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Abstract

Firm numbers initially rise and later fall as an industry evolves. This non-
monotonicity, termed as “shakeout”, is not well explained in the existing liter-
ature which overlooks the dynamic structure of new product demand. In this
paper, I explain the time path of industrial evolution as a competitive equilib-
rium outcome driven by the dynamic interaction among technology progress,
income growth and, in particular, demand diffusion. When a new product is
introduced, high-income consumers tend to adopt it first. The technology then
improves with cumulative output (Learning by Doing) and the demand growth
generates S -shaped diffusion as the product penetrates a positively skewed in-
come distribution (Trickle Down Effect and Income Growth Effect). Eventually
fewer new adopters are available and the number of firms starts to decline as
the market gets satiated. It is shown that faster technological learning, higher
mean income or larger market size contributes to faster demand diffusion and
earlier industry shakeout. Empirical studies on the US and UK television in-
dustries as well as ten other US industries show that the model well explains
the patterns of industrial evolution across countries and products.

1 Introduction

1.1 Questions on the Industry Life Cycle

As a new industry evolves from birth to maturity it is typically observed that price
falls, output rises, and the number of firms initially rises and later falls (Gort and
Klepper 1982, Klepper and Graddy 1990). In particular, the nonmonotonic time path
of firm numbers, termed as “shakeout”, has been the focus of many recent studies of
industry economics. The big question is why there is a shakeout and when it occurs.
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Figure 1: TV Industry Shakeout: US vs. UK

Most theories suggest that technological change is the key. It has been claimed
that shakeout could be triggered by “emergence of the dominant design” (Utterback
and Suárez 1993, Hopenhayn 1993), “gamble for a major innovation” (Jovanovic
and MacDonald 1994), or “advantage of large firm size” (Klepper 1996, Klepper
and Simons 2000). Some other explanations emphasize the demand uncertainty in
new product markets. For example, the “uncertain profit” (Horvath, Schivardi and
Woywode 2001) or “uncertain market size” (Rob 1991, Zeira 1987, 1999) can easily
result in a mass entry and later shakeout.
Although all the theories mentioned above are able to generate a nonmonotonic

time path of firm numbers, there are certain other facts that they do not explain.
For example, let us look at Figure 1, which shows the time path of firm numbers
in the US and UK television industry. The television was commercially introduced
into the US and UK at the same time after the WWII, and the two markets were
separately developed for the following two decades because of their different technical
standard.1 This natural experiment shows that the patterns of industrial evolution
were very similar across countries, but the mass entry and shakeout for TV’s in the
UK was uniformly lagged behind the US.
Can any of the existing theories explain the TV shakeout and its different timing
1The UK adopted the 405-line screen standard in 1943, but other nations proceeded to adopt

standard with higher resolutions. The UK standard remain anomalous through 1964, when some
UK broadcasts began using the internationally common PAL 625-line color standats. Hence through
1964 and longer, UK market was isolated from the foreign competition. See Levy (1981).
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Figure 2: TV Adoption: US vs. UK

across countries? The answer is negative. On one hand, industry studies (Arnold
1985, LaFrance 1985) show that there was no dramatic technological change that ac-
counts for the shakeout in either country. On the other hand, the demand uncertainty
could not have caused the shakeout repeatedly since at least the UK producers can
easily learn about the market from the US experience. Moreover, the TV shakeout
had little to do with foreign competition because the import and export were very
insignificant long after the shakeout occurred in each country.2

It is questions like this that motivate this study. In this paper, we are going to
construct a new theory not only to explain the general pattern of industry life cycle
but also to reveal how country-specific factors, the income distribution and market
size in particular, shape this process. As part of this effort we will take the TV
industry dynamics as an example to bring the theory to data.

1.2 My Hypothesis

One critical problem with the aforementioned theories is that they overlook an espe-
cially important issue about new products — the demand diffusion. New products are
not adopted by potential customers simultaneously. Rather, the timing of adoption

2In 1950s, US and UK were the two largest TV producers in the world, but imports and exports
were nil for both nations. Imports started to increase in 1960s as Japan took off, but did not
reach 10% of domestic production until 1965 in US, and until 1970 in UK. Data sources: Television
Factbook (US), Monthly Digest of Statistics (UK).
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is distributed in some fashion over the population. Without taking that into consid-
eration, their analyses of the industry life cycle tend to be incomplete or incorrect.
In this paper, I study explicitly the demand diffusion and its dynamic effects on

the industrial evolution. When a new product is introduced, high-income consumers
tend to adopt it first. The technology then improves with cumulative output (Learn-
ing by Doing) and the demand growth generates S -shaped diffusion as the product
penetrates a positively skewed income distribution (Trickle Down Effect and Income
Growth Effect). Eventually fewer new adopters are available and the number of firms
starts to decline as the market gets satiated. Therefore, the industry life cycle is
explained as a competitive equilibrium outcome driven by the dynamic interaction
among technology progress, income growth and, in particular, demand diffusion. It
is shown that faster technological learning, higher mean income or larger market size
contributes to faster demand diffusion and earlier industry shakeout. This new the-
ory provides a good explanation for the industrial evolution across many products
and countries. For example, in the case of TV, it was mainly the lower per capita
income and smaller market size in the UK than the US that led to a slower diffusion
of television (Figure 2) and hence a lagged industry shakeout.

1.3 Relation to Other Research

By exploring the dynamic interaction among technological learning, demand diffu-
sion and the evolution of market structure, this paper connects the studies of industry
economics with research in otherwise separate fields. For example, in the marketing
literature, the diffusion of new products has been studied for the purpose of demand
forecast and monopoly pricing (Bass 1969, Kalish 1983, Horsky 1990). In the growth
literature, the learning by doing is one of the most important engine for long run
growth (Arrow 1962, Lucas 1993, Jovanovic & Rousseau 2002, Matsuyama 2003). In
the international trade literature, the most celebrated “product cycle theory” claims
that the demand for new consumer goods is initially greatest in high-income coun-
tries, and diffuse to lower-income countries later on (Vernon 1966, Stokey 1991 and
Grossman & Helpman 1991). In the technology adoption literature, it has been found
that per capita GDP is one of the key variable that explains the diffusion rate of new
technology across nations (Comin & Hobijn 2003). However, all these studies have
so far been unconnected with the study of industry dynamics. This paper is the first
step to fill this gap, which shows that the typical pattern of industrial evolution is
closely related and consistent with the findings in those fields.

1.4 Road Map

The paper is organized as follows. Chapter 2 models the supply structure of a compet-
itive industry and reveals the equilibrium relation between the firm numbers and the
relative industry GDP. Chapter 3 derives the market demand for a new nondurable
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good. In particular, it shows how to endogenize the demand diffusion by explicitly
modeling consumers’ heterogeneity of income and preference. Chapter 4 puts to-
gether the supply and demand, and introduces the law of motion for technology and
income. Chapter 5 characterizes the dynamic industry equilibrium and discusses the
time path of price, output and market structure. Chapter 6 extends the model to
durable goods. Chapter 7 estimates our model with the data of the US and UK TV
industries and ten other US industries. Chapter 8 contains concluding remarks.

2 The Supply Structure

The typical industry life cycle features falling price, rising output and nonmonotonic
time path of firm numbers. In this section, by modeling the supply structure of
a competitive industry we reveal some important relation among these variables,
namely the comovement of the firm numbers and the relative industry GDP.

2.1 The Model

Assume a competitive industry produces one homogenous product. There are M
potential producers that differ in their ability θ ∈ (0,∞) for working in this industry.
This ability θ, distributed with cdf function S(θ), can be interpreted as the efficiency
of management. Anything else being equal, a more efficient firm produces more.
Each period, a firm that actively produces in this industry has to pay a fixed cost
C, which corresponds to the foregone earning of the entrepreneur who runs the firm.
For a typical firm, x and y respectively denote the input and output. The production
function is assumed to be y = θAxα where A is the technology and 0 < α < 1 is the
“span of control” parameter3. Let P denote the price of output, w the price of input.
We also assume that firms can enter and exit freely.4

Each period, firm θ takes the market price P as given to maximize the profit:

πθ = max
yθ,xθ

Pyθ − wxθ − C

s.t. yθ = θAxαθ

and get the solution:

y∗θ = (
αPA

1
α θ

1
α

w
)

α
1−α ; x∗θ = (

αPAθ

w
)

1
1−α ;

πθ = (1− α)(α)
α

1−αw
−α
1−α
(PAθ)

1
1−α − C

3The “span of control” parameter captures the idea of managerial diseconomy of scale, and helps
pin down the optimal firm size. See Lucas (1978).

4This assumption can be relaxed. See Appendix A for the discussion.
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The free entry and exit condition ensures that the marginal firm, the lowest-ability
player allowed in the industry, breaks even. The marginal firm’s ability is denoted by
θ̃, and we get

C = (1− α)(α)
α

1−αw
−α
1−α
(PAθ̃)

1
1−α

The market price is then determined to be:

P =
C1−αwα

(1− α)1−α(α)αAθ̃
(1)

and we can solve more explicitly each firm’s choice:

y∗θ = (
αC

(1− α)w
)αAθ

1
1−α θ̃

α
α−1 ; x∗θ =

αC

(1− α)w
θ

1
1−α θ̃

1
α−1 ; (2)

πθ = [(θ/θ̃)
1

1−α − 1]C (3)

The total market supply Y is the sum of individual firms’ outputs:

Y =M

Z ∞

θ̃

y∗θdS(θ) = (
αC

(1− α)w
)αθ̃

α
α−1AM

Z ∞

θ̃

(θ
1

1−α )dS(θ) (4)

The corresponding number of firms is

N =M

Z ∞

θ̃

dS(θ) (5)

At equilibrium, the market supply equals the market demand. Equation 1 and 4
then implies the industry GDP to be

PY =
C

1− α
θ̃

1
α−1M

Z ∞

θ̃

(θ
1

1−α )dS(θ) (6)

If we further assume that C, the foregone earning of the entrepreneur, grows with
the mean income µ of the economy, e.g. C = φµ , and the other parameters α,M and
S(θ) are time-invariant, the following proposition suggests an important time-series
relation between the firm numbers N and the relative industry GDP, PY/µ.

Proposition 1 In a competitive market, the number of firms is positively related with
the relative industry GDP, i.e. ∂N/∂(PY/µ) > 0.

Proof. Equation 5 and 6 imply

∂N

∂(PY/µ)
=

∂N

∂θ̃

∂θ̃

∂(PY/µ)
> 0

Hence the proposition is proved.
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Figure 3: Firm Numbers and Relative Industry GDP: Evidence I

2.2 Examples and Remarks

There should be no surprise to find out that the model implies a comovement between
the number of firms N and the relative industry GDP, PY/µ. In fact, the earning
of the marginal entrepreneur increases with PY (the total industry GDP) and his
opportunity cost is determined by µ (the mean income of the economy). It follows
that the ratio PY/µ keeps track with the viable number of firms.
In some special cases, we can further show that the number of firms is proportional

to the relative industry GDP, i.e. N = z(PY/µ) where z > 0 is a constant.

Example 1 If θ follows a Pareto distribution, N is proportional to PY/µ.

Proof. Assuming θ follows a Pareto distribution, we have

dS(θ)/dθ = { aL
a/θa+1 if θ ≥ L

0 if θ < L

where a > 0, L > 0. Assuming a > 1/(1− α), Equation 6 implies that

PY =
φµM

1− α
θ̃

1
α−1

Z ∞

θ̃

(θ
1

1−α )
aLa

θa+1
dθ =

φµaLaM

a(1− α)− 1 θ̃
−a
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Figure 4: Firm Numbers and Relative Industry GDP: Evidence II

and Equation 5 implies that

N =M

Z ∞

θ̃

aLa

θa+1
dθ =MLaθ̃

−a

Therefore

N = z(PY/µ) where z =
a(1− α)− 1

φa

which proves that N is proportional to PY/µ.

Example 2 If θ follows a degenerate distribution, N is proportional to PY/µ.

Proof. Assuming firms are identical in ability θ, we have

PY =
φµ

(1− α)
N

Therefore
N = z(PY/µ) where z =

1− α

φ

which proves that N is proportional to PY/µ.
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To derive Proposition 1, we have assumed that α,M and s(θ) are constant over
time. The empirical evidence we have suggests that for many industries these as-
sumptions work quite well. Figure 3 and 4 present the data for the US and UK Black
& White TV industries as well as six other US industries. In those cases, we can
clearly see the comovement of the firm numbers and the relative industry GDP. For
most of our following analyses, we will maintain these assumptions. Moreover, we
will show in Appendix B that it is possible to relax some of those assumptions but
retain the essence of our analysis. More empirical evidence of Proposition 1 will be
presented in section 7.4.

3 The Demand Structure

Now let us turn to the demand side. To explain the industrial evolution, it becomes
crucial to understand the dynamic nature of market demand for a new product. In
this chapter, we propose a novel analysis on this subject.

3.1 Questions on the Traditional Wisdom

It has long been a challenge to explain the demand of new products. In the economics
and marketing literature, the most popular theory of new product diffusion focuses
on the social contagion effect, i.e. people imitate early adopters. This explanation
has been formally established by introducing the logistic curve and its variants since
1950s (Griliches 1957, Mansfield 1961 and Bass 1969).
The simple logistic curve has the property that the hazard rate of adoption rises

with cumulative adoption.
Ḟt

1− Ft
= vFt

where Ft is the fraction of consumers who have adopted the product at time t, and v
is a constant contagion parameter.
It implies the following adoption process, which has traditionally fit data very

well.

Ft =
1

[1 + ( 1
F0
− 1)e−vt] (7)

However, some serious problems arise for this conventional wisdom. In particular,
the following puzzles can not be explained:

• Why a new product diffuses faster in some regions (countries) than others?

• Why a new product diffuses faster in some consumer groups than others?
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Appliance 1% Penetration in Leading Years of Penetration (US-UK)
the US Market 1% 20% 50%

B &W TV 1948 +1 +2 +5
Color TV 1961 +9 +8 +7
Cloth Washer 1916 +18 +35 +38
Cloth Dryer 1950 0 +20
Dishwasher 1922 +35
Electric Blanket 1948 +7 +2 +3
Freezer 1947 +21 +19
Motor Car 1908 0 +41
Radio 1923 0 +4 +12
Refrigerator 1925 +21 +29 +30
Vacuum Cleaner 1913 +2 +14

Table 1: Diffusion Comparison of Household Appliance: US vs. UK

• Why some new products diffuse faster than others?

Since the social contagion theory assumes that adopters are homogenous and the
diffusion parameters F0, v are exogenous, it has no answer for the above questions.
To seek the answer, we may look at some cross-country empirical evidence.
Table 1 compares the diffusion of household appliance between the US and the

UK.5 The data shows clearly that the US adopts new products uniformly earlier and
faster than the UK. It suggests that the diffusion rates are not arbitrarily determined,
and some country-specific factors must play important roles. This conjecture is fur-
ther confirmed by the evidence in Figure 5, which plots the TV adoption rate verse
per capita GDP for 104 countries in 1980.6 At that time, TV was surely no longer
a new product in the world market so that there leaves little room for the social
contagion theory to explain any part of the diffusion. Instead, the cross-country het-
erogeneity of adoption is so clearly related with the heterogeneity of income across
countries. Therefore, we expect a better diffusion theory to explicitly consider the
heterogeneity of adopters.

3.2 My Approach

This paper is a new exploration on this subject, in which we endogenize the demand
diffusion by explicitly modeling the heterogeneity of consumers.7 As the result, we

5Data Source: Bowden & Offer (1994).
6Data Source: UN Common Database.
7In studying the diffusion of new technology among producers, Paul David (1969) suggests that

a positive skewed distribution of firm size may result in a S-type diffusion curve. Here the idea is
extended to study the diffusion of consumer goods. For related work, see Horsky (1990).
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Figure 5: Per Capita GDP and TV Adoption in 104 Countries, 1980

will be able to explain not only the presence of logistic diffusion curves, but also how
the diffusion process is shaped by economic forces like price and income. The model
is presented as follows.
Assume a new nondurable product sells for price P in the market.8 An individual

consumer will adopt it only if her disposable income Id on that product allows her to
do so, i.e.

y = { 1 if Id > P
0 if Id < P

Consumers are heterogenous in their disposable income Id on this new product.
This heterogeneity comes from their different income and preference. In particular,
we assume that the disposable income Id is the product of her total income I (I ≥ 0)
and propensity of spending c (1 ≥ c ≥ 0)9, i.e.

Id = cI

with I and c independently distributed over the population. A proposition follows
immediately.

Proposition 2 New products diffuse faster in higher-income groups.
8It is assumed here that the new product is a nondurable good. In chapter 6 and 7 we will see

that introducing durability does not change much the analysis.
9Assuming a constant fraction of spending on a certain consumption category is equivalent to

assuming a Cobb-Douglas utility function for individual consumers.
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Figure 6: TV Penetration Rates by Income Class: US and UK

Proof. Denote H(c) to be the cdf function of c. Since I and c are independent,
for a given income group the fraction of people who adopt the new product is

Pr(Id > P | I) = Pr(cI ≥ P | I) = H(I/P )

and it rises with I.
Proposition 2 actually states a well-known fact of new product diffusion. In Figure

6 we present the penetration rates of the Black &White TV in different income groups
in the US and UK at its early years.10 It clearly shows that new products diffuse
faster in higher-income groups.
Since the disposable income Id is generally not observable, we would like to learn

more about it from the observables. The following lemma gives the clue.

Lemma 1 A higher mean (inequality) of total income I implies a higher mean (in-
equality) of disposable income Id.

Proof. Since I and c are independently distributed, we have the mean of dispos-
able income E(Id) increases with the mean income µ = E(I):

E(Id) = E(c)µ =⇒ dE(Id)/dµ > 0
10Data source: the US data is from Bogart (1972); the UK data is from Emmett (1956).
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Figure 7: US Family Income Distribution 1970

and the coefficient of variation of the disposable income, v(Id) =
p
V ar(Id)/E(Id),

increases with v(I):

v(Id) =
p
(v2(c) + 1)(v2(I) + 1)− 1 =⇒ dv(Id)/dv(I) > 0

Hence Lemma 1 is proved.
Lemma 1 establishes the relations between the unobserved disposable income and

the observed income so that our theory can be applied to empirical work later on.

3.3 An Explicit Formulation: Log-logistic Distribution

To take our analysis a step further, we have to model the disposable income more
explicitly. By the way of constructing the disposable income, we know that Id is
distributed over the domain [0,∞), so its distribution tends to be positively skewed.
The possible candidates for this group of distribution are far from unique, so the best
thing we can do is to pick a reasonable one.
In the following discussion, we introduce the log-logistic distribution as our specific

example. Though not as well known as its sister distribution, the log-normal, the
application of log-logistic distribution has a long history in economics. Its use can
be traced back to the study of Lomax (1954) on business failure rates, and to Fisk
(1961) on the size distribution of income11. The reason for us to pick the log-logistic
11Figure 7 shows an example of using the Fisk (log-logistic) distribution to fit US family income

1970. See McDonald (1984).
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distribution here is not only because it can serve as an easily tractable representative
of the larger group of positively skewed distributions, but also because it connects
our study to the typically observed logistic diffusion curves as we will show next.
The log-logistic distribution is defined as the distribution of a variate whose log-

arithm is logistically distributed. Assume that the disposable income Id follows the
log-logistic distribution. The cdf function is given as

GId(x) = 1−
1

1 + a1xa2

with the mean E(Id) and Gini coefficient12 g(Id) given as

E(Id) = a
−1/a2
1 Γ(1 +

1

a2
)Γ(1− 1

a2
); g(Id) =

1

a2

Hence, we may rewrite the cdf function into a more meaningful form:

GId(x) = 1−
1

1 + (Γ(1+g)Γ(1−g)
E(Id)

x)1/g

where g = g(Id).
Given E(Id) = E(c)µ, we can now derive the adoption rate F to be a function of

price, mean income and other parameters:

F = 1−G(P ) = 1

1 + η(P/µ)1/g
(8)

where η = (Γ(1 + g)Γ(1− g)/E(c))1/g.

3.4 Endogenous Diffusion vs. Exogenous Diffusion

The appealing feature of introducing the log-logistic distribution is that we can easily
endogenize the logistic diffusion curves. To see this, let us assume that the price
declines at a constant rate Pt = P0e−ρt, and mean income grows at a constant rate
µt = µ0e

xt. Then we can rewrite equation 8 as follows

Ft =
1

1 + η[P0/µ0]
1/ge−(ρ+x)t/g

(9)

Comparing the equation 9 and 7, we realize that our endogenous diffusion formula
is actually equivalent to the logistic model under very reasonable assumptions. Notice
that the diffusion parameters traditionally treated as exogenous variables are now
given clear economic meanings: the contagion parameter v is determined by the
12The coefficient of variation, an alternative measure of income inequality, is also only determined

by the parameter a2.
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growth rate of price and income, and the initial condition F0 is the fraction of adopters
who can afford the new product at the beginning of time.

v = (ρ+ x)/g F0 =
1

1 + η[P0/µ0]
1/g

This result is also empirically plausible. Sultan et al. (1990) analyzed the para-
meter estimates of 213 published application of the logistic model and its extension.
They report the average value of v = 0.38. Jeuland (1993, 1994) finds that the value
of v is rarely greater than 0.5 and rarely less than 0.3. Assigning reasonable values
of Gini coefficient and growth rates of income and price, our model can easily gener-
ate the value of v within that range. Further empirical analysis will be presented in
section 7.6.

4 The Industry Equilibrium

Given the above analyses, we are now ready to put together the supply and demand
to derive the industry equilibrium.

4.1 The Momentary Equilibrium

At a point of time, given the value of parameters, the industry equilibrium implies
(1) Individual firms take the price as given and maximize their profits; (2) Individual
consumers take the price as given and maximize their utility; (3) Industry price,
output and firm numbers are uniquely determined to clear the market. All the findings
are summarized in the following equations.13

P =
C1−αwα

(1− α)1−α(α)αAθ̃
(10)

Y = (
αC

(1− α)w
)αθ̃

α
α−1AM

Z ∞

θ̃

(θ
1

1−α )dS(θ) (11)

Y = mF =
m

1 + η(P/µ)1/g
(12)

N = M

Z ∞

θ̃

dS(θ) ∝ PY
C

(13)

13Notice that although we have so far assumed that individual consumers can only make unit
purchase and the disposable income has a log-logistic distribution, they are harmless simplifications
and can be relaxed. The proof is available from the author.
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Notice m denotes the total number of potential consumers. Since the number of
potential consumers and producers are both closely related to the population size, it
is reasonable to assume that the ratio M/m is a constant.
This is a system of four equations with four unknowns. The solution shows that

the equilibrium values of P, Y, θ̃ and N are endogenously determined by the four
important parameters: technology A, mean income µ, foregone earning C and input
price w. With reasonable assumptions on the law of motion for those parameters, we
will then be able to characterize the time path of industrial evolution.

4.2 Law of Motion Equations

4.2.1 Learning-by-Doing Technology Progress

Technology progress is commonly observed over the industry life cycle. Many theoret-
ical and empirical work (Arrow 1962, Boston Consulting Group 1972 and etc.) have
identified that learning by doing is one of the most important driving force. The pro-
ductivity gains, closely linked to growth in cumulative output, typically stem from a
wide variety of underlying sources, including improvement in capital equipment, bet-
ter product and process designs, and improved organizational and individual skills.
Therefore, in our context, we assume that the technology A is determined by the
cumulative industry output as follows.

At = A0(Qt)
γ (14)

in which Qt =
R t
0
Y (s)ds+Q0 and γ is the learning rate.

The above formula implies that only aggregate cumulative output matters to every
producer’s productivity. In fact, a firm’s own contribution to Q seems to matter more
than that of others, especially at high frequencies ( Irwin & Klenow 1994, Thompson
& Thornto 2001). However, at lower frequencies, the distinction between own and
outside experience should fade given the wide range of channels by which information
diffusion can occur.14 Therefore, we take equation 14 as a reasonable formulation.

4.2.2 Income Growth and Its Effects

Since the mean income of the economy is determined outside any single industry, we
assume it grows at an exogenous rate x,

µt = µ0e
xt with µ0 > 0, x > 0

14Lieberman (1987) lists many of the channels. Employees may be hired-away by rival firms.
Products can be examined and reverse-engineered. Patents can be invented around or even infringed
without penalty. Consultants and contractors may disseminate information on new products and
processes. Moreover, productivity improvements often stem form learning by capital equipment
suppliers, whose innovations become available to all firms in the industry.
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Also as we discussed in Section 2.1 the foregone earning of the entrepreneur C
grows with the mean income µ, hence we have

Ct = φµt with φ > 0

The law of motion for the input price w is a little complicated. Since we assume
there is only one input in our model, w is actually a composite price index for both
labor and non-labor inputs. Though the price of labor inputs may grow with the mean
income, the price of non-labor inputs like capital and materials does not. Therefore,
it is reasonable to assume that d(w/µ)/dµ < 0. A simple formulation is

wt = σµψt with σ > 0, ψ < 1

4.3 The Dynamic Equilibrium

With the above discussion, we can now summarize the dynamic equilibrium into the
following system of equations:

Pt
µt
=

(φ)1−α(σµψ−1t )α

(1− α)1−α(α)αAtθ̃t
(15)

Yt = (
αφµ1−ψt

(1− α)σ
)αθ̃

α
α−1
t AtM

Z ∞

θ̃t

(θ
1

1−α )dS(θ) (16)

Yt = mFt =
m

1 + η(Pt/µt)
1/g

(17)

Nt =M

Z ∞

θ̃t

dS(θ) ∝ PtYt
µt

(18)

At = A0(Qt)
γ where Qt =

Z t

0

Y (s)ds+Q0 (19)

µt = µ0e
xt (20)

Now it becomes clear that the driving forces of the industry dynamics are the
technological learning and the income growth (law of motion equations 19 and 20).
After the initial adoption of a new product, these two forces contribute to further
technology progress and demand diffusion, and keeps this process going (See Figure
8 for an illustration). In the next section, let us find out how this recursive dynamic
process drives an industry through its life cycle, and why we typically observe the
number of firms initially rises and later falls.
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Figure 8: Product Diffuses as Technology and Income Change

5 The Industry Dynamics: Characterization

With the assumption of learning-by-doing technology progress, the market demand
equation 17 implies a first-order differential equation

Q̇t = f(Qt, t) =
m

1 + η(P
µ
(Qt, t))1/g

(21)

where the relatively price Pt/µt is a function of (Qt, t), and the function is determined
by the equilibrium conditions 15 - 17 as follows

m

1 + η(Pt/µt)
1/g
= (

αµ1−ψt

σ
)

α
1−α
(Pt/µt)

α
1−α
A

1
1−α
t M

Z ∞

(φ)1−α(σµψ−1t )α

(1−α)1−α(α)αAtPt/µt

(θ
1

1−α )dS(θ)

(22)

where At = A0(Qt)
γ; µt = µ0e

xt

Theorem 1 (Existence and Uniqueness Theorem): There exists one and only
one solution Q(t) of Q̇t = f(Qt, t) for t ≥ 0 which satisfies Q(0) = Q0.

Proof. Given f is continuously differentiable, it satisfies the Lipschitz condition

| f(x, t)− f(y, t) | ≤ L | x− y |
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where L = sup | ∂f/∂Q | . Theorem 1 then follows Theorem 5 of p23 in Birkhoff &
Rota (1968).

Theorem 2 (Comparison Theorem): Anything else being equal, it leads to a
higher Qt (hence higher At) at any time t if

• the technology is better (higher Q0, higher A0 or higher γ) or

• the mean income is higher (higher µ0 or higher x) or

• the market size is larger (higher m) or

• the input prices is lower (lower φ, lower σ or lower ψ).

Proof. We have shown above that f satisfies the Lipschitz condition. Also we
have ∂f/∂Q0 > 0 for t = 0 and ∂f/∂A0 > 0, ∂f/∂γ > 0, ∂f/∂µ0 > 0, ∂f/∂x >
0, ∂f/∂m > 0, ∂f/∂φ < 0, ∂f/∂σ < 0, ∂f/∂ψ < 0 for any given (Qt, t). Hence
Theorem 2 follows Theorem 8 and Corollary 2 of p25-26 in Birkhoff & Rota (1968).

5.1 Price and Output Dynamics

Given the above results, we can now characterize the time path of industry price and
output.

Proposition 3 The relative price Pt/µt keeps falling and output Yt keeps rising over
time.

Proof. Equation 22 implies that ∂(Pt/µt)/∂At < 0 and ∂(Pt/µt)/∂µt < 0. Since
At = A0(Qt)

γ and µt = µ0e
xt are strictly increasing with time, we have ∂(Pt/µt)/∂t <

0. Furthermore, equation 17 implies ∂Yt/∂(Pt/µt) < 0 so we have ∂Yt/∂t > 0. Hence
Proposition 3 is proved.

Proposition 4 Anything else being equal, it leads to a lower relative price Pt/µt and
higher adoption rate Ft at any time t if

• the technology is better (higher Q0, higher A0 or higher γ) or

• the mean income is higher (higher µ0 or higher x) or

• the market size is larger (higher m) or

• the input prices is lower (lower φ, lower σ or lower ψ).
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Proof. Let us take the case of γ as an example. Theorem 2 shows ∂At/∂γ > 0
for any time t. Equation 22 then implies that

∂(Pt/µt)

∂γ
=

∂(Pt/µt)

∂At

∂At
∂γ

< 0

and equation 17 implies that

∂F

∂γ
=

∂F

(Pt/µt)

∂(Pt/µt)

∂γ
> 0

Similarly we can prove the rest results.

Notice that Proposition 3 and 4 are both about the industry relative price P/µ
rather than the absolute price P . In our model, it is indeed the relative price only
that matters for the analysis. The time path of absolute price can not be pinned
down without making further assumptions. See Section 5.3 for more discussion.

5.2 The Shakeout

By the term “shakeout”, we mean the nonmonotonic time path of the firm num-
bers, which initially rises and later falls. It can be characterized by the following
propositions .

Proposition 5 (Existence and Uniqueness of Shakeout) Given a log-logistic distrib-
ution of the disposable income, there exists a unique shakeout.

Proof. With a log-logistic distribution of the disposable income, the number of
firms as well as the relative industry GDP is given by

Nt ∝
PtYt
µt

= (Pt/µt)
m

1 + η(Pt/µt)
1/g

Therefore

∂Nt/∂t =
∂Nt

∂(Pt/µt)
· ∂(Pt/µt)

∂t

As shown in Proposition 3, ∂(Pt/µt)/∂t < 0. Moreover, we have

∂Nt/∂(Pt/µt) S 0 for Pt/µt T [
g

η(1− g)]
g

Therefore, the unique shakeout occurs at (Pt/µt)
∗ = [ g

η(1−g) ]
g and the correspond-

ing adoption rate is F ∗ = 1 − g. If P0/µ0 > [ g
η(1−g) ]

g, the number of firms initially
rises and later falls. If P0/µ0 < [

g
η(1−g) ]

g, the number of firms declines from the very
beginning.
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Proposition 6 (Timing of Shakeout) Anything else being equal, it leads to an earlier
industry shakeout if

• the technology is better (higher Q0, higher A0 or higher γ) or

• the mean income is higher (higher µ0 or higher x) or

• the market size is larger (higher m) or

• the input prices is lower (lower φ, lower σ or lower ψ).

Proof. Let us consider the effect of γ on the timing of shakeout as an example.
Denote the timing of shakeout to be t∗.
At the time of shakeout t∗, we have ∂(PtYt/µt)/∂t = 0 and ∂2(PtYt/µt)/∂t

2 < 0.

∂(PtYt/µt)

∂t
= 0 =⇒ ∂(Pt/µt)

∂t

m

1 + η(Pt/µt)
1/g
{1− η/g

η + [Pt/µt]
−1/g } = 0

Since ∂(Pt/µt)
∂t

< 0, we have

J =
m

1 + η(Pt/µt)
1/g
{1− η/g

η + [Pt/µt]
−1/g } = 0 and

∂J

∂(Pt/µt)
< 0

Notice that Proposition 4 suggests ∂(Pt/µt)/∂γ < 0. Therefore,

∂t∗

∂γ
= −∂2(PtYt/µt)/∂t∂γ

∂2(PtYt/µt)/∂t
2
= −

∂(Pt/µt)
∂t

∂J
∂(Pt/µt)

∂(Pt/µt)
∂γ

∂2(PtYt/µt)/∂t
2

< 0

Hence a higher γ leads to an earlier shakeout. Similarly, we can prove the rest
results.

5.3 Industry Dynamics: An Intuitive Illustration

In fact, the industry dynamics can be illustrated more intuitively as follows. First,
Equation 17 implies that there is a downward-sloping demand curve on (P/µ, F ) .
Notice that only the normalized demand F = Y/m matters for our discussion:

F =
1

1 + η(P/µ)1/g
(23)

Second, Equation 15 and 16 suggest that the supply curve is upward sloping on
(P/µ, F ), and shifts to the right if the technology A or mean income µ is higher. The
normalized supply F is given as

F = (
αµ1−ψ

σ
)

α
1−α
(P/µ)

α
1−α
A

1
1−α
M

m

Z ∞

(φ)1−α(σµψ−1 )α
(1−α)1−α(α)αA(P/µ)

(θ
1

1−α )dS(θ) (24)
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Figure 9: Industry Life Cycle: An Illustration

Plotting the demand and supply curves on the graph of (P/µ, F ) for a given
technology A and mean income µ, we can then pin down the solution for the static
equilibrium with Figure 9.
For the dynamic analysis, we first notice there is an important property of the

demand function 23 for the price elasticity:

ε =| ∂F/F

∂(P/µ)/(P/µ)
|= (1− F )

g

which is decreasing with F and achieves unit elasticity at F ∗ = 1 − g. It suggests
something crucial for the time path of firm number N ∝ P

µ
F : If an industry starts

from an initial condition that F0 < 1− g, the supply curve will keep shifting to the
right as the technology and mean income improves and the industry achieves the
unique shakeout at F ∗ = 1− g.

With Figure 9, we can clearly identify the two driving forces of industrial evolution
and discuss their effects as follows.

• Technology Progress. In the presence of technology progress (γ > 0) but no
income growth (x = 0), the supply curve shifts to the right due to cumulative
production. As the result, the industry relative price P/µ as well as the absolute
price P keeps falling, and the product penetrates into the lower income groups.
Eventually, the market demand becomes inelastic and the shakeout comes in.
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• Income Growth. In the presence of income growth (x > 0) but no technology
progress (γ = 0), the supply curve shifts to the right due to income growth.
Though the absolute price P may not fall (e.g. ∂P/∂t > 0 if 0 ≤ ψ < 1), the
industry relative price P/µ keeps falling and more consumers adopt the new
product.15 Eventually, as the market demand turns inelastic to the relative
price, the growth of the industry profit is outstripped by the growth of the
foregone earnings of entrepreneurs so the shakeout comes in.

• Technology Progress and Income Growth. In the presence of both technology
progress (γ > 0) and income growth (x > 0), the supply curve shifts to the right
due to both cumulative production and income growth, and the two driving
forces reinforce each other. As the result, we observe the demand diffusion and
industry shakeout.

With Figure 9, it is also easy to understand how the parameters affect the rate of
diffusion and timing of shakeout as we proved in Proposition 4 and 6: if the technology
is better (higher Q0, higher A0 or higher γ), the mean income is higher (higher µ0
or higher x), the market size is larger (higher m) or the input prices is lower (lower
φ, lower σ or lower ψ), it contributes to the cumulative production or (and) income
growth so the supply curve shifts faster to the right. As the result, the industry
achieves faster demand diffusion and earlier shakeout.
The above discussion provides a meaningful explanation for the cross-country

difference of industrial evolution. For two countries like the US and the UK, the
income inequality and consumer preference are very similar. As Lemma 1 suggests,
their Gini coefficient g of the disposable income should be close, so is the shakeout
adoption level F ∗ = 1 − g. Therefore, given that the law of motion for technology
and income are alike, the US as the relative richer and larger country tends to enjoy
faster demand diffusion as well as earlier industry shakeout.

5.4 Survival, Concentration and Profit Dynamics

Our model also offers clear predictions for the firm survival, market concentration
and profit dynamics. First, since firms are heterogenous in their ability, we have the
following lemma:

Lemma 2 The higher the ability, the larger the firm size and profit.

Proof. Equations 2 and 3 imply: ∂y∗θ/∂θ > 0, ∂x
∗
θ/∂θ > 0 and ∂πθ/∂θ > 0.

15In the literature of international economics, it is termed as the “Balassa-Samuelson Effect” that
a non-tradable good typically has a higher price in a richer country due to the higher foregone
earning for producing it. However, in spite of the higher price, the consumers in a richer country
typically consume more of the good given their higher income. It is consistent with our model that
it is the relative price P/µ rather than the absolute price P that determines the demand diffusion.
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If we assume that each individual firm’s ability is fixed over time, Lemma 2 just
implies that high-ability firms enter the industry earlier and survive longer.

Proposition 7 High-ability firms enter the industry earlier and survive longer.

Proof. The minimum ability requirement θ̃ falls before the shakeout and rises
afterwards. It is straightforward to see that a high-ability firm satisfies that require-
ment earlier and longer than a low-ability one.

This result can be easily generalized. For example, given a time-invariant dis-
tribution of firm ability, even if each firm has idiosyncratic ability shocks we would
still observe that early entrants tend to survive longer as long as the shocks are time
persistent. In fact, this result is consistent with the well-established finding of indus-
try studies that hazard rates typically decline with firm ages (Dunne, Roberts and
Samuelson 1988, Audretsch 1991). Simons (2002) shows that it is particularly true
for the TV industries in the US and the UK.

As the technology improves each firm’s output typically grows over time. Our
model suggests that all the firms surviving in the industry would have the same
proportionate growth, which is usually called the “Gibrat’s Law”.

Proposition 8 The surviving firms in the industry grow at the same positive rate.

Proof. Equation 2 implies

y∗θ = (
αφµ1−ψ

(1− α)σ
)αAθ

1
1−α θ̃

α
α−1 =⇒ ẏ∗θ

y∗θ
= α(1− ψ)

µ̇

µ
+
Ȧ

A
− α

1− α

·
θ̃

θ̃

Since Proposition 3 shows ∂Y/∂t > 0, Equation 16 implies that

α(1− ψ)
µ̇

µ
+
Ȧ

A
− α

1− α

·
θ̃

θ̃
> 0

at any time. Hence all the surviving firms grow at the same positive rate.

Also the market concentration ratio changes inversely with the number of firms.

Proposition 9 For the top x firms, the market share declines before the shakeout
and rises afterwards.
Proof. Denote λx to be the market share for the top x firms that survive the

period of interest. We have

λx =
M
R∞
S−1(1−x/M) y

∗
θdS(θ)

M
R∞
θ̃
y∗θdS(θ)

=

R∞
S−1(1−x/M) θ

1
1−αdS(θ)R∞

θ̃
θ

1
1−αdS(θ)

=>
dλx
dN

=
dλx

dθ̃

dθ̃

dN
< 0

Hence the proposition is proved.
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If we keep track with the profit of a firm, Equation 3 suggests that the relative
profit πθ/µ rises before the shakeout and falls afterwards, and so is the industry profit
π/µ.

Proposition 10 An individual firm’s relative profit πθ/µ as well as the industry
relative profit π/µ rises before the shakeout and falls afterwards.

Proof. Equation 3 and 5 implies

πθ/µ = [(θ/θ̃)
1

1−α − 1]φ =⇒ d(πθ/µ)

dN
=
d(πθ/µ)

dθ̃

dθ̃

dN
> 0

π/µ =M

Z ∞

θ̃

[(θ/θ̃)
1

1−α − 1]φdS(θ) =⇒ d(π/µ)

dN
=
d(π/µ)

dθ̃

dθ̃

dN
> 0

Hence the proposition is proved.

6 Extension to Durable Goods

So far our theoretical work is built on the consumer nondurable goods. However, the
analysis can be readily extended to durables. This extension will not only be of its
own theoretical interest, but also help the next empirical work.
It is the durability issue that complicates the analysis for durable goods. For

a durable good, the consumers actually pay the rental price for the service from
the stock of the good, and the producers are paid the output price to supply the
increment of stock to meet the demand. Therefore, some modifications are needed
for our original model.16

First, we have to derive the rental price from the output price. At equilibrium,
the output price is the discounted sum of expected future rents, i.e.

Pt = Et

∞X
τ=t

(1− δ)τ−t

(1 + r)τ−t
Rτ

where r is the market interest rate and δ is the depreciation rate. It implies that the
rental price can be written into the following form

Rt = [1−
1− δ

1 + r
Et(
Pt+1
Pt
)]Pt

Second, the output Yt for durable goods is made of two parts. One is the demand
growth of the stock m(Ft − Ft−1). The other is the replacement demand δmFt−1.
Hence we have
16The model is now set in discrete time so that it can be directly brought to the empirical study

in the next chapter.
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Yt = m(Ft − Ft−1 + δFt−1)

Given these modifications, we can then summarize the market equilibrium equa-
tions for durable goods as follows:

Pt
µt
=

(φ)1−α(σµψ−1t )α

(1− α)1−α(α)αAtθ̃t
(25)

Yt = (
αφµ1−ψt

(1− α)σ
)αθ̃

α
α−1
t AtM

Z ∞

θ̃t

(θ
1

1−α )dS(θ) (26)

Rt = [1−
1− δ

1 + r
Et(
Pt+1
Pt
)]Pt (27)

Ft =
1

1 + η(Rt/µt)
1/g

(28)

Yt = m(Ft − Ft−1 + δFt−1) (29)

Nt =M

Z ∞

θ̃t

dS(θ) ∝ PtYt
µt

(30)

Notice that if δ = 1, the case of full depreciation, the equilibrium equations above
get back to what we have before for nondurable goods.

Introducing the learning-by-doing technological progress

At = A0(Qt−1)
γ where Qt =

tX
τ=0

Yτ (31)

and constant income growth
µt = µ0e

xt (32)

we can then characterize the industry dynamics.

As we go through the empirical study in the next chapter, we will see that with
some minor reinterpretation most theoretical analyses that we have for the nondurable
goods remain unchanged for the durable goods, and are supported by the data.
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7 Empirical Study: TV Industry Life Cycles

In this chapter I use the data of TV, a durable good, to estimate our model. The
TV dataset that we have not only provides rich information of new product diffusion,
but also allows us to do cross-country comparisons between the US and the UK.
The start of TV industry can be traced back to 1930s, when innovation and first

production of Black & White TV occurred in the US and the UK. However, WWII
resulted in the curtailment of TV production in both countries and it was not until
after the war that the TV market got off the ground. In this study, I focus on the
TV industrial evolution from late 1940s to late 1960s, namely the B&W TV age in
the US and the UK. During that period, the US and the UK were the two major
countries that pioneered the TV adoption and production, and these two markets
were segmented.

7.1 Hypotheses

Our model has the following important implications that we are interested to find in
data:

• The number of firms is positively related with the relative industry GDP;

• The relative price declines with the mean income and cumulative output;

• The log-logistic distribution well explains the adoption;

• The demand equation well explains the output;

• Other things being equal, a higher mean income or larger market size leads to
a faster demand diffusion and earlier industry shakeout.

7.2 Estimation Strategy

Before we jump into the data, we may have to figure out the estimation strategy. For
a consumer nondurable goods, it is the system of equations 15 - 20 that we should go
for estimation. For a consumer durable good like TV, it is the system of equations
25 - 32. Since both of them involve a system of equations, we then have to deal with
the issue of simultaneity. There are two approaches that we consider as follows.

• OLS (Ordinary Least Squares): If the heterogeneity of firms is negligible, OLS
yields consistent parameter estimates. Indeed under the assumption of identical
firms, the system of equations for a nondurable good can be simplified as follows.

Pt
µt
=

(φ)1−α(σµψ−1t )α

(1− α)1−α(α)αAt
=⇒ ln(Pt/µt) = κ+ α(ψ − 1) ln(µt)− γ ln(Qt−1) + εt

(33)
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Ft =
1

1 + η(Pt/µt)
1/g
=⇒ ln(

1

Ft
− 1) = β +

1

g
ln(Pt/µt) + ²t (34)

where κ and β are constants, εt and ²t are random errors. For a durable good,
the price equation 33 is the same, and the adoption equation 34 holds if the
consumer expects the price to decline at an approximately constant rate which
typically fits well with data. Then the system of equations 33 and 34 becomes
recursive since each of the endogenous variables can be determined sequentially
and the errors from each equation are independent of each other. In a system
of this sort, the OLS is the appropriate estimation procedure.

• 2SLS (Two-Stage Least Squares): If the heterogeneity of firms is not negligible,
we have to confront the problem of simultaneity. Notice that in the case of non-
durable goods, equation 33 actually is a reduced-form linear equation for price.
Hence it can be estimated with OLS in the first-stage regression and the fitted
values of the dependent variable ln(Pt

µt
) will by construction be independent of

the error terms εt and ²t. In the second-stage regression, the adoption equation
34 can then be estimated by replacing the variable ln(Pt

µt
) with the first-stage

fitted variable. However, for durable goods, equation 33 may be less robust
since the lagged adoption rate is involved.

In the following study, we will mainly report the results from OLS since the results
of 2SLS are very similar. For either case, we should be aware of the limitation of the
procedures.

7.3 Data

To test the above hypotheses, yearly data of 7 variables for the B&W TV industry in
both the US and the UK is collected. It includes the number of TV producers, TV
output, value of TV output, household numbers, TV adoption rate, nominal GDP
per capita and CPI. Two additional datasets are also used to extend our empirical
analysis. One is the Gort & Klepper (1982) dataset, which covers the firm numbers,
price and output for many US industries from their beginning years until 1970. The
other is a panel dataset of B&WTV diffusion across 49 US continental states in 1950s
and 1960s. A detailed description of data is provided in Appendix C.

7.4 Firm Numbers and Industry GDP

Proposition 1 states that the number of firms is positively related with the relative
industry GDP. To test it rigorously, we apply the following regression to the US and
UK B&WTV industries as well as ten other industries in the original Gort & Klepper
(1982) dataset. For each industry, we use the time-series data of firm numbers, price,
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Product Data Range b
(S.E.)

b ≤ 0 b = 1 adj.R2 Corr
( N, PY/µ )

Black & White TV (US) 1947-1963 0.31
(0.12)

R R 0.28 0.61

Black & White TV (UK) 1949-1967 0.57
(0.11)

R R 0.57 0.72

Blanket, Electrical 1950-1970 0.43
(0.08)

R R 0.55 0.75

Computer 1955-1970 0.10
(0.02)

R R 0.59 0.63

Freezer 1947-1970 0.31
(0.07)

R R 0.42 0.69

Nylon 1950-1970 1.65
(0.13)

R R 0.89 0.97

Penicillin 1949-1960 0.49
(0.10)

R R 0.67 0.78

Pens, Ball Point 1951-1970 1.01
(0.25)

R N 0.45 0.81

Styrene 1943-1970 1.04
(0.29)

R N 0.30 0.42

Tapes, Recording 1958-1970 0.73
(0.08)

R R 0.90 0.92

Tires, Automobile 1913-1953 1.30
(0.13)

R R 0.72 0.78

Transistors 1954-1970 0.29
(0.02)

R R 0.92 0.88

R: Reject; N: Not Reject (at 5% significance level).

Table 2: Testing Proposition 1

output and per capita GDP from the birth year up to 15-25 years later.17

lnNt = a+ b ln(PY/µ)t + νt

where νt is assumed to be a Gaussian white noise process.18

For all 12 products that we include in the test, we reject the hypothesis b ≤ 0
at 5% significance level. It suggests that Proposition 1 explains the data very well.
Furthermore, it is also interesting to see that for some products like Ball Point pen
and Styrene, we can not reject the hypothesis b = 1 at 5% significance level. These
empirical findings are summarized in Table 2.
17The defination of each product may change over time as new substitutes are introduced, e.g.

Personal Computer was introduced after Mainframe Computer, Synthetic Penicillin after Natually
Produced Penicillin, Color TV after Black & White TV and etc. Therefore, we limit our analysis to
the time period when each product can be clearly defined.
18We also check alternative assumptions that the error term has time trend or serial correlation.

The results are very similar.
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Data Model ω
(S.E.)

α(ψ − 1)
(S.E.)

−γ
(S.E.)

c
(S.E.)

adj.R2

US (P-1) −0.08∗
(0.005)

0.93

1948-1963 (P-2) −2.61∗
(0.38)

−0.06∗
(0.02)

0.97

UK (P-1) −0.05∗
(0.003)

0.94

1949-1967 (P-2) −1.26∗
(0.23)

−0.08∗
(0.02)

0.96

(P-3) −1.26
(0.71)

−0.08
(0.25)

0.003
(0.77)

0.96

* Statistically significant at 5% level.

Table 3: US and UK TV Price Estimation

7.5 Price Estimation

Our model implies that the relative price decreases with the mean income and cumu-
lative production. To see that, we estimate the following three equations:

ln(Pt/µt) = κ+ ωt+ εt Model (P-1)

ln(Pt/µt) = κ+ α(ψ − 1) ln(µt)− γ ln(Qt−1) + εt Model (P-2)

ln(Puk,t/µuk,t) = κ+ α(ψ − 1) ln(µuk,t)− γ ln(Quk,t−1 + cQus,t−1) + εt Model (P-3)

where µt is the real per capita GDP in 1953 dollar (pound) and Q is the cumulative
output.
In Model (P-1), the relative price is estimated with a time trend only. It provides

its average annual declining rate. In Model (P-2), the relative price is estimated with
the real per capita income and cumulative industry output. It provides the changing
rate of relative input price α(ψ − 1) and the technological learning rate γ. In Model
(P-3), the cumulative output of the US production is included in the estimation of
the UK TV relative price so we can estimate how much the UK producers benefited
from the technology spillover from the US.
The results are shown in Table 3. All the parameter estimators have the expected

sign and highly statistically significant.19 The estimation of Model (P-1) shows that
the US enjoyed a much faster average declining rate of the relative TV price than
the UK. By estimating the learning by doing equation, Model (P-2) suggests that the
19One concern is that the regressions may involve nonstationary time series so that the t test

becomes less meaningful. However, OLS still consistently estimates the parameters as long as the
regression equations are correctly specified.
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Figure 10: TV Relative Price Estimation: US and UK

US advantage may be due to a faster declining rate of input price in addition to the
larger cumulative output. Figure 10 provides the data fitting using Model (P-2).
Since the TV industry was developed much earlier and faster in US, one immediate

question is whether and how much the UK producers could have learned from the
US experience. Model (P-3) tests this hypothesis by including the US cumulative
output into UK relative price equation. The regression is conducted using nonlinear
least squares. Comparing the estimation results of Model (P-2) and (P-3), we find
that introducing the US experience does not improve fitting the UK price data, and
the parameter estimators are almost unchanged. Moreover, the magnitude of the
coefficient of US experience is very small if it exists at all. This finding confirms our
previous assumption that the US and the UK TV markets were segmented due to
their different technical standard.

7.6 Adoption Estimation

There are three models that we estimate for the B&W TV adoption. First, if the
diffusion is an exogenous contagion process, we have the logistic model:

ln(
1

Ft
− 1) = β + wt+ ²t Model (A-1)

where β = ln( 1
F0
− 1), w = −v.
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Figure 11: TV Adoption Estimation: US and UK

For a consumer durable good like TV, if we assume that the decision makers
predict a constant price declining rate, i.e. Et(

Pt+1
Pt
) = ρ with 1 > ρ > 0, the adoption

equation 34 suggests

ln(
1

Ft
− 1) = β +

1

g
ln(Pt/µt) + ²t Model (A-2)

where β = ln η + 1
g
ln(1− 1−δ

1+r
ρ).

To check the robustness of our estimation, we further conduct a panel-data esti-
mation using the TV diffusion data across 49 continental states of US at year 1950,
1955, 1959 and 1963.

ln(
1

Fi,t
− 1) = β +

1

g
ln(Pt/µi,t) + ui + ²t Model (A-3)

where Fi,t is the TV adoption rate of state i at time t, µi,t is the per capita income
of state i at time t, ui is the fixed effect of state i.
The results are shown in Table 4. We find that Model (A-2) has higher R2 value

than Model (A-1), which implies a better fitting of data using endogenous diffusion
model. Model (A-3) reports the panel-data estimation using the fixed-effect model
(random-effect model is rejected by the Hausman specification test), with the results
very close to what we estimate using Model (A-2). See Figure 11 for the data fitting
using Model (A-1) and (A-2).
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Data Model w
(S.E.)

1/g
(S.E.)

adj.R2

United States (A-1) −0.34∗
(0.06)

0.84

1948-1963 (A-2) 4.52∗
(0.44)

0.95

(A-3) 5.38∗
(0.30)

0.55

United Kingdom (A-1) −0.35∗
(0.04)

0.94

1949-1967 (A-2) 6.46∗
(0.61)

0.94

* Statistically significant at 5% level.

Table 4: US and UK TV Adoption Estimation

7.7 Output Estimation

Having explained the adoption rate of B&W TV, we now estimate the annual output.
The demand function takes the simple form as equation 29:

Yt = mt(Ft − Ft−1 + δFt−1) + υt

where mt is the household number at time t, δ is the annual depreciation rate. It
implies that the annual output consists of two parts: the first purchase from the new
adopters and the replacement purchase from the existing adopters.

Given the data of Yt,mt and Ft, the only parameter to estimate is the depreciation
rate δ. Though a constant depreciation rate seems to be a strong assumption, the
estimation results in Table 5 suggest that it does explain the data pretty well. See
Figure 12 for the data fitting.

.

Data Range δ
(S.E.)

adj.R2

US 1948-1963 0.10∗
(0.005)

0.84

UK 1949-1967 0.08∗
(0.009)

0.53

* Statistically significant at 5% level.

Table 5: US and UK TV Output Estimation
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Figure 12: TV Output Estimation: US and UK

7.8 Mean Income, Market Size, Diffusion and Shakeout

Our regressions have so far explained pretty well the time path of price and output for
the US and UK B&W TV industries. With the assistance of our theoretical analysis,
we now explore the roles that the mean income and market size play in shaping the
TV industrial evolution.
The fact is for the period that we study, the per capita GDP of the UK was 70-

80% of the US and the population of the UK is one third of the US. As our model
suggests, the lower mean income together with the smaller market size would lead to
a sustainedly higher TV price-income ratio in the UK than the US.20 Therefore, the
diffusion of TV in UK was delayed. See Figure 13 (a) for the data plotting of TV
price-income ratio.
How did this delayed diffusion affect the timing of shakeout for a consumer durable

good like TV? Notice that the early demand of durable goods is mainly the first
purchase, i.e.

Yt ≈ m(Ft − Ft−1) (35)

where m is assumed to be a constant market size. Given the sustainedly higher TV
20The absolute price of B&W TV in the UK was not necessarily higher than the US as we discuss

in section 5.3. Using both official exchange rate and PPP, I find that the price was actually lower
in the UK.
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Figure 13: TV Relative Price and Adoption Increment: US vs. UK

price-income ratio Pt/µt in the UK, the market expansion was postponed so that
the peak of first purchase came in much later than the US. The data of adoption
increment (Ft − Ft−1) is plotted in Figure 13 (b).
In the US case, we notice that the actual output declined less severe than what

we calculate with equation 35, which was due to the fast population growth in US
during that period.21 However, the industry output did level off in early 1950s, and
the relative industry GDP as well as the firm numbers declined at that time. In the
case of UK, where the population grew much slower, the time path of actual output
is very close to what we calculate with equation 35, which kept increasing until 1959.
Hence the relative industry GDP as well as the firm numbers had not declined until
then.

8 Concluding Remarks

This paper offers a new theory of industrial life cycle, in which the industry shakeout is
explained as a competitive equilibrium outcome. It reveals the roles that technological
learning, income distribution and market size play in shaping how industries evolve
21During 1948-1963, the average annual growth rate of household number was 2% in US, but only

0.5% in UK.
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from birth to maturity. Since the competitive market does not internalize the spillover
of learning by doing, the equilibrium we describe is not Pareto optimal. A social
planner would prefer a faster demand diffusion and earlier shakeout.
In the paper, the technology progress is assumed to be the productivity gains

generated from learning by doing. A further extension of the model would be to
study other forms and sources of technology progress and their dynamic effects, e.g.
the quality change of new products, product differentiation and firms’ endogenous
R&D decisions.
In the paper, we have assumed a close-country framework but it can be easily

generalized. In a world with free trade, a country may specialize on some certain
industries to explore her comparative advantage. If that is the case, it should be the
world income distribution and world market size that shape the industry life cycle.

A Appendix

A.1 Supply Structure: Entry with Sunk Cost

In the supply-side analysis, we assume that firms can enter and exit freely. It helps
transform the original dynamic problem into a period-by-period static calculation
and simplify the analysis. However, this assumption can be relaxed. Below we show
an example in which entry incurs a fixed amount of sunk cost and firms have to make
dynamic decisions on entry and exit. As the result, we can still obtain the positive
relation between the firm numbers and industry GDP at equilibrium.
The setup of the model is almost the same as before. However, we now assume

that there is a fixed entry cost K for each firm. K does not depreciate, but has no
salvage value if a firm exits. Furthermore, we assume that firms are identical and
share a constant death rate 1− φ every period. If a firm dies, her output is zero in
that period.
At time t, the technology At is given. A representative firm takes the price Pt as

given to maximize her value,

Vt = max{0,φ[π(Pt, At) + βVt+1]} (36)

where the profit function is given as before

πt = (1− α)(α)
α

1−αw
−α
1−α
(PtAt)

1
1−α − C (37)

If entry occurs at time t and t+1, the value of each firm can be pinned down by the
fixed entry cost K. Then equation 36 implies the period profit πt to be

K =
φπt
1− φβ

(38)
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The market price Pt is now solved by equations 37 and 38 as follows:

Pt =
(K(1− φβ) + φC)1−αwα

φ1−α(1− α)1−αααAt
(39)

It implies that the optimal output per firm becomes

y∗t = (
αPA

1
α

w
)

α
1−α =

αα(K(1− φβ) + φC)αAt
φα(1− α)αwα

(40)

Then the active firm number Nt at time t can be shown to be proportional to
industry GDP given equation 39 and 40

Nt = zPtYt

where z = φ(1− α)/[K(1− φβ) + φC].
Since the analysis above depends on the assumption of continuing entry, we have

to justify its existence to complete the proof. Notice that equation 39 implies that
price P falls over time as technology A improves. Therefore, when the market demand
is price elastic (at the early stage of diffusion) the required number of active firm N
will keep rising, which implies entry has to occur each period. However, even when
the market demand turns inelastic and shakeout starts, entry can still continue to
occur as long as PtYt > φPt−1Yt−1 holds period by period.
Some other scenarios may also exist. For example, if the technology progress is so

dramatic that the entry stops and continuing exit starts sometime after the shakeout.
In that case, the industry jumps to another equilibrium path. The incumbent firms
become indifferent between staying and leaving, so equation 36 implies that the firm
value drops to zero, and every active firm breaks even each period. A similar proof
as above suggests that the market price is then determined to be

Pt =
C1−αwα

(1− α)1−αααAt

The number of firm is still proportional to the industry GDP though now the pro-
portionality changes to z = (1 − α)/C. Along this path, we have PtYt < φPt−1Yt−1
holds period by period.
Notice that higher death rate would prolong the number of periods in which entry

takes place. In the extreme, suppose firms have to die after a single period— then
we are back to the original model, with the interpretation that the fixed cost of
production can also include the entry cost, and nothing changes (except that now the
path of N is also the path of entry).

A.2 Industry Life Cycle with Increasing Span of Control

In the paper, we have shown with empirical evidence that the relative industry GDP
is a good indicator for the number of firms. However, it is possible to find coun-
terexamples. A dramatic case is the automobile, for which the firm shakeout came in
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around 1910 but the relative industry GDP kept rising up to the Great Depression.
Does that mean our theory is not consistent with the fact?
Not necessarily! Recall that the comovement between the firm numbers and the

relative industry GDP is derived on the assumption that the span of control para-
meter α is constant over time. In the case of automobile industrial evolution, this
assumption is less likely to be valid. In particular, as the assembly line was introduced
in 1910s the industry became more and more capital intensive. During that process,
the technology progress indeed realized also through the increasing span of control
α. If we take this into account, it is possible for the number of firms to deviate from
the relative industry GDP so the shakeout of firm numbers should come in earlier.
However, this extension does not necessarily invalidate our analysis in the paper. In
the following, we construct an example with endogenously increasing span of control
and show the essence of our previous analysis still holds.
For simplicity, we assume the industry has identical firms. The production func-

tion is
y = φαAx

α

where φα = (1− α)−(1−α)α−α.
Assume that there is only labor input, and the entrepreneur’s forgone earning

equals the worker’s wage, i.e. C = w, and mean income of the economy is fixed. We
then have the momentary industry equilibrium conditions as follows:

P =
C

A
(41)

Y = mF =
m

1 + η(P/µ)1/g
(42)

N =
1− α

C
PY (43)

Assume that the technology progress results from learning by doing as follows

At = A0Q
γ
t ; α = 1− α0Q

−λ
t

where Qt =
R t
0
Y (s)ds + Q0. Characterizing the dynamic of this system, we can see

most our previous analyses stay unchanged except the shakeout of firm numbers now
starts earlier than that of GDP. This can be illustrated as follows.

Lemma 3 The number of firms starts declining when price elasticity falls to 1+λ/γ.

Proof. Given Pt = C
A0
Q−γt and 1− α = α0Q

−λ
t , we have

Nt =
1− αt
C

PtYt = α0A
λ/γ
0 (Pt/C)

1+λ/γYt

Hence, the peak of firm numbers is determined as follows,
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Figure 14: Industry Life Cycle with Increasing Span of Control

∂Nt
∂t

= 0 => (1 + λ/γ)
Ṗt
Pt
+
Ẏt
Yt
= 0 => ε∗ = 1 + λ/γ

Recall that the industry GDP starts declining at ε∗ = 1. As we know that the
demand function 42 has a declining price elasticity, the shakeout of firm numbers
hence starts earlier at a lower critical adoption level, 1− g(λ+γ)

γ
, instead of 1− g for

the industry GDP.
Using Figure 14, we can also check the effects of parameter changes.

Proposition 11 Anything else being equal, it leads to a lower relative price Pt/µt
and higher adoption rate Ft at any time t if

• the technology is better (higher Q0, higher A0 or higher γ) or

• the mean income is higher (higher µ) or

• the market size is larger (higher m).

Proof. The proof is similar as before. All the conditions listed here will help
move down the supply curve faster, hence leads to faster demand diffusion and earlier
industry shakeout.
So far, we have not linked the foregone earning C and input price w to the mean

income µ. What if we do? For the model to be analytically solvable, we no longer
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distinguish the entrepreneur’s foregone earning from the input price, i.e. C = w. It is
a little different from what we assumed in the paper: C = φµ and w = σµψ (ψ < 1).
Therefore, we have to discuss two special cases. In one case, C = w = φµ, a higher
mean income will be fully transferred into a higher production cost so that it does
not result in a lower relative price P/µ for a given initial technology. Hence it does
not lead to a faster diffusion and earlier shakeout. In the other case, if C = w = σµψ

(ψ < 1), a higher mean income will only be partly transferred into the production
cost so that the relative price P/µ turns lower for a given initial technology. As
the result, it does lead to a faster diffusion and earlier shakeout. The latter case is
consistent with our finding in the paper.

A.3 The Data Used in the Empirical Work

US-UK TV Dataset — The US data starts as early as 1946 when the B&W TV was
initially introduced, and ends at 1963 when the sale of color TV took off. Most of
the data (the number of TV producers, TV output, value of TV output, household
numbers and TV adoption rate) are drawn from periodic editions of Television Fact-
book. The nominal GDP per capita is from Johnston & Williamson (2003) and CPI
is from International Historical Statistics: the Americas, 1750-1993. The UK data
also starts from 1946 but ends a little later than the US at 1967 when the color TV
was introduced. The number of TV producers is cited from Simons (2002). The TV
output and value are from Monthly Digest of Statistics (1946-1968). The household
numbers are calculated by population (from UN Common Database) divided by aver-
age household size (from UN Demographic Yearbook). The TV adoption rate is from
Table AI of Bowden & Offer (1994). The nominal GDP per capita is from Officer
(2003) and the CPI is from International Historical Statistics: Europe, 1750-1993.

Gort-Klepper Dataset — It covers time-series data of firm numbers (46 industries),
price (23 industries) and output (25 industries) from the beginning of each industry
up to 1970. 13 industries are selected for our empirical study because they have long
enough coverage and continuos observations.

US TV Panel Dataset — It covers the TV adoption rate and personal income across
49 continental states of the US at year 1950, 1955, 1959 and 1963. The TV adoption
rate is drawn from the Television Factbook, and the personal income is drawn from
the Statistical Abstract of the United States.
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