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The log utility function is widely used to explain asset prices. It

assumes that both the elasticity of substitution and relative risk

aversion are equal to one. Here I show that much of the same predictions

about asset prices can be derived from a time-non-separable expected

utility function that assumes an elasticity of substitution close to

unity but does not impose restrictions on risk aversion to bets in terms

of money.
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1. INTRODUCTION

Since the discovery of the risk premium puzzle by Mehra and

Prescott (1985) there has been a lot of debate about the magnitude of

risk aversion. In his presidential address Lucas (2003) followed Mehra

and Prescott in using the standard power utility function: β tU(Ct )t
∑

where U(C) = C1−γ
/(1-γ) for γ ≠  1 and U(C) = ln(C) for γ = 1. He argues

for a coefficient of γ = 1 (the logarithmic function) by using the

formula (Equation [6] in Lucas [2003] derived for the power utility

function):

(1)  r = rs + γg,

where r is the interest rate, g is the growth rate of consumption,

rs = 1/β - 1 is the subjective interest rate and γ is the parameter of

the power utility function. Lucas argues that "...this formula makes it

clear why fairly low γ values must be used. Per capita consumption

growth in the United States is about 0.02 and the after-tax return on

capital is around 0.05, so the fact that the subjective interest rate

must be positive requires that γ be at most 2.5. Moreover, a value as

high as 2.5 would imply much larger interest rate differential than

those we see between fast-growing economies like Taiwan and mature

economies like the United States. This is the kind of evidence that

leads to the use of γ values at or near 1 in applications."3

                        

3 Pages 6 and 7 in Lucas (2003) with some modifications due to

difference in notation.
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The log utility function (defined for the case γ = 1) has both a

relative risk aversion of 1 and an elasticity of substitution of 1. Here

I argue that it is enough to assume that the elasticity of substitution

is close to one without worrying too much about the taste towards bets

in terms of money. The analysis here is particularly useful for people

who are not sure how much the representative consumer is willing to pay

to avoid an actuarially fair bet on say 1% of his wealth but are willing

to commit to an elasticity of substitution of unity. It is also useful

for someone who is not willing to commit to an elasticity of unity but

wants to assess the relative importance of the magnitude of risk

aversion on asset prices.

I start with a monotonic transformation of the intertemporal log

(IL) utility function: The intertemporal Cobb-Douglas (ICD) utility

function. This function has the same implications about the return on

the market portfolio as the intertemportal log (IL). But the ICD utility

function allows us to change the attitude towards bets in terms of money

(risk aversion) without changing the elasticity of substitution. We can

therefore examine the "net" effect of changes in risk aversion on asset

prices and risk premia.

It is shown that changes in risk aversion towards money bets do

not affect the expected rate of return on the market portfolio and have

only a small effect on risk premium. It is also shown that risk premium

does not require risk aversion.

I then consider a closely related function: The intertemporal

constant elasticity (ICE) function. It is shown that when the elasticity

of substitution is close to unity, the predicted rate of return on the

market portfolio is the same as under the ICD and IL functions and the
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rate of return on the market portfolio does not depend on risk aversion.

But unlike the ICD function here also the risk premium does not depend

on risk aversion.

 The analysis here builds on work of Kihlstrom and Mirman (1974)

and on my own work (Eden [1977, 1979]). Kihlstrom and Mirman show that

with the Cobb-Douglas utility function risk and the attitude towards

risk do not affect savings. This leads to the result that risk does not

affect the return on the "market portfolio". Their article still leaves

open the questions of the effect of risk and risk aversion on risk

premium.

In Eden (1977, 1979) I argue that insurance type phenomena does

not require risk aversion and use the Cobb-Douglas utility function to

account for the behavior of a gambler who buys insurance. Here I use the

same line of reasoning to show that risk premium does not require risk

aversion.

To understand why risk premium does not require risk aversion to

money bets it is useful to distinguish between aversion to fluctuations

and aversion to risk. I now turn to this issue.

2. FLUCTUATIONS AVERSION AND RISK AVERSION

Would you prefer a smooth consumption path to a path that

fluctuates around the same mean? In terms of Figure 1 the smooth

consumption path a promises 3 units of consumption in every period. The

fluctuating consumption path d starts from 3.5 units and then fluctuates

between 3.5 and 2.5. If you prefer the path a then a time separable

utility function predicts that you will also prefer a smooth consumption
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path of 2 (e in Figure 1) to a bet between a smooth consumption path of

3 and a smooth consumption path of 1 (a and b in Figure 1). In the time

separable utility function aversion to fluctuations implies aversion to

risk.

Figure 1

But aversion to fluctuations may have nothing to do with aversion

to risk. It is possible that a consumer does not like fluctuations

because they require changes in durables. To implement the path d one

needs to change his house every period or to suffer from a mismatch

between his house size and other components of consumption. In addition

there are some irreversible choices (like the number of children) that

have to be made early on (in most cases). For example, when facing a

smooth consumption path one may choose to have 1 child if his permanent

consumption is 1, 2 children if his permanent consumption is 2 and 3

children if his permanent consumption is 3. When facing the fluctuating

consumption path d he may choose to have 3 children but may not enjoy

them as much because they will complain whenever his consumption level
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drops to 2.5 and he has to cut on say the number of movies that they go

to.

On the other hand if after a lottery between a and b he gets to

know his permanent consumption early on he will make the optimal choice

of the number of children: He will choose one child if his permanent

consumption turns out to be 1 and 3 children if it turns out to be 3.

A consumer may thus show aversion to fluctuations but not aversion

to risk. This leads to the result that risk premium does not require

risk aversion. A consumer who does not like fluctuations does not like

uncertainty about his future income and the return on assets. But

nevertheless he may be willing to accept bets that are resolved before

any irreversible consumption choices are made.4

3. BETS IN TERMS OF MONEY AND BETS IN TERMS OF CONSUMPTION

I distinguish between measures of risk aversion to bets in terms

of dated consumption and measures of risk aversion to bets in terms of

money. Bets in terms of money (wealth) are resolved immediately before

any irreversible consumption choice is made. Introspections about money

bets require an assumption about borrowing and lending opportunities.

Bets in terms of dated consumption require a different thought

experiments. We start from a non-random consumption path and then

consider a bet that makes date t consumption a random variable holding

                        

4 A related argument is in Postlewaite, Samuelson and Silverman (2004).

They show that consumption commitments can cause risk neutral agents

to care about risk, creating incentives to both insure risks and bunch

uninsured risks together.
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consumption at all dates other than t constant. The attitude towards

this type of bets does not require any assumption about borrowing and

lending. But introspection seems more difficult.

The distinction between the two types of bets can be illustrated

with the help of Figure 2 that assumes a two-period horizon (t = 0,1)

and a zero interest rate. The maximum utility that the consumer can get

when having the wealth 9, 10 or 11 is a, e and b respectively, where I

use these letters to denote numbers (the level of cardinal

satisfaction). From observing the indifference map we know that:

a < e < b. But we do not know by how much. The consumer will prefer a

wealth of 10 with certainty to a random wealth {9 or 11 with equal

probabilities} if e > (1/2)a + (1/2)b. This will occur for example, if

a = 2, e = 9 and b = 10. Otherwise, he will prefer the bet (if for

example, a = 8.5, e = 9 and b = 10).

A bet in terms of second period consumption assumes that the level

of first period consumption is fixed. For example, in Figure 2 a bet in

terms of future consumption (that is of the same size as the money bet

just described) has the outcomes {4 or 6}.
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Figure 2

It is clear that the consumer will prefer the money bet {9, 11} to

the future consumption bet {4, 6}. But the two bets are of different

relative size. The money bet is on 10% of wealth. The consumption bet is

on 20% of consumption. The question is whether the consumer will prefer

a money bet on x% of wealth to a consumption bet on x% of consumption.

To answer this question I compare the relative risk aversion measures to

the two kinds of bets. I start by showing that in the time separable

case the coefficient of relative risk aversion is the same for the two

kinds of bets.

I assume a T+1 periods horizon. The consumer single period

strictly concave utility function is U(C) and the discount factor is

0 < β ≤ 1. The consumer can lend and borrow at the gross interest rate
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R = 1/β. The consumer's problem when starting with the wealth w is:

(2) V(w) = maxCt
 β tU(Ct

t= 0

T

∑ ) s.t. R−tCt

t= 0

T

∑  = w.

The attitude towards bets in terms of money is determined by the

property of the value function V(w).  The solution to (3) is:

Ct = kw, for all t where k = 1/ R−t

t= 0

∑ . Therefore:

(3) V(w) = β tU(kw)
t= 0

T

∑  = U(kw) β t

t= 0

T

∑ = U(kw)/k

Taking derivatives leads to:

(4) V''(w)w/V'(w) = U''(kw)(kw)/U'(kw) = U''(c)c/U'(c)

Thus under the time separable utility function, the relative risk

aversion for bets in terms of money is the same as the relative risk

aversion to bets in terms of consumption (at any date). An immediate

implication is that relative risk aversion to money bets does not depend

on age: When the individual advances with age, the horizon, T+1, gets

shorter but consumption per period does not change and therefore

relative risk aversion does not change.

I now turn to show that the above result is special to the time-

separable case.
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4. THE ATTITUDE TOWARDS RISK UNDER THE COBB-DOUGLAS FUNCTION

I now turn to the following utility function:

 (5) U(C1,...,CT; α) = (1/α) (Ct

t= 0

T

∏ )αβ t

, α ≠ 0 (ICD)

U(C1,...,CT; α) = β t ln(Ct

t= 0

T

∑ ), α = 0  (IL)

where T+1 is the horizon, 0 < β ≤ 1 is the discount factor, and

α < 1 is a parameter that determines the relative risk aversion to

money bets (RAM).

To study the attitude towards risk implied by (5) I define the

value function:

(6) V(w) = max U(C1,...,CT; α) s.t. R−tCt

t= 0

T

∑  = w.

As before I assume R = 1/β and therefore the solution to the

maximization problem in (6) is Ct = kw and the value function is:

(7) V(w) = (1/α) (kw)
α β t

t=0

T

∑
 , (ICD)

V(w) = ln(kw) β t

t= 0

T

∑ ,  (IL)

The coefficient of relative risk aversion to bets in terms of

money (RAM) is:



                                    11

 (8)  - V''(w)w/V'(w) = 1 - α β t
t= 0
T∑  , (ICD)

- V''(w)w/V'(w) = 1,   (IL)

The coefficient of relative risk aversion to bets in terms of

consumption (RAC) is:

(9) -UttCt/Ut = 1 - α β t
,  (ICD)

-UttCt/Ut = 1,  (IL).

Comparing (8) to (9) we see that when the utility is not time

separable the measure of risk aversion to proportional bets in terms of

money is different from the measure of risk aversion to proportional

bets in terms of consumption. Note that the assumption α < 1 insures

RAC > 0.

RAM and age:   In the ICD case RAM changes with age. At age τ,

RAM = 1 - 1 - α β t
t=τ
T∑ . When α > 0, RAM increases with age reaching a

maximum of 1 - α in the last period of one's life. When α  < 0, RAM

decreases with age reaching a minimum of 1 - α in the last period of

one's life. When α approaches zero RAM approaches 1 (the log utility

case). Thus, a prior about the way the RAM coefficient changes with age

may help us in choosing the parameter α. My own introspection suggests

α > 0 and RAM < 1. But as we shall see in the following sections this
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parameter is not important for understanding asset prices and therefore

there is not much reason to argue about it.

5. A TWO PERIODS SINGLE TREE ECONOMY

I now turn to assess the importance of the RAM coefficient for

understanding asset prices - the question in the title. I start with a

simple version of Lucas (1978) tree economy. There is a representative

consumer who lives for two periods. He is born with an endowment of a

tree that yields y units of consumption in the first period of his life

and ds units in the second period state s. After the first period

dividends are distributed there is a market for trees. The price of a

tree is p and the representative consumer chooses (in the first period

of his life) present consumption (C0) and the amount of trees (A)

subject to the budget constraint:

(10) C0 + pA = y + p

Consumption in the second period in state s is given by:

(11) C1s = Ads

Substituting (10) into (11) leads to: C1 = d(y + p - C0)/p. The consumer

chooses C0 to solve:

(12) maxC0  Πss=1

S

∑ U[C0, ds(y + p - C0)/p],
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where Πs is the probability of state s. The first order condition to

(12) is:

(13) Πss=1

S

∑ (U0s - U1sds/p) = 0

where U0s = ∂U(C0, C1s)/∂C0 and U1s = ∂U(C0, C1s)/∂C1s.

The ICD-IL case:

We now assume the Cobb-Douglas case: U(C0, C1) = (1/α)(C0)
α (C1)

δ
, where

δ = αβ. In this case:

(14) U0s - dsU1s/p = (1/α)
α
C0

−
δ

y + p −C0

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ (C0)

α (y + p −C0)ds
p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

δ

Therefore the first order condition (13) requires

α
C0

−
δ

y + p −C0

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜  = 0 and C0 = α(y+p)/(α+δ).

To solve for p we substitute the market clearing condition C0 = y

in C0 = α(y+p)/(α+δ). This leads to:

(15) p = (δ/α)y = βy.

The asset pricing formula (14) can also be obtained for the IL

case. The rate of return on the asset is:

(16)  D/p = D/βy = G/β,
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where D = Πss=1

S

∑ ds is expected dividends and G = 1 + g = D/y is the

expected gross rate of growth of consumption. Since (8) implies

RAM = 1 - α(1 + β), varying α will change it without affecting the

expected returns on the asset. We have thus shown,

Claim 1  : When the representative agent's utility function is ICD-IL, the

expected rate of return on the asset does not depend on the RAM measure

of relative risk aversion and does not depend on the variance of the

return. It depends only on the expected rate of growth in consumption

(G) and the time preference parameter β.

Claim 1 is generalized in the Appendix to the finite horizon case

and to any monotonic transformation of the ICD utility function. Since a

monotonic transformation does not change the intertemporal elasticity of

substitution (IES) we conclude that IES = 1 leads to (15).

6. A TWO PERIODS MANY ASSETS ECONOMY

I now turn to the many assets economy. I endow the representative

agent with n trees. These n trees yield a total of y units of

consumption (fruits) in the first period. Tree i yields dis units in the

second period in state s. The budget constraint of the representative

agent is now:

(16) C0 + pii=1

n

∑ Ai = y + pii=1

n

∑
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(17) C1s = disi=1

n

∑ Ai

The agent problem is:

(18) maxAi  E{U(C0, C1)} s.t. (16) and (17).

Substituting the constraints in the objective function we can write (18)

as:

(19) maxAi ΠsU(y + pii=1

n

∑ − pii=1

n

∑ Ais=1

S

∑ , disi=1

n

∑ Ai)

The first order condition for this problem is:

(20)  Πs(−U0spi +U1sdiss=1

S

∑ ) = 0

I use Ds = disi=1

n

∑  for the aggregate dividends. I also assume that we can

write the dividends of asset i in state s as a linear function of Ds:

(21)  dis = ai + biDs + eis,

where eisi=1

n

∑  = 0 for all s; bii=1

n

∑  = 1 and aii=1

n

∑ = 0. We assume that the

error terms eis is determined by a zero sum purely distributive lottery,

has zero mean and is independent of Ds. A riskless asset is an asset

with non-random dividends. The market portfolio is an asset for which

dis = Ds. The assumption about the error terms insures that the expected

return on an asset with bi = 0 is the same as the return on a riskless

asset and the expected return on an asset with ai = 0 is the same as the
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expected returns on the market portfolio. I now show this for the ICD

case.

The ICD case:

We now turn to the ICD case: U(C0, C1) = (1/α)(C0)
α(C1)

δ. Using  the

first order condition (20) and the market clearing conditions C0 = y and

C1s = Ds, we arrive at the equilibrium condition:

(22) Πs{−pis=1

S

∑ ( disi=1

n

∑ )δ αyα−1 + disδ( disi=1

n

∑ )δ −1yα} = 0

Substituting (21) into (22), rearranging and using the assumption that

ei does not depend on D, leads to:

 (23) pi = βy
Πss=1

S

∑ dis(Ds)
αβ −1

Πss=1

S

∑ (Ds)
αβ

= βy
Πss=1

S

∑ (ai + biDs)(Ds)
αβ −1

Πss=1

S

∑ (Ds)
αβ

When ai = 0, pi = βbiy. For this asset, dis/pi = (biDs + eis)/βbiy. Taking

expectations leads to the following Claim.

Claim 2:   The rate of return on an asset that its dividends are

proportional to the aggregate dividends (ai = 0) is G/β.

I now turn to show that risk premium does not require risk

aversion.

Claim 3:   When δ < 1, the rates of return on all assets with bi = 0 is

the same and is less than G/β.
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Note that when δ = αβ < 1 the coefficient of risk aversion

RAM = 1 - α(1 + β) may be positive or negative. For example if β = 1 and

α = 0.5 then RAM = 0.

Proof:   The rate of return on asset i is:

(24) (ai + biDs + eis) / pi = (1/βy)(ai + biDs + eis)G(ai,bi),

where G(ai,bi) =
1

bi + ai Πss=1

S

∑ (Ds)
δ −1 / Πss=1

S

∑ (Ds)
δ
 is a non linear term. Since

we assume δ < 1, the covariance between D and Dδ −1
 is negative and

(25) G(1, 0) = 
Πss=1

S

∑ (Ds)
δ

Πss=1

S

∑ (Ds)
δ −1

=
Πss=1

S

∑ (Ds)
δ −1Ds

Πss=1

S

∑ (Ds)
δ −1

=
Cov(Dδ −1,D)

Πss=1

S

∑ (Ds)
δ −1

+ Πss=1

S

∑ Ds

< Πss=1

S

∑ Ds.

Substituting this in (24) and taking expectations leads to the

conclusion that the expected rate of return on any asset with bi = 0 is

less than G/β. �

 The intuition is in the observation that when δ < 1,

RAC = 1 - δ > 0 and the representative consumer is averse to uncertainty

about future consumption. He will therefore hold the market portfolio

rather than the risk free asset only if there is a risk premium.

For the log case the asset pricing formula is given by:

(26) pi = βy Πss=1

S

∑ dis /Ds
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and can be obtained as the limit of (23).

I now turn to a numerical example. It is assumed that the rate of

growth in aggregate dividends (consumption) is 1 or 1.04 with equal

probabilities and β = 1. I consider three assets and use the following

notation:

Rb = the return on an asset with ai = 1 and bi = 0 (the risk free

return);

R1 = the return on an asset with ai = 0 and bi  = 1 (the market

portfolio);

R2 = the return on an asset with ai = - 2 and bi  = 3.

As we can see from Table 1 the rate of return on the market

portfolio R1 does not depend on the RAM coefficient and is equal to

G/β = 1.02 in our example. The rate of return on the risk free asset is

lower and the difference (the risk premium) increases with RAM.

Table 1: Rates of Returns under the ICD-IL utility function (β = 1)

RAM

= 1−2α

R1

ai = 0; bi = 1

di={1,1.04}

R2

ai=-2;bi=3

di={1,1.12}

Rb

ai=1; bi=0

di={1,1}

R1 - Rb R2 - Rb

0 1.02 1.0204 1.0198 0.0002 0.0006

1 1.02 1.0207 1.0196 0.0004 0.0011

3 1.02 1.0215 1.0192 0.0008 0.0023

10 1.02 1.0241 1.0179 0.0021 0.0062
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The risk premium seems small and changes in RAM do not affect

asset prices by much. I now turn to examine the robustness of this

conclusion for a different utility function that also implies IES = 1

and for a utility function that allows for changes in IES.

"Ordinal certainty equivalent preferences":

Selden (1978) has proposed a non-expected utility function that

separates between the elasticity of substitution and risk aversion.

Kreps and Porteus (1978) and Epstein and Zin (1989) have extended

Selden's analysis to the multi-period case in a time-consistent manner.

I now show that when IES = 1, Selden's procedure may be observationally

equivalent to the ICD-IL utility function.

Selden evaluates consumption paths in two stages. He first uses a

"certainty equivalence function" to substitute a certainty equivalent

for the random future consumption and then an "aggregator function" to

evaluate current consumption and the certainty equivalence of future

consumption.

To illustrate, let C denotes current consumption and x denotes a

random future consumption. The consumer first uses the certainty

equivalence function µ to convert x to a scalar: Z = µ(x). He then uses

the aggregator function G(C, Z) to evaluate the consumption path. In

this formulation IES is determined by the properties of the aggregator

function G while RAC is determined by the properties of the certainty

equivalence function µ.

I now turn to the special case:
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(27) G(C, Z) = log(C) + log(Z);  Z = (Exσ )1/σ  where 0 ≠ σ < 1.

In (27) the aggregator function is logarithmic and as in Epstein

and Zin (1991), the certainty equivalence function is of the CES type.

For the single asset case, the consumer's problem is:

(28)  maxA log(y + p - pA) + β log{[ Πss=1

S

∑ (DsA)
σ ]1/σ }

The first order condition for this problem is (15). Thus as in the log

expected utility case the price of the asset depends only on current

dividends (p = βy) and not on the certainty equivalent of future

consumption. Therefore risk aversion and aggregate risk do not affect

the price of the asset and the expected return.

For the many asset case, the consumer problem under Selden's

utility function is:

(29)  maxAi log[y + pii=1

n

∑ − pii=1

n

∑ Ai] + β log{[ Πss=1

S

∑ ( disi=1

n

∑ Ai)
σ ]1/σ }

The equilibrium prices (which we obtain after substituting Ai = 1 and in

the first order conditions) are:

(30) pi = βy
Πsdiss=1

S

∑ (Ds)
σ −1

Πss=1

S

∑ (Ds)
σ

This is exactly the formula (23). We have thus shown the following

Claim.
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Claim 4:   The Selden-Epstein-Zin utility function (27) and the ICD

utility function are observationally equivalent (in the sense that they

both yield the same asset prices) when σ = αβ.

Under the ICD utility function the relative risk aversion measure

for bets in terms of second period consumption is: RAC = 1 - αβ. Thus we

may interpret the coefficient σ in (27) as a measure of RAC. We may also

use Table 1 to get the predictions of (27) about asset returns.

Note that RAC = 1 - βα = (RAM + 1/β)/(1/β + 1). Therefore a unit

change in RAC is equivalent to roughly 2 units change in RAM and this

will make the RAC measure of risk aversion look more important than our

RAM measure. For example, in Table 1 with β = 1, RAM varies from 0 to 10

while RAC varies from 0.5 to 5.5.

7. THE CONSTANT ELASTICITY FUNCTION

When we change the parameter in the power utility function we get

a relatively large effect on asset prices. Is the effect due to the

implied change in risk aversion or the implied change in the elasticity

of substitution? To discuss this question I introduce now an

intertemporal constant elasticity (ICE) utility function that allows for

a separation between the RAM and the IES. I now assume:

(31) U(C0, C1) = (1/ψ)[(C0)
ρ + β(C1)

ρ ]ψ /ρ .

where ρ < 0 and the elasticity of substitution 1/(1 - ρ) is less than

unity. There are difficulties in extending the ICE utility function to
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many periods. These difficulties are discussed in Appendix D where it is

argued that the difficulties may not be severe when IES is close to

unity.

To interpret the coefficient ψ in (31) I consider the problem

under certainty:

(32)  V(w) = max (1/ψ)[(C0)
ρ + β(C1)

ρ ]ψ /ρ  s.t. C0 + C1/R = w,

where R = 1/β is the gross interest rate. The solution to (32) is the

smooth consumption: C0 = C1 = kw, where k = R/(R + 1). Substituting the

solution in (32) leads to:

(33)  V(w) = (1/ψ)(1+ β)ψ /ρ (kw)ψ

It follows that:

(34)  - V''(w)/V'(w) = 1 - ψ.

Thus, ψ is the parameter that governs the RAM coefficient. I now turn

to the single asset case. Under the ICE utility function, the first

order condition (13) is:

(35) p = βy1−ρ
Πss=1

S

∑ [y ρ + β(ds)
ρ ]ψ /ρ−1(ds)

ρ

Πss=1

S

∑ [y ρ + β(ds)
ρ ]ψ /ρ−1

Thus when the elasticity of substitution is different from unity

the price does depend on the RAM parameter ψ.
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Note that when ρ is small (35) is close to (15). Thus,

Claim 5:   The ICE predicted asset price (35) is approximately equal to

the ICD-IL predicted price (15) when ρ is close to zero (and IES is

close to 1).

This says that when IES is close to unity the ICE utility function

and the ICD-IL utility function have the same predictions about the

asset price. I now turn to make the connection with the standard utility

function.

 The standard power (SP) utility function is:

(36) U(C0, C1) = (1/ρ)[(C0)
ρ + β(C1)

ρ ] , ρ < 0.

 

Also here IES = 1/(1 - ρ). I restrict ρ < 0 to facilitate the

comparison with the ICE function. Under SP the first order condition

(13) is:

(37) p = Πss=1

S

∑ U1sds/U0 = βy1−ρ Πss=1

S

∑ (ds)
ρ

Comparing (37) to (35) leads to the following Claim.

Claim 6:   The ICE utility function with ψ close to zero (RAM close to

unity) yields approximately the same predicted asset price as the

standard power utility function with the same ρ (IES) parameter.
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This Claim says that if we accept RAM = 1 we may work with

standard power utility function to study the effect of variations in IES

on the asset's price. It also allows us to interpret a change in the

coefficient of SP as a change in IES rather than a change in RAM. Since

(1) implies that a change in the parameter of SP has a large effect on

the price of the asset (the interest rate) we may say that under (31)

this change occurs because of the implied change in IES. I now turn to a

numerical example.

Example:   I assume that G is a random variable that can take two possible

realizations: 1 and 1.04 with equal probabilities. Table 2 calculates

the gross rate of return (D/p) for alternative values of the elasticity

of substitution parameter and the risk aversion parameter. In this

example, changes in the elasticity of substitution have a large effect

on the gross expected interest rate while changes in risk aversion have

a relatively small effect. We also note that when the elasticity of

substitution is less than one, the expected rate of return on the asset

decreases with the RAM coefficient. The predictions of the standard

power utility function are in the columns with RAM = 1.

Table 2*: The ICE utility function: (D/p) as a function of IES and RAM

(β = 1)

IES\RAM RAM = 0 RAM = 1 (SP) RAM = 3 RAM = 10

IES=1 (ICD) 1.0200 1.0200 1.0200 1.0200

IES=0.5 1.0401 1.0400 1.0398 1.0391

IES=0.333 1.0603 1.0600 1.0595 1.0577
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Under the SP utility function a change in the power parameter that

leads to a change in IES from 1 to 0.333 also leads to a change in the

RAM from 1 to 3. It is therefore seems natural to compare the change

from IES = 1 to IES = 0.333 and from RAM = 1 to RAM = 3 under (31). The

change from IES = 1 to IES = 0.333 increases the interest rate by about

about 300%. The change from RAM = 1 to RAM = 3 decreases the interest

rate by less than 0.05%. We may thus say that for changes that are

thought to be identical under the SP function, the changes in IES

produces a much larger effect on the real interest rate.

Can we say the same thing about risk premium R1 - Rb. To examine

this question I turn to the price formula for the many assets case (20).

Under (31) this formula is:

(38) pi = βy1−ρ
Πs[(y)

ρ + β(Ds)
ρ ]ψ /ρ−1(Ds)

ρ−1diss=1

S

∑
Πs[(y)

ρ + β(Ds)
ρ ]ψ /ρ−1

s=1

S

∑

Claim 7  : Under the ICE function with IES close to unity (ρ close to

zero) risk premium is strictly positive but does not depend on the RAM

coefficient. 

Proof  : The price of a riskless asset that yields dis = 1 for all s is:

(39)  pb = βy1−ρ
Πs[(y)

ρ + β(Ds)
ρ ]α /ρ−1(Ds)

ρ−1

s=1

S

∑
Πs[(y)

ρ + β(Ds)
ρ ]α /ρ−1

s=1

S

∑

When ρ is close to zero, (39) is close to:
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(40) pb = βy Πs(Ds)
−1

s=1

S

∑

The gross rate of return on the riskless asset is therefore close

to:

(41) 1/pb = (1/βy) Πs(Ds)
−1

s=1

S

∑⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

−1

The risk premium is:

(42) (D/p) - (1/pb) = (1/βy) D− Πs(Ds)
−1

s=1

S

∑⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

−1⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  ≥ 0.

This does not depend on the risk aversion parameter ψ. The inequality

follows from Jensen's inequality. �

Table 3 uses (38) to compute the price of the riskless asset (by

substituting dis = 1 in [38]) and the risk premium. The results support

the claim that changes in IES are relatively more important. The risk

premia are small and are in the range of 0.04% to 0.2%. When IES goes

from 1 to 0.333 the risk premium goes up by 280% to 620%. When RAM goes

from 1 to 3 the risk premium goes up by 0% (when IES = 1) to 220% (when

IES = 0.333). The example also suggests that a given change in RAM will

have a larger effect the lower IES is.
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Table 3*: The ICE utility function: Risk premium (R1 - Rb) as a function

of IES and RAM (β = 1)

IES\RAM RAM = 0 RAM = 1 RAM = 3 RAM = 10

IES=1 0.00039 0.00039 0.00039 0.00039

IES=0.99 0.00039 0.00040 0.00040 0.00041

IES=0.95 0.00040 0.00041 0.00043 0.00050

IES=0.5 0.00070 0.00080 0.00100 0.00169

IES=0.333 0.00109 0.00122 0.00149 0.00241

The discussion up to this point suggests that RAM is not important

if we are willing to assume IES close to unity.  I now turn to examine

this conclusion for the case in which not all assets can be traded.

7. INCOMPLETE MARKETS

I assume N households indexed h. There are n+N types of trees: n

types (of physical capital) are traded and N types (of human capital)

are not traded. Each household starts with a portfolio of n+1 trees one

tree from each of the traded-physical-capital type and human capital.

The aggregate per capita amount of fruit (income) in state s is Ds.

The amount of dividends from trees of type 1,...,n is given by

(21) and is repeated here for convenience.

(43) dis = ai + biDs + eis
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where eisi=1

n

∑ = 0 and eis are independent of Ds. The amount of dividends

from human capital Hs
h
 is given by:

(44) Hs
h
 = ah + bhDs + us

h

where us
h

h=1

N

∑ = 0 and the us
h
 are independent of Ds. Per capita income is

given by:

(45) Ds = disi=1

n

∑ + (1/N) Hs
h

h=1

N

∑

We may think in terms of three independent lotteries that occur at

the beginning of period 1. The first lottery determines the aggregate

per capita magnitude D. The second is a zero sum lottery that determines

e and the third is a zero sum lottery that determines u. A state of

nature s is a description of the outcome of all three lotteries.5 I

assume ah = 0 and bh = 0.7 for all h. It is also assumed that bii=1

n

∑  = 0.3

and aii=1

n

∑  = 0.

Household h consumption is:

(46) C0
h
 + pii=1

n

∑ Ai
h
 = y + pii=1

n

∑

(47) C1s
h
 = disi=1

n

∑ Ai
h
 + Hs

h

                        

5 Since the lotteries are independent the number of states of nature is:

S = L1× L2× L3 where Li is the number of possible realizations of

lottery i.



                                    29

where Ai
h
 is household h choice of the quantity of asset i (i=1,...,n).

Since labor share is 0.7, the typical agent problem can now be

written as:

(48) maxAi ΠsU(y + pii=1

n

∑ (1− Ais=1

S

∑ ), disi=1

n

∑ Ai + 0.7Ds + us),

where the superscript h is suppressed. The first order condition for

this problem is still given by (20).

Using symmetry all consumers will make the same first period

consumption choice and therefore the clearing of the first period

consumption market requires: C0 = y. Symmetry also implies that

consumption of household h in the second period is given by Cs
h = Ds + us

h
.

The first order condition (20) should hold for all h and therefore I

suppress the superscript h and write C1s = Ds + us for the representative

consumer. Substituting this in the first order condition (20) leads to

the following pricing formula:

 (49) pi = βy
Πss=1

S

∑ (ai + biDs)(Ds + us)
αβ −1

Πss=1

S

∑ (Ds + us)
αβ

I now turn to a numerical example in which aggregate consumption

may take the realizations 1 and 1.04. For each realization of the

aggregate consumption we add a bet in which the typical household can

win or lose 0.08 units. This is consistent with the standard deviations
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of aggregate consumption in the data (0.02) and the Deaton-Paxon

estimate of the standard deviation of individual consumption (0.08).6

Table 4 presents the results of the numerical example. The risk

premia in Table 4 are almost identical to the risk premia in Table 1.

The rates of return themselves are not. The rate of return on the market

portfolio is now declining in the RAM coefficient. It seems that

allowing for incomplete markets will affect our estimate of β but will

have little or no effect on our estimate of the risk premia.

Table 4: Predicted Rates of Returns when markets are incomplete

(β = 1 and C1 = {1 ± 0.08 , 1.04 ± 0.08})

RAM

= 1−2α

R1

ai = 0; bi = 1

di={1,1.04}

R2

ai=-2;bi=3

di={1,1.12}

Rb

ai=1; bi=0

di={1,1}

R1 - Rb R2 - Rb

0 1.017 1.017 1.017 0.0002 0.0006

1 1.014 1.014 1.013 0.0004 0.0011

2 1.011 1.012 1.010 0.0006 0.0017

3 1.008 1.009 1.007 0.0008 0.0023

10 0.987 0.991 0.985 0.0022 0.0063

                        

6 Deaton and Paxson (1994) finds that the variance of log consumption

within each age cohort increases by 0.07 every decade in the US (page

446). Their random walk assumption in equations (1) - (3) imply a

variance in consumption of 0.007 per year which is roughly equal to a

standard deviation of 0.08.
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I now turn to the effect of changes in RAM on welfare

calculations.

8. WELFARE CALCULATIONS

To examine the effect of RAM on welfare (holding constant IES = 1)

I start with a consumption path of C0 = 1 and C1 = {1 or 1.04}.

Following Lucas I calculate the required compensation (λ) for the

consumption risk, where λ  solves:

(50) ( 1
2)U(1 + λ, 1 + λ) + ( 1

2)U[1 + λ, 1.04(1 + λ)] = U(1, 1.02)

Thus the consumer is fully compensated for the risk if his

consumption in all periods and states of nature is increased by a

fraction of λ.

Assuming the ICD utility function with β = 1 leads to:

(51) λ = [2(1.02)α /(1.04α +1.00α )]1/ 2α −1.

The second column of Table 3 reports the required compensation in

percentage terms (100λ) for various levels of RAM. Not surprising, risk

aversion matters. For example, going from RAM = 0 to RAM = 1 doubles the

required compensation. But as in Lucas (2003) all the magnitudes are a

small fraction of a percent.
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Table 5: Required compensations in percentage terms (100λ);

 C1 = {1 or 1.04}

Ram 2 periods,

1 shock

2 periods,

2 shocks

3 periods,

3 shocks

2 periods,

1 shock

SD = 0.08

0 0.005 0.005 0.009 0.077

1 0.010 0.029 0.038 0.154

2 0.014 0.053 0.068 0.232

3 0.019 0.077 0.098 0.309

10 0.053 0.245 0.307 0.839

To check for robustness I also considered cases in which

consumption follows a random walk. The third column in Table 3 reports

the required compensation when both current and future consumption are

random: C0 = {1 or 1.04} and C1 = {C0 or 1.04C0}. In this case the

required compensation are substantially higher relative to the single

shock case but are still a fraction of a percent. The three periods

random walk case, reported in the fourth column assumes:

C0 = {1 or 1.04}, C1 = {C0 or 1.04C0} and C2 = {C1 or 1.04C2}. In this

case the welfare cost is larger than in the previous case. This suggests

that adding shocks whose effect are being eliminated by "good policy"

increases the welfare gain. Note also that the required compensation is

almost proportional to the RAM coefficient.

Allowing for incomplete markets may increase the welfare gain. If

by "good policy" we eliminate aggregate risk we may also greatly reduce

the number of markets required for completeness. This may therefore
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improve the allocation of diversifiable risk in the economy. In the last

column of Table 5 I assume that the "good policy" eliminates all risk in

a two periods one shock economy assuming: C1 = {0.94 or 1.1} initially

and then by "good policy" is converted to C1 = 1.02. The assumed

standard deviation of consumption is thus 0.08 and is consistent with

the Deaton-Paxson estimate discussed above. Note that if RAM = 10 the

welfare gain is 0.8%. This starts to look like real money.7

9. RATES OF RETURN FOR HYPOTHETICAL CLAIMS UNDER THE ICD-IL FUNCTION

Under the ICD-IL function the expected return on the market

portfolio does not depend on the RAM coefficient. But the RAM

coefficient does affect the expected rates of return on claims on parts

of GDP that are not proportional to consumption. To get a sense of the

importance of the RAM coefficient, I consider now hypothetical claims on

(a) GDP, (b) the wage bill, (c) non-wage income (profits) and

(d) corporate profits, all in real per-capita terms.

Our first task is to express equation (25) in terms of rates of

change. Equation (25) is conditional on all the information available at

time t and we may therefore write:

                        

7 It has also been argued that a good policy may improve production

efficiency. For example, it is possible that the consumer is not

averse to fluctuations in consumption but is averse to fluctuations in

labor supply. It is also possible that average capacity utilization

will improve as a result of policy. For a recent survey of the

literature see Barlevy (n.d.).
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(52) dit+1 = ait+1 + bit+1Dt+1 + eit+1,

where the coefficients are time dependent. I normalize y = 1 and assume:

ait+1 = aidit and bit+1 = bidit. This means that the predicted share in the

pie is proportional to the time t share. Dividing (48) by dit yields:

(53) Git+1 = ai + biGt+1 + εit+1,

where Git+1 = dit+1/dit is the gross rate of growth in asset i dividends,

Gt+1 = Dt+1 is the gross rate of growth in consumption and εit+1 = eit+1/dit

is an error term. I also assume that εit+1 has a zero mean and is not

correlated with Gt+1. The time invariant coefficients ai and bi can

therefore be estimated from running the regression (52).

Note that multiplying the coefficients ai and bi by the same

constant does not change the expected rate of return (24). Therefore

after estimating the regression coefficients in (53) we can plug the

coefficients directly (without multiplying it by dti) in (24) to compute

the predicted gross rate of return on asset i.

Equation (53) requires data on the gross rates of change of flows

(fruits) and these data are easier to get than data on prices. For

example there is no market for slaves and therefore no data on the price

of human capital defined as body plus the knowledge embodied in it. But

we can predict the gross rate of return on human capital even without

observing its price. Similarly and maybe more relevant, we do not

observe the price of unincorporated equity. But nevertheless we can

predict the rate of return on it if we observe the flow of profits it

yields.
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I use NIPA US post war data (from January 1948 to January 2004)

taken from the Saint Louis Fed web page to compute the gross rate of

growth in real per capita terms of the following variables: consumption

(c), wage earnings (w), corporate profits (pr), GDP (y) and non-wage

income (y-w). The detail of the calculations of these variables and the

description of the data are in Appendix c.

Table 4 provides summary statistics for the annual data. All rates

of change are close to 2%. The smallest rate is for the wage bill (1.6%)

and the highest is for corporate profits (2.2%). The standard deviation

is in the range 0.02 - 0.04 except for corporate profits where it is

much higher (0.16).

Table 6: Summary Statistics about Annual Per Capita Gross Rates of

Change

Average Standard deviation

Consumption (c) 1.019 0.02

GDP (y) 1.018 0.03

Wage earnings (w) 1.016 0.03

Profits (y-w) 1.020 0.04

Corporate Profits (pr) 1.022 0.16

Table 7 provides the regression results from running (50). Most

intercepts are small and barely significant. The intercept on corporate

profits is an exception.
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Table 7*: Regressions of the rate of change of asset i on the rate of

change in consumption

Dependent var. Intercept Slope Rsquare

y -0.19

 (0.10)

1.18

(0.10)

0.73

w 0.07

 (0.14)

0.93

(0.14)

0.46

y-w -0.45

(0.14)

1.44

(0.14)

0.67

pr -2.06

(0.93)

3.03

(0.91)

0.17

* Standard errors in parentheses.

Table 1 may therefore provide a good approximation for the rates

of return on the four hypothetical claims when β = 1. The expected

return on the market portfolio (R1) is a good approximation for the

returns on claims on the wage bill, non-wage income and GDP. The

expected return on the more risky portfolio (R2) is an estimate of the

return on a claim on corporate profits.

The prediction of the model for various β can be approximated by

multiplying Table 1 by 1/β. This is done in Table 8 for 1/β = 1.025.



                                    37

Table 8: Predicted Rates of Returns (IES = 1; 1/β = 1.025)

RAM

= 1−2α

R1

ai = 0; bi = 1

di={1,1.04}

R2

ai=-2;bi=3

Rb

ai=1; bi=0

R1 - Rb R2 - Rb

0 1.0455 1.0459 1.0453 0.0002 0.0006

1 1.0455 1.0463 1.0451 0.0004 0.0012

2 1.0455 1.0466 1.0449 0.0006 0.0017

3 1.0455 1.0470 1.0447 0.0008 0.0023

10 1.0455 1.0497 1.0433 0.0022 0.0064

The expected rates of returns in Table 8 are consistent with the

estimates in McGrattan and Prescott (2003) who took an explicit account

of taxes and frictions and found average returns in the 4-5 percent

range. The expected rate of return on the market portfolio is 1.0455.

The expected rate of return on a claim on corporate profits is 1.0459

when RAM = 0 and 1.05 when RAM = 10. The corresponding risk premia on

the more risky portfolio (corporate profits) are 0.05% and 0.6%

respectively.

10. CONCLUDING REMARKS

It was argued that Lucas' observations about the return on the

market portfolio do not require an assumption about the attitude towards

money bets. They do require the assumption that the elasticity of

substitution is close to unity and that markets are complete.
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In the Cobb-Douglas case risk premium depends on the RAM

coefficient but is not sensitive to changes in it. In the ICE case with

IES close to unity, risk premium does not depend on the RAM coefficient.

This says that if we are willing to commit to IES close to unity we

should not worry too much about the correct magnitude of the RAM

coefficient.

But there is no agreement about the magnitude of IES. Hall (1988),

Campbell and Mankiw (1989) and Beaudry and Wincoop (1996) provide

estimates of the IES between zero and one. Under the ICE utility

function changes in IES are important for asset prices but changes in

RAM are not. Even when IES = 0.333 the risk premium is not very

sensitive to changes in RAM. It is 0.1% when RAM = 0 and 0.2% when

RAM = 10.

Allowing for incomplete markets does not change risk-premia in the

ICD example we worked out. But it does affect the rates of returns on

the assets and introduces a negative relationship between the rates of

return and the RAM coefficient. This may be the result of a

precautionary savings type behavior.

Not surprisingly changes in the RAM coefficient affect the

calculation of the welfare gains from eliminating business cycle risks.

This point is well recognized by Lucas (2003) and other authors on this

subject.

Data on flows can be used to compute the rates of returns on

various claims. I used post war US NIPA data and found that claims on

the wage bill and on total profits are close to a claim on the market

portfolio (aggregate consumption). But a claim on corporate profits is

more risky than a claim on the market portfolio. The predictions of the
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ICD-IL utility function are consistent with the findings in McGrattan

and Prescott (2003) but cannot account for the original Mehra and

Prescott (1985) puzzle.

APPENDIX A: A FINITE HORIZON SINGLE ASSET ICD ECONOMY

I now consider an economy in which the representative agent lives

for T periods. At t = 0 he gets endowment of one tree that provides

fruits for T periods and then dies (together with the agent).

I allow a general dividend (income) process. It is assumed that

the representative agent at t = 0 assigns positive probabilities, πs, to

all states s = 1,...,S. Over time he updates this probabilities when he

learns that some states did not occur. The set of possible states at

time t (the information available at time t) is denoted by It. The

updated probability of state s is denoted by (πs|It). Note that

(πs|It) = 0 if s ∉ It. The agent also knows the information that he will

have at time j > t if state s occurred. This information is denoted by

Ijs. At time t the choices of (A0,...,Αt−1) was already made. Since there

is one tree per agent we assume Aj = 1 for j < t. The agent chooses At

and makes a contingent plan that specifies the amount of trees he will

own at future dates: (At+1s,...,AT-1s). The agent has to choose Ajs = Ajs'

if at time j he cannot distinguish between the two states. Thus, he

faces the informational constraint: Ajs = Ajs' if s,s'∈ Ijs. Assuming an

ICD utility function we can state the time t problem as follows.

  (A1) Vt(kt-1,It) = maxAt ,At+1s ,...,AT−1s
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kt-1 (dt + pt − At pt )
αβ t

(π ss=1
S∑ | It ) [At (dt+1s + pt+1s) − At+1spt+1s]

αβ t

kt+1s

s.t.

kt-1 = 
j= 0

t−1

∏ (d j )
αβ j

kt+1s = 
j= t+2

T

∏ [A j−1s(d js + p js) − A jsp js]
αβ j

A js = A js' if s,s'∈ Ijs

I now define equilibrium as follows.

Equilibrium at time t is a vector (At, At+11,...,AT-11,...,At+1S,...,AT-1S;

pt, pt+11,...,pT-11,...,pt+1S,...,pT-1S) such that

(a) given prices (pt, pt+1s,...,pT-1s), the quantity vector

(At ,At+1s,...,AT-1s) solves (A1) and

(b) market clearing: At = 1 and Ajs = 1 for all j > t and all s.

I now generalize the asset pricing formula (10) to the finite

horizon case.

Claim A1:   Equilibrium prices at time t are given by:

(A2) pt = (β + β2 + ...+ βT-t)dt and

pjs = (β + β2 + ...+ βT-j)djs for all t < j < T

Note that when T = ∞ (A2) implies pt = dt/ρ, where the subjective

interest rate 1 + ρ = 1/β. This formula is in the logarithmic preference

example in Ljungqvist and Sargent (2000, page 239).
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Proof:   When T = 1, there is trade in the asset only in period

t = T - 1 = 0 and (A2) coincides with (17). We now proceed by induction.

We assume that equilibrium prices when the horizon is T-t-1 (at time

t+1) satisfy (A2) and show that equilibrium prices when the horizon is

T-t (at time t) satisfy (A2).

Given our induction hypothesis we can write the problem (A1) as:

(A3) V(kt−1; It) =

maxAt kt-1 (dt + pt − At pt )
αβ t

(π ss=1
S∑ | It ) [At (dt+1s + pt+1s) − pt+1s]

αβ t+1

kt+1s

Now kt+1s = 
j= t+2

T

∏ (d js)
αβ j

 is a constant and pt+1s = (β + β 2 + ...+ βT− t−1)dt+1s. Note

that the assumption At+1s = 1 follows from the induction hypothesis.

The first order condition for the problem (A3) is:

(A4) −αβ t pt (dt + pt − At pt )
αβ t −1 (π ss=1

S∑ | It ) [At (dt+1s + pt+1s) − pt+1s]
αβ t+1

kt+1s

+ (dt + pt − At pt )
αβ t

(π ss=1
S∑ | It )αβ t+1(dt+1s + pt+1s)[At (dt+1s + pt+1s) − pt+1s]

αβ t+1−1
kt+1s = 0

Substituting At = 1 and pt+1s = (β + β 2 + ...+ βT− t−1)dt+1s in (A4) leads to:

(A5)  pt = (β + β 2 + ...+ βT− t )dt

This completes the proof. �
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We can now use Claim A to compute the rate of return on the asset

as follows.

(A6) (dt+1s + pt+1s)/pt =

= (1+ β + β 2 + ...+ βT− t−1)dt+1s/ (β + β 2 + ...+ βT− t )dt = dt+1s/βdt

Using Gt = (π ss=1
S∑ | It )(dt+1s/dt) to denote the expected consumption growth

we can write the expected rate of return at time t as:

(A7)  Gt/β = Gt(1 + ρ),

where ρ is the subjective rate of interest. This is exactly the formula

(15) that we got in the two periods horizon.

APPENDIX B: MONOTONIC TRANSFORMATION OF THE COBB-DOUGLAS UTILITY

FUNCTION

In Table 1 we have seen that the prediction of the log utility

function about the average return in the economy is the same as the

prediction of the Cobb-Douglas functions. We now show that this is also

the case for other monotonic transformation of the Cobb-Douglas

function.

We assume a utility function F(U), where F' > 0. The problem (14)

is now:

(B1) maxC0  Πss=1

S

∑ F{U[C0, ds(y + p - C0)/p]}
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The first order condition for this problem is:

(B2) Πss=1

S

∑ Fs
'
(U0s - dsU1s/p) = 0

where Fs
'
 = F'{U[C0, ds(y + p - C0)/p]}. In general a monotonic

transformation will change the price of a tree. In the Cobb-Douglas case

C0 = α(y+p)/(α+δ) and

(B3) U0s - dsU1s/p = 0 for all s.

It follows that a monotonic transformation that changes the derivatives

Fs
'
 will not change p.

We may now consider the family of utility functions that are

monotonic transformation of the log utility function. This is a much

larger family than the Cobb-Douglas utility function. It includes for

example, [ln(C0) + ln(C1)]
γ
. We can now generalize Claim 1 as follows.

Claim B1:   If the utility function of the representative agent is a

monotonic transformation of the log utility function, then the expected

rate of return in a single asset economy is G/β.

APPENDIX C: DATA

I took the following series from the St. Louis Fed web site.

Population (POP): Civilian Labor Force (M, SA),
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Wage bill (NW): Compensation of Employees: Wages and Salary Accruals (Q,

SAAR),

Consumption (NC): Personal Consumption Expenditures (Q, SAAR)

Price level (P): Gross Domestic Product Chain-type Price Index

Corporate Profits (NPR): Corporate Profits After Tax with Inventory

Valuation Adjustment (IVA) and Capital Consumption Adjustment (CCADi)

Nominal GDP (NGDP): Gross Domestic Product, 1 Decimal

These data are available from January 1948 until January 2004. The

data are available on a quarterly basis (except for population which is

given on a monthly basis and was converted to a quarterly series). The

data are in billions of current dollars and were divided by the price

level and by population to obtain real per capita magnitudes:

W = NW/P(POP) real per capita wage earnings

C = NC/P(POP) real per capita consumption

PR = NPR/P(POP) real per capita Corporate Profits

Y = NGDP/P(POP) real per capita GDP

Y-W = (NGDP-NW)/P(POP) real per capita non wage income

I computed the following gross rates of change: ct = Ct/Ct-1,

wt = Wt/Wt-1, prt = PRt/PRt-1, yt = GDPt/GDPt-1,(y-w)t = (Y-W)t/(Y-W)t-1.

APPENDIX D: TIME INCONSISTENCY AND EXTENSION TO MANY PERIODS

Will an agent that lives in an Arrow-Debreu world and make

consumption plan at t = -1 will want to change it as he learns more
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about the true history? Assuming an expected utility function is

sufficient to guarantee that the agent will not want to revise his plan

over time and in this sense his plan is time consistent. This claim is

well known. I show it here because many people have argued, erroneously

in my opinion, that the ICE utility function suffers from a time

inconsistency problem when extended to many periods. I also show that

the MRS does not depend on past consumption for the ICD case and may not

be very sensitive to past consumption in the ICE case when IES is close

to unity.

To show the claim that expected utility guarantees time

consistency, I assume a three periods horizon: t = 0, 1, 2.  Events at

each date may take S possible realizations. The probability that "state

of nature" k will occur at t = 0 is denoted by πk. The probability that

"state of nature" i will occur at date 1 given that "state of nature" k

has occurred at t = 0 is denoted by πki and the probability that "state

of nature" j will occur at date 2 given that "state of nature" k has

occurred at t = 0 and "state of nature" i has occurred at t = 1 is

denoted by πkij. Similarly, C0k denotes consumption at t = 0 state k, C1ki

denotes consumption at t = 1 state (k,i) and C2kij denotes consumption at

t = 2 state (k,i,j). The most general formulation used in Arrow (1964)

assumes that the consumer evaluates consumption plans by the utility

function:

(D1) Z(C01,...,C0S;C111,...,C1SS;C2111,...,C2SSS ).

At t = -1 he faces the budget constraint:
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(D2) P0kC0k + P1kiC1ki + P2kijC2kij
k,i, j

∑  = w,

where P are the prices of the contingent commodities. He maximizes (D1)

subject to (D2). The first order condition requires:

(D3)  Z2msr / Z1ms = P2msr / P1ms,

where Zi = ∂Z/∂Ci. In this general formulation an agent that learns about

the state at t = 0 will in general want to change his consumption plan

because the conditional probabilities of the states at t = 1 and t = 2

will change and as a result the function Z will change.

I now turn to the expected utility case assuming that there exists

a function U such that:

(D4) Z = π k

k

∑ π ki

i

∑ π kij

j

∑ U(C0k,C1ki,C2kij )

In this case, the marginal utilities are:

(D5) Z1ms = πmπms πmsj

j

∑ U1(C0m,C1ms,C2msj ), Z2msr = πmπmsπmsrU2(C0m ,C1ms,C2msr )

The marginal rate of substitution (MRS) is:

(D6) Z2msr/Z1ms = πmsrU2(C0m ,C1ms,C2msr ) / πmsj

j

∑ U1(C0m ,C1ms,C2msj )

The MRS does not change when at t = 0 the consumer learns that state m

has occurred. In this sense the expected utility assumption is

sufficient for guaranteeing time consistency.

This does not say that having a time non-separable utility

function can easily be extended to many periods horizon. The difficulty

emerges when MRS depends on all past consumption. In general (D6)
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depends on C0. I now turn to show that this is not a problem for the ICD

function and that it may also not be a significant problem for the ICE

function when IES is close to one.

To simplify, I now assume that the state of nature at t = 0 is

known and I therefore omit the index k. I start with the Cobb-Douglas

case assuming:

(D7) Z = (1/α) π i

i

∑ π ij

j

∑ (C0)
α (C1i)

βα (C2ij )
β 2α

The marginal utilities in this case are:

(D8) Z1s = π sβ(C0)
α (C1s)

βα−1 π sj

j

∑ (C2sj )
β 2α

 , Z2sr = π sπ sr(C0)
α (C1s)

βα β 2(C2sr )
β 2α−1

The marginal rate of substitution is:

(D8)  Z2sr/Z1s = 
π srβ(C1s)(C2sr)

β 2α−1

π sj

j

∑ (C2sj )
β 2α

This does not depend on C0.

I now turn to the ICE case assuming:

(D9) Z = (1/ψ) π i

i

∑ π ij

j

∑ [(C0)
ρ + β(C1i)

ρ + β 2(C2ij )
ρ ]ψ /ρ

The marginal utilities in this case are:

(D10) Z1s = π s π sj

j

∑ [(C0)
ρ + β(C1s)

ρ + β 2(C2sj )
ρ ]

ψ
ρ −1

β(C1s)
ρ−1

'

Z2sr = π sπ sr[(C0)
ρ + β(C1s)

ρ + β 2(C2sr)
ρ ]

ψ
ρ −1

β 2(C2sr)
ρ−1

The marginal rate of substitution is:
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(D11) Z2sr/Z1s = 
π sr[(C0)

ρ + β(C1s)
ρ + β 2(C2sr )

ρ ]
ψ
ρ −1

β(C2sr )
ρ−1

π sj

j

∑ [(C0)
ρ + β(C1s)

ρ + β 2(C2sj )
ρ ]

ψ
ρ −1
(C1s)

ρ−1

 This does depend on C0 and suggests that extension to many periods will

prove difficult. However, it seems that when ρ is close to zero and the

elasticity is close to 1 this problem is not severe. To show this point

I now turn to a numerical example that assumes: β = 1,

C0 = 2 or 3 with equal probabilities,

C1 = 3

C2 = 2 or 3 with equal probabilities.

I calculate the marginal rate of substitution between C1 = 3 and C2 = 3

as a function of C0. This is given by:

(D12) MRS(C0) = 
((C0)

ρ + 3ρ + 3ρ )
ψ
ρ −1

[(C0)
ρ + 3ρ + 3ρ ]

ψ
ρ −1

+ [(C0)
ρ + 3ρ + 2ρ ]

ψ
ρ −1

Table D1 calculates the Ratio = MRS(C0=3)/MRS(C0=2). This ratio may

measure the sensitivity of MRS to changes in C0. As can be seen from the

Table the ratio is close to 1 when the elasticity of substitution is

close to 1.

Table D1: Ratio of MRS as a function of IES and RAM

IES\RAM RAM = 0 RAM = 1 RAM = 3

0.99 1.00018665 1.00000187 0.9996324

0.95 1.00101972 1.00005096 0.99811625

0.9 1.00229153 1.00022892 0.99611642

0.8 1.00591692 1.00118059 0.99177473
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