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1 Introduction

The Sharpe (1964) and Lintner (1965) Capital Asset Pricing Model suggests that the

expected returns of risky assets should be determined by the covariance of their returns

with the returns on the market portfolio. However, studies by Fama and French (1992)

and others uncover almost no relation between market betas and expected returns, and

instead find a strong cross-sectional relation between characteristics like size and book-

to-market and returns. The reason why this is the case has been debated for over 10

years, and there is still no consensus. One hypothesis is that a firm’s size and book-

to-market serve as proxies for the riskiness of the firm. Another possibility is that these

characteristics proxy for mispricing, i.e., high book to market stocks have higher expected

returns because they are undervalued.

The results of Fama and French (1993) appear to provide support for the first hypothesis

by showing that a set of factor-mimicking portfolios, MKT, SMB and HML, do a fairly

good job of pricing the cross-section of stock returns. However, for several reasons this evi-

dence is not particularly satisfying. First, the SMB and HML factors are not economically

motivated; they are simply the returns from the financial assets that others conjecture

are potentially mispriced. Indeed, Daniel and Titman (1997) argue that even if mispric-

ing is responsible for the cross-sectional differences in returns, factor portfolios that are

constructed in this way would still price size and book-to-market sorted portfolios.

Largely because of such concerns, a set of more recent papers have attempted to dis-

cover the underlying risks that might be responsible for the observed return patterns.

If we abstract from liquidity and behavioral considerations, an asset’s expected return

is determined by the covariance between its realized returns and a representative agent’s

marginal utility, suggesting that the returns of the SMB and HML portfolios must in some

ways capture the variation of more fundamental economic factors that are correlated with

marginal utility. Researchers have investigated a number of such economically-motivated

factor models.

2



We divide these models into two categories: Conditional (C)CAPM Models and Alter-

native Factor Models. The conditional versions of the CAPM and Consumption-CAPM

(CCAPM) of Breeden (1979) are motivated by the strong rejections of tests of uncon-

ditional versions of these models. The conditional models retain the basic structure of

the CAPM or CCAPM, but allow for time-variation in the covariation of asset returns

with the market return (or consumption growth, in the case of the CCAPM), and time

variation in the premium associated with this covariation.

Conditional CAPM models can be written as unconditional multifactor models where

one factor is the market return, and the second factor is the market return interacted

with a conditioning variable (Cochrane (1996)). Similarly, a Conditional-CCAPM model

can be expressed as a multi-factor model with factors equal to consumption growth and

consumption growth interacted with a conditioning variable. Thus, the models effectively

augment the market return (or consumption growth) with an additional factor equal to

the scaled market or to scaled consumption growth.

Alternative Factor Models propose a factor other than the standard market portfolio

return or consumption growth as a pricing kernel. Some of the proposed models are

unconditional (time-invariant), while others are conditional, meaning that the premium

associated with the factor covariation, and the premium associated with this covariation

are time varying. Based on the logic of Cochrane (1996), such conditional factor models

can be tested as scaled multifactor models with additional factors equal to the factors

scaled by instruments which capture the time variation.

Thus, both the Conditional (C)CAPM Models and Alternative Factor Models argue that

it is some additional factor beyond the standard market return or consumption growth

that is missing from the standard (C)CAPM, and that once this factor is accounted for,

the model will capture the value effect.

The models that have been proposed and tested are based on a number of plausible

economic stories for why value stocks might be riskier than growth; a subset of these tests

are listed in Table 1. Moreover, based on the associated empirical tests, it appears that
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these models do each capture the value effect; these tests generally fail to reject these

proposed factor models. Based on these results, it appears that there are a number of

plausible economic factors can explain the value effect.

Table 1: Proposed Factor Models

This table lists a subset of the factor models examined in the finance literature, and the factors and

conditioning variables considered in these tests.

Paper Factor(s) Cond. Vars.

Conditional (C)CAPM Models
Ferson and Harvey (1999) VW S&P 500 Dividend

Yield1

Lettau and Ludvigson (2001) VW or Cons Growth cay
Santos and Veronesi (2001) VW + Labor Income

Growth
Labor Income to Cons
Ratio (s)

Petkova and Zhang (2003) VW Index E[Rm] based on BC
Vars

Alternative-Factor Models
Fama and French (1993) VW, HML, SMB
Jagannathan and Wang (1996) Labor Income Growth DEF
Heaton and Lucas (2000) Proprietary Income

Growth
Piazzesi, Schneider, and Tuzel (2003) Cons Growth +∆ NH

Expenditure Ratio
(∆log(α))

Non-Housing Expen-
diture Ratio (α)

Lustig and Nieuwerburgh (2002) Scaled Rental Price
Change (A∆logρ)

Housing Collateral
Ratio

Aı̈t-Sahalia, Parker, and Yogo (2003) Luxury Good Con-
sumption

Li, Vassalou, and Xing (2002) Sector Inv. Growth
Rates

Parker and Juillard (2003) Innovations in Future
Long Horizon Con-
sumption Growth

Campbell and Vuolteenaho (2004) CF and DR news

While at first glance these results appear promising, there are several reasons to question

these findings. The first concern is that these results present a conundrum for anyone

attempting to use the models. Which, if any, of these dozen or so models is the correct
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one to use in determining cost of capital? The results in these papers offer no answer to

this question, as each of the proposed models appears to “work” reasonably well. If it were

the case that each of the factor models would give about the same answer, this might not

be a concern. However, the correlations between the proposed factors are actually very

low, suggesting that the different models should yield very different expected returns/costs

of capital.

A second related concern is that asset pricing theory dictates that there is a unique factor

in the span of the asset return space that prices all assets.2 This implies that the only

way that two single factor models can each price the full cross-section of returns is if the

projections of each of these factors onto the asset return space are equal. In other words,

if the factors in two proposed single factor models both lie in the asset return space, then

at most one of the two models can be correct.

A final concern is that several studies suggest problems with the proposed conditional

(C)CAPM specifications. A recent paper by Lewellen and Nagel (2003) argues that the

covariance of the conditional expected return on the market and of the conditional market

betas of high and low book-to-market stocks is not high enough to explain the value

effect. Also, Hodrick and Zhang (2001) find large specification errors for the Lettau and

Ludvigson (2001) conditional CCAPM model. However, tests of these conditional CAPM

models fail to reject the models, again suggesting the possibility that the failure to reject

is a result of low test power.

In this paper we attempt to explain why so many different factors, with such a low average

correlations between them, each appear to explain the cross-section of returns. In Section

4 we argue that the culprit is the test methodology: each of these tests have been done in

a similar way, often using exactly the same test assets. Specifically, empirical tests of the

proposed models are generally performed using the 25 size and book-to-market portfolios

first examined in Fama and French (1993), and the test methodology generally used is

2Following Hansen and Richard (1987), and Hansen and Jagannathan (1991), while in incomplete mar-
kets, multiple pricing kernels (m̃’s) may exist which price all assets, but there exists a unique projection
of each of these pricing kernels onto the space of asset returns m̃∗.
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that proposed by Fama and MacBeth (1973).

The motivation for the use of book-to-market (BM) sorted portfolios as test assets is

intuitively appealing: we know that there is a strong empirical relation between book-to-

market and average returns. Thus, the returns of these portfolios should prove difficult

to explain with any asset pricing model. Intuitively, it seems that such sorts should, a

priori, produce higher test power.

However, BM is a “catch-all” variable, one that will proxy for sensitivity to a variety

of macroeconomic innovations, sorting on BM will also produce a spread in loadings

for a large set of factors. For example, because more of low-BM (growth) firm’s value

probably derives from its growth options, high and low BM firms are likely to have different

sensitivities to business cycle innovations.

Thus, book-to-market sorted portfolios are likely to produce both variation in expected-

returns and (correlated) variation in the loadings on any number of macroeconomic fac-

tors. Moreover, in grouping all of the assets with similar BM together, any variation in

factor loading that is independent of BM is largely eliminated. The end result is that,

even if the loadings on a proposed factor are only loosely correlated with the expected

returns of the individual assets in the economy, the sorting procedure will result in a set

of test portfolios where there is a close to perfect linear relation between loadings on the

proposed factor and expected returns. The problem is that, in grouping all of the assets

with similar BM together, any variation in factor loading that is independent of BM is

washed out.

A slightly more technical way of seeing this is as follows: an asset pricing model will

explain the average returns of a set of portfolios if and only if the pricing kernel implied

by that model prices the test assets. Since the payoffs of any set of test assets will not

span all sources of risk, there will not be a unique pricing kernel (a unique m̃). However,

there is a unique pricing kernel that lies in the span of the payoffs/returns of the test

assets (a unique m̃∗). Moreover, any model with an implied pricing kernel m̃i = m̃∗ + ẽi,

where ẽi is outside of the space spanned by the payoffs of the test assets, will properly
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price the set of test assets.

The problem with the use of the 25 size-BM sorted portfolios as test assets is that their

payoffs lie in a low-dimensional subspace of the full payoff space. Specifically, Fama and

French (1993) show that the average R2 in time-series regressions of the returns of their

25 portfolios on their three stock market factors is 93%, and there is little variation in the

loading on the market factor.3 This means that, to a close approximation, the returns of

the 25 FF portfolios lie in a 2-dimensional subspace spanned by HML and SMB.

Thus, many sources economic risk can be expected to lie outside the span of the returns

of these test assets, even if these sources of risk could be hedged using other portfolios

of stocks. Moreover, if the risk-premium associated with each factor is left as a free

parameter, as is generally done in the Fama and MacBeth (1973) procedure, any factor

which is loosely correlated with the m∗ implied by HML and SMB will appear to properly

price these test assets, even if this model would not properly price a fuller set of assets.

This means that a powerful test requires that the test assets span a higher dimensional

space. Specifically, the test assets should be augmented by portfolios which are highly

correlated with the proposed factor.

To construct such portfolios requires the use of an instrument which is correlated with

variation in loading on the proposed factor, and which is imperfectly correlated with

book-to-market. In our empirical tests below, we use two sets of instruments: first, we

use estimates of lagged betas on the proposed factors; second, we use industry mem-

bership. Industry portfolios exhibit variation in factor loadings relative to a number of

macroeconomic factors but this variation is, at least to some extent, unrelated to book-

to-market ratios.

Using these instruments to form portfolios, we reexamine several of the models proposed

in the literature. Based on this preliminary analysis, we argue that before any of these

models can be acceped as an full explanation of the book-to-market effect more powerful

3See Table 6 of Fama and French (1993). Reported regression R2s range from 83% to 97%. Reported
loadings on [RM(t) − RF (t)] range from 0.91 to 1.18.
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tests, based on the framework we lay out here, need to be carried out.

The outline of the remainder of the paper is as follows. In Section 2 we discuss the

conditional and unconditional tests and motivate the empirical design of the tests we

discuss. In Section 4, we evaluate the power of the proposed tests both via some basic

analytical results and a set of simulations. More formally, we do this by proposing an

alternative hypothesis, and argue that this test methodology yields low power against

this alternative. Second we propose a methodology that has higher statistical power. In

Sections 5 and 6, we apply this new methodology to test several recent alternative factor

models, and find that these model are rejected at high levels of significance with the new

methodology. Section 7 concludes.

2 The Equivalence of Conditional (C)CAPM Tests

and Multi-Factor Models

In this section, we show that conditional CAPM models can be written as unconditional

multifactor models where one factor is the market return, and the second factor is the

market return interacted with a conditioning variable (Cochrane (2000)). Similarly, a

conditional-CCAPM model can be expressed as a multi-factor model with factors equal

to consumption growth and consumption growth interacted with a conditioning variable.

The intuition behind this argument is best seen via an example: suppose that, the market

is conditionally mean-variance efficient, which means that for all assets i:

(Ri,t+1−Rf,t+1) = βi,t(Rm,t+1−Rf,t+1) + εi,t+1

where εi,t ⊥ 1, (Rm,t+1−Rf,t+1). Taking (conditional) expectations of each side gives:

Et[Ri,t+1−Rf,t+1] = βi,tEt[Rm,t+1−Rf,t+1].

This is the usual statement of the conditional CAPM. However, suppose also that the
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expected return on the market varies over time. There is now substantial evidence con-

sistent with this: market returns are high in business cycle troughs and low at business

cycle peaks.

Notice that, if value stocks have a high beta (i.e., if β >> 1) when the market’s expected

return is high, and a low beta (β << 1) when the market return is low, then the average or

unconditional beta of the value stock could be close to 1, but the unconditional expected

return of the value stocks would be much higher than the market’s. Intuitively, the value

stocks are effectively ”market timing,” taking on more risk when the reward to risk ratio

(i.e., the expected return on the market) is higher. Thus, if the CAPM were tested

unconditionally, it would be rejected.

The same argument suggests that, if the consumption-CAPM holds, but the premium

to consumption beta varies over time and the consumption beta of value value stocks

positively covaries with this premium, a test of the unconditional CCAPM will be rejected.

A remedy to this problem is to test a conditional version of the CAPM or CCAPM. This is

typically done by assuming the asset’s market beta is a linear function of a n-dimensional

vector of instruments Zt in the investors information set at t. The restriction that is then

tested is that the conditional loadings on the factors explains the average returns of the

test assets, i.e., that:

(Ri,t+1−Rf,t+1) = (β′

iZt)(Rm,t+1−Rf,t+1) + εi,t+1

where the restriction that is now tested is that E[εi,t+1 · (Rm,t+1−Rf,t+1)Zt] = 0.4

As has been pointed out in Cochrane (2000), this test is equivalent to a test of a multi-

factor unconditional model in which the factors are the market, and a set of “scaled”

4Note that this is not the same as a conditional test of the conditional model. This would be a test of
the restriction that E[εi,t+1Zt] = 0. See also Appendix A.
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market returns, that is:5

ri,t+1 = β1,i rm,t+1 + β2,i(rm,t+1Z2,t) + · · · + βn,i (rm,t+1Zn,t) + εi,t+1

The important thing for us is that these tests are therefore equivalent to tests of the

CAPM (or the CCAPM) plus one or more additional factors added on.

Thus, if the uncondtional CAPM fails and the conditional CAPM properly prices value

and growth portfolios, it must be the case that it is covariation with the scaled market

return that is responsible for the differences in expected return on the value and growth

portfolios.

2.1 Conditional CAPM Model Tests

A number of (C)CAPM tests have now been proposed in the literature. One that has

recently received a good deal of attention is that of Lettau and Ludvigson (2001). Lettau

and Ludvigson argue that, based on the intuition behind the Campbell and Cochrane

(1999) model, their cay variable should be a good proxy for the market risk premium.

In their 2001 paper, LL show that the betas of value/growth stocks are higher/lower

when the expected return on the market is high (i.e., when cay is low). Thus even if

value stocks have a lower unconditional beta than do growth stocks, their betas are much

higher when the expected return on the market is higher. Thus, were one to test the

unconditionall CAPM on value/growth stocks, one could reject it. However, LL argue

that once the conditional variation in beta and the expected return on the market is

taken into account, the conditional CAPM and CCAPM do a good job of explaining

these returns.

The methodology used by LL to test the conditional CAPM is similar to that used by

many recent papers: they test whether the returns of the Fama and French (1993) 25

5Here, we are implicitly assuming that the first element of Zt is one.
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size/BM sorted portfolios can be explained by their conditional CAPM using Fama and

MacBeth (1973) tests. They find that it does a very good job.

However, an alternative test of the LL conditional CAPM model is based on a Gibbons,

Ross, and Shanken (1989)-style time-series regression (as employed by Fama and French

(1993)). For example, one can examine whether return of the FF(93) HML portfolio can

be explained using the single regression:

HMLt = α + βvwRe
vw,t + βvwz ĉayt−1R

e
vw,t + et (1)

For a conditional CAPM model such as this one, the interaction term ĉayt−1R
e
vw,t captures

the extra return arising from the covariation of the HML beta with the expected return

on the market, as discussed in the preceding subsection.

Using quarterly data over the period 1953:01-1998:04, the same period examined by LL,

the estimated intercept (α̂) for this regression is 1.26%/quarter, (t = 3.47). This is both

economically and statistically big. For comparison, without including the ĉayt−1R
e
vw,t

interaction term, the α is 1.50% (t=4.16). The difference between the intercept terms in

the two regressions is 0.24% /quarter, which is probably not statistically different from

zero. This simple regression dramatically illustrates the point argued by Lewellen and

Nagel (2003): while the betas of value stocks do increase in economic downturns, they

don’t increase anywhere near enough to explain the high returns of the HML portfolio.

However, given that this simple test so strongly rejects the LL model, why do the tests

done by LL indicate such strong support for their model? The answer, we argue in the

next section, is that the test methodology used by LL has extremely low power to reject

their factor model.
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Table 2: Correlations of Candidate Factors
This table presents the sample correlation matrix of a subset of the factors that have been
proposed in the literature as explanations for the value premium. Each of the conditioning
variables (DP , ĉay and s) is demeaned. The sample correlations are each estimated using
quarterly data over the period 1963Q4:1998Q3.

HML DP·rm ĉay·rm s·rm ĉay·∆c ∆y ∆(prop) ∆ log(α) −NCF

HML 1 -0.10 0.07 -0.05 0.06 0.01 0.07 0.11 0.27
DP·rm -0.10 1 0.61 0.37 0.14 -0.01 0.04 0.00 -0.09
ĉay·rm 0.07 0.61 1 0.03 0.12 -0.03 -0.16 -0.00 -0.12
s·rm -0.05 0.37 0.03 1 0.07 0.03 0.14 -0.07 0.07
ĉay·∆c 0.06 0.14 0.12 0.07 1 0.13 0.10 -0.07 0.06
∆y 0.01 -0.01 -0.03 0.03 0.13 1 0.25 0.15 -0.10
∆(prop) 0.07 0.04 -0.16 0.14 0.10 0.25 1 0.28 0.11
∆ log(α) 0.11 0.00 -0.00 -0.07 -0.07 0.15 0.28 1 0.09
−NCF 0.27 -0.09 -0.12 0.07 0.06 -0.10 0.11 0.09 1

3 Correlations of Candidate Factors

Table 2 shows the correlations of nine of the factors used in models that have been

proposed as potential explanations for the value premium, specifically those listed in

Table 1. The correlations are all calculated on a quarterly basis. Each of the conditioning

variables (DP , ĉay and s) is demeaned. The sample correlations are each estimated using

quarterly data over the period 1963Q4:1998Q3.

Interestingly, the correlation matrix shows that the correlations of each of the factors

with HML is low – the highest is a 27% correlation with −NCF , the principal factor of

Campbell and Vuolteenaho (2004). In addition, the correlations between the proposed

factors is also for the most part quite small. Here, other than the correlations between

DP , ĉay, and s interacted with the market, the maximum correlations between two factors

is 28% (between the change in proprietary income and the log growth in the non-housing

expenditure ratio.) Other than this the correlations are generally less than 20%.
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4 The Power of Tests on Characteristic Sorted Port-

folios

There are now more than a dozen factor models that explain the returns of portfolios

sorted on size and book-to-market. It can’t really be the case that all of these factor

models are “correct,” in the sense that they all explain the cross-section of stock returns.

Thus, our first concern in this paper is explaining how it is that so many different factors,

with such a low average correlation, seem to explain the cross-section of returns.

As we discussed in the introduction, our explanation for this is that these tests are designed

in such a way that the test lack statistical power. Specifically we argue that, under very

weak conditions, any factor will appear to explain the average returns of size and book-

to-market sorted portfolios. That is, these tests will make it appear that returns are

consistent with the factor model even when they are not.

To illustrate this point, this section presents a simulation that demonstrates how the FF-

FM methodology can provide spurious support for a factor model. In addition, we use this

simulation to motivate our approach for testing factor models against the characteristic

alternative, an approach that we implement in our empirical tests in Section 5.

4.1 Simulation Results

The simulations presented here consider a factor that has been proposed to explain the

observed cross-sectional relation between returns and characteristics. For example, in-

novations in housing price changes have been proposed as a factor that explains the

book-to-market effect, which is known to be related to expected returns. To abstract

from estimation problems we assume that we accurately measure both a firm’s factor-

beta and its expected return. In addition, we assume that factor betas are correlated

with the characteristic.
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Figure 1: Null and Alternative Hypotheses
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In our simulations we randomly draw 2500 log book-to-market ratios and the single factor

beta from a correlated normal distribution. Specifically, we draw from a multivariate

normal distribution such that:

bmi = log(BMi) ∼ N (0, 1)

βi ∼ N (0, 1)

ρ(bmi, βi) = ρbm,β.

We assume a relatively weak correlation between the characteristic and the factor loading

of ρ = 0.3, which is low enough to allow us to distinguish between the two hypotheses in

an appropriately designed test.

Figure 1 illustrates the distribution of characteristics and factor loadings that are gen-

erated from the simulation. This figure has two plots. Consider the left side plot first.

The vertical (y-axis) is the firm’s log book-to-market ratio, and the horizontal (x-axis) is

the factor beta. Each of the 2500 crosses in this figure represents a single firm or stock.

The weak correlation can be seen in the distribution of the crosses: high β firms generally

have high BM ratios, but there is considerable variation in βs that is unrelated to BM.

Figure 1 illustrates the null and alternative hypotheses we’ll consider. The null hypothesis,

that the factor model fully explains the cross-section of returns, is represented by the left
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plot. Under the null, a stock’s expected return increases with β (as you move to the right

in the plot), but is unrelated to book-to-market after controlling for beta. Of course, there

is still an unconditional relation between book-to-market and expected returns.

This null hypothesis is a risk-based story for the book-to-market effect: a firm’s book-to-

market ratio forecasts its future return because it serves as is a proxy for systematic risk.

Under this hypothesis, if the factor loading can be observed, it will better explain average

returns than book-to-market ratios.

A test’s power is defined as the probably of the test’s rejecting the null hypothesis given

that the alternative is true. Thus, test power can only be evaluated relative to an alter-

native hypothesis. The alternative hypothesis we propose is illustrated in the right hand

side plot in Figure 1. Under the alternative, the expected return is linearly related to the

log book-to-market ratio, but is not directly related to the factor beta. That is, the beta

is related to returns only through its correlation with the characteristic.

The intuition behind this alternative is two fold: first, book-to-market can be related

to expected returns either because it serves as a mispricing-proxy, or as a proxy for

misspecification in the asset pricing model being tested.6 So one part of the alternative

is that expected returns, for whatever reason, are directly linked to book-to-market.

The second part of the argument is that factor loadings on a variety of factors are likely

to be correlated with book-to-market ratios. There are a number of good reasons why

this should be the case. Theoretically, we know that a firm’s book-to-market ratio is a

good proxy for a firm’s future growth (see, e.g., Fama and French (1995), Cohen, Polk,

and Vuolteenaho (2000)), and high- and low-growth firms are likely to have different

sensitivities to a number of economic factors. Empirically, Table 1 shows that this is

indeed the case.

The alternative captures the idea that these might not explain expected returns other

than indirectly through their correlation with book-to-market.

6For the rational story, see Berk (1995). For the mispricing story, see Daniel, Hirshleifer, and Subrah-
manyam (1998).
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Figure 2: BM-Sorted Portfolio Formation
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To evaluate power of the tests, we calculate expected returns under the different alterna-

tive hypothesis; that is:

E[r] = λ0 + λ1 log(B/M).

Following, the test procedures used in the literature, we then sort the 2500 (simulated)

firms into 10 portfolios depending on their book-to-market ratios. This sort is illustrated

in the left panel of Figure 2. Each horizontal line in the figure represents the cutoff

between the BM deciles: the number of firms between any two lines is 250 (one-tenth of

the sample).

This figure illustrates the problem that arises when characteristic sorted portfolios are

used to test factor models. Notice that the top decile will have a high average BM ratio,

and will therefore have a high expected return. In addition, it will have a high factor

beta as a result of the correlation between beta and BM. As we move from the top to the

bottom BM decile, the average return and the average (portfolio) beta declines.

Note also, that there is very little variation in betas in the different deciles, since differences

in the betas that are not correlated with the characteristic is “diversified away” by the

portfolio formation procedure. As a result, as we show in the right panel of Figure 2,

which plots the expected returns and betas for these 10 portfolios, these variables are

very highly correlated. The regression R2 here is 94.4%. The reason is that for this set
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of characteristic-sorted portfolios, there is almost no independent variation in beta.

Figure 3: Beta-Sorted Portfolio and Cross-Sectional Test
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One can alternatively sort stocks into portfolios based on risk rather than characteristics.

Figure 3 illustrates this formation method. In the left-hand plot the vertical lines show the

cutoffs between beta-sorted deciles. The right side figure plots the expected returns and

betas of these portfolios, and the regression line relating these two. The corresponding

regression line for the BM sorted portfolios is also shown.

This plot shows that sorting portfolios in this way results in a lower estimated factor risk

premium, but still yields a strong estimated relation between risk and return under the

alternative, and again a good model fit, with a regression R2 of 97.4%. Here, the problem

is that high beta portfolios have, on average, high BM ratios and therefore high returns.

Sorting in this way, there is almost no independent variation in BM across portfolios so

that the betas and the characteristics are again almost perfectly correlated, making it

impossible to discriminate between the two hypotheses.

In order to discriminate between to the two hypotheses one must construct test portfolios

in a way that significant independent variation in betas and BM ratios. Figure 4 shows

how this can be done with a multiple sort procedure.

The left panel of Figure 4 is similar to the corresponding panel in Figure 2: the horizontal

lines again show the bounds of the 10 BM-sorted portfolios. Now, however we have
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Figure 4: Characteristic/Beta Sorted Portfolio Test
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superimposed on the plot a set of vertical lines which indicate the result of splitting

each of the BM decile portfolios into 10 sub-portfolios based on beta; each of the 100

BM/beta sorted-portfolio contains 25 firms. With these portfolios there is substantial

independent variation in beta, and therefore it is possible to discriminate between the

null and alternative hypotheses.

The results of the regression tests on the three sets of portfolios are summarized in Table

3. Notice that the R2s are high in each of the three tests. The R2 is clearly not a good

indicator of model fit. Notice also that, for the test on either the BM-sorted or β-sorted

portfolios, the estimated risk premia are large and highly significant. Only when the test

is done with the multiple-sort portfolios, and when dummy variables are included for the

BM ranking, does the premium get close to the true value of zero. Interestingly, even in

the third test, the estimated premium is still significant in the simulation. The reason is

that, within each of the 100 portfolios, there is still some correlated variation in expected

return and book-to-market.
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Table 3: Simulation Test Results Summary
The first two rows of this table present the results of OLS regressions of E[ri] = λ0+λ1βi+
ui for the simulated data, sorted into 10 portfolios according to BM (first row), and factor
β (second row). The third row of the table shows the results of the OLS regression test
for the 100 portfolios sorted first into deciles based on BM, and then into sub-portfolios
based on on factor β. Here the regression is:

E[ri] = λ0 + λ1βi + γ2I(2) + · · · + γ10I(10) + ui

where I(2) is an indicator variables which is 1 if the firm is in BM decile 2, and zero
otherwise.

λ̂0 λ̂1 R2(%)

BM Sort 0.1006 0.0946 94.4%
(11.6) (39.8)

β Sort 0.1010 0.0097 97.4%
(187.0) (17.4)

Multiple 0.0463 0.0005 99.8%
Sort∗ (92.5) (3.1)

∗The coefficients and t-statistics associated with the 9 indicator variables are not shown for this regression.

5 Empirical Tests - Campbell and Vuolteenaho (2004)

Based on the results of the simulations in Section 4, we re-examine the Campbell and

Vuolteenaho (2004, CV) tests of a multiple factor model using the multiply-sorted test

portfolio procedure discussed in Section 4.

5.1 Description of the CV model

Campbell and Vuolteenaho (2004, CV) propose a version of the Merton (1973) Intertem-

poral CAPM as an alternative to the static CAPM as a way of explaining the size/book-

to-market anomaly. They argue that the realized market return can be decomposed into

the conditional expected return (Et[rt+1]) plus the component of the return attributable

to news about the level of future cash flows (NCF,t+1), plus the return component attribut-

able to the news about the discount rates applied to these future cash flows by investors
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(−NDR,t+1):

rt+1 = Et[rt+1] + NCF,t+1 − NDR,t+1.

Thus, CV show that one can calculate βs with respect the return components attributable

to these two news components. Motivated by the representative agent model in Campbell

(1993), who shows that:

Et[ri,t+1] − rr,t+1 +
σ2

i,t

2
= γσ2

p,tβi,CFp,t + σ2

p,tβi,DRp,t

where p is the portfolio the representative investor chooses to hold (i.e., the market), γ is

the coefficient of relative risk aversion of the representative agent, and βi,CFp,t and βi,DRp,t

are the components of portfolio p’s return attributable to cash-flow and discount-rate

news, respectively.

CV find that over the 1929-1963 period, the standard CAPM prices the 25 FF portfolios,

as value stocks have both a higher βDR and a higher βCF over this sample period.

However, over the 1963-2001 sample, the value stocks have a lower βDR, but a higher βCF .

The measured CAPM β, which is the sum βDR and βCF , is lower for value stocks, but the

average returns are higher because of the much higher premium attached to cash-flow risk.

This, they argue, leads to a rejection of the standard CAPM. However the CV model,

which separates out covariance with discount-rate and cash-flow shocks, is not rejected.

5.2 The Performance of the CAPM over the 1929-1963 Period

CV argue that the standard CAPM is not rejected over the 1929-1963 period. This is

consistent with the results of Ang and Chen (2003), who also argue that the high βs of

value stocks over this period explains their high returns, and further argue, like CV, that

the CAPM cannot be rejected over this period.

We first re-examine the data from this period using portfolios which employ our sort
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methodology. Table 5 shows the average returns and post-formation betas for our port-

folios. Our portfolio formation procedure closely follows Daniel and Titman (1997). We

form 45 portfolios using the following procedure: First, we sort all firms into three port-

folios on the basis of market capitalization (or size) as of December of year t, on the basis

of NYSE breakpoints. Additionally, we sort of firms into three portfolios on the basis

of the firm’s book to market ratio. The book to market ratio is defined as the ratio of

the firm’s book value at the firm’s fiscal year end in year t, divided by the firm’s market

capitalization as of December of year t.

Then, we sort each of the firms in these nine portfolios into five sub-portfolios based on the

estimated pre-formation βmkts of these portfolios. We estimate the pre-formation betas

by running regressions of individual firm excess monthly returns on the excess monthly

returns of the CRSP value weighted index for 60 months leading up to December of year

t. Sub-portfolio breakpoints are set so that, across each size-BM portfolio, there are an

equal number of firms in each sub-portfolio.7

We then construct the realized returns for each of these 45 test portfolios. Even though

the portfolios are formed using data up through the end of year t, we examine the returns

from these portfolios starting in July of year t + 1. The reason for this (following Fama

and French (1993)) is that the book value data for the firm is unlikely to be publicly

available as of January of year t + 1, but it is almost certain to be available as of July.

All of our portfolio returns are value-weighted. The portfolios are then rebalanced at the

start of July of year t + 2 using the new firm data from the end of year t + 1.

The upper panel of Table 5 gives the average returns and t-statistics for each of our

45 portfolios. The lower panel gives the estimated post-formation betas for the realized

returns, and the t-statistics associated with these betas. The final row of each of the

two tables gives the average return/beta and the associated t-statistics for the ”average

portfolio,” which is an equal weighted portfolio of each of the nine sub-portfolios in the

same pre-formation beta group.

7However, note that the number of firms in the size-BM portfolios will vary because of the use of
NYSE breakpoints in the size portfolio sort.
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Finally, the last two columns of each table give the average return/beta and the associated

t-statistics for the 5−1 difference portfolio, that is a zero investment portfolio which buys

one dollar of the high-estimated beta portfolio and shorts one dollar of the low-estimated

beta portfolio.

A couple of important features of the data are evident in at the end in the two panels of

this table. First, in the lower panel, note that our sort on preformation beta produces

a large spread and in post–formation betas. This is important for the power of the test.

Looking at the right two columns shows that sorting on pre-formation betas produces a

large and highly statistically significant statistically spread in realized beta.

In contrast, the upper panel shows that the sort on preformation beta produces little

spread in average returns. The average return and t-statistic in the lower right corner of

the table shows that the mean return difference between the high beta and the low beta

portfolios is only 0.02% per month. The nine entries directly above this show that the

differences in beta don’t produce a statistically significant difference in return for any of

the nine size/BM portfolios.

It is important to note that the observation of Ang and Chen (2003) and Campbell and

Vuolteenaho (2004) that that higher book to market is associated with higher beta in

his early period is confirmed in our test: the lower panel of our table shows that, on

average, higher book to market firms do indeed have higher betas. However, this positive

correlation does not imply that the CAPM explains returns in this period. The reason

is that differences in beta that are independent of differences in book to market are not

associated with average return differences, at least at any statistically significant level.

We formally test the hypothesis that the CAPM explains the returns of these 45 portfolios

by running time series regressions of the realized excess returns portfolios on the realized

excess returns CRSP value-weighted portfolio returns over the 1929:07-1963:06 period.

That is, the regressions are of the form:

(r̃i,t − rf,t) = αi + βi(r̃m,t − rf,t) + ε̃i,t
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The left part of Table 6 reports the estimated regression intercepts, and the right part

presents the t-statistics associated with these intercepts. The last row of the table gives

the intercepts and t-statistics for the average portfolio, and the last two columns give

the estimated intercepts and t-stats for the 5−1 difference portfolio. Consistent with the

average returns and estimated betas reported in Table 5, the estimate alphas are negative,

are economically large, and are highly statistically significant. Indeed, for the average-5−1

difference portfolio (the lower-right entry in the table), the t-statistic is -4.42.

However, recall that CV argue that it is not the CAPM beta that primarily determines ex-

pected returns, but the “bad” or “cash-flow” beta associated with the covariance between

a portfolio’s return and the component of the return on the market that is associated with

news about future cash-flows. To test this hypothesis, we use discount-rate and cash-flow

innovations as calculated by CV, calculate the βs with respect to these innovations for the

45 portfolios (as described in CV) and examine whether βCF or βDR explain the average

returns of the 45 portfolios.

The results from these tests over this period are reported in Table 7. It is the numbers

in the upper panel that are most relevant here. First, notice that there is indeed a large

correlation between book-to-market and the cash-flow beta over this period: high BM

firms do, on average, have higher cash-flow betas. However, sorting on pre-formation

market beta produces a large spread in realized cash-flow betas (note the t-statistics

in the last column of the table), and as we have already seen in Table 5, produces no

statistically significant spread in returns. Thus, differences in βCF that are unrelated to

differences in BM are not priced.

Notice that the sort on pre-formation market beta also produces a large spread in realized

discount-rate beta. Again, note the t-statistics in the last column of the lower panel of

the table.
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5.3 Late-Period Results

It is now well known (see, e.g., Fama and French (1992)) that the CAPM fails to explain

the returns of even size and book-to-market sorted portfolios since 1963. Over this period,

value stocks have a low CAPM beta, and high average return, and growth stocks have a

high CAPM beta, and low average returns.

As discussed earlier, CV argue that the reason for this rejection is that the two components

of beta that they identify, βDR and βCF , have different premia. Specifically, CV argue

that over the 1963-2001 sample, the value stocks have a lower βDR, but a higher βCF .

The measured CAPM β, which is the sum βDR and βCF , is lower for value stocks, but the

average returns are higher because of the much higher premium attached to cash-flow risk.

This, they argue, leads to a rejection of the standard CAPM. However the CV model,

which separates out covariance with discount-rate and cash-flow shocks, is not rejected

for the 25 FF size and book-to-market sorted portfolios.

Here, we examine whether the CV model can explain the returns of the portfolios which are

constructed in such a way as to introduce variation in cash-flow beta which is independent

of BM. We do this by constructing 45 portfolios, as in Section 5.2.

Here though, we form the portfolios slightly differently than in Section 5.2. The reason

is that sorting on pre-formation market beta produces a large spread in the discount rate

beta in the later part of the sample, but no statistically significant differences in cash-flow

betas.

Hence, instead of sorting on CAPM beta, we first form a time series of estimates of CF-

innovations. We sort on a linear combination of the variables that CV use in their vector

autoregression to estimate cash-flow news. Specifically, their VAR estimates of NCF are

equivalent to a linear combination of the RHS variables of their VAR:

NCF,t = 0.004 + 0.60 Rm,t + 0.40 Rm,t−1 + 0.01 ∆PEt − 0.88 ∆TYt − 0.28 ∆V St
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We calculate our pre-formation estimates of βCF by regressing individual firm excess

returns on NCF,t in the 60 months leading up to December of year t (consistent with our

method as described in Section 5.2). Other details of the portfolio formation procedure

are as described in Section 5.2.

Table 8 presents the late period post-formation CF and DR betas and the associated

t-statistics. Here, the spread is small that what is achieved in the early period sort on

CAPM beta, but it is still statistically significant. Moreover, the CF beta spread in the

5− 1 portfolio is about as large as the spread in CF beta achieved via unconditional sorts

on book-to-market: the lower right corner of the upper panel shows a spread of 0.068,

with a t-statistic of 3.54.

However, while the sort produces a statistically significant difference in port-formation

cash-flow betas, it produces no statistically significant difference in average returns. Table

9 reports the average returns of the 45 late-period portfolios. The mean return of the

average difference portfolio is 0.09, with a t-statistic of 0.054.

6 Tests Using Industry Portfolios

The empirical tests in the previous section used pre-formation betas as an instrument for

the risk-factor loadings as a way of introducing variation in the test assets’ factor loadings

which is uncorrelated with their size and book-to-market ratios. In this section we use an

alternative approach, and examine industry portfolio returns. To the extent that sorting

into portfolios on the basis of industry captures variation in risk-factor loadings that is

unrelated to book-to-market ratio (and hence to expected returns, under the alternative

hypothesis), such an approach should provide power against our characteristic-alternative.

In this section we re-examine the Conditional Consumption-CAPM (CCAPM) test of

Lettau and Ludvigson (2001) in several ways. First, we reproduce their Fama MacBeth
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Table 4: Tests of the Lettau and Ludvigson (2001) Consumption CAPM Using
Size/BM sorted and Industry Portfolios
This table presents estimates of the premia (λs) associated with the LL factors. Fama-
MacBeth t-statistics are given in parentheses.

Ports Const ĉayt ∆ct+1 ĉayt ·∆ct+1 R2

25 FF SZ/BM 4.28 -0.12 0.02 0.0057 0.70
(11.36) (-0.66) (0.23) (3.10)

48 FF Indust. 2.94 0.27 -0.10 0.0002 0.30
(14.49) (2.99) (-2.26) (0.24)

38 FF Indust. 3.13 0.18 -0.07 0.0003 0.09
(8.40) (0.93) (-0.92) (0.17)

11 FF Indust. 2.91 -0.02 0.03 -0.0033 0.51
(7.08) (-0.09) (0.29) (-1.84)

tests (in their Table 3), only using industry-sorted portfolio returns.8 Table 4 shows the

results of these sets of Fama-MacBeth regressions. The table shows that the estimated

premia associated is different when these tests are done with industry portfolios than

when they are done with the 25 FF portfolios as test assets.

In addition, we reproduce Lettau and Ludvigson’s Figure 1, panel (d), here for the Fama

and French 38 industry sorted portfolios. The left panel of Figure 5 is done per the LL

methodology, and using the 25 FF test portfolios. Consistent with LL, we find that the

conditional consumption CAPM does a good job pricing this set of test assets.

However, the right panel of the figure plots the fitted and realized returns for the 38 Fama

and French industry portfolios. However, in constructing the fitted returns, we use the

risk premia as estimated from the Fama-MacBeth regressions with the 25 sz/bm-sorted

industry portfolios. Like the 25 sz/BM sorted portfolios, the industry sorted portfolios

exhibit considerable variation in their loadings on the factors, and consequently very

different fitted returns. However, the premia as estimated from the original test assets

8The returns to the sets of industry portfolios are taken from Ken French’s web page. Details on the
SIC codes associated with each of the industry breakdowns is available there.
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Figure 5: Lettau and Ludvigson (2001) Conditional CCAPM Model – Realized and Fitted
Returns - 25 Size/BM sorted Portfolios and 38 Industry Sorted Portfolios
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are not consistent with the pricing of the industry portfolios.

This empirical analysis is very preliminary, but suggests that the covariation with the

proposed factors outside of the original 25-FF portfolio return space is not priced is a

manner consistent with the estimates for the original test assets.

7 Conclusions

We have shown that tests of factor models which are conducted on size and book-to-

market sorted portfolios alone are unlikely to reject the null hypothesis that a factor

model explains returns, even if the firms’ factor loadings are only loosely correlated with

book-to-market, and are not direct determinants of expected return. We argue that

statistically powerful tests require that portfolios be formed on the basis additional sorts

on some ex-ante variable which is a good forecaster of factor loadings.
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We have presented two examples of such a test: we first redo the empirical examination

of the models of Campbell and Vuolteenaho (2004) and of Ang and Chen (2003) using

size, book-to-market and estimated future factor loadings, and come to decidedly different

conclusions. In addition, we re-examine the Lettau and Ludvigson (2001) model using

industry sorted portfolios, and again find evidence that appears inconsistent with their

model.

We argue that to determine which if any of the numerous factor models that have been

proposed as candidates to explain the book-to-market effect, it will be necessary to carry

out the tests using this more powerful methodology.
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Appendix A. Conditional Models and Conditional Tests

This appendix reviews results on conditional and unconditional models and tests of mod-
els.

A.1. Conditional and Unconditional Factor Models

In the absence of arbitrage, all assets are priced by a pricing kernel m̃ such that:

Et[m̃t+1R̃t+1] = 1.

An unconditional k-factor model specifies that the pricing kernel is a linear function of a
set of factors:

m̃t+1 = a + b f̃t+1 (2)

where a and b are time-invariant. In contrast, a conditional k-factor model specifies that:

m̃t+1 = at + b′

t f̃t+1

Here, in contrast to the specification in equation (2), at and bt are not time invariant,
but are adapted to the time t information set.

To test a conditional factor model, we generally specify that at and bt are linear functions
of a (m×1) vector of instruments Zt ∈ Ft:

at = a′ Zt

bt = bZt

where a is (m×1) and b is (k×m). This gives:

m̃t+1 = a′Zt + (bZt)
′ f̃t+1

A.1..1 Interpreting Conditional Factor Models

As noted by Cochrane (2000), a conditional k-factor model with m conditioning variables
is equivalent to a unconditional factor model with (k · m) factors.

For example, the unconditional CAPM specifies that:

m̃t+1 = a + br̃m,t+1,

where a and b are time invariant. The Lettau and Ludvigson (2001) conditional CAPM
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specifies that
m̃t+1 = (γ0 + γ1zt) + (η0 + η1zt)r̃m,t+1 (3)

where, in their quarterly tests, the instrument zt is their cay variable measured at the
start of the quarter. Notice that this model has the implication that, for a (N×1) vector
of asset returns from t to t + 1, and given an observable risk-free rate:

(r̃t+1 − 1rf,t+1) = βm(r̃m,t+1 − rf,t+1) + βmz(r̃m,t+1 − rf,t+1)zt + ε̃t (4)

where r̃, 1, βm, βmz, and ε̃t and (N×1) vectors, and rf,t+1 is the return on an efficient
portfolio uncorrelated with the market portfolio return – it is the risk-free rate if it exists,
or the (stochastic) return on a minimum-variance zero-beta portfolio.

Either equation (3) or equation (4) shows that this conditional CAPM is equivalent to a
two factors model with factors equal to:

1. The excess market return, defined as the profit that results from investing $1 in the
market portfolio and shorting $1 of the risk-free (or zero-beta) asset.

2. The scaled excess-market return, defined as the profit that results from investing $zt

in the market portfolio and shorting $zt of the risk-free (or zero-beta) asset.

A.2. Conditional Tests of Factor Models

Any test of a factor model will be a test of the set of moment restrictions:

Et[m̃t+1R̃t+1] = 1. (5)

An unconditional test examines the moment restriction that results from taking an un-
conditional expectation of equation (2):

E[m̃t+1R̃t+1] = 1.

A conditional test examines additional restrictions implied by equation (5), specifically,
that for any set of instruments Zt in Ft:

E
[(

m̃t+1R̃t+1 − 1
)
⊗ Zt

]
= 0 (6)

The set of papers that we consider here perform unconditional tests of conditional factor
models. These papers generally do not test the additional moment restrictions implied
by (6). In the language of Cochrane (2000), they don’t augment the return space with
scaled test assets – but they do augment the set of factors with scaled factors.
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Table 5: BM/Size/Pre-βMkt Portfolios - r̄s and Post-Formation βs

For the 1933:07-1963:06 period, this table presents the average monthly returns (in %/month) and

the post-formation market βs and the corresponding t-statistics for portfolios formed on the basis of

independent sorts into 3 portfolios each based on size and book-to-market ratio, followed by dependent

sorts into 5 sub-portfolios based on pre-formation betas. Size and book-to-market sorts are based on

NYSE cutoffs. The final column of the table, labeled 5 − 1, gives the average return and β for the

zero-investment portfolio formed by buying $1 of the high β portfolio, and selling $1 of the low β

sub-portfolio. The final row of the table, labeled “avg port.,” gives the statistics for the equal-weighted

portfolio of the 9 sub-portfolios listed directly above.

Chr Pt r̄ (%/mo) t(r̄) r̄ t(r̄)
SZ BM 1 2 3 4 5 1 2 3 4 5 5−1

1 1 1.22 1.18 1.19 0.85 0.81 (3.48) (2.54) (2.57) (1.47) (1.39) -0.40 (-0.96)
1 2 1.40 1.28 1.41 1.17 1.24 (4.40) (3.42) (3.38) (2.32) (2.41) -0.16 (-0.51)
1 3 1.33 1.47 1.68 1.56 1.44 (3.91) (3.36) (3.26) (3.19) (2.36) 0.11 (0.30)
2 1 1.02 0.98 1.07 0.98 0.94 (4.40) (3.45) (3.03) (2.56) (2.18) -0.08 (-0.28)
2 2 1.23 1.20 1.28 1.37 1.18 (5.09) (4.03) (3.71) (3.56) (2.57) -0.05 (-0.18)
2 3 1.09 1.30 1.32 1.34 1.28 (3.53) (3.21) (3.11) (2.75) (2.39) 0.19 (0.54)
3 1 0.70 0.86 0.86 1.07 0.96 (3.46) (3.75) (3.16) (3.50) (2.77) 0.26 (1.19)
3 2 0.93 1.07 1.27 1.06 0.99 (4.37) (4.02) (3.99) (3.14) (2.47) 0.06 (0.20)
3 3 0.99 1.11 1.24 1.31 1.26 (3.14) (2.94) (2.87) (2.92) (2.48) 0.27 (0.88)

avg prt 1.10 1.16 1.26 1.19 1.12 (4.42) (3.68) (3.48) (2.93) (2.48) 0.02 (0.09)

Chr Prt β̂Mkt t(β̂Mkt) β̂Mkt t(β̂M )
SZ BM 1 2 3 4 5 1 2 3 4 5 5−1

1 1 1.03 1.40 1.30 1.71 1.76 (22.09) (23.13) (19.99) (22.09) (22.96) 0.73 (9.50)
1 2 1.06 1.24 1.40 1.66 1.70 (31.88) (30.99) (33.38) (30.01) (30.81) 0.64 (11.94)
1 3 1.07 1.40 1.66 1.61 1.88 (25.87) (27.62) (28.25) (30.35) (25.03) 0.82 (14.15)
2 1 0.78 0.99 1.25 1.36 1.53 (32.85) (39.48) (42.87) (42.84) (41.48) 0.75 (17.82)
2 2 0.82 1.05 1.24 1.40 1.63 (34.11) (42.33) (47.79) (50.05) (43.75) 0.81 (20.53)
2 3 0.99 1.39 1.47 1.63 1.80 (27.17) (36.04) (36.88) (32.82) (32.45) 0.81 (14.11)
3 1 0.70 0.82 0.99 1.13 1.29 (36.81) (48.07) (53.82) (58.54) (59.26) 0.58 (18.06)
3 2 0.70 0.89 1.11 1.21 1.40 (30.50) (32.76) (40.13) (45.52) (40.22) 0.70 (14.70)
3 3 1.04 1.27 1.44 1.56 1.71 (31.20) (32.06) (31.45) (37.86) (33.24) 0.66 (12.75)

avg prt 0.91 1.16 1.32 1.47 1.63 (53.20) (56.75) (53.61) (50.75) (47.68) 0.72 (23.80)
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Table 6: Early Period Times Series Regression Intercepts
This table presents the results of the time-series regressions of the realized excess returns and t-statistics
of the 45 portfolios on the realized excess returns of the CRSP value-weighted portfolio returns over the
1933:07-1963:06 period. The left part of the table reports the estimated regression intercepts, and the
right part presents the t-statistics associated with these intercepts. The last row of the table gives the
intercepts and t-statistics for the average portfolio, and the last two columns give the estimated intercepts
and t-stats for the 5−1 difference portfolio, as described in the text.

Chr Prt α̂ t(α̂) α̂ t(α̂)
SZ BM 1 2 3 4 5 1 2 3 4 5 5−1

1 1 0.24 -0.15 -0.05 -0.78 -0.86 (1.01) (-0.50) (-0.17) (-2.02) (-2.26) -1.10 (-2.88)
1 2 0.39 0.10 0.07 -0.41 -0.38 (2.34) (0.50) (0.33) (-1.49) (-1.39) -0.77 (-2.87)
1 3 0.32 0.13 0.10 0.02 -0.36 (1.54) (0.53) (0.33) (0.09) (-0.96) -0.67 (-2.34)
2 1 0.28 0.03 -0.13 -0.31 -0.51 (2.34) (0.27) (-0.87) (-2.00) (-2.80) -0.79 (-3.79)
2 2 0.45 0.19 0.09 0.04 -0.38 (3.75) (1.57) (0.73) (0.27) (-2.04) -0.83 (-4.20)
2 3 0.15 -0.03 -0.08 -0.22 -0.43 (0.85) (-0.14) (-0.39) (-0.89) (-1.57) -0.59 (-2.05)
3 1 0.03 0.07 -0.09 -0.01 -0.26 (0.36) (0.81) (-0.96) (-0.08) (-2.43) -0.30 (-1.84)
3 2 0.26 0.22 0.20 -0.09 -0.35 (2.27) (1.61) (1.48) (-0.71) (-2.03) -0.61 (-2.57)
3 3 -0.01 -0.09 -0.13 -0.18 -0.37 (-0.05) (-0.48) (-0.58) (-0.86) (-1.46) -0.36 (-1.40)

avg prt 0.23 0.05 -0.00 -0.22 -0.43 (2.75) (0.52) (-0.01) (-1.49) (-2.55) -0.67 (-4.42)
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Table 7: Early Period Post-Formation CF and DR betas

This table presents the estimated CF and DR betas from time-series regressions of the
realized excess returns and t-statistics of the 45 portfolios on the component of the market
return attributable to cash-flow and discount-rate news, as calculated by Campbell and
Vuolteenaho (2004), over the 1933:07-1963:06 period. The left parts of the two panels
report CF and DR betas, and the right parts of each panel present the t-statistics asso-
ciated with these betas. The last row of the table gives the betas and t-statistics for the
average portfolio, and the last two columns give the estimated betas and t-stats for the
5−1 difference portfolio, as described in the text.

Chr Prt β̂CF t(β̂CF ) β̂CF t(β̂CF )
SZ BM 1 2 3 4 5 1 2 3 4 5 5−1

1 1 0.20 0.26 0.26 0.38 0.45 (4.98) (4.97) (4.91) (5.95) (7.03) 0.26 (5.44)
1 2 0.22 0.28 0.29 0.36 0.42 (6.15) (6.82) (6.34) (6.42) (7.57) 0.21 (5.94)
1 3 0.31 0.35 0.42 0.41 0.47 (8.49) (7.39) (7.54) (7.75) (7.07) 0.16 (4.05)
2 1 0.13 0.18 0.24 0.26 0.27 (4.94) (5.56) (6.01) (6.15) (5.49) 0.14 (4.27)
2 2 0.18 0.24 0.25 0.30 0.34 (6.81) (7.47) (6.70) (7.11) (6.67) 0.16 (4.84)
2 3 0.28 0.37 0.39 0.43 0.45 (8.45) (8.53) (8.68) (8.24) (7.75) 0.17 (4.27)
3 1 0.09 0.13 0.16 0.16 0.24 (3.73) (4.97) (5.34) (4.75) (6.16) 0.15 (6.24)
3 2 0.13 0.21 0.21 0.25 0.29 (5.34) (7.26) (5.99) (6.70) (6.45) 0.16 (4.70)
3 3 0.22 0.31 0.32 0.34 0.42 (6.28) (7.67) (6.75) (6.96) (7.66) 0.20 (5.88)

avg prt 0.19 0.26 0.28 0.32 0.37 (7.13) (7.57) (7.19) (7.29) (7.56) 0.18 (6.77)

Chr Prt β̂DR t(β̂DR) β̂DR t(β̂DR)
SZ BM 1 2 3 4 5 1 2 3 4 5 5−1

1 1 0.84 0.99 1.02 1.13 1.27 (11.91) (10.07) (10.57) (9.04) (10.37) 0.43 (4.46)
1 2 0.77 0.91 1.02 1.11 1.19 (12.08) (12.09) (12.31) (10.57) (11.36) 0.42 (6.02)
1 3 0.82 1 1.08 1.15 1.24 (11.91) (11.06) (9.91) (11.48) (9.55) 0.42 (5.18)
2 1 0.63 0.72 0.91 0.96 1.02 (14.19) (12.86) (13.15) (12.65) (11.55) 0.39 (6.09)
2 2 0.62 0.75 0.89 0.97 1.13 (13.04) (12.77) (13.14) (12.69) (12.35) 0.51 (8.22)
2 3 0.68 0.86 0.93 1.04 1.17 (10.60) (10.06) (10.51) (10.17) (10.43) 0.48 (6.11)
3 1 0.54 0.61 0.69 0.82 0.90 (13.87) (13.81) (13.05) (13.93) (13.21) 0.36 (7.35)
3 2 0.49 0.52 0.75 0.79 0.91 (11.38) (9.04) (11.56) (11.40) (11.05) 0.42 (6.21)
3 3 0.65 0.86 0.91 1.01 1.08 (9.73) (11.08) (9.96) (10.90) (10.15) 0.43 (6.20)

avg prt 0.67 0.80 0.91 1.00 1.10 (14.12) (12.87) (12.78) (12.29) (12.11) 0.43 (8.25)
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Table 8: Late Period Post-Formation CF and DR betas

This table presents the estimated CF and DR betas from time-series regressions of the
realized excess returns and t-statistics of the 45 portfolios on the component of the market
return attributable to cash-flow and discount-rate news, as calculated by Campbell and
Vuolteenaho (2004), over the 1963:07-2001:12 period. The left parts of the two panels
report CF and DR betas, and the right parts of each panel present the t-statistics asso-
ciated with these betas. The last row of the table gives the betas and t-statistics for the
average portfolio, and the last two columns give the estimated betas and t-stats for the
5−1 difference portfolio, as described in the text.

Chr Prt β̂CF t(β̂CF ) β̂CF t(β̂CF )
SZ BM 1 2 3 4 5 1 2 3 4 5 5−1

1 1 0.090 0.110 0.119 0.136 0.157 (2.62) (3.04) (3.04) (3.08) (3.25) 0.067 (2.54)
1 2 0.117 0.127 0.134 0.153 0.181 (4.55) (4.46) (4.16) (4.20) (4.22) 0.064 (2.63)
1 3 0.133 0.153 0.170 0.160 0.211 (4.89) (5.25) (5.24) (4.47) (5.12) 0.078 (3.63)
2 1 0.077 0.074 0.091 0.099 0.130 (2.82) (2.39) (2.72) (2.74) (2.86) 0.053 (1.93)
2 2 0.106 0.110 0.135 0.158 0.157 (4.71) (4.14) (4.94) (5.19) (4.23) 0.051 (2.10)
2 3 0.115 0.134 0.141 0.173 0.214 (4.83) (4.99) (4.71) (5.41) (5.49) 0.098 (3.54)
3 1 0.061 0.058 0.068 0.074 0.091 (2.49) (2.27) (2.42) (2.41) (2.50) 0.031 (1.27)
3 2 0.052 0.075 0.100 0.118 0.146 (2.28) (3.04) (3.74) (4.15) (4.39) 0.094 (3.70)
3 3 0.084 0.099 0.127 0.123 0.161 (3.50) (4.00) (4.48) (3.95) (4.67) 0.077 (2.90)

avg prt 0.093 0.104 0.121 0.133 0.161 (4.15) (4.18) (4.32) (4.32) (4.40) 0.068 (3.54)

Chr Prt β̂DR t(β̂DR) β̂DR t(β̂DR)
SZ BM 1 2 3 4 5 1 2 3 4 5 5−1

1 1 1.188 1.267 1.386 1.542 1.658 (17.05) (17.46) (17.77) (17.32) (16.82) 0.470 (7.28)
1 2 0.859 0.962 1.117 1.237 1.466 (15.90) (16.07) (16.92) (16.37) (16.55) 0.607 (10.79)
1 3 0.852 0.929 1.037 1.188 1.356 (14.22) (14.56) (14.61) (15.71) (15.32) 0.504 (9.93)
2 1 0.927 1.108 1.221 1.324 1.642 (16.71) (18.46) (18.78) (18.85) (18.47) 0.715 (11.33)
2 2 0.669 0.903 0.948 1.030 1.302 (13.35) (16.44) (16.63) (15.91) (17.34) 0.632 (11.49)
2 3 0.608 0.786 0.952 1.006 1.217 (10.80) (12.89) (14.65) (14.28) (14.11) 0.609 (9.11)
3 1 0.780 0.877 1.020 1.132 1.304 (15.21) (17.21) (18.72) (19.45) (18.25) 0.524 (9.16)
3 2 0.551 0.697 0.870 0.878 1.128 (10.41) (12.69) (15.27) (14.07) (16.35) 0.577 (9.52)
3 3 0.500 0.583 0.759 0.947 1.059 (8.58) (9.97) (11.56) (13.81) (13.93) 0.560 (8.71)

avg prt 0.770 0.901 1.034 1.143 1.348 (16.80) (18.15) (18.90) (19.05) (18.79) 0.577 (13.67)
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Table 9: Late Period Average Portfolio Returns

For the 1963:07-2001:12 period, this table presents the average monthly returns (in %/month) and the

corresponding t-statistics for portfolios formed on the basis of independent sorts into 3 portfolios each

based on size and book-to-market ratio, followed by dependent sorts into 5 sub-portfolios based on

pre-formation cash-flow betas. Size and book-to-market sorts are based on NYSE cutoffs. The final

column of the table, labeled 5 − 1, gives the average return for the zero-investment portfolio formed by

buying $1 of the high β portfolio, and selling $1 of the low β sub-portfolio. The final row of the table,

labeled “avg port.,” gives the average return and t-statistic for the equal-weighted portfolio of the 9

sub-portfolios listed directly above.

Chr Prt r̄ (%/mo) t(r̄) r̄ t(r̄)
SZ BM 1 2 3 4 5 1 2 3 4 5 5−1

1 1 0.53 0.57 0.77 0.53 0.24 (1.81) (1.87) (2.30) (1.40) (0.59) -0.29 (-1.28)
1 2 0.71 0.85 0.88 0.76 0.95 (3.23) (3.45) (3.18) (2.44) (2.57) 0.23 (1.12)
1 3 1.04 0.95 1.07 1.02 1.11 (4.40) (3.75) (3.78) (3.31) (3.10) 0.07 (0.39)
2 1 0.66 0.64 0.55 0.42 0.49 (2.87) (2.45) (1.92) (1.37) (1.27) -0.17 (-0.74)
2 2 0.63 0.62 0.80 0.66 0.93 (3.26) (2.71) (3.39) (2.49) (2.92) 0.29 (1.44)
2 3 0.67 0.90 1.02 0.95 1.02 (3.25) (3.88) (3.97) (3.43) (3.02) 0.35 (1.48)
3 1 0.57 0.55 0.54 0.48 0.52 (2.75) (2.54) (2.27) (1.87) (1.67) -0.05 (-0.25)
3 2 0.51 0.61 0.48 0.57 0.77 (2.67) (2.94) (2.10) (2.32) (2.69) 0.25 (1.17)
3 3 0.67 0.57 0.73 0.75 0.79 (3.29) (2.70) (3.00) (2.80) (2.65) 0.11 (0.50)

avg prt 0.67 0.70 0.76 0.68 0.76 (6.26) (5.73) (5.38) (4.60) (4.10) 0.09 (0.54)
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