

scientific model, this simulation may involve significant computation. Moreover, there could

well be a call to a nonlinear optimizer or nonlinear equation solver that needs starting values

involved in this simulation. This motivates us to consider proposing small changes in θ so

that computational results from the old θ may be used in doing the computations for the

proposed θ. In particular, if θ is not changed too much, results from the previous computation

can be used as starting values for the new one. The cost of this strategy is in dependence in

the Markov Chain. If we limit ourselves to small changes, it may take us a while to navigate

from one place in the parameter space to another.

We start by discretizing θ because, as seen later, discretization permits significant im-

provements in computational efficiency. For the ith component of θ we choose ai < bi, and

si. We then let θi take on the values ai + jsi where j ranges from 1 to gi which is equal to

the integer part of (bi − ai)/si. Thus, θi takes values between ai and bi with step sizes si.
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To propose a new θ we first randomly choose a component to change, with each component

having the same chance of being chosen. If the ith component is chosen, there is some j such

that the current θi = ai+ jsi. We choose a set of distributions qi(j, k) on {1, 2, . . . , gi} where
i is the θ component, j is the current grid position of that component, and k denotes the

random new grid position to be drawn. We draw k ∼ qi(j, ·) and let θ∗ be obtained from θ

by changing the ith component from ai + jsi to ai + ksi.

To specify the qi(j, k) we choose a σi for the i
th component of θ and let

qi(j, k) ∝











exp(− 1
2σ2

i

(k − j)2) k 6= j

0 else

The choice of σi determines the number of si that we tend to move. We assign 0 probability

to proposing that we stay put since there is no point in proposing that we go to where we

are.

To run the θ Metropolis chain, we have to choose a starting value for each θi. The choice

of ai and bi is not critical; ai and bi can be set so that the intervals (ai, bi) cover the support

of the posterior by a wide margin without noticeably degrading performance. The choice

of si is crucial. We will move away from the starting value in increments of size si. The

combination of the choice of si and σi determines the size of the changes that q proposes.

The choice of si determines the accuracy of our inference. When we choose si we are saying

that, as a practical matter, we only need to know θi in terms of si units. Two θ’s that

differ in component i by less than si are virtually the same as a practical matter. Since

computation is expensive, we should not waste resources by determining θ on a finer scale

than we actually care about.

3.4 Computing the MLE of η with the Simulated Data

Step 3 of the Metropolis algorithm presented in Section 3.2 is the computation of the mle of

η under the statistical model given the large simulated data set.

Since the f(·|·, η) family is generally chosen to be flexible and high dimensional, this

likelihood can be complicated. However, the simulated data set is large and we have a good

starting value. In the notation of Section 3.2, the current ηo should be a good starting

value in the search for η∗. This assumes that θ∗ is not too different from θ as discussed in
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Section 3.3. In order to keep our analytical requirements to a minimum, we would like our

method to require the computation of the objective

L(η) =
n
∏

t=1

f(yt|xt−1, η)

and nothing else.

Given these considerations, to find the mle we run a Markov chain for η using the sim-

ulated data. With the large sample size, the Markov chain will quickly move from the η to

values close to η∗. We use a normal random walk Metropolis within Gibbs approach. That

is, we first subdivide the η vector into subvectors. In the manner of a Gibbs sampler, we

cycle through the subvectors one at a time. For subvector ηi, we use the normal proposal

q(ηi, η
∗
i ) ∼ N(ηi,Σi)

in a standard random walk Metropolis algorithm. Effectively, this is a simulated annealing

optimization algorithm where N is the temperature parameter because N is what controls

the peakedness of the likelihood.

The advantage of a simulated annealing strategy over a derivative based hill climbing

method is that analytic derivatives are not required and one has better control over the

computational burden. That is, one can easily control the length of an MCMC chain but

it is hard to achieve any control over the number of iterations of the internal line search

algorithm of a nonlinear optimizer and one can only bound the number of putative full

steps. As nearly the entire computational cost of the proposed methodology is concentrated

here in the computation of η, control is essential. A side benefit is that the chain for η also

provides the scaling for the model assessment strategy proposed in Section 4.

The computation of η requires start values, as does any nonlinear optimization. If θ is only

moved slightly between iterates of in an MCMC chain to compute the posterior for θ, then the

last computed value of η will be a good start for the next. This consideration becomes doubly

important when the scientific model p(y|x, θ) contains an embedded nonlinear computation

requiring start values as does the habit model (Section 5.2). These requirements argue for a

random walk proposal density that makes small moves in connection with the MCMC chain

used to get the posterior distribution of θ.
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We choose a fixed number of steps to run this chain, and keep the visited η which

has the highest likelihood under the simulated data. In our experience, it is relatively

straightforward to choose (i) a simulation sample size which is large enough to ensure that

the map is adequately recovered by the mle and (ii) a number of steps to iterate the Markov

chain in η that will ensure the chain has finished moving away from the starting value of η.

We might also note that putting θ on a grid is a considerable help here because it reduces

the accuracy to which η∗ needs to be computed.

This is a computationally costly part of our overall procedure. Since the simulation

sample size N is large, each computation of the likelihood for the η chain can take a long

time. Nonetheless, we have found that, because of the large N , this part of the procedure

is remarkably stable, even though the statistical model may actually be difficult to estimate

on data samples of the size n that we actually observe.

The main reason for placing θ on a grid is that a significant reduction in computational

time can be achieved. With θ on a grid, it takes only a modest amount of memory to store

all previously computed values of (η, L(η), π(θ, ψ, η, υ)) in a binary tree indexed by θ. When

θ is revisited, both the fact that it is a revisit and the information required for Step 4 of the

Metropolis algorithm for θ (Subsection 3.2) can be quickly obtained by traversing the tree.

The two costliest Steps 2 and 3 are thereby eliminated. We have found the C++ associative

map to be an exceptionally convenient implementation of such a tree. By storing previous

results in a tree and looking them up, the θ chain runs faster as it becomes longer.

We might also remark that the object oriented features of the C++ language are ex-

ceedingly helpful. The selective ignorance that object oriented programming permits and

enforcement of interfaces that object oriented programming provides allow a clean division

of tasks among project participants thus permitting each to focus on the particular task at

hand without having to be concerned with details elsewhere in the code. The polymorphic

features of the language are also helpful in allowing the scientific and statistical models to

be abstractions defined by an interface.
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3.5 An Illustration of the MLE Computation

Figure 3 displays the results of ten runs of an η chain (from Section 5). Every run is clearly

visible in the figure as a segment of 200 iterations. In the notation of Section 3.2, each

segment displays the results of a Markov chain in η, started at ηo, using the data simulated

from the scientific model at θ∗ and the likelihood of the statistical model coupled with a flat

prior on η. On the vertical axis, the log-likelihood is plotted. Within the second segment, we

can see the likelihood quickly increase as the η value moves toward the mle. The segments

level off at different likelihoods because they represent the likelihoods of different simulated

data sets. Because of the large size of each simulated data set, N = 50, 000 in this instance,

the posterior is very tight around the mle and the chain quickly moves to a new level. In this

case we could probably have used 100 iterations rather than 200 since (unlike most MCMC

applications) we don’t need to run it any longer after we have found the neighborhood of

the mode.

Figure 3 about here

3.6 Prior Information

Now we consider the possibility that there may be important prior information about features

of the scientific model which are not readily expressed in terms of θ. This information is

available within the scientific model at the time at which the simulated data {ŷt, x̂t−1}Nt=1 is

computed and will often involve variables that are not elements of yt. Typically, elements

of ψ are statistics that are computable from an augmented simulation that includes both

the elements of yt and these additional latent variables. Formally ψ can be regarded as the

value taken on by a vector of functionals of the scientific model, as noted previously. Also,

as discussed previously, the prior can depend on η and υ of the statistical model. Usually

the joint prior will factor as

π(θ, ψ, η, υ) ∝ π(θ, ψ)π(η, υ).

We will presume that this is so to allow us to keep the focus on π(θ, ψ) in the remaining

discussion; the modifications are obvious and minimal if not.
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For computational reasons, we partition the prior π(θ, ψ) into support restrictions that

can be computed from knowledge of θ alone and those that require, in addition, knowledge

of ψ. These are π1(θ) and π1(θ, ψ), respectively, and are zero-one indicator functions where

one indicates that the support condition is satisfied. The prior can now be factored as

π(θ, ψ) ∝ π1(θ)π1(θ, ψ)π2(θ, ψ)

The idea is that π1(θ) is cheap to compute and when zero the simulation {ŷt, x̂t−1}Nt=1 need

not, or perhaps even cannot, be run. If π1(θ) = 0, then the α of Step 4 in Section 3.2 is

trivial to calculate and the proposed θ can be immediately rejected. In many applications

π1(θ, ψ) will indicate simulation success or failure. (This is usually because some analytically

intractable support condition on θ is violated so that attempting to simulate is the only

practicable method for checking it.) In the case of failure, computation cannot proceed

and the proposed θ is rejected at Step 4. If both π1(θ) and π1(θ, ψ) are positive, then

computations can proceed. The Metropolis algorithm is a wonderfully simple way to compute

a posterior in the presence of priors with support restrictions and, therefore, well suited to

problems of the sort under consideration here.

4 Inference Off the Manifold: Model Assessment

We now consider relaxation of the prior imposed on the statistical model by the scientific

model. As η is no longer on the manifoldM (c.f. Figure 1) but merely attracted to it, we

must now describe the computations in terms of the posterior for η.

Recall that the scientific model p(y|x, θ) together with the prior π(θ, ψ) are viewed as a

prior on the statistical model f(y|x, η), that may, itself, have prior π(η, υ). The information

π(θ, ψ) consists of two pieces: (1) η is restricted to lie on the manifold

M = {η ∈ H : η = g(θ), θ ∈ Θ} ,

and (2) π(θ, ψ) weights some points onM more heavily than others.

What one would like to do is see how results change as this prior is relaxed. However,

once we have moved off the manifoldM we can no longer view results from the perspective

of the scientific model p(y|x, θ) and must view them from the perspective of the statistical
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model f(y|x, η) because the scientific model loses meaning off the manifold. For instance, off

the manifold ψ can no longer be computed. Therefore, seeing how results change must be

taken to mean seeing how some functional of the statistical model changes. For convenience

we presume that this functional is an element of Υ defined in Section 2. This functional

might map to an element of η, if such has scientific meaning, or a statistic computable from

a simulation such as the return over a hundred year planning horizon as in Figure 7.

Relaxation of the prior will be formulated in terms of a weighted distance of η from the

manifoldM. Recall that θ has been restricted to a grid

ΘG = {θj ∈ Θ : j = 1, . . . , G}

Therefore we can cheaply compute the distance from η to the manifold as

d(η,M) = min
j=1,...,G

[η − g(θj)]′Σ−1
η [η − g(θj)] ,

where Ση is a scaling matrix. Later we shall also require the index ĵ at which the minimum

occurs.

We propose that Ση be computed as follows: Initialize to zero. Whenever the Metropolis-

Hastings chain for computing the mle of η described in Subsection 3.4 must be run, update

Ση ← Ση + (η1 − η2)(η1 − η2)′

where η1 is a point on the chain immediately after transients have died out and η2 is the last

point on the chain. This method of scaling the distance measure is reasonable because it puts

η on the scale of the posterior: Distance is being measured in units of standard deviation.

At each point in ΘG the value of π(θ, ψ) is known, so π(θj, ψj) is easily evaluated at j = ĵ

and we can define our prior on H as

πκ(η, υ) ∝ π(θĵ, ψĵ) exp

(

−d(η,M)

2κ

)

π(η, υ). (2)

The first multiplicative term of πκ(η, υ) represents prior information along the manifold

while the second term represents our prior about closeness to the scientific model. The prior

becomes more diffuse and the scientific model less influential as the scale factor κ increases.

One should note that using posterior draws to compute the image M of the map g(·)
does make use of the data to determine πκ(η, υ). We do not regard this as a problem because
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the η draws will contain enough extreme values to make sure that the extent ofM is large

enough. If one is particularly worried about this, one could run the theta chain with a

smaller amount of data to make sure thatM is over explored.

The computation of the posterior distribution of η using the statistical model f(y|x, η)
and prior πκ(η, υ) can be accomplished by a routine application of the Metropolis algorithm

because πκ(η, υ) is easily computable and an analytic expression for f(y|x, η) is available.
Our proposal is that the scientific model be assessed by plotting a suitable measure of the

location and scale of the posterior distribution of υ against κ or, better, sequential density

plots as in Figure 2. What one expects to see, for a well fitting scientific model, is that the

location measure does not move by a scientifically meaningful amount as κ increases, which

indicates that the model fits, and that the scale measure increases, which indicates that the

scientific model has empirical content. We discuss the habit persistence asset pricing model

next and apply our proposed methods. What we shall see (Figure 7) is that as κ increases the

scale of two functionals of interest increases, indicating empirical content, but that location

also shifts, providing evidence against the model.

5 Habit Persistence Asset Pricing Model

In this section we shall apply the proposed methods to the habit persistence asset pricing

model of Campbell and Cochrane (1999). Although it is widely viewed as a behavioral

model and it is the result of an admitted attempt to reverse engineer away the statistical

inadequacies of the classical consumption based asset pricing model (Lucus, 1978), the habit

model actually can be justified from plausible micro-foundations (Guvenen, 2003).

The habit model exhibits all the characteristics discussed in Section 1: (1) the likelihood

is not available; (2) prior information on model parameters is available; (3) prior information

in the form of restrictions on model functionals is available; (4) the model can be simulated;

(5) a generally accepted statistical model for its data is available.

In the remainder of this section, we describe the data, introduce the habit model, and

apply the methods that we have proposed. Our main substantive conclusion is that the habit

model is not supported by the data, as seen in Figure 7. We also find, as seen in Table 1, that

the reason some studies conclude otherwise is that they use estimation methods that rely on
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a counter factual assumption that the conditional variance of the data is homogeneous. From

the implied map we discover in Figure 6 that a sharply delineated subset of the habit model’s

parameters control the observable conditional heterogeneity and they are the parameters that

describe the individual’s preferences, particularly the parameter that most directly affects

risk aversion.

5.1 The Data

The data are annual, U.S., per capita, non-durables and services consumption Ca
t and the

price P a
dt of a value weighted portfolio comprised of all stocks listed on the New York and

American stock exchanges from 1929 through 2001 collected at the last trading day of the

year, adjusted for inflation, and converted to a per capita basis. Data sources and collection

protocol are described in Bansal, Gallant, and Tauchen (2004). These are converted to an

annual consumption growth series and stock returns series using ∆cat = log(Ca
t )− log(Ca

t−1)

for the former and radt = log(P a
dt)− log(P a

d,t−1) for the later. We use annual data rather than

monthly or quarterly data because seasonality issues are thereby eliminated and because

annual consumption data are generally regarded as being of higher quality and go back

farther in time than higher frequency consumption data. In our previous vector notation,

we have

yt =







∆cat

radt





 t = 1, . . . , n = 72

We now consider how to simulate similar data from the habit model. As in Campbell

and Cochrane (1999), we will run the model at a monthly frequency and then aggregate

to get annual data. This is a relatively common procedure in this literature because it is

more reasonable to assume that budgeting decisions are made monthly rather than annually

whereas the data to be matched are annual for the reasons given above.

5.2 Model Description

The intuitive notions behind any consumption based asset pricing model are that agents

receive wage income and dividend income from which they purchase consumption. Agents

seek to smooth consumption over time by trading shares of stock that pay a random dividend
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and bonds that pay interest with certainty. The driving processes of such a model are the

wage process and dividends or, equivalently, consumption and dividends because someone

must own the stock so the dividends must be received while for bonds someone pays interest

and another receives so there are no net bond receipts. Agents are endowed with a utility

function that depends on the entire consumption process. The parameters of this function

determine their preferences. Standard specifications and parameter settings generate a pref-

erence for smooth rather than rough consumption streams. The first order conditions of

their utility maximization problem determine the prices at which they are willing to trade

securities. We shall describe the driving processes, the utility function, and the first order

conditions of the habit model, in that order.

The driving processes of the habit model are real consumption growth and real dividend

growth

ct − ct−1 = g + vt

dt − dt−1 = g + wt

The convention throughout this section is that lower case denotes logarithms of upper case

quantities; e.g. ct = log(Ct), dt = log(Dt). As mentioned above, the time increment is one

month.

The errors (vt, wt) of the driving processes are normal with mean zero and variance

Var







vt

wt





 = RR ′,

where R is upper triangular with nonzero elements r11, r12, and r22. At times it is more

convenient to express the variance matrix in terms of σ2 = Var(vt), σ
2
w = Var(wt), and

ρ = corr(vt, wt).

Upon exponentiation to get Ct and summing over adjacent blocks of twelve, the con-

sumption process does correspond conceptually to the data series Ca
t described above. On

the other hand, the dividend process does not correspond conceptually to observable data

primarily because what can be observed is strongly influenced by tax policy causing, e.g.,

corporations to shift dividend payments into or out of stock repurchases. Therefore, dt is
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to be regarded as a latent variable. It remains to consider how the returns process radt is

simulated.

The habit model asserts that all agents in the economy are endowed with the same utility

function

E0
( ∞
∑

t=0

δt
(Ct −Xt)

1−γ − 1

1− γ

)

,

where Xt is habit and δ the time discount factor. Risk aversion depends on X and is much

higher than γ for plausible X. Habit is determined by the surplus ratio St = (Ct −Xt)/Ct.

St is the state variable of the model and evolves as st− s̄ = φ(st−1− s̄) + λ(st−1)vt−1, where

λ(s) = 1
S̄

√

1− 2(s− s̄) − 1 if st ≤ smax and zero else. Recalling the upper and lower case

convention, s̄ and smax are computed from model parameters θ = (g, r11, r12, r22, φ, δ, γ) as

S̄ =
√
(r211 + r212)γ/φ and smax = s̄(1− S̄2)/2,

Rather than compute the stock price directly one usually works in terms of the price

dividend ratio Pdt/Dt because the price dividend ratio is stationary whereas prices are not.

Agents are presumed to be so numerous that each can solve their own utility maximization

problem without regard to the actions of the others. Under this assumption, the price

dividend ratio satisfies Pdt/Dt = Vθ(St) where Vθ(·) solves the integral equation

0=Et
{

Vθ(St)− δ
(

St+1Ct+1

StCt

)−γ(Dt+1

Dt

)

[1 + Vθ(St+1)]

}

(3)

and Et denotes conditional expectation given St. These are the first order conditions of each

agent’s optimization problem.

Using instrumental variables the conditional integral equation (3) can be converted to

a set of unconditional integral equations. These unconditional integrals can be computed

by averaging over a long simulation of (Ct, Dt, St). The function Vθ(St) has a series repre-

sentation that, when substituted into these integral equations, yields a system of nonlinear

equations whose unknowns are the coefficients of the series expansion. The details are in

Bansal, Gallant, and Tauchen (2004). Only one aspect of this computation is important here:

The coefficients of Vθ(St) are determined by a nonlinear equation solver (Newton’s method)

that needs starting values. Further, if two adjacent points θi and θi+1 in the MCMC chain

for the posterior of θ are close together then the coefficients of Vθi
(St) make good starting

values for computing those of Vθi+1
(St).
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What one does, then, for θ given, is simulate consumption, dividends, and compute the

surplus ratio to get the realization {Ĉt, D̂t, Ŝt}12Nt=1 . (The upper limit is 12N to allow ag-

gregation of adjacent blocks of twelve to generate a simulations of size N at the annual

frequency.) Next determine Vθ(·) by solving a system of nonlinear equations that require

{Ĉt, D̂t, Ŝt}12Nt=1 for their computation. Then compute stock price as P̂dt = D̂tVθ(Ŝt). Geo-

metric stock returns at the monthly frequency are obtained from r̂dt = log(P̂dt)− log(P̂d,t−1).

Similar computations provide the risk free interest rate r̂ft (i.e. the geometric return on a one

month bond), which is used to express a portion of our prior information in Subsection 5.3.

Therefore, given model parameters θ = (g, r11, r12, r22, φ, δ, γ), we can simulate, in particular,

consumption, dividends, stock returns, bond returns and from these compute functionals of

interest.

To convert from the monthly frequency to the annual frequency, we aggregate {Ĉt, r̂dt}12Nt=1

by summing consecutive blocks of twelve to get the annual series {Ĉa
t , r̂

a
dt}Nt=1. The simulated

series of observables at the annual frequency is {ŷt}Nt=1 with ŷt = (log Ĉa
t − log Ĉa

t−1, r̂
a
dt).

To summarize, the scientific model has seven parameters. Four of the parameters, namely

g, r11, r12, and r22, control the driving process (Ct, Dt). Three, namely φ, δ, and γ describe

preferences with γ being termed the risk aversion parameter. The simulation Ĉa
t of the

observable process Ca
t can be obtained directly by aggregating a simulation of the driving

process. To simulate the observable returns process radt, we have to generate a long simulation

of the driving process which is used to compute the integrals in a system of equations that

are derived from the model’s first order conditions. The resulting nonlinear system is solved

by Newton’s method. Once solved, monthly returns can be computed and then aggregated

to get the simulation r̂adt.

5.3 Prior Information

Prior information arises from multiple sources. Some consists of support conditions such as

non-explosive restrictions on autoregressive parameters. As above, let the support conditions

be represented by π1(θ), where π1(θ) = 1 indicates that θ is in the support and 0 that it

is not; π1(θ) is next to costless to compute. A solution Vθ(·) to (3) does not exist for all

parameter values θ that satisfy support conditions. It is effectively impossible to determine

21



analytically the additional conditions that must be imposed on θ to guarantee existence.

Therefore the only practical way to determine if a solution exists for given θ is to simulate

{Ĉt, D̂t, Ŝt} and attempt to solve (3). Let the support conditions that indicate for which θ

equations (3) can be solved be represented by π1(θ, ψ), where π1(θ, ψ) = 1 indicates that θ

is in the support and 0 that it is not. π1(θ, ψ) = 0 is extremely costly to compute because

the nonlinear equation solver runs longest when it fails.

Of more substance is that the ex-ante risk free rate raf , which is the interest rate for the

bonds of the model, is not directly observable because its computation from observed interest

rates requires estimation of the representative agent’s anticipated inflation (Mishkin, 1981).

Because the evidence indicates that the risk free rate is low with a variance that is much

smaller than the variance of inflation (Campbell, 2002), an attempt to generate a risk free

rate series over our sample period would produce a series that would consist almost entirely

of measurement error. It seems better to accept the values for the mean (E(raf ) = 0.89)

and standard deviation (Var(raf )
.
= 1) that Campbell determined from several long historical

time series and adopt a normal prior that implies P (|E(raf )− 0.89%| < 1%) = 0.95. In this

computation E(raf ) is computed by aggregating the monthly (geometric) risk free rate rft

in the habit model simulation to the annual frequency raft and then averaging to get E(raf ).
This is complicated prior information that affects every element of θ; it is essential to model

identification and would be very hard to impose in any other way. In addition we impose

normal priors that imply P (|ρ − 0.2| < 0.1) = 0.95 and P (|φ − 0.9884| < 0.01) = 0.95.

(Because θ is restricted to a grid, our priors are actually proportional to a histogram of a

normal. We take this as understood and just call them normal.) Denote the product of these

three normal densities by π2(θ, ψ); π2(θ, ψ) is moderately costly to compute.

The restrictions P (|ρ − 0.2| < 0.1) = 0.95 and P (|φ − 0.9884| < 0.01) = 0.95 help with

identification. A consequence of treating dividends as latent is that ρ, which is the correlation

between monthly consumption growth and dividend growth, is so poorly determined by the

observables, which are annual consumption growth and stock returns, that prior input is

necessary. We impose ρ
.
= 0.2 following Campbell and Cochrane (1999). The restriction

φ
.
= 0.9884 also follows Campbell and Cochrane. The parameter φ is an autoregressive

parameter and we find that it is necessary to prevent the MCMC chain from putting φ too
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close to one. Experimentation indicates that the scaling P (|ρ − 0.2| < 0.1) = 0.95 and

P (|φ − 0.9884| < 0.01) = 0.95 is the mildest that permits good performance of the MCMC

chain for θ.

5.4 The Statistical Model

The statistical model is a bivariate GARCH system with normal innovations:






cat − cat−1

radt





 =







b1

b2





+







b11 b12

b21 b22













cat−1 − cat−2 − b1
rad,t−1 − b2





+







r11,t−1 r12,t−1

0 r22,t−1













z1t

z2t





















r11,t−1

r12,t−1

r22,t−1















=















ρ1

ρ2

ρ3















+















ρ11 ρ12

ρ21 ρ22

ρ31 ρ32





















|z1,t−2|
|z2,t−2|





+ τ















r11,t−2 − ρ1
r12,t−2 − ρ2
r22,t−2 − ρ3















(4)

where (z1t, z2t) are independent standard normal random variables. The statistical model

f(yt|xt−1, η) has sixteen parameters

η = (b1, b2, b11, b21, b12, b22, ρ1, ρ2, ρ3, ρ11, ρ21, ρ31, ρ12, ρ22, ρ32, τ)

This model is the leading term of the SNP expansion (Gallant and Tauchen, 1996) that is

widely used in applications involving multivariate time series data from financial markets

and is known to fit such data well (Ahn, Dittmar, and Gallant, 2002; Chernov, Gallant,

Ghysels, and Tauchen, 2003)

The analysis that follows indicates that our statistical model is rich enough to extract the

information in the data that relates to the statistical adequacy of the habit model. We remark

that we are not limited here by the number of observations as we would be when employing

frequentist methods such as EMM. See, e.g., the EMM application in Bansal, Gallant, and

Tauchen (2004) where the richest model that can actually be fit to a four dimensional series

that includes our two variables is a diagonal VAR with homogenous conditional variance.

(They must use four variables to get identification and are thus compelled to use dividend

data despite its dubious quality.) The relevant sample size for us is the simulation size N,

which is entirely under our control.

23



Without restricting τ in (4), even our two dimensional system is troublesome to fit by

Bayesian MCMC methods when the number of observations drops to the sample size n.

When iterating η indirectly via iteration of the θ MCMC chain as described in Section 3, the

habit model and its prior constrain η to lie in a plausible region of the manifoldM thereby

restricting τ to plausible values, i.e. to values with |τ | < 1. However, when we iterate the

η chain directly to explore model adequacy as described in Section 4 and allow movements

far from the manifold by setting κ to a large value, then τ can move to explosive values

and stick. Therefore, when off the manifoldM, we impose the normal prior P (|τ − 0.6| <
0.1568) = 0.95, which is the term π(η, υ) in equation (2).

5.5 Model Estimation: Scientific Prior Imposed

We ran the θ chain for 800,000 iterations discarding every 8 leaving 100,000. The chain was

started near the mode of the posterior density to avoid problems with transients. (The mode

was determined from several initial runs of size 100,000.) Visual inspection of time series

plots of the draws (not shown) indicated that this strategy for eliminating transients was

successful.

Table 1 about here

Descriptors of the Bayesian posterior distribution of θ = (g, r11, r21, r22, φ, δ, γ) are shown

in the top half of Table 1. Also shown are statistics describing the frequentist (EMM)

sampling distribution for (g, φ, δ, γ) and some additional parameters that determine the

distribution of the errors of the driving process under an assumption that dividend growth

and consumption growth are cointegrated. (They are defined in the table legend.) The

scaling for the descriptors in the top half of the table corresponds to the model as defined in

Subsection 5.2. For convenience in interpretation, descriptors of the posterior distribution of

the standard deviation of consumption growth σ, the standard deviation of dividend growth

σw, and the correlation between them ρ are computed from those for (r11, r21, r22) and,

together with the descriptors for (g, φ, δ, γ), are annualized and displayed in the bottom half

of the table. Similarly for the statistics that describe the frequentist sampling distribution.

Further down are descriptors for (E(raf ),
√
Var(raf ), E(rad),

√
Var(rad)).
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In the columns of Table 1 that are labeled mode, the values shown are the mode of

the multivariate posterior for θ = (g, r11, r21, r22, φ, δ, γ), not the mode of each marginal.

This is because the values of the multivariate mode do appear in the MCMC chain for θ

and therefore do correspond to an actual simulation whereas the vector of marginal modes

might not and might not even satisfy π1(θ, ψ) = 1. For some purposes, e.g. computing

E(raf ), this distinction is important. Similarly the posterior mean might not be in the chain.

(As with any mean, the posterior means are both joint and marginal.) The values for

(E(raf ),
√
Var(raf ), E(rad),

√
Var(rad)) in the columns labeled mode are computed from the val-

ues for (g, r11, r21, r22, φ, δ, γ) that are shown above them in the upper half of the table; they

are not marginal modes. On the other hand, those in the columns labeled mean are the

marginal means of the posterior distribution of (E(raf ),
√
Var(raf ), E(rad),

√
Var(rad)). All stan-

dard deviations in the columns headed Bayes are computed from marginal posteriors. The

frequentist (EMM) values optimize a criterion function and therefore do correspond to a

simulation; the values shown for (E(raf ),
√
Var(raf ), E(rad),

√
Var(rad)) are computed from that

simulation.

As with any discrete time dynamic model, annualized parameter values for the habit

model do not have the property that simulations obtained by running the model at the

annual frequency using the annualized parameter values will have the same distribution as

simulations obtained by aggregating a monthly simulation. For this reason, the values at

the monthly frequency in the upper half of of Table 1 should be regarded as the definitive

estimates of model parameters. The annualized values in the lower half of the table are to

be regarded as only an aid in their interpretation.

Figure 4 about here

Figure 5 about here

The Bayes-GARCH columns of Table 1 report computations that use the GARCH statis-

tical model. Their most striking feature is the large deviation of the Bayes-GARCH estimate

of mean stock returns E(rad)
.
= 11% from the value computed from the data of 6.02% and from

the EMM estimate of 6.54%. The reason for this is that the EMM estimator as implemented
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in Bansal, Gallant, and Tauchen (2004) completely ignores the conditional heterogeneity in

the data. The auxiliary model used by Bansal, Gallant, and Tauchen, whose impact on the

EMM estimation procedure is analogous to the impact of the statistical model on the Bayes

procedure proposed in this article, is a VAR with homogeneous conditional variance. If we

too use a VAR with homogeneous conditional variance to implement our Bayes estimator, the

results in the column labeled Bayes-VAR are obtained, bringing the Bayes estimate of E(rad)
into agreement with the data and with the EMM estimates. The Bayes-VAR estimates are

also in close agreement with the values reported in Campbell and Cochrane (1999) that were

determined by informally matching to a set moments that do not identify model features

influenced by conditional heterogeneity.

The reasons that Bansal, Gallant, and Tauchen had to suppress GARCH in their auxil-

iary model are twofold. Observable data rather than prior information are used to achieve

identification despite concerns for its quality thereby creating the need for a four dimensional

series. The data (n = 72) are too sparse to support a GARCH specification in four dimen-

sions as discussed earlier in Subsection 5.4. We, on the other hand, have no such difficulties

because we are fitting to large simulations, not to data.

Conceptually, substituting a VAR statistical model for the GARCH statistical model in

our Bayesian analysis amounts to the imposition of a sharp prior that zeros out all but

the constant term of the GARCH variance function (4). It is of interest to view the shift

that this sharp prior imposes on marginal posteriors. These are shown as Figure 4 for θ =

(g, r11, r21, r22, φ, δ, γ) and as Figure 5 for (E(rf ),
√
Var(rf ), E(rd),

√
Var(rd)). Elimination

of the requirement that the habit model confront the conditional heterogeneity in the data

results in a dramatic left shift in the marginal posterior of E(rd) and a dramatic variance

reduction in the posterior for
√
Var(rd). This, following the logic of Section 4, can be regarded

as strong evidence against the VAR specification of the statistical model.

Figure 6 about here

It is also of interest to note that it is the preference parameters (φ, δ, γ) of the scientific

model that control the GARCH parameters (ρ11, ρ21, ρ31, ρ12, ρ22, ρ32, τ) of the statistical

model with γ having by far the most influence. This can be discovered by inspecting the
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map g : θ 7→ η but is best seen by inspecting plots of the conditional correlation between

annual stock returns and consumption growth for the year 2002 against the parameters

θ = (g, r11, r21, r22, φ, δ, γ) of the scientific model as are shown in Figure 6.

The conditional correlation is a functional of the statistical model f(·|·, η) determined by

the map η = g(θ) and computed by applying the GARCH recursion (4) to the data. The

last variance matrix given by the recursion is the conditional variance for the year 2002. The

dots show the conditional correlation when the statistical model is GARCH and the circles

when VAR. The difference between these two curves is the GARCH effect. In each panel, a

θi is varied and the remaining θ held fixed at their posterior means. The solid vertical line

is the posterior mean of θi when the statistical model is GARCH and the dashed line when

VAR. The point where the solid line crosses the dots gives the conditional correlation when

η = g(θ) is evaluated at the posterior mean under GARCH; similarly VAR for the dashed

line and circles.

5.6 Model Assessment: Scientific Prior Relaxed

We now apply the methodology described in Section 4 to the habit model.

The functionals of interest are the mapping Υ1 of f(·|·, η) to the mean return on the

stock portfolio over the period 2002–2102 and the mapping Υ2 to the conditional correlation

between the return on the stock portfolio and consumption growth for the year 2002. The

conditioning event for both functionals is the 73 years of observed data. Υ1 is computed

from a realization obtained by simulating the GARCH model over the period 2002–2102; Υ2

is obtained from the variance matrix for the year 2002 computed as described at the end of

Subsection 5.5. Both depend on the data and η; Υ1 also depends on an initial seed that was

the same for each η.

Figure 7 about here

Using the methods proposed in Section 4, we computed MCMC chains for three values

of κ (1,20,100). The stationary distribution of each chain is the posterior for η under prior

κ. We then evaluated the two functionals (Υ1,Υ2) at each η in the chain and plotted their

densities in Figure 7. κ increases as we go down the rows. The left hand panels show prior
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and posterior densities for the mean return and the right hand panels display the same for

the correlation. The top right hand panel and the middle right hand panel are analogous to

the two right hand panels of Figure 2. For small κ, we have a tight prior and the prior and

posterior are similar (compare upper left hand panel of Figure 7 to Figure 5).

For larger κ, the posterior shifts. We are all familiar with the meaning of a correlation

and can agree that in the three right hand plots the posterior distribution of the correlation

shifts dramatically as κ increases while the prior remains reasonable. As κ increases we

place less weight on η close to the scientific model and the posterior shifts. This gives clear

evidence against the scientific model in a simple, interpretable way. (The correlation also

has substantive meaning because a high positive correlation implies that risk averse investors

will require high expected returns to induce them to invest.)

The mean stock return, unlike a correlation, has a purely substantive meaning without

having an independent statistical meaning. Nonetheless, coping with retirement plan options

and the laws governing bequests has the made the notion of a mean return over a long

planning horizon meaningful to most of us. For the mean return, we also see that as κ

increases, the distribution shifts. The posterior mean of the mean return over the hundred

year horizon is 0.1 in the top left panel and 0.08 in the bottom left so that while the shift

may not appear as dramatic as for the correlation functional it is substantively large. Also,

the standard deviation increases from 0.0127 to 0.0172. In the context of the asset pricing

literature, this is strong substantive evidence against the scientific model.

Figure 7 focuses on the marginal priors and posteriors of two particular functionals of

interest. Of course, as κ changes, the entire sixteen dimensional prior and posterior of η is

changing. To get a sense of how the posterior is moving, we consider each κ as a choice of

model and compute the posterior probability for the different models using the Newton and

Raftery (1994) method.

Table 2 about here

The simple version of the Newton-Raftery method which we have employed uses the

harmonic mean of the likelihoods of the η visited by each MCMC chain (for each κ). This

method is known to have poor numerical properties and the values may have substantial
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error. We take the values in Table 2 as a simple summary of the basic fact that as we loosen

up the prior and allow the posterior to move away from the scientific manifold, it is able

to find much higher likelihoods. This is fairly strong statistical evidence against the habit

model but many of the contributors to the asset pricing literature attach little weight to

general statistical tests of this nature and are far more likely to be persuaded by Figure 7

than by Table 2.

6 Conclusion

We considered a consumption based asset pricing model that uses habit persistence to over-

come the known statistical inadequacies of the classical consumption based asset pricing

model. We found that the habit model fits reasonably well and agrees with results reported

in the literature if conditional heterogeneity is suppressed by a sharp prior but that it does

not fit nor do results agree if conditional heterogeneity is allowed to manifest itself. We

also found that it is the preference parameters of the model that are most affected by the

presence or absence of conditional heterogeneity, especially the risk aversion parameter.

To obtain these results we proposed and implemented a general purpose Bayesian method-

ology for the analysis of complex models from the sciences. It relies on the ability to simulate

from the scientific model, upon the availability of substantive prior information, and upon

the willingness to use that prior information. Analysis is carried out by means of a richly

parameterized statistical model f(·, η) that is viewed as being the correct description of the

distribution of the data. The scientific model is viewed as imposing a severe prior πκ(η)

on the statistical model and the proposed methodology directly implements this view. The

correctness of the scientific model is assessed by relaxing πκ(η) and assessing the posteriors

of scientifically meaningful functionals of f(·, η). If location does not change more than sci-

entifically meaningful magnitudes as πκ(η) is relaxed, then the model is supported. If scale

increases as πκ(η) is relaxed, then the model has empirical content.

In empirical investigations, scientists often use methods that are more like a subjective

calibration of models wherein model parameters are adjusted so that statistics from model

simulations subjectively match statistics computed from data. One might say that what is

proposed here is akin to calibration in spirit but rather than being totally ad hoc is conducted

29



within a coherent philosophical framework.
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Table 1. Parameter Estimates

Parameter EMM Estimates Bayes-VAR Bayes-GARCH

Monthly Estimate Std. Err. Mode Mean Std. Dev. Mode Mean Std. Dev.

g 0.002116 0.000250 0.001639 0.001739 0.000258 0.001803 0.001780 0.000684

ψ11 0.006151 0.000896
ψ22 0.036503 0.007716
ρs 0.971900 0.015449
µdc -3.3587 0.0380

r11 0.006753 0.007326 0.000627 0.007254 0.007417 0.001903
r12 0.001350 0.001451 0.000403 0.001350 0.001336 0.001068
r22 0.003125 0.008109 0.006205 0.003125 0.018852 0.034435

φ 0.9853 0.0026 0.9861 0.9857 0.0024 0.9804 0.9818 0.0095

δ 0.9939 0.0005 0.9955 0.9937 0.0030 0.9898 0.9907 0.0070
γ 0.8386 0.2462 0.5726 0.9463 0.6179 1.0744 1.1747 1.7638

Annualized Estimate Std. Err. Mode Mean Std. Dev. Mode Mean Std. Dev.

g 2.539 0.0866 1.9672 2.087 0.0895 2.164 2.136 0.2369

σ 2.1308 2.3857 2.5870 0.2202 2.5589 2.6106 0.2513
ρ 0.1650 0.1960 0.1943 0.0508 0.1830 0.1773 0.0507
σw 12.9118 1.0825 2.8090 2.1496 1.0825 6.5306 4.4984

φ 0.8372 0.0090 0.8450 0.8412 0.0084 0.7890 0.8023 0.0328

δ 0.9292 0.0018 0.9477 0.9269 0.0102 0.8845 0.8934 0.0244
γ 0.8386 0.2462 0.5726 0.9463 0.6179 1.0744 1.1747 1.7638

E(ra
dt) 6.54 6.00 7.58 0.6930 11.14 10.45 0.5487

SDev(ra
dt) 16.9 20.49 21.48 1.5343 24.22 26.14 2.4735

E(ra
ft) 1.07 1.20 1.16 0.1389 1.21 0.99 0.1451

SDev(ra
ft) 3.23 0.33 0.27 0.1388 0.42 0.38 0.1489

χ2(5) = 7.11 (0.21) reps = 800, 000 by 8 reps = 800, 000 by 8

Note: EMM estimates, from Bansal, Gallant, and Tauchen (2004), use data on the price dividend ratio

and the consumption dividend ratio in addition to consumption growth and stock returns. EMM estimates

impose E(ra
f ) = 0.89% and cointegration among consumption, dividends, and price. Variance parameters

relate as

Var

(

ct − ct−1

dt − dt−1

)

=

(

σ2 ρ σσw

sym σ2
w

)

=

(

r211 + r
2
12 r12r22

sym r222

)

=

(

ψ2
11 ψ2

11

sym ψ2
11 + 2ψ

2
22(1− ρs)

−1

)

where EMM parameters µdc, ρs, and ψ22 are the location, autoregressive, and scale prameters of the coin-

tegration relation between ct and dt. In the data, the mean of r
a
d is 6.02% and the standard deviation is

19.29%; for consumption growth the values are 1.95% and 2.24%. The mode of θ = (g, σ, ρ, σw, δ, γ) is the

mode of the multivariate posterior. All standard deviations are from marginal posteriors.
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Table 2. Posterior Model Probabilities

κ Model Probability

0 1.906874e-10
1 1.909023e-07
5 1.260361e-06
10 3.408552e-05
15 8.800083e-05
20 0.003628554
50 0.3379201
100 0.6583278
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Figure 1. Priors and posteriors for the statistical model, tinker toy example.

The the dotted lines are contours of the likelihood of the statistical model f(y|x, η) of the
tinker toy example. The line is the prior on η determined by the implied map η = g(θ) from

the parameters θ of scientific model p(y|x, θ) to the parameters η of the statistical model.
In the left panels the scientific model is true, in the right it is false. The thickness of the

line is proportional to the posterior of η. The prior π(η) can be relaxed as indicated by the

shading. The lower panels are more relaxed than the upper. The solid contours show the

posterior under the relaxed prior. Relaxation causes the contours to enlarge in all cases.

When the scientific model is false, the posterior shifts in search of the likelihood.
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Figure 2. Priors and posteriors for a functional of the statistical model, tinker

toy example. The posterior of the coefficient of variation for the tinker toy example is the

solid line; the dashed line is prior. In the left panels the scientific model is true, in the right

it is false. The prior is more relaxed in the lower panels than it is in the upper panels. The

panels correspond to those of Figure 1
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Figure 3. η Chain for the habit model. Ten successive runs of the η chain. Each run is 200

iterations. The log-likelihood of the simulated data set is plotted on the vertical axis. Vertical

bars mark where θ changes. Jumps are because {ŷt}N
t=1 changes at each vertical bar.

38



0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

g

0.006 0.008 0.010 0.012

R11

−0.001 0.000 0.001 0.002 0.003 0.004

R12

0.00 0.02 0.04 0.06 0.08

R22

0.965 0.970 0.975 0.980 0.985 0.990

phi

0.975 0.980 0.985 0.990 0.995 1.000

delta

0 2 4 6

gamma

Figure 4. Density of the MCMC chain for θ. Shown is a kernel density estimate

from iterates 1 to 800,000 by 8 of the MCMC chain for θ = (g, r11, r12, r22, ψ, δ, γ) at

the monthly frequency.
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Figure 5. Density of the MCMC chain for Returns. Shown is a kernel density

estimate of iterates 1 to 800,000 by 8 of the MCMC chain for E(rf ),
√
Var(rf ), E(rd),

and
√
Var(rd) at the monthly frequency.
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Figure 6. Conditional Correlation. The conditional correlation between annual consumption

growth and stock returns for 2002 plotted against scientific model parameters θ = (g, r11, r21, r22,

φ, δ, γ) as determined from the map g : θ 7→ η. Dots are for the GARCH statistical model; circles

for the VAR. The solid vertical line is the GARCH posterior mean and the dashed VAR.
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Figure 7. Priors and posterior for two functionals of the statistical model,

habit model example. The statistical model is a bivariate GARCH model on annual

consumption growth and stock returns. The scientific model is a habit persistence asset

pricing model. The data covers 1929–2001. The left panels are the mean stock return

for the period 2002–2102 implied by the GARCH model. The right panels are the

conditional correlation between stock returns and consumption growth implied by the

GARCH model for the year 2002. The prior is more relaxed in the lower panels than

it is in the upper panels.
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