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1. Introduction 

 In a universe characterized by heterogeneity and structural change, forecasting agents may 

feel it necessary to estimate model parameters using only a partial window of the available 

observations.  The intuition is clear.  If the earliest available data follow a data-generating 

process unrelated to the present then using such data to estimate model parameters may lead to 

biased parameter estimates and forecasts.  Such biases can accumulate and lead to larger mean 

square forecast errors than do forecasts constructed using only that data relevant to the present 

and (hopefully) future data-generating process.  Unfortunately, if we reduce the number of 

observations in order to reduce heterogeneity we simultaneously increase the variance of the 

parameter estimates.  This increase in variance maps into the forecast errors and causes the mean 

square forecast error to increase.  Hence when constructing a forecast there is a balance between 

using too much or too little data to estimate model parameters. 

 This tradeoff leads to patterns in the decisions on whether or not to use all available data 

when constructing forecasts.  As noted in Giacomini and White (2003), the finance literature 

tends to construct forecasts using only a rolling window of the most recent observations.  In the 

macroeconomics literature, it is more common for forecasts to be constructed recursively – using 

all available data to estimate unknown parameters (e.g. Stock and Watson, 2003a) – with 

forecasts only sometimes based on rolling windows.  Since both macroeconomic and financial 

series are known to exhibit periods of structural change (Stock and Watson 1996, Paye and 

Timmermann 2002), one reason for the rolling approach to be used more often in finance than in 

macroeconomics may simply be that financial series are often substantially longer.  This allows 

individuals who forecast financial series to make choices to reduce the bias component of the 
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bias-variance tradeoff that macroeconomic forecasters often cannot make due to the potentially 

sharp deterioration in the variance component of the tradeoff. 

 In light of the bias-variance tradeoff associated with the choice between a rolling and 

recursive forecasting scheme, a combination of recursive and rolling forecasts could be superior 

to the individual forecasts.  Indeed, combining recursive and rolling forecasts could be 

interpreted as yet another form of shrinkage estimation that might be useful in the presence of 

instabilities.  The findings of Min and Zellner (1993), Koop and Potter (2003), Stock and Watson 

(2003), and Wright (2003) suggest shrinkage (the particular forms vary across these studies) to 

be effective in samples with instabilities. 

 Accordingly, we present analytical, Monte Carlo, and empirical evidence on the effectiveness 

of combining recursive and rolling forecasts, compared to using either just a recursive or rolling 

forecast.  We first provide a characterization of the bias-variance tradeoff involved in choosing 

between either the recursive and rolling schemes or a scalar convex combination of the two.  

This tradeoff permits us to derive not only optimal observation windows for the rolling scheme 

but, given a rolling observation window, the optimal scalar weights for combining the recursive 

and rolling schemes. 

 Because we find that simple scalar methods of combining the recursive and rolling forecasts 

are useful, we also consider combining methods that do not fit directly into our analytical 

framework.  One approach uses standard Bayesian methods to shrink parameter estimates based 

on a rolling sample toward those based on the recursive sample.  Another method consists of 

using the Bayesian model averaging approach of Wright (2003) to average a recursive forecast 

with a sequence of rolling forecasts, each with a distinct observation window. 
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 The results in the paper suggest a benefit to some form of combination of recursive and 

rolling forecasts.  Our Monte Carlo and empirical results show that shrinking coefficient 

estimates based on a rolling window of data seems to be effective and valuable.  On average, the 

shrinkage produces a forecast MSE essentially the same as the recursive MSE when the recursive 

MSE is best.  When there are model instabilities, the shrinkage produces a forecast MSE that 

often captures most of the gain that can be achieved with the methods we consider.  Thus 

combining recursive and rolling forecasts yields forecasts that are likely to be as good as or 

better than either recursive or rolling forecasts based on an arbitrary, fixed window size. 

 Our results build on several lines of extant work.  First, we build on the very large literature 

on forecast combination, a subject that has recently seen renewed interest, both theoretical (e.g. 

Elliott and Timmermann, 2003) and empirical (e.g. Stock and Watson, 2003a,b).  Second, our 

analysis follows very much in the spirit of Min and Zellner (1993), who also consider forecast 

combination as a means of handling heterogeneity induced by structural change.  Using a 

Bayesian framework, they combine a stable linear regression model with another with classical 

unit-root time variation in the parameters. 

 Finally, our work on the optimal choice of observation window builds on Pesaran and 

Timmermann (2002).  They, too, consider the determinants of the optimal choice of the 

observation window in a linear regression framework subject to structural change.  Using both 

conditional and unconditional mean square errors as objective functions they find that the 

optimal length of the observation window is weakly decreasing in the magnitude of the break, 

weakly decreasing in the magnitude of any change in the residual variance and is weakly 

increasing in the magnitude of the time since the break date.  They derive a recursive data-based 

stopping rule for selecting the observation window that does not admit a closed-form solution.  
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We are able to generalize Pesaran and Timmermann’s results in many respects – among them, 

imposing less restrictive assumptions, such as a scalar parameter vector, and obtaining closed 

form solutions for the optimal window size. 

 Our paper proceeds as follows.  In section 2 we analytically characterize the bias-variance 

tradeoff and, in light of that tradeoff, determine the optimal observation window.  Section 3 

details the recursive-rolling combination methods considered.  In section 4 we present Monte 

Carlo evidence on the finite sample effectiveness of our combination approaches and various 

other methods for forecasting in the potential presence of model instability.  Section 5 compares 

the effectiveness of the various forecast methods approaches in a range of empirical applications.  

The final section concludes.  Various details pertaining to theory and data are presented in 

Appendixes 1 and 2. 

 
2. Analytical Results on the Bias-Variance Tradeoff and Optimal Observation Window 

 In this section, after first detailing the necessary notation, we provide an analytical 

characterization of the bias-variance tradeoff, created by model instability, involved in choosing 

between recursive and rolling forecasts.  In light of that tradeoff, we then derive the optimal 

rolling observation window.  A detailed set of technical assumptions, sufficient for the results, 

are given in Appendix 1.  The same appendix provides general theoretical results (allowing for 

the recursive and rolling forecasts to be combined with weights αt and 1- αt respectively) from 

which the results in this section are derived as a special case (with αt = 0).  We take up the 

possibility of combining the recursive and rolling forecasts in section 3. 

 
2.1  Environment 

 The possibility of structural change is modeled using a sequence of linear DGPs of the form 
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  yT,t+τ = ' *

T,t T,tx β  + ut+τ,T    *
T,tβ = β* + T-1/2g(t/T) 

  ExT,tuT,t+τ ≡ EhT,t+τ = 0 for all t = 1,…,T,…,T+P. 

 
Note that the dependent variable yT,t+τ, the predictors xT,t and the error term uT,t+τ all depend upon 

T, the initial forecasting origin.  This is certainly necessary for the dependent variable since it 

depends upon the sequence of parameter vectors *
T,tβ  which in turn depend upon T.  We allow 

the predictors and the errors to depend upon T because we do not want to make the strong 

assumption that these terms are strongly exogenous to the process generating the dependent 

variable.  By doing so we allow the time variation in the parameters to have some influence on 

their marginal distributions.  This is necessary if we want to allow lagged dependent variables to 

be predictors. 

 Except where necessary, however, for the remainder we omit the subscript T that is 

associated with the observables and the errors.  Ultimately, the dependence of the observable 

variables and their marginal distributions on T is not particularly important when the sample size 

is large.  With linear models subject to local structural change and test statistics formed using 

sample averages of quadratics of the predictors and forecast errors, we are able to take advantage 

of the concept of asymptotic mean square stationarity as discussed in Hansen (2000).  In 

Appendix 1 we reintroduce the dependence of the observables upon T and more formally keep 

track of its impact on the bias-variance tradeoff. 

 At each origin of forecasting t = T,…, T+P, we observe the sequence ' t
j j j 1{y , x } = .  These 

include a scalar random variable yt to be predicted and a (k×1) vector of potential predictors xt 

which may include lagged dependent variables.  Forecasts of the scalar yt+τ, t = T,…,T+P τ ≥ 1, 



 6

are generated using the vector of covariates xt and the linear parametric model '
tx β .  The 

parameters are estimated one of two ways.  For a time varying observation window Rt, the 

parameter estimates satisfy R,tβ̂  = argmin -1 ' 2t-
s=1 s+ st (y -x β)τ

τ∑  and L,tβ̂  = argmin 

t

-1 ' 2t-
s=t- -R +1t s+ sR (y -x β)τ

τ τ∑  for the recursive and rolling schemes respectively.  The corresponding 

loss associated with the forecast errors are 2
R,tû +τ  = ' 2

t+ t R,t
ˆ(y -x β )τ  and 2

L,tû +τ  = ' 2
t+ t L,t

ˆ(y -x β )τ . 

 Before presenting the results it is useful to provide a brief discussion of Assumptions 1–4 in 

Appendix 1.  In Assumptions 1–3 we maintain that the OLS-estimated DGP is a linear regression 

subject to local structural change.  The local structural change is nonstochastic, square integrable 

and of a small enough magnitude that the observables are asymptotically mean square stationary.  

In order to insure that certain weighted partial sums converge weakly to standard Brownian 

motion W(.), we impose the high level assumption that, in particular, ht+τ satisfies Theorem 3.2 

of De Jong and Davidson (2000).  By doing so we also are able to take advantage of various 

results pertaining to convergence in distribution to stochastic integrals that are also contained in 

De Jong and Davidson. 

 Our final assumption is unique.  In part (a) of Assumption 4 we generalize assumptions made 

in West (1996) that require limT→∞Rt/T = λR ∈ (0, 1).  Such an assumption is too stringent for 

our goals.  Instead, in parts (a) and (c) we weaken that type of assumption so that Rt/T ⇒ λR(s)∈ 

(0, s], 1 ≤ s ≤ 1 + λP, where limT→∞P/T = λP ∈ (0, ∞) and hence the duration of forecasting is 

finite but non-trivial.  By doing so we permit an observation window that changes with time as 

evidence of instability is discovered.  For the moment we omit a discussion of part (b) but return 

to it in section 3 when we consider combining the recursive and rolling schemes. 
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2.2  Theoretical results on the tradeoff: the general case 

 Our approach to understanding the bias-variance tradeoff is based upon an analysis of 

2 2T P
t T R,t+ L,t+ˆ ˆ(u -u )+
= τ τ∑ , the difference in the (normalized) MSEs of the recursive and rolling 

forecasts.1  As detailed in Theorem 1 in Appendix 1, we show that this statistic has an asymptotic 

distribution that can be decomposed into three terms: 

 
 2 2T P

t T R,t+ L,t+ˆ ˆ(u -u )+
= τ τ∑  →d P1

W1 (s)+λ ξ∫  = P1
W11 (s)+λ ξ∫  + P1

W21 (s)+λ ξ∫  + P1
W31 (s)+λ ξ∫ .   (1) 

 
The first component can be interpreted as the pure “variance” contribution to the distribution of 

the difference in the recursive and rolling MSEs.  The third term can be interpreted as the pure 

“bias” contribution, while the second is an interaction term. 

 This very general result implies that the bias-variance tradeoff depends on: (1) the rolling 

window size (λR(s)), (2) the duration of forecasting (λP), (3) the dimension of the parameter 

vector (through the dimension of W or g), (4) the magnitude of the parameter variability (as 

measured by the integral of quadratics of g), (5) the forecast horizon (as measured by the long-

run variance of ht+τ, V) and (6) the second moments of the predictors (B = limT→∞
' -1

T,t T,t(Ex x ) ). 

 Providing a more detailed analysis of the distribution of the relative accuracy measure is 

difficult because we do not have a closed form solution for the density and the bias term allows 

for very general breaking processes.  Therefore, we proceed in the remainder of this section to 

focus on the mean (rather than the distribution) of the bias-variance tradeoff when there are 

either no breaks or a single break. 

 

                                                 
1 In Theorem 1, the tradeoff is based on 2 2T P

t T R,t+ W,t+ˆ ˆ(u -u )+
= τ τ∑ , which depends upon the combining weights αt.  If we 

set αt = 0 we find that 2 2T P
t T R,t+ W,t+ˆ ˆ(u -u )+
= τ τ∑  = 2 2T P

t T R,t+ L,t+ˆ ˆ(u -u )+
= τ τ∑ . 
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2.3  The case of no break 

 We can precisely characterize the mean in the case of no breaks.  When there are no breaks 

we need only analyze the mean of the variance contribution P1
W11 (s)+λ ξ∫ .  Taking expectations 

and noting that the first of the variance components is zero mean we obtain  

 

  P1
W11 E (s)+λ ξ∫ = P1+λ

1
R

1 1tr(BV) ( - )ds
s λ (s)∫             (2) 

 
where tr(.) denotes the trace operator.  It is straightforward to establish that all else constant, the 

mean variance contribution is increasing in the window width λR(s), decreasing in the forecast 

duration λP and negative semi-definite for all λP and λR(s).  Not surprisingly, we obtain the 

intuitive result that in the absence of any structural breaks the optimal observation window is 

λR(s) = s.  In other words, in the absence of a break it is always best to use the recursive scheme. 

 
2.4  The case of a single break 

 Suppose that a permanent local structural change, of magnitude T-1/2g(t/T) = T-1/2∆β, in the 

parameter vector β occurs at time 1 ≤ TB ≤ t where again, t = T,…, T+P denotes the present 

forecasting origin.  In the following let limT→∞TB/T = λB ∈ (0, s).  Substitution into Theorem 1 in 

Appendix 1 yields the following corollary regarding the bias-variance tradeoff. 

 
Corollary 2.1: (a) If λR(s) > s − λB for all s ∈ [1,1+λP] then  

 P1
W1 E (s)+λ ξ∫  = P1+λ

1
R

1 1tr(BV) ( - )ds
s λ (s)∫   

   + P1+λ' -1 B R R
R B1 2 2

R

-(s-λ )(s+ (s))+2sλ (s)∆βB ∆β (s- (s))(s-λ )( )ds
s λ (s)
λ

λ∫ . 
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(b) If λR(s) ≤ s − λB for all s ∈ [1,1+λP] then  

 P1
W1 E (s)+λ ξ∫  = P1+λ

1
R

1 1tr(BV) ( - )ds
s λ (s)∫  + P

2
1+λ' -1 B
1 2

λ∆βB ∆β ( )ds
s∫ . 

 
 From Corollary 2.1 we see that the tradeoff depends upon a weighted average of the 

precision of the parameter estimates as measured by tr(BV) and the magnitude of the structural 

break as measured by the quadratic ' -1∆βB ∆β .  Note that the first term in each of the expansions 

is negative semi-definite while that for the latter is positive semi-definite.  Intuitively, we would 

expect this to imply that as the magnitude of the break increases relative to the precision of the 

parameter estimates it is optimal to decrease the observation window. 

 Even so, part (b) of Corollary 2.1 places a bound on the amount that one would be willing to 

decrease the width of the observation window.  This can be seen if we notice that the bias 

component does not depend upon the magnitude of the observation window − except for the 

condition that it be less than or equal to s − λB.  Since the variance component is monotone 

increasing in λR(s) we immediately conclude that it is never optimal to choose an observation 

window less than the entirety of the sample since the most recent break. 

 Although it is perhaps not immediately obvious, Corollary 2.1 does not consider all possible 

choices of λR(s).  There are three possibilities.  In the first the window always is large enough to 

include the break date.  In the second the window is never big enough to contain observations 

prior to the break date.  In the third, the window is allowed to sometimes capture the break date 

but sometimes not.  We do not consider the third case since it is irrelevant towards our goal of 

optimizing over the bias-variance tradeoff.  This follows from our intuitive discussion of part (b) 

of Corollary 2.1 and is stated explicitly in the following corollary. 
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Corollary 2.2: In the presence of a single break in the regression parameter vector, the pointwise 

optimal observation window satisfies 

 

 *
R (s)λ  = 

' -1

B B
2 ' -1

B

B B
B ' -1

B B

s ∆βB ∆βs
2λ (s-λ ) tr(BV)

2(s-λ ) s ∆βB ∆β<tr(BV) 2λ (s-λ ) tr(BV)2(s-λ )-( )
∆βB ∆β

s-λ s-λ

⎧
≥⎪

⎪
⎪⎪
⎨
⎪
⎪
⎪ → ∞⎪⎩

. 

 
 Corollary 2.2 provides pointwise optimal observation windows for forecasting in the 

presence of a single structural change in the regression coefficients.  We describe these as 

pointwise optimal because they are derived by maximizing the individual elements from part (a) 

of Corollary 2.1 that contribute to the average expected mean square differential over the 

duration of forecasting.  In other words, the results of Corollary 2.2 follow from maximizing 

 

 
R

1 1tr(BV)( - )
s λ (s)

 + ' -1 B R R
R B 2 2

R

-(s-λ )(s+ (s))+2sλ (s))∆βB ∆β(s- (s))(s-λ )( )
s λ (s)
λ

λ      (3) 

 
with respect to λR(s) for each s.  Again, we do not need to consider the case in which λR(s) is 

ever less than s − λB since, as can be seen from part (b) of Corollary 2.1, any time period in 

which λR(s) < s − λB monotonically reduces the objective function. 

 The formula in Corollary 2.2 is plain enough that comparative statics are reasonably simple.  

Perhaps the most important is that the observation window is increasing in the ratio 

' -1tr(BV)/∆βB ∆β .  For smaller breaks we expect to use a larger observation window and when 

parameter estimates are more precisely estimated (so that tr(BV) is small) we expect to use a 

smaller observation window. 



 11

 Note, however, that the term ' -1∆βB ∆β  is a function of the local break magnitudes ∆β and 

not the global break magnitudes we estimate in practice.  Moreover, note that these optimal 

windows are not presented relative to an environment in which agents are forecasting in ‘real 

time’.  Taken literally, if we were to use the formulas we would need to know the original 

forecasting origin T and estimate quantities like s and λB using ŝ  = t/T and Bλ̂  = BT̂ /T  for an 

estimated break date BT̂ . 

 Rather than take this approach we suggest a transformed formula that treats the present 

forecasting origin as the only one that is relevant.  Let B̂ and V̂  denote estimates of B and V 

respectively.  If for an estimated global break ˆ∆β  at an estimated break date BT̂ , we let 

ˆ∆β denote an estimate of the local change in β (∆β/T1/2) at time TB and t/T̂ˆ
BB =δ , we obtain the 

following real time estimate of the pointwise optimal observation window.2 

 

 *
tR̂  =

' -1

B B

2 ' -1
B

B B
B ' -1

B B

ˆ ˆˆ1 t∆βB ∆βt ˆ ˆ ˆ ˆtr(BV)2 (1- )
ˆ ˆˆ ˆ2t(1- ) 1 t∆βB ∆β<ˆ ˆ ˆ ˆ ˆ ˆtr(BV) tr(BV)2 (1- )ˆ2(1- )-( )ˆ ˆˆt∆βB ∆β

ˆ ˆt(1- ) 1 1

⎧
≥⎪

δ δ⎪
⎪ δ⎪
⎨

δ δ⎪ δ
⎪
⎪
⎪ δ − δ →⎩

.         (4) 

 

                                                 
2 We estimate B with -1 ' -1t

j 1 j jB̂=(t x x )=∑ , where xt is the vector of regressors in the forecasting model (supposing the 
MSE stationarity assumed in the theoretical analysis.  In the Monte Carlo experiments, tr(BV)is estimated imposing 
homoskedasticity:  tr(BV) = 2ˆkσ , where k is the number of regressors in the forecasting model and 2σ̂ is the 
estimated residual variance of the forecasting model estimated with data from 1 to t.  In the empirical applications, 
though, we use the estimate tr(BV) = -1 ' -1 -1 2 't t

j=1 j=1j j j+ j jˆtr[(t x x ) (t u x x )]τ∑ ∑ , where û  refers to the residuals from 
estimates of the forecasting model using data from 1 to t. 
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 One final note on the formulae in Corollary 2.2 and (4).  In Corollary 2.2, we use local breaks 

to model the bias-variance tradeoff faced by a forecasting agent in finite samples.  By doing so 

we are able to derive closed form solutions for the optimal observation window.  Unfortunately, 

by taking this approach we have created a situation where we have no choice but to use 

inconsistent (Bai (1997)) global break magnitudes and dates to estimate the assumed local 

magnitudes.  Not surprisingly, in our Monte Carlo results we find that experiments which treat 

the break magnitudes and dates as known perform better than other experiments where we 

estimate these quantities.  Even so, we find that the estimated quantities perform well enough to 

be a valuable tool for forecasting. 

 
3.  Approaches to Combining Recursive and Rolling Forecasts 

 In section 2 we discussed how the choice of observation window can improve forecast 

accuracy by appropriately balancing a bias-variance tradeoff.  In this section, we consider 

whether combining recursive and rolling forecasts can also improve forecast accuracy by 

balancing a similar tradeoff.  We do so using three different combination approaches.  The first is 

a simple scalar combination of recursive and rolling forecasts.  The second, which can be viewed 

as a matrix-valued combination, is based on Bayesian shrinkage of rolling model estimates 

toward recursive estimates.  The third relies on Bayesian model averaging, as implemented in 

Wright (2003). 

 
3.1  Simple scalar combination 

 The simplest possible approach to combination is to form a scalar linear combination of 

recursive and rolling forecasts.  With linear models, of course, the linear combination of the 

forecasts is the same as that generated with a linear combination of the recursive and rolling 
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parameter estimates.  Accordingly, we consider generating a forecast using coefficients W,tβ̂  = 

αt R,tβ̂  + (1−αt) L,tβ̂ , with corresponding loss 2
W,tû +τ  = ' 2

t+ t W,t
ˆ(y -x β )τ .  The size of the observation 

window used by the rolling coefficient estimates L,tβ̂  could be set arbitrarily at, say, 40 

observations, or it could be chosen to produce the lowest possible MSE of the combined forecast. 

 Using Theorem 1 in Appendix 1, we are able to derive these optimal combining weights in 

the presence of a single structural break.  Moreover, we are able to generalize the analytical 

results from Corollary 2.2 on the optimal observation window to an environment in which we 

choose the optimal observation window for a given combining weight.  If, as we have for the 

observation window Rt, we let αt converge weakly to the function α(s), the following corollaries 

provide the desired results.  For each we maintain the same assumptions and notation used in 

Corollaries 2.1 and 2.2. 

 
Corollary 3.1: (a) If λR(s) > s − λB for all s ∈ (1, 1+λP] then  

 P1
W1 E (s)+λ ξ∫ = P1+λ 2

1
R

1 1tr(BV) (1- (s)) ( - )ds
s λ (s)

α∫  

  + P1+λ' -1 B R R R
R B1 2 2

R

(s-λ )( (s)(s- (s))-(s+ (s)))+2sλ (s))∆βB ∆β (1-α(s))(s- (s))(s-λ )( )ds
s λ (s)

α λ λ
λ∫ . 

(b) If λR(s) ≤ s − λB for all s ∈ (1, 1+λP] then  

 P1
W1 E (s)+λ ξ∫ = P1+λ 2

1
R

1 1tr(BV) (1-α(s)) ( - )ds
s λ (s)∫  + P

2
1+λ' -1 2 B
1 2

λ∆βB ∆β (1-α (s))( )ds
s∫ . 

 
Corollary 3.2: In the presence of a single break in the regression parameter vector, the pointwise 

optimal window width and combining weights satisfy 
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 *
R (s, (s))λ α  = 

' -1

B B
2 ' -1

B

B B
B B ' -1

B B

s(1- (s)) ∆βB ∆βs
2λ (s-λ ) tr(BV)

2s(1-α(s))(s-λ ) s(1- (s)) ∆βB ∆β<tr(BV) 2λ (s-λ ) tr(BV)2(s-λ )(s-α(s)(s-λ ))-s(1-α(s))( )
∆βB ∆β

s-λ s-λ

⎧ α
≥⎪

⎪
⎪ α⎪
⎨
⎪
⎪
⎪ → ∞⎪⎩

 

and for λR(s) > s–λB 

 *
R(s, (s))α λ  =

' -1

R B B R 2
B

R' -1
2

B ' -1R B R

2
B

R

B ' -1

∆βB ∆βs (s)+( )s(s-λ )(s-λ -λ (s))
(s- )tr(BV) (s)tr(BV)∆βB ∆β (s- )-( )s (s)+( )(s-λ ) (s-λ (s)) ∆βB ∆βtr(BV)
(s- )0 (s)tr(BV)(s- )-( )
∆βB ∆β

⎧
λ⎪ λ⎪ ≥ λ

⎪ λλ⎪
⎨
⎪ λ⎪ < λ
⎪ λ⎪⎩

. 

 
 The Corollary provides pointwise optimal observation windows and combining weights for 

forecasting in the presence of a single structural change in the regression coefficients.  As was 

the case in Corollary 2.2, we describe these as pointwise optimal because they are derived by 

maximizing the individual elements from part (a) of Corollary 3.1.  Again, we do not need to 

consider the case in which λR(s) is ever less than s − λB since any time period in which λR(s) < s 

− λB monotonically reduces the objective function. 

 The formula for the optimal observation window λR(s), for a given combining weight α(s), is 

very closely related to that from Corollary 2.2.  Perhaps the largest difference between the two is 

that the observation window on the rolling component is more likely to be smaller since the bias-

variance tradeoff is affected by the fact that some weight (α(s) > 0) is being placed on the 

recursive forecast.  Comparative statics for the combining weights are also relatively 

straightforward.  As the observation window on the rolling component increases, we place less 
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weight on the recursive scheme.  Similarly, as the magnitude of the break increases relative to 

the precision of the parameter estimates, we also place less weight on the recursive scheme.  

Finally, we obtain the intuitive result that as the time since the break increases (s–λB), we 

eventually place all weight on the rolling scheme. 

 As was the case for the formula from Corollary 2.2, the optimal observation windows and 

combining weights in Corollary 3.2 are not presented in a real time context and depend upon 

several unknown quantities.  If we make the same change of scale and use the same estimators 

that were used for equation (4), we obtain the real time equivalents of the formulas from 

Corollary 3.2. 
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 One final note on Corollary 3.2.  The optimal solutions for the observation window λR(s) and 

combining weight α(s) are each derived conditioning on the other.  An alternative approach 
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would be to derive the jointly optimal observation and combining weights.  We have attempted 

to do so but jointly determining both optimal values does not appear readily tractable. 

 
3.2  A Bayesian shrinkage forecast 

 Given the bias-variance tradeoff between recursive and rolling forecasts, a second 

combination approach that might seem natural is to use parameter estimates based on a rolling 

sample shrunken so as to reduce the noise in the parameter estimates and resulting forecast.  We 

therefore consider shrinking rolling sample estimates toward the recursive estimates, 

implemented with standard Bayesian formulae.  Recall that for a prior β ~ N(m, σ2M), the 

Normal linear regression model yields the posterior maximizing estimate β  = 

-1 -1 -1(M +X X) (M m+X Y)′ ′  where X denotes the relevant design matrix and Y the associated 

vector of dependent variables.  If we treat the recursive parameter estimates as the prior mean 

and treat the associated standard errors under conditional homoskedasticity as our prior variance 

we have m = R,tβ̂  and M = -1
RB (t)  where RB (t)  = -1 ' -1t-τ

j=1 j j(t x x )∑ .  If we let LB (t)  = 

t

-1 ' -1t-τ
j=t-τ-R +1t j j(R x x )∑ , our Bayesian shrinkage estimator then follows by constructing the posterior 

maximizing rolling parameter estimates given this prior: 

 
 W,tβ  = [tBR(t)-1 + RtBL(t)-1]-1[tBR(t)-1

R,tβ̂  +
t

t-
s=t- -R +1 s s+x yτ

τ τ∑ ] 

  = [BR(t)-1 + (Rt/t)BL(t)-1]-1BR(t)-1
R,tβ̂  + [(t/Rt)BR(t)-1 + BL(t)-1]-1BL(t)-1

L,tβ̂ .   (7) 

 
It is clear from the right-hand side of (7) that the parameter estimates are a linear combination of 

both recursive and rolling parameter estimates.  In contrast to the simple combination considered 

in our analytical work, here the weights are matrix valued and depend upon the ratio Rt/t and the 

matrices of sample second moments BR(t) and BL(t). 
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 This Bayesian shrinkage estimator of course involves selecting a rolling observation window.  

One approach is to use an arbitrary window of, say, 40 observations.  Another approach is to 

exploit the fact that the shrinkage estimator (7) can be fit into our general analytical framework, 

and use the appropriate optimal window.  Under the assumption of asymptotic mean square 

stationarity, our Bayesian shrinkage estimator is asymptotically equivalent to a scalar-weighted 

combination of recursive and rolling estimators, with combination weights αt = t/(t + Rt) and (1 − 

αt) = Rt/(t + Rt): 

 
 W,tβ  = [BR(t)-1 + (Rt/t)BL(t)-1]-1BR(t)-1

R,tβ̂  + [(t/Rt)BR(t)-1 + BL(t)-1]-1BL(t)-1
L,tβ̂    (8) 

   ~ [1 + (Rt/t)]-1
R,tβ̂  + [(t/Rt) + 1]-1

L,tβ̂  

   = R,t
t

t ˆ( )β
t+R

 + t
L,t

t

R ˆ( )β
t+R

. 

 
 To obtain the asymptotically optimal observation window associated with these weights we 

need only substitute these weights into our formula from equation (5) .  Doing so we find that  
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The formula in (9) is very close to that in (4) when αt = 0, but with one important difference.  

We are less likely to have a solution where Rt is close to t and much more likely to have a 
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solution where Rt = B
ˆt(1- )δ .  Since the Bayesian shrinkage method always places some weight 

on the recursive component it is not surprising that the observation window for the rolling 

component of the shrinkage estimator is smaller than that for the pure rolling (αt = 0) scheme. 

 
3.3  Bayesian model averaging 

 Yet another approach to shrinking rolling forecasts toward the recursive might be to average 

a recursive forecast with forecasts generated with a potentially wide range of different estimation 

samples.  Bayesian model averaging (BMA) of the form considered by Wright (2003) provides a 

natural way of doing so.  At each forecast date t, suppose that a single, discrete break in the full 

set of model coefficients could have occurred at any point in the past (subject to some trimming 

of the start of the sample and the end of the sample, as is usually required in break analysis).  In 

our implementation, allowing for the possibility of a single break point anywhere between 

observations 20 through t-20 implies a total of t-39 models with a break.  For each time t, the 

forecast generated by a model with a break in all coefficients at date tB and estimated with all 

data up to t is of course exactly the same as the forecast generated from a model estimated with 

just data starting in tB+1.  Therefore, applying BMA techniques to obtain a forecast averaged 

across the recursive model and the models with breaks (each model represents a different 

characterization of observations 1 to t) is the same as averaging across the recursive forecast and 

rolling forecasts based on different observation windows. 

 In the particulars of our implementation of BMA, we largely follow the settings of Wright 

(2003).  We estimate each forecast model by least squares (which of course can be viewed as 

Bayesian estimation with a diffuse prior) and use Bayesian methods simply to weight the 

forecasts.  In the benchmark case, the prior probability, Prob(Mi), on each model is just 1/the 

number of models.  We also consider the alternative of putting a large prior on the recursive 
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forecast – a weight of .7 – and a weight of .3/the number of models on each of the rolling 

forecasts.  In calculating the posterior probabilities, Prob(Mi|data), of each model, we set the 

prior on the coefficients equal to the recursive estimates.3  Specifically, at each forecast origin t 

we calculate the posterior probability of each model Mi using 

 

 iProb(M |data)  = i i

i i
i

Prob(data|M )×Prob(M )
Prob(data|M )×Prob(M )∑

, 

where: 

 iProb(data|M )  ∝ ip / 2 (t 1)
i(1 ) S− − ++ φ  

 φ = parameter determining the rate of shrinkage toward the prior 

 pi = the number of explanatory variables in model i 

 2
iS  = i i i i i prior i i i prior

1ˆ ˆ ˆ ˆ(Y Z ) (Y Z ) ( ) Z Z ( )
1

′′ ′− Γ − Γ + Γ − Γ Γ − Γ
+ φ

 

 Zi = matrix of variables in model i (including xs and, in the models used to generate rolling  

  forecasts, xs interacted with a break dummy) 

 iΓ̂  = OLS-estimated coefficients of model i 

 priorΓ  = recursive estimates of the coefficients on the xs variables and zeros for the break  

  terms in the model. 

 
4.  Monte Carlo Results 

 We use Monte Carlo simulations of simple bivariate data-generating processes to evaluate, in 

finite samples, the performance of the forecast methods described above.  In these experiments, 

the DGP relates the predictand y to lagged y and lagged x, with the coefficients on lagged y and 

                                                 
3 As Wright (2003) actually uses a coefficient prior of 0, our use of the recursive prior requires a simple adjustment 
to the S term that enters the posterior probability. 
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x subject to a structural break.  As described below, forecasts of y are generated with the basic 

approaches considered above, along with some related methods that are used or might be used in 

practice.  Performance is evaluated using some simple summary statistics of the distribution of 

each forecast’s MSE: the average MSE across Monte Carlo draws (medians yield very similar 

results), along with the probability of equaling or beating the recursive forecast’s MSE. 

 
4.1  Experiment design 

 The DGPs considered share the same basic form, differing only in the persistence of the 

predictand y and the size of the coefficient break: 
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We begin by considering forecast performance in two stable models, one with yb  = .3 (DGP 1-S) 

and another with yb  = .9 (DGP 2-S), imposing 0bb xy =∆=∆  in both cases.  We then consider 

four specifications with breaks: 

DGP 1-B1   yb  = .3   )5.,3.()b,b( xy −−=∆∆  

DGP 2-B1   yb  = .9   )5.,3.()b,b( xy −−=∆∆    

DGP 1-B2   yb  = .3   )5.,0()b,b( xy −=∆∆  

DGP 2-B2   yb  = .9   )5.,0()b,b( xy −=∆∆ .   

For DGPs with breaks, we present results for experiments with three different break dates (a 

single break in each experiment): Bλ = .6, .8, and 1. 

 In each experiment, we conduct 1000 simulations of data sets of 200 observations (not 

counting the initial observation necessitated by the lag structure of the DGP).  The data are 
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generated using innovation draws from the standard normal distribution and the autoregressive 

structure of the DGP.4  We set T, the number of observations preceding the first forecast date, to 

100, and consider forecast periods of various lengths: λP = .2, .4, .6, 1.0.  For each value of λP, 

forecasts are evaluated over the period T+1 through (1 + λP)T. 

 
4.2  Forecast approaches 

 Forecasts of yt+1, t = T,…, T+P are formed from various estimates of the model 

 
t 0 1 t 1 2 t 1 ty y x e− −= γ + γ + γ + . 

 
The model estimation or forecasting approaches, detailed in Table 1, include rolling estimation 

using various windows of arbitrary, fixed size, along with this paper’s proposed Bayesian 

shrinkage of the arbitrary, rolling estimates toward the recursive.  The approaches also include 

rolling estimation using the optimal window size *
tR  defined in equation (4) and Bayesian 

shrinkage using the optimal shrinkage window size *
tR  defined in (9).  Although infeasible in 

empirical applications, the performance of forecasts based on *
tR  calculated using the known 

features of the DGP – the break point, the break size, and the population moments of the data – 

provides a useful benchmark of the potential gains to forecasting with a rolling window.5 

 We also consider a range of forecasts based on “real time” estimates of breaks in the 

forecasting model.6  The break tests are based on the full set of forecast model coefficients.  

                                                 
4 The initial observations necessitated by the lag structure of the model are generated from draws of the 
unconditional normal distribution implied by the (pre-break ) model parameterization. 
5 In calculating the “known” Rt*, we set the change in the vector of forecast model coefficients to ∆β = 

y xT(0 ∆b ∆b )′  (the local alternative assumed in generating (4) means a finite-sample break needs to be scaled 

by T ) and calculate the appropriate second moments using the population values implied by the pre-break 
parameterization of the model. 
6 As noted by Inoue and Rossi (2003), repeated application of break tests in such real time analyses with the use of 
standard critical values will result in spurious break findings.  Using the adjusted critical values provided by Inoue 
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Under these approaches, the forecast at each time t+1 is generated by first testing for a break in 

data up through period t and then estimating the forecasting model with post-break data through 

t.  For all of the break metrics, we impose a minimum segment length of 20 periods.  In general, 

each of these break-based methods yields a rolling forecast based on a window of time-varying 

size.  But if in forecast period t+1 the break metric fails to identify a break in earlier data, then 

the estimation window is the full, available sample, and the forecast for t+1 is the same as the 

recursive forecast.  That said, in light of concerns over the power of break tests in small samples, 

it might be natural to simply use the estimated break and break date without requiring the break 

to be statistically significant.  Although not reported in this paper in the interest of brevity, 

Monte Carlo results indicate that such an approach can be very effective when the DGP truly has 

a break, but perform poorly when the DGP is nearly or entirely stable.  However, we do find that 

allowing a break regardless of statistical significance can be effective when combined with 

Bayesian shrinkage, and we report these results.  The method is detailed below. 

 The first break dating approach we consider is the reverse order CUSUM (of squares) 

method proposed by Pesaran and Timmermann (2002), which involves searching backward from 

each forecast date to find the most recent break and then estimating the forecasting model with 

just post-break data.7  Because the reverse CUSUM proves to be prone to spurious break 

findings, a relatively parsimonious 1 percent significance level is used in identifying breaks with 

the CUSUM of squares.8  Second, we consider two different forecasts based on single breaks 

                                                                                                                                                             
and Rossi would improve the stable-DGP performance of some of our break test-based methods.  But in DGPs with 
breaks, performance would deteriorate. 
7 For data samples of up to a little more than 200 observations, our CUSUM analysis uses the asymptotic critical 
values provided by Durbin (1969) and Edgerton and Wells (1994).  For larger data samples, our CUSUM results 
rely on the asymptotic approximation of Edgerton and Wells. 
8 In results not reported in the interest of brevity, we also followed Pesaran and Timmermann (2002) and used the 
BIC criterion of Yao (1988) and Bai and Perron (2003) to determine the optimal number and dates of potentially 
multiple breaks and then estimate the forecasting model with data subsequent to the most recent break.  We omit the 
results because they are comparable to those reported for the single break supWald approach. 
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identified with Andrews’ (1993) sup Wald test.  One forecast uses a model estimated with just 

data since a break (dated by its least squares date estimate) identified as significant by the 

Andrews test at the 5% level.9  The other forecast is based on estimates from a rolling window of 

*
tR  observations, where *

tR  is estimated using equation (4).  In this case, of course, while the 

size of the rolling window is determined by the break date and size, by design the window often 

includes some pre-break data. 

 We also consider Bayesian shrinkage forecasts based on the rolling windows determined 

with the sup Wald break metric.  Specifically, a forecast is formed using model estimates 

obtained by Bayesian shrinkage of coefficients estimated with data since the sup-Wald -

identified break.  In practice, this approach turns out to be the same as a Bayesian shrinkage 

forecast based on an Andrews test-determined estimate of the optimal shrinkage window size *
tR  

defined in (9).  As noted above, this optimal window is essentially always just the post-break 

window, resulting in the equivalence to the approach of shrinking rolling estimates based on an 

Andrews test-identified window.  In light of the potentially low power of the break test, we also 

construct a Bayesian shrinkage forecast based on an optimal shrinkage window size *
tR  (Bayes 

α) calculated without regard to the statistical significance of the break. 

 Finally, we consider BMA forecasts that allow for the possibility of a single break in the 

vector of model coefficients anytime between observations 20 and t-20, where t denotes the 

forecast origin.  Although we have experimented with various values of the parameter φ  that 

determines the rate of shrinkage toward the recursive (a smaller value corresponds to more 

                                                 
9 At each point in time, the asymptotic p-value of the sup Wald test is calculated using Hansen’s (1997) 
approximation.  Because the size of the sample (t) increases as forecasting moves forward in time, and the minimum 
break segment length is held at 20 observations, the value of the sample trim parameter π0, which the asymptotic 
distribution depends on, decreases with time.  Our break test evaluation takes the time variation in π0 into account. 
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shrinkage) used in calculating the posterior probabilities, we report results for the single value 

that seems to work best: φ = .2. 

 Note also that, for comparison, we include forecasts based on models estimated with 

discounted least squares (with a discount rate of .99), widely used in analysis of macroeconomic 

models with learning. 

 
4.3  Simulation results 

 In our Monte Carlo comparison of forecast approaches, we mostly base our evaluation on 

average MSEs over a range of forecast samples.  For simplicity, in presenting average MSEs, for 

only the recursive forecast do we report actual average MSEs.  For all other forecasts, we report 

the ratio of a forecast’s average MSE to the recursive forecast’s average MSE.  To capture 

potential differences across approaches in MSE distributions, we also present some evidence on 

the probabilities of equaling or beating a recursive forecast. 

4.3.1  Stable DGPs:  Average MSEs 

 With stable DGPs, the most accurate forecasting scheme will of course be the recursive.  

Moreover, because the DGP has no break, the optimal rolling window *
tR  (α =0) in (4) will be 

the full sample, so both the rolling forecast based on the known *
tR  (α =0) and the Bayesian 

shrinkage forecast based on the known optimal Bayesian *
tR  (Bayes α) will be the same as the 

recursive forecast. 

 Not surprisingly, then, the average MSEs reported in Table 2 from simulations of the stable 

DGPs (DGP 1-S and DGP 2-S ) show that no forecast beats the recursive forecast – all of the 

reported MSE ratios are 1.000 or higher.  Using an arbitrary rolling window yields considerably 

less accurate forecasts, with the loss bigger the smaller the window.  For example, with DGP 2-S 
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and a forecast sample of 20 observations (λP = .2), using a rolling estimation window of 20 

observations yields, on average, a forecast with MSE 20.2 percent larger than the recursive 

forecast’s MSE. 

 Forecasts with rolling windows determined by formal break tests perform considerably 

better, with their performance ranking determined by the break metrics’ relative parsimony.  The 

reverse CUSUM approach yields a forecast modestly less accurate than a recursive forecast, with 

the accuracy loss rising as the forecast period gets longer.  For example, with DGP 2-S and a 

forecast sample of 40 observations (λP = .4), the reverse CUSUM forecast has an average MSE 

1.7 percent larger than the recursive forecast.  For the same DGP and number of forecast periods, 

a forecast based on the sup Wald break test outcome (rolling: sup Wald R) has an average MSE 

3.1 percent greater than the recursive forecast.  Similarly, the rolling forecast based on an 

estimate of *
tR  (α =0) is modestly less accurate than the recursive, much more so for the higher 

persistence DGP 2-S than DGP 1-S.  In all, such findings highlight the crucial dependence of 

these methods on the accuracy of the break metrics. 

 For all forecasts based on a rolling window of data, using Bayesian shrinkage of the rolling 

coefficient estimates toward the recursive effectively eliminates any loss in accuracy relative to 

the recursive forecast.  As shown in Table 2, shrinkage of model estimates based on arbitrary 

rolling windows of 20 or 40 observations yields forecasts with average MSE no worse than .3 

percent larger than the recursive forecasts.  Shrinkage of model estimates using a sup Wald-

determined rolling window yields a forecast (shrinkage: sup Wald R) that, at worse, has an 

average MSE .1 percent larger than the recursive.  As indicated by the results in the shrinkage:  

est. R* (Bayes α) row, shrinkage effectively eliminates the loss relative to the recursive even if 
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the estimate of the rolling window isn’t conditioned on the statistical significance of the break 

test statistic. 

 Using Bayesian model averaging to combine recursive and rolling forecasts can also 

essentially match the recursive forecast in average accuracy, if a large prior weight is placed on 

the recursive model.  With the large prior on the recursive forecast, on average the MSE of the 

BMA forecast exceeds the MSE of the recursive projection by no more than .2 or .3 percent.  But 

with all models having equal weight in the prior, the BMA forecast is somewhat less accurate, 

exceeding the recursive MSE by between 2 and 3 percent, depending on the DGP and forecast 

sample.  For example, with DGP 2-S and a forecast sample of 40 observations (λP = .4), the 

BMA, equal prior prob. forecast has an average MSE 3.1 percent larger than the recursive 

forecast. 

4.3.2  DGPs with Breaks:  Average MSEs 

 For the breaks imposed in our DGPs, the theoretical results in section 2 imply that, in 

population and within the class of forecasts without any combination or shrinkage, predictions 

based on a rolling window of the known *
tR (α=0) observations will have the lowest MSE.  The 

Monte Carlo results in Tables 3 and 4 show that the result carries over to finite samples.  

Moreover, in most but not all cases, the known *
tR (α=0) forecast has MSE lower than the 

Bayesian shrinkage forecast based on the known *
tR (Bayes α).  For example, Table 3 reports 

that, for DGP 1-B1, λP = .2, and λB = .8 (a break at observation 80), the known *
tR (α=0) forecast 

has an average MSE ratio of .874, compared to MSE ratios of .956 for the rolling: sup Wald R 

forecast and .947 for the shrinkage forecast with the known *
tR (Bayes α) observations.  But in 

some unreported experiments with smaller or longer-ago breaks, the Bayes shrinkage forecast 
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based on the known *
tR (Bayes α) slightly beats the known *

tR (α=0) forecast.  The ranking of the 

two approaches can change because, as the break gets smaller, the *
tR (α=0) window tends to 

become the recursive window, while *
tR (Bayes α) remains the window of just post-break 

observations. 

 Within the class of feasible approaches, if the timing is just right, a rolling window of 

arbitrary, fixed size can produce the lowest average MSE.  But if the timing is not just right, a 

simple rolling approach can be inferior to recursive estimation.  Consider, for example, Table 3’s 

results for DGP 1-B1.  With the break occurring at observation 80 (λB = .8), and forecasts 

constructed for 40 periods (for observations 101 through 140; λP = .4), using a rolling window of 

20 observations yields an average MSE ratio of .945.  But with the break occurring further back 

in history, at observation 60 (λB = .6), rolling estimation with 20 observations yields an average 

MSE that is 1.1 percent larger than the recursive forecast’s.  In general, of course, the gain from 

using a rolling window shrinks as the break moves further back in history. 

 Overall, the results in Tables 3 and 4 indicate that estimation with an arbitrary rolling 

window of 40 observations performs pretty well in DGPs with breaks.  When the recursive 

forecast can be beaten, this simple rolling approach often does so, but when little gain can be had 

from any of the methods considered, rolling forecasts based on 40 observations are not much 

worse than the recursive.  The upper panel of Figure 1, which breaks the forecast period into 

short, overlapping segments, highlights the potential for an arbitrary window of 40 observations 

to yield forecasts as accurate as those from the known *
tR (α=0) approach when the break 

occurred relatively recently, but to converge toward the performance of the recursive forecast as 

the break becomes more distant.  In particular, Figure 1 presents the average, across Monte Carlo 
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draws, of MSEs computed for rolling five-observation forecast windows (forecast observations 

101 through 105, 102 through 106, etc.). 

 The performance of forecasts with rolling windows determined by formal break tests is 

somewhat mixed, reflecting the mixed success of the break tests in correctly identifying breaks.  

For DGPs with relatively large, recent breaks, the reverse CUSUM and sup Wald-based rolling 

forecasts are slightly to modestly more accurate than recursive forecasts.  For example, Table 3 

shows that with DGP 1-B1, λB = .8, and λP = .4, the MSE ratios for these two forecasts are .958 

and .941, respectively.  But, as might be expected, gains tend to shrink or become losses as the 

break becomes smaller.  For DGP 1-B2, the same forecast approaches have MSE ratios of .973 

and .991 when λB = .8 and λP = .4 (Table 4).  In broad terms, forecasts based on the estimated 

rolling window *
tR (α=0) seem to usually perform as well as or slightly better than the reverse 

CUSUM and sup Wald forecasts.  For instance, with λB = .8, and λP = .4, the estimated *
tR (α=0) 

forecast has an average MSE ratio of .931 for DGP 1-B1 (Table 3) and .978 for DGP 1-B2 

(Table 4). 

 Nonetheless, the results in Tables 3 and 4 consistently indicate there is some benefit to 

simple Bayesian shrinkage of estimates based on rolling data samples.  In general, apart from 

those cases in which an arbitrary rolling window is timed just right so as to yield the best feasible 

forecast, Bayesian shrinkage seems to improve rolling-window forecasts.  In terms of average 

MSE, the shrinkage forecasts are always as good as or better than the recursive forecast.  

Moreover, some form of a shrinkage-based forecast usually comes close to yielding the 

maximum gain possible, among the approaches considered.  For example, one of the simplest 

possible approaches, shrinking rolling estimates based on a window of 40 observations, yields 

MSE ratios of roughly .96 for both DGP 1-B1 and DGP 2-B1 when λB = .8 or .6 (Table 3).  
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Bayesian shrinkage of the sup Wald-determined rolling estimates (the shrinkage: sup Wald R 

approach) also yields MSE ratios of roughly .96 in these cases.  Perhaps even better is the 

approach of applying Bayesian shrinkage to a rolling estimate based on a sample window of size 

determined without conditioning on the significance of the break test (the shrinkage: est. R* 

(Bayes α) approach).  In the same cases, this approach yields an MSE ratio of about .945. 

 To the extent that a simple rolling approach can yield a more accurate forecast than the 

shrinkage approaches, the Monte Carlo results show that the advantage of the arbitrary 

approaches diminishes as the forecast period grows longer.  The average MSEs for rolling 

windows of forecast observations presented in the lower panel of Figure 1 confirm that, as the 

break fades into history, the shrinkage approaches catch up to the simple rolling approach. 

 Finally, the Monte Carlo results indicate that Bayesian model averaging also yields a 

consistent benefit that is generally at least as large as that provided by any of the other shrinkage 

approaches.  BMA with an equal prior weight on the recursive and rolling models typically 

yields a gain in MSE as large as that associated with the known optimal rolling window.  In DGP 

2-B1, for example, the MSE ratios for the known *
tR (α=0) and BMA equal prior probability 

forecasts are .845 and .856, respectively.  Not surprisingly, with breaks in the DGP, putting a 

much larger prior probability on the recursive forecast reduces the benefits of BMA (the 

advantage of the larger prior being that it sharply reduces the costs of BMA when the DGP is 

stable):  in the same example, the MSE ratio for the BMA large prior probability forecast is .914.  

But even the large prior probability implementation of BMA seems to perform about as well or 

better than any other feasible approach to forecasting. 

4.3.2  MSE distributions 
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 The limited set of Monte Carlo-based probabilities reported in Table 5 show that the 

qualitative findings based on average MSEs reflect general differences in the distributions of 

each forecast’s MSE.  In the interest of brevity, we report a limited set of probabilities; 

qualitatively, results are similar for other experiments and settings. 

 For stable DGPs, in line with the earlier finding that forecasts based on arbitrary rolling 

windows are on average less accurate than recursive forecasts, the probability estimates in the 

upper panel of the table indicate that the rolling forecasts are almost always less accurate than 

recursive forecasts.  For example, with DGP 1-S and a forecast sample of 20 observations (λP = 

.2), the probability of a forecast based on a rolling estimation window of 40 observations beating 

a recursive forecast is only 27.1 percent.  Another finding in line with the average MSE results is 

that shrinkage of rolling estimates significantly reduces the probability of the forecast being less 

accurate than the recursive.  Continuing with the same example, the probability of a shrinkage 

forecast using a rolling window of 40 observations beating a recursive forecast is 40.2 percent.  

The table also shows that, in stable DGPs, the break estimate-dependent forecasts tend to 

perform similarly to the recursive because, with breaks not often found, the break-dependent 

forecast is usually the same as the recursive forecast (note that the shrinkage: est . R* (Bayes α) 

forecast is an exception because it does not condition on the significance of the break test). 

 For DGPs with breaks, the probabilities in the lower panel of Table 5 show that while beating 

the recursive forecast on average usually translates into having a better than 50 percent 

probability of equaling or beating the recursive forecast, in some cases probability rankings can 

differ from average MSE rankings.  That is, one forecast that produces a smaller average gain 

(against the recursive) than another sometimes has a higher probability of producing a gain.  

Perhaps not surprisingly, the reversal of rankings tends to occur with rolling vs. shrinkage 
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forecasts, as shrinkage greatly tightens the MSE distribution.  For example, with DGP 1-B1, λB = 

.8, and λP = .4, the rolling-40 and shrinkage-40 forecasts have average MSE ratios of .889 and 

.953, respectively (Table 3).  Yet, as reported in the lower panel of Table 5, the probabilities of 

the rolling-40 and shrinkage-40 forecasts having lower MSE than the recursive are 83.6 and 95.7 

percent, respectively. 

4.3.3  Summary of simulation results 

 Not surprisingly, there is a simple tradeoff:  methods that forecast most accurately when the 

DGP has a break tend to fare poorly relative to the recursive approach when the DGP is stable. 

Accordingly, as long as a forecaster puts some probability on the model of interest being stable, 

the results seem to favor some form of shrinkage approach.  Assigning some probability to the 

potential for stability implies being cautious in the sense of wanting to not fail to beat a recursive 

forecast.  From this perspective in particular, shrinking estimates based on a rolling window of 

data seems to be effective and valuable, as does Bayesian model averaging with a large prior on 

the recursive model.  On average, both approaches produce a forecast MSE essentially the same 

as the recursive MSE when the recursive MSE is best.  When there are model instabilities, the 

shrinkage approaches produce a forecast MSE that often captures most of the gain that can 

achieved with the methods considered in this paper, and beats the recursive with a high 

probability.  Within the class of shrinkage approaches, using a rolling window of an arbitrary 40 

data points seems to work well, as does using a rolling window of length determined by 

Andrews’ (1993) sup Wald test (using either the post-break sample or an optimal R* (Bayes α) 

observations without conditioning on the break).  BMA with a large prior probability on the 

recursive model seems to perform at least as well as these methods. 

 
5.  Application Results 
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 Our evaluation of the empirical performance of the various forecast methods described above 

follows the spirit of Stock and Watson (1996, 2003a), who document systemic instability in 

simple time series models for macroeconomic variables.  We consider a wide range of 

applications and a long forecast period (1971 to mid-2003) divided into still-substantial 

subperiods (1971-85 and 1986-2003).  In most cases, other studies have found some evidence of 

instability in each of the applications we consider.  In line with common empirical practice, our 

presented results are simple RMSEs for one-step ahead forecasts. 

 
5.1  Applications and forecast approach 

 More specifically, we consider the six applications described below.  Appendix 2 provides 

details on the data samples and sources and forecasting model specifications. 

(1) Predicting quarterly GDP growth with lagged growth, an interest rate term spread, 

and the change in the short-term interest rate.  The predictive content of term spreads for 

output growth has been considered in many studies, ranging from Estrella and 

Hardouvelis (1991) to Hamilton and Kim (2002).  Among others, Stock and Watson 

(2003a), Estrella, Rodrigues, and Schich (2003), and Clark and McCracken (2003a), have 

found evidence of instability in the relationship.  Kozicki (1997) and Ang, Piazzesi, and 

Wei (2003) suggest short-term interest rates should also be included. 

 
(2) Forecasting nominal GDP growth using lags of nominal growth and M2 growth.  The 

predictive content of money for real and nominal output has also been considered in 

many studies; a recent example is Amato and Swanson (2001).  Many believe the 

relationship of output to money growth is plagued by instability. 
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(3) Predicting monthly growth in industrial production with lagged growth and the 

Institute of Supply Management’s index of manufacturing activity (formerly known as 

the Purchasing Manager’s Index).  The ISM index, released at the beginning of each 

month, is widely viewed as a useful predictor of the industrial production figure released 

later in the month. 

 
(4) Predicting quarterly core CPI inflation with lagged inflation and the output gap.  As 

indicated by the literature survey in Clark and McCracken (2003b), various Phillips curve 

specifications are widely used for forecasting inflation.  Recent studies of Phillips curves 

include Stock and Watson (1999), Atkeson and Ohanian (2001), Fisher, Liu and Zhu 

(2002), and Orphanides and van Norden (2003). 

 
(5) Forecasting monthly excess returns in the S&P 500 using lagged returns, the 

dividend-price ratio, the 1-month interest rate, and the spread between Baa and Aaa 

corporate bond yields.  Instabilities in models of stock returns have been documented by 

such studies as Paye and Timmermann (2002), Pesaran and Timmermann (2002), and 

Rapach and Wohar (2002).  Our particular model is patterned after that of Pesaran and 

Timmermann. 

 
(6) Predicting the quarterly change in the 3-month T-bill rate with the prior quarter’s 

spread between the 6-month and 3-month bill rates, a relation implied by the expectations 

theory of the term structure.  Mankiw and Miron (1986) documented the poor fit of the 

model to data from 1959 through 1979, linking the apparent failure of the model to the 

behavior of monetary policy.  But Lange, Sack, and Whitesell (2003) find the model does 

fit data starting in roughly the late 1980s. 
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 In this empirical analysis, we consider the same forecast methods included in the Monte 

Carlo analysis, with some minor modifications.  Rather than consider a range of arbitrary rolling 

window sizes, we examine forecasts based on just a 10-year window.  We also, by necessity, 

drop consideration of the rolling forecast based on the known *
tR  and the shrinkage forecast 

using the known Bayesian *
tR .  Finally, in the break analysis, we impose a minimum break 

segment length of five years of data – 20 quarterly observations or 60 monthly observations.  

And, in conducting Andrews (1993) tests, we use heteroskedasticity-robust variances in forming 

the Wald statistics. 

 
5.2  Results 

 In a broad sense, the application results line up with the Monte Carlo results of Section 4.  

For example, the simple approach of using an arbitrary rolling window of observations in model 

estimation can yield the most accurate forecasts when the timing is right (as in the GDP-interest 

rate and nominal GDP-M2 results for 1986-2003) but inferior forecasts when the timing is not 

(as in the same application results for 1971-85). 

 Such broad similarities aside, perhaps the most striking result evident in Table 6 is the 

difficulty of beating the recursive approach, even in the finance-type applications we consider 

(the stock return and 3-month interest rate-spread example).10  Despite the extant evidence of 

instability in many of the applications considered, the recursive forecast is sometimes the best.  

Most strikingly, in the inflation-output gap application, none of the alternative approaches yields 

a forecast RMSE smaller than the recursive, for any of the reported sample periods.  Indeed, in 

                                                 
10 Any gains in the empirical results will naturally appear smaller than in the Monte Carlo results because the 
empirical results are reported in terms of RMSEs, while the Monte Carlo tables report MSEs. 
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several cases, the alternative forecasts have RMSEs at least 20 percent larger than the recursive 

forecast. 

 Nonetheless, there are some approaches that, in terms of RMSE, usually forecast as well as 

or better than the recursive approach.  And, in line with the Monte Carlo results, it is the 

shrinkage-based forecasts that consistently equal or improve on the recursive forecast.  In 

particular, our take on the applications evidence is that, within the class of methods that improve 

on the recursive when improvement is possible but match the accuracy of the recursive when 

improvement is not possible, Bayesian shrinkage of 10-year rolling window estimates performs 

best.  Some of the other methods, such as Bayesian model averaging or discounted least squares, 

can offer larger gains over the recursive in some periods, but perform poorly when the recursive 

forecast is best.  One of the more dramatic examples of the potential to do poorly when the 

recursive is best is provided by the core inflation-output gap application, in which no method 

beats the recursive approach; the Bayesian shrinkage of 10 year estimates simply minimizes the 

loss, by essentially matching the recursive performance, with RMSE ratios of 1.009 in all sample 

periods. 

 Consider, for example, the 3-month interest rate-term spread application.  For 1971-85 the 

10-year shrinkage forecast is essentially as accurate as the top-ranked recursive forecast, with a 

RMSE ratio of 1.002.  For 1986-2003, the 10-year shrinkage forecast’s RMSE ratio is .978, 

compared to the best RMSE ratio of .948 provided by a simple rolling forecast.  A shrinkage 

forecast that uses a rolling sample window estimated according to (9) doesn’t perform as well:  

the shrinkage: est. R*(Bayes α) RMSE ratios are 1.005 and 1.039 for 1971-85 and 1986-2003, 

respectively.  Bayesian model averaging also doesn’t perform as well, yielding RMSE ratios of 

1.004 and .991 when a large prior weight is placed on the recursive model.  In this application, 
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discounted least squares performs as well as shrinkage of rolling estimates based on 10 years of 

data, with RMSE ratios of 1.006 and .972 for 1971-85 and 1986-2003, respectively. 

 Similarly, in the GDP-interest rates application, the 10-year shrinkage forecast essentially 

matches the accuracy of the recursive forecast for 1971-85, with a RMSE ratio of .996; for 1986-

2003, the shrinkage forecast’s RMSE ratio is .946, compared to the simple 10 year rolling 

forecast’s RMSE of .944.  The shrinkage forecast that uses a rolling sample window estimated 

according to (9) (the shrinkage: est. R*( Bayes α) forecast) yields RMSE ratios of .993 and .991 

for 1971-85 and 1986-2003, respectively.  In this application, Bayesian model averaging 

performs roughly as well as 10-year shrinkage.  For instance, for 1986-2003, BMA with equal 

prior weight on all models yields an RMSE ratio of .949; BMA with a large prior weight on the 

recursive yields an RMSE ratio of .977.  Discounted least squares also performs well, with 

RMSE ratios of 1.000 for 1971-85 and .922 for 1986-2003.  As this application clearly shows, in 

some instances Bayesian model averaging and discounted least squares can perform as well as 

simple shrinkage of 10-year rolling estimates.  The advantage of the simple shrinkage approach 

seems to come in other applications, such as the inflation and stock return cases, in those samples 

in which no method really beats the recursive approach. 

 Still other approaches generally don’t seem to fare as well as shrinkage.  For example, the 

reverse CUSUM-based forecast, which is almost always based on very short samples, is typically 

always less accurate than the recursive forecast, sometimes by large margins (for example, in 

1986-2003 GDP forecasts).    Finally, like some other forecasts, predictions based on a rolling 

window of an estimated *
tR (α=0) observations are sometimes more accurate than recursive 

forecasts (as in the GDP-interest rates and nominal GDP-M2 forecasts for 1986-2003), but 

sometimes significantly less accurate (as with stock returns). 
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6. Conclusion 

 Within this paper we provide several new results that can be used to improve forecast 

accuracy in an environment characterized by heterogeneity induced by structural change.  These 

methods focus on the selection of the observation window used to estimate model parameters 

and the possible combination of forecasts constructed using the recursive and rolling schemes.  

We first provide a characterization of the bias-variance tradeoff that a forecasting agent faces 

when deciding which of these methods to use.  Given this characterization we establish 

pointwise optimality results for the selection of both the observation window and any combining 

weights that might be used to construct forecasts. 

 Overall, the results in the paper suggest a clear benefit – in theory and practice – to some 

form of combination of recursive and rolling forecasts.  Our Monte Carlo results and results for 

wide range of applications show that shrinking coefficient estimates based on a rolling window 

of data seems to be effective and valuable.  On average, the shrinkage produces a forecast MSE 

essentially the same as the recursive MSE when the recursive MSE is best.  When there are 

model instabilities, the shrinkage produces a forecast MSE that often captures most of the gain 

that can achieved with the methods considered in this paper, and beats the recursive with a high 

probability.  Thus, in practice, combining recursive and rolling forecasts – and doing so easily, in 

the case of Bayesian shrinkage – yields forecasts that are highly likely to be as good as or better 

than either recursive forecasts or pure rolling forecasts based on an arbitrary, fixed window size. 
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Appendix 1:  General Theoretical Results on the Bias-Variance Tradeoff 
 
 In this appendix we provide a theorem that is used to derive Corollaries 2.1, 2.2, 3.1 and 3.2 
in the text.  A proof of the Theorem is provided in a not-for-publication technical appendix, 
Clark and McCracken (2004).  In the following let UT,t = T,t+τ T,t T,t(h ,vec(x x ) )′ ′ ′ ′ , V = τ-1

j=-τ+1 11, jΩ∑  
where Ω11,j is the upper block-diagonal element of Ωj defined below, ⇒ denotes weak 
convergence, B-1 = -1 'T

t=1T T,t T,tlim T E(x x )→∞ ∑ , and W(.) denotes a standard (k×1) Brownian 
motion. 
 
Assumption 1: (a) The DGP satisfies yT,t+τ = ' *

T,t T,tx β  + uT,t+τ = ' *
T,tx β  + -1/2 '

T,tT x g(t/T)  + uT,t+τ for 
all t, (b) For s ∈ (0, 1+λP] g(t/T) ⇒ g(s) a nonstochastic square integrable function. 
 
Assumption 2: The parameters are estimated using OLS. 
 
Assumption 3: (a) -1 '[rT]

t=1 T,t T,t jT U U −∑  ⇒ rΩj where Ωj = -1 'T
t=1T T,t T,t jlim T E(U U )→∞ −∑  all j ≥ 0, (b) 

Ω11,j = 0 all j ≥ τ, (c) 2q
T 1,t T+P T,tsup E|U |≥ ≤  < ∞ some q > 1, (d) The zero mean triangular array UT,t 

– EUT,t = T,t+τ T,t T,t T,t T,t(h ,vec(x x -Ex x ) )′ ′ ′ ′ ′ satisfies Theorem 3.2 of De Jong and Davidson (2000). 
 
Assumption 4: For s ∈ (1,1+λP], (a) Rt/T ⇒ λR(s) ∈ (0,s], (b) αt ⇒ α(s) ∈ [0,1], (c) P/T → λP ∈ 
(0,∞). 
 
Theorem 1: Given Assumptions 1 – 4, 2 2T P

t T R,t+ W,t+ˆ ˆ(u -u )+
= τ τ∑  →d  

 { P1+λ -1 -1 ' 1/2 1/2
R R1-2 (1-α(s))[s W(s)-λ (s)(W(s)-W(s-λ (s)))]V BV dW(s)∫  

  + P1+λ 2 -2 ' 1/2 1/2
1 (1-α (s))s W(s) V BV W(s)ds∫  

  − P1+λ 2 -2 ' 1/2 1/2
R R R1 (1-α(s)) λ (W(s)-W(s-λ (s))) V BV (W(s)-W(s-λ (s)))]ds∫ } 

  − P1+λ -1 -1 ' 1/2 1/2
R R12 α(s)(1-α(s))s λ (s)W(s) V BV (W(s)-W(s-λ (s)))ds∫ } 

 + 2{ P

R

1+λ s s-1 -1 ' 1/2
R1 0 s- (s)(1- (s))[s ( g(r)dr)-λ (s)( g(r)dr)]V dW(s)λ− α∫ ∫ ∫   

  + P

R

1+λ s s2 -2 ' 1/2 2 -2 ' 1/2
R R1 0 s-λ (s)[(1-α (s))s W(s) V ( g(r)dr)-(1-α) λ (s)(W(s)-W(s-λ (s))) V ( g(r)dr)]ds∫ ∫ ∫  

  − P

R

1+λ s-1 -1 ' 1/2
R1 s-λ (s)α(s)(1-α(s))s λ (s)W(s) V ( g(r)dr)ds∫ ∫  

  − P1+λ s-1 -1 ' 1/2
R R1 0α(s)(1-α(s))s λ (s)(W(s)-W(s-λ (s))) V ( g(r)dr)]ds∫ ∫  

  − P1+λ ' 1/2 -1 -1
R R1 (1-α(s))g(s) V [s W(s)-λ (s)(W(s)-W(s-λ (s)))]ds∫ } 

 + { P

R

1+λ s s' -1 -1 -1
R1 0 s-λ (s)-2 (1-α(s))g(s) B [s ( g(r)dr)-λ (s)( g(r)dr)]ds∫ ∫ ∫  

  + P

R R

1+λ s s s s2 -2 ' -1 2 -2 ' -1
R1 0 0 s-λ (s) s-λ (s)[(1-α (s))s ( g(r)dr) B ( g(r)dr)-(1-α(s)) λ ( g(r)dr) B ( g(r)dr)]ds∫ ∫ ∫ ∫ ∫  

  − P

R

1+λ s s-1 -1 ' -1
R1 0 s-λ (s)2 α(s)(1-α(s))s λ (s)( g(r)dr) B ( g(r)dr)ds∫ ∫ ∫ } 

 
 = P1

W1 (s)+λ ξ∫  = { P1
W11 (s)+λ ξ∫ } + { P1

W21 (s)+λ ξ∫ } + { P1
W31 (s)+λ ξ∫ }. 
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Appendix 2:  Application Details 
 
 Unless otherwise noted, all data are taken from the FAME database of the Board of 
Governors and end in 2003:Q2 (quarterly data) or June 2003 (monthly data).  All growth rates 
and inflation rates are calculated as log changes.  Note that, while omitted in the table listing, in 
all cases the forecasting model includes a constant in the set of predictors.  In the table, start 
point refers to the beginning of the regression sample, determined by the availability of the raw 
data, any differencing, and lag orders. 
 
application predictand (data frequency) predictors data notes 
1.  GDP-interest rates real GDP growth (qly) one lag of:  GDP growth; 

10 year Treasury bond 
yield less the 3 month T-
bill rate; and the change in 
the T-bill rate. 

start point:  1953:Q3. 

2.  Nominal GDP-M2 nominal GDP growth (qly) two lags of:  nominal GDP 
growth and M2 growth 

start point:  1959:Q4 

3.  IP-ISM growth in industrial production 
(mly) 

one lag of IP growth and 
the current value of the 
index of the Institute of 
Supply Management 

start point:  January 1948 

4.  Inflation-output gap core CPI inflation (qly) four lags of core inflation 
and one lag of the output 
gap, defined as 
log(GDP/CBO’s potential 
GDP) 

start point:  1958:Q2 
 
CBO’s potential output 
taken from the St. Louis 
Fed’s FRED database 

5.  Stock returns excess return, S&P 500 (mly) one lag of:  excess return; 
dividend-price ratio; 1-
month nominal interest rate 
less average over past 12 
months; and Baa – Aaa 
yield spread 

start point:  February 1954 
end point:  June 2002 
 
excess return = return less 
1-month interest rate, 
where  
return = (pt + dt)/pt-1 – 1,11 
and the price is from the 
last business day 
 
dividend-price ratio = 
(average of dividends from 
t-11 to t )/ pt 
 
data sources:  (1) S&P 500 
dividend data taken from 
Robert Shiller’s web page.  
(2) 1-month interest rate 
taken from Compustat 
database. 

6.  3-mo. Interest rate-term 
spread 

change in 3-month T-bill rate 
(qly) 

one lag of the spread 
between the 6-month and 
3-month T-bill rates 

start point:  1959:Q2 
 
quarterly values are the 
interest rates on the last 
day of the quarter 

 

 

                                                 
11 Note that the dt that enters the return calculation is Shiller’s reported dividend series divided by 12. 
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Table 1:  Summary of Forecast Approaches 
 

approach description of coefficient estimates 
recursive use all available data 
rolling: R=20 use 20 most recent observations 
rolling: R=40 use 40 most recent observations 
rolling: R=60 use 60 most recent observations 
shrinkage: R=20 estimates based on 20 most recent observations shrunken toward recursive 

model estimates, using (7) 
shrinkage: R=40 estimates based on 40 most recent observations shrunken toward recursive 

model estimates, using (7) 
shrinkage: R=40 estimates based on 60 most recent observations shrunken toward recursive 

model estimates, using (7) 
rolling: reverse CUSUM R use data since break identified by reverse order CUSUM (1% sig.level) 
rolling: sup Wald R use data since break identified by Andrews (1993) sup Wald test for a single 

break (5% sig.level) 
shrinkage: sup Wald R sup Wald-based coefficient estimates shrunken toward recursive model 

estimates, using (7) 
rolling: known R* (α=0) using R* most recent observations, where R* is determined using (4) and the 

known values of the break point, the break size, and the population moments 
as specified in the DGP 

rolling: estimated R* (α=0) using R* most recent observations, where R* is estimated using (4) and sup 
Wald-based estimates of the break point and size and sample moment 
estimates. 

shrinkage: known R* (Bayes 
α)  

shrinkage of rolling coefficient estimates based on Bayesian R* observations 
– determined using (9) and the known features of the DGP – toward recursive 
estimates 

shrinkage: est. R* (Bayes α) Bayesian shrinkage of rolling coefficient estimates using estimate of Bayesian 
R* observations based on (9), using Wald-based estimates of the break point 
and size and sample moment estimates – but regardless of the break test’s 
significance 

BMA, equal prior prob. Bayesian model averaging of recursive and rolling forecasts, with rolling 
forecasts using each possible start date between observations 20 and t-20.  
The prior probability on each model is 1/number of models.  The shrinkage 
coefficient φ  = .2. 

BMA, large prior prob. Same as above, except that the prior probability on the recursive model is .7 
and the prior on each rolling model is .3/number of models.  

DLS Discounted least squares with a discount rate of .99. 
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Table 2:  Monte Carlo Results for Stable DGPs, Average MSEs
(average MSE for recursive, and ratio of average MSE to recursive average for other forecasts)

DGP 1-S DGP 2-S
λ P =.20 λ P =.40 λ P =.60 λ P =1 λ P =.20 λ P =.40 λ P =.60 λ P =1

recursive 1.029 1.030 1.023 1.022 1.029 1.022 1.020 1.020
rolling: R=20 1.152 1.159 1.165 1.170 1.202 1.207 1.211 1.215
rolling: R=40 1.052 1.056 1.060 1.062 1.066 1.071 1.074 1.078
rolling: R=60 1.024 1.026 1.029 1.032 1.029 1.035 1.036 1.040
shrinkage: R=20 1.001 1.001 1.002 1.002 1.000 1.001 1.001 1.000
shrinkage: R=40 1.003 1.003 1.003 1.002 1.000 1.001 1.001 1.001
shrinkage: R=60 1.002 1.002 1.002 1.002 1.001 1.002 1.002 1.002
rolling: reverse CUSUM R 1.004 1.014 1.023 1.037 1.005 1.017 1.028 1.047
rolling: sup Wald R 1.011 1.014 1.014 1.013 1.033 1.031 1.030 1.027
shrinkage: sup Wald R 1.000 1.000 1.000 1.000 1.001 1.001 1.001 1.001
rolling: known R* (α=0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
rolling: estimated R* (α=0) 1.008 1.010 1.010 1.009 1.027 1.024 1.023 1.021
shrinkage: known R*(Bayes α) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
shrinkage: est. R*(Bayes α) 1.005 1.005 1.005 1.005 1.003 1.004 1.003 1.003
BMA, equal prior prob. 1.024 1.024 1.024 1.021 1.031 1.031 1.028 1.025
BMA, large prior prob. 1.002 1.002 1.002 1.002 1.002 1.003 1.003 1.002
DLS 1.008 1.010 1.011 1.013 1.006 1.008 1.009 1.011  
 
 
Notes: 
 
1.  DGPs DGP 1-S and DGP 2-S are defined in Section 4.1. 
2.  The total number of observations generated for each experiment is 200.  Forecasting begins with observation 101.  Results are 
reported for forecasts evaluated from period 101 through P(1+λ )100 . 
3.  The forecast approaches listed in the first column are defined in Table 1. 
4.  The table entries are based on averages of forecast MSEs across 1000 Monte Carlo simulations.  For the recursive forecast, the 
table reports the average MSEs.  For the other forecasts, the table reports the ratio of the average MSE to the average recursive 
MSE. 
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Table 3:  Baseline Monte Carlo Results for DGPs with Breaks, Average MSEs
(average MSE for recursive, and ratio of average MSE to recursive average for other forecasts)

Break point:  λ B = .8

DGP 1-B1 DGP 2-B1
λ P =.20 λ P =.40 λ P =.60 λ P =1 λ P =.20 λ P =.40 λ P =.60 λ P =1

recursive 1.279 1.254 1.221 1.185 1.310 1.284 1.262 1.231
rolling: R=20 0.922 0.945 0.969 1.002 0.915 0.931 0.948 0.975
rolling: R=40 0.893 0.889 0.902 0.924 0.881 0.868 0.875 0.893
rolling: R=60 0.936 0.912 0.909 0.919 0.932 0.902 0.888 0.890
shrinkage: R=20 0.961 0.966 0.971 0.977 0.966 0.971 0.975 0.981
shrinkage: R=40 0.957 0.953 0.957 0.964 0.959 0.956 0.959 0.966
shrinkage: R=60 0.973 0.962 0.958 0.961 0.973 0.964 0.960 0.962
rolling: reverse CUSUM R 0.991 0.958 0.946 0.952 0.992 0.954 0.931 0.929
rolling: sup Wald R 0.956 0.941 0.937 0.937 0.932 0.909 0.899 0.893
shrinkage: sup Wald R 0.965 0.958 0.956 0.955 0.963 0.956 0.953 0.951
rolling: known R* (α=0) 0.874 0.874 0.881 0.895 0.853 0.845 0.847 0.857
rolling: estimated R* (α=0) 0.944 0.931 0.929 0.930 0.926 0.904 0.893 0.890
shrinkage: known R*(Bayes α) 0.947 0.944 0.944 0.947 0.951 0.947 0.947 0.948
shrinkage: est. R*(Bayes α) 0.947 0.943 0.944 0.947 0.951 0.947 0.946 0.947
BMA, equal prior prob. 0.880 0.878 0.885 0.898 0.865 0.856 0.857 0.864
BMA, large prior prob. 0.933 0.926 0.927 0.931 0.925 0.914 0.909 0.907
DLS 0.928 0.918 0.917 0.921 0.934 0.925 0.920 0.915

Break point:  λ B = .6

DGP 1-B1 DGP 2-B1
λ P =.20 λ P =.40 λ P =.60 λ P =1 λ P =.20 λ P =.40 λ P =.60 λ P =1

recursive 1.188 1.173 1.148 1.125 1.217 1.199 1.186 1.165
rolling: R=20 0.993 1.011 1.030 1.055 0.986 0.997 1.010 1.031
rolling: R=40 0.910 0.925 0.941 0.963 0.888 0.900 0.912 0.932
rolling: R=60 0.911 0.912 0.924 0.942 0.896 0.890 0.895 0.909
shrinkage: R=20 0.974 0.977 0.981 0.985 0.979 0.982 0.985 0.988
shrinkage: R=40 0.954 0.960 0.965 0.973 0.957 0.963 0.967 0.974
shrinkage: R=60 0.958 0.955 0.959 0.967 0.958 0.957 0.960 0.966
rolling: reverse CUSUM R 0.982 0.958 0.960 0.974 0.979 0.944 0.938 0.950
rolling: sup Wald R 0.947 0.944 0.947 0.952 0.914 0.908 0.906 0.910
shrinkage: sup Wald R 0.958 0.957 0.958 0.962 0.953 0.952 0.952 0.954
rolling: known R* (α=0) 0.896 0.904 0.913 0.925 0.870 0.872 0.877 0.888
rolling: estimated R* (α=0) 0.937 0.936 0.941 0.947 0.906 0.902 0.901 0.906
shrinkage: known R*(Bayes α) 0.946 0.948 0.951 0.956 0.948 0.948 0.949 0.952
shrinkage: est. R*(Bayes α) 0.946 0.947 0.951 0.956 0.947 0.947 0.948 0.951
BMA, equal prior prob. 0.896 0.904 0.914 0.928 0.873 0.876 0.881 0.892
BMA, large prior prob. 0.930 0.932 0.938 0.946 0.911 0.912 0.913 0.918
DLS 0.928 0.927 0.932 0.941 0.933 0.929 0.928 0.927  
 
Notes: 
 
1.  DGPs DGP 1-B1 and DGP 2-B1 are defined in Section 4.1. 
2.  The total number of observations in each experiment is 200.  Forecasting begins with observation 101.  Results are reported 
for forecasts evaluated from period 101 through P(1+λ )100 .  The break in the DGP occurs at observation Bλ 100 . 
3.  The forecast approaches listed in the first column are defined in Table 1. 
4.  The table entries are based on averages of forecast MSEs across 1000 Monte Carlo simulations.  For the recursive forecast, the 
table reports the average MSEs.  For the other forecasts, the table reports the ratio of the average MSE to the average recursive 
MSE. 
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Table 4:  Auxiliary Monte Carlo Results for DGPs with Breaks, Average MSEs
(average MSE for recursive, and ratio of average MSE to recursive average for other forecasts)

Break point:  λ B = .8

DGP 1-B2 DGP 2-B2
λ P =.20 λ P =.40 λ P =.60 λ P =1 λ P =.20 λ P =.40 λ P =.60 λ P =1

recursive 1.202 1.181 1.152 1.124 1.196 1.173 1.153 1.127
rolling: R=20 0.988 1.012 1.034 1.064 1.033 1.047 1.065 1.094
rolling: R=40 0.931 0.936 0.951 0.972 0.944 0.945 0.960 0.984
rolling: R=60 0.953 0.940 0.945 0.958 0.955 0.944 0.948 0.961
shrinkage: R=20 0.964 0.970 0.975 0.981 0.962 0.968 0.972 0.979
shrinkage: R=40 0.962 0.961 0.965 0.972 0.959 0.958 0.962 0.969
shrinkage: R=60 0.976 0.969 0.968 0.972 0.974 0.967 0.965 0.969
rolling: reverse CUSUM R 0.991 0.973 0.972 0.985 0.994 0.977 0.977 0.995
rolling: sup Wald R 1.000 0.991 0.990 0.988 1.021 1.006 1.002 0.997
shrinkage: sup Wald R 0.975 0.972 0.972 0.973 0.973 0.969 0.968 0.969
rolling: known R* (α=0) 0.925 0.925 0.932 0.942 0.950 0.939 0.940 0.946
rolling: estimated R* (α=0) 0.986 0.978 0.978 0.978 1.005 0.990 0.987 0.984
shrinkage: known R*(Bayes α) 0.953 0.953 0.956 0.961 0.951 0.951 0.953 0.958
shrinkage: est. R*(Bayes α) 0.955 0.954 0.957 0.962 0.955 0.954 0.955 0.960
BMA, equal prior prob. 0.919 0.921 0.929 0.941 0.925 0.924 0.929 0.940
BMA, large prior prob. 0.953 0.952 0.954 0.960 0.952 0.950 0.951 0.957
DLS 0.939 0.936 0.940 0.949 0.934 0.931 0.933 0.941

Break point:  λ B = 1

DGP 1-B1 DGP 2-B1
λ P =.20 λ P =.40 λ P =.60 λ P =1 λ P =.20 λ P =.40 λ P =.60 λ P =1

recursive 1.394 1.354 1.308 1.257 1.480 1.411 1.368 1.314
rolling: R=20 0.975 0.942 0.950 0.973 1.009 0.951 0.946 0.958
rolling: R=40 0.978 0.929 0.914 0.917 0.986 0.926 0.901 0.895
rolling: R=60 0.988 0.955 0.931 0.918 0.987 0.954 0.924 0.898
shrinkage: R=20 0.980 0.971 0.972 0.976 0.985 0.976 0.976 0.979
shrinkage: R=40 0.987 0.972 0.965 0.966 0.989 0.975 0.968 0.968
shrinkage: R=60 0.993 0.981 0.971 0.964 0.993 0.982 0.973 0.966
rolling: reverse CUSUM R 0.997 0.975 0.950 0.939 0.998 0.973 0.940 0.921
rolling: sup Wald R 1.000 0.975 0.959 0.941 1.009 0.963 0.934 0.906
shrinkage: sup Wald R 0.995 0.980 0.971 0.962 0.995 0.979 0.969 0.960
rolling: known R* (α=0) 0.984 0.923 0.906 0.899 0.996 0.915 0.888 0.871
rolling: estimated R* (α=0) 0.997 0.969 0.952 0.934 1.005 0.959 0.930 0.903
shrinkage: known R*(Bayes α) 0.980 0.964 0.957 0.952 0.985 0.969 0.961 0.955
shrinkage: est. R*(Bayes α) 0.983 0.965 0.958 0.952 0.987 0.970 0.962 0.955
BMA, equal prior prob. 0.963 0.920 0.906 0.899 0.969 0.916 0.892 0.877
BMA, large prior prob. 0.981 0.957 0.946 0.936 0.969 0.919 0.895 0.879
DLS 0.970 0.944 0.931 0.920 0.976 0.951 0.936 0.921  
 
Notes: 
 
1.  DGPs DGP 1-B2, DGP 2-B2, DGP 1-B1, and DGP 2-B1 are defined in Section 4.1. 
2.  The total number of observations in each experiment is 200.  Forecasting begins with observation 101.  Results are reported 
for forecasts evaluated from period 101 through P(1+λ )100 .  The break in the DGP occurs at observation Bλ 100 . 
3.  The forecast approaches listed in the first column are defined in Table 1. 
4.  The table entries are based on averages of forecast MSEs across 1000 Monte Carlo simulations.  For the recursive forecast, the 
table reports the average MSEs.  For the other forecasts, the table reports the ratio of the average MSE to the average recursive 
MSE. 
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Table 5:  Monte Carlo Probabilities of Equaling or Beating Recursive MSE

(Stable) DGP 1-S
λ P =.20 λ P =.40 λ P =.60 λ P =1

Pr(=REC) Pr(<REC) Pr(=REC) Pr(<REC) Pr(=REC) Pr(<REC) Pr(=REC) Pr(<REC)
rolling: R=20 0.000 0.162 0.000 0.071 0.000 0.022 0.000 0.007
rolling: R=40 0.000 0.271 0.000 0.177 0.000 0.109 0.000 0.045
rolling: R=60 0.000 0.343 0.000 0.280 0.000 0.215 0.000 0.125
shrinkage: R=20 0.000 0.417 0.000 0.410 0.000 0.389 0.000 0.384
shrinkage: R=40 0.000 0.402 0.000 0.378 0.000 0.360 0.000 0.360
shrinkage: R=60 0.000 0.425 0.000 0.415 0.000 0.377 0.000 0.358
rolling: reverse CUSUM R 0.000 0.432 0.000 0.335 0.000 0.246 0.000 0.111
rolling: sup Wald R 0.863 0.033 0.795 0.030 0.751 0.020 0.675 0.020
shrinkage: sup Wald R 0.863 0.053 0.795 0.067 0.751 0.079 0.675 0.084
rolling: known R* (α=0) 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
rolling: estimated R* (α=0) 0.863 0.036 0.795 0.036 0.751 0.024 0.675 0.029
shrinkage: known R*(Bayes α) 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
shrinkage: est. R*(Bayes α) 0.000 0.422 0.000 0.393 0.000 0.360 0.000 0.332
BMA, equal prior prob. 0.000 0.311 0.000 0.237 0.000 0.203 0.000 0.151
BMA, large prior prob. 0.000 0.389 0.000 0.347 0.000 0.317 0.000 0.316
DLS 0.000 0.357 0.000 0.306 0.000 0.260 0.000 0.202

(Break) DGP 1-B1, λ B = .8

λ P =.20 λ P =.40 λ P =.60 λ P =1

Pr(=REC) Pr(<REC) Pr(=REC) Pr(<REC) Pr(=REC) Pr(<REC) Pr(=REC) Pr(<REC)
rolling: R=20 0.000 0.636 0.000 0.622 0.000 0.572 0.000 0.492
rolling: R=40 0.000 0.773 0.000 0.836 0.000 0.859 0.000 0.845
rolling: R=60 0.000 0.739 0.000 0.862 0.000 0.888 0.000 0.924
shrinkage: R=20 0.000 0.881 0.000 0.934 0.000 0.950 0.000 0.965
shrinkage: R=40 0.000 0.873 0.000 0.957 0.000 0.975 0.000 0.985
shrinkage: R=60 0.000 0.795 0.000 0.934 0.000 0.975 0.000 0.990
rolling: reverse CUSUM R 0.000 0.553 0.000 0.748 0.000 0.785 0.000 0.790
rolling: sup Wald R 0.253 0.448 0.106 0.580 0.063 0.659 0.025 0.745
shrinkage: sup Wald R 0.253 0.619 0.106 0.779 0.063 0.847 0.025 0.920
rolling: known R* (α=0) 0.000 0.764 0.000 0.858 0.000 0.904 0.000 0.941
rolling: estimated R* (α=0) 0.253 0.480 0.106 0.625 0.063 0.704 0.025 0.789
shrinkage: known R*(Bayes α) 0.000 0.923 0.000 0.974 0.000 0.989 0.000 0.995
shrinkage: est. R*(Bayes α) 0.000 0.889 0.000 0.943 0.000 0.969 0.000 0.986
BMA, equal prior prob. 0.000 0.845 0.000 0.930 0.000 0.952 0.000 0.971
BMA, large prior prob. 0.000 0.892 0.000 0.955 0.000 0.975 0.000 0.993
DLS 0.000 0.865 0.000 0.947 0.000 0.971 0.000 0.978  
 
Notes: 
 
1.  DGPs DGP 1-S and DGP 1-B1 are defined in Section 4.1. 
2.  The total number of observations in each experiment is 200.  Forecasting begins with observation 101.  Results are reported 
for forecasts evaluated from period 101 through P(1+λ )100 .  The break in the DGP occurs at observation Bλ 100 . 
3.  The forecast approaches listed in the first column are defined in Table 1. 
4.  The table entries are frequencies (percentages of 1000 Monte Carlo draws) with which a given forecast approach yields a 
forecast MSE less than or equal to the recursive forecast’s MSE. 
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Table 6:  Application Results
(RMSE for recursive forecast, and ratio of RMSE to recursive RMSE for other forecasts)

GDP-interest rates Nominal GDP-M2
1971-2003 1971-85 1986-2003 1971-2003 1971-85 1986-2003

recursive 3.323 4.139 2.413 3.597 4.585 2.451
rolling: R=40 0.994 1.013 0.944 0.984 1.023 0.858
shrinkage: R=40 0.982 0.996 0.946 0.986 0.991 0.968
rolling: reverse CUSUM R 1.037 1.016 1.087 1.017 1.022 1.003
rolling: sup Wald R 1.008 1.017 0.987 1.012 1.032 0.947
shrinkage: sup Wald R 0.999 1.002 0.991 0.993 0.999 0.975
rolling: estimated R* (α=0) 1.008 1.017 0.987 1.012 1.032 0.947
shrinkage: est. R*(Bayes α) 0.993 0.993 0.991 0.987 0.991 0.976
BMA, equal prior prob. 0.990 1.005 0.949 0.992 1.014 0.924
BMA, large prior prob. 0.990 0.995 0.977 0.989 0.997 0.967
DLS 0.978 1.000 0.922 0.979 0.999 0.919

IP-ISM Inflation-output gap
1971-2003 1971-85 1986-2003 1971-2003 1971-85 1986-2003

recursive 8.116 9.977 6.083 1.627 2.310 0.582
rolling: R=40 1.005 1.009 0.995 1.064 1.042 1.327
shrinkage: R=40 0.994 0.994 0.994 1.009 1.009 1.009
rolling: reverse CUSUM R 1.009 1.018 0.986 1.047 1.037 1.173
rolling: sup Wald R 1.006 1.000 1.017 1.249 1.250 1.235
shrinkage: sup Wald R 0.998 0.999 0.993 1.031 1.032 1.020
rolling: estimated R* (α=0) 1.006 1.000 1.017 1.249 1.250 1.235
shrinkage: est. R*(Bayes α) 0.997 0.998 0.995 1.031 1.032 1.020
BMA, equal prior prob. 0.994 0.997 0.988 1.079 1.067 1.233
BMA, large prior prob. 0.996 0.997 0.993 1.024 1.021 1.068
DLS 0.988 0.996 0.969 1.039 1.040 1.023

Stock returns 3-mo. Interest rate-term spread
1971-2003 1971-85 1986-2003 1971-2003 1971-85 1986-2003

recursive 4.523 4.333 4.689 1.186 1.623 0.594
rolling: R=40 1.034 1.037 1.032 1.003 1.011 0.948
shrinkage: R=40 0.999 1.004 0.995 0.999 1.002 0.978
rolling: reverse CUSUM R 1.035 1.048 1.025 0.990 1.004 0.900
rolling: sup Wald R 1.042 1.043 1.042 1.089 1.100 1.013
shrinkage: sup Wald R 0.998 1.005 0.993 1.004 1.005 0.999
rolling: estimated R* (α=0) 1.042 1.043 1.042 1.089 1.100 1.013
shrinkage: est. R*(Bayes α) 1.000 1.007 0.995 1.010 1.005 1.039
BMA, equal prior prob. 1.011 1.030 0.997 1.021 1.026 0.985
BMA, large prior prob. 1.001 1.007 0.997 1.003 1.004 0.991
DLS 1.018 1.049 0.993 1.002 1.006 0.972  
 
Notes: 
 
1.  Details of the six applications (data, forecast model specification, etc.) are provided in Appendix 2. 
2.  The forecast approaches listed in the first column are defined in Table 1. 
4.  The table entries are based on forecast RMSEs.  For the recursive forecast, the table reports the RMSE.  For the other 
forecasts, the table reports the ratio of its RMSE to the recursive RMSE. 
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Figure 1:  Average MSE Across Monte Carlo Draws, 
Rolling 5-Period Windows of Forecasts 

DGP 1-B1, λB = .8 
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