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Abstract

In an interdependent world the risks faced by any one agent depend not
only on its choices but also on those of all others. Expectations about others�
choices will in�uence investments in risk-management, and the outcome can be
sub-optimal investment all round. We model this as the Nash equilibrium of a
game and give conditions for such a sub-optimal equilibrium to be tipped to an
optimal one. We also characterize the smallest coalition to tip an equilibrium,
the minimum critical coalition, and show that this is also the cheapest critical
coalition, so that there is no less expensive way to move the system from the sub-
optimal to the optimal equilibrium. We illustrate these results by reference to
airline security, the control of infectious diseases via vaccination and investment
in research and development.
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1 Introduction

The problem structure that we study was motivated by examining the risks associated
with terrorism, though as we shall indicate the concept of interdependent risks that
emerged from this analysis is a very general one. The central issue is behavior in the
face of risks whose magnitude depends on an agent�s own risk-management strategies
and on those of others. We have called this class of problems interdependent
security (IDS) problems and have used game-theoretic models to characterize
their Nash equilibria [13] and [9] .
Risks of terrorism are typically interdependent as the risks to which one organi-

zation is exposed depend not only on its own choice of security investments, but also
on the actions of other agents. Failures of a weak link in an interdependent system
can have devastating impacts on all parts of the system. Because interdependence
does not require proximity, the antecedents to catastrophes can be quite distinct and
distant from the actual disaster, as in the case of the 9/11/01 attacks, when security
failures at Boston�s Logan airport led to crashes at the World Trade Center (WTC),
the Pentagon, and in rural Pennsylvania. The same was true in the case of the Au-
gust 2003 power failures in the northeastern US and Canada, where the initiating
event occurred in Ohio, but the worst consequences were felt hundreds of miles away.
Similarly a disease in one region can readily spread to other areas with which it has
contact, as was the case with the rapid spread of SARS from China to its trading
partners.
Investing in airline security is a clear example of an IDS problem. Even the

adoption of elaborate security procedures by one air carrier may not mitigate the risks
faced due to the baggage or passenger transfers from other less diligent airlines. Under
some conditions, the added risk from others�lax inspections reduces the bene�ts to
diligent airlines from their strict inspections to the point where the costs of such
inspection can no longer be justi�ed by the expected bene�ts. In equilibrium, all
actors may fail to invest in strict security measures.
Lest this point be taken as theoretical, recall the explosion of Pan Am 103 over

Lockerbie, Scotland, in December 1988. In Malta terrorists checked a bag containing
a bomb on Malta Airlines, which had minimal security procedures. The bag was
transferred at Frankfurt to a Pan Am feeder line and then loaded onto Pan Am 103
in London�s Heathrow Airport. The transferred piece of luggage was not inspected at
either Frankfurt or London, the assumption in each airport being that it was inspected
at the point of origin. The bomb was designed to explode above 28,000 feet, a height
normally �rst attained on this route over the Atlantic Ocean. Failures in a peripheral
part of the airline network, Malta, compromised the security of a �ight leaving from
a core hub, London.
Not only do interdependencies mean that one agent�s exposure depends on the

actions of others, but this interaction can reduce the incentive that any agent has
invest. If an airline receives bags and passengers from other airlines that do not
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check them thoroughly, the expected bene�ts from its own investment in security
is compromised, as these uninspected bags mingle with their own inspected bags.1

(Note that we assume that an airline does not check the bags transferred from other
airlines due to time and constraints. Until recently this was true for all airlines except
El Al.) If the incentives to invest are thus reduced all round, the outcome may be a
situation with dramatically sub-optimal investment in security.

2 Classes of IDS Problems

Interdependent security (IDS) problems have one common characteristic� the deci-
sion by one agent on whether or not to incur an investment cost will impact on the
welfare of other agents, and will also a¤ect their incentives to invest in prevention.
Next we categorize three classes of IDS problems based on di¤erences in their Nash
equilibria.

2.1 Class 1: Partial Protection

An agent�s investment to reduce its own risks also decrease the risks experienced by
others. The more agents that invest in preventive measures, the lower are the negative
externalities in the system. To take the example of airline security discussed above,
if airlines face terrorist risks and Airline 1 invests in a stricter baggage screening
system, then all the other airlines bene�t because they now have a smaller chance
of receiving a transferred bag that contains a bomb. The more airlines that increase
their investment in baggage security, the greater the reduction in the risk experienced
by everyone else in the system.
A situation where an agent knows that there is a chance that others will still

subject it to risk even if it invests in protection is a Class 1 problem. For example,
an apartment owner considering investing in �re prevention equipment has to take
into account the possibility that a �re from a nearby unprotected apartment will
spread to her unit even if she invests in risk-reducing measures. As the number
of apartments investing in �re prevention equipment increases, the likelihood that
her apartment will su¤er a �re loss from others decreases. She will then have more
of an economic incentive to incur these investment costs herself. The decision by
electric utilities to invest in measures to reduce the likelihood of a power failure is

1We talk here mainly of inspecting bags but the same issue arises with passengers - indeed
according to terrorism expert Gordon Woo of Risk Management Solutions, �As of a few months
ago, all transatlantic bookings are screened for suspicious passengers. For example, when making
a BA booking, provision of passport information is now mandatory. The problem is with transit
passengers, whose security status may be inadequately assessed at their original point of departure.
Unlike baggage, it can take many hours to perform a passenger security check. When BA223
restarted after the New Year cancellations, there were delays of hours as checks were made on
passengers. Delaying a �ight by several hours is intolerable. The current policy is thus to cancel
�ights rather than delay them." Personal communication, February 16 2004.
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also partially determined by what others do. Each utility knows that there is some
chance that an outage in another part of the country can knock out its power even if
it has undertaken its own preventive measures. (Heal [10]).

2.1.1 Nash Equilibria

As we show more formally in the next section, this class of problems can have multiple
Nash equilibria. The most interesting case is where there are two equilibria: either
all agents invest in security or none of the agents want to do this. Then there is the
possibility of tipping or cascading: inducing some agents to invest in prevention will
lead others to follow suit.

2.1.2 Private and Social Welfare

Whenever there are two Nash equilibria involving everyone or no one investing in
security, then the socially optimal solution will always be for everyone to invest.
Each agent will �nd that the cost of investing in protection will be justi�ed if it
doesn�t incur any negative externalities and society will be better o¤ as well.
When there is only a single Nash equilibrium, there are some situations where

the investment choices by agents are e¢ cient. The most obvious one is where the
costs of protection are su¢ ciently low so that each agent wants to invest in protection
even when all the other agents had decided not to incur these costs. If the costs of
investment to each agent are very high, then it may be e¢ cient for no one to incur
them; however, there are cases when the costs are high enough that each agent does
not want to invest in protection, but it would be better for society if some or all of
them did so. A formal treatment of these and other cases appears in Sections 3� 5,
and a set of illustrative examples with respect to airline security are presented in
Section 6.

2.2 Class 2: Complete Protection

This class of IDS problems di¤ers from Class 1 in that if an agent invests in security
then it cannot be harmed at all by the actions or inactions of others and reciprocally
it cannot a¤ect others. As an example, a completely e¤ective vaccine will protect
a person against catching a disease from contagious individuals. Prior to getting
vaccinated this person may be susceptible to the disease and could infect others. An
airline, such as El Al, that checks both its own bags and those transferred from other
airlines also illustrates Class 2 behavior.
A related example from the �eld of organizational decision-making is where a

division in a �rm decides to incur the cost of separating itself from the rest of the
organization (e.g. as a captive) so that it cannot be hurt by other divisions and cannot
harm them if it su¤ers a loss. As more divisions decide to take such action, then this
decreases the likelihood of any unit that is still part of the larger organization being
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economically harmed by others. Breaking away in this manner then becomes less
attractive.

2.2.1 Nash Equilibrium

For Class 2 problems there is only one Nash equilibrium and it can range from the
extremes of either all agents or no agents adopting security, with intermediate cases
where some agents invest. Since there is only one Nash equilibrium it is impossible
to have tipping or cascading in Class 2 problems. In fact, it is less attractive for an
agent to invest in protection, should others then decide to do so. In deciding whether
or not to invest, Agent i compares the expected bene�ts and costs. As more agents
invest, the expected bene�t to i of following suit decreases, since there is a reduction
in the negative externalities which translates into a lower probability of su¤ering a
loss.

2.2.2 Private and Social Welfare

As in Class I problems the number of agents investing at a Nash equilibrium will
not exceed the number that would be socially optimal. Each agent i does not take
into account the negative externalities it is creating in determining whether to invest
in protection. For the situation where the investment costs are so low that every
agent will want to protect itself, then the Nash equilibrium will be e¢ cient for the
same reasons as it is for Class 1 problems. Similarly, one could have an e¢ cient Nash
equilibrium where no one invests in protection because the costs of taking this action
are so high. On the other hand, there can be a range of parameters where the Nash
equilibrium will not be socially optimal. We will discuss the vaccination problem in
Section 7 of the paper.

2.3 Class 3: Positive Externalities

For this class of problems an investment by one agent creates positive externalities,
making it less attractive for others to follow suit. A �rm�s decision on whether to
incur expenditures for research and development (R&D) will be partially in�uenced
by what other �rms in the industry are doing. Suppose �rm i has decided to invest in
R&D and �rm j has to decide whether to do likewise. The greater the likelihood that
j can bene�t from the success of i, the less likely it is that j will invest in R&D. Class
3 problems include situations where there is investment in knowledge and agents can
learn from successful investments by others.

2.3.1 Nash Equilibrium

As is the case for Class 2 problems, there is only a single Nash equilibrium here, but
for a very di¤erent reason. As more agents invest in knowledge, there is a greater
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chance that those on the sidelines will be able to bene�t from their successes (i.e.
there is an increase in positive externalities). For this class of problems you cannot
have tipping and cascading: if any agent convinces others to invest, it will have less
rather than more reason to do so itself.

2.3.2 Private and Social Welfare

A Nash equilibrium is e¢ cient if the only agents who do not invest are those for
whom the expected bene�ts to themselves and others do not exceed the cost of the
investment. There will be situations where the costs of investment is su¢ ciently
high that an agent will not want to incur it even though by doing so other agents
in the system will bene�t. In this situation there will be fewer agents in equilibrium
investing in knowledge than would be socially optimal. We will discuss the R&D
problem in Section 8 of the paper.

3 The Model

In this paper we present a general model of IDS problems, which covers all three
classes of problems discussed above. We characterize Nash equilibria, show that
they exist, specify conditions for the existence of multiple equilibria, one of which
involves investment in security by all agents while the other involves no investment
by any agents. We then characterize the possibility of tipping and cascading the
equilibria from a state of no investment to one of universal investment in security.2

We de�ne a critical coalition as one where a change from not investing to investing
by its members will induce all non-members to follow suit. We then characterize the
properties of minimum critical coalitions in terms of Pigouvian externalities, show
that it is generically unique and identical to the (unique) cheapest critical coalition.
Strategic complementarity and substitutability (Bulow Geanakoplos and Klemperer
[1]) lie at the heart of some of the phenomena that we study.
We consider A interdependent risk neutral agents indexed by i. Each is charac-

terized by parameters pi; Li; ci and Yi. Here pi is the probability that agent i0s actions
lead to a direct loss Li: A direct loss can be avoided with certainty by investing in
loss-prevention at a cost of ci. Initial income before any losses are incurred or before
expenditure on loss-prevention is Yi. Each agent i has a discrete strategy, Xi, that
takes as values either S or N representing investing and not investing respectively. If
i incurs a direct loss, then this may also a¤ect other agents�outcomes. We call the
loss (or in some cases gain) to them in this case an indirect impact. More speci�cally
qi (K;Xj) is the expected loss to agent i when it follows strategy Xi and the agents in
the set fKg invest in loss-prevention, with those not in fKg not investing. When we
use a letter to refer to a set we will designate it fKg, except when it is an argument

2For discussions of tipping and cascading in the literature, see Schelling [16], Dixit, [5], Watts
[17] and Gladwell [6].
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of a function, in which case we omit the parentheses. A feature of the IDS problem
described above is that an agent who has invested in prevention cannot cause an
indirect impact on others, so if fKg = f1; 2; ::i � 1; i + 1; ::Ag then qi (K;Xi) = 0
whether Xi = S or N .
If agent i invests in prevention and agents in the set fKg are also investing then

the expected cost from this is ci + qi (K;S) where the �rst term is the direct cost
of investing and the second is the expected cost (or bene�t if negative) of indirect
impacts imposed by others who do not invest. The expected cost of not investing is
given by piL+(1� �pi) qi (K;N). Here the �rst term is just the expected direct loss
and the second is the expected indirect impact. In this second term the parameter
� 2 [0; 1] indicates the extent to which damages are non-additive. If � = 0 then this
second term is piLi+qi (K;N), so that the total expected damage sustained by agent
i in the case of non-investment is the sum of the direct and indirect e¤ects. If however
� = 1 then we have piL+ (1� pi) qi (K;N) which means that the indirect e¤ects are
conditioned on the direct loss not occurring. In this case the damages from harmful
events are non-additive ( i.e., you only die once). A second plane crashing into one of
the towers of the World Trade Center would not have increased the damage from 9/11
signi�cantly, and a second bomb placed on PanAm 103 would likewise have in�icted
no extra damage.
The agent is indi¤erent between investing and not investing when

ci + qi (K;S) = piLi + (1� �pi) qi (K;N) (1)

or
ci (K) = piLi + (1� �pi) qi (K;N)� qi (K;S) (2)

The value of the cost given by equation (2), ci (K), is the cost of investment at which
i is just indi¤erent between investing and not investing: if ci < ci (K) then she will
invest and vice versa.
The IDS problems associated with airline security that we �rst studied were Class

1 problems [9] [13] where

� qi (K;N) = qi (K;S) and � = 1

so that
ci (K) = pi (Li � qi (K;N)) (3)

It follows in this case that ci (K) increases in K: as more agents invest then the
expected indirect loss falls and the cost threshold for investment rises, with ci (;) <
ci (A� i), the latter being the critical cost when all agents other than i are investing.
In Class 2 problems where there is complete protection, such as deciding whether to
get vaccinated, then

� qi (K;S) = 0 whatever the set fKg and � = 1
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so that
ci (K) = qi (K;N) [1� pi] + piLi (4)

Here ci (K) decreases with K, so that ci (;) > ci (A� i). This re�ects an important
di¤erence between these two cases, which is the sign with which qi enters on the RHS
of the equation, negative in one case and positive in the other. In Class 3 problems,
such as determining whether to invest in R&D,

� both Li and qi are positive, qi (K;N) = qi (K;S) and agents invest to generate
bene�ts to themselves and others.

Those who invest in R&D may make a discovery. If they do, then they provide
spillover bene�ts to others who may not have invested in R&D, so that

ci (K) = pi [qi (K;S)� Li] (5)

Here again ci (K) decreases with K.
We now investigate properties of the Nash equilibria of this system.

De�nition 1 A Nash equilibrium is a set of strategies X1; ::::XA such that (1) Xi = S
for all i 2 fKg (which may be empty), (2) if Xi = S then ci (K) � ci and (3) if
Xi = N then ci (K) � ci.

Theorem 2 A Nash equilibrium in pure strategies exists.

Proof. We prove existence of an equilibrium constructively,3 giving an algorithm
which will terminate by locating an equilibrium.
First set all strategies at S; so that all �rms are investing in security. If each

�rm is playing a best response we have an equilibrium and we are done. Suppose
that without loss of generality the �rst k �rms are not picking best responses at
this con�guration and change their strategies to N: It is clear that for these �rms N
is a dominant strategy, as when all others are picking S their environment is most
conducive to S being the best strategy. If some other �rm switches from S to N then
this can only make N more attractive to �rms from 1 to k : hence N is a dominant
strategy for them. Next check whether we have an equilibrium when �rms 1 to k
choose N and k + 1 to A choose S. If yes, we are done.
If not, there are some �rms in k + 1 to A for which N is the best response to

the strategies now being played by the others and change their strategies to N: Now
check again if we have a Nash equilibrium. If yes, we are again done. If not, proceed
as before: change the strategies of the �rms for which S is not a best response to N .
This process will terminate either when all �rms are choosing N; which will be

a Nash equilibrium, or at a point when there is a Nash equilibrium with some �rms
choosing N and others choosing S.

3This argument is based on a discussion with Michael Kearns, personal communication [11].
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There may be equilibria where all agents invest in loss-prevention, those where
none do, and mixed equilibria where some invest and others do not. We will illustrate
these equilibria in the context of the airline security example in Section 6. It is also
possible that for some parameter values there is more than one equilibrium as the
following proposition indicates:

Proposition 3 There are Nash equilibria at which all agents invest and also Nash
equilibria at which none invest if and only if ci (;) < ci < ci (A� i)8i: If both
(N;N; ::; N) and (S; S; :::; S) are Nash equilibria, then (S; S; ; ::; S) Pareto dominates
(N;N; :::; N).

Proof. First note that ci (A� i) > ci (;) for the Class 1 IDS problems, so the
conditions of the proposition are not vacuous. If ci > ci (;) then Xi = N8i is an
equilibrium because it satis�es the de�nition with fKg = ;. And if ci < ci (A� i)
then Xi = S8i is an equilibrium with fKg = fAg. Conversely if Xi = N8i is an
equilibrium then ci > ci (;)8i and ifXi = S8i is an equilibrium then ci < ci (A� i)8i.
This proves the �rst part of the proposition.
The proof of the second part is as follows. From equation (1), Pareto domination

by the (S; S; ::; S) equilibrium is equivalent to

ci < piLi + (1� �pi)qi (;; N) (6)

where the LHS of (6) re�ects the costs to each agent i if all agents invest in prevention
and the RHS of (6) is the cost to agent i if no-one invests in prevention. The existence
of both (S; S; ::; S) and (N;N; :::::N) as equilibria implies that

ci < ci (A� i) = piLi + (1� �pi)qi (A� i; N)]� qi (A� i; S)] (7)

The RHS of (7) is less than the RHS of (6) because qi (;; N) > qi (A� i; N) and
qi (A� i; S) � 0 so that (7) implies (6). This completes the proof of the proposition.

If there are two equilibria, one with all not investing and the other with everyone
investing in protection, then it is obviously interesting to know how we might tip the
ine¢ cient (N;N:::::N) equilibrium to an e¢ cient (S; S; :::::S) equilibrium. Next we
look into the possibility of tipping the non-investment equilibrium.

3.1 Tipping

De�nition 4 Let Xi = N8i be a Nash equilibrium. A critical coalition for this
equilibrium is a set fMg of agents such that if Xi = S8i 2 fMg then cj (M) �
cj8j =2 fMg. A minimum critical coalition is a critical coalition with two additional
properties: no subset is a critical coalition, and no other critical coalition contains
fewer agents.4

4See Heal [8] for an earlier use of the idea of a minimum critical coalition in a di¤erent context,
unconnected with tipping.
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De�ne
qji (K;N) = qi (K � j;N)� qi (K;N) � 0 (8)

This is the change in the expected indirect loss to agent i, who does not invest in
loss-prevention, when agent j joins the set fKg of agents who are already investing in
loss-prevention. For the remainder of this section we make the following assumption:

Assumption A1: qji (K;N) is independent of i: q
j
i (K;N) = q

j (K;N)8i

This implies that indirect e¤ects are symmetrically distributed across agents. Also
de�ne qji (;; S) = qi (;; S)� qi (j; S) and q

j
i (;; N) = qi (;; N)� qi (j;N) and make the

additional assumption that

Assumption A2: qji (;; S) = q
j
i (;; N) = q

j
i (;) = qj (;) (9)

This indicates that the indirect impact of a change of strategy by agent j on another
agent does not depend on the other agent�s strategy.
Finally, we shall need the following assumption:

Assumption A3: The ranking of agents by qj (K) is independent of fKg (10)

This says in intuitive terms that if agent k creates the largest negative externalities
when agents in the set fKg are investing in loss-prevention, then agent k creates
more externalities than any other agent whatever the set investing in loss prevention.

Theorem 5 Let Xi = N8i be a Nash equilibrium. If a minimum critical coalition
exists for this equilibrium then for some integer K it consist of the �rst K agents
when agents are ranked in decreasing order of qj (;).

Proof. Recall from (2) that ci (K) = fqi (K;N)� qi (K;S)g + pi (Li � �qi (K;N))
and de�ne

�cji = fqi (j;N)� qi (j; S)g+ pi (Li � �qi (j;N))� (11)

fqi (;; N)� qi (;; S)g � pi (Li � �qi (;; N)) (12)

= (1� �) fqi (j;N)� qi (;; N)g+ fqi (;; S)� qi (j; S)g (13)

Using A3, we see that for fKg = f1; 2; 3; :::kg to form a critical coalition (where
agents are ranked in decreasing order of qj (;)) it must be the case that k is the �rst
integer such that

j=kX
j=1

�cji � ci � ci (;)8i > k (14)

which can be written as

j=kX
j=1

�
qj (;; S)� (1� �) qj (;; N)

�
� ci � ci (;)8i > k (15)
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By (9) this can be simpli�ed to

�

j=kX
j=1

qj (;) � ci � ci (;)8i > k (16)

This completes the proof.

Corollary 6 There is a minimum critical coalition only if � > 0; i.e., if there is
some degree of non-additivity of damages.

Corollary 7 A minimum critical coalition is unique if the values of the quantities
qj (K) are di¤erent for di¤erent agents j.

Proof. This follows immediately: the only way a MCC could not be unique is if
qj (K) = qf (K) for some j; f < K, which is ruled out by the assumption.
These results imply that aMCC is easily characterized and that in general there is

only one MCC, as generically with respect to parameter values the terms qj (K) will
di¤er. Note that assumption (9) simpli�es the formula but is not necessary for a result
of this type: without it we would have to rank agents by (qj (S)� (1� �) qj (N)),
which simpli�es to qj (S) if � = 1 and to qj (S)� qj (N) if � = 0.

4 Minimal, Cheapest & Pigouvian Critical Coali-
tions

What are the policy implications of our results on minimal critical coalitions? Clearly
one is that an equilibrium with no investment in security may be converted to one
with full investment by persuading a subset of the agents to change their policies. But
is this the best way to change equilibrium? Would other alternatives be less costly?
To investigate this we need to calculate the cost of incentives su¢ cient to induce
agents to switch strategy from N to S at an equilibrium where all are choosing N .
There are a number of ways in which one can approach this issue. We assume

that, as provided for in Proposition 3, there are (at least) two Nash equilibria, one
with Xi = N8i and the other the opposite: Xi = S8i. The objective of policy is to
support the equilibrium where all agents choose S; because this Pareto dominates.
The regulatory authority or an industry trade association is therefore interested in
knowing the least expensive way of changing an equilibrium with no investment into
one where all invest. It is clear that insights into the minimum coalitions that will
tip the others plays a role in the analysis.
Tipping assures us that rather than providing incentives to all agents, we can

work with a subset and that it is only necessary to persuade them to alter their
behavior. The least expensive way of changing equilibrium is therefore likely to
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involve providing incentives for a critical coalition to change its behavior and tip the
entire system. Will it involve working with a minimum critical coalition? To address
this question one needs to understand the relationship between an MCC and the
cheapest critical coalition (CCC).
If (N;N; :::; N) and (S; S; :::; S) are two Nash equilibria, how do we compute

the cost to the regulator of persuading one agent, say agent i, at the (N;N; ::::N)
equilibrium to change its strategy to S? The answer depends on what assumption
i makes about the behavior of the other agents. We consider the case in which i
assumes that it is the only agent to change strategy, so that it will assess the cost as

Yi � piLi � (1� �pi) qi (;; N)� [Yi � ci � qi (;; N)] = ci � ci (;) > 0 (17)

The cost of persuading a critical coalition C to change strategy is
P

C [ci � ci (;)].
Recall that from our earlier results a minimum critical coalition of k agents is a

group consisting of the �rst k agents ranked by the index qj (;). We assume again
that this index is independent of the agent i and of that agent�s strategy. We now
show that a minimum critical coalition also a cheapest critical coalition. A priori
this is not obviously the case since there is no intuitive connection between the policy
problem (17) and the criterion for selecting a MCC, which is based on reducing the
negative externalities in the system (i.e.,

P
j2M q

j (;) ) using as few agents in the
setfMg as possible. More speci�cally we can prove the following result:

Theorem 8 Any cheapest critical coalition (CCC) is also a minimal critical coalition
(MCC): equivalently the set of CCCs is contained in the set of MCCs.

Proof. The proof is by contradiction. Let fCg be a cheapest critical coalition and
assume contrary to the theorem that it is not aMCC. Then there exists at least one
agent say agent l who can be removed from the coalition without it losing criticality.
But this reduces the cost as the sum in (17) now excludes l and is over one less agent,
and each component of the sum is positive. Hence the coalition fCg could not have
been the cheapest, a contradiction.
Recall that provided that the terms qj (;) di¤er from agent to agent, a MCC is

unique: in this general case we know that there is a unique CCC and that it is equal
to the MCC.
This result establishes an unexpected connection between two lines of argument

- one concerning the smallest critical or tipping coalition in a numerical sense and
the other concerning the least expensive critical coalition in the sense of what it
costs to induce this coalition to change its policies from not investing to investing
in loss-prevention. The parameters that make for membership of an MCC do not
address the cost of inducing a strategy change and so one does not naturally expect
a connection, yet there is one: all CCCs are also MCCs, and indeed in general the
unique MCC is also the unique CCC.
Finally we compare the tipping costs of moving from an equilibrium with no in-

vestment to one with full investment via the CCC with the cost of attaining the same

12



outcome via Pigouvian subsidies - a standard approach within the public �nance tra-
dition given the positive external e¤ects associated with investment in loss-prevention.
The di¤erence between the private and social bene�ts of investment by agent j when
no other agents are investing is given by the negative externalities created by j [i.e.,
qj (;)]. This is therefore the Pigouvian subsidy that should be o¤ered to agent j to
persuade it to invest at an equilibrium where no one else is investing. The Pigouvian
subsidy and the size of the negative externality used to rank members of an MCC
are identical. Identifying the members of the MCC has value to the government or
a trade association that wants to maximize industry pro�ts. The reduced subsidy to
achieve full investment is re�ected in the di¤erence between the cost of subsidizing
all agents and that of subsidizing just the members of the MCC.

5 Endogenous Probabilities

In the above analyses the risks faced by the agents are assumed to be independent of
their behavior. In reality if some agents are known to be more security-conscious than
others, they are presumably less likely to be terrorist targets. There is a resemblance
here to the problem of theft protection: if a house announces that it has installed
an alarm, then burglars are likely to turn to other houses as targets [13]. In the
case of airline security, terrorists are more likely to focus on targets which are less
well protected, so that pi depends on whether or not agent i invests in security.
This is the phenomenon of displacement or substitution, documented in Sandler [15].
Keohane and Zeckhauser [12] also consider the implication of endogenous terrorist
risks, focusing on ways to controlling the stock of terror capital and curbing the �ow
into the terrorist organizations.
We focus here on the case of airline security and assume that the risk faced by an

airline that does not invest in stricter inspections increases as the fraction of airlines
investing in such measures increases. In other words, if more airlines from a given
population invest in security, then those who do not take similar actions become more
vulnerable. Formally let � (S) be the number of airlines investing in security, i.e. the
number in the set fK g of airlines that are investing. The relevant probabilities facing
those �rms not investing in security, pi (� (S)) ; are now increasing in � (S) :
Now return to equation (1) above, de�ning the cost of investment that marks the

boundary between a �rm i investing and not investing in security when no other �rm
invests and pi are exogenous. Assume as before that qi (K;N) = qi (K;S).

ci (K) = pi (� (S)) [Li � �qi (K;N)] (18)

In this expression qi (K;N) depends on � (S) since the likelihood of airline i being
impacted by others depends how many airlines are investing in security. To under-
stand how a change in � (S) will a¤ect ci (K) ; assume that K is large enough to be
treated as a continuous variable and di¤erentiate the right hand side of (18) with
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respect to � (S) :
dci (K)

d�
= [Li � �qi]

dpi
d�
� �pi

dqi
d�

(19)

Here dpi
d�
> 0 by assumption, and the coe¢ cient on this is the di¤erence between the

direct and expected indirect losses, which we assume to be positive. The �rst term on
the RHS of (19) is therefore positive under this assumption. The term dqi

d�
measures

the impact of a change in the number investing on the total expected indirect impact
on �rm i, a non-investor. We assume this to be negative: more agents investing in
security means less exposure to indirect e¤ects. This certainly seems reasonable for
the airline case.
Theorem 5 on tipping is relevant to a model with endogenous probabilities. With

the above assumptions, dci(K)
d�

> 0 in (19) and an increase in the number of agents
investing in security will raise the threshold cost level for the remaining agents to
invest, thus making it more likely that they will also invest. It should now be easier
for a coalition to tip the other �rms into investing for the following reason: not only
does a decision by a �rm to invest reduce the externalities but it also increases the
risk that a �rm that did not invest in security will become a terrorist target.
Theorem 2 which shows that there exists a Nash equilibrium in pure strategies for

the case of exogenous probabilities also holds for the case of endogenous probabilities
given the above assumptions. For the argument to work we require that it still be
the case that a �rm is most likely to choose S when all others are also choosing S
and that if in such a situation it chooses N then it will always choose N . But this is
implied by the assumption that the total externality imposed on a �rm decreases as
the number of other �rms investing increases.

6 Class 1 Illustrative Examples: Airline Security

This section provides an analysis of Nash equilibria for Class 1 problems by focusing
on airline security. We analyze the relationship between private and social welfare and
illustrate tipping and cascading through numerical examples coupled with a geometric
framework to provide intuition for these results. There are 2 separate airlines. To
simplify the computations we utilize a model that is less general than that of section
3 and assume that the probabilities of a terrorist attack are known and �xed. Let pij
be the probability that on any trip a bag containing a bomb is loaded onto airline i
and is then transferred to airline j and explodes on j. If i = j, we have the probability
that an airline loads a bag with a bomb and this explodes on its own plane. Each
airline can either invest in a security system S at a cost per trip of ci > 0 or not invest
N: Security systems are assumed to be completely e¤ective so that they eliminate the
chance of a bomb coming through the airline�s own facility. In the event that a bomb
explodes on a plane the loss is L > 0. The initial income of an airline is Y > ci 8i.

14



This framework gives rise to the following payo¤matrix showing the outcomes for
the four possible combinations of N and S. If both airlines invest in security systems
then their payo¤s per trip are just their initial incomes net of the investment costs.
If A1 invests and A2 does not, then A1 has a payo¤ of income Y minus investment
cost c1 minus the expected loss from a bomb transferred from A2 that explodes on
A1 (i.e., p21L), while A2 has a payo¤ of income Y minus the expected loss from a
bomb loaded and exploding on its plane, p22L: If neither invests then A1 has a payo¤
of income Y minus the expected loss from a bomb loaded and exploding on its own
plane p11L minus the expected loss from a bomb transferred from A2 that explodes
on A1 (i.e., p21L) conditioned on there being no explosion from a bomb loaded by A1
itself (1� p11). A2�s payo¤ is determined in a similar fashion.

A1=A2 S N
S Y � c1; Y � c2 Y � c1�p21L; Y � p22L
N Y � p11L; Y � c2�p12L Y � p11L� (1� p11) p21L; Y � p22L� (1� p22) p12L

Within this framework assumptions A1 to A3 are always satis�ed, as is the con-
dition ci (;) < ci < ci (A)8i of proposition 1. We also have qi (K;N) = qi (K;S) and
� = 1.
Choosing to invest in security measures is a dominant strategy for 1 if and only if

c1 < p11L and c1 < p11 [1� p21]L (20)

The condition that c1 < p11L is clearly what we would expect from a single airline
operating on its own. The tighter condition that c1 < p11 [1� p21]L re�ects the risk
imposed by a �rm without security on its competitor: this is the risk that dangerous
baggage will be transferred from an unsecured airline to the other.
The nature of the Nash equilibrium in the interdependent security model naturally

depends on the parameters. From the payo¤ matrix it is clear that (S; S) is a Nash
equilibrium if ci < piiL and is a dominant strategy if ci < piiL (1� pji) where i and
j are 1 or 2. (N;N) is a Nash equilibrium if ci > piiL (1� pji) and a dominant
strategy if ci > piiL: From these inequalities we note that (S; S) and (N;N) are
both Nash equilibria if piiL (1� pji) < ci < piiL: this is consistent with proposition
3, as piiL (1� pji) = ci (;) and piiL = ci (A� i). Finally if c1 > p11L but c2 <
p22L (1� p12) then (N;S) is a Nash equilibrium, and if 1 and 2 are interchanged
then the equilibrium is (S;N) : This con�guration of Nash equilibria is summarized
in Figure 1. Note that if c1 = c2 then we are on the diagonal of �gure 1 and the only
possible equilibria are (S; S), either (S; S) or (N;N) ; and (N;N) : In this case mixed
equilibria are not possible, as stated in our earlier paper [13].
Figure 1 enables one to determine when the Nash equilibrium also is socially

optimal. From the proof of Proposition 3 we know that when both (S; S) and (N;N)
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N,N is Nash

N,N is Nash

c1

c2
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P22[1-p12]L

P11L

P22L

Figure 1: Nash equilibria as a function of c1 and c2:

equilibria coexist the former Pareto dominates the latter, and to be precise we know
that (S; S) Pareto dominates (N;N) whenever

ci < piLi + qi (;; N)� �piqi (;; N) (21)

In the present context this simpli�es to

ci < piiL+ L (1� pii) pji (22)

In terms of �gure 1, this means that the area in which (S; S) Pareto dominates is a
rectangle that includes but is greater than the region that is the product of the two
intervals [0; p11L] and [0; p22L]. So this includes all of the regions in which (S; S) is
a Nash equilibrium, and parts of the regions in which (S;N) ; (N;S) and (N;N) are
equilibria. In particular, whenever (S; S) is an equilibrium, then it is e¢ cient.

6.1 Tipping

Consider three airlines, and let p11 = p12 = p13 = p21 = p22 = p23 = 0:1, p31 = p32 =
0:3; p33 = 0:2, L = 1000 and c1 = c2 = 85; c3 = 200: The Nash equilibria for this
problem are depicted in �gures 2 and 3. In this setting

c1 (;) = c2 (;) = p11L (1� p21 � (1� p21) p31) = 63
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As c1 = c2 = 85 > c1 (;) = c2 (;) = 63; neither �rm 1 nor �rm 2 will invest in security
if �rm 3 is not investing. We have that

c3 (;) = p33L(1� p23 � (1� p23) p13) = 162

and so �rm three will not invest (as c3 = 200) and (N;N;N) is the Nash equilibrium.
If �rm 3 does not invest, then not investing is a dominant strategy for both the other
�rms for any cost above 63.
Suppose that airline 3 is required to invest in security by either an airline asso-

ciation or the federal government. It now imposes no externality on the other �rms
and so does not a¤ect their decisions. To understand the choices of �rms 1 and 2 we
simply have to apply inequality (20), which gives a critical cost level of 90; meaning
that investment will now be a dominant strategy when the cost is less than 90: As
the actual cost for �rms 1 and 2 is less than this by assumption at c1 = c2 = 85; we
see that after �rm 3 has changed strategy from N to S the dominant strategy for
both �rms 1 and 2 has changed from not investing to investing. Airline 3 therefore
has the capacity to tip the equilibrium from not investing to investing by changing
its policy.
The tipping phenomenon is shown geometrically in �gures 2 and 3. These are

similar to �gure 1 above, showing the sets of fc1; c2g values corresponding to di¤erent
equilibrium types. The key point in seeing tipping geometrically is that this diagram
for �rms 1 and 2 depends on what �rm 3 does. A change by 3 alters the entire
equilibrium diagram for the other two �rms.5 When �rm 3 does not invest, as in
�gure 2, not investing is a dominant strategy for the other �rms as their cost point
(85; 85) lies in the quadrant bounded below by (75; 75) : When �rm 3 changes and
invests, then the whole diagram for the other �rms alters, now looking as in �gure 3.
The region in which investing is a dominant strategy is now greatly enlarged because
of the removal of the externalities generated by 3 and includes the point (85; 85) so
that it includes the point representing �rms 1 and 2.
We now compute the expected pro�ts of each airline when none of the airlines are

investing in security. The expected loss for airline 1 (and also for 2) at an equilibrium
where no �rms invest is

p11L+ (1� p11) [p21L+ (1� p21) p31L]

which is 433; so that the expected pro�t is Y � 433: For airline 3 this number is
Y � 352: When airline 3 is forced to invest in security then the pro�ts for airlines
1 and 2 are each given by Y � 85 and pro�ts for airline 3 are Y � 200: Hence
the pro�ts of each of the three �rms are increased when the industry moves for the
equilibrium with no investment to a situation with all investing. In fact �rms 1 and
2 could pro�tably pay �rm 3 to switch from not investing to investing.

5We are really looking at a three-dimensional version of �gure 1, and the diagrams for �rms 1
and 2 are slices through this for di¤erent strategy choices for �rm 3:
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Figure 2: Equilibria for �rms 1 and 2 when 3 does not invest.
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Figure 3: Equilibria for �rms 1 and 2 when 3 invests and imposes no externalities.
In this case (85; 85) is in the region in which investing is a dominant strategy.
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6.2 Cascading

Our model can also give rise to the phenomenon of cascading (see also Dixit [5]),
which refers to situation where when one agent changes its policy, this leads another
to follow suit. The fact that two agents have changed now persuades a third to follow,
and when the third changes policy this creates the preconditions for a fourth to do so,
and so on. The analogy with a row of dominoes is compelling: the �rst knocks down
the second, which knocks down the third, and so on. To see how this can happen in
our model, suppose that we have a Nash equilibrium at which all airlines choose N
and assume in addition we can number �rms 1; 2; 3; ::: so that the following conditions
are satis�ed:

� When 1 switches from N to S then 2�s best strategy changes from N to S but
no other �rm�s best strategy changes

� When 1 and 2 have switched from N to S then 3�s best strategy changes from
N to S and no other �rm�s best strategy changes.

� When 1, 2 and 3 have switched from N to S then 4�s best strategy changes
from N to S and no other �rm�s best strategy changes.

or in general

� When 1; 2; 3; :::; J have switched fromN to S then (J+1)�s best strategy changes
from N to S and no other �rm�s best strategy changes for all �rms J > 1.

If such an ordering of the �rms exists then if �rm 1 switches from N to S; it will
start a cascade in which 2 changes followed by 3 then by 4 etc. etc. We can readily
modify the numerical example above to illustrate this cascading process. Speci�cally,
keep the probabilities as above and let c1 = 85 as before but c2 = 95: Then it is
clear from �gures 2 and 3 that (c1; c2) is in the region where (N;N) are the dominant
strategies when 3 does not invest but also is in the region where (N;S) is the equilib-
rium when 3 does invest (see also �gure 1). So in this case when 3 changes from N
to S this causes 2 to change from not investing to investing as well. But once �rms 2
and 3 are investing, �rm 1 is e¤ectively on its own and will invest if c1 < p11L = 100;
which is satis�ed. So when 2 follows 3 and changes from not investing to investing it
will cause 1 to follow suit, generating a cascade.
In the next two sections we examine how the IDS model applies to a Class 2

problem of full protection (i.e. vaccinations) and a Class 3 problem of positive ex-
ternalities (i.e. investment in R&D). In both these examples it seems appropriate
to assume the probabilities are exogenous since neither problem involves a purposive
adversary, such as a terrorist, whose actions are partially determined by the actions
taken by di¤erent agents in the system.
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7 Class 2 Problems: Vaccination

As indicated in Section 2:2, Class 2 problems are ones where an agent who invests
in protection obtains complete protection and cannot be contaminated by others. In
this section we illustrate the nature of the Nash equilibrium for this class of problems
by focusing on deciding whether to be vaccinated or not. We also show the number
of individuals who choose to be vaccinated may not be socially optimal.
Catching diseases normally conveys immunity so that you can only catch the

disease once: damages are non-additive. Secondly, the risk that each person faces
depends on whether others are vaccinated - security is interdependent. You can
catch the disease from the environment - i.e. from a non-human host - or from
another person. If everyone else is vaccinated then the remaining person faces only
the risk of catching the disease from a non-human host.
Assume that it costs c to be vaccinated: this may re�ect a combination of cash

costs, psychological costs and possible adverse reactions. If someone catches the
disease then the total cost to them is L (for loss). There are non-human hosts for
the infectious agent, so that one can be infected even if no one else is. Cholera is a
disease of this type: cholera pathogens are resident in the environment even when the
disease is not present in humans. The alternative case can be formulated as a special
case of this more general situation. Smallpox appears to be in the second category, a
disease that is not endemic in the environment, although a terrorist group could play
the role played by non-human hosts in the other case. In the absence of deliberate
infection by an enemy, we could not normally catch smallpox unless someone else
were already infected.
For this example agents may choose to be vaccinated (V ) or not to be vaccinated

(NV ). If you are vaccinated then you will not be infected, so qi (K;S) = 0 whatever
the value of K. De�ne p to be the probability of catching the disease even if no one
else has it: this is the environmental risk of the disease, the background risk (positive
for cholera and zero for smallpox). Let q denote the chance of catching the disease
from a non-human source and infecting another susceptible person. It is only possible
to catch the disease once, so that � = 1. Y is person i0s initial income or welfare, the
reference point from which welfare changes are measured.
In the two person case we have the following payo¤ matrix to the strategies of

being vaccinated (V ) and not being vaccinated (NV ):

V NV
V Y � c; Y � c Y � c; Y � pL
NV Y � pL; Y � c Y � pL� (1� p)qL; Y � pL� (1� p)qL

If both are vaccinated then each has a payo¤of Y �c; initial income net of the cost
of vaccination. If only one is vaccinated then her payo¤ is Y � c; and the other�s is
Y �pL: the latter person runs no risk of infection from the former as she is vaccinated
and by assumption cannot transmit the disease.
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In the case in which neither chooses to be vaccinated, the payo¤s are the initial
wealth Y minus the expected loss from an infection from the background pL, minus
also the expected loss from infection by the other person qL, which only matters if
you have not already been infected (1� p). From this payo¤ matrix it is clear that:

1. When c < pL, (V; V ) is a Nash equilibrium.

2. For pL < c < pL+ (1� p) qL; both (N; V ) or (V;N) are equilibria, and

3. For pL+ (1� p) qL < c then (NV;NV ) is the equilibrium.

So as the cost of vaccination rises, we have equilibria with both people being vacci-
nated, one being vaccinated, and neither being vaccinated. The critical values of c at
which the equilibrium changes are the expected loss from infection if the other person
is vaccinated (pL), and the expected loss from infection if she is not L (p+ (1� p) q).
Here (p+ (1� p) q) is the probability of infection if neither is vaccinated. This struc-
ture persists as we consider situations with more people.
For the case of full protection one can show that there will only be one Nash

equilibrium for the reasons indicated in Section 3. The same type of conditions as
in the airline security example of the previous section hold for determining when the
Nash equilibrium is also socially optimal. If the Nash equilibrium is (V; V ) then this
strategy maximizes social welfare. For all other cases if the costs of vaccinating are
su¢ ciently low then it will be socially optimal to vaccinate more individuals. In the
above 2 person simpli�ed example, consider the case where both (N; V ) or (V;N)
are equilibria. In this case if the other person were forced to be vaccinated, then the
total costs would be Costs(V; V ) = 2c < Costs(N; V ) = c + pL + (1� p) qL by the
nature of the cost inequality for(N; V ) or (V;N) to be a Nash equilibrium.

8 Class 3 Problems: Investment in R&D

Class 3 problems are ones where a �rm that invests in knowledge produces positive
externalities for others in the system. We illustrate this type of problem by focusing
on the case where two competitive �rms in an industry are considering whether or
not to invest money in R&D, a topic on which there is an extensive literature (see
e.g. Dasgupta and Stiglitz [2] and [3], Dixit [4] and Grossman and Shapiro [7]).
Assume that �rm i can invest in R&D at a cost of ci: This generates a payo¤ of G
with probability pi. There is, in addition, a chance pj that another �rm j invests
and succeeds, in which case the information it gains reaches �rm i. If I stands for
investing and N for not investing then the payo¤ for the two by two case is
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Payo¤ matrix for �rms 1 and 2 in the R&D problem

1/2 I N
I Y � c1+p1G+(1� p1) p2G; Y � c2+p2G+(1� p2) p1G Y � c1+p1G; Y + p1G
N Y + p2G; Y � c2+p2G Y; Y

Here if neither invests then there is no chance of either getting the information
and so both their payo¤s are their initial income Y . If �rm one invests and two
does not, then the payo¤ to the investor is Y � c1+p1G; income net of the cost of
investing plus the expected gain from the investment. The payo¤ to the non-investor
here is Y + p1G; income plus the expected gain as the information is transferred to
it from the successful investor. Finally if both invest then �rm i has a payo¤ of
Y � ci+piG+(1� pi) pjG; which is income net of the cost of investment plus the
expected gain from its own investment plus the expected gain from the other�s in-
vestment conditional on its own investment not having succeeded.
In this payo¤ matrix (I; I) is a dominant strategy if and only if

ci < pi [1� pj]G (23)

Thus the possibility of getting the information free from someone else reduces the
incentive to invest in R&D: without this possibility the equivalent inequality would
obviously be ci < piG. The term [1� pj] might be called the free rider e¤ect since
there is a temptation for each �rm to take advantage of the other �rm�s R&D invest-
ment. The knowledge that �rm j is investing will reduce the incentive that �rm i has
to do likewise.
The Nash equilibrium for this problem di¤ers from the airline and computer se-

curity cases because there is less incentive to invest in R&D if others have already
done so. If no �rms are investing then the return from investment is at its highest
level while if all other �rms are investing then the expected returns from investment
is at its lowest level. We know already from (23) that (I; I) is a Nash equilibrium if

c1 < p1 [1� p2]G and c2 < p2 [1� p1]G

Similarly (I;N) is a Nash equilibrium if

p1G > c1 and c2 > Gp2 [1� p1]

and (N; I) is an equilibrium if

p2G > c2 and c1 > Gp1 [1� p2]

We can now look at the plane with c1 and c2 as its axes, position the other para-
meters on this and analyze when (I; I) ; (N; I) ; (I;N) and (N;N) are Nash equilibria.
In Figure 4 the c1�c2 plane is divided into �ve regions by the above inequalities on c1
and c2: In the lower left region the only possible equilibria are those where both �rms
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Figure 4: Equilibria of the R&D game as a function of costs c2 and c2 and other
parameters.

choose to invest and in the upper right region the only equilibria are those where
neither chooses to invest. Between these regions is one where there are two possi-
ble outcomes, (N; I) and (I;N) ; and to the upper left the only possible outcomes
are (I;N) and to the lower right (N; I) : If both �rms are identical then Figure 4
is completely symmetric and of course c1 = c2 so we are restricted to the diagonal.
We therefore have three possible outcomes: (I; I) for low c values, (N;N) for high
c values; in between both (N; I) and (I;N) are possible. The asymmetric regions
are not possible if the �rms are identical. There is only a single Nash equilibrium so
there is no possibility of tipping or cascading as in Class 1 problems.
Figure 4 enables us to examine conditions when the Nash equilibrium maximizes

industry expected pro�ts. From the proof of proposition 3 we again know that in-
vesting Pareto dominates not investing when

ci < piLi + qi (;; N)� �piqi (;; N)

which in the current context reduces to

ci < piG+ pjG (1� pi)

In �gure 4 this means that all investing is Pareto e¢ cient whenever costs c1 and c2
are less than p1G + p2G (1� p1) and p2G + p1G (1� p2) respectively. This includes
the areas where (I; I) and (I;N) and (N; I) are equilibria, and some of the area in
which (N;N) is an equilibrium.
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9 Conclusions

Interdependence is a widespread phenomenon with risk-management decisions: air-
lines, electric utilities, public health and R&D amongst others are �elds in which
the risk that I face depends on what you choose, and vice versa. We have speci�ed
three classes of IDS problems and developed a general framework for analyzing them
from a game-theoretic perspective. We have identi�ed minimum critical coalitions,
the smallest coalitions that can tip an equilibrium, given conditions for them to exist,
and shown that they represent the least expensive way of changing from an ine¢ cient
to an e¢ cient equilibrium.
An interesting feature of Class 1 problems, where investment in protection only

provides partial protection, is the possibility of tipping and cascading. Tipping occurs
when changes in the behavior of a small number of players lead all the rest to change
their strategies, thus transforming the equilibrium radically. In such situations, one
or a few players are likely to have great leverage over the system as a whole. In our
3-agent numerical example on airline security, a change of strategy from N to S by
one airline leads the other two airlines to also invest in prevention. We also used the
example to illustrate cascading, where a change of strategy by one agent causes the
second to change which induces a third to invest in prevention until all parties have
changed their strategy, a classical �domino e¤ect".
The equilibria for IDS problems are often ine¢ cient because of negative external

e¤ects. The social return to an investment in protection, in R&D and/or in infection-
prevention, is greater than the private return and this can lead to under-investment.
The policy implications are interesting: it may be that the private sector through some
coordinating mechanism (e.g. a trade association) or the government can identify
those �in�uentials� or �opinion leaders�who form a MCC and persuade them to
change their positions. As noted in our illustrative airline security example, the tax
needed to in�uence the minimum critical coalition is much less than that needed to
in�uence all players.6
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