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Abstract

In theory, the sum of squares of log returns sampled at high frequency estimates their variance. When
market microstructure noise is present but unaccounted for, however, we show that the optimal sampling
frequency is finite and derive its closed-form expression. But even with optimal sampling, using say
five minute returns when transactions are recorded every second, a vast amount of data is discarded, in
contradiction to basic statistical principles. We demonstrate that modelling the noise and using all the
data is a better solution, even if one misspecifies the noise distribution. So the answer is: sample as often
as possible.
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Over the past few years, price data sampled at very high frequency have become increasingly available, in

the form of the Olsen dataset of currency exchange rates or the TAQ database of NYSE stocks. If such data

were not affected by market microstructure noise, the realized volatility of the process (i.e., the average sum

of squares of log-returns sampled at high frequency) would estimate the returns’ variance, as is well known. In

fact, sampling as often as possible would theoretically produce in the limit a perfect estimate of that variance.

We start by asking whether it remains optimal to sample the price process at very high frequency in the

presence of market microstructure noise, consistently with the basic statistical principle that, ceteris paribus,

more data is preferred to less. We first show that, if noise is present but unaccounted for, then the optimal

sampling frequency is finite, and we derive a closed-form formula for it. The intuition for this result is as

follows. The volatility of the underlying efficient price process and the market microstructure noise tend to

behave differently at different frequencies. Thinking in terms of signal-to-noise ratio, a log-return observed

from transaction prices over a tiny time interval is mostly composed of market microstructure noise and brings

little information regarding the volatility of the price process since the latter is (at least in the Brownian case)

proportional to the time interval separating successive observations. As the time interval separating the two

prices in the log-return increases, the amount of market microstructure noise remains constant, since each price

is measured with error, while the informational content of volatility increases. Hence very high frequency data

are mostly composed of market microstructure noise, while the volatility of the price process is more apparent

in longer horizon returns. Running counter to this effect is the basic statistical principle mentioned above: in

an idealized setting where the data are observed without error, sampling more frequently cannot hurt. What

is the right balance to strike? What we show is that these two effects compensate each other and result in a

finite optimal sampling frequency (in the root mean squared error sense) so that some time aggregation of the

returns data is advisable.

By providing a quantitative answer to the question of how often one should sample, we hope to reduce

the arbitrariness of the choices that have been made in the empirical literature using high frequency data: for

example, using essentially the same Olsen exchange rate series, these somewhat ad hoc choices range from

5 minute intervals (e.g., Andersen, Bollerslev, Diebold, and Labys (2001), Barndorff-Nielsen and Shephard

(2002) and Gençay, Ballocchi, Dacorogna, Olsen, and Pictet (2002)) to as long as 30 minutes (e.g., Andersen,

Bollerslev, Diebold, and Labys (2003)). When calibrating our analysis to the amount of microstructure

noise that has been reported in the literature, we demonstrate how the optimal sampling interval should be

determined: for instance, depending upon the amount of microstructure noise relative to the variance of the

underlying returns, the optimal sampling frequency varies from 4 minutes to 3 hours, if 1 day’s worth of data

is used at a time. If a longer time period is used in the analysis, then the optimal sampling frequency can be

considerably longer than these values.

But even if one determines the sampling frequency optimally, it remains the case that the empirical

researcher is not making use of the full data at his/her disposal. For instance, suppose that we have available

transaction records on a liquid stock, traded once every second. Over a typical 6.5 hour day, we therefore start
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with 23, 400 observations. If one decides to sample once every 5 minutes, then —whether or not this is the

optimal sampling frequency— this amounts to retaining only 78 observations. Said differently, one is throwing

away 299 out of every 300 transactions. From a statistical perspective, this is unlikely to be the optimal

solution, even though it is undoubtedly better than computing a volatility estimate using noisy squared log-

returns sampled every second. Somehow, an optimal solution should make use of all the data, and this is

where our analysis goes next.

So, if one decides to account for the presence of the noise, how should one go about doing it? We show that

modelling the noise term explicitly restores the first order statistical effect that sampling as often as possible

is optimal. This will involve an estimator different from the simple sum of squared log-returns. Since we work

within a fully parametric framework, likelihood is the key word. Hence we construct the likelihood function

for the observed log-returns, which include microstructure noise. To do so, we must postulate a model for

the noise term. We assume that the noise is Gaussian. In light of what we know from the sophisticated

theoretical microstructure literature, this is likely to be overly simplistic and one may well be concerned

about the effect(s) of this assumption. Could it do more harm than good? Surprisingly, we demonstrate

that our likelihood correction, based on Gaussianity of the noise, works even if one misspecifies the assumed

distribution of the noise term. Specifically, if the econometrician assumes that the noise terms are normally

distributed when in fact they are not, not only is it still optimal to sample as often as possible (unlike the

result when no allowance is made for the presence of noise), but the estimator has the same variance as if

the noise distribution had been correctly specified. This robustness result is, we think, a major argument in

favor of incorporating the presence of the noise when estimating continuous time models with high frequency

financial data, even if one is unsure about what is the true distribution of the noise term.

In other words, the answer to the question we pose in our title is “as often as possible”, provided one

accounts for the presence of the noise when designing the estimator (and we suggest maximum likelihood as a

means of doing so). If one is unwilling to account for the noise, then the answer is to rely on the finite optimal

sampling frequency we start our analysis with, but we stress that while it is optimal if one insists upon using

sums of squares of log-returns, this is not the best possible approach to estimate volatility given the complete

high frequency dataset at hand.

In a companion paper (Zhang, Mykland, and Aït-Sahalia (2003)), we study the corresponding nonpara-

metric problem, where the volatility of the underlying price is a stochastic process, and nothing else is known

about it, in particular no parametric structure. In that case, the object of interest is the integrated volatility

of the process over a fixed time interval, such as a day, and we show how to estimate it using again all the data

available (instead of sparse sampling at an arbitrarily lower frequency of, say, 5 minutes). Since the model is

nonparametric, we no longer use a likelihood approach but instead propose a solution based on subsampling

and averaging, which involves estimators constructed on two different time scales, and demonstrate that this

again dominates sampling at a lower frequency, whether arbitrary or optimally determined.

This paper is organized as follows. We start by describing in Section 1 our reduced form setup and the
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underlying structural models that support it. We then review in Section 2 the base case where no noise is

present, before analyzing in Section 3 the situation where the presence of the noise is ignored. In Section 4, we

examine the concrete implications of this result for empirical work with high frequency data. Next, we show

in Section 5 that accounting for the presence of the noise through the likelihood restores the optimality of high

frequency sampling. Our robustness results are presented in Section 6 and interpreted in Section 7. We study

the same questions when the observations are sampled at random time intervals, which are an essential feature

of transaction-level data, in Section 8. We then turn to various extensions and relaxation of our assumptions

in Section 9: we add a drift term, then serially correlated and cross-correlated noise respectively. Section 10

concludes. All proofs are in the Appendix.

1. Setup

Our basic setup is as follows. We assume that the underlying process of interest, typically the log-price of

a security, is a time-homogenous diffusion on the real line

dXt = µ(Xt; θ)dt+ σdWt (1.1)

where X0 = 0, Wt is a Brownian motion, µ(., .) is the drift function, σ2 the diffusion coefficient and θ the drift

parameters, θ ∈ Θ and σ > 0. The parameter space is an open and bounded set. As usual, the restriction that

σ is constant is without loss of generality since in the univariate case a one-to-one transformation can always

reduce a known specification σ(Xt) to that case. Also, as discussed in Aït-Sahalia and Mykland (2003), the

properties of parametric estimators in this model are quite different depending upon we estimate θ alone, σ2

alone, or both parameters together. When the data are noisy, the main effects that we describe are already

present in the simpler of these three cases, where σ2 alone is estimated, and so we focus on that case. Moreover,

in the high frequency context we have in mind, the diffusive component of (1.1) is of order (dt)1/2 while the

drift component is of order dt only, so the drift component is mathematically negligible at high frequencies.

This is validated empirically: including a drift actually deteriorates the performance of variance estimates from

high frequency data since the drift is estimated with a large standard error. Not centering the log returns for

the purpose of variance estimation produces more accurate results (see Merton (1980)). So we simplify the

analysis one step further by setting µ = 0, which we do until Section 9.1, where we then show that adding a

drift term does not alter our results. In Section 9.4, we discuss the situation where the instantaneous volatility

σ is stochastic.

But for now,

Xt = σWt. (1.2)

Until Section 8, we treat the case where we observations occur at equidistant time intervals ∆, in which case

he parameter σ2 is therefore estimated at time T on the basis of N +1 discrete observations recorded at times
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τ0 = 0, τ1 = ∆,..., τN = N∆ = T . In Section 8, we let the sampling intervals be themselves random variables,

since this feature is an essential characteristic of high frequency transaction data.

The notion that the observed transaction price in high frequency financial data is the unobservable efficient

price plus some noise component due to the imperfections of the trading process is a well established concept

in the market microstructure literature (see for instance Black (1986)). So, where we depart from the inference

setup previously studied in Aït-Sahalia and Mykland (2003) is that we now assume that, instead of observing

the process X at dates τi, we observe X with error:

X̃τi = Xτi + Uτi (1.3)

where the U 0τis are i.i.d. noise with mean zero and variance a
2 and are independent of the W process. In that

context, we view X as the efficient log-price, while the observed X̃ is the transaction log-price. In an efficient

market, Xt is the log of the expectation of the final value of the security conditional on all publicly available

information at time t. It corresponds to the log-price that would be in effect in a perfect market with no

trading imperfections, frictions, or informational effects. The Brownian motion W is the process representing

the arrival of new information, which in this idealized setting is immediately impounded in X.

By contrast, Ut summarizes the noise generated by the mechanics of the trading process. What we have

in mind as the source of noise is a diverse array of market microstructure effects, either information or non-

information related, such as the presence of a bid-ask spread and the corresponding bounces, the differences

in trade sizes and the corresponding differences in representativeness of the prices, the different informational

content of price changes due to informational asymmetries of traders, the gradual response of prices to a block

trade, the strategic component of the order flow, inventory control effects, the discreteness of price changes in

markets that are not decimalized, etc., all summarized into the term U. That these phenomena are real are

important is an accepted fact in the market microstructure literature, both theoretical and empirical. One

can in fact argue that these phenomena justify this literature.

We view (1.3) as the simplest possible reduced form of structural market microstructure models. The

efficient price process X is typically modelled as a random walk, i.e., the discrete time equivalent of (1.2). Our

specification coincides with that of Hasbrouck (1993), who discusses the theoretical market microstructure

underpinnings of such a model and argues that the parameter a is a summary measure of market quality.

Structural market microstructure models do generate (1.3). For instance, Roll (1984) proposes a model

whereU is due entirely to the bid-ask spread. Harris (1990b) notes that in practice there are sources of noise

other than just the bid-ask spread, and studies their effect on the Roll model and its estimators.

Indeed, a disturbance U can also be generated by adverse selection effects as in Glosten (1987) and Glosten

and Harris (1988), where the spread has two components: one that is due to monopoly power, clearing costs,

inventory carrying costs, etc., as previously, and a second one that arises because of adverse selection whereby

the specialist is concerned that the investor on the other side of the transaction has superior information.

When asymmetric information is involved, the disturbance U would typically no longer be uncorrelated with
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the W process and would exhibit autocorrelation at the first order, which would complicate our analysis

without fundamentally altering it: see Sections 9.2 and 9.3 where we relax the assumptions that the U 0s are

serially uncorrelated and independent of the W process, respectively.

The situation where the measurement error is primarily due to the fact that transaction prices are multiples

of a tick size (i.e., X̃τi = miκ where κ is the tick size and mi is the integer closest to Xτi/κ) can be modeled

as a rounding off problem (see Gottlieb and Kalay (1985), Jacod (1996) and Delattre and Jacod (1997)).

The specification of the model in Harris (1990a) combines both the rounding and bid-ask effects as the dual

sources of the noise term U . Finally, structural models, such as that of Madhavan, Richardson, and Roomans

(1997), also give rise to reduced forms where the observed transaction price X̃ takes the form of an unobserved

fundamental value plus error.

With (1.3) as our basic data generating process, we now turn to the questions we address in this paper: how

often should one sample a continuous-time process when the data are subject to market microstructure noise,

what are the implications of the noise for the estimation of the parameters of the X process, and how should

one correct for the presence of the noise, allowing for the possibility that the econometrician misspecifies the

assumed distribution of the noise term, and finally allowing for the sampling to occur at random points in

time? We proceed from the simplest to the most complex situation by adding one extra layer of complexity at

a time: Figure 1 shows the three sampling schemes we consider, starting with fixed sampling without market

microstructure noise, then moving to fixed sampling with noise and concluding with an analysis of the situation

where transaction prices are not only subject to microstructure noise but are also recorded at random time

intervals.

2. The Baseline Case: No Microstructure Noise

We start by briefly reviewing what would happen in the absence of market microstructure noise, that

is when a = 0. With X denoting the log-price, the first differences of the observations are the log-returns

Yi = X̃τi − X̃τi−1 , i = 1, ..., N. The observations Yi = σ
¡
Wτi+1 −Wτi

¢
are then i.i.d. N(0, σ2∆) so the

likelihood function is

l(σ2) = −N ln(2πσ2∆)/2− (2σ2∆)−1Y 0Y, (2.1)

where Y = (Y1, ..., YN)0.. The maximum-likelihood estimator of σ2 coincides with the discrete approximation

to the quadratic variation of the process

σ̂2 =
1

T

NX
i=1

Y 2
i (2.2)

which has the following exact small sample moments:

E
£
σ̂2
¤
=
1

T

NX
i=1

E
£
Y 2
i

¤
=

N
¡
σ2∆

¢
T

= σ2,
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Var
£
σ̂2
¤
=
1

T 2
Var

"
NX
i=1

Y 2i

#
=
1

T 2

Ã
NX
i=1

Var
£
Y 2
i

¤!
=

N

T 2
¡
2σ4∆2

¢
=
2σ4∆

T

and the following asymptotic distribution

T 1/2
¡
σ̂2 − σ2

¢ −→
T−→∞

N(0, ω) (2.3)

where

ω = AVAR(σ̂2) = ∆E
h
−l̈(σ2)

i−1
= 2σ4∆. (2.4)

Thus selecting ∆ as small as possible is optimal for the purpose of estimating σ2.

3. When the Observations Are Noisy But the Noise Is Ignored

Suppose now that market microstructure noise is present but the presence of the U 0s is ignored when

estimating σ2. In other words, we use the log-likelihood (2.1) even though the true structure of the observed

log-returns Y 0i s is given by an MA(1) process since

Yi = X̃τi − X̃τi−1

= Xτi −Xτi−1 + Uτi − Uτi−1

= σ
¡
Wτi −Wτi−1

¢
+ Uτi − Uτi−1

≡ εi + ηεi−1 (3.1)

where the ε0is are uncorrelated with mean zero and variance γ2 (if the U 0s are normally distributed, then the

ε0is are i.i.d.). The relationship to the original parametrization (σ
2, a2) is given by

γ2(1 + η2) = Var[Yi] = σ2∆+ 2a2 (3.2)

γ2η = Cov(Yi, Yi−1) = −a2 (3.3)

Equivalently, the inverse change of variable is given by

γ2 =
1

2

n
2a2 + σ2∆+

p
σ2∆ (4a2 + σ2∆)

o
(3.4)

η =
1

2a2

n
−2a2 − σ2∆+

p
σ2∆ (4a2 + σ2∆)

o
. (3.5)

Two important properties of the log-returns Y 0i s emerge from the two equations (3.2)-(3.3). First, it is clear

from (3.2) that microstructure noise leads to spurious variance in observed log-returns, σ2∆ + 2a2 vs. σ2∆.

This is consistent with the predictions of theoretical microstructure models. For instance, Easley and O’Hara

(1992) develop a model linking the arrival of information, the timing of trades, and the resulting price process.

In their model, the transaction price will be a biased representation of the efficient price process, with a variance

that is both overstated and heteroskedastic as a result of the fact that transactions (hence the recording of an

observation on the process X̃) occur at intervals that are time-varying. While our specification is too simple
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to capture the rich joint dynamics of price and sampling times predicted by their model, heteroskedasticity of

the observed variance will also arise in our case once we allow for time variation of the sampling intervals (see

Section 8 below).

In our model, the proportion of the total return variance that is market microstructure-induced is

π =
2a2

σ2∆+ 2a2
(3.6)

at observation interval ∆. As ∆ gets smaller, π gets closer to 1, so that a larger proportion of the variance

in the observed log-return is driven by market microstructure frictions, and correspondingly a lesser fraction

reflects the volatility of the underlying price process X.

Second, (3.3) implies that −1 < η < 0, so that log-returns are (negatively) autocorrelated with first order

autocorrelation −a2/(σ2∆+2a2) = −π/2. It has been noted that market microstructure noise has the potential
to explain the empirical autocorrelation of returns. For instance, in the simple Roll model, Ut = (s/2)Qt where

s is the bid/ask spread and Qt, the order flow indicator, is a binomial variable that takes the values +1 and

−1 with equal probability. Therefore Var[Ut] = a2 = s2/4. Since Cov(Yi, Yi−1) = −a2, the bid/ask spread
can be recovered in this model as s = 2

√−ρ where ρ = γ2η is the first order autocorrelation of returns.

French and Roll (1986) proposed to adjust variance estimates to control for such autocorrelation and Harris

(1990b) studied the resulting estimators. In Sias and Starks (1997), U arises because of the strategic trading of

institutional investors which is then put forward as an explanation for the observed serial correlation of returns.

Lo and MacKinlay (1990) show that infrequent trading has implications for the variance and autocorrelations

of returns. Other empirical patterns in high frequency financial data have been documented: leptokurtosis,

deterministic patterns and volatility clustering.

Our first result shows that the optimal sampling frequency is finite when noise is present but unaccounted

for. The estimator σ̂2 obtained from maximizing the misspecified log-likelihood (2.1) is quadratic in the Y 0
i s :

see (2.2). In order to obtain its exact (i.e., small sample) variance, we therefore need to calculate the fourth

order cumulants of the Y 0i s since

Cov
¡
Y 2i , Y

2
j

¢
= 2Cov (Yi, Yj)

2
+Cum(Yi, Yi, Yj , Yj) (3.7)

(see e.g., Section 2.3 of McCullagh (1987) for definitions and properties of the cumulants). We have:

Lemma 1 The fourth cumulants of the log-returns are given by

Cum(Yi, Yj , Yk, Yl) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 Cum4 [U ] if i = j = k = l

(−1)s(i,j,k,l)Cum4 [U ] if max(i, j, k, l) = min(i, j, k, l) + 1

0 otherwise

(3.8)

where s(i, j, k, l) denotes the number of indices among (i, j, k, l) that are equal to min(i, j, k, l) and U denotes

a generic random variable with the common distribution of the U 0τis. Its fourth cumulant is denoted Cum4 [U ].
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Now U has mean zero, so in terms of its moments

Cum4 [U ] = E
£
U4
¤− 3 ¡E £U2¤¢2 . (3.9)

In the special case where U is normally distributed, Cum4 [U ] = 0 and as a result of (3.7) the fourth cumulants

of the log-returns are all 0 (sinceW is normal, the log-returns are also normal in that case). If the distribution

of U is binomial as in the simple bid/ask model described above, then Cum4 [U ] = −s4/8; since in general s
will be a tiny percentage of the asset price, say s = 0.05%, the resulting Cum4 [U ] will be very small.

We can now characterize the root mean squared error

RMSE
£
σ̂2
¤
=
³¡
E
£
σ̂2
¤− σ2

¢2
+Var

£
σ̂2
¤´1/2

of the estimator:

Theorem 1 In small samples (finite T ), the bias and variance of the estimator σ̂2 are given by

E
£
σ̂2
¤− σ2 =

2a2

∆
(3.10)

Var
£
σ̂2
¤
=
2
¡
σ4∆2 + 4σ2∆a2 + 6a4 + 2Cum4 [U ]

¢
T∆

− 2
¡
2a4 +Cum4 [U ]

¢
T 2

. (3.11)

Its RMSE has a unique minimum in ∆ which is reached at the optimal sampling interval

∆∗ =
µ
2a4T

σ4

¶1/3⎛⎜⎝
⎛⎝1−

s
1− 2 (3a

4 +Cum4 [U ])
3

27σ4a8T 2

⎞⎠1/3

+

⎛⎝1 +
s
1− 2 (3a

4 +Cum4 [U ])
3

27σ4a8T 2

⎞⎠1/3
⎞⎟⎠ . (3.12)

As T grows, we have

∆∗ =
22/3a4/3

σ4/3
T 1/3 +O

µ
1

T 1/3

¶
. (3.13)

The trade-off between bias and variance made explicit in (3.10)-(3.11) is not unlike the situation in non-

parametric estimation with ∆−1 playing the role of the bandwidth h. A lower h reduces the bias but increases

the variance, and the optimal choice of h balances the two effects.

Note that these are exact small sample expressions, valid for all T. Asymptotically in T, Var
£
σ̂2
¤ → 0,

and hence the RMSE of the estimator is dominated by the bias term which is independent of T. And given

the form of the bias (3.10), one would in fact want to select the largest ∆ possible to minimize the bias (as

opposed to the smallest one as in the no-noise case of Section 2). The rate at which ∆∗ should increase with

T is given by (3.13). Also, in the limit where the noise disappears (a → 0 and Cum4 [U ] → 0), the optimal

sampling interval ∆∗ tends to 0.

How does a small departure from a normal distribution of the microstructure noise affect the optimal

sampling frequency? The answer is that a small positive (resp. negative) departure of Cum4 [U ] starting from
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the normal value of 0 leads to an increase (resp. decrease) in ∆∗, since

∆∗ = ∆∗normal +

Ãµ
1 +

q
1− 2a4

T2σ4

¶2/3
−
µ
1−

q
1− 2a4

T2σ4

¶2/3!
3 21/3a4/3T 1/3

q
1− 2a4

T2σ4 σ
8/3

Cum4 [U ] (3.14)

+O
³
Cum4 [U ]2

´
where ∆∗normal is the value of ∆

∗ corresponding to Cum4 [U ] = 0. And of course the full formula (3.12) can be

used to get the exact answer for any departure from normality instead of the comparative static one.

Another interesting asymptotic situation occurs if one attempts to use higher and higher frequency data

(∆ → 0, say sampled every minute) over a fixed time period (T fixed, say a day). Since the expressions in

Theorem 1 are exact small sample ones, they can in particular be specialized to analyze this situation. With

n = T/∆, it follows from (3.10)-(3.11) that

E
£
σ̂2
¤
=
2na2

T
+ o(n) =

2nE
£
U2
¤

T
+ o(n) (3.15)

Var
£
σ̂2
¤
=
2n
¡
6a4 + 2Cum4 [U ]

¢
T 2

+ o(n) =
4nE

£
U4
¤

T 2
+ o(n) (3.16)

so (T/2n)σ̂2 becomes an estimator of E
£
U2
¤
= a2 whose asymptotic variance is E

£
U4
¤
. Note in particular

that σ̂2 estimates the variance of the noise, which is essentially unrelated to the object of interest σ2. This

type of asymptotics is relevant in the stochastic volatility case we analyze in our companion paper Zhang,

Mykland, and Aït-Sahalia (2003).

Our results also have implications for the two parallel tracks that have developed in the recent financial

econometrics literature dealing with discretely observed continuous-time processes. One strand of the litera-

ture has argued that estimation methods should be robust to the potential issues arising in the presence of

high frequency data and, consequently, be asymptotically valid without requiring that the sampling interval ∆

separating successive observations tend to zero (see, e.g., Hansen and Scheinkman (1995), Aït-Sahalia (1996)

and Aït-Sahalia (2002)). Another strand of the literature has dispensed with that constraint, and the asymp-

totic validity of these methods requires that ∆ tend to zero instead of or in addition to, an increasing length of

time T over which these observations are recorded (see, e.g., Andersen, Bollerslev, Diebold, and Labys (2003),

Bandi and Phillips (2003) and Barndorff-Nielsen and Shephard (2002)).

The first strand of literature has been informally warning about the potential dangers of using high fre-

quency financial data without accounting for their inherent noise (see e.g., page 529 of Aït-Sahalia (1996)),

and we propose a formal modelization of that phenomenon. The implications of our analysis are most salient

for the second strand of the literature, which is predicated on the use of high frequency data but does not

account for the presence of market microstructure noise. Our results show that the properties of estimators

based on the local sample path properties of the process (such as the quadratic variation to estimate σ2)

change dramatically in the presence of noise. Complementary to this are the results of Gloter and Jacod
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(2000) which show that the presence of even increasingly negligible noise is sufficient to adversely affect the

identification of σ2.

4. Concrete Implications for Empirical Work with High Frequency

Data

The clear message of Theorem 1 for empirical researchers working with high frequency financial data is

that it may be optimal to sample less frequently. As discussed in the Introduction, authors have reduced their

sampling frequency below that of the actual record of observations in a somewhat ad hoc fashion, with typical

choices 5 minutes and up. Our analysis provides not only a theoretical rationale for sampling less frequently,

but also delivers a precise answer to the question of “how often one should sample?” For that purpose, we

need to calibrate the parameters appearing in Theorem 1, namely σ, α, Cum4[U ], ∆ and T.We assume in this

calibration exercise that the noise is Gaussian, in which case Cum4[U ] = 0.

4.1 Stocks

We use existing studies in empirical market microstructure to calibrate the parameters. One such study

is Madhavan, Richardson, and Roomans (1997), who estimated on the basis of a sample of 274 NYSE stocks

that approximately 60% of the total variance of price changes is attributable to market microstructure effects

(they report a range of values for π from 54% in the first half hour of trading to 65% in the last half hour,

see their Table 4; they also decompose this total variance into components due to discreteness, asymmetric

information, transaction costs and the interaction between these effects). Given that their sample contains an

average of 15 transactions per hour (their Table 1), we have in our framework

π = 60%, ∆ = 1/(15× 7× 252) (4.1)

These values imply from (3.6) that a = 0.16% if we assume a realistic value of σ = 30% per year. (We do

not use their reported volatility number since they apparently averaged the variance of price changes over the

274 stocks instead of the variance of the returns. Since different stocks have different price levels, the price

variances across stocks are not directly comparable. This does not affect the estimated fraction π however,

since the price level scaling factor cancels out between the numerator and the denominator).

The magnitude of the effect is bound to vary by type of security, market and time period. Hasbrouck

(1993) estimates the value of a to be 0.33%. Some authors have reported even larger effects. Using a sample

of NASDAQ stocks, Kaul and Nimalendran (1990) estimate that about 50% of the daily variance of returns

in due to the bid-ask effect. With σ = 40% (NASDAQ stocks have higher volatility), the values

π = 50%, ∆ = 1/252
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yield the value a = 1.8%. Also on NASDAQ, Conrad, Kaul, and Nimalendran (1991) estimate that 11% of

the variance of weekly returns (see their Table 4, middle portfolio) is due to bid-ask effects. The values

π = 11%, ∆ = 1/52

imply that a = 1.4%.

In Table 1, we compute the value of the optimal sampling interval ∆∗ implied by different combinations

of sample length (T ) and noise magnitude (a). The volatility of the efficient price process is held fixed at

σ = 30% in Panel A, which is a realistic value for stocks. The numbers in the table show that the optimal

sampling frequency can be substantially affected by even relatively small quantities of microstructure noise.

For instance, using the value a = 0.15% calibrated from Madhavan, Richardson, and Roomans (1997), we find

an optimal sampling interval of 22 minutes if the sampling length is 1 day; longer sample lengths lead to higher

optimal sampling intervals. With the higher value of a = 0.3%, approximating the estimate from Hasbrouck

(1993), the optimal sampling interval is 57 minutes. A lower value of the magnitude of the noise translates

into a higher frequency: for instance, ∆∗ = 5 minutes if a = 0.05% and T = 1 day. Figure 2 displays the

RMSE of the estimator as a function of ∆ and T, using parameter values σ = 30% and a = 0.15%. The figure

illustrates the fact that deviations from the optimal choice of ∆ lead to a substantial increase in the RMSE:

for example, with T = 1 month, the RMSE more than doubles if, instead of the optimal ∆∗ = 1 hour, one

uses ∆ = 15 minutes.

4.2 Currencies

Looking now at foreign exchange markets, empirical market microstructure studies have quantified the

magnitude of the bid-ask spread. For example, Bessembinder (1994) computes the average bid/ask spread s

in the wholesale market for different currencies and reports values of s = 0.05% for the German mark, and

0.06% for the Japanese yen (see Panel B of his Table 2). We calculated the corresponding numbers for the

1996-2002 period to be 0.04% for the mark (followed by the euro) and 0.06% for the yen. Emerging market

currencies have higher spreads: for instance, s = 0.12% for Korea and 0.10% for Brazil. During the same

period, the volatility of the exchange rate was σ = 10% for the German mark, 12% for the Japanese yen, 17%

for Brazil and 18% for Korea. In Panel B of Table 1, we compute ∆∗ with σ = 10%, a realistic value for the

euro and yen. As we noted above, if the sole source of the noise were a bid/ask spread of size s, then a should

be set to s/2. Therefore Panel B reports the values of ∆∗ for values of a ranging from 0.02% to 0.1%. For

example, the dollar/euro or dollar/yen exchange rates (calibrated to σ = 10%, a = 0.02%) should be sampled

every ∆∗ = 23 minutes if the overall sample length is T = 1 day, and every 1.1 hours if T = 1 year.

Furthermore, using the bid/ask spread alone as a proxy for all microstructure frictions will lead, except in

unusual circumstances, to an understatement of the parameter a, since variances are additive. Thus, since ∆∗

in increasing in a, one should interpret the value of ∆∗ read off 1 on the row corresponding to a = s/2 as a

lower bound for the optimal sampling interval.

11



4.3 Monte Carlo Evidence

To validate empirically these results, we perform Monte Carlo simulations. We simulate M = 10, 000

samples of length T = 1 year of the process X, add microstructure noise U to generate the observations X̃ and

then the log returns Y.We sample the log-returns at various intervals ∆ ranging from 5 minutes to 1 week and

calculate the bias and variance of the estimator σ̂2 over the M simulated paths. We then compare the results

to the theoretical values given in (3.10)-(3.11) of Theorem 1. The noise distribution is Gaussian, σ = 30% and

a = 0.15% — the values we calibrated to stock returns data above. Table 2 shows that the theoretical values

are in close agreement with the results of the Monte Carlo simulations.

The table also illustrates the magnitude of the bias inherent in sampling at too high a frequency. While

the value of σ2 used to generate the data is 0.09, the expected value of the estimator when sampling every 5

minutes is 0.18, so on average the estimated quadratic variation is twice as big as it should be in this case.

5. Incorporating Market Microstructure Noise Explicitly

So far we have stuck to the sum of squares of log-returns as our estimator of volatility. We then showed

that, for this estimator, the optimal sampling frequency is finite. But this implies that one is discarding a

large proportion of the high frequency sample (299 out of every 300 observations in the example described in

the Introduction) , in order to mitigate the bias induced by market microstructure noise. Next, we show that

if we explicitly incorporate the U 0s into the likelihood function, then we are back in the situation where the

optimal sampling scheme consists in sampling as often as possible — i.e., using all the data available.

Specifying the likelihood function of the log-returns, while recognizing that they incorporate noise, requires

that we take a stand on the distribution of the noise term. Suppose for now that the microstructure noise is

normally distributed, an assumption whose effect we will investigate below in Section 6. Under this assumption,

the likelihood function for the Y 0s is given by

l(η, γ2) = − ln det(V )/2−N ln(2πγ2)/2− (2γ2)−1Y 0V −1Y, (5.1)

where the covariance matrix for the vector Y = (Y1, ..., YN)0 is given by γ2V , where

V = [vij ]i,j=1,...,N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + η2 η 0 · · · 0

η 1 + η2 η
. . .

...

0 η 1 + η2
. . . 0

...
. . .

. . .
. . . η

0 · · · 0 η 1 + η2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.2)

Further,

det(V ) =
1− η2N+2

1− η2
(5.3)
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and, neglecting the end effects, an approximate inverse of V is the matrix Ω = [ωij ]i,j=1,...,N where

ωij =
¡
1− η2

¢−1
(−η)|i−j|

(see Durbin (1959)). The product VΩ differs from the identity matrix only on the first and last rows. The

exact inverse is V −1 =
£
vij
¤
i,j=1,...,N

where

vij =
¡
1− η2

¢−1 ¡
1− η2N+2

¢−1 n
(−η)|i−j| − (−η)i+j − (−η)2N−i−j+2 (5.4)

− (−η)2N+|i−j|+2 + (−η)2N+i−j+2 + (−η)2N−i+j+2
o
.

(see Shaman (1969) and Haddad (1995)).

From the perspective of practical implementation, this estimator is nothing else than the MLE estimator of

an MA(1) process with Gaussian errors: any existing computer routines for the MA(1) situation can therefore

be applied (see e.g., Section 5.4 in Hamilton (1995)). In particular, the likelihood function can be expressed

in a computationally efficient form by triangularizing the matrix V , yielding the equivalent expression:

l(η, γ2) = −1
2

NX
i=1

ln (2πdi)− 1
2

NX
i=1

Ỹ 2i
di

, (5.5)

where

di = γ2
1 + η2 + ...+ η2i

1 + η2 + ...+ η2(i−1)

and the Ỹ 0
i s are obtained recursively as Ỹ1 = Y1 and for i = 2, ..., N :

Ỹi = Yi −
η
¡
1 + η2 + ...+ η2(i−2)

¢
1 + η2 + ...+ η2(i−1)

Ỹi−1.

This latter form of the log-likelihood function involves only single sums as opposed to double sums if one were

to compute Y 0V −1Y by brute force using the expression of V −1 given above.

We now compute the distribution of the MLE estimators of σ2 and a2, which follows by the delta method

from the classical result for the MA(1) estimators of γ and η :

Proposition 1 When U is normally distributed, the MLE (σ̂2, â2) is consistent and its asymptotic variance

is given by

AVARnormal(σ̂
2, â2) =

⎛⎝ 4
p
σ6∆ (4a2 + σ2∆) + 2σ4∆ −σ2∆h(∆, σ2, a2)

• ∆
2

¡
2a2 + σ2∆

¢
h(∆, σ2, a2)

⎞⎠ .

with

h(∆, σ2, a2) ≡ 2a2 +
p
σ2∆ (4a2 + σ2∆) + σ2∆. (5.6)

Since AVARnormal(σ̂2) is increasing in ∆, it is optimal to sample as often as possible. Further, since

AVARnormal(σ̂
2) = 8σ3a∆1/2 + 2σ4∆+ o(∆), (5.7)
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the loss of efficiency relative to the case where no market microstructure noise is present (and AVAR(σ̂2) =

2σ4∆ as given in (2.4)) is at order ∆1/2. Figure 3 plots the asymptotic variances of σ̂2 as functions of ∆ with

and without noise (the parameter values are again σ = 30% and a = 0.15%). Figure 4 reports histograms

of the distributions of σ̂2 and â2 from 10, 000 Monte Carlo simulations with the solid curve plotting the

asymptotic distribution of the estimator from Proposition 1. The sample path is of length T = 1 year, the

parameter values the same as above, and the process is sampled every 5 minutes — since we are now accounting

explicitly for the presence of noise, there is no longer a reason to sample at lower frequencies. Indeed, the

figure documents the absence of bias and the good agreement of the asymptotic distribution with the small

sample one.

6. The Effect of Misspecifying the Distribution of the Microstruc-

ture Noise

We now study the situation where one attempts to incorporate the presence of the U 0s into the analysis, as

in Section 5, but mistakenly assumes a misspecified model for them. Specifically, we consider the case where

the U 0s are assumed to be normally distributed when in reality they have a different distribution. We still

suppose that the U 0s are i.i.d. with mean zero and variance a2.

Since the econometrician assumes the U 0s to have a normal distribution, inference is still done with the

log-likelihood l(σ2, a2), or equivalently l(η, γ2) given in (5.1), using (3.2)-(3.3). This means that the scores

l̇σ2 and l̇a2 , or equivalently (C.1) and (C.2), are used as moment functions (or “estimating equations”). Since

the first order moments of the moment functions only depend on the second order moment structure of the

log-returns (Y1, ..., YN), which is unchanged by the absence of normality, the moment functions are unbiased

under the true distribution of the U 0s :

Etrue [l̇η] = Etrue[l̇γ2 ] = 0 (6.1)

and similarly for l̇σ2 and l̇a2 . Hence the estimator (σ̂2, â2) based on these moment functions is consistent and

asymptotically unbiased (even though the likelihood function is misspecified.)

The effect of misspecification therefore lies in the asymptotic variance matrix. By using the cumulants

of the distribution of U, we express the asymptotic variance of these estimators in terms of deviations from

normality. But as far as computing the actual estimator, nothing has changed relative to Section 5: we are still

calculating the MLE for an MA(1) process with Gaussian errors and can apply exactly the same computational

routine.

However, since the error distribution is potentially misspecified, one could expect the asymptotic distrib-

ution of the estimator to be altered. This turns out not be the case, as far as σ̂2 is concerned:

14



Theorem 2 The estimators (σ̂2, â2) obtained by maximizing the possibly misspecified log-likelihood (5.1) are

consistent and their asymptotic variance is given by

AVARtrue(σ̂
2, â2) = AVARnormal(σ̂

2, â2) + Cum4 [U ]

⎛⎝ 0 0

0 ∆

⎞⎠ (6.2)

where AVARnormal(σ̂2, â2) is the asymptotic variance in the case where the distribution of U is normal, that

is, the expression given in Proposition 1.

In other words, the asymptotic variance of σ̂2 is identical to its expression if the U 0s had been normal.

Therefore the correction we proposed for the presence of market microstructure noise relying on the assumption

that the noise is Gaussian is robust to misspecification of the error distribution.

Documenting the presence of the correction term through simulations presents a challenge. At the parame-

ter values calibrated to be realistic, the order of magnitude of a is a few basis points, say a = 0.10% = 10−3.

But if U if of order 10−3, Cum4[U ] which is of the same order as U4, is of order 10−12. In other words, with

a typical noise distribution, the correction term in (6.2) will not be visible.

To nevertheless make it discernible, we use a distribution for U with the same calibrated standard deviation

a as before, but a disproportionately large fourth cumulant. Such a distribution can be constructed by letting

U = ωTν where ω > 0 is constant and Tν is a Student t distribution with v degrees of freedom. Tν has mean

zero, finite variance as long as v > 2 and finite fourth moment (hence finite fourth cumulant) as long as v > 4.

But as v approaches 4 from above, E[T 4ν ] tends to infinity. This allows us to produce an arbitrarily high value

of Cum4[U ] while controlling for the magnitude of the variance. The specific expressions of a2 and Cum4[U ]

for this choice of U are given by

a2 = Var[U ] =
ω2ν

ν − 2 (6.3)

Cum4 [U ] =
6ω4ν2

(ν − 4) (ν − 2)2 . (6.4)

Thus we can select the two parameters (ω, ν) to produce desired values of (a2,Cum4 [U ]). As before,

we set a = 0.15%. Then, given the form of the asymptotic variance matrix (6.2), we set Cum4 [U ] so that

Cum4 [U ]∆ = AVARnormal(â
2)/2. This makes AVARtrue(â2) by construction 50% larger than AVARnormal(â2).

The resulting values of (ω, ν) from solving (6.3)-(6.4) are ω = 0.00115 and v = 4.854. As above, we set the

other parameters to σ = 30%, T = 1 year, and ∆ = 5minutes. Figure 5 reports histograms of the distributions

of σ̂2 and â2 from 10, 000 Monte Carlo simulations. The solid curve plots the asymptotic distribution of the

estimator, given now by (6.2). There is again good adequacy between the asymptotic and small sample distri-

butions. In particular, we note that as predicted by Theorem 2, the asymptotic variance of σ̂2 is unchanged

relative to Figure 4 while that of â2 is 50% larger. The small sample distribution of σ̂2 appears unaffected by

the non-Gaussianity of the noise; with a skewness of 0.07 and a kurtosis of 2.95, it is closely approximated by

its asymptotic Gaussian limit. The small sample distribution of â2 does exhibit some kurtosis (4.83), although
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not large relative to that of the underlying noise distribution (the values of ω and ν imply a kurtosis for U of

3 + 6/(ν − 4) = 10). Similar simulations but with a longer time span of T = 5 years are even closer to the

Gaussian asymptotic limit: the kurtosis of the small sample distribution of â2 goes down to 2.99.

7. Robustness to Misspecification of the Noise Distribution

Going back to the theoretical aspects, the above Theorem 2 has implications for the use of the Gaussian

likelihood l that go beyond consistency, namely that this likelihood can also be used to estimate the distribution

of σ̂2 under misspecification. With l denoting the log-likelihood assuming that the U 0s are Gaussian, given in

(5.1), −l̈(σ̂2, â2) denote the observed information matrix in the original parameters σ2 and a2. Then

V̂ = \AVARnormal =
µ
− 1
T
l̈(σ̂2, â2)

¶−1
is the usual estimate of asymptotic variance when the distribution is correctly specified as Gaussian. Also

note, however, that otherwise, so long as (σ̂2, â2) is consistent, V̂ is also a consistent estimate of the matrix

AVARnormal(σ̂2, â2). Since this matrix coincides with AVARtrue(σ̂2, â2) for all but the (a2, a2) term (see (6.2)),

the asymptotic variance of T 1/2(σ̂2−σ2) is consistently estimated by V̂σ2σ2 . The similar statement is true for

the covariances, but not, obviously, for the asymptotic variance of T 1/2(â2 − a2).

In the likelihood context, the possibility of estimating the asymptotic variance by the observed information

is due to the second Bartlett identity. For a general log likelihood l, if S ≡ Etrue [l̇l̇
0]/N and D ≡ −Etrue [l̈]/N

(differentiation refers to the original parameters (σ2, a2), not the transformed parameters (γ2, η)) this identity

says that

S −D = 0. (7.1)

It implies that the asymptotic variance takes the form

AVAR = ∆(DS−1D)−1 = ∆D−1. (7.2)

It is clear that (7.2) remains valid if the second Bartlett identity holds only to first order, i.e.,

S −D = o(1) (7.3)

as N →∞, for a general criterion function l which satisfies Etrue[l̇] = o(N).

However, in view of Theorem 2, equation (7.3) cannot be satisfied. In fact, we show in Appendix E that

S −D = Cum4 [U ] gg
0 + o(1), (7.4)

where

g =

⎛⎝ gσ2

ga2

⎞⎠ =

⎛⎜⎝ ∆1/2

σ(4a2+σ2∆)3/2

1
2a4

µ
1− ∆

1/2σ(6a2+σ2∆)
(4a2+σ2∆)3/2

¶ ⎞⎟⎠ . (7.5)
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>From (7.5), we see that g 6= 0 whenever σ2 > 0. This is consistent with the result in Theorem 2 that

the true asymptotic variance matrix, AVARtrue(σ̂2, â2), does not coincide with the one for Gaussian noise,

AVARnormal(σ̂
2, â2). On the other hand, the 2 × 2 matrix gg0 is of rank 1, signaling that there exist linear

combinations that will cancel out the first column of S −D. From what we already know of the form of the

correction matrix, D−1 gives such a combination, so that the asymptotic variance of the original parameters

(σ2, a2) will have the property that its first column is not subject to correction in the absence of normality.

A curious consequence of (7.4) is that while the observed information can be used to estimate the asymptotic

variance of σ̂2 when a2 is not known, this is not the case when a2 is known. This is because the second Bartlett

identity also fails to first order when considering a2 to be known, i.e., when differentiating with respect to σ2

only. Indeed, in that case we have from the upper left component in the matrix equation (7.4)

Sσ2σ2 −Dσ2σ2 = N−1Etrue
h
l̇σ2σ2(σ

2, a2)2
i
+N−1Etrue

h
l̈σ2σ2(σ

2, a2)
i

= Cum4 [U ] (gσ2)
2 + o(1)

which is not o(1) unless Cum4 [U ] = 0.

To make the connection between Theorem 2 and the second Bartlett identity, one needs to go to the log

profile likelihood

λ(σ2) ≡ sup
a2

l(σ2, a2). (7.6)

Obviously, maximizing the likelihood l(σ2, a2) is the same as maximizing λ(σ2). Thus one can think of σ2 as

being estimated (when α2 is unknown) by maximizing the criterion function λ(σ2), or by solving λ̇(σ̂2) = 0.

Also, the observed profile information is related to the original observed information by

λ̈(σ̂2)−1 =
h
l̈(σ̂2, â2)−1

i
σ2σ2

, (7.7)

i.e., the first (upper left hand corner) component of the inverse observed information in the original problem.

We recall the rationale for equation (7.7) in Appendix E, where we also show that Etrue [λ̇] = o(N). In view of

Theorem 2, λ̈(σ̂2) can be used to estimate the asymptotic variance of σ̂2 under the true (possibly non-Gaussian)

distribution of the U 0s, and so it must be that the criterion function λ satisfies (7.3), that is

N−1Etrue [λ̇(σ2)2] +N−1Etrue [λ̈(σ2)] = o(1). (7.8)

This is indeed the case, as shown in Appendix E.

This phenomenon is related, although not identical, to what occurs in the context of quasi-likelihood

(for comprehensive treatments of quasi-likelihood theory, see the books by McCullagh and Nelder (1989)

and Heyde (1997), and the references therein, and for early econometrics examples see Macurdy (1982) and

White (1982)). In quasi-likelihood situations, one uses a possibly incorrectly specified score vector which is

nevertheless required to satisfy the second Bartlett identity. What makes our situation unusual relative to

quasi-likelihood is that the interest parameter σ2 and the nuisance parameter a2 are entangled in the same
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estimating equations (l̇σ2 and l̇a2 from the Gaussian likelihood) in such a way that the estimate of σ2 depends,

to first order, on whether a2 is known or not. This is unlike the typical development of quasi-likelihood, where

the nuisance parameter separates out (see, e.g., Table 9.1 page 326 of McCullagh and Nelder (1989)). Thus

only by going to the profile likelihood λ can one make the usual comparison to quasi-likelihood.

8. Randomly Spaced Sampling Intervals

One essential feature of transaction data in finance is that the time that separates successive observations

is random, or at least time-varying. So, as in Aït-Sahalia and Mykland (2003), we are led to consider the

case where ∆i = τi − τi−1 are either deterministic and time-varying, or random in which case we assume for

simplicity that they are i.i.d., independent of the W process. This assumption, while not completely realistic

(see Engle and Russell (1998) for a discrete time analysis of the autoregressive dependence of the times between

trades) allows us to make explicit calculations at the interface between the continuous and discrete time scales.

We denote by NT the number of observations recorded by time T . NT is random if the ∆0s are. We also

suppose that Uτi can be written Ui, where the Ui are i.i.d. and independent of the W process and the ∆0is.

Thus, the observation noise is the same at all observation times, whether random or nonrandom. If we define

the Yis as before, in the first two lines of (3.1), though the MA(1) representation is not valid in the same form.

We can do inference conditionally on the observed sampling times, in light of the fact that the likelihood

function using all the available information is

L (YN ,∆N , ..., Y1,∆1;β, ψ) = L (YN , ..., Y1|∆N , ...,∆1;β)× L (∆N , ...,∆1;ψ)

where β are the parameters of the state process, that is (σ2, a2), and ψ are the parameters of the sampling

process, if any (the density of the sampling intervals density L (∆NT
, ...,∆1;ψ) may have its own nuisance

parameters ψ, such as an unknown arrival rate, but we assume that it does not depend on the parameters β

of the state process.) The corresponding log-likelihood function is

NX
n=1

lnL (YN , ..., Y1|∆N , ...,∆1;β) +
N−1X
n=1

lnL (∆N , ...,∆1;ψ) (8.1)

and since we only care about β, we only need to maximize the first term in that sum.

We operate on the covariance matrix Σ of the log-returns Y 0s, now given by

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2∆1 + 2a2 −a2 0 · · · 0

−a2 σ2∆2 + 2a
2 −a2 . . .

...

0 −a2 σ2∆3 + 2a
2 . . . 0

...
. . .

. . .
. . . −a2

0 · · · 0 −a2 σ2∆n + 2a
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8.2)
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Note that in the equally spaced case, Σ = γ2V . But now Y no longer follows an MA(1) process in general.

Furthermore, the time variation in ∆
0
is gives rise to heteroskedasticity as is clear from the diagonal elements

of Σ. This is consistent with the predictions of the model of Easley and O’Hara (1992) where the variance of

the transaction price process X̃ is heteroskedastic as a result of the influence of the sampling times. In their

model, the sampling times are autocorrelated and correlated with the evolution of the price process, factors we

have assumed away here. However, Aït-Sahalia and Mykland (2003) show how to conduct likelihood inference

in such a situation.

The log-likelihood function is given by

lnL (YN , ..., Y1|∆N , ...,∆1;β) ≡ l(σ2, a2) (8.3)

= − ln det(Σ)/2−N ln(2π)/2− Y 0Σ−1Y/2.

In order to calculate this log-likelihood function in a computationally efficient manner, it is desirable to avoid

the “brute force” inversion of the N×N matrix Σ.We extend the method used in the MA(1) case (see (5.5)) as

follows. By Theorem 5.3.1 in Dahlquist and Björck (1974), and the development in the proof of their Theorem

5.4.3, we can decompose Σ in the form Σ = LDLT , where L is a lower triangular matrix whose diagonals

are all 1 and D is diagonal. To compute the relevant quantities, their Example 5.4.3 shows that if one writes

D = diag(g1, ..., gn) and

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

κ2 1 0
. . .

...

0 κ3 1
. . . 0

...
. . .

. . .
. . . 0

0 · · · 0 κn 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (8.4)

then the g0ks and κ0ks follow the recursion equation g1 = σ2∆1 + 2a2 and for i = 2, ..., N :

κi = −a2/gi−1 and gi = σ2∆i + 2a
2 + κia

2. (8.5)

Then, define Ỹ = L−1Y so that Y 0Σ−1Y = Ỹ 0D−1Ỹ . From Y = LỸ , it follows that Ỹ1 = Y1 and, for

i = 2, ..., N :

Ỹi = Yi − κiỸi−1.

And det(Σ) = det(D) since det(L) = 1. Thus we have obtained a computationally simple form for (8.3) that

generalizes the MA(1) form (5.5) to the case of non-identical sampling intervals:

l(σ2, a2) = −1
2

NX
i=1

ln (2πgi)− 1
2

NX
i=1

Ỹ 2i
gi

. (8.6)

We can now turn to statistical inference using this likelihood function. As usual, the asymptotic variance

of T 1/2(σ̂2 − σ2, â2 − a2) is of the form

AVAR(σ̂2, â2) = lim
T −> ∞

⎛⎝ 1
TE

h
−l̈σ2σ2

i
1
TE

h
−l̈σ2a2

i
• 1

TE
h
−l̈a2a2

i
⎞⎠−1 . (8.7)
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To compute this quantity, suppose in the following that β1 and β2 can represent either σ2 or a2. We start

with:

Lemma 2 Fisher’s Conditional Information is given by

E
h
− l̈β2β1

¯̄̄
∆
i
= −1

2

∂2 ln detΣ

∂β2β1
. (8.8)

To compute the asymptotic distribution of the MLE of (β1, β2), one would then need to compute the

inverse of E
h
−l̈β2β1

i
= E∆

h
E
h
− l̈β2β1

¯̄̄
∆
ii
where E∆ denotes expectation taken over the law of the sam-

pling intervals. From (8.8), and since the order of E∆ and ∂2/∂β2β1 can be interchanged, this requires the

computation of

E∆ [ln detΣ] = E∆ [ln detD] =
NX
i=1

E∆ [ln (gi)]

where from (8.5) the g0is are given by the continuous fraction

g1 = σ2∆1 + 2a
2, g2 = σ2∆2 + 2a

2 − a4

σ2∆1 + 2a2
, g3 = σ2∆3 + 2a

2 − a4

σ2∆2 + 2a2 − a4

σ2∆1+2a2

and in general

gi = σ2∆i + 2a
2 − a4

σ2∆i−1 + 2a2 − a4

. . .

It therefore appears that computing the expected value of ln (gi) over the law of (∆1,∆2, ...,∆i) will be

impractical.

8.1 Expansion around a fixed value of ∆

To continue further with the calculations, we propose to expand around a fixed value of ∆, namely ∆0 =

E [∆] . Specifically, suppose now that

∆i = ∆0 (1 + �ξi) (8.9)

where � and ∆0 are nonrandom, the ξ0is are i.i.d. random variables with mean zero and finite distribution. We

will Taylor-expand the expressions above around � = 0, i.e., around the non-random sampling case we have just

finished dealing with. Our expansion is one that is valid when the randomness of the sampling intervals remains

small, i.e., when V ar [∆i] is small, or o(1). Then we have∆0 = E [∆] = O (1) and V ar [∆i] = ∆
2
0�
2V ar [ξi]. The

natural scaling is to make the distribution of ξi finite, i.e., V ar [ξi] = O (1), so that �2 = O (V ar [∆i]) = o (1).

But any other choice would have no impact on the result since V ar [∆i] = o (1) implies that the product

�2V ar [ξi] is o (1) and whenever we write reminder terms below they can be expressed as Op

¡
�3ξ3

¢
instead of

just O
¡
�3
¢
. We keep the latter notation for clarity given that we set ξi = Op (1). Furthermore, for simplicity,

we take the ξ0is to be bounded.
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We emphasize that the time increments or durations ∆i do not tend to zero length as �→ 0. It is only the

variability of the ∆i’s that goes to zero.

Denote by Σ0 the value of Σ when ∆ is replaced by ∆0, and let Ξ denote the matrix whose diagonal

elements are the terms ∆0ξi, and whose off-diagonal elements are zero. We obtain:

Theorem 3 The MLE (σ̂2, â2) is again consistent, this time with asymptotic variance

AVAR(σ̂2, â2) = A(0) + �2A(2) +O(�3) (8.10)

where

A(0) =

⎛⎝ 4
p
σ6∆0 (4a2 + σ2∆0) + 2σ

4∆0 −σ2∆0h(∆0, σ2, a2)
• ∆0

2

¡
2a2 + σ2∆0

¢
h(∆0, σ

2, a2)

⎞⎠
and

A(2) =
Var[ξ]

(4a2 +∆0σ2)

⎛⎝ A
(2)
σ2σ2 A

(2)
σ2a2

• A
(2)
a2a2

⎞⎠
with

A
(2)
σ2σ2 = −4

³
∆20σ

6 +∆
3/2
0 σ5

p
4a2 +∆0σ2

´
A
(2)
σ2a2 = ∆

3/2
0 σ3

p
4a2 +∆0σ2

¡
2a2 + 3∆0σ

2
¢
+∆20σ

4
¡
8a2 + 3∆0σ

2
¢

A
(2)
a2a2 = −∆20σ2

³
2a2 + σ

p
∆0
p
4a2 +∆0σ2 +∆0σ

2
´2

In connection with the preceding result, we underline that the quantity AVAR(σ̂2, â2) is a limit as T →∞,
as in (8.7). The equation (8.10), therefore, is an expansion in � after T →∞.
Note thatA(0) is the asymptotic variance matrix already present in Proposition 1, except that it is evaluated

at ∆0 = E[∆]. Note also that the second order correction term is proportional to Var[ξ], and is therefore zero

in the absence of sampling randomness. When that happens, ∆ = ∆0 with probability one and the asymptotic

variance of the estimator reduces to the leading term A(0), i.e., to the result in the fixed sampling case given

in Proposition 1.

8.2 Randomly Spaced Sampling Intervals and Misspecified Microstructure Noise

Suppose now, as in Section 6, that the U 0s are i.i.d., have mean zero and variance a2, but are otherwise

not necessarily Gaussian. We adopt the same approach as in Section 6, namely to express the estimator’s

properties in terms of deviations from the deterministic and Gaussian case. The additional correction terms

in the asymptotic variance are given in the following result.

21



Theorem 4 The asymptotic variance is given by

AVARtrue(σ̂
2, â2) =

³
A(0) +Cum4 [U ]B

(0)
´
+ �2

³
A(2) +Cum4 [U ]B

(2)
´
+O(�3) (8.11)

where A(0) and A(2) are given in the statement of Theorem 3 and

B(0) =

⎛⎝ 0 0

0 ∆0

⎞⎠
while

B(2) = Var[ξ]

⎛⎝ B
(2)
σ2σ2 B

(2)
σ2a2

• B
(2)
a2a2

⎞⎠
B
(2)
σ2σ2 =

10∆
3/2
0 σ5

(4a2 +∆0σ2)
5/2

+
4∆20σ

6
¡
16a4 + 11a2∆0σ

2 + 2∆20σ
4
¢

(2a2 +∆0σ2)
3
(4a2 +∆0σ2)

2

B
(2)
σ2a2 =

−∆20σ4
(2a2 +∆0σ2)

3(4a2 +∆0σ2)
5/2

³p
4a2 +∆0σ2

¡
32a6 + 64a4∆0σ

2 + 35a2∆20σ
4 + 6∆30σ

6
¢

+∆
1/2
0 σ

¡
116a6 + 126a4∆0σ

2 + 47a2∆20σ
4 + 6∆30σ

6
¢´

B
(2)
a2a2 =

16a8∆
5/2
0 σ3

¡
13a4 + 10a2∆0σ2 + 2∆20σ

4
¢

(2a2 +∆0σ2)
3(4a2 +∆0σ2)

5/2
³
2a2 + σ2∆−pσ2∆ (4a2 + σ2∆)

´2 .
The term A(0) is the base asymptotic variance of the estimator, already present with fixed sampling and

Gaussian noise. The term Cum4 [U ]B(0) is the correction due to the misspecification of the error distribution.

These two terms are identical to those present in Theorem 2. The terms proportional to �2 are the further

correction terms introduced by the randomness of the sampling. A(2) is the base correction term present even

with Gaussian noise in Theorem 3, and Cum4 [U ]B(2) is the further correction due to the sampling randomness.

Both A(2) and B(2) are proportional to Var[ξ] and hence vanish in the absence of sampling randomness.

9. Extensions

In this section, we briefly sketch four extensions of our basic model. First, we show that the introduction of

a drift term does not alter our conclusions. Then we examine the situation where market microstructure noise

is serially correlated; there, we show that the insight of Theorem 1 remains valid, namely that the optimal

sampling frequency is finite. Third then turn to the case where the noise is correlated with the efficient price

signal. Fourth, we discuss what happens if volatility is stochastic.

In a nutshell, each one of these assumptions can be relaxed without affecting our main conclusion, namely

that the presence of the noise gives rise to a finite optimal sampling frequency. The second part of our analysis,

dealing with likelihood corrections for microstructure noise, will not necessarily carry through unchanged if the

assumptions are relaxed (for instance, there is not even a known likelihood function if volatility is stochastic,

and the likelihood must be modified if the assumed variance-covariance structure of the noise is modified).

22



9.1 Presence of a Drift Coefficient

What happens to our conclusions when the underlying X process has a drift? We shall see in this case

that the presence of the drift does not alter our earlier conclusions. As a simple example, consider linear drift,

i.e., replace (1.2) with

Xt = µt+ σWt. (9.1)

The contamination by market microstructure noise is as before: the observed process is given by (1.3).

As before, we first-difference to get the log-returns Yi = X̃τi − X̃τi−1 +Uτi −Uτi−1 . The likelihood function
is now

lnL (YN , ..., Y1|∆N , ...,∆1;β) ≡ l(σ2, a2, µ)

= − ln det(Σ)/2−N ln(2π)/2− (Y − µ∆)0Σ−1(Y − µ∆)/2,

where the covariance matrix is given in (8.2), and where ∆ = (∆1, ...,∆N)0. If β denotes either σ2 or a2, one

obtains

l̈µβ = ∆
0 ∂Σ

−1

∂β
(Y − µ∆),

so that E[l̈µβ|∆] = 0 no matter whether the U 0s are normally distributed or have another distribution with
mean 0 and variance a2. In particular,

E[l̈µβ] = 0. (9.2)

Now let E[l̈] be the 3× 3 matrix of expected second likelihood derivatives. Let E[l̈] = −TE[∆]D + o(T ).

Similarly define Cov(l̇, l̇) = TE[∆]S + o(T ). As before, when the U 0s have a normal distribution, S = D,

and otherwise that is not the case. The asymptotic variance matrix of the estimators is of the form AVAR =

E[∆]D−1SD−1.

Let Dσ2,a2 be the corresponding 2×2 matrix when estimation is carried out on σ2 and a2 for known µ, and
Dµ is the asymptotic information on µ for known σ2 and a2. Similarly define Sσ2,a2 and AVARσ2,a2 . Since D

is block diagonal by (9.2),

D =

⎛⎝ Dσ2,a2 0

00 Dµ

⎞⎠ ,

it follows that

D−1 =

⎛⎝ D−1σ2,a2 0

00 D−1µ

⎞⎠ .

Hence

AVAR(σ̂2, â2) = E[∆]D−1σ2,a2Sσ2,a2D
−1
σ2,a2 . (9.3)

The asymptotic variance of (σ̂2, â2) is thus the same as if µ were known, in other words, as if µ = 0, which is

the case that we focused on in all the previous sections.
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9.2 Serially Correlated Noise

We now examine what happens if we relax the assumption that the market microstructure noise is serially

independent. Suppose that, instead of being i.i.d. with mean 0 and variance a2, the market microstructure

noise follows

dUt = −bUtdt+ cdZt (9.4)

where b > 0, c > 0 and Z is a Brownian motion independent of W. U∆|U0 has a Gaussian distribution with
mean e−b∆U0 and variance c2

2b

¡
1− e−2b∆

¢
. The unconditional mean and variance of U are 0 and a2 = c2

2b . The

main consequence of this model is that the variance contributed by the noise to a log-return observed over an

interval of time ∆ is now of order O(∆), that is of the same order as the variance of the efficient price process

σ2∆, instead of being of order O(1) as previously. In other words, log-prices observed close together have very

highly correlated noise terms. Because of this feature, this model for the microstructure noise would be less

appropriate if the primary source of the noise consists of bid-ask bounces. In such a situation, the fact that a

transaction is on the bid or ask side has little predictive power for the next transaction, or at least not enough

to predict that two successive transactions are on the same side with very high probability (although Choi,

Salandro, and Shastri (1988) have argued that serial correlation in the transaction type can be a component

of the bid-ask spread, and extended the model of Roll (1984) to allow for it). On the other hand, the model

(9.4) can better capture effects such as the gradual adjustment of prices in response to a shock such as a large

trade. In practice, the noise term probably encompasses both of these examples, resulting in a situation where

the variance contributed by the noise has both types of components, some of order O(1), some of lower orders

in ∆.

The observed log-returns take the form

Yi = X̃τi − X̃τi−1 + Uτi − Uτi−1

= σ
¡
Wτi −Wτi−1

¢
+ Uτi − Uτi−1

≡ wi + ui

where the w0is are i.i.d. N(0, σ
2∆), the u0is are independent of the w

0
is, so we have Var [Yi] = σ2∆ + E

£
u2i
¤
,

and they are Gaussian with mean zero and variance

E
£
u2i
¤
= E

h¡
Uτi − Uτi−1

¢2i
=

c2
¡
1− e−b∆

¢
b

= c2∆+ o(∆) (9.5)

instead of 2a2.

In addition, the u0is are now serially correlated at all lags since

E [UτiUτk ] =
c2
¡
1− e−b∆(i−k)

¢
2b

for i ≥ k. The first order correlation of the log-returns is now

Cov (Yi, Yi−1) = −
c2
¡
1− e−b∆

¢2
2b

= −c
2b

2
∆2 + o

¡
∆2
¢
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instead of η.

The result analogous to Theorem 1 is as follows. If one ignores the presence of this type of serially correlated

noise when estimating σ2, then:

Theorem 5 In small samples (finite T ), the RMSE of the estimator σ̂2 is given by

RMSE
£
σ̂2
¤
=

Ã
c4
¡
1− e−b∆

¢2
b2∆2

+
c4
¡
1− e−b∆

¢2 ¡ T
∆e
−2b∆ − 1 + e−2Tb

¢
T 2b2 (1 + e−b∆)2

+
2

T∆

Ã
σ2∆+

c2
¡
1− e−b∆

¢
b

!2⎞⎠1/2

(9.6)

= c2 − bc2

2
∆+

¡
σ2 + c2

¢2
∆

c2T
+O(∆2) +O

µ
1

T 2

¶
so that for large T, starting from a value of c2 in the limit where ∆→ 0, increasing ∆ first reduces RMSE

£
σ̂2
¤
.

Hence the optimal sampling frequency is finite.

One would expect this type of noise to be not nearly as bad as i.i.d. noise for the purpose of inferring

σ2 from high frequency data. Indeed, the variance of the noise is of the same order O(∆) as the variance of

the efficient price process. Thus log returns computed from transaction prices sampled close together are not

subject to as much noise as previously (O(∆) vs. O(1)) and the squared bias β2 of the estimator σ̂2 no longer

diverges to infinity as ∆→ 0 : it has the finite limit c4. Nevertheless, β2 first decreases as ∆ increases from 0,

since

β2 =
¡
E
£
σ̂2
¤− σ2

¢2
=

c4
¡
1− eb∆

¢2
b2∆2e2b∆

and ∂b2/∂∆→−bc4 < 0 as ∆→ 0. For large enough T, this is sufficient to generate a finite optimal sampling

frequency.

To calibrate the parameter values b and c, we refer to the same empirical microstructure studies we

mentioned in Section 4. We now have π = E
£
u2i
¤
/(σ2∆+E

£
u2i
¤
) as the proportion of total variance that is

microstructure-induced; we match it to the numbers in (4.1) fromMadhavan, Richardson, and Roomans (1997).

In their Table 5, they report the first order correlation of price changes (hence returns) to be approximately

ρ = −0.2 at their frequency of observation. Here ρ = Cov (Yi, Yi−1) /Var [Yi] . If we match π = 0.6 and

ρ = −0.2, with σ = 30% as before, we obtain (after rounding) c = 0.5 and b = 3× 104. Figure 6 displays the
resulting RMSE of the estimator as a function of ∆ and T . The overall picture is comparable to Figure 2.

As for the rest of the analysis of the paper, dealing with likelihood corrections for microstructure noise, the

covariance matrix of the log-returns, γ2V in (5.2), should be replaced by the matrix whose diagonal elements

are

Var
£
Y 2
i

¤
= E

£
w2i
¤
+E

£
u2i
¤
= σ2∆+

c2
¡
1− e−b∆

¢
b
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and off-diagonal elements i > j are:

Cov (Yi, Yj) = E [YiYj ] = E [(wi + ui) (wj + uj)]

= E [uiuj ] = E
£¡
Uτi − Uτi−1

¢ ¡
Uτj − Uτj−1

¢¤
= E

£
UτiUτj

¤−E
£
UτiUτj−1

¤−E
£
Uτi−1Uτj

¤
+E

£
Uτi−1Uτj−1

¤
= −c

2
¡
1− e−b∆

¢2
e−b∆(i−j−1)

2b

Having modified the matrix γ2V, the artificial “normal” distribution that assumes i.i.d. U 0s that areN(0, α2) would

no longer use the correct second moment structure of the data. Thus we cannot relate a priori the asymptotic

variance of the estimator of the estimator σ̂2 to that of the i.i.d. Normal case, as we did in Theorem 2.

9.3 Noise Correlated with the Price Process

We have assumed so far that the U process was uncorrelated with the W process. Microstructure noise

attributable to informational effects is likely to be correlated with the efficient price process, since it is generated

by the response of market participants to information signals (i.e., to the efficient price process). This would

be the case for instance in the bid-ask model with adverse selection of Glosten (1987). When the U process

is no longer uncorrelated from the W process, the form of the variance matrix of the observed log-returns Y

must be altered, replacing γ2vij in (5.2) with

Cov(Yi, Yj) = Cov(σ
¡
Wτi −Wτi−1

¢
+ Uτi − Uτi−1 , σ

¡
Wτj −Wτj−1

¢
+ Uτj − Uτj−1)

= σ2∆δij +Cov(σ
¡
Wτi −Wτi−1

¢
, Uτj − Uτj−1)

+ Cov(σ
¡
Wτj −Wτj−1

¢
, Uτi − Uτi−1) + Cov(Uτi − Uτi−1 , Uτj − Uτj−1)

where δij is the Kronecker symbol.

The small sample properties of the misspecified MLE for σ2 analogous to those computed in the independent

case, including its RMSE, can be obtained from

E
£
σ̂2
¤
=
1

T

NX
i=1

E
£
Y 2
i

¤
Var

£
σ̂2
¤
=
1

T 2

NX
i=1

Var
£
Y 2i
¤
+
2

T 2

NX
i=1

i−1X
j=1

Cov
¡
Y 2
i , Y

2
j

¢
.

Specific expressions for all these quantities depend upon the assumptions of the particular structural model

under consideration: for instance, in the Glosten (1987) model (see his Proposition 6), the U 0s remain station-

ary, the transaction noise Uτi is uncorrelated with the return noise during the previous observation period, i.e.,

Uτi−1 − Uτi−2 , and the efficient return σ
¡
Wτi −Wτi−1

¢
is also uncorrelated with the transaction noises Uτi+1

and Uτi−2 . With these in hand, the analysis of the RMSE and its minimum can then proceed as above. As

for the likelihood corrections for microstructure noise, the same caveat as in serially correlated U case applies:
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having modified the matrix γ2V, the artificial “normal” distribution would no longer use the correct second

moment structure of the data and the likelihood must be modified accordingly.

9.4 Stochastic Volatility

One important departure from our basic model is the case where volatility is stochastic. The observed

log-returns are still generated by equation (1.3). Now, however, the constant volatility assumption (1.2) is

replaced by

dXt = σtdWt. (9.7)

The object of interest in much of the literature on high frequency volatility estimation (see e.g., Barndorff-

Nielsen and Shephard (2002) and Andersen, Bollerslev, Diebold, and Labys (2003)) is then the integralZ T

0

σ2t dt (9.8)

over a fixed time period [0, T ], or possibly several such time periods. The estimation is based on observations

0 = t0 < t1 < ... < tn = T , and asymptotic results are obtained when max∆ti → 0. The usual estimator for

(9.8) is the “realized variance”
nX
i=1

(X̃ti+1 − X̃ti)
2. (9.9)

In the context of stochastic volatility, ignoring market microstructure noise leads to an even more dangerous

situation than when σ is constant and T →∞. We show in the companion paper Zhang, Mykland, and Aït-
Sahalia (2003) that, after suitable scaling, the realized variance is a consistent and asymptotically normal

estimator — but of the quantity 2a2. This quantity has, in general, nothing to do with the object of interest

(9.8). Said differently, market microstructure noise totally swamps the variance of the price signal at the level

of the realized variance. To obtain a finite optimal sampling interval, one needs that a2 → 0 as n→∞, that

is the amount of noise must disappear asymptotically. For further developments on this topic, we refer to

Zhang, Mykland, and Aït-Sahalia (2003).

10. Conclusions

We showed that the presence of market microstructure noise makes it optimal to sample less often than

would otherwise be the case in the absence of noise, and we determined accordingly the optimal sampling

frequency in closed-form.

We then addressed the issue of what to do about it, and showed that modelling the noise term explicitly

restores the first order statistical effect that sampling as often as possible is optimal. We also demonstrated

that this remains the case if one misspecifies the assumed distribution of the noise term. If the econometrician

assumes that the noise terms are normally distributed when in fact they are not, not only is it still optimal

to sample as often as possible, but the estimator has the same asymptotic variance as if the noise distribution

27



had been correctly specified. This robustness result is, we think, a major argument in favor of incorporating

the presence of the noise when estimating continuous time models with high frequency financial data, even

if one is unsure about what is the true distribution of the noise term. Hence, the answer to the question we

pose in our title is “as often as possible”, provided one accounts for the presence of the noise when designing

the estimator.
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Appendix A: Proof of Lemma 1

To calculate the fourth cumulant Cum(Yi, Yj, Yk, Yl), recall from (3.1) that the observed log-returns are

Yi = σ
�
Wτi −Wτi−1

�
+ Uτi − Uτi−1 .

First, note that the τi are nonrandom, and W is independent of the U 0s, and has Gaussian increments. Second, the

cumulants are multilinear, so

Cum(Yi, Yj, Yk, Yl) = Cum
�
σ
�
Wτi −Wτi−1

�
+ Uτi − Uτi−1 , σ

�
Wτj −Wτj−1

�
+ Uτj − Uτj−1 ,

σ
�
Wτk −Wτk−1

�
+ Uτk − Uτk−1 , σ

�
Wτl −Wτl−1

�
+ Uτl − Uτl−1

�
= σ4Cum(Wτi −Wτi−1 ,Wτj −Wτj−1 ,Wτk −Wτk−1 ,Wτl −Wτl−1)

+ σ3 Cum(Wτi −Wτi−1 ,Wτj −Wτj−1 ,Wτk −Wτk−1 , Uτl − Uτl−1)[4]

+ σ2 Cum(Wτi −Wτi−1 ,Wτj −Wτj−1 , Uτk − Uτk−1 , Uτl − Uτl−1)[6]

+ σCum(Wτi −Wτi−1 , Uτj − Uτj−1 , Uτk − Uτk−1 , Uτl − Uτl−1)[4]

+ Cum(Uτi − Uτi−1 , Uτj − Uτj−1 , Uτk − Uτk−1 , Uτl − Uτl−1)

Out of these terms, only the last is nonzero because W has Gaussian increments (so all cumulants of its increments of

order greater than two are zero), and is independent of the U 0s (so all cumulants involving increments of both W and

U are also zero.) Therefore,

Cum(Yi, Yj , Yk, Yl) = Cum(Uτi − Uτi−1 , Uτj − Uτj−1 , Uτk − Uτk−1 , Uτl − Uτl−1).

If i = j = k = l, we have:

Cum(Uτi − Uτi−1 , Uτi − Uτi−1 , Uτi − Uτi−1 , Uτi − Uτi−1) = Cum4(Uτi − Uτi−1)

= Cum4(Uτi) + Cum4(−Uτi−1)
= 2 Cum4 [U ]

with the second equality following from the independence of Uτi and Uτi−1 , and the third from the fact that the

cumulant is of even order.

If max(i, j, k, l) = min(i, j, k, l) + 1, two situations arise. Set m = min(i, j, k, l) and M = max(i, j, k, l). Also set

s = s(i, j, k, l) = #{i, j, k, l = m}. If s is odd, say s = 1 with i = m, and j, k, l =M = m+1, we get a term of the form

Cum(Uτm − Uτm−1 , Uτm+1 − Uτm , Uτm+1 − Uτm , Uτm+1 − Uτm) = −Cum4(Uτm).

By permutation, the same situation arises if s = 3. If instead s is even, i.e., s = 2, then we have terms of the form

Cum(Uτm − Uτm−1 , Uτm − Uτm−1 , Uτm+1 − Uτm , Uτm+1 − Uτm) = Cum4(Uτm).

Finally, if at least one pair of indices in the quadruple (i, j, k, l) is more than one integer apart, then

Cum(Uτi − Uτi−1 , Uτj − Uτj−1 , Uτk − Uτk−1 , Uτl − Uτl−1) = 0

by independence of the U 0s.

Appendix B: Proof of Theorem 1

Given The estimator (2.2) has the following expected value

E
�
σ̂2
�
=
1

T

N[
i=1

E
�
Y 2
i

�
=

N
�
σ2∆+ 2a2

�
T

= σ2 +
2a2

∆
.

29



The estimator’s variance is

Var
�
σ̂2
�
=

1

T 2
Var

%
N[
i=1

Y 2
i

&
=

1

T 2

N[
i,j=1

Cov
�
Y 2
i , Y

2
j

�
.

Applying Lemma 1 in the special case where the first two indices and the last two respectively are identical yields

Cum(Yi, Yi, Yj , Yj) =

⎧⎪⎨⎪⎩
2 Cum4 [U ] if j = i

Cum4 [U ] if j = i+ 1 or j = i− 1
0 otherwise

(B.1)

In the middle case, i.e., whenever j = i+ 1 or j = i− 1, the number s of indices that are equal to the minimum index

is always 2. Combining (B.1) with (3.7), we have

Var
�
σ̂2
�
=

1

T 2

N[
i=1

Cov
�
Y 2
i , Y

2
i

�
+

1

T 2

N−1[
i=1

Cov
�
Y 2
i , Y

2
i+1

�
+

1

T 2

N[
i=2

Cov
�
Y 2
i , Y

2
i−1
�

=
1

T 2

N[
i=1

�
2Cov (Yi, Yi)

2 + 2 Cum4 [U ]
�

+
1

T 2

N−1[
i=1

�
2Cov (Yi, Yi+1)

2 +Cum4 [U ]
�

+
1

T 2

N[
i=2

�
2Cov (Yi, Yi−1)

2 +Cum4 [U ]
�

=
2N

T 2
�
Var[Yi]

2 +Cum4 [U ]
�
+
2 (N − 1)

T 2
�
2Cov (Yi, Yi−1)

2 +Cum4 [U ]
�

with Var[Yi] and Cov (Yi, Yi−1) = Cov (Yi, Yi+1) given in (3.2)-(3.3), so that

Var
�
σ̂2
�
=
2N

T 2

q�
σ2∆+ 2a2

�2
+Cum4 [U ]

r
+
2 (N − 1)

T 2
�
2a4 +Cum4 [U ]

�
=
2
�
σ4∆2 + 4σ2∆a2 + 6a4 + 2Cum4 [U ]

�
T∆

− 2
�
2a4 +Cum4 [U ]

�
T 2

since N = T/∆. The expression for the RMSE follows from those for the expected value and variance given in (3.10)

and (3.11):

RMSE
�
σ̂2
�
=

#
4a4

∆2
+
2
�
σ4∆2 + 4σ2∆a2 + 6a4 + 2Cum4 [U ]

�
T∆

− 2
�
2a4 +Cum4 [U ]

�
T 2

$1/2
. (B.2)

The optimal value ∆∗ of the sampling interval given in (3.12) is obtained by minimizing RMSE
�
σ̂2
�
over ∆. The

first order condition that arises from setting ∂ RMSE
�
σ̂2
�
/∂∆ to 0 is the cubic equation in ∆ :

∆3 − 2
�
3a4 +Cum4 [U ]

�
σ4

∆− 4a4T

σ4
= 0 (B.3)

We now show that (B.3) has a unique positive root, and that it corresponds to a minimum of RMSE
�
σ̂2
�
. We are

therefore looking for a real positive root in ∆ = z to the cubic equation

z3 + pz − q = 0 (B.4)

where q > 0 and p < 0 since from (3.9):

3a4 +Cum4 [U ] = 3a
4 + E

�
U4�− 3E �U2�2 = E

�
U4� > 0.

Using Vièta’s change of variable from z to w given by z = w −p/(3w) reduces, after multiplication by w3, the cubic to
the quadratic equation

y2 − qy − p3

27
= 0 (B.5)
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in the variable y ≡ w3.

Define the discriminant

D =
�p
3

�3
+
�q
2

�2
.

The two roots of (B.5) are

y1 =
q

2
+D1/2, y2 =

q

2
−D1/2

are real if D ≥ 0 (and distinct if D > 0) and complex conjugates if D < 0. Then the three roots of (B.4) are

z1 = y
1/3
1 + y

1/3
2

z2 = −1
2

�
y
1/3
1 + y

1/3
2

�
+ i
31/2

2

�
y
1/3
1 − y

1/3
2

�
(B.6)

z3 = −1
2

�
y
1/3
1 + y

1/3
2

�
− i 3

1/2

2

�
y
1/3
1 − y

1/3
2

�
(see e.g., Section 3.8.2 in Abramowitz and Stegun (1972)). If D > 0, the two roots in y are both real and positive

because p < 0 and q > 0 imply

y1 > y2 > 0

and hence of the three roots given in (B.6), z1 is real and positive and z2 and z3 are complex conjugates. If D = 0,

then y1 = y2 = q/2 > 0 and the three roots are real (two of which are identical) and given by

z1 = y
1/3
1 + y

1/3
2 = 22/3q1/3

z2 = z3 = −1
2

�
y
1/3
1 + y

1/3
2

�
= −1

2
z1.

Of these, z1 > 0 and z2 = z3 < 0. If D < 0, the three roots are distinct and real because

y1 =
q

2
+ i(−D)1/2 ≡ reiθ , y2 =

q

2
− i(−D)1/2 ≡ re−iθ

so

y
1/3
1 = r1/3eiθ/3, y

1/3
2 = r1/3e−iθ/3

and therefore

y
1/3
1 + y

1/3
2 = 2r1/3 cos (θ/3) , y

1/3
1 − y

1/3
2 = 2ir1/3 sin (θ/3)

so that

z1 = 2r
1/3 cos (θ/3)

z2 = −r1/3 cos (θ/3) + 31/2r1/3 sin (θ/3)
z3 = −r1/3 cos (θ/3)− 31/2r1/3 sin (θ/3) .

Only z1 is positive because q > 0 and (−D)1/2 > 0 imply that 0 < θ < π/2. Therefore cos (θ/3) > 0, so z1 > 0;

sin(θ/3) > 0, so z3 < 0; and

cos (θ/3) > cos (π/6) =
31/2

2
= 31/2 sin (π/6) > 31/2 sin (θ/3) ,

so z2 < 0.

Thus the equation (B.4) has exactly one root that is positive, and it is given by z1 in (B.6). Since RMSE
�
σ̂2
�
is of

the form

RMSE
�
σ̂2
�
=

#
2T∆3σ4 − 2∆2

�
2a4 − 4a2Tσ2 +Cum4 [U ]

�
+ 2∆

�
6a4T + 2T Cum4 [U ]

�
+ 4a4T 2

T 2∆2

$1/2

=

�
a3∆

3 + a2∆
2 + a1∆+ a0

T 2∆2

�1/2
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with a3 > 0, it tends to +∞ when ∆ tends to +∞ . Therefore that single positive root corresponds to a minimum of

RMSE
�
σ̂2
�
which is reached at

∆∗ = y
1/3
1 + y

1/3
2

=
� q
2
+D1/2

�1/3
+
� q
2
−D1/2

�1/3
Replacing q and p by their values in the expression above yields (3.12). As shown above, if the expression inside the

square root in formula (3.12) is negative, the resulting ∆∗ is still a positive real number.

Appendix C: Proof of Proposition 1

The result follows from an application of the delta method to the known properties of the MLE estimator of an

MA(1) process (Section 5.4 in Hamilton (1995)), as follows. Because we re-use these calculations below in the proof of

Theorem 2 (whose result cannot be inferred from known MA(1) properties), we recall some of the expressions of the

score vector of the MA(1) likelihood. The partial derivatives of the log-likelihood function (5.1) have the form

l̇η = −1
2

∂ ln det(V )

∂η
− 1

2γ2
Y 0 ∂V

−1

∂η
Y, (C.1)

and

l̇γ2 = − N

2γ2
+

1

2γ4
Y 0V −1Y. (C.2)

so that the MLE for γ2 is

γ̂2 =
1

N
Y 0V −1Y. (C.3)

At the true parameters, the expected value of the score vector is zero: E
k
l̇η
l
= E

k
l̇γ2
l
= 0. Hence it follows from

(C.1) that

E

�
Y 0 ∂V

−1

∂η
Y

�
= −γ2 ∂ ln det(V )

∂η
= −γ2

2η
�
1− (1 +N) η2N +Nη2(1+N)

�
(1− η2) (1− η2(1+N))

thus as N →∞
E

�
Y 0 ∂V

−1

∂η
Y

�
= − 2ηγ2

(1− η2)
+ o(1).

Similarly, it follows from (C.2) that

E
�
Y 0V −1Y

�
= Nγ2.

Turning now to Fisher’s information, we have

E
k
−l̈γ2γ2

l
= − N

2γ4
+
1

γ6
E
�
Y 0V −1Y

�
=

N

2γ4
, (C.4)

whence the asymptotic variance of T 1/2(γ̂2 − γ2) is 2γ4∆. We also have that

E
k
−l̈γ2η

l
=

1

2γ4
E

�
Y 0 ∂V

−1

∂η
Y

�
= − η

γ2 (1− η2)
+ o(1), (C.5)

whence the asymptotic covariance of T 1/2(γ̂2 − γ2) and T 1/2(η̂ − η) is zero.

To evaluate E
k
−l̈ηη

l
, we compute

E
k
−l̈ηη

l
=
1

2

∂2 ln det(V )

∂η2
+

1

2γ2
E

�
Y 0 ∂

2V −1

∂η2
Y

�
(C.6)

and evaluate both terms. For the first term in (C.6), we have from (5.3):

∂2 ln det(V )

∂η2
=

1

(1− η2+2N )2

+
2
�
1 + η2 + η2+2N

�
1− 3η2�� �1− η2N

�
(1− η2)2

− 2Nη2N
�
3 + η2+2N

�
− 4N2η2N

r
=
2
�
1 + η2

�
(1− η2)2

+ o(1) (C.7)
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For the second term, we have for any non-random N ×N matrix Q:

E
�
Y 0QY

�
= E

�
Tr
�
Y 0QY

��
= E

�
Tr
�
QY Y 0�� = Tr

�
E
�
QY Y 0��

= Tr
�
QE

�
Y Y 0�� = Tr

�
Qγ2V

�
= γ2Tr [QV ]

where Tr denotes the matrix trace, which satisfies Tr[AB] = Tr[BA]. Therefore

E

�
Y 0 ∂

2V −1

∂η2
Y

�
= γ2Tr

�
∂2V −1

∂η2
V

�
= γ2

#
N[
i=1

N[
j=1

∂2vij

∂η2
vij

$

= γ2
#

N[
i=1

∂2vii

∂η2
�
1 + η2

�
+

N−1[
i=1

∂2vi,i+1

∂η2
η +

N[
i=2

∂2vi,i−1

∂η2
η

$

=
γ2

(1− η2+2N )2

+
−4

�
1 + 2η2 + η2+2N

�
1− 4η2�� �1− η2N

�
(1− η2)2

+
2N

�
1 + η2N

�
6− 6η2 + 2η2+2N − 3η4+2N��

(1− η2)
+ 8N2η2N

,

=
2γ2N

(1− η2)
+ o(N) (C.8)

Combining (C.7) and (C.8) into (C.6), it follows that

E
k
−l̈ηη

l
=
1

2

∂2 ln det(VN )

∂η2
+

1

2γ2
E

�
Y 0 ∂

2V −1N

∂η2
Y

�
∼

N−→∞
N

(1− η2)
+ o(N) (C.9)

In light of that and (C.5), the asymptotic variance of T 1/2(η̂−η) is the same as in the γ2 known case, that is, (1−η2)∆

(which of course confirms the result of Durbin (1959) for this parameter).

We can now retrieve the asymptotic covariance matrix for the original parameters (σ2, a2) from that of the para-

meters (γ2, η). This follows from the delta method applied to the change of variable (3.2)-(3.3):#
σ2

a2

$
= f(γ2, η) =

#
∆−1γ2(1 + η)2

−γ2η

$
. (C.10)

Hence

T 1/2
##

σ̂2

â2

$
−
#

σ2

a2

$$
→

T−→∞
N
�
0,AVAR(σ̂2, â2)

�
where

AVAR(σ̂2, â2) = ∇f(γ2, η).AVAR(γ̂2, η̂).∇f(γ2, η)0

=

#
(1+η)2

∆
2γ2(1+η)

∆

−η −γ2
$#

2γ4∆ 0

0 (1− η2)∆

$#
(1+η)2

∆ −η
2γ2(1+η)

∆
−γ2

$

=

#
4
s
σ6∆ (4a2 + σ2∆) + 2σ4∆ −σ2∆h(∆, σ2, a2)

• ∆
2

�
2a2 + σ2∆

�
h(∆, σ2, a2)

$
.
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Appendix D: Proof of Theorem 2

We have that

Etrue
k
l̇η l̇γ2

l
= Covtrue(l̇η, l̇γ2)

= Covtrue

⎛⎝− 1

2γ2

N[
i,j=1

YiYj
∂vij

∂η
,
1

2γ4

N[
k,l=1

YkYlv
kl

⎞⎠
= − 1

4γ6

N[
i,j,k,l=1

∂vij

∂η
vkl Covtrue(YiYj , YkYl) (D.1)

= − 1

4γ6

N[
i,j,k,l=1

∂vij

∂η
vkl[Cumtrue(Yi, Yj, Yk, Yl) + 2Covtrue(Yi, Yj) Covtrue(Yk, Yl)].

where “true” denotes the true distribution of the Y 0s, not the incorrectly specified normal distribution, and Cum

denotes the cumulants given in Lemma 1. The last transition is because

Covtrue (YiYj , YkYl) = Etrue [YiYjYkYl]− Etrue [YiYj]Etrue [YkYl]

= κijkl − κijκkl

= κi,j,k,l + κi,jκk,l[3]− κi,jκk,l

= κi,j,k,l + κi,kκj,l + κi,lκj,k

= Cumtrue (Yi, Yj , Yk, Yl) + Covtrue(Yi, Yk) Covtrue (Yj , Yk)

+ Covtrue(Yi, Yl) Covtrue(Yj , Yk)

since Y has mean zero (see e.g., Section 2.3 of McCullagh (1987)). The need for permutation goes away due to the

summing over all indices (i, j, k, l), and since V −1 = [vij ] is symmetric.

When looking at (D.1), note that Cumnormal(Yi, Yj , Yk, Yl) = 0, where “normal” denotes a Normal distribution with

the same first and second order moments as the true distribution. That is, if the Y 0s were normal we would have

Enormal
k
l̇η l̇γ2

l
= − 1

4γ6

N[
i,j,k,l=1

∂vij

∂η
vkl[2Covnormal(Yi, Yj)Covnormal(Yk, Yl)].

Also, since the covariance structure does not depend on Gaussianity, Covtrue(Yi, Yj) = Covnormal(Yi, Yj). Next, we

have

Enormal
k
l̇η l̇γ2

l
= −Enormal

k
l̈ηγ2

l
= −Etrue

k
l̈ηγ2

l
(D.2)

with the last equality following from the fact that l̈ηγ2 depends only on the second moments of the Y
0s. (Note that in

general Etrue
k
l̇η l̇γ2

l
6= −Etrue

k
l̈ηγ2

l
because the likelihood may be misspecified.) Thus, it follows from (D.1) that

Etrue
k
l̇η l̇γ2

l
= Enormal

k
l̇η l̇γ2

l
− 1

4γ6

N[
i,j,k,l=1

∂vij

∂η
vkl Cumtrue(Yi, Yj, Yk, Yl)

= −Etrue
k
l̈ηγ2

l
− 1

4γ6

N[
i,j,k,l=1

∂vij

∂η
vkl Cumtrue(Yi, Yj , Yk, Yl) (D.3)

It follows similarly that

Etrue

��
l̇η
�2�

= Vartrue (l̇η)

= −Etrue
k
l̈ηη
l
+

1

4γ4

N[
i,j,k,l=1

∂vij

∂η

∂vkl

∂η
Cumtrue(Yi, Yj, Yk, Yl) (D.4)
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and

Etrue

��
l̇γ2
�2�

= Vartrue (l̇γ2)

= −Etrue
k
l̈γ2γ2

l
+

1

4γ8

N[
i,j,k,l=1

vijvkl Cumtrue(Yi, Yj, Yk, Yl). (D.5)

We now need to evaluate the sums that appear on the right hand sides of (D.3), (D.4) and (D.5). Consider two

generic symmetric N ×N matrices
�
νi,j

�
and

�
ωi,j

�
. We are interested in expressions of the form

[
i,j,k,l:M=m+1

(−1)sνi,jωk,l =
N−1[
h=1

[
i,j,k,l:m=h,M=h+1

(−1)sνi,jωk,l (D.6)

=
N−1[
h=1

3[
r=1

[
i,j,k,l:m=h,M=h+1,s=r

(−1)rνi,jωk,l

=

N−1[
h=1

q
−2νh,h+1ωh+1,h+1 − 2νh+1,h+1ωh,h+1

+ νh,hωh+1,h+1 + νh+1,h+1ωh,h + 4νh,h+1ωh,h+1

−2νh+1,hωh,h − 2νh,hωh+1,h
r

It follows that if we set

Υ(ν, ω) =
N[

i,j,k,l=1

νi,jωk,l Cumtrue(Yi, Yj, Yk, Yl) (D.7)

then Υ(ν, ω) = Cum4 [U ] Ψ(ν, ω) where

ψ(ν, ω) = 2

N[
h=1

νh,hωh,h +

N−1[
h=1

q
−2νh,h+1ωh+1,h+1 − 2νh+1,h+1ωh,h+1

+ νh,hωh+1,h+1 + νh+1,h+1ωh,h + 4νh,h+1ωh,h+1 (D.8)

−2νh+1,hωh,h − 2νh,hωh+1,h
r

If the two matrices
�
νi,j

�
and

�
ωi,j

�
satisfy the following reversibility property: νN+1−i,N+1−j = νi,j and ωN+1−i,N+1−j =

ωi,j (so long as one is within the index set), then (D.8) simplifies to:

ψ(ν, ω) = 2
N[
h=1

νh,hωh,h +
N−1[
h=1

q
−4νh,h+1ωh+1,h+1 − 4νh+1,h+1ωh,h+1

+2νh,hωh+1,h+1 + 4νh,h+1ωh,h+1
r

This is the case for V −1 and its derivative ∂V −1/∂η, as can be seen from the expression for vi,j given in (5.4), and

consequently for ∂vi,j/∂η.

If we wish to compute the sums in equations (D.3), (D.4), and (D.5), therefore, we need, respectively, to find the

three quantities ψ(∂v/∂η, v), ψ(∂v/∂η, ∂v/∂η), and ψ(v, v) respectively. All are of order O(N), and only the first term

is needed. Replacing the terms vi,j and ∂vi,j/∂η by their expressions from (5.4), we obtain:

ψ(v, v) =
2

(1 + η2) (1− η)3(1− η2(1+N))
2

q
− (1 + η)

�
1− η2N

��
1 + 2η2 + 2η2(1+N) + η2(2+N)

�
+ N(1− η)

�
1 + η2

� �
2 + η2N + η2(1+N) + 6η1+2N + 2η2+4N

�r
=

4N

(1− η)2
+ o(N) (D.9)
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ψ

�
∂v

∂η
, v

�
=
2
�
O(1) + 2N(1− η)

�
1 + η2

�
η
�
1 + η2 +O(η2N )

�
+N2O(η2N)

�
η(1− η)4(1 + η2)2(1− η2(1+N))

3

=
4N

(1− η)3
+ o(N) (D.10)

ψ

�
∂v

∂η
,
∂v

∂η

�
=
4
�
O(1) + 3N

�
1− η4

�
η2
��
1 + η2

�2
+O(η2N)

�
+N2O(η2N) +N3O(η2N )

�
3η2 (1 + η) (1 + η2)3(1− η)5(1− η2(1+N))

4

=
4N

(1− η)4
+ o(N) (D.11)

The asymptotic variance of the estimator (γ̂2, η̂) obtained by maximizing the (incorrectly-specified) log-likelihood

(5.1) that assumes Gaussianity of the U 0s is given by

AVARtrue (γ̂
2, η̂) = ∆

�
D0S−1D

�−1
where, from (C.4), (C.5) and (C.9) we have

D = D0 = − 1
N
Etrue

k
l̈
l
= − 1

N
Enormal

k
l̈
l
=
1

N
Enormal

k
l̇l̇0
l

=

⎛⎝ 1
2γ4

− η

Nγ2(1−η2) + o
�
1
N

�
• 1

(1−η2) + o(1)

⎞⎠ (D.12)

and, in light of (D.3), (D.4), and (D.5),

S =
1

N
Etrue

k
l̇l̇0
l
= − 1

N
Etrue

k
l̈
l
+Cum4 [U ] Ψ = D +Cum4 [U ] Ψ (D.13)

where

Ψ =
1

4N

⎛⎝ 1
γ8
ψ (v, v) − 1

γ6
ψ
�
∂v
∂η , v

�
• 1

γ4
ψ
�
∂v
∂η ,

∂v
∂η

� ⎞⎠
=

#
1

γ8(1−η)2 + o(1) −1
γ6(1−η)3 + o(1)

• 1
γ4(1−η)4 + o(1)

$
(D.14)

from the expressions just computed. It follows that

AVARtrue(γ̂
2, η̂) = ∆

�
D (D +Cum4 [U ] Ψ)

−1D
�−1

= ∆
�
D
�
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−1Ψ
�−1�−1

= ∆
�
Id+Cum4 [U ] D

−1Ψ
�
D−1

= ∆
�
Id+Cum4 [U ] D

−1Ψ
�
D−1

= AVARnormal(γ̂
2, η̂) +∆ Cum4 [U ] D

−1ΨD−1

where Id denotes the identity matrix and

AVARnormal(γ̂
2, η̂) =

#
2γ4∆ 0

0 (1− η2)∆

$
, D−1ΨD−1 =

#
4

(1−η)2
−2(1+η)
γ2(1−η)2

• (1+η)2

γ4(1−η)2

$
so that

AVARtrue (γ̂
2, η̂) = ∆

#
2γ4 0

0 (1− η2)

$
+∆Cum4 [U ]

#
4

(1−η)2
−2(1+η)
γ2(1−η)2

• (1+η)2

γ4(1−η)2

$
.

By applying the delta method to change the parametrization, we now recover the asymptotic variance of the estimates

of the original parameters:

AVARtrue (σ̂
2, â2) = ∇f(γ2, η).AVARtrue (γ̂2, η̂).∇f(γ2, η)0

=

#
4
s
σ6∆ (4a2 + σ2∆) + 2σ4∆ −σ2∆h(∆, σ2, a2)

• ∆
2

�
2a2 + σ2∆

�
h(∆, σ2, a2) +∆Cum4 [U ]

$
.
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Appendix E: Derivations for Section 7

To see (7.4), let “orig” (E.7) denote parametrization in (and differentiation with respect to) the original parameters

σ2 and a2, while “transf” denotes parametrization and differentiation in γ2 and η, and finv denotes the inverse of the

change of variable function defined in (C.10), namely#
γ2

η

$
= finv (σ

2, α2) =

⎛⎝ 1
2

q
2a2 + σ2∆+

s
σ2∆ (4a2 + σ2∆)

r
1
2a2

q
−2a2 − σ2∆+

s
σ2∆ (4a2 + σ2∆)

r ⎞⎠ . (E.1)

and ∇finv its Jacobian matrix. Then, from l̇orig = ∇finv (σ2, α2)0.l̇transf , we have

l̈orig = ∇finv (σ2, α2)0.l̈transf .∇finv (σ2, α2) +H[l̇transf ]

where H[l̇transf ] is a 2 × 2 matrix whose terms are linear in l̇transf and the second partial derivatives of finv . Now

Etrue [l̇orig ] = Etrue [l̇transf ] = 0, and so Etrue [H[l̇transf ]] = 0 from which it follows that

Dorig = N−1Etrue [−l̈orig ]
= ∇finv (σ2, α2)0.Dtransf .∇finv (σ2, α2)

=

⎛⎜⎜⎝
∆1/2(2a2+σ2∆)
2σ3(4a2+σ2∆)3/2

∆1/2

σ(4a2+σ2∆)3/2

• 1
2a4

�
1− ∆1/2σ(6a2+σ2∆)

(4a2+σ2∆)3/2

�
⎞⎟⎟⎠+ o(1) (E.2)

with Dtransf = N−1Etrue [−l̈transf ] given in (D.12). Similarly, l̇orig l̇0orig = ∇finv (σ2, α2)0.l̇transf l̇0transf .∇finv (σ2, α2) and so

Sorig = ∇finv (σ2, α2)0.Stransf .∇finv (σ2, α2)
= ∇finv (σ2, α2)0.(Dtransf +Cum4 [U ] Ψ).∇finv (σ2, α2)
= Dorig +Cum4 [U ]∇finv (σ2, α2)0.Ψ.∇finv (σ2, α2) (E.3)

with the second equality following from the expression for Stransf given in (D.13).

To complete the calculation, note from (D.14) that

Ψ = gtransf .g
0
transf + o(1),

where

gtransf =

#
γ−4 (1− η)−1

−γ−2 (1− η)−2

$
.

Thus

∇finv (σ2, α2)0.Ψ.∇finv (σ2, α2) = gorig .g
0
orig + o(1), (E.4)

where

g = gorig = ∇finv (σ2, α2)0.gtransf =

⎛⎜⎝
∆1/2

σ(4a2+σ2∆)3/2

1
2a4

�
1− ∆1/2σ(6a2+σ2∆)

(4a2+σ2∆)3/2

�
⎞⎟⎠ (E.5)

which is the result (7.5). Inserting (E.4) into (E.3) yields the result (7.4).

For the profile likelihood λ, let â2σ2 denote the maximizer of l(σ
2, a2) for given σ2. Thus by definition λ(σ2) =

l(σ2, â2σ2). From now on, all differentiation takes place with respect to the original parameters, and we will omit the

subscript “orig” in what follows. Since 0 = l̇a2(σ
2, â2σ2), it follows that

0 =
∂

∂σ2
l̇a2(σ

2, â2σ2)

= l̈σ2a2(σ
2, â2σ2) + l̈a2a2(σ

2, â2σ2)
∂â2σ2

∂σ2
,
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so that
∂â2σ2

∂σ2
= − l̈σ2a2(σ

2, â2σ2)

l̈a2a2(σ2, â
2
σ2
)

(E.6)

The profile score then follows

λ̇(σ2) = l̇σ2(σ
2, â2σ2) + l̇a2(σ

2, â2σ2)
∂â2σ2

∂σ2
(E.7)

so that at the true value of (σ2, a2),

λ̇(σ2) = l̇σ2(σ
2, a2)− Etrue [l̈σ2a2 ]

Etrue [l̈a2a2 ]
l̇a2(σ

2, a2) +Op(1), (E.8)

since â2 = a2 +Op(N
−1/2) and

∆l̈σ2a2 ≡ N−1l̈σ2a2(σ
2, â2σ2)−N−1Etrue [l̈σ2a2 ] = Op(N

−1/2)

∆l̈a2a2 ≡ N−1l̈a2a2(σ
2, â2σ2)−N−1Etrue [l̈a2a2 ] = Op(N

−1/2)

as sums of random variables with expected value zero, so that

−∂â2σ2

∂σ2
=

N−1 l̈σ2a2(σ
2, â2σ2)

N−1 l̈a2a2(σ2, â2σ2)

=
N−1Etrue [l̈σ2a2 ] +∆l̈σ2a2

N−1Etrue [l̈a2a2 ] +∆l̈a2a2

=
Etrue [l̈σ2a2 ]

Etrue [l̈a2a2 ]
+
�
∆l̈σ2a2 −∆l̈a2a2

�
+ op(N

−1/2)

=
Etrue [l̈σ2a2 ]

Etrue [l̈a2a2 ]
+Op(N

−1/2)

while

l̇a2(σ
2, a2) = Op(N

1/2)

also as a sum of random variables with expected value zero.

Therefore

Etrue [λ̇(σ
2)] = Etrue [l̇σ2(σ

2, a2)]− Etrue [l̈σ2a2 ]

Etrue [l̈a2a2 ]
Etrue

k
l̇a2(σ

2, a2)
l
+O(1)

= O(1)

since Etrue [l̇σ2(σ
2, a2)] = Etrue

k
l̇a2(σ

2, a2)
l
= 0. In particular, Etrue [λ̇(σ2)] = o(N) as claimed.

Further differentiating (E.7), one obtains

λ̈(σ2) = l̈σ2σ2(σ
2, â2σ2) + l̈a2a2(σ

2, â2σ2)

�
∂â2σ2

∂σ2

�2
+ 2l̈σ2a2(σ
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∂â2σ2

∂σ2
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2

l̈a2a2(σ2, â
2
σ2
)
+ l̇a2(σ

2, â2σ2)
∂2â2σ2

∂2σ2

from (E.6). Evaluated at σ2 = σ̂2, one gets â2σ2 = â2 and l̇a2(σ̂
2, â2) = 0, and so

λ̈(σ̂2) = l̈σ2σ2(σ̂
2, â2)− l̈σ2a2(σ̂

2, â2)2

l̈a2a2(σ̂2, â2)

=
1k

l̈(σ̂2, â2)−1
l
σ2σ2

(E.9)

where
k
l̈(σ̂2, â2)−1

l
σ2σ2

is the upper left element of the matrix l̈(σ̂2, â2)−1. Thus (7.7) is valid.
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Alternatively, we can see that the profile likelihood λ satisfies the Bartlett identity to first order, i.e., (7.8). Note

that by (E.8),

N−1Etrue [λ̇(σ
2)2] = N−1Etrue

%�
l̇σ2(σ

2, a2)− Etrue [l̈σ2a2 ]

Etrue [l̈a2a2 ]
l̇a2(σ

2, a2) +Op(1)

�2&
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%�
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2, a2)− Etrue [l̈σ2a2 ]
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l̇a2(σ
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�2&
+ o(1)

= N−1Etrue

%
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2, a2)2 +

�
Etrue [l̈σ2a2 ]

Etrue [l̈a2a2 ]
l̇a2(σ

2, a2)

�2
−2Etrue [l̈σ2a2 ]

Etrue [l̈a2a2 ]
l̇a2(σ

2, a2)l̇σ2(σ
2, a2)

�
+ o(1)

so that

N−1Etrue [λ̇(σ
2)2] = Sσ2σ2 +

�
Dσ2a2

Da2a2

�2
Sa2a2 − 2Dσ2a2

Da2a2
Sa2σ2 + op(1)

=

#
Dσ2σ2 +

�
Dσ2a2

Da2a2

�2
Da2a2 − 2Dσ2a2

Da2a2
Da2σ2

$

+Cum4 [U ]

#
g2σ2 +

�
Dσ2a2

Da2a2

�2
g2a2 − 2

Dσ2a2

Da2a2
gσ2ga2

$
+ op(1)

by invoking (7.4).

Continuing the calculation,

N−1Etrue [λ̇(σ
2)2] =

�
Dσ2σ2 −

D2
σ2a2

Da2a2

�
+Cum4 [U ]

�
gσ2 − Dσ2a2

Da2a2
ga2

�2
+ o(1)

= 1/
�
D−1

�
σ2σ2

+ o(1) (E.10)

since from the expressions for Dorig and gorig in (E.2) and (E.5) we have

gσ2 − Dσ2a2

Da2a2
ga2 = 0. (E.11)

Then by (E.9) and the law of large numbers, we have

N−1Etrue [λ̈(σ
2)] = −1/ �D−1�

σ2σ2
+ o(1), (E.12)

and (7.8) follows from combining (E.10) with (E.12).

Appendix F: Proof of Lemma 2

ΣΣ−1 ≡ Id implies that
∂Σ−1

∂β1
= −Σ−1 ∂Σ

∂β1
Σ−1 (F.1)

and, since Σ is linear in the parameters σ2 and a2 (see (8.2)) we have

∂2Σ

∂β2∂β1
= 0 (F.2)

so that

∂2Σ−1

∂β2∂β1
=

∂

∂β2

�
∂Σ−1

∂β1

�
= Σ−1

∂Σ

∂β2
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∂β1
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∂2Σ
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∂Σ

∂β2
Σ−1

∂Σ

∂β1
Σ−1 + Σ−1

∂Σ

∂β1
Σ−1

∂Σ

∂β2
Σ−1 (F.3)
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In the rest of this lemma, let expectations be conditional on the ∆0s. We use the notation E[ ·|∆] as a shortcut for
E[ ·|∆N , ...,∆1]. At the true value of the parameter vector, we have,

0 = E[ l̇β1

���∆]
= −1

2

∂ ln detΣ

∂β1
− 1

2
E

�
Y 0 ∂Σ

−1

∂β1
Y

����∆� . (F.4)

with the second equality following from (8.3). Then, for any nonrandom Q, we have

E
�
Y 0QY

�
= Tr

�
QE

�
Y Y 0�� = Tr [QΣ] . (F.5)

This can be applied to Q that depends on the ∆0s, even when they are random, because the expected value is conditional

on the ∆0s. Therefore it follows from (F.4) that

∂ ln detΣ
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�
Y 0 ∂Σ

−1

∂β1
Y

����∆� = −Tr �∂Σ−1∂β1
Σ

�
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�
Σ−1

∂Σ

∂β1

�
, (F.6)

with the last equality following from (F.1) and so

∂2 ln detΣ
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=

∂

∂β2
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, (F.7)

again because of (F.2).

In light of (8.3), the expected information (conditional on the ∆0s) is given by

E
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with the first equality following from (F.5) applied to Q = ∂2Σ−1/∂β2β1, the second from (F.3) and the third from the

fact that Tr[AB] = Tr[BA]. It follows that
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Appendix G: Proof of Theorem 3

In light of (8.2) and (8.9),

Σ = Σ0 + �σ2Ξ (G.1)

from which it follows that

Σ−1 =
�
Σ0
�
Id+ �σ2Σ−10 Ξ

��−1
=
�
Id+ �σ2Σ−10 Ξ

�−1
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�
Σ−10 Ξ

�2
Σ−10 +O(�3) (G.2)

since

(Id+ �A)−1 = Id− �A+ �2A2 +O(�3).

Also,
∂Σ
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=
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Therefore, recalling (F.6), we have
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3) (G.3)

We now consider the behavior as N →∞ of the terms up to order �2. The remainder term is handled similarly.

Two things can be determined from the above expansion. Since the ξ0is are i.i.d. with mean 0, E[Ξ] = 0, and so,

taking unconditional expectations with respect to the law of the ∆0
is, we obtain that the coefficient of order � is
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The matrix E
�
ΞΣ−10 Ξ

�
has the following terms
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and since E [ξiξj ] = δij Var[ξ] (where δij denotes the Kronecker symbol), it follows that

E
�
ΞΣ−10 Ξ

�
= ∆2

0Var[ξ] diag
�
Σ−10

�
(G.4)

where diag
�
Σ−10

�
is the diagonal matrix formed with the diagonal elements of Σ−10 . From this, we obtain that
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To calculate E
k
l̈β2β1

l
, in light of (8.8), we need to differentiate E [∂ ln detΣ/∂β1] with respect to β2. Indeed
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��
where we can interchange the unconditional expectation and the differentiation with respect to β2 because the uncon-

ditional expectation is taken with respect to the law of the ∆0
is, which is independent of the β parameters (i.e., σ

2 and

a2). Therefore, differentiating (G.5) with respect to β2 will produce the result we need. (The reader may wonder why

we take the expected value before differentiating, rather than the other way around. As just discussed, the results are

identical. However, it turns out that taking expectations first reduces the computational burden quite substantially.)

Combining with (G.5), we therefore have
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≡ φ(0) + �2φ(2) +O(�3) (G.6)

It is useful now to introduce the same transformed parameters (γ2, η) as in previous sections and write Σ0 = γ2V

with the parameters and V defined as in (3.2)-(3.3) and (5.2), except that ∆ is replaced by ∆0 in these expressions.

To compute φ(0), we start with

Tr

�
Σ−10

∂Σ0
∂β1

�
= Tr

%
γ−2V −1

∂
�
γ2V

�
∂β1

&

= Tr

�
V −1

∂V

∂β1

�
+ Tr

�
γ−2V −1V

∂γ2

∂β1

�
= Tr

�
V −1

∂V

∂η

�
∂η

∂β1
+Nγ−2

∂γ2

∂β1
(G.7)

with ∂γ2/∂β1 and ∂η/∂β1 to be computed from (3.4)-(3.5). If Id denotes the identity matrix and J the matrix with

1 on the infra and supra-diagonal lines and 0 everywhere else, we have V = η2Id + ηJ, so that ∂V/∂η = 2ηId + J.

42



Therefore

Tr

�
V −1

∂V

∂η

�
= 2ηTr

�
V −1

�
+ Tr

�
V −1J

�
= 2η

N[
i=1

vi,i +

N−1[
i=2

q
vi,i−1 + vi,i+1

r
+ v1,2 + vN,N−1

=
2η
�
1− η2N

�
N
�
1− η2

�
+ 1

��
(1− η2) (1− η2(1+N))

=
2η

(1− η2)
+ o(1) (G.8)

Therefore the first term in (G.7) is O(1) while the second term is O(N) and hence

Tr

�
Σ−10

∂Σ0
∂β1

�
= Nγ−2

∂γ2

∂β1
+O(1).

This holds also for the partial derivative of (G.7) with respect to β2. Indeed, given the form of (G.8), we have that

∂

∂β2

�
Tr

�
V −1

∂V

∂η

��
=

∂

∂β2

�
2η

(1− η2)

�
+ o(1) = O(1)

since the remainder term in (G.8) is of the form p(N)ηq(N), where p and q are polynomials in N or order greater than

or equal to 0 and 1 respectively, whose differentiation with respect to η will produce terms that are of order o(N). Thus

it follows that

∂

∂β2

�
Tr

�
Σ−10

∂Σ0
∂β1

��
= N

∂

∂β2

�
γ−2

∂γ2

∂β1

�
+ o(N)

= N

�
∂γ−2

∂β2

∂γ2

∂β1
+ γ−2

∂2γ2

∂β2∂β1

�
+ o(N) (G.9)

Writing the result in matrix form, where the (1, 1) element corresponds to (β1, β2) = (σ2, σ2), the (1, 2) and (2, 1)

elements to (β1, β2) = (σ2, a2) and the (2, 2) element to (β1, β2) = (a2, a2), and computing the partial derivatives in

(G.9), we have

φ(0) = −1
2

∂

∂β2

�
Tr

�
Σ−10

∂Σ0
∂β1

��

= N

⎛⎜⎜⎝
∆
1/2
0 (2a2+σ2∆0)

2σ3(4a2+σ2∆0)
3/2

∆
1/2
0

σ(4a2+σ2∆0)
3/2

• 1
2a4

�
1− ∆

1/2
0 σ(6a2+σ2∆0)

(4a2+σ2∆0)
3/2

�
⎞⎟⎟⎠+ o(N). (G.10)

As for the coefficient of order �2, that is φ(2) in (G.6), define

α ≡ Tr

�
σ2Σ−10 diag

�
Σ−10

��
σ2Σ−10

∂Σ0
∂β1

− ∂σ2

∂β1
Id

��
(G.11)

so that

φ(2) = −1
2
∆2
0Var[ξ]

∂α

∂β2
.

We have

α = σ4Tr

�
Σ−10 diag

�
Σ−10

�
Σ−10

∂Σ0
∂β1

�
− σ2

∂σ2

∂β1
Tr
�
Σ−10 diag

�
Σ−10

��
= σ4γ−6Tr

%
V −1diag

�
V −1

�
V −1

∂
�
γ2V

�
∂β1

&
− σ2

∂σ2

∂β1
γ−4Tr

�
V −1diag

�
V −1

��
= σ4γ−4Tr

�
V −1diag

�
V −1

�
V −1

∂V

∂η

∂η

∂β1

�
+ σ4γ−6

∂γ2

∂β1
Tr
�
V −1diag

�
V −1

��− σ2
∂σ2

∂β1
γ−4Tr

�
V −1diag

�
V −1

��
= σ4γ−4

∂η

∂β1
Tr

�
V −1diag

�
V −1

�
V −1

∂V

∂η

�
+

�
σ4γ−6

∂γ2

∂β1
− σ2

∂σ2

∂β1
γ−4

�
Tr
�
V −1diag

�
V −1

��
.

43



Next, we compute separately

Tr

�
V −1diag

�
V −1

�
V −1

∂V

∂η

�
= Tr

�
diag

�
V −1

�
V −1

∂V

∂η
V −1

�
= −Tr

�
diag

�
V −1

� ∂V −1
∂η

�
= −

N[
i=1

vi,i
∂vi,i

∂η

=
O(1)− 2Nη

�
1 + η2 − η4 − η6 +O(η2N )

�
+N2O(η2N)

(1 + η2)2 (1− η2)4 (1− η2(1+N))
3

=
−2Nη

(1− η2)3
+ o(N)

and

Tr
�
V −1diag

�
V −1

��
=

N[
i=1

�
vi,i
�2

=
O(1) +N

�
1− η4 +O(η2N )

�
(1 + η2) (1− η2)3 (1− η2(1+N))

2

=
N

(1− η2)2
+ o(N)

Therefore

α = σ4γ−4
∂η

∂β1

� −2Nη

(1− η2)3

�
+

�
σ4γ−6

∂γ2

∂β1
− σ2

∂σ2

∂β1
γ−4

��
N

(1− η2)2

�
+ o(N),

which can be differentiated with respect to β2 to produce ∂α/∂β2. As above, differentiation of the remainder term o(N)

still produces a o(N) term because of the structure of the terms there (they are again of the form p(N)ηq(N).)

Note that an alternative expression for α can be obtained as follows. Going back to the definition (G.11),

α = σ4Tr

�
Σ−10 diag

�
Σ−10

�
Σ−10

∂Σ0
∂β1

�
− σ2

∂σ2

∂β1
Tr
�
Σ−10 diag

�
Σ−10

��
(G.12)

the first trace becomes

Tr

�
Σ−10 diag

�
Σ−10

�
Σ−10

∂Σ0
∂β1

�
= Tr

�
diag

�
Σ−10

�
Σ−10

∂Σ0
∂β1

Σ−10

�
= −Tr

�
diag

�
Σ−10

� ∂Σ−10
∂β1

�
= −

N[
i=1

(Σ−10 )ii(
∂Σ−10
∂β1

)ii

= −1
2

∂

∂β1

N[
i=1

(Σ−10 )2ii

= −1
2

∂

∂β1
Tr
�
Σ−10 diag

�
Σ−10

��
.
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so that we have

α = −σ4 1
2

∂

∂β1
Tr
�
Σ−10 diag

�
Σ−10

��− σ2
∂σ2

∂β1
Tr
�
Σ−10 diag

�
Σ−10

��
= −σ4 1

2

∂

∂β1
Tr
�
Σ−10 diag

�
Σ−10

��− 1

2

�
∂σ4

∂β1

�
Tr
�
Σ−10 diag

�
Σ−10

��
= −1

2

∂

∂β1

�
σ4Tr

�
Σ−10 diag

�
Σ−10

���
= −1

2

∂

∂β1

�
σ4γ−4Tr

�
V −1diag

�
V −1

���
= −1

2

∂

∂β1

�
σ4γ−4

�
N

(1− η2)2
+ o(N)

��
= −N

2

∂

∂β1

�
σ4γ−4

(1− η2)2

�
+ o(N),

where the calculation of Tr
�
V −1diag

�
V −1

��
is as before, and where the o(N) term is a sum of terms of the form

p(N)ηq(N) as discussed above. From this one can interchange differentiation and the o(N) term, yielding the final

equality above.

Therefore

∂α

∂β2
= −1

2

∂2

∂β1∂β2

�
σ4γ−4

�
N

(1− η2)2
+ o(N)

��
= −N

2

∂2

∂β1∂β2

�
σ4γ−4

(1− η2)2

�
+ o(N). (G.13)

Writing the result in matrix form and calculating the partial derivatives, we obtain

φ(2) = −1
2
∆2
0Var[ξ]

∂α

∂β2
=

N ∆2
0 Var[ξ]

(4a2 + σ2∆0)
3

#
−2a2 − (8a

2−2σ2∆0)
2∆0

• − 8σ2

∆0

$
+ o(N) (G.14)

Putting it all together, we have obtained

1

N
E
k
−l̈β2β1

l
=
1

N

�
φ(0) + �2φ(2) +O(�3)

�
≡ F (0) + �2F (2) +O(�3) + o(1) (G.15)

where

F (0) =

⎛⎜⎜⎝
∆
1/2
0 (2a2+σ2∆0)

2σ3(4a2+σ2∆0)
3/2

∆
1/2
0

σ(4a2+σ2∆0)
3/2

• 1
2a4

�
1− ∆

1/2
0 σ(6a2+σ2∆0)

(4a2+σ2∆0)
3/2

�
⎞⎟⎟⎠ (G.16)

F (2) ≡ ∆2
0Var[ξ]

(4a2 + σ2∆0)
3

#
−2a2 − (8a

2−2σ2∆0)
2∆0

• −8σ2

∆0

$
. (G.17)

The asymptotic variance of the maximum-likelihood estimators AVAR(σ̂2, â2) is therefore given by

AVAR(σ̂2, â2) = E [∆]
�
F (0) + �2F (2) +O(�3)

�−1
= ∆0

�
F (0)

�
Id+ �2

k
F (0)

l−1
F (2) +O(�3)

��−1
= ∆0

�
Id+ �2

k
F (0)

l−1
F (2) +O(�3)

�−1 k
F (0)

l−1
= ∆0

�
Id− �2

k
F (0)

l−1
F (2) +O(�3)

�k
F (0)

l−1
= ∆0

k
F (0)

l−1
− �2∆0

k
F (0)

l−1
F (2)

k
F (0)

l−1
+O(�3)

≡ A(0) + �2A(2) +O(�3)
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where the final results for A(0) = ∆0

k
F (0)

l−1
and A(2) = −∆0

k
F (0)

l−1
F (2)

k
F (0)

l−1
, obtained by replacing F (0) and

F (2) by their expressions in (G.15), are given in the statement of the Theorem.

Appendix H: Proof of Theorem 4

It follows as in (D.3), (D.4) and (D.5) that

Etrue
k
l̇β1 l̇β2 |∆

l
= Covtrue (l̇β1 , l̇β2 |∆)

= Covtrue

⎛⎝−1
2

N[
i,j=1

YiYj

�
∂Σ−1

∂β1

�
ij

,−1
2

N[
k,l=1

YkYl

�
∂Σ−1

∂β2

�
kl

⎞⎠
=
1

4

N[
i,j,k,l=1

�
∂Σ−1

∂β1

�
ij

�
∂Σ−1

∂β2

�
kl

Covtrue(YiYj , YkYl|∆)

= −Etrue
k
l̈β1β2 |∆

l
+
1

4

N[
i,j,k,l=1

�
∂Σ−1

∂β1

�
ij

�
∂Σ−1

∂β2

�
kl

Cumtrue (Yi, Yj , Yk, Yl|∆)

= −Etrue
k
l̈β1β2 |∆

l
+
1

4
Cum4 [U ]ψ

�
∂Σ−1

∂β1
,
∂Σ−1

∂β2

�
(H.1)

since Cumtrue(Yi, Yj, Yk, Yl|∆) = 2, ±1, or 0, ×Cumtrue (U), as in (3.8), and with ψ defined in (D.8). Taking now

unconditional expectations, we have

Etrue
k
l̇β1 l̇β2

l
= Covtrue(l̇β1 , l̇β2)

= E
k
Covtrue(l̇β1 , l̇β2 |∆)

l
+Covtrue(Etrue [l̇β1 |∆], Etrue [l̇β2 |∆])

= E
k
Covtrue(l̇β1 , l̇β2 |∆)

l
= −Etrue

k
l̈β1β2

l
+
1

4
Cum4 [U ]E

�
ψ

�
∂Σ−1

∂β1
,
∂Σ−1

∂β2

��
. (H.2)

with the first and third equalities following from the fact that Etrue [l̇βi |∆] = 0.
Since

Etrue
k
l̈β1β2 |∆

l
= Enormal

k
l̈β1β2 |∆

l
and consequently

Etrue
k
l̈β1β2

l
= Enormal

k
l̈β1β2

l
have been found in the previous subsection (see (G.15)), what we need to do to obtain Etrue

k
l̇β1 l̇β2

l
is to calculate

E

�
ψ

�
∂Σ−1

∂β1
,
∂Σ−1

∂β2

��
.

With Σ−1 given by (G.2), we have for i = 1, 2

∂Σ−1

∂βi
=

∂Σ−10
∂βi

− �
∂

∂βi

�
σ2Σ−10 ΞΣ−10

�
+ �2

∂

∂βi

�
σ4
�
Σ−10 Ξ

�2
Σ−10

�
+O(�3)

and therefore by bilinearity of ψ we have

E

�
ψ

�
∂Σ−1

∂β1
,
∂Σ−1

∂β2

��
= ψ

�
∂Σ−10
∂β1

,
∂Σ−10
∂β2

�
− �E

�
ψ

�
∂Σ−10
∂β1

,
∂

∂β2

�
σ2Σ−10 ΞΣ−10

���
[2]

+ �2E

�
ψ

�
∂Σ−10
∂β1

,
∂

∂β2

�
σ4
�
Σ−10 Ξ

�2
Σ−10

���
[2]

+ �2E

�
ψ

�
∂

∂β1

�
σ2Σ−10 ΞΣ−10

�
,
∂

∂β2

�
σ2Σ−10 ΞΣ−10

���
+O(�3), (H.3)
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where the “[2]” refers to the sum over the two terms where β1 and β2 are permuted.

The first (and leading) term in (H.3),

ψ

�
∂Σ−10
∂β1

,
∂Σ−10
∂β2

�
= ψ

#
∂
�
γ−2V −1

�
∂β1

,
∂
�
γ−2V −1

�
∂β2

$

= ψ

�
∂γ−2

∂β1
V −1 + γ−2

∂V −1

∂β1
,
∂γ−2

∂β2
V −1 + γ−2

∂V −1

∂β2

�
= ψ

�
∂γ−2

∂β1
V −1 + γ−2

∂V −1

∂η

∂η

∂β1
,
∂γ−2

∂β1
V −1 + γ−2

∂V −1

∂η

∂η

∂β1

�
corresponds to the equally spaced, misspecified noise distribution, situation studied in Section 6.

The second term, linear in �, is zero since

E

�
ψ

�
∂Σ−10
∂β1

,
∂

∂β2

�
σ2Σ−10 ΞΣ−10

���
= ψ

�
∂Σ−10
∂β1

, E

�
∂

∂β2

�
σ2Σ−10 ΞΣ−10

���
= ψ

�
∂Σ−10
∂β1

,
∂

∂β2

�
σ2Σ−10 E [Ξ]Σ−10

��
= 0

with the first equality following from the bilinearity of ψ, the second from the fact that the unconditional expectation

over the ∆0
is does not depend on the β parameters, so expectation and differentiation with respect to β2 can be

interchanged, and the third equality from the fact that E [Ξ] = 0.

To calculate the third term in (H.3), the first of two that are quadratic in �, note that

α1 ≡ E

�
ψ

�
∂Σ−10
∂β1

,
∂

∂β2

�
σ4Σ−10 ΞΣ−10 ΞΣ−10

���
= ψ

�
∂Σ−10
∂β1

,
∂

∂β2

�
σ4Σ−10 E

�
ΞΣ−10 Ξ

�
Σ−10

��
= ∆2

0 Var[ξ]ψ

�
∂Σ−10
∂β1

,
∂

∂β2

�
σ4Σ−10 diag(Σ−10 )Σ−10

��
= ∆2

0 Var[ξ]ψ

#
∂
�
γ−2V −1

�
∂β1

,
∂

∂β2

�
σ4γ−6V −1diag(V −1)V −1

�$
, (H.4)

with the second equality obtained by replacing E
�
ΞΣ−10 Ξ

�
with its value given in (G.4), and the third by recalling that

Σ0 = γ2V . The elements (i, j) of the two arguments of ψ in (H.4) are

νi,j =
∂
�
γ−2vi,j

�
∂β1

=
∂γ−2

∂β1
vi,j + γ−2

∂vi,j

∂η

∂η

∂β1
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ωk,l =
∂

∂β2

#
σ4γ−6

N[
m=1
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$

=
∂
�
σ4γ−6

�
∂β2

N[
m=1

vk,mvm,mvm,l + σ4γ−6
∂

∂η

#
N[

m=1

vk,mvm,mvm,l

$
∂η

∂β2

from which ψ in (H.4) can be evaluated through the sum given in (D.8).

Summing these terms, we obtain

ψ

#
∂
�
γ−2V −1

�
∂β1

,
∂

∂β2

�
σ4γ−6V −1diag(V −1)V −1

�$

=
4N (C1V (1− η) +C2V C3V )

�
C1W

�
1− η2

�
+ 2C2WC3W (1 + 3η)

�
(1− η)7(1 + η)3

+ o(N)
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where

C1V =
∂γ−2

∂β1
, C2V = γ−2, C3V =

∂η

∂β1

C1W =
∂
�
σ4γ−6

�
∂β2

, C2W = σ4γ−6, C3W =
∂η

∂β2

The fourth and last term in (H.3), also quadratic in �,

α2 ≡ E

�
ψ

�
∂

∂β1

�
σ2Σ−10 ΞΣ−10

�
,
∂

∂β2

�
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���
is obtained by first expressing

ψ

�
∂
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,
∂

∂β2

�
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��
in its sum form and then taking expectations term by term. Letting now
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�
∂

∂β1

�
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��
ij

, ωk,l =

�
∂

∂β2

�
σ2Σ−10 ΞΣ−10

��
kl

we recall our definition of ψ(ν, ω) given in (D.8) whose unconditional expected value (over the ∆0
is, i.e., over Ξ) we

now need to evaluate in order to obtain α2.

We are thus led to consider four-index tensors λijkl and to define

ψ̃(λ) ≡ 2
N[
h=1

λh,h,h,h +

N−1[
h=1

q
−2λh,h+1,h+1,h+1 − 2λh+1,h+1,h,h+1
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−2λh+1,h,h,h − 2λh,h,h+1,h
r

where λijkl is symmetric in the two first and the two last indices, respectively, i.e., λijkl = λjikl and λijkl = λijlk. In

terms of our definition of ψ in (D.8), it should be noted that ψ(ν, ω) = ψ̃(λ) when one takes λijkl = νi,jωk,l. The

expression we seek is therefore
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where λijkl is taken to be the following expected value
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with the third equality following from the interchangeability of unconditional expectations and differentiation with

respect to β, and the fourth from the fact that E [ΞrsΞtu] 6= 0 only when r = s = t = u, and
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Thus we have
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and
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Summing these terms, we obtain
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Putting it all together, we have
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Finally, the asymptotic variance of the estimator (σ̂2, â2) is given by
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respectively. Also, in light of (H.1), we have

S =
1

N
Etrue

k
l̇l̇0
l
= − 1

N
Etrue

k
l̈
l
+Cum4 [U ] Ψ = D +Cum4 [U ] Ψ

where

Ψ =
1

4N

⎛⎝ E
k
ψ
�
∂Σ−1
∂σ2

, ∂Σ
−1

∂σ2

�l
E
k
ψ
�
∂Σ−1
∂σ2

, ∂Σ
−1

∂a2

�l
• E

k
ψ
�
∂Σ−1
∂a2

, ∂Σ
−1

∂a2

�l ⎞⎠
≡ Ψ(0) + �2Ψ(2) +O(�3).

49



Since, from (H.3), we have
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It follows from (H.8) that
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is the result given in Theorem 3, namely (8.10).
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The correction term due to the misspecification of the error distribution is determined by Cum4 [U ] times
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where the matrices The asymptotic variance is then given by
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with the terms A(0), A(2), B(0) and B(2) given in the statement of the Theorem.

Appendix I: Proof of Theorem 5
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The estimator’s variance is
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since

Cov (Yi, Yj) = E [YiYj ] = E [(wi + ui) (wj + uj)] = E [uiuj] .

Now we have
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with N = T/∆. The RMSE expression follows from (I.1) and (I.2). As in Theorem 1, these are exact small sample

expressions, valid for all (T,∆).
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Value of a T = 1 day T = 1 year T = 5 years

Panel A: σ = 30% Stocks

0.01% 1 mn 4 mn 6 mn
0.05% 5 mn 31 mn 53 mn
0.1% 12 mn 1.3 hr 2.2 hr
0.15% 22 mn 2.2 hr 3.8 hr
0.2% 32 mn 3.3 hr 5.6 hr
0.3% 57 mn 5.6 hr 1.5 day
0.4% 1.4 hr 1.3 day 2.2 days
0.5% 2 hr 1.7 day 2.9 days
0.6% 2.6 hr 2.2 days 3.7 days
0.7% 3.3 hr 2.7 days 4.6 days
0.8% 4.1 hr 3.2 days 1.1 week
0.9% 4.9 hr 3.8 days 1.3 week
1.0% 5.9 hr 4.3 days 1.5 week

Panel B: σ = 10% Currencies

0.005% 4 mn 23 mn 39 mn
0.01% 9 mn 58 mn 1.6 hr
0.02% 23 mn 2.4 hr 4.1 hr
0.05% 1.3 hr 8.2 hr 14.0 hr
0.10% 3.5 hr 20.7 hr 1.5 day

Table 1
Optimal Sampling Frequency

This table reports the optimal sampling frequency ∆∗ given in equation (3.12) for different values of the standard
deviation of the noise term a and the length of the sample T. Throughout the table, the noise is assumed to be
normally distributed (hence Cum4 [U ] = 0 in formula (3.12)). In Panel A, the standard deviation of the efficient price
process is σ = 30% per year, and at σ = 10% per year in Panel B. In both panels, 1 year = 252 days, but in Panel
A, 1 day = 6.5 hours (both the NYSE and NASDAQ are open for 6.5 hours from 9:30 to 16:00 EST), while in Panel
B, 1 day = 24 hours as is the case for major currencies. A value of a = 0.05% means that each transaction is subject
to Gaussian noise with mean 0 and standard deviation equal to 0.05% of the efficient price. If the sole source of the
noise were a bid/ask spread of size s, then a should be set to s/2. For example, a bid/ask spread of 10 cents on a $10
stock would correspond to a = 0.05%. For the dollar/euro exchange rate, a bid/ask spread of s = 0.04% translates into
a = 0.02%. For the bid/ask model, which is based on binomial instead of Gaussian noise, Cum4 [U ] = −s4/8, but this
quantity is negligible given the tiny size of s.
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Sampling Theoretical Sample Theoretical Sample
Interval Mean Mean Stand. Dev. Stand. Dev.

5 minutes 0.185256 0.185254 0.00192 0.00191
15 minutes 0.121752 0.121749 0.00208 0.00209
30 minutes 0.10588 0.10589 0.00253 0.00254
1 hour 0.097938 0.097943 0.00330 0.00331
2 hours 0.09397 0.09401 0.00448 0.00440
1 day 0.09113 0.09115 0.00812 0.00811
1 week 0.0902 0.0907 0.0177 0.0176

Table 2
Monte Carlo Simulations: Bias and Variance when Market Microstructure Noise is Ignored

This table reports the results of M = 10, 000 Monte Carlo simulations of the estimator σ̂2, with market microstructure
noise present but ignored. The column “theoretical mean” reports the expected value of the estimator, as given in
(3.10) and similarly for the column “theoretical standard deviation” (the variance is given in (3.11)). The “sample”
columns report the corresponding moments computed over the M simulated paths. The parameter values used to
generate the simulated data are σ2 = 0.32 = 0.09 and a2 = (0.15%)2 and the length of each sample is T = 1 year.
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Discrete Sampling Without Noise
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Discrete Sampling With Noise
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Discrete and Random Sampling With Noise
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Figure 1
Various discrete sampling modes — no noise (Section 2), with noise (Sections 3-7) and

randomly spaced with noise (Section 8)
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Figure 2
RMSE of the estimator σ̂2 when the presence of the noise is ignored
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Figure 3
Comparison of the asymptotic variances of the MLE σ̂2 without and with noise taken into

account
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Figure 4
Asymptotic and Monte Carlo distributions of the MLE (σ̂2, â2) with Gaussian microstructure

noise
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Figure 5
Asymptotic and Monte Carlo distributions of the QMLE (σ̂2, â2) with misspecified

microstructure noise
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Figure 6
RMSE of the estimator σ̂2 when the presence of serially correlated noise is ignored
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